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ABSTRACT 

 

REMOTE SENSING OF RIPARIAN AREAS AND INVASIVE SPECIES 

by 

Molly E. Yanchuck 

University of New Hampshire, May 2023 

 

 Riparian areas are critical landscape features situated between terrestrial and aquatic 

environments, which provide a host of ecosystem functions and services. Although important to 

the environmental health of an ecosystem, riparian areas have been degraded by anthropogenic 

disturbances. These routine disturbances have decreased the resiliency of riparian areas and 

increased their vulnerability to invasive plant species.  Invasive plant species are non-native 

species which cause harm to the ecosystem and thrive in riparian areas due to the access to 

optimal growing conditions. 

Remote sensing provides an opportunity to manage riparian habitats at a regional and 

local level with imagery collected by satellites and unmanned aerial systems (UAS). The aim of 

this study was two-fold: firstly, to investigate riparian delineation methods using moderate 

resolution satellite imagery; and secondly, the feasibility of UAS to detect the invasive plant 

Fallopia japonica (Japanese Knotweed) within the defined areas. I gathered imagery from the 

Landsat 8 OLI and Sentinel-2 satellites to complete the regional level study and collected UAS 

imagery at a study site in northern New Hampshire for the local level portion. I obtained a 

modest overall accuracy from the regional riparian classification of 59% using the Sentinel-2 



ix 

 

imagery.  The local invasive species classification yielded thematic maps with overall accuracies 

of up to 70%, which is comparable to other studies with the same focus species. Remote sensing 

is a valuable tool in the management of riparian habitat and invasive plant species.
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CHAPTER I: 

 

REMOTE SENSING, INVASIVE SPECIES, AND RIPARIAN AREAS 

1.1 Invasive Plant Species 

 Throughout history and to present day, humans have aided in the global redistribution 

of plant species. The majority of non-native species have been intentionally introduced to new 

ranges as ornamentals for horticultural purposes, while others were cultivated for agricultural 

and forestry applications (Finch et al., 2021; Lehan et al., 2013; Richardson and Rejmánek, 

2011; Bradley, 2010). In some cases, these species escape their enclosures and become 

established colonies. Additionally, some species have been unintentionally introduced to areas 

through contaminated seed and soil (Lehan et al., 2013). A non-native (alien) species is not 

always considered to be invasive. As defined by the Executive Order 13112 of 1999, an invasive 

species is an alien species that causes harm to the ecology and economy of the new ecosystem 

(Exec. Order No. 13112, 1999). In the United States, there are an estimated 5,000 non-native 

plant species growing in natural ecosystems, compared to an estimated 17,000 native plant 

species (Finch et al., 2021; Pimentel et al., 2000).  

 Invasive plant species are often able to outcompete native flora for resources and space, 

allowing them to establish colonies and rapidly spread throughout an area. The success of an 

invasion is dependent on the physiological characteristics of the species as well as the 

environmental characteristics of the ecosystem (Hess et al., 2019; Vila and Weiner, 2004). 

Invasive species possess beneficial mechanisms such as an elevated nutrient uptake, extended 

leaf phenology, differential timing of resource use in comparison to native flora, resistance to 

herbivores, and biochemical mechanisms (i.e., allelopathy) (Allen et al., 2013; Levin et al., 2003; 

Tickner et al., 2001). The ecosystems which are most susceptible to colonization experience
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 routine natural or anthropogenic disturbances (Richardson et al., 2011). Additionally, as climate 

change is expected to increase the frequency and intensity of natural disasters (e.g., floods, 

droughts), invasive species are predicted to benefit from these disturbances and further their 

spread.  

 The consequences of colonization by invasive plant species are numerous. They greatly 

impact the composition of native flora, as invasions cause a decrease in native species richness 

and diversity, as well as risk the extinction of threatened or endangered species (Kumar Rai & 

Singh, 2020; Hayes & Holzmueller, 2012; Hejda et al., 2009). Invasive plant species also affect 

ecosystem functions by altering and accelerating nitrogen and carbon cycles, which promotes 

plant growth and spread (Allen et al., 2013; Levine et al., 2003). Furthermore, invasives can alter 

hydrologic regimes through water consumption and changing the rate or timing of 

evapotranspiration and runoff (Ehrenfeld, 2010). Economically, invasive species cause harm by 

reducing land value and causing billions in damages and control costs annually (Mayfield et al., 

2021). It is for these reasons that it is increasingly important to investigate methods to effectively 

manage invasive species.  

 The current methods implemented in the United States to manage invasions are firstly, 

prevention through the monitoring of intentionally imported species, secondly, early detection 

and rapid response (EDRR), and thirdly, containment, eradication, and control (Westbrooks, 

2004; Rejmánek, 2000). EDRR is accomplished by locating invasive species shortly after 

establishment and prior to a widespread invasion, and quickly acting to remove the species from 

the invaded habitat. Detection is often completed through ground surveying and predictive 

distribution models. Ground surveys are completed by either professional field crews or citizen-

based volunteer groups (Reaser, 2020; Westbrooks, 2004). Although ground surveys are an 



3 

 

important component to invasive species management, they are time consuming and costly. 

Citizen-based surveying can produce valuable results, but can often be variable in quality, 

decreasing the usefulness of the data for analysis and modeling (Oswalt et al., 2021; Crall, 2010). 

Therefore, additional methods, such as remote sensing, are required for effective invasive species 

management.  

1.2 Remote Sensing Characteristics and Platforms 

 Remote sensing is the process of obtaining information about an object or phenomena 

without physical contact (Jensen, 2016; Huang & Asner, 2009). It is an advantageous tool that is 

cost-effective, provides a synoptic view of landscapes, covers large spatial extents, and yields 

multitemporal and multispectral data (Joshi & Duren., 2004). Thus, remote sensing allows for 

rapid data collection and frequent analyses, especially of environments that are difficult to access 

on the ground. Remotely sensed data (i.e., digital images) are collected by three primary 

platforms: satellites, manned aircraft, and unmanned aerial systems (UAS). Each platform is 

equipped with sensors that differ in their spatial, spectral, radiometric, and temporal resolutions, 

as well as their extent. Therefore, each data product will have different characteristics and 

platform selection must be given due consideration. 

 Spatial resolution, or the ground sampling interval, is a measure of the smallest pixel 

that can be detected by the sensor (Jensen, 2016; Huang & Asner, 2009). The government-

operated Landsat 8 Operational Land Imager (OLI) and Sentinel-2 have a respective spatial 

resolution of 15 to 30 meters, and 10 to 20 meters. In comparison, commercial satellites can 

obtain a spatial resolution up to 0.5 meters (Toth and Jóźków, 2016). These resolutions are 

similar to those captured by aerial imagery. Currently, the highest spatial resolution images are 

captured by UAS, which have a resolution as fine as a few centimeters or less (Manfreda, 2018).  
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 Spectral resolution is the number and width (nanometers) of wavelengths that can be 

detected by a sensor (Jensen, 2016). These wavelengths are often referred to as bands (e.g., band 

1 on Landsat thematic mapper is called the blue band). Remote sensing systems can collect 

panchromatic, normal color, multispectral, and hyperspectral information. Panchromatic images 

consist of a single, wide, band of the entire visible spectrum. Normal color sensors detect bands 

in visible light separated into blue, green and red (B, G, R). Multispectral images consist of 

multiple narrow bands, such as visible B, G, R), near-infrared (NIR), middle-infrared (MIR), 

thermal-infrared (TIR), and red-edge wavelengths. Hyperspectral images consist of hundreds of 

continuous, narrow spectral bands. Spectral bands can be combined to conduct further analyses 

on an image in a technique known as band ratioing, or indices. A common index is the 

Normalized Difference Vegetation Index (NDVI), which is used to indicate vegetation health 

and is calculated using the red and near-infrared (NIR) bands: (NIR- Red)/(NIR + Red) (Jensen, 

2016; Fu and Burgher, 2015).   

 The temporal resolution is determined by how often the sensor revisits an area and 

varies between platforms. Satellites, both commercial and government-operated, have a low 

temporal resolution as they are limited by their orbits. Some satellites capture imagery more 

frequently than others. For example, Landsat 8 OLI and Sentinel-2 have temporal resolutions of 

16 and 5 days, respectively. Satellites can increase their temporal resolution by tilting their 

sensors to capture imagery off-nadir, but are ultimately limited by their orbit (Jabari and 

Krafczek, 2019). Both manned and unmanned aerial systems have the potential for higher 

temporal resolution, as they are not limited by a pre-set orbit, and can collect imagery as often as 

weather conditions and funding allow. However, commercially operated manned aerial flights 

are expensive and government-operated manned aerial flights, such as the National Agriculture 
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Imaging Program (NAIP), only collect data every three years (Manfreda, 2018). Therefore, UAS 

are the remote sensing platform that is both accessible and offers a high temporal resolution. 

Radiometric resolution is the sensitivity of the sensor to received electromagnetic energy 

(i.e., reflectance) and influences its ability to discriminate between signal levels (i.e., shades of 

grey) (Jensen, 2016). The reflectance information captured by sensors are stored as a digital 

number value from 0 to 2n in a pixel, with n being the number of bits the sensor used to collect 

the data. For example, 8-bit imagery has 256 (28) potential shades of grey ranging from 0 to 255. 

Images composed of more bits have a higher radiometric resolution and are more likely to detect 

subtle spectral changes. Currently, the maximum data that a sensor can collect is 14-bits, or 

16,384 (214) shades and is stored in a 16-bit format (Verde et al., 2018).  

 The final characteristic of remote sensing platforms is the extent of the sensor. The 

extent, or footprint, is the scene that is captured by the sensor. The size, scale, and direction of 

the scene is dependent on the remote sensing platform. Satellite sensors can capture hundreds of 

thousands of square kilometers in a single scene. For example, the Landsat 8 OLI sensor captures 

a scene that is 170 kilometers (north-south) by 183 kilometers (east-west). In comparison, UAS 

would require several flights to capture a fraction of the extent. 

 Each of the characteristics of remotely sensed data must be taken into consideration 

prior to analysis, as there are some trade-offs between characteristics. Spatial and spectral 

resolutions have an inverse relationship. Landsat 8 OLI has a 30-meter resolution for bands 1 

through 7 and band 9 and 15-meter resolution for band 8. Bands 1 through 7, and 9 are 

multispectral bands, while band 8 is panchromatic. Panchromatic images have a higher spatial 

resolution but a lower spectral resolution because they are portrayed in greyscale. Multispectral 

images have a lower spatial resolution but a higher spectral resolution because they are portrayed 



6 

 

in color. Spatial resolution also has an inverse relationship to temporal resolution. Typically, 

higher resolution imagery are captured less frequently than lower resolution images (Jensen, 

2016). The relationship is dependent on the remote sensing platform and is most applicable to 

satellite and manned aerial imagery. However, this relationship is less applicable to UAS, which 

are the most temporally flexible platform. 

1.2.1 Remote Sensing Data Products 

 In order to transform remote sensing data into products, imagery must undergo digital 

image processing. Digital image processing is a means to interpret and analyze imagery, and 

encompasses a variety of processes, such as classification (Lillesand et al., 2015). Image 

classification is the process where imagery is transformed into a thematic map which displays the 

location of user-defined classes. To accomplish an image classification, the user must first create 

a well-defined classification scheme that is hierarchical, totally exhaustive, and mutually 

exclusive (Congalton and Green, 2019). These parameters ensure that the entire image is labeled 

into the chosen thematic classes. Historically, images were classified manually by an analyst 

using the elements of image interpretation: size, shape, texture, pattern, shadow, tone, and site 

(Jensen, 2016). This approach, however, has its disadvantages as it is limited to the visual 

characteristics of image objects, the knowledge of the analyst, and the abilities of the human eye 

to fully detect spectral characteristics. Presently, digital images are classified using digital image 

processing software, which can utilize spectral information and analyze a greater amount of 

imagery (Lillesand et al., 2015). 

 Image processing software, such as eCognition, classifies pixels of imagery through 

spectral pattern and spatial pattern recognition (Hossain & Chen, 2019). Spectral pattern 

recognition assigns pixels with similar reflectance values to the same class. Spatial pattern 
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recognition groups pixels based on their proximity to similar pixels which share characteristics 

such as texture, size, shape, direction, and context (Lillesand et al., 2015). These procedures are 

the basis of the primary methods of image classification: pixel-based classification (PBC) and 

object-based image analysis (OBIA) (Lillesand et al., 2015; Gao and Mas, 2008). PBC solely 

employs the spectral pattern recognition procedure and labels individual pixels based on their 

reflectance values. In contrast, OBIA incorporates both spectral and spatial procedures to create 

image objects (i.e., groups of homogenous pixels). 

Traditionally, PBC was the chosen method of image classification, as OBIA was difficult 

to implement due to the coarse resolution of early imagery and the computational limitations of 

hardware. The advancement of hardware processing capabilities and increased accessibility to 

high and very high-resolution imagery has since led to the widespread adoption of OBIA 

(Sibaruddin et al., 2018; Gao and Mas, 2008). The OBIA method consists of two steps: 

segmentation and classification. The segmentation process dissects the image into polygons 

composed of homogenous pixels known as image objects. The most commonly used 

segmentation technique is the multiresolution segmentation (MRS) algorithm, which is 

proprietary to the eCognition software (Cánovas-García & Alonso-Sarría, 2015). MRS is a 

bottom-up region merging technique that begins by considering each individual pixel as a unique 

object, then merges pairs of objects together to form larger segments (Rahman and Saha, 2008; 

Karakış et al., 2006). The decision to merge objects is determined by the homogeneity criterion 

which is composed of color (spectral values) and shape (smoothness and compactness). The 

merging process ends when the scale parameter threshold is met or exceeded. The scale 

parameter defines the maximum amount of heterogeneity permitted within the image objects, 

and subsequently, affects the average size of the objects. A low scale parameter value allows for 
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a low amount of heterogeneity among image objects, which creates objects that are composed of 

fewer pixels and therefore, are smaller than if the scale parameter was set to a higher threshold 

(Rahman & Saha, 2008; Tian & Chen, 2007). Although time consuming, these parameters are 

typically optimized through trial and error (Saba et al., 2013). 

 After the image is segmented, the newly created image objects are classified. There are 

a variety of classification algorithms that can be used to assign the objects to a thematic class. 

Recently, machine learning algorithms (MLA) have become popular alternatives to traditional 

parametric classifiers because they are non-parametric and therefore do not rely on normal data 

distributions, can handle complex data, and produce results with higher accuracies (Maxwell et 

al., 2018; Rodriguez-Galiano et al., 2012). In particular, ensemble MLAs have gained attention 

for being more robust and accurate than single ML classifiers (Jensen, 2016). Starting from a 

base classifier, ensemble algorithms create, then aggregate multiple iterations of a classification 

with random samples from the training data (Rodriguez-Galiano et al., 2012).  A common 

ensemble MLA used in land cover classification is Random Forests (RF). A study by Rodriguez-

Galiano et al., (2012) noted the various advantages of RF which most importantly included the 

classifier’s robustness to noise and outliers in the training data, a low sensitivity to training data 

size, ability to generate an unbiased error estimate, and is computationally efficient. The RF 

classifier is an ensemble of decision trees, which are grown to the greatest extent without pruning 

(e.g., removing redundancies), using about 70% of the training data that has been randomly 

selected, and reserving about 30% of the data to determine the generalization error (Jensen, 

2016; Breiman, 2001). The generalization error is a measure of how accurately the algorithm can 

classify new data. Once the user-determined number of trees are created, the unclassified objects 

are given to the forest, and each tree “votes” to assign the object to one of the user-defined 
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classes. The forest determines the final classification of the object by assigning it to the class 

with the most “votes” from the trees (Jensen, 2016; Breiman, 2001).  

1.2.2 Accuracy Assessment 

Historically, the accuracy of a thematic map was assessed with a subjective approach, 

often determined by how correct the final product appeared, or was given no consideration at all 

(Congalton, 1991). Over time objective and qualitative methods have been developed. Presently, 

accuracy is most commonly measured using an error matrix (Rwanga & Ndambuki, 2017). An 

error matrix, also known as a confusion matrix or contingency table, compares the agreement 

and disagreement between the reference data and the classified data (Congalton and Green, 

2019). Reference data (i.e., validation data) are samples which have a known land cover class 

and are obtained through ground data collection or image interpretation. The reference data are 

represented as columns, while classified data are represented as rows. The sample units are 

entered into the matrix based on its known land cover class and the assigned map class. The 

major diagonal in the matrix displays the agreement between the reference and classified data 

(Story and Congalton, 1986). An error matrix can be used to calculate three accuracy statistics: 

overall, user’s, and producer’s (Story and Congalton, 1986). The overall accuracy is the most 

commonly reported statistic, and is calculated by dividing the sum of the major diagonal and the 

total number of reference data samples (Congalton and Green, 2019). Overall accuracy 

represents the accuracy of the entire map, while user’s and producer’s accuracy provide 

information about how accuracy is distributed throughout the map classes (Story and Congalton, 

1986). User’s accuracy represents commission error, or error of inclusion, which is the 

probability that a sample was assigned to the incorrect map class. It is calculated by dividing the 

major diagonal value for each class (i.e. the correctly classified samples) by the total number of 
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samples that were classified as that class (Congalton and Green, 2019; Story and Congalton, 

1986). Producer’s accuracy represents omission error, or the error of exclusion, which is the 

probability that a sample was misassigned from its correct map class. It is calculated by dividing 

the major diagonal value of each class by the total number of reference samples for the specific 

class (Congalton and Green, 2019; Story and Congalton, 1986). 

1.3 Riparian Areas 

 Riparian areas are critical landscape features, which serve as an ecotone between 

aquatic and terrestrial environments (Michez et al., 2016; Rahe et al., 2015; Vidon et al., 2010). 

They are the area of land between a surface water body (e.g., stream) and the concurrent 

hillslope, encompassing the floodplain and some upland areas (McGlynn & Seibert, 2003). 

Although riparian areas are often narrow and cover a small area, they perform critical ecosystem 

functions and services such as habitat for both terrestrial and aquatic organisms, shade to 

regulate surface water temperature, and provide bank stability (Vidon et al., 2010). They also 

influence the hydrologic flow paths of surface and subsurface flows, acting as an intermediate 

zone before flows reach the adjacent surface water body; allowing the riparian areas to filter 

nutrients, and buffer uplands from floodwaters. 

 Despite riparian areas being ecologically and hydrologically significant, they are one of 

the most anthropogenically disturbed habitats across the globe (Liendo et al., 2015). These 

disturbances are historical, as humans have settled along waterways for centuries and have 

intensely modified the environment through changes in land use (e.g. agriculture), physical 

alterations to the landscape (e.g. deforestation, dams, roads, channel straightening), and lowering 

of water tables (Michez et al., 2016; Liendo et al., 2015; Naiman and Decampes, 1997). The 

routine disturbance to riparian ecosystems ultimately reduces their resiliency and increases their 
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vulnerability to erosion, pollution, and, specifically, invasive species (González del Tánago and 

García de Jalón, 2006). Invasive species thrive in riparian areas due to the water availability and 

dynamic hydrology, as flooding events create opportunities to dislodge established species, and 

disperse seeds or propagules for reproduction (Michez et al., 2016; Tickner et al., 2001). 

According to a 2008 national assessment of freshwater resources, 62% of riparian plant 

communities are at risk of being lost (Vanderklein et al., 2014). The assessment also reported 

that the United States has seen an increase of groundwater removal of 46% since 1960 

(Vanderklein et al., 2014). Riparian areas are reliant on hydrologic flows, and therefore require 

water availability. As the climate changes, the United States is expected to experience an 

increase in evaporative demands and a decrease in streamflow; both of which will impact the 

availability of groundwater. These changes can then impact the composition of the vegetation, 

endangering the native flora, and increasing the possibility of invasion. The protection and 

restoration of riparian vegetation and habitat require an inventory of current conditions and can 

be accomplished by using remote sensing (Congalton et al., 2002).  

1.4 Riparian Delineation and Mapping 

To manage and preserve riparian areas, they must be identified and mapped. Remote 

sensing, especially when combined with a geographic information system (GIS), are invaluable 

to this process. Presently, there is not a standard method to delineate the extent of a riparian area 

from its adjacent waterbody (de Sosa et al., 2018). Methods often follow either a fixed-width 

buffer or variable-width approach. The fixed-width buffer approach delineates a riparian area 

based on a single distance from the waterbody. The width distance varies among studies and is 

often influenced by different variables such as the stream order (Yang, 2007) or governmental 

recommendations (Congalton et al., 2002). The variable-width approach utilizes ancillary 
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information, such as digital elevation models (DEM), flood heights, and soil characteristics, to 

create a buffer (de Sosa et al., 2018). Although the fixed-width approach is simpler to 

implement, studies by Salo et al., (2016) and de Sosa et al., (2018) have found that the variable-

width approach yields more accurate results when estimating the extent of a riparian area.  

 Remotely sensed imagery has been used to map riparian areas and vegetation with 

varying levels of success. Mapping is often completed using publicly available satellite imagery 

because the data is routinely collected, encompasses large areas, and is more cost-effective than 

commercial satellites or aerial photography (Congalton et al., 2002). Although common sources, 

these satellites often have moderate spatial resolutions of 10 meters (e.g., Sentinel-2) or larger, 

(e.g., Landsat 8 OLI, 30 meters) and are therefore limited in their ability to accurately map 

riparian areas because they are often narrow, linear features that consist of heterogeneous 

vegetation (Johansen et al., 2010; Congalton et al., 2002).  Therefore, a few pixels could 

represent the entire segment of a riparian buffer which poses a challenge when classifying and 

mapping riparian vegetation, as multiple vegetation types are combined within the same pixel, 

creating spectral confusion. There have been several suggested approaches in the literature to 

improve riparian vegetation mapping with moderate resolution satellite imagery. Congalton et 

al., 2002 proposed that riparian and upland vegetation be sampled separately due to the 

differences in vegetation types. Studies such as Baker et al., 2006 and Villarreal et al., 2012 

have had success with this approach, obtaining accuracies of 73% and 86%, and 91% and 87% 

respectively. Although these classifications are not at a species level, they proved useful for 

differentiating between riparian and non-riparian vegetation communities. These differences can 

further be explored with vegetation indices, such as normalized difference vegetation index 

(NDVI) and normalized difference water index (NDWI) which are indicators of greenness and 
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wetness (Barron et al, 2012; Xie et al, 2008). The study by Barron et al., (2012) proposed that 

remote sensing can be used to identify areas of persistent greenness and wetness in dry seasons 

to delineate vegetation communities. The study utilized multiple dates of Landsat TM data in 

conjunction with NDVI and NDWI indices, yielding results from 59% to 91% producer’s 

accuracy.  

Many studies (Huylenbroeck et al., 2020; Yang, 2007; Goetz, 2006; Congalton et al., 

2002) have determined that an increase in spatial resolution is required to map riparian 

vegetation more accurately at a species level. However, high to very high resolution data 

collected by either commercial satellites (WorldView, 0.6 meters; Rapideye, 5 meters) or aerial 

imagery cost thousands of dollars, and are not practical for continuous mapping and monitoring 

of riparian areas. Even if costs were eliminated, such as with the free aerial imagery collected 

through the National Agriculture Imagery Program (NAIP, 1 meter), the temporal resolution of 

three years creates another obstacle to this goal. Unmanned aerial systems (UAS) have emerged 

as a means to map riparian vegetation, including invasive species, at a local scale because of the 

platform’s high spatial and temporal resolution (Huylenbroeck et al., 2020). 

1.4.1 Remote Sensing of Riparian Invasive Plant Species  

 Due to the regular disturbance and degradation of riparian areas, they have become 

increasingly susceptible to invasive plant species (Michez et al., 2016). Effective management of 

invasions require regular monitoring which can be accomplished by using remotely sensed 

imagery with the appropriate spatial and temporal resolution (Müllerová et al., 2013). Early 

detection and rapid response (EDRR) is the optimal management approach for invasive species, 

and is made more feasible with UAS. Since UAS have a high temporal resolution and can be 

deployed as frequently as needed, they can routinely capture the same area. The high spatial 

resolution increases the likelihood that small patches are captured prior to a widespread invasion 
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and allows for the close monitoring of established colonies. In addition, the temporal flexibility 

of UAS allows for rapid collection of imagery during critical phenological stages when invasive 

plants are more distinct from other riparian vegetation through flowering or leaf-coloring 

(Müllerová et al., 2017; Michez et al., 2016). For example, the herbaceous invasive plant 

Fallopia japonica (Japanese Knotweed) is characterized by its red-brown stems during the 

autumn senescence, and white flowers during late summer (Dorigo et al., 2012).  

1.5 Summary 

 Riparian areas are of critical ecological importance, but routine disturbance has left 

them susceptible to invasive plant species. Invasive plants are harmful to the overall health of 

riparian areas and are expected to negatively impact the ecosystem services provided by these 

areas. Remotely sensed satellite data can be used to define riparian areas at a regional scale but 

are unable to map riparian vegetation species at a finer scale. Unmanned aerial systems have the 

ability to detect and map vegetation to these finer scales, including invasive species. The 

collected imagery can then be classified into thematic maps. These products can assist land 

managers in understanding the extents of riparian habitat, and the locations of the invasive 

species within the boundaries, allowing for more precise management efforts. 
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CHAPTER 2: 

REMOTE SENSING OF RIPARIAN AREAS AND INVASIVE SPECIES 

2.1 Introduction 

 Riparian areas are the interface between a surface water body and the adjacent terrestrial 

uplands. They are important landscape features that provide a host of ecosystem functions and 

services such as species habitat, nutrient filtering, stream-shading, bank stability, and flood 

mitigation (Goetz, 2006; Naiman & Décamps, 1997). Although environmentally significant, 

riparian areas are one of the most anthropologically disturbed ecosystems in the world and 

consequently, riparian vegetation species are being lost at an alarming rate (Liendo et al., 2015; 

Vanderklein et al., 2014). The loss of native vegetation reduces the area’s capacity to perform 

ecosystem functions, leading to decreased biodiversity and water quality, as well as an increased 

vulnerability to threats, specifically invasive species (Liendo et al., 2015). Invasive species are 

alien species that cause both ecological and economical harm to the ecosystem to which they've 

been introduced (Exec. Order No. 13112, 1999). Invasive plants in riparian areas often thrive due 

to the ideal growing conditions (e.g., access to water and light) and dynamic hydrology, as 

flooding events remove native vegetation from banks, creating space for colonization, and 

providing an opportunity to reproduce through hydrochory (Michez et al, 2016; Tickner et al. 

2001).  

 Riparian management practices typically focus on the restoration of riparian vegetation 

due to its critical role in the ecosystem (Huylenbroeck et al., 2020). In order to promote the 

growth of native vegetation, it is key to control the spread of invasive plant species. Presently, 

best management practices in the United States first suggest prevention, then early detection
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 rapid response (EDRR), and finally containment, eradication, and control (Westbrooks, 2004; 

Rejmánek, 2000). The aim of EDRR is to locate and remove invasive plants while colonies are 

small and newly established. The EDRR detection process is typically implemented through 

ground surveys and predictive models. However, these methods are time-consuming, costly, and 

run the risk of further disturbing fragile ecosystems (Reaser, 2020). Therefore, it is important to 

investigate more efficient methods for detection, so that more resources can be allocated to the 

removal of the species. 

 Remote sensing is a valuable tool that can assist in both the management of riparian 

habitat and monitoring of invasive plant species. At a regional scale, riparian areas are often 

mapped using publicly available satellite imagery despite their moderate resolution, because the 

data is regularly collected, covers large extents, and is cost-effective (Congalton et al., 2002). 

Although these data sources are limited in their ability to map riparian vegetation at a species 

level, they have been used to successfully delineate riparian from non-riparian vegetation 

communities (e.g., uplands) (Villarreal et al., 2012; Baker et al., 2006). Species-level mapping 

requires high to very high-resolution imagery (< 10 m) which can be obtained through 

commercial satellites and/or aerial imagery, however these platforms are expensive and limit the 

ability to frequently map riparian areas and thus detect invasives (Huylenbroeck et al., 2020). 

Presently, unmanned aerial systems (UAS) provide access to high resolution imagery at a 

relatively low cost. Additionally, UAS have a high temporal resolution, which allows them to 

routinely capture images over the same area and increases the likelihood of detecting invasives 

prior to large-scale invasions. 

 In this study, I investigated the applications of remote sensing in the context of riparian 

habitat management at a regional and local scale. Using satellite imagery from Landsat 8 OLI 
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and Sentinel-2, my objective was to incorporate methods suggested by the literature to improve 

riparian classification with moderate resolution imagery; secondly, compare the accuracies of the 

different satellites; and thirdly, compare the accuracies between each season. Then using UAS 

imagery, I tested how accurately invasive plant species could be detected in a riparian habitat and 

explored whether detection was influenced by the seasonality of the imagery.  

2.2 Study Area 

 The study area is located at Garland Brook in Lancaster, New Hampshire (44° 28' 

24.32", -71° 28' 48.25"). The site parameters exist at two scales, regional and local, to fit the 

goals of the research (Figure 1). The regional site is slightly larger than a National Agricultural 

Image Program (NAIP) image, approximately 6 x 8 km with an estimated area of 48 km2. The 

site is dominated by upland and riparian forest and other vegetation types (i.e., grass and shrubs), 

with few urban features. Presently, the local site is adjacent to logging operations. The local site 

is contained within three UAS flight blocks: northern, southern, and center, measuring a 

respective 230 x 623, 226 x 500, 216 x 658 meters and covering a total area of 0.4 km2.  
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Figure 1: Study site at a regional scale represented with a Sentinel-2 image (May 2018), and 

local scale represented with UAS imagery (May 2020). 

 

2.3 Focus Species 

 The invasive plant species Fallopia japonica (Japanese Knotweed) is an herbaceous 

perennial native to the east Asian countries of Japan, North China, Taiwan, and Korea (Dorigo et 

al. 2012) (Figure 2-A). It was introduced to the United States in the late 1800’s for ornamental 

and horticultural purposes and is typically found growing in highly disturbed edge habitats such 

as roadways and riparian areas (Wilson et al., 2017; Aguilera et al., 2010). The plant is highly 

adaptable, able to tolerate wet or dry soils and limited sunlight. Japanese knotweed grows 

quickly, up to 20 centimeters in a day, and once established will form dense thickets up to three 

meters tall, blocking sunlight from reaching understory vegetation (Cygan, 2018; Wilson et al., 

2017). The plant exhibits clonal growth, reproducing asexually through woody rhizomes that 

root as deep as 3 meters and extend laterally as far as 12 meters. Rhizome fragments that are 

displaced because of poor management practices (mowing/cutting) or from storm events can 
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propagate and begin new colonies downstream (Cygan, 2018; Rouifed et al., 2011). 

Additionally, the plant restricts the growth of other vegetation through the secretion of chemicals 

(allelopathy) and smothering, as the woody stalks create thick mats on the forest floor during the 

growing season (Wilson et al., 2017) (Figure 2-B).  

 

Figure 2: Japanese knotweed. (a) Early spring growth, (b) Winter woody stalks. 

 

2.4 Riparian Delineation 

 To obtain the necessary training data to perform the satellite imagery classification, I 

had to first determine the boundary of the riparian area for this study. There is no standard 

method to delineate riparian areas, and the process is influenced by the best management 

practices recommended for the particular ecosystem service or function that is being studied 

(Huylenbroeck et al., 2020; Felton et al., 2019). In this study, I aimed to define riparian 

A B
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boundaries for habitat and vegetation protection, and therefore referenced the variable-width 

riparian delineation methodology as described in the report entitled, “Connect the Coast: Linking 

Wildlife Across New Hampshire’s Seacoast and Beyond” (Steckler and Brickner-Wood, 2019). 

All delineation processes were completed in an ArcGIS Pro map project (ESRI, Redlands, 

California). A 2019 National Agricultural Image Program (NAIP) image (Geospatial Data 

Gateway; United States Department of Agriculture (USDA), Natural Resources Conservation 

Service (NRCS), Farm Service Agency (FSA)) was used as a basemap for visualization purposes 

only and had no bearing on the delineation process. The GIS data layers: National Hydrography 

Dataset (NHD), National Wetland Inventory (NWI), and 1-meter LiDAR-Based Digital 

Elevation (DEM) were downloaded from the New Hampshire Geographically Referenced 

Analysis and Information Transfer System (NH GRANIT; Earth Systems Research Center, 

Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, 

New Hampshire). All streams and rivers of the fourth order were selected from the NHD layer; 

and used to create a new layer. The new NHD layer and original NWI layer were combined into 

one shapefile using the Merge tool and extracted to the site boundary using the Clip tool (Figure 

4-A). Next, the shapefile was converted to a raster using the Feature to Raster tool (Figure 4-B) 

and given a horizontal buffer of 100 meters to extend 50 meters from the left and right stream 

banks (Figure 4-C). Then, the following processes were used to create a vertical buffer. 

Elevation values from the DEM were extracted to the rasterized NHD/NWI layer using the 

Extract Values to Points tool. Next, the Euclidean Allocation tool was run to a maximum 

horizontal distance of 200 meters resulting in a raster where pixel values represent the elevation 

at the closest NHD/NWI pixel. Then, using the Map Algebra tool, the Euclidean Allocation 

raster was subtracted from the original DEM, resulting in elevations above the closest NHD/NWI 
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cells (Figure 4-D). All cells outside of the 200-meter buffer were classified as “No Data” and 

were not included. The Map Algebra tool was used again to mask out Euclidean Allocation raster 

cells that were greater than 5 meters above the NHD/NWI cells (Figure 4-E). The result is a 

variable-width riparian delineation consisting of a 5-meter vertical buffer and a horizontal buffer 

of 50 meters (Figure 4-F).  

 

 

Figure 3: Riparian delineation workflow. 
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Figure 4: Riparian delineation process. (a) Vector stream, (b) Rasterized stream, (c) Rasterized 

stream with 100-meter horizontal buffer, (d) 200-meter horizontal buffer, (e) 5-meter vertical 

buffer, (f) Final riparian delineation with a 100-meter horizontal buffer and 5-meter vertical 

buffer. 

 

2.5. Imagery Collection 

 For this study, I obtained Landsat 8 OLI and Sentinel-2 satellite imagery of early spring 

(leaf-off), summer (leaf-on), late summer, and autumn (fall senescence). Landsat 8 OLI imagery 

were downloaded from the United States Geological Survey (USGS) data portal, EarthExplorer. 

Sentinel-2 data were downloaded from the Copernicus Open Access Hub, a data portal operated 

by a collaboration between the European Union (EU) and the European Space Agency (ESA). 

The imagery was selected only if there was little/no cloud cover over the area of interest, which 

caused comparison imagery to be selected from various months and years. The selected Landsat 
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8 OLI imagery was from May 2018, June 2018, September 2017, and October 2020. The 

Sentinel-2 imagery was from May 2018, June 2018, August 2019, and October 2018. 

 For the UAS portion of the study, I flew two fixed-wing UAS: eBee Plus and eBee X 

(AgEagle Aerial Systems Inc. Wichita, Kansas). The eBee Plus was equipped with the Sensor 

Optimized for Drone Applications (S.O.D.A.), a 20-megapixel RGB sensor (AgEagle Aerial 

Systems Inc., Wichita, Kansas). The eBee X was equipped with the Aeria X, a 24-megapixel 

RGB sensor (AgEagle Aerial Systems Inc. Wichita, Kansas). Imagery was collected in leaf-off 

and leaf-on conditions during the spring, summer, and autumn throughout 2019, 2020, and 2021. 

2.6 Reference Data 

Reference data for the satellite classifications used the riparian delineation buffer to 

distinguish between riparian and non-riparian areas, and NAIP imagery (Geospatial Data 

Gateway; United States Department of Agriculture (USDA), Natural Resources Conservation 

Service (NRCS), Farm Service Agency (FSA)) from 2018 (leaf-off) and 2019 (leaf-on) to 

identify land cover in ArcGIS Pro (ESRI, Redlands, California). Satellite classifications included 

two primary classes: riparian and upland (Table 1). The primary classes were comprised of sub-

categories (secondary classes) which describe the land cover: deciduous forest, coniferous forest, 

mixed forest, and grass/shrub. A total of 400 samples were collected, 200 for each primary class 

(riparian and upland). These samples were comprised of 50 samples for each secondary class 

(deciduous, conifer, mixed, grass/shrub), and were randomly split into groups of 25 for training 

and testing with the Subset Features tool in ArcGIS Pro. 

The reference data for the UAS imagery were collected in the summer months of 2019 

with a GPSMap64S (Garmin, Olathe, Kansas). In total, 34 samples were identified in the study 

area, however only 21 were able to be used for processing due to canopy cover, patch size, and 
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deformations of orthomosaic edges. Like the satellite reference data, the samples were randomly 

divided into testing and training samples. Due to the uneven number of samples, 11 were used 

for training and 10 were used for testing. 

Table 1: Satellite imagery classification scheme.  

 

2.7 Satellite Image Processing and Classification 

Prior to classifying the satellite imagery, I removed image bands that were extraneous to 

the goals of the study. From the 11-banded Landsat 8 OLI imagery, I removed the coastal 

aerosol, panchromatic, cirrus, and two thermal bands. From the 12-banded Sentinel-2 imagery, I 

removed the coastal aerosol, water vapor, and short-wave infrared cirrus bands. I also calculated 

three vegetation indices for each image in ERDAS IMAGINE (Hexagon AB, Stockholm, 

Sweden): Moisture Stress Index (MSI), Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Water Index (NDWI). MSI measures the leaf water content and is 

calculated using the formula MSI = Short Wave Infrared (SWIR) / Near Infrared (NIR) (Mahato 

et al., 2021). NDVI measures vegetation health and is calculated with the equation NDVI = (NIR 

– Red) / (NIR + Red)(Jensen, 2016). NDWI measures wetness with the calculation NDWI = 

(Green - NIR) / (Green + NIR) (Barron et al, 2012). Once the index layers were created, they 

Primary Secondary
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Grass/Shrub

Mixed

Riparian Conifer

Riparian Deciduous

Riparian Grass/Shrub

Riparian Mixed
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were added to the respective images through the layer stacking function in the software, resulting 

in 9-banded Landsat 8 OLI images and 13-banded Sentinel-2 images. 

 I performed a supervised object-based image analysis (OBIA) classification on each of 

the single-date satellite images using the eCognition software (Trimble, Westminster, Colorado). 

The images were segmented using the multiresolution segmentation (MRS) technique. This 

technique creates segments based off three major parameters: scale, shape, and compactness. To 

obtain optimal parameters for the final segmentation, I ran multiple iterations of the 

segmentation process and generated a report of the object statistics with each iteration to 

determine object size and band importance. Parameters that yielded image objects > 10 cells 

were rejected to avoid over-segmentation. The optimal parameters varied between the satellites 

and between seasons (Table 2). Band importance also varied for each image, and the top three 

were given a higher weight than the other bands. Once segmented, the image objects were 

classified using the Random Forests classifier (Breiman, 2001). I set the classifier to a maximum 

of 500 trees and utilized various object variables: means and standard deviations for each image 

band and vegetation index and brightness. There was a total of 19 object variables for the 

Landsat 8 OLI images, and 27 for the Sentinel-2 images. 
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Figure 5: Satellite imagery classification workflow. 

 

Table 2: Classification parameters for the single-date satellite classifications. 

 

 

 

Satellite Month Scale Shape Compactness

Landsat 8 May 60 0.1 0.5

Landsat 8 June 60 0.1 0.4

Landsat 8 September 40 0.1 0.9

Landsat 8 October 50 0.1 0.7

Sentinel May 60 0.2 0.7

Sentinel June 60 0.2 0.7

Landsat 8 August 60 0.2 0.7

Sentinel October 50 0.5 0.5
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Once the single-date satellite images were classified, I extracted the three most 

important bands from each of the Landsat 8 OLI and Sentinel-2 images in ERDAS IMAGINE 

(Hexagon AB, Stockholm, Sweden). The top three bands for each satellite were then combined 

through the layer stack function to create three multi-date combinations: early spring + late 

summer, early spring + fall, early spring + late summer + fall (Table 3, Table 4). The multi-date 

combinations were then classified in the same manner as the single-date images. For the Landsat 

8 OLI multi-date image, the optimal parameters were a scale of 50, shape of 0.1, and 

compactness of 0.5. The optimal parameters for the Sentinel-2 multi-date image were a scale of 

60, shape of 0.2, and compactness of 0.7.  

Table 3: Band importance of the Landsat 8 OLI multi-date image. 

 

 

 

Month & Band Importance

May- (Short-wave Infrared 2) 1

May- (Short-wave Infrared 1) 0.97

October- (Short-wave Infrared 2) 0.84

September- (Short-wave Infrared 1) 0.83

May- (Green) 0.74

September- (Green) 0.72

June- (Short-wave Infrared 1) 0.41

Sept- (Short-wave Infrared 2) 0.37

June- (Short-wave Infrared 1) 0.32

October- (Red) 0.27

June- (Red) 0.23

October- (Short-wave Infrared 1) 0.15
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Table 4: Band importance of the Sentinel-2 multi-date image. 

 

2.8 UAS Image Processing and Classification 

 After each flight, the UAS log and imagery were uploaded to the eMotion software 

(AgEagle Aerial Systems Inc., Wichita, Kansas) so that the imagery could be Post-Process 

Kinematic (PPK) corrected using data from the VTD7 Continuously Operating Reference Station 

(CORS) (National Geodetic Survey, 2019-2021). Then, to create a georeferenced orthomosaic, 

all imagery was processed using the Agisoft Metashape software (Agisoft LLC, Saint Petersburg, 

Russia). Each orthomosaic was processed to be at a spatial resolution of between 2 and 3 

centimeters.  

 I then performed a supervised, object-based image analysis (OBIA) classification on the 

UAS imagery using the Random Forest Algorithm in the eCognition software (Trimble, 

Westminster, Colorado) (Breiman, 2001). The images were segmented using the MRS technique, 

and the parameters were set to a scale of 500, shape of 0.1, and compactness of 0.5. I elected to 

use the Random Forest classifier to classify the UAS imagery due to the robustness of the 

classifier to small training sets. The Random Forest algorithm parameters were set to a maximum 

Month & Band Importance

August- (Short-wave Infrared 2) 1

August- (Short-wave Infrared 1) 0.97

May- (Short-wave Infrared 2) 0.84

May- (Vegetation Red Edge 1) 0.83

May- (Short-wave Infrared 1) 0.74

August- (Short-wave Infrared 2) 0.72

June-(Blue) 0.41

June- (Red) 0.37

June- (Short-wave Infrared 1) 0.32

October- (Short-wave Infrared 2) 0.27

October- (Blue) 0.23

October- (Short-wave Infrared 1) 0.15



29 

 

of 500 trees and utilized the object variables: means and standard deviations for each band, and 

the brightness. 

2.9 Accuracy Assessment 

 To assess the accuracy of the satellite and UAS classifications, I created an error matrix 

for each of the 22 thematic maps. An error matrix is a way to measure of the agreement and 

disagreement between the reference data and the classified data and is created by comparing the 

testing samples of the reference data to the class it was assigned in the thematic map (Congalton 

and Green, 2019). The error matrix is comprised of rows which represent the classified (i.e., the 

results of classifying the imagery data and columns which represent the reference data. 

From the error matrices, I generated three accuracy statistics: overall (OA), user’s (UA), 

and producer’s (PA) (Story and Congalton, 1986). The accuracy of the entire map is represented 

by the OA. It is calculated by summing the major diagonal values and dividing the result by the 

total number of samples (Congalton and Green, 2019). The UA represents the commission error, 

or the probability that the test sample was included in the incorrect map class; it is calculated by 

dividing the major diagonal value for each map class by the row total for the specific class. The 

PA represents the omission error, or the probability that the test sample was excluded from the 

correct map class; it is calculated by dividing the major diagonal value for each map class by the 

column total for the specific class (Congalton and Green, 2019; Story and Congalton, 1986). 
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2.10 Results 

 The single-date satellite primary classification that achieved the highest overall 

accuracies were the May and October Sentinel-2 images at 59% (Table 5, Table 6, Table 7, 

Figure 6, Figure 7). These classifications also obtained the same user’s and producer’s accuracies 

(Table 6, Table 7). The primary classifications of the satellite images scored higher accuracies 

than the secondary classifications (Table 5, Table 8). The May Sentinel-2 image also achieved 

the highest accuracy of all secondary classifications at 52% and outperformed the secondary 

classification of the October imagery (Table 9, Table 10).  

 

Table 5: Comparison of overall (OA), user’s (UA), and producer’s (PA) accuracies for the 

single-date primary classifications of the satellite imagery. Highlighted rows have the best 

overall accuracy. 

 

 

 

 

 

 

 

 

 

Month Status Satellite OA UA PA

May Leaf Off Landsat 8 52% 52% 46%

May Leaf Off Sentinel 59% 58% 64%

June Leaf On Landsat 8 52% 52% 48%

June Leaf On Sentinel 55% 56% 45%

Early September Leaf On Landsat 8 54% 53% 60%

Late August Leaf On Sentinel 50% 49% 43%

October Fall Senescence Landsat 8 56% 56% 60%

October Fall Senescence Sentinel 59% 58% 64%
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Table 6: Error matrix of the primary classification of the May Sentinel-2 imagery. 

 

 

Figure 6: Classification map of the May Sentinel-2 image. 

 

 

 

 

Primary Classification Riparian Upland TOTAL User's Accuracy

Riparian 53 47 100 53%

Upland 35 65 100 35%

TOTAL 88 112 200 Overall Accuracy

60% 42% 59%
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Table 7: Error matrix of the primary classification of the October Sentinel-2 imagery. 

 

 

Figure 7: Classification map of the October Sentinel-2 image. 

 

 

 

Primary Classification Riparian Upland TOTAL User's Accuracy

Riparian 64 46 110 58%

Upland 36 54 90 40%

TOTAL 100 100 200 Overall Accuracy

64% 46% 59%
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Table 8: Comparison of the overall (OA) accuracies for the single-date secondary classifications 

of the satellite imagery. Highlighted rows have the best overall accuracy. 

 

 

 

Table 9: Error matrix of the secondary classification of the May Sentinel-2 imagery. 

 

 

Table 10: Error matrix of the secondary classification of the October Sentinel-2 imagery. 

 

 

 

 

 

Secondary Classification Conifer Deciduous Grass/Shrub Mixed Conifer Deciduous Grass/Shrub Mixed

Conifer 10 0 0 2 9 0 0 0 21 48%

Deciduous 0 12 2 2 0 6 0 5 27 44%

Grass/Shrub 0 0 9 0 0 1 10 0 20 45%

Mixed 4 4 0 9 2 0 0 3 22 41%

Conifer 11 0 0 3 10 1 1 4 30 38%

Deciduous 0 5 0 1 0 8 3 4 21 38%

Grass/Shrub 0 0 13 0 0 2 11 2 28 39%

Mixed 0 4 1 8 4 7 0 7 31 23%

25 25 25 25 25 25 25 25 200 Overall Accuracy

40% 48% 36% 36% 40% 32% 44% 28% 38%
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Secondary Classification Conifer Deciduous Grass/Shrub Mixed Conifer Deciduous Grass/Shrub Mixed

Conifer 17 0 0 0 11 0 0 0 28 61%

Deciduous 0 17 1 1 0 9 0 0 28 61%

Grass/Shrub 0 1 15 0 0 2 16 0 34 44%

Mixed 1 1 0 11 0 3 0 6 22 50%

Conifer 6 0 0 0 13 0 0 2 21 39%

Deciduous 0 5 2 3 0 9 2 2 23 39%

Grass/Shrub 0 0 7 0 0 0 7 0 14 50%

Mixed 1 1 0 10 1 2 0 15 30 50%

25 25 25 25 25 25 25 25 200 Overall Accuracy

68% 68% 60% 44% 52% 36% 28% 60% 52%Producer's Accuracy
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Month Status Satellite OA

May Leaf Off Landsat 8 45%

May Leaf Off Sentinel 52%

June Leaf On Landsat 8 35%

June Leaf On Sentinel 40%

Early September Leaf On Landsat 8 38%

Late August Leaf On Sentinel 38%

October Senescence Landsat 8 39%

October Senescence Sentinel 38%
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Similar to the single date classifications, the multi-date satellite primary classifications 

outperformed the secondary classifications (Table 11, Table 13). The Landsat 8 OLI (spring + 

summer + autumn) combination achieved the highest overall accuracy at 62% (Table 12, Figure 

8). The multi-date secondary classifications all reported similar overall accuracies ranging from 

42-46% (Table 13). 

 

Table 11: Comparison of the overall (OA) accuracies for the multi-date primary classifications 

of the satellite imagery. Highlighted rows have the best overall accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satellite Month Combination OA

Landsat 8 May + October 46%

Sentinel May + October 53%

Landsat 8 May + September 59%

Sentinel May + August 54%

Landsat 8 May + September + October 62%

Sentinel May + August + October 46%
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Table 12: Error matrix of the primary classification of the Landsat 8 multi-date imagery. 

 

 

Figure 8: Classification map of the Landsat 8 OLI (spring + summer + autumn) multi-date 

image. 

 

 

Primary Classification Riparian Upland TOTAL User's Accuracy

Riparian 62 38 100 62%

Upland 38 62 100 38%

TOTAL 100 100 200 Overall Accuracy

62% 38% 62%

M
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A REFERENCE DATA

Prodcuer's Accuracy



36 

 

Table 13: Comparison of the overall (OA) accuracies for the multi-date secondary classifications 

of the satellite imagery. 

 

 

 

 The most accurate classifications of the unmanned aerial system (UAS) imagery were 

October 2019 and 2020 (Table 14, Table 15, Table 16, Figure 9, Figure 10). The October 2019 

classification surpassed the October 2020 classification in terms of user’s accuracy, but the 

October 2020 achieved a higher producer’s accuracy (Table 14). The second highest overall 

accuracy was obtained by the September 2019 classification, outperforming the September 2020 

classification (Table 14). The classifications with the poorest overall accuracies were June 2019, 

September 2020, and May 2021 at 55% (Table 14). 

 

Table 14: Comparison of overall (OA), user’s (UA), and producer’s (PA) accuracies for the 

invasive species classifications of the UAS imagery. 

 

  

 

Month Year Season Status OA UA PA

June 2019 Early Summer Leaf On 55% 70% 70%

September 2019 Early Autumn Early Fall 65% 70% 64%

October 2019 Autumn Fall Senescence 70% 70% 70%

May 2020 Early Spring Leaf Off 60% 80% 57%

July 2020 Summer Leaf On 60% 60% 60%

September 2020 Early Autumn Early Fall 55% 50% 56%

October 2020 Autumn Fall Senescence 70% 60% 75%

May 2021  Spring Leaf Off 55% 40% 57%

Satellite Month Combination OA

Landsat 8 May + October 44%

Sentinel May + October 45%

Landsat 8 May + September 46%

Sentinel May + August 44%

Landsat 8 May + September + October 42%

Sentinel May + August + October 45%
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Table 15: Error matrix of the October 2019 UAS imagery. 

 

 

Figure 9: Classification map of the October 2019 UAS imagery. 

 

Primary Classification Invasive Not Invasive TOTAL User's Accuracy

Invasive 7 3 10 70%

Not Invasive 3 7 10 30%

TOTAL 10 10 20 Overall Accuracy

70% 30% 70%

M
A
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A
T
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Producer's Accuracy
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Table 16: Error matrix of the October 2020 UAS imagery.  

 

 

 

Figure 10: Classification map of the October 2020 UAS imagery. 

 

Primary Classification Invasive Not Invasive TOTAL User's Accuracy

Invasive 6 4 10 60%

Not Invasive 2 8 10 20%

TOTAL 8 12 20 Overall Accuracy

75% 33% 70%

M
A

P
 D

A
T

A REFERENCE DATA

Producer's Accuracy
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2.11 Discussion 

 The primary classifications of the satellite imagery generated thematic maps that were 

up to 62% accurate. As suggested by Congalton et al., 2002 to improve the accuracy of moderate 

resolution imagery, these classifications sampled riparian and non-riparian vegetation separately. 

Although these results do surpass those from the Congalton et al., 2002 study which did not 

utilize these methods, they are not comparable to the studies conducted by Baker et al., 2006 and 

Villarreal et al., 2012 which obtained accuracies up to 86%, and 91%, respectively. However, 

these results still indicate that this sampling technique can improve the overall accuracies of 

thematic maps with moderate resolution imagery. In addition to testing sampling methods, I also 

utilized vegetation indices to potentially enhance the differences between riparian and non-

riparian vegetation as presented in by the Barron et al. (2012) study.  The multi-date satellite 

images were comprised of the most important bands as per the object statistics generated by the 

classification algorithm; and did not indicate that the vegetation indices were highly important.  

 The Sentinel-2 single-date primary classifications typically outperformed the respective 

Landsat 8 OLI classifications in terms of overall accuracy, while the opposite is true for the 

multi-date primary classifications. These mixed results do not indicate that either moderate 

resolution satellite (Landsat 8 OLI, 30 m; Sentinel-2, 10 m) is superior when mapping riparian 

areas. Both satellites obtained poor accuracies for the single and multi-date secondary 

classifications. These results reinforce the notion that moderate resolution imagery is limited 

when mapping riparian vegetation, and that high resolution imagery are required for higher 

accuracies (Huylenbroeck et al., 2020; Yang, 2007; Goetz, 2006; Congalton et al., 2002). 

 The best single-date primary classification accuracy achieved by the Landsat 8 OLI 

imagery was the October (fall senescence) image at 56%, and October (fall senescence) and May 
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(leaf off) for the Sentinel-2 imagery at 59%. The lowest accuracies were obtained with the May 

(leaf off) Landsat 8 OLI and August (leaf on) Sentinel-2 imagery. These results indicate that 

differences between riparian and non-riparian vegetation may be maximized during fall 

senescence and could be related to water availability (Barron et al. 2012). 

 The UAS invasive species classifications generated thematic maps with overall 

accuracies ranging from 55 to 70%, which are comparable to the results obtained by Michez et 

al. (2016) (OA = 58-69%). The most accurate classifications were the October 2019 and 2020 

classifications; however, the October 2019 classification has a higher user’s accuracy than the 

October 2020 classification, but a lower producer’s accuracy. The user’s accuracy represents 

commission error (i.e., false positive) while the producer’s accuracy represents omission errors 

(i.e., false negative). While predicting the location of invasive species, it is more important to 

avoid false negatives than false positive, because it is better to mislabel an area as invaded than 

miss a patch that could become a colony (Uden et al., 2015). Therefore, the October 2020 

classification is superior to the October 2019 classification. In comparison to the high accuracies 

achieved by these dates, the June 2019 and May 2021 classifications produced the poorest 

overall accuracies at 55%. The phenology of Japanese knotweed is most prominent during late 

summer when it flowers and fall senescence when the flowers and stalks turn a rusty orange, 

brown color (Dorigo et al., 2012). These results suggest that phenology and timing of imagery 

acquisition play an importance role in the detection of invasive species (Müllerová et al., 2017). 

Although the UAS classifications generated positive results, the sample size was extremely 

limited, which reduces the significance of the study. The results of the UAS classifications serve 

as an observation, and a larger sample size is required. 
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There were two major limitations encountered by the study. Firstly, the data collected 

for the satellite imagery classifications were from different months and years; primarily due to 

clouds covering the area of interest. It is possible that land cover changes occurred between 

compared imagery and skewed the classification results. Secondly, the UAS classifications were 

generated from a small sample size. The issue was further compounded because one third of the 

samples were not visible in the UAS imagery due to canopy cover, patch size, and deformations 

of the orthomosaics. The limited number of samples were insufficient to garner the results as 

significant.  

Future studies could expand upon the methods used in this study to create the riparian 

delineation and the satellite imagery sampling method. The variable width riparian delineation 

method could be improved through the use of additional variables, such as soil type and flood 

plain extents. The study found evidence that the riparian and upland sampling technique 

proposed by Congalton et al., 2002 improved the use of moderate resolution imagery for the 

mapping of riparian areas, and future studies could investigate the use of this sampling method to 

other moderate resolution satellite imagery.  

2.12 Conclusion 

 This was a proof-of-concept study that aimed to firstly investigate the use of moderate 

resolution satellite imagery to map riparian areas and secondly, to test the feasibility of UAS 

imagery to map the invasive plant Japanese knotweed. I have demonstrated that riparian areas 

can be delineated with modest success using moderate resolution satellite imagery and observed 

that UAS can be used to detect invasive plants in riparian habitat. Although some satellite 

classifications outperformed the others, neither Landsat 8 OLI nor Sentinel-2 were necessarily 

better than the other despite a difference in spatial resolution. It is possible to use moderate 
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resolution satellite imagery to map riparian habitat if due consideration is given to the sampling 

methods and when imagery is captured. Additionally, the study observed that UAS imagery have 

the potential to classify Japanese knotweed in riparian areas accurately if the data is collected 

during prime phenological windows, especially in autumn.  
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