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Stability Analysis and Event-Triggered Control for
IT2 Discrete-time Positive Polynomial Fuzzy
Networked Control Systems with Time Delay

Xiaomiao Li, Xiaoxiao Wang, Fucai Liu, Hak-Keung Lam, Fellow, IEEE, and Yuehao Du

Abstract—This paper investigates the stability analysis and
event-triggered controller design of interval type-2 (IT2) discrete-
time positive polynomial fuzzy networked control (DPPFNC)
systems with time delay subject to asynchronous premises. The
reasonable design of the IT2 polynomial fuzzy event-triggered
controller guarantees the closed-loop system’s positivity and
stability, reduces energy consumption and efficiently utilizes the
communication bandwidth. Furthermore, for DPPFNC systems
with time delay, obtaining more relaxed stability conditions and
lower network communication frequency is quite challenging,
even for the current advanced theory. Meanwhile, to strengthen
the practicality of the control strategy, the asynchronous con-
straints of premise variables due to the introduction of the
network are considered. Aiming at the above problems, a
polynomial fuzzy event-triggered control strategy is proposed
based on the stability analysis of IT2 membership-function-
dependent (IT2-MFD) and imperfect premise matching (IPM).
First, the IT2 polynomial fuzzy model, which employs IT2-MFs
to capture parameter uncertainty, depicts the event-triggered
positive nonlinear dynamics. Second, an IT2 polynomial fuzzy
event-triggered controller is designed by introducing the 1-norm
event-triggered control (ETC) strategy. Then, by optimizing the
approximation error between the original and the approximate
membership function, a genetic algorithm (GA) is employed
to relax the stability criteria. Finally, numerical and practical
examples illustrate the viability of the suggested design.

Index Terms—Discrete-time positive polynomial fuzzy net-
worked control (DPPFNC) systems, event-triggered control
(ETC) design, sum-of-squares (SOS), interval type-2 member-
ship function dependent (IT2-MFD) method, Genetic Algorithm
membership functions (GA-MFs).

I. INTRODUCTION

POSITIVE networked control systems (PNCSs) are re-
garded as promising sharing communication network

systems due to their benefits, including low prices, easy in-
stallation and maintenance [1], [2]. Positive networked control
systems have both the complex dynamic behaviours of general
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networked control systems (NCSs) [3], [4] and the unique
properties of positive systems, that is, their states are defined
in the positive quadrant conical space rather than the whole
space [5]. The typical applicable examples for such systems
can be found in a broad range of areas [6], [7]. The work
[6] established positive dynamics for the smart grid’s agent-
level power distribution remote monitoring procedure. In [7],
a susceptible-exposed-infected-removed (SEIR) positive net-
work system model was constructed, and an ETC framework
was presented to contain the transmission process. In addition,
in most PNCSs, all sampled data (SD) must be transmitted
over a shared communication network, which is a typical time-
triggered control scheme [8]. However, when dealing with
PNCSs with limited resources, some scattered fluctuations
of SD in the PNCSs will cause more interference to the
controller execution process. Therefore, to reduce unnecessary
SD transmission and save limited network bandwidth, the
ETC [9], [10] and self-triggered control strategies [11] have
attracted much interest. On this basis, the transmission delay
caused by communication network insertion is considered.

Since most NCSs in actual production are complex and
nonlinear, it is difficult to establish accurate models of con-
trol plants. Therefore, the fuzzy control theory of nonlinear
systems emerged [12]. When dealing with nonlinear systems
utilizing fuzzy reasoning, the T-S fuzzy framework [13], [14]
can be a practical instrument, and some relevant results such
as output feedback [15], tracking control [16] and fuzzy
stabilization [17] were reported. Besides, a polynomial fuzzy
model [18] was recently proposed, which allows polynomials
to appear in fuzzy consequences and represents a broader
range of nonlinear systems. [19] employed polynomial fuzzy
modelling on the lipoprotein breakdown and the potassium-
ions transport system, and designed a controller for treatment
to stabilize the patient’s self-metabolic function. Recently,
polynomial fuzzy control frame is successfully applied to
complex nonlinear NCSs under the ETC strategy. For example,
in [20], considering the limited bandwidth communication in
the network environment, a design methodology for IT2 event-
triggered polynomial controllers in NCSs is advanced. From
[21], a novel ETC strategy is applied to make the stochastic
fuzzy singular systems admissible, extended dissipative and
save the network resources. However, due to the limitations
of positive constraints, the research of ETC design for PNCSs
has become challenging.

Most existing PNCS systems employs type-1 fuzzy logic
frame [22], but the type-1 fuzzy set cannot directly address



JOURNAL OF LATEX CLASS FILES 2

some uncertain problems. Type-2 fuzzy sets [23], which have
been demonstrated in applications like inverted pendulum
control [24], extended Kalman filters [25], and nonlinear
control [26], have been proposed to capture the uncertainty
accurately. However, this framework significantly increases
the computational complexity, making obtaining the compu-
tational results challenging. Depending on the type-2 fuzzy
framework, the interval type-2 (IT2) fuzzy framework theory
was created to address this drawback, and the secondary
membership degree was set to 1. Benefitting from an excellent
property for describing uncertain nonlinearities inspired by
[27], the IT2 fuzzy ETC controller is adopted, the stability
criterion of SOS method is proposed in [20]. However, for
some NCSs with particular positive constraints, the papers
about IT2 fuzzy ETC are no longer applicable, which is one
of the motivations of this study.

In terms of the control design paradigm, the popular parallel
distributed compensation (PDC) technique favours stability
analysis [28] as the existence of crossed terms. But, the
PDC design framework assumes that the model and the
controller have the equivalent rule number and premise MFs.
Considering the parameter uncertainties [29] and the existence
of ETC schemes, it is impossible to design event-triggered
fuzzy controllers that can stabilize IT2 fuzzy model using the
PDC technique. In addition, since the event-triggered fuzzy
controller can only observe the sampled state after triggering
action, the MFs of the controller and the model are not one-
to-one corresponding. For the above problems, an imperfect
premise matching (IPM) [30] design framework is employed.
It allows fuzzy rules and MFs’s shapes to be more complex
and asymmetric and increases the usability of the controller.

It has been demonstrated in [30] that adopting a MFD
approach is crucial in relaxing system stability criteria. For
specific MFs, the MFD-based stability criteria are accurate and
relaxed. In literature [31], [32], more information about MFs
is introduced into stability analysis by using approximated
MFs methods, for instance, piecewise-linear MFs (PLMFs)
[31], Taylor series MFs (TSMFs) [32] et al. It is not difficult
to find that the above approximation methods are all inter-
polation methods, interpolation functions use approximation
order to describe the quality of approximations. However,
the global approximation error cannot be reduced even if
the approximation order is very high because of the Runge
phenomenon [33]. So, this paper introduces the uniform norm
in the space, and the quality of the approximation is controlled
by the defined norm with a genetic algorithm (GA), which
can effectively avoid the situation that the approximation is
good at individual points but the overall approximation is very
poor [34]. GA is an optimization mechanism proposed by
Professor Holland [35] to imitate the natural selection and
evolution mechanism of “survival of the fittest” in nature.
A fundamental principle of GA is to simulate the biological
processes required for evolution to reflect the survival of the
fittest and maintain artificial ecosystems [36]. Ingeniously, the
optimum approximation polynomial of the IT2 MFs is solved
in this paper using GA, which has the consequence of relaxing
the stability conditions.

The polynomial fuzzy ETC strategy mentioned in this paper

can be applied to the smart grid’s agent-level power distribu-
tion system to realize the real-time accuracy of information
transmission in the network channel. In the SEIR dynamic
epidemic model, the 1-norm event-triggered condition de-
signed in this paper can realize limited isolation and further
control the SEIR epidemics. Aiming at the above difficulties
and problems, the items that follow belong to the thesis’s
contributions:

1) Considering the nonlinearity parameters uncertainty and
the unique positivity constraint in the network environ-
ment, the dynamics of DPPFNC systems with asyn-
chronous premises are proposed to be modelled using an
IT2 polynomial fuzzy model with time delay. Advanced
polynomial fuzzy models, relative to T-S fuzzy models,
allow the existence of polynomials in subsystems while
considering the adverse effects of excessive communica-
tion burden and inherent time delay, making the system
model more comprehensive than existing results.

2) To reduce the network resource consumption and facil-
itate remote control of the DPPFNC systems with time
delay, an IT2 polynomial fuzzy ETC strategy with the
IPM technology is proposed, which allows the open-loop
system and controller to have different premise variables.
A more reasonable 1-norm event-triggered condition is
created, and the influence of ETC on stability domain
and system performance is delivered.

3) A novel IT2-MFD analysis method is presented to ap-
proximate the IT2-MFs by GA-MFs. Based on the op-
timum uniform approximation theory, the approximate
errors in terms of minimized uniform norm are further
brought in, reducing the conservativeness of stability
analysis.

The remainder of this essay is structured as follows. Net-
worked IT2 polynomial fuzzy model, ET controller, as well
as the ETC scheme are briefly represented in Section II. In
Section III, basic and IT2-MFD stability derivation with GA-
MFs for event-trigger-based DPPFNC system are carried out
to generate relaxation stability conditions. Section IV gives
numerical and practical examples to verify the analysis results.
The conclusion is presented in section V.

II. NOTATIONS AND PRELIMINARIES

A. Notation

With the vector x(t) = [x1(t), x2(t), ..., xn(t)]T , ‖x(t)‖1 =∑n
i=1 |xi(t)| and ‖x(t)‖∞ = max

1≤i≤n
|xi(t)| are the 1-norm and

∞ norm of x(t). Define 1n = (1, 1, ..., 1)T ∈ <n, 1n×n
denotes an n × n dimensional matrix whose elements are all
1. Q > 0 (< 0) indicates Q is a positive (negative) definite
matrix, Q � 0 (≺ 0) means that all elements in Q are positive
(negative). G+ and G− represent the non-negative and non-
positive components of matrix G, satisfying G+ � 0, G− ≺
0, respectively. n = {1, 2, ..., n} , p = {1, 2, ..., p} ,Ψ =
{1, 2, ...,Ψ} , c = {1, 2, ..., c} ,Ω = {1, 2, ...,Ω} , L =
{1, 2, ..., L} represents the order of fuzzy model, the rule
number of fuzzy model, the number of premise variable
of fuzzy model, the rule number of controller, the number
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of premise variable of controller, the number of connected
operating subdomain in Ψ, where n, p,Ψ , c,Ω, L ∈ Z+,
respectively.

B. Time Delay Discrete-time IT2 Polynomial Fuzzy Model

p-rule discrete-time IT2 polynomial fuzzy models are pre-
sented to describe nonlinear objects with uncertainty. IT2
fuzzy sets explain the antecedent, and a polynomial dynamic
system provides the consequent. The structure of the ith rule
is as follows:

Rule i : IF f1(x(k)) is M̃ i
1 AND · · ·AND fΨ (x(k)) is M̃ i

Ψ

THEN x(k + 1) = Ai(x(k))x(k)

+ Aτi(x(k))x(k−τ) + Bi(x(k))u(k℘), (1)

x(k)=ψ(k), k = [−τ, 0] (2)

in which x(k) ∈ <n, u(k℘) ∈ <m and ψ(k) ∈ <n are
the system state, control input and initial condition, respec-
tively; M̃ i

α is the IT2 fuzzy set of premise variable fα(x(k))
under the ith rule, i ∈ p, α ∈ Ψ ; Ai(x(k)) ∈ <n×n,
Aτi(x(k))x(k−τ) ∈ <n×n and Bi(x(k)) ∈ <n×m are the
defined polynomial system, time delay and input matrices.

The next interval sets describe the firing strength under the
ith rule:

Wi(x(k)) =
[
wLi (x(k)), wUi (x(k))

]
, ∀i. (3)

wLi (x(k)) =
∏Ψ
α=1 µM̃i

α

(fα(x(k))) and wUi (x(k)) =∏Ψ
α=1 µ̄M̃i

α
(fα(x(k))) represent the lower and upper grades

of membership, respectively. µ
M̃i
α

(fα(x(k))) ≥ 0 repre-
sent the lower MFs, µ̄M̃i

α
(fα(x(k))) ≥ 0 represent the

upper MFs. Furthermore, it exhibits the property that 0 ≤
µ
M̃i
α

(fα(x(k))) ≤ µ̄M̃i
α

(fα(x(k))) ≤ 1, so 0 ≤ wLi (x(k)) ≤
wUi (x(k)) ≤ 1 for all i. Then the dynamics of the time delay
IT2 polynomial fuzzy model are

x(k + 1) =

p∑
i=1

w̃i(x(k))
(
Ai(x(k))x(k)

+ Aτi(x(k))x(k−τ) + Bi(x(k))u(k℘)
)
, (4)

in which

w̃i(x(k)) = λi(x(k))wLi (x(k)) + λ̄i(x(k))wUi (x(k)) ≥ 0,∀i,
(5)

p∑
i=1

w̃i(x(k)) = 1, w̃i(x(k)) ≥ 0, ∀i. (6)

w̃i(x(k)) are the grades of the embedded MFs containing only
x(k), consistent with the premise variable fα(x(k)), α ∈ Ψ ,
independent of the term x(k−τ). Nonlinear type reduction
functions λi(x(k)) and λ̄i(x(k)) exist but not be known, for
all i, owning the properties 0 ≤ λi(x(k)) ≤ λ̄i(x(k)) ≤ 1 and
λi(x(k)) + λ̄i(x(k))= 1.

Definition 1 ( [5], [37]): If the corresponding trajectory for
System (1) remains in the positive orthogonal for all integer

k, provided any nonnegative initial state x(0) = x0 and any
input U(k) � 0: x(k) ∈ Rn+, then System (1) is positive.

Lemma 1 ( [5]): The fuzzy system x(k + 1) =
A(x(k))x(k) + B(x(k))u(k) is positive according to Defi-
nition 1 if and only if A(x(k)) � 0 and B(x(k)) � 0.

Remark 1: w̃i (x(k)) is a set of infinite type-1 polynomial
fuzzy models whose MFs are deterministic. Therefore, refer-
ring to the modeling process of the type-1 polynomial fuzzy

model, the IT2 MFs satisfy
p∑
i=1

w̃i (x(k)) = 1. When uncertain

parameters exist in nonlinear systems, type-1 fuzzy sets cannot
capture uncertainty information properly, while IT2 fuzzy sets
effectively solve this problem.

Remark 2: As opposed to T-S fuzzy models, advanced
polynomial fuzzy models allow some of the original nonlinear
components to remain unchanged so that a larger range of
nonlinear systems can be accurately represented with fewer
fuzzy rules. Besides, monomial vector x̂(x(k)) to represent
polynomial fuzzy models is not unique in [20]. And employing
x(t) instead of x̂(x(k)) conducts stability analysis more
straightforwardly.

C. Event-Triggered Control Scheme

The 1-norm ETC strategy is introduced for the IT2 DPPFNC
system with time delay to improve communication efficiency.
First, define the variable ek℘(k) as following to describe the
error among the update instants and the actual state after kth

transition:

ek℘(k) = x(k℘)− x(k), (7)

{k℘}, ℘ ∈ N denotes successful release instant set. Obvi-
ously, the transmission sequence {k℘} needs to be defined
as ℵ = {k℘ |℘ ∈ N} ⊆ {k |k ∈ N} to describe the triggering
instants. Then, an event-triggered condition in the 1-norm form
is applied to determine the transmission of sampled data∥∥ek℘(k)

∥∥
1
≤ γ‖x(k)‖1, (8)

where γ is a predefined threshold parameter and γ ∈ [0, 1).
The ZOH receives the current data, promptly changes its
store, and activates the controller if the ET condition in (8)
is infringed. When k > k℘ and ET condition (8) is incorrect,
the next triggering instant k℘+1 is

k℘+1 = inf
{
k > k℘

∣∣∥∥ek℘(k)
∥∥

1
> γ‖x(k)‖1

}
, (9)

where k℘+1 is the (℘ + 1)th release instant from the sensor
end to the controller end.

Remark 3: The ETC mechanism is introduced in the net-
work environment, and only the sampling state that exceeds the
threshold in (8) will be sent to the controller. Compared with
the periodic sampling mechanism, it can effectively reduce the
network resource consumption and alleviate the congestion
appearance. If one set γ = 0, then the ETC scheme (8) is
simplified to the periodic time-triggered scheme.

Remark 4: For DPPFNC systems with time delay, the
quadratic Lyapunov function will bring conservatism, and the
linear co-determination Lyapunov function (LCLF) [37] is
more suitable for stability analysis. Under the framework of
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LCLF, an event-triggered condition in linear form is more ap-
propriate. Meanwhile, the 1-norm event-triggered condition is
more convenient to scale and estimate the state quantity. The 1-
norm describes the sum of the absolute vector components, so
it can preferably denote the number of biological populations,
the liquid level in the reservoir vessel, the density of matter in
physics, and other variables that remain non-negative values
all the time. Unlike the results that consider the time delay in
event-triggered conditions, the plant of our paper is the time
delay DPPFNC systems.

D. IT2 Polynomial Fuzzy Event-Triggered Controller

An IT2 polynomial fuzzy event-triggered controller is devel-
oped based on the IPM concept under limited communication
bandwidth with the ET condition (8). The structure of the jth

rule is as follows:

Rule j : IF g1(x(k℘)) is Ñ j
1 AND · · ·AND gΩ (x(k℘)) is Ñ j

Ω

THEN u(k℘) = Gjx(k℘), (10)

where x(k℘) is the state at the ET time and k ∈ [k℘, k℘+1)
with t ∈ N, and k0 = 0. Ñ j

β is the IT2 fuzzy set of premise
variable gβ(x(k℘)) under the jth rule, i ∈ p, j ∈ c, β ∈ Ω;
The event-triggered feedback gains are Gj ∈ <m×n, and they
must be found.

The next interval sets describe the firing strength under the
jth rule:

Mj(x(k℘)) ∈
[
mL
j (x(k℘)),mU

j (x(k℘))
]
, ∀j, (11)

in which mL
j (x(k℘)) =

∏Ω
β=1 µÑjβ

(gβ(x(k℘))) repre-

sent the lower grades of membership, mU
j (x(k℘)) =∏Ω

β=1 µ̄Ñjβ
(gβ(x(k℘))) represent the upper grades of mem-

bership. µ
Ñjβ

(gβ(x(k℘))) ≥ 0 represent the lower MFs,

µ̄Ñjβ
(gβ(x(k℘))) ≥ 0 represent the upper MFs. Furthermore,

for all j, it exhibits the property that 0 ≤ µ
Ñjβ

(gβ(x(k℘))) ≤
µ̄Ñjβ

(gβ(x(k℘))) ≤ 1, which brings about 0 ≤ mL
j (x(k℘)) ≤

mU
j (x(k℘)) ≤ 1.
An IT2 fuzzy ET controller is represented by:

u(k℘) =

c∑
j=1

m̃j(x(k℘))Gjx(k℘), (12)

in which

m̃j(x(k℘))

=
κj(x(k℘))mL

j (x(k℘)) + κ̄j(x(k℘))mU
j (x(k℘))

c∑
k=1

(
κj(x(k℘))mL

k (x(k℘)) + κ̄j(x(k℘))mU
k (x(k℘))

) ,
(13)

c∑
j=1

m̃j(x(k℘)) = 1, m̃j(x(k℘)) ≥ 0, ∀j, (14)

m̃j(x(k℘)) are the grades of the embedded MFs containing
only x(k), consistent with the premise variable gβ(x(k℘)),
independent of the term x(k−τ). (13) is the type reduction.

κj(x(k℘)) and κ̄j(x(k℘)) are predefined functions, for all
j, have properties of 0 ≤ κj(x(k℘)) ≤ κ̄j(x(k℘)) ≤ 1,
κj(x(k℘)) + κ̄j(x(k℘))= 1.

Remark 5: Since the event-triggered fuzzy controller can
only observe triggering state after triggering action, it’s not
difficult to find that the premise variables of different time
scales are employed in the polynomial fuzzy model and the
event-triggered controller. This assumption is also widely used
in the existing studies on the FMB NCSs with the ETC
mechanism [20], [21]. Meanwhile, the existence of the ETC
mechanism leads to asynchronous premises, and the PDC
technology is no longer applicable.

III. EVENT-TRIGGERED STABILITY ABALYSIS

The closed-loop system with the discrete-time IT2 poly-
nomial fuzzy model (4), the event-triggered controllers (12)
under 1-norm event-triggered condition (8) is described by:

x(k + 1) =

p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))
(
Ai(x(k))x(k)

+ Aτi(x(k))x(k−τ) + Bi(x(k))Gjx(k℘)
)
. (15)

A. Basic Stability Analysis for Time Delay Event-Trigger-
Based DPPFNC Systems

For x(k0) ≥ 0, we can obtain from event-triggered condi-
tion (8) that

∥∥ek℘(k)
∥∥

1
≤ γ1Tnx(k), which leads to

−γ1n×nx(k) ≤ ek℘(k) ≤ γ1n×nx(k). (16)

From (7) and (15), it is easy to get

x(k + 1)=

c∑
j=1

p∑
i=1

w̃i(x(k))m̃j(x(k℘))

(
Ai(x(k))x(k)

+ Aτi(x(k))x(k−τ) + Bi(x(k))Gj

(
x(k)+ek℘(k)

))
=

c∑
j=1

p∑
i=1

w̃i(x(k))m̃j(x(k℘))

((
Ai(x(k)) + Bi(x(k))Gj

)
x(k)

+ Bi(x(k))Gjek℘(k) + Aτi(x(k))x(k−τ)

)
. (17)

where the ETC gain Gj is designed as Gj = G+
j + G−j ,

G+
j � 0 and G−j ≺ 0. Since Bi(x(k)) ≥ 0, the following

inequations are obtained:

−γBi(x(k))G+
j 1n×nx(k) ≤ Bi(x(k))G+

j ek℘(k)

≤ γBi(x(k))G+
j 1n×nx(k). (18)

γBi(x(k))G−j 1n×nx(k) ≤ Bi(x(k))G−j ek℘(k)

≤ −γBi(x(k))G−j 1n×nx(k). (19)

Together with (17) follows that

x(k + 1) ≥
p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))

×
(
Ai(x(k))x(k) + Bi(x(k))G+

j x(k) + Bi(x(k))G−j x(k)
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− γBi(x(k))G+
j 1n×nx(k) + γBi(x(k))G−j 1n×nx(k)

+ Aτi(x(k))x(k−τ)
)

=

p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))

((
Ai(x(k)) + Bi(x(k))G+

j Θ

+ Bi(x(k))G−j Φ
)
x(k) + Aτi(x(k))x(k−τ)

)
, (20)

where Θ ∈ <n×n and Φ ∈ <n×n are matrices corresponding
to the ETC mechanism threshold γ. And, Θ = I − γ1n×n,
Φ = I + γ1n×n, Tij(x(k)) = Ai(x(k)) + Bi(x(k))G+

j Θ +

Bi(x(k))G−j Φ, for i ∈ p, j ∈ c.
Noting the fact x(k0) ≥ 0, x(k0 + 1) ≥ 0 holds if

Tij(x(k0)) ≥ 0 for all i and j. Otherwise, Aτi(x(k)) > 0.
It is simple to demonstrate that x(k) ≥ 0 for initial states
x(k0) ≥ 0 and Tij(x(k)) ≥ 0 using recursive derivation. As
a result, the system’s (15) positive property is established.

Next, LCLF, which is more suitable for positive systems, is
considered to obtain the stability criteria related to the time
delay DPPFNC system (15) with unique positive constraints.

V (x(k)) = λTx(k) +

p∑
m=1

k−1∑
s=k−τ

(
λTAτm(x(s))x(s)

)
,

(21)
in which λ = [λ1, λ2, ..., λn]

T � 0 is a constant vector to be
determined.

According to Lyapunov stability theory, when V (x(k)) >
0, ∆V (x(k)) < 0 for all x 6= 0, the time delay DPPFNC
system is asymptotically stable. Then,

∆V(x(k)) = V (x(k + 1))−V (x(k))

≤ λT
p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))

((
Ai(x(k)) + Bi(x(k))Gj

− I
)
x(k) + Bi(x(k))Gjek℘(k)

)
+

p∑
i=1

(λTAτi(x(k))x(k−τ))

+

p∑
m=1

(
λTAτm(x(k))x(k)

)
−

p∑
m=1

(
λTAτm(x(k))x(k − τ)

)
≤ λT

p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))

((
Ai(x(k)) + Bi(x(k))G+

j

+ Bi(x(k))G−j + γBi(x(k))G+
j 1n×n − γBi(x(k))G−j 1n×n

− I
)
x(k)

)
+

p∑
m=1

λTAτm(x(k))x(k)

=

p∑
i=1

c∑
j=1

w̃i(x(k))m̃j(x(k℘))

(
λT
(
Ai(x(k))− I

)
+ λTBi(x(k))G+

j Φ + λTBi(x(k))G−j Θ

+

p∑
m=1

λTAτm(x(k))

)
x(k), (22)

where Qij(x(k)) = λT
(
Ai(x(k)) +

p∑
m=1

Aτm(x(k))− I
)

+

λTBi(x(k))G+
j Φ + λTBi(x(k))G−j Θ with i ∈ p; j ∈

c; Θ = I − γ1n×n, Φ = I + γ1n×n. ∆V(k) < 0

holds if Qij(x(k)) ≺ 0. However, λTBi(x(k))G+
j Φ and

λTBi(x(k))G−j Θ are non-convex terms of Qij(x(k)), which
increases challenge in solving stability conditions in the SOS-
TOOLS.

To solve this problem, we denote G+
j = Img+

j and G−j =

Img−j , the following equation is obtained:

λTBi(x(k))Img+
j = M+

ij(x(k)), (23)

λTBi(x(k))Img−j = M−
ij(x(k)). (24)

After the above series of transformations, G+
j and G−j can

be obtained.

G±j =
ImM±

ij(x(k))

λTBi(x(k))Im
, (25)

M±
ij(x(k)) ∈ <1×n is polynomial vectors to be determined.

And Im =

1, 1, ..., 1︸ ︷︷ ︸
m

T . From Bi(x(k)) � 0 and λ =

[λ1, λ2, ..., λn]
T � 0, hence, the denominator λTBi(x(k))Im

is a positive scalar. The feedback gain satisfies Gj = G+
j +

G−j .
To solve the non-convex term in the stability analysis, taking

(23) and (24) into Qij(x(k)), we can get

Qij(x(k)) =λT
(
Ai(x(k)) +

p∑
m=1

Aτm(x(k))− I
)

+ M+
ij(x(k))Φ + M−

ij(x(k))Θ. (26)

From (22), when Qij ≺ 0, ∆V (x(k)) < 0. In addition,
based on (25), the positive condition Tij(x(k)) is derived:

Tij(x(k))=Ai(x) + Bi(x)Im
M+

ij(x)

λTBi(x)Im
Θ

+ Bi(x)Im
M−

ij(x)

λTBi(x)Im
Φ ≥ 0. (27)

Since λTBi(x)Im mentioned above is a positive scalar, if
λTBi(x)ImAi(x) + Bi(x)ImM+

ij(x)Θ + Bi(x)ImM−
ij(x)Φ

≥ 0 satisfies Tij(x(k)) � 0. Therefore, the convex positive
conditions for the system (15) can be obtained.

Remark 6: The matrix decomposition technique is employed
to parameterize the gain matrix as a combination of non-
positive and non-negative components, as shown by Gj =
G+
j + G−j . Through (18) and (19), the error term ek℘(k) can

easily be converted to the term x(k) and the positivity and
stability criteria can be easily derived.

The following theorem states the fundamental positivity and
stability conditions of SOS form that ensure the positivity and
stability of DPPFNC system (15).

Theorem 1: For time delay DPPFNC system (15) under the
ETC scheme (8), if there exist prescribed positive scalars 0 <
γ ≤ 1, vectors λ, θθθs, φφφs ∈ <n make the following SOS
conditions hold with i ∈ p, j ∈ c and s ∈ n:

λs − ε1 is SOS; s ∈ n, (28)
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aτifs(x(k)) is SOS; i ∈ p, f = s ∈ n, (29)

mij+
s (x(k))− ε2(x(k)) is SOS; s ∈ n, (30)

−(mij−
s (x(k)) + ε2(x(k))) is SOS; s ∈ n, (31)

λTBi(x(k))Ima
i
fs(x(k)) + bif (x(k))ImM+

ij(x(k))θθθs

+ bif (x(k))ImM−
ij(x(k))φφφs is SOS; i ∈ p, j ∈ c, f, s ∈ n,

(32)

−
(
qijs (x(k)) + ε2(x(k))

)
is SOS; i ∈ p, j ∈ c, f, s ∈ n,

(33)

in which ε1 > 0 and ε2(x(k)) > 0 for x(k) 6= 0 are pre-
defined scalar and predefined scalar polynomial, respectively.
Ai(x(k)) = (aifs(x(k))), Aτi(x(k−τ)) = (aτifs(x(k))) and
Bi(x(k)) = [biT1 (x(k)),biT2 (x(k)), ...,biTn (x(k))]T , ∀i ∈ p,
f, s ∈ n. Θ= [θθθ1, θθθ2,...,θθθn], Φ= [φφφ1,φφφ2,...,φφφn]. Qij(x(k)) =
[qij1 (x(k)), qij2 (x(k)), ..., qijn (x(k))]T , ∀i ∈ p, j ∈ c; (25)
shows the event-triggered feedback gains.

Remark 7: Under IPM technology, we can derive the
basic positivity and stability conditions in SOS form of an
event-triggered-based DPPFNC system with time delay from
Theorem 1. Still, the stability criteria in Theorem 1 is MFs-
independent. Besides, due to the limitation of the convex
optimization toolbox, it can only recognize specific polynomial
form MFs. It is necessary to convert the known MFs into
polynomial forms that the toolbox can recognize.

B. Genetic Algorithm Membership Function

For simplicity, the following equation brings in information
about IT2-MFs by reconstructing the original IT2-MFs [38]
as:

h̃ij(x(k),x(k℘)) ≡ w̃i(x(k))m̃j(x(k℘))

= β
ij

(x(k),x(k℘))hij(x(k),x(k℘))

+ β̄ij(x(k),x(k℘))h̄ij(x(k),x(k℘)), (34)

where
p∑
i=1

c∑
j=1

h̃ij(x(k),x(k℘)) = 1, β
ij

(x(k),x(k℘)) and

β̄ij(x(k),x(k℘)) are nonlinear functions that not neces-
sary to be known but exist, satisfying β

ij
(x(k),x(k℘)) +

β̄ij(x(k),x(k℘))=1, ∀i ∈ p, ∀j ∈ c.
Remark 8: The IT2 MF h̃ij(x(k),x(k℘)) is reconfig-

urable into a linear combination of hij(x(k),x(k℘)) and
h̄ij(x(k),x(k℘)).

Since the polynomial approximation is performed in each
operating subdomain, the L linked run subdomains Ψl, l ∈ L,
make up the entire run domain (denoted Ψ), so Ψ =
∪Ll=1ψl. At time k, denote ĥijl(αij ,x(k)) to approximate
hij(x(k),x(k℘)) in each subdomain Ψl. Next, define a finite-
dimensional linear space ℵn of no more than n times, and its
element is

ĥijl(αij ,x(k)) = a0ij +

n∑
g=1

agijχg(x(k)), (35)

where {1, χ1(x(k)), χ2(x(k)), ..., χn(x(k))} is a
linearly independent set of basis about ℵn, so
ℵn = span{1, χ1(x(k)), χ2(x(k)), ..., χn(x(k))}, ℵn is
n+ 1 dimension; αij = (a0ij , a1ij , ..., anij) is the coordinate
vector of ĥijl(αij ,x(k)).

Remark 9: Common polynomial interpolation approxima-
tion methods, such as Taylor approximation method use the
approximation order to judge the approximation quality. But
the existence of the Runge phenomenon shows that even if the
approximation order is very high, the overall approximation
error cannot be reduced. Therefore, starting from the theory
of optimum uniform approximation, the uniform norm is
introduced into space from the perspective of overall approxi-
mation, and approximation quality is controlled by the uniform
norm. The following Weierstrass approximation theory proves
the optimum uniform approximation polynomial exists.

For continuous function f(x) ∈ C[a, b], any element of
f(x) can be approximated by the finite-dimensional polyno-
mial p(x) ∈ Hn, making the error En(f) < ε (ε > 0 is any
given). This is known as Weierstrass approximation theory
[39]:

Lemma 2: Suppose that f(x) ∈ C[a, b], there exists a
polynomial p(x), given any ε > 0 that satisfies

‖f(x)− p(x)‖∞ < ε,∀x ∈ [a, b] .

The existence of p(x) can be proved by the Weierstrass
approximation theorem according to lemma 2 above, com-
bined with the theory of optimal uniform approximation to find
the minimum deviation and its corresponding optimal uniform
approximation polynomial. The infinite norm of the deviation
between hijl(x(k),x(k℘)) and ĥijl(αij ,x(k)) on £ is∥∥∥∆

(
hijl(αij ,x(k))

)∥∥∥
∞

=
∥∥∥hijl(x(k),x(k℘))− ĥijl(αij ,x(k))

∥∥∥
∞

= max
x∈£

∣∣∣hijl(x(k),x(k℘))− ĥijl(αij ,x(k))
∣∣∣ . (36)

Remark 10: £ is a predefined compact subset of Banach
space, £ = {(x1, ..., xn) |−∞ ≺ ai ≤ xi ≤ bi ≺ ∞, i =
1, ..., n}, xi satisfy xi ∈ [ai, bi].
Obviously,

∥∥∥∆
(
hijl(αij ,x(k))

)∥∥∥
∞
≥ 0, the lower bound of

the set {
∥∥∥∆
(
hijl(αij ,x(k))

)∥∥∥
∞
} denoted as:

E
(
hijl(αij ,x(k))

)
= inf
ĥijl(αij ,x(k))∈ℵn

{
∥∥∥∆
(
hijl(αij ,x(k))

)∥∥∥
∞
}

= inf
ĥijl(αij ,x(k))∈ℵn

max
x∈£

∣∣∣hijl(x(k),x(k℘))− ĥijl(αij ,x(k))
∣∣∣ ,

(37)

E
(
hijl(αij ,x(k))

)
, called the minimum deviation of

hijl(x(k),x(k℘)) on £. If there is ĥ
∗
ijl

(
α∗ij ,x(k)

)
∈ ℵn that

satisfies the following equation:∥∥∥∆
(
h∗ijl

(
α∗ij ,x(k)

) )∥∥∥
∞
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= max
x∈£

∣∣∣hijl(x(k),x(k℘))− ĥ
∗
ijl

(
α∗ij ,x(k)

)∣∣∣
= inf
ĥijl(αij ,x(k))∈ℵn

max
x∈£

∣∣∣hijl(x(k),x(k℘))− ĥijl(αij ,x(k))
∣∣∣

= E(hijl(αij ,x(k))), (38)

where ĥ
∗
ijl

(
α∗ij ,x(k)

)
is the optimum uniform approximation

polynomials of hijl(x(k),x(k℘)) on £. The symbolic function∥∥∆(h∗ijl
(
α∗ij ,x(k)

)
)
∥∥
∞ derived from the minimal problem

is called the optimum uniform norm (the minimum of the
maximum approximation error).

The original lower MFs is reexpressed as:

hijl(x(k),x(k℘)) = ςl(x)
(
ĥ
∗
ijl

(
α∗ij ,x(k)

)
+ ∆

(
h∗ijl

(
α∗ij ,x(k)

) ))
, (39)

ςl(x) = 1 if x ∈ Ψl, l ∈ L; otherwise, ςl(x) = 0. From (35),
the optimum uniform approximation functions are

ĥ
∗
ijl(α

∗
ij ,x(k)) = a∗0ij +

n∑
g=1

a∗gijχg(x(k)), (40)

where α∗ij =
(
a∗0ij , a

∗
1ij , ..., a

∗
nij

)
is the coordinate vector of

ĥ
∗
ijl(αij ,x(k)).
In this paper, each piecewise approximation polynomial

ĥijl (αij ,x(k)) is optimized by GA individually, ∀i ∈ p, j ∈
c, l ∈ L. The GA for solving the nth degree optimum uniform
approximation polynomial ĥ

∗
ijl

(
α∗ij ,x(k)

)
and the minimum

approximation error
∥∥∆(h∗ijl

(
α∗ij ,x(k)

)
)
∥∥
∞ is described as

follows:
Step 1 (Chromosome representation and population ini-

tialisation) :
To simulate the biological evolution process, the optimiza-

tion variable of the target problem should be expressed as
the individual chromosome string structure. Each individual
chromosome string structure agij is randomly generated as a
binary string of length s from the genetic space, for example
agij = d1d2 . . . ds, ds ∈ {0, 1}; so each individual in the
population can be represented as αij = (a0ij , a1ij , ..., anij) =

d1d2 . . . dn×s. The population P
(1)
ij ∈ <N×(n×s) of N indi-

viduals is denoted as follows:

P
(1)
ij =


α

(1,1)
ij

α
(1,2)
ij
...

α
(1,N)
ij

=


a

(1,1)
0ij a

(1,1)
1ij · · · a

(1,1)
nij

a
(1,2)
0ij a

(1,2)
1ij · · · a

(1,2)
nij

...
...

. . .
...

a
(1,N)
0ij a

(1,N)
1ij · · · a

(1,N)
nij

 .
Step 2 (Fitness calculation) :
Fitness is the basis for evaluating the pros and cons of an

individual, and it will directly affect the reproduction and
survival probability of an individual. To obtain the minimum
maximum absolute approximation error (optimum uniform
norm) and the optimum uniform approximation polynomial,
the maximum absolute approximation error is used as the
fitness function to evaluate the merits of N individuals
α

(t,n)
ij in population P

(t)
ij . Combining this problem, find

N elements in the array
[
x

(1,1)
1 max, x

(1,2)
1 max, ..., x

(1,N)
1 max

]T

within the range of x1 that maximizes the fitness
functions of each individual element in the array[∣∣∣hijl(x1)− ĥ

(1,1)

ijl (α
(1,1)
ij , x1)

∣∣∣ , ∣∣∣hijl(x1)− ĥ
(1,2)

ijl (α
(1,2)
ij , x1)

∣∣∣
...,
∣∣∣hijl(x1)− ĥ

(1,N)

ijl (α
(1,N)
ij , x1)

∣∣∣]T , respectively.
Step 3 (Genetic operation) :
Genetic algorithm realizes the biological and population

evolution processes through three basic operators: selection,
crossover and mutation.

A fitness proportionate roulette wheel selection
policy [40] is implemented for the selection process.
If the corresponding fitness of individual k is
f

(1,k)
ijl =

∣∣∣hijl(x(1,k)
1 max)− ĥ

(1,k)

ijl (α
(1,k)
ij , x

(1,k)
1 max)

∣∣∣, then
its selection probabilities within a population is

p
(1,k)
ijl =

(
1
/
f

(1,k)
ijl

)/ N∑
i=1

(
1
/
f

(1,i)
ijl

)
. In roulette wheel

selection, individuals with smaller fitness have higher
selection probabilities and are more likely to be selected for
reproduction. Then, the single-point crossover operators are
used to realize chromosome recombination and generate new
individuals, ensuring the established evolutionary direction
and generating species diversity. Following crossover each
offspring undergoes mutation. This paper adopts a simple
mutation operator to compensate for the lack of diversity.

Step 4 (Loop and termination operations) :
Record the optimal individuals in the current population

after Step3 is completed, when the genetic algebra satisfies
T < 100, the next generation evolution process is carried out
and repeats Step 2 to Step 3. When the genetic algebra satisfies
T = 100, the current approximation error is judged to be
within the given range, such as E

(
hijl(αij ,x(k))

)
< 10−3.

Finally, the optimal uniform approximation polynomial can be
found.

C. IT2-MFD Stability Analysis for Time Delay Event-Trigger-
Based DPPFNC systems

This section’s objective is obtain the stability criterion of
the event-triggered time delay DPPFNC system combined
with the IT2-MFD method. It can be seen from (38) that the
error terms ∆h∗ijl

(
α∗ij ,x(k)

)
and ∆h̄∗ijl

(
β∗ij ,x(k)

)
within the

subspace l exists such ∆h∗ijl(α
∗
ijl,x) ≤

∣∣∣∆h∗ijl(α∗ijl,x)
∣∣∣ ≤∥∥∥∆h∗ijl(α

∗
ijl,x)

∥∥∥
∞

and ∆h̄∗ijl(β
∗
ijl,x) ≤

∣∣∣∆h̄∗ijl(β∗ijl,x)
∣∣∣ ≤∥∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥∥
∞

, respectively. In addition, δ∗ijl(α
∗
ijl) is de-

fined as a constant upper bound of ∆h∗ijl
(
α∗ij ,x(k)

)
, satis-

fying δ∗ijl(α
∗
ijl) ≤ ∆h∗ijl(α

∗
ijl,x). Meanwhile, denote slack

matrices Yijl(x), it holds that Yijl(x) ≥ 0 > Qij(x), with
∀i ∈ p,∀j ∈ c,∀l ∈ L. Then, from (22) and (34),

∆V(x(k)) =

p∑
i=1

c∑
j=1

L∑
l=1

ςl(x)h̃ijl(x(k),x(k℘))Qij(x)x

≤
p∑
i=1

c∑
j=1

L∑
l=1

ςl(x)

(
hijl(x(k),x(k℘))Qij(x)

+
(
h̄ijl(x(k),x(k℘))− hijl(x(k),x(k℘))

)
Yijl(x)

)
x
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≤
p∑
i=1

c∑
j=1

L∑
l=1

ςl(x)

(
(ĥ
∗
ijl(α

∗
ijl,x) + δ∗ijl(α

∗
ijl))Qij(x)

+ (
∥∥∆h∗ijl(α

∗
ijl,x)

∥∥
∞ − δ

∗
ijl(α

∗
ijl))Yijl(x)

+
(

(ˆ̄h∗ijl(β
∗
ijl,x) +

∥∥∆h̄∗ijl(β
∗
ijl,x)

∥∥
∞)

− (ĥ
∗
ijl(α

∗
ijl,x) + δ∗ijl(α

∗
ijl))

)
Yijl(x)

)
x

=

p∑
i=1

c∑
j=1

L∑
l=1

ςl(x)

(
(ĥ
∗
ijl(α

∗
ijl,x) + δ∗ijl(α

∗
ijl))Qij(x)

+
(

ˆ̄h∗ijl(β
∗
ijl,x)− ĥ

∗
ijl(α

∗
ijl,x) +

∥∥∆h∗ijl(α
∗
ijl,x)

∥∥
∞

+
∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥
∞ − 2δ∗ijl(α

∗
ijl)
)
Yijl(x)

)
x, (41)

where h∗ijl(α
∗
ijl,x) is the approximation lower GA-MF,

h̄∗ijl(β
∗
ijl,x) is the approximation upper GA-MF. The optimum

uniform norm
∥∥∥∆h∗ijl(α

∗
ijl,x)

∥∥∥
∞

and
∥∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥∥
∞

ob-
tained by GA are non-negative constants. Moreover, the GA-
MFs information of different substate spaces is considered,
and the state variable information is further considered, which
makes the stability results more accurate:

∆V(x(k)) ≤
p∑
i=1

c∑
j=1

L∑
l=1

ςl(x)

(
(ĥ
∗
ijl(α

∗
ijl,x) + δ∗ijl(α

∗
ijl))

×Qij(x) +
(

ˆ̄h∗ijl(β
∗
ijl,x)− ĥ

∗
ijl(α

∗
ijl,x) +

∥∥∆h∗ijl(α
∗
ijl,x)

∥∥
∞

+
∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥
∞ − 2δ∗ijl(α

∗
ijl)
)
Yijl(x)

+

n∑
κ=1

(xκ(k)− xκlmin)(xκlmax − xκ(k))Rκl(x)

)
x, (42)

where xκlmin ≤ xκ(k) ≤ xκlmax in the lth subspace. Slack
scalar Rκl(x) satisfy the condition Rκl(x) ≥ 0, ∀κ ∈ n,∀l ∈
L.

Based on IT2-MFD, the following theorem states the pos-
itivity and stability conditions of SOS form that ensure the
positivity and stability of the time delay DPPFNC system (15).

Theorem 2: For time delay DPPFNC system (15) under the
ETC scheme (8), if there exist prescribed positive scalars 0 <
γ ≤ 1, vectors yijls (x), rκls (x) and λ, θθθs, φφφs ∈ <n make the
following SOS conditions hold with i ∈ p, j ∈ c, l ∈ L and
κ, s ∈ n:

λs − ε1 is SOS; s ∈ n, (43)

yijls (x(k)) is SOS; s ∈ n, (44)

aτifs(x(k)) is SOS; i ∈ p, f = s ∈ n, (45)

mij+
s (x(k))− ε2(x(k)) is SOS; s ∈ n, (46)

−(mij−
s (x(k)) + ε2(x(k))) is SOS; s ∈ n, (47)

yijls (x(k))− qijs (x(k) is SOS; i ∈ p, j ∈ c, l ∈ L, s ∈ n,
(48)

λTBi(x(k))Ima
i
fs(x(k)) + bif (x(k))ImM+

ij(x(k))θθθs

+ bif (x(k))ImM−
ij(x(k))φφφs is SOS; i ∈ p, j ∈ c, f, s ∈ n,

(49)

−

(
p∑
i=1

c∑
j=1

(
((ĥ
∗
ijl(α

∗
ijl,x) + δ∗ijl(α

∗
ijl))q

ij
s (x)

+
(

ˆ̄h∗ijl(β
∗
ijl,x)− ĥ

∗
ijl(α

∗
ijl,x) +

∥∥∆h∗ijl(α
∗
ijl,x)

∥∥
∞

+
∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥
∞ − 2δ∗ijl(α

∗
ijl)
)
yijls (x(k))

+

n∑
κ=1

(xκ(k)− xκlmin)(xκlmax − xκ(k))rκls (x(k))

)

+ ε2(x(k)))

)
is SOS; i ∈ p, j ∈ c, l ∈ L, κ, s ∈ n, (50)

in which Yijl(x(k)) = [yijl1 (x(k)), yijl2 (x(k)), ..., yijln (x(k))]T ;
Rκl(x(k)) = [rκl1 (x(k)), rκl2 (x(k)), ..., rκln (x(k))]T , ∀i ∈ p,
j ∈ c, ∀κ ∈ n, l ∈ L. Theorem 1 shows the qijs (x(k)),
(25) shows the event-triggered feedback gains. ĥ

∗
ijl(α

∗
ijl,x),

ˆ̄h∗ijl(α
∗
ijl,x) and

∥∥∥∆h∗ijl(α
∗
ijl,x)

∥∥∥
∞

,
∥∥∥∆h̄∗ijl(β

∗
ijl,x)

∥∥∥
∞

are
the lower, upper GA-MFs and the best uniform norm between
the original lower, upper IT2-MFs and the lower, upper
GA-MFs within lth subspace.

Remark 11: The upper and lower MFs successfully capture
parameter uncertainties with the IT2 fuzzy sets. Therefore, to
consider the IT2 MFs in relaxation stability analysis, GA is
first used to optimize the approximation polynomial of the IT2-
MFs, which realizes the combination of traditional numerical
field and evolutionary intelligence algorithm. In addition, to
avoid the Runge phenomenon, the uniform norm is introduced
into the space, and the approximate polynomials with the
minimum uniform norm form errors from the original MFs
are obtained.

Remark 12: Due to the introduction of ETC mechanism,
IT2 fuzzy model premise variable x(k) is different from
fuzzy controller premise variable x(k℘), which leads to
h̃ij(x(k),x(k℘)) dependents on x(k) and x(k℘). According
to the ET condition (8), it can be seen that there is a specific
constraint between x(k) and x(k℘). Assuming that x(k) and
x(k℘) are independent variables, some information about the
MF will inevitably be lost, leading to conservative stability
conditions. To introduce more information about mj(x(k℘)),
the constraint between x(k) and x(k℘) is applied to further
estimate mj(x(k℘)) by mj(x(k)), and the MFs depend on the
only variable x(k). Therefore, based on the ET condition (8),
this estimation is achieved by finding the constraint between
x(k) and x(k℘) during the sampling period. From (7) and
(16), the following inequation is given:

−γ1n×nx(k) ≤ x(k℘)− x(k) ≤ γ1n×nx(k). (51)

Thus, the estimate of x(k℘) is obtained by means of the
following condition:

x(k℘) ∈ [Θx(k),Φx(k)] . (52)

The aforementioned conclusion can be summed up in the
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following lemma.
Lemma 3: Given any x(k), there exists an inequality

between the mismatching x(k) and x(k℘) represented by
parameters Θ and Φ during the sampling period.

x(k℘) = [Θx(k),Φx(k)] ,

where Θ = I− γ1n×n, Φ = I + γ1n×n.

IV. SIMULATION EXAMPLE

For the IT2 event-trigger-based DPPFNC system with time
delay, the usefulness and excellence of SOS-based stability
criterion and event-based network control methods are verified
by examples.

A. A Numerical Example

The parameters of the example of the DPPFNC system with
a 3-rule polynomial fuzzy model are chosen as follows for the
x(k) = [x1(k) x2(k)]T .

A1(x1(k)) =

[
0.85 0.609 + 0.012x1 + 0.0005x2

1

0.20 0.385

]
,

A2(x1(k)) =

[
0.40 + 0.001x2

1 0.434
0.34 0.406 + 0.004x1 + 0.001x2

1

]
,

A3(x1(k)) =

[
0.51 + 0.001x2

1 0.315 + 0.08a
0.50 + 0.013x1 + 0.002x2

1 0.453 + 0.02b

]
,

B1 =

[
1.20

0

]
,B2 =

[
0.68

0

]
,B3 =

[
0.66 + 0.02b

0

]
,

Aτ1 (x1 (k)) =

[
0.001 0.001x2

1(k)
0 0

]
,

Aτ2 (x1 (k)) =

[
0.003 0.004 + 0.001x2

1(k)
0 0

]
,

Aτ3 (x1 (k)) =

[
0 0.002 + 0.0005x2

1(k)
0 0

]
,

in which a and b are constant system parameters. The IT2
polynomial fuzzy model MFs are selected being w1(x1) =
1 − 1

/(
1 + e(−x1+4.5)

)
, w3(x1) = 1

/(
1 + e(−x1+15.5)

)
,

w2(x1) = 1 − w1(x1) − w3(x1), w1(x1) = 1 −
1
/(

1 + e(−x1+5)
)
, w3(x1) = 1

/(
1 + e(−x1+15)

)
, and

w2(x1) = 1 − w1(x1) − w3(x1). From (5), we
have w̃1(x(k)) = λ1(x(k))wL1 (x(k)) + λ̄i(x(k))wUi (x(k))
for i ∈ [1, 2, 3], where the nonlinear type reduction functions
are chosen as λ1(x1) = (sin (2x1) + 2)/3, λ̄1(x1) = 1 −
(sin (2x1) + 2)/3, λ3(x1) = (cos (2x1) + 2)/3 and λ̄3(x1) =
1 − (cos (2x1) + 2)/3. After w̃1(x(k)) and w̃3(x(k)) are
determined, w̃2(x(k)) can be obtained using the properties

of MF
p∑
i=1

w̃i(x(k)) = 1.

Under the IPM design, the two-rule IT2 event-triggered
fuzzy controller MFs are selected being m1(x1) = 1 −
1
/(

1 + e(−(1−γ)x1+9.8)
)
, m2(x1) = 1 −m1(x1), m1(x1) =

1 − 1
/(

1 + e(−(1+γ)x1+10.2)
)
, and m2(x1) = 1 − m1(x1).

Due to the introduction of an ETC scheme (8), only the state

x(k℘) at the triggering instant k℘(℘ = 1, 2, ...) is observed
by the controller, which leads to a mismatch between the
nonlinear plant and the controller’s MF premise variables.
Therefore, we estimate the upper and lower bounds of the
IT2 MF m̃j(x(k℘)) of the controller by the minimum value of
mj(x(k)) and the maximum value of mj(x(k)) in the relation
interval [Θx(k),Φx(k)] of x(k) and x(k℘) in Lemma 3. From
(13), the type reduction functions κj(x(k℘)) = κj(x(k℘)) =
1
2 , for j = 1, 2.

Suppose the operating domain is x1 ∈ [0, 10] and uniformly
divide the x1 into 5 subdomains (L = 5); we have xκlmin ≤
x1 ≤ xκlmax, l = 1, 2, ..., 5, where xκlmin = k and xκlmax =
k + 2.

TABLE I
GA-MFS OF DIFFERENT ORDERS AND SUBDOMAINS

Case Order Subdomain
1 2 [0, 5), [5, 10]
2 0 [0, 2), [2, 4), [4, 6), [6, 8), [8, 10]
3 2 [0, 2), [2, 4), [4, 6), [6, 8), [8, 10]
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Fig. 1. Stabilization regions derived from Theorem 2 with Yij(x(k)) of
degree 0 to 2 and Rij(x(k)) of degree 0 to 2, indicated by “×” for Case 1,
and “�” for Case 2, and ”◦” for Case 3 in Example 1.

Example1 : According to Theorem 2, SOS-based stability
criteria are used to verify the stability of the IT2 event-trigger-
based DPPFNC system with time delay under the 0 ≤ a ≤ 40
at the period of 4 and 0 ≤ b ≤ 40 at the period of 2 to ensure
the usefulness of the approach method. In the simulation, we
set ε1 = ε2 = 1×10−3; Mij(x(k℘)) as constant matrix, slack
matrix Yij(x(k)) and Rij(x(k)) as polynomial of degree
0 to 2 in x1. Referring to Theorem 2, the original MF is
approximated by GA. The control parameters of GA satisfy
coding length s = 10, population size N = 100, crossover and
mutation probability pc = 0.8, pm = 0.001 and termination
condition T < 100. From three cases, we consider GA-MFs
of different orders and intervals of subdomain in Table I. Fig.
1 shows stabilization regions derived from Theorem 2 with
Yij(x(k)) of degree 0 to 2 and Rij(x(k)) of degree 0 to 2,
indicated by “×” for Case 1, and “�” for Case 2, and ”◦” for
Case 3.

The role of slack matrix Yij(x(k)) and Rij(x(k)) are
verified from Fig. 2 on the stability domain, the stability
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Fig. 2. Stabilization regions of Case 2 derived from Theorem 2 with
Yij(x(k)) of degree 0 and Rij(x(k)) of degree 0 indicated by “◦”,
Yij(x(k)) of degree 0 to 2 and Rij(x(k)) of degree 0 indicated by “×”,
Yij(x(k)) of degree 0 to 2 and Rij(x(k)) of degree 0 to 2 indicated by
“�”in Example 1.
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Fig. 3. Stabilization regions of Case 2 derived from Theorem 2, indicated
by “×” for event-triggered threshold parameter γ = 0.45, “�” for event-
triggered threshold parameter γ = 0.40 and “◦” for event-triggered threshold
parameter γ = 0.35 in Example 2.

regions of Case 2 are indicated by “◦” with Yij(x(k)) of
degree 0 and Rij(x(k)) of degree 0, “×” with Yij(x(k))
of degree 0 to 2 and Rij(x(k)) of degree 0 and “�” with
Yij(x(k)) of degree 0 to 2 and Rij(x(k)) of degree 0 to 2,
respectively.

According to Fig. 1, the higher the order of GA-MFs, the
smaller subdomain, leading to a larger stabilization region,
which is for case 1 to case 3. In addition, Fig. 2 shows that
the higher degree slack matrixes Yij(x(k)) and Rij(x(k))
always provide a larger stabilization region than the lower
degree slack matrixes. It verifies that the operating domain
information and slack matrix Yij(x(k)) and Rij(x(k)) are
effective for relaxing stability conditions.

Example2 : In this example, we discuss the effect of the
event-triggered threshold value γ on the stability domain and
the number of event-triggered instants. Parameters a and b
are same as in Example 1 to verify the stability of the time
delay IT2 event-trigger-based DPPFNC system. Mij(x(k℘))
are defined in Example 1. Slack matrixes Yij(x(k)) and
Rij(x(k)) as polynomial of degree 0 to 2 in x1; GA-MFs
as approximate polynomials of order 2 and interval 2 in the
overall domain. The stability regions corresponding to event-

triggered threshold parameter in Fig. 3, γ = 0.45, 0.40, 0.35
indicated by “×”, “�” and “◦”, respectively. Fig. 3 shows
that on the premise that the value of event-triggered threshold
parameter γ can make Theorem 2 have a feasible solution, the
smaller of γ, the larger the range of stabilisation points.

TABLE II
SOME RESULTS FOR DIFFERENT VALUE OF γ

Value γ NPRχ
(DRRp%) Feedback gains G1, G2

0.44 14(66.67%)
[
G1
G2

]
=
[ −0.4053,−0.0028
−0.4029,−0.0050

]
0.43 14(66.67%)

[
G1
G2

]
=
[ −0.4058,−0.0049
−0.3996,−0.0113

]
0.35 16(76.19%)

[
G1
G2

]
=
[ −0.3994,−0.0713
−0.3528,−0.1982

]
0.33 17(80.95%)

[
G1
G2

]
=
[ −0.3984,−0.0965
−0.3423,−0.2150

]
0.32 18(85.71%)

[
G1
G2

]
=
[ −0.3977,−0.1102
−0.3375,−0.2221

]
0.30 19(90.48%)

[
G1
G2

]
=
[ −0.3965,−0.1392
−0.3292,−0.2344

]
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Fig. 4. Time response of system with the initial state [10, 10] for Case 3, the
dashed line represents time response of x1(k), the solid line represents time
response of x2(k).

To illustrate the influence of different event-triggered thresh-
old parameters γ of the ETC scheme on the event-trigger
times, the system parameters a = 12 and b = 10 of
Case 3 were selected for simulation. Mij(x(k℘)) are defined
in Example 1. Slack matrixs Yij(x(k)) and Rij(x(k)) as
polynomials of degree 0 to 2 in x1. In Table II shows some
calculation results under different ET threshold γ, where χ de-
notes the number of packet releasing (NPR), p(%) denotes the
data releasing rate (DRR). And the number of data sampling
(NDS) is 21 within 21s, where DRR = NPR

NDS . Table II shows
event-triggered times decrease with the increase of the ET
threshold value γ and the conditions have no solutions when
the ET threshold value γ exceeds a threshold. Observing the
event-triggered condition can also draw a similar conclusion
(8). When the event-triggered threshold γ is large, the ETC
condition (8) is harder to violate, and the sampled states will
continue to be maintained without updating the control input,
to reduce the transmission of unnecessary data effectively.

Example3 : Furthermore, in Fig.1, to illustrate the effective-
ness of the ETC scheme, the system parameters a = 40 and
b = 28 of Case 3 were selected for simulation.
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Fig. 5. Left: the event-triggered control input for Case 3; right: the release
instants and release interval of the event-triggered control process for Case 3.
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Fig. 6. Time response of x(k℘) for Case 3. The solid black line, dotted
black line, dashed black line and solid blue line represents x1(k), the lower
bound for x1(k℘) utilizing the data from x1(k), the upper bound for x1(k℘)
utilizing the data from x1(k) and x1(k℘), respectively.

The the IT2 fuzzy event-triggered controller gains in Case
3 are G1 = [−0.3065,−0.0092]; G2 = [−0.2848,−0.0914]
when the stability criterion of SOS form in Theorem 2 are
resolved using the MATLAB toolbox SOSTOOLS. To visually
display the stabilization effect of the designed event-triggered
controllers in Case 3, the state response curves of the time
delay IT2 event-trigger-based DPPFNC system under the ini-
tial condition x(0) = [10, 10]

T and event-triggered threshold
γ = 0.35 are plotted in Fig.4. The time response curve
over a specific period is expanded and set in the matching
small window to present the simulation results more clearly.
In Fig.4, the state variables x1(k) and x2(k) are stable at
the equilibrium point, and the trajectories are always in the
positive quadrant. So the positivity and stability of x(k) can
be guaranteed.

In Fig.5, the ETC input and the triggered instants of the ETC
process for Case 3 are displayed. Following that, we discover
that only 14(66.67%) times within 21s are transferred across
the communication network. In other words, the planned
ETC method can conserve scarce network resources. The link
between x(k) and x(k℘) in Case 3 further demonstrates that
it fulfils the derivation of lemma 3.

B. A Pest Population Example

A pest population example in [41] is considered in the
following state space form:

A(k) = 2 + 0.1sin2 (x1(k)) 2.1 + 0.01cos2 (x1(k)) 1.837
0.05 0 0

0 0.09 0

 ,
Aτ (k) = 0.08 + 0.01cos2 (x1(k)) 0.04 + 0.01sin2 (x1(k)) 0.04

0.04 0 0
0 0.04 0

 ,
B(k) =

 0.1 + 0.005sin2 (x1(k))
0
0

 , τ =
∣∣∣sin(

π

2
k)
∣∣∣+ 1.

(53)

x(k) = [x1(k), x2(k), x3(k)]T , x1(k), x2(k) and x3(k)
denotes the number of juvenile pests, immature pests and adult
pests considering time k.

It is assumed that the number of juvenile pests is greatly
affected by the natural enemies of pests and the living en-
vironment, and these differences cannot be ignored, so the
parameters cannot be accurately identified when modelling this
system. Therefore, the above system is represented as a system
with uncertain parameter ∆a.

A(k) =
(

0.1sin2 (x1(k))
−∆a+ 2

) (
0.01cos2 (x1(k))
+0.1∆a+ 2.1

)
1.837

0.05 0 0
0 0.09 0

 ,
Aτ (k) =
(

0.01cos2 (x1(k))
+0.1∆a+ 0.08

) (
0.01sin2 (x1(k))
−0.1∆a+ 0.04

)
0.04

0.04 0 0
0 0.04 0

 ,
B(k) =

 0.1 + 0.005sin2 (x1(k))− 0.05∆a
0
0

 . (54)

First, we employ the sector nonlinearity method to approxi-
mate the pest population system using a fuzzy model. Consider
the states x1(k) ∈

[
0, π2

]
, x2(k) ∈

[
0, π2

]
, x3(k) ∈

[
0, π2

]
according to the knowledge on this application and taking
f (x1(k)) = 0.1sin2 (x1(k)) − ∆a in the system matrix
as nonlinearity term, then f (x1(k)) = w̃1 (x1(k)) fmax +

w̃2 (x1(k)) fmin, we have w̃1 (x1(k)) = f(x1(k))−fmin

fmax−fmin
and

w̃2 (x1(k)) = 1 − w̃1 (x1(k)). fmax and fmin are the max-
imum and minimum values of f (x1(k)) in the operating
domain of states, respectively.

Considering ∆a (1 = ∆amin ≤ ∆a ≤ ∆amax = 1.5) to
be an uncertain value, then fmax = −0.9 and fmin = −1.5,
the lower and upper MFs of a model under x1(k) ∈

[
0, π2

]
are w1 (x1(k)) = 0.1sin2(x1(k))−∆amin−fmin

fmax−fmin
, w1 (x1(k)) =

0.1sin2(x1(k))−∆amax−fmin

fmax−fmin
, w2 (x1(k)) = 1 − w1 (x1(k)) and
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w2 (x1(k)) = 1 − w1 (x1(k)). Then, the system and input
matrices are determined as follows:

A1(k) =

 1.1 2.2 1.837
0.05 0 0

0 0.09 0

 ,B1(k) =

 0.055
0
0


A2(k) =

 0.5 2.26 1.837
0.05 0 0

0 0.09 0

 ,B2(k) =

 0.025
0
0


Aτ1(k) =

 0.18 0.03 0.04
0.04 0 0

0 0.04 0

 ,
Aτ2(k) =

 0.24 0.025 0.04
0.04 0 0

0 0.04 0

 . (55)

The frequent use of agrochemical will destroy the eco-
logical environment and bring a particular waste of human
and material resources. Therefore, this paper adopts the
ETC strategy to rationally arrange the days of agrochem-
ical use, which can not only achieve the balance of pest
populations in this environment but also reduce the waste
of resources. The lower and upper MFs of controller are

chosen as m1 (x1(k)) = e
−(x1(k)−π4 )

2
/

0.05, m1 (x1(k)) =

e
−(x1(k)−π4 )

2
/

0.1, m2 (x1(k)) = 1 − m1 (x1(k)) and
m2 (x1(k)) = 1−m1 (x1(k)).
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Fig. 7. Time response of x1(k) (dashed lines), x2(k) (solid lines) and x3(k)
(dotted lines) of open-loop system with the initial state x (0) =

[
π
2
, π
2
, π
2

]T .

In Fig. 7, the open-loop pest population system is un-
stable, which means that the pest population is unbalanced
in this ecosystem. In the following, the SOS-based stability
conditions in Theorem 1 under the ET threshold parameter
γ = 0.1 are employed to verify the system positivity and
stability. The state response curves of the pest population
under the initial condition x (0) =

[
π
2 ,

π
2 ,

π
2

]T
are plotted

in Fig. 8. The state variables are stable at equilibrium,
and the trajectories are always in the positive quadrant.
The feedback gains are G1= [−16.5608,−3.3895,−0.9637],
G2= [−16.5608,−3.3895,−0.9637]. The triggered instants of
the ETC process are plotted in Fig. 9. Only 19(90.48%) out of
21 days of agrochemical treatment is needed. It means that the
ETC scheme can save resources while ensuring the stability
of pest populations.
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Fig. 8. Time response of x1(k) (dashed lines), x2(k) (solid lines) and x3(k)
(dotted lines) of pest population system given by Theorem 1 with the initial
state x (0) =

[
π
2
, π
2
, π
2

]T .
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Fig. 9. The release instants and release interval of the event-triggered control
process.

Remark 13: The stability criterion established by Theorem
1 are also used in a simulation instance to demonstrate the
superiority of the provided MFD approach. It is discovered
that the value range of 0 ≤ a ≤ 40 and 0 ≤ b ≤ 40 does
not contain a stable point of Theorem 1. Therefore, it fully
demonstrated that the MFD method can effectively relax and
stabilize conditions to obtain a larger stability domain.

V. CONCLUSION

This paper analyzes the stability and positivity of the time
delay IT2 DPPFNC system with asynchronous premises and
the ETC scheme. The sufficiency requirements in SOS form
are obtained from the IT2 polynomial fuzzy model based
on the LCLF, and the IT2 polynomial fuzzy event-triggered
controller is created using the IPM principle. The 1-norm ETC
is adopted to lower the DPPFNC systems with time-delay
communication energy consumption. A GA-MFD approach to
optimize the approximation error of IT2 MFs was presented to
attain a broader range of stable spots. This approach is based
on the principle of the optimum uniform approximation.
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