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the edge state (red). A decrease of 0.4Å of the protrusion located in front of

the bean-like structure is observed, together with an increase of 0.2Å at the
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ABSTRACT

SCANNING PROBE MICROSCOPY STUDIES OF PETROLEUM CHEMISTRY;

STUDYING THE SUBSTRATE DEPENDENCE OF MoS2 AS A CATALYST FOR

HYDRODESULFURIZATION REACTIONS AND USING MACHINE LEARNING TO

AUTOMATE SCANNING PROBE MICROSCOPY

by

Steven Arias

University of New Hampshire, May, 2023

With the growth of the population, society’s energy demands are mostly reliant on petroleum

products that come from the refining of crude oil. Most of these refining reactions have been

developed through averaging spectroscopic techniques, but scientists do not know exactly

what is happening in these processes at the nano and atomic levels. This information is cru-

cial when designing an efficient refining process that produces petroleum products that emit

fewer harmful gases when combusting. Scanning probe microscopy techniques have become

a powerful tool to look into the chemical structures found in petroleum products, to under-

stand catalytic reactions in refining processes, and to find new non-combustible uses for these

products. In this dissertation, I show how scanning probe microscopy (SPM) techniques, es-

pecially non-contact atomic force microscopy (NC-AFM) can provide an atomic-level under-

standing of the chemical structures and active catalytic sites that play a role in these refining

processes. First, I studied hydrodesulfurization reactions that use molybdenum disulfide as

xvii



a main catalyst to explore the effect of layer thickness, strain, and underlying substrates

on its electronic and catalytic properties. Here, I present the first NC-AFM experiments

investigating the active catalytic sites of molybdenum disulfide on industrially relevant sub-

strates. Through these experiments, I found how NC-AFM techniques on insulators need

to be improved to achieve high-resolution images that are comparable to those collected on

metal substrates. Second, I created Auto-HR-AFM, a machine-learning script that collects

optimal high-resolution NC-AFM images. Auto-HR-AFM is a modular and open-source

script that provides an initial framework for a fully automated SPM. Expanding on this

framework will widen the use of scanning probe microscopy techniques to non-experts and

the automation will increase the time the system is kept running to collect large optimal

datasets. Ultimately, these studies will broaden the use of high-resolution SPM techniques

and help create more efficient catalysts and refining processes to produce cleaner and more

efficient petroleum products.
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CHAPTER 1

Introduction/Background

With the growth of the population, the demand for clean and accessible energy sources

increases as well. For more than 160 years households and industries have primarily relied

on the combustion of fossil fuels to supply their energy demand, but the burning of these

products also produces harmful greenhouse emission gases like carbon dioxide. The major

challenge the world faces today is how to continue to meet these energy demands while

reducing the number of harmful emissions.

To face this challenge the main issues that have to be taken care of are reducing the

number of emissions produced by fossil fuels and creating more efficient renewable energy

sources. These issues are intertwined since the development of renewable energy sources

means that the world can start to peak its fossil fuel usage and move away from combustion

procedures, but we are not there yet. The world currently relies mostly on petroleum and

natural gas to provide most of the energy demand and most likely coal will be the first fossil

fuel to start a decline. For now, as the population continues to increase these fossil fuels will

still play a huge role in the energy supply as renewable energy technologies catch up. The

goal for large groups of the world is to reach net-zero emissions in 30 to 50 years [1].

For this, the US oil and gas industry will be a critical and essential part to meet these

goals and the capabilities they develop and deploy will be applied around the world to meet

global targets for emission reduction. To accelerate development and deployment, industry

R&D teams have to collaborate with DOE national laboratories and universities while still

getting the support of governmental policies at all levels. [1].

1



The difficulty in reducing emissions comes from understanding the refining procedures

used to treat crude oil and gas. While we have come a long way since the first initial refineries

of the 1800’s that refined fossil fuels into Kerosene [2] and now can create through refining

procedures thousands of products that are used in daily life like aspirin, plastics, fuel, etc [3],

scientists do not fully understand what composition of hydrocarbons make up these fossil

fuels. Knowing the exact composition of these crude products helps design refinery processes

to efficiently remove any contaminants and help produce cleaner energy sources.

Most of the work done in the 19th century to understand fossil fuels has been in finding

ways to refine the materials into useable products [4, 5] and to study their physical proper-

ties. Chromatography, mass spectrometry, and petroleomics have been used by chemists to

understand the complexity of these materials and they helped develop the fuels and other

byproducts we use today. But what most of these techniques lacks is a fundamental under-

standing of the atomic and molecular level procedures that are taking place during these

refining steps. As we look into optimizing our petroleum products, we have to start imple-

menting tools to look at the molecular structures and the chemical reactivities at an atomic

level.

The invention of the scanning tunneling microscope (STM) in 1982, by Binnig and Rohrer,

opened the door to studying the atomic world directly [6]. Four years after that the atomic

force microscope (AFM) allowed us to see the topography of any material regardless of its

conductivity [7]. These scanning probe microscopy (SPM) techniques provide topographic

images, and local measurements of surface properties, and can manipulate surfaces. For 40

years, SPM techniques have been an essential part of surface science and material science

research. Petroleum chemistry research has also benefited from the use of SPM technologies

by using STM to study catalysis reactions related to the desulfurization [8–10] of crude oil. In

recent years the development of the NC-AFM has opened the door to studying the molecular

structure and reactivities of petroleum products [11,12]. Although there are still limitations

to using these techniques as a high throughput characterization tool of petroleum products,
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these SPM studies give us insight into designing new refining procedures to produce cleaner

and more efficient fuel sources. These studies can also help us discover non-combustible

techniques for these products like finding a pathway to directly refine composite materials

for high strength construction [11].

In this dissertation, I show how SPM techniques can be used in petroleum research

to study refining reactions at nano and atomic scales. This information is crucial when

designing an efficient refining process that produces petroleum products that emit fewer

harmful gases when combusting. In Chapter 2, I explain the operation principles of STM

and AFM, which are the two main SPM techniques I used for my research projects. I also

describe how to perform the sample preparation techniques I used for the projects. Two

of the major projects I performed are explained in Chapters 3 and 4. I present in Chapter

3 the first NC-AFM experiments investigating the active catalytic sites of molybdenum

disulfide on industrially relevant substrates. Through these experiments, I found how NC-

AFM techniques on insulators need to be improved to achieve high-resolution images that

are comparable to those collected on metal substrates. In Chapter 4 I present my work in

creating an initial framework for a fully automated SPM. The major focus of Chapter 4

is the work done to create Auto-HR-AFM, a machine learning script that collects optimal

high-resolution non-contact AFM images. My conclusions for these projects are presented in

Chapter 5 where I describe how to overcome issues and limitations in both main projects and

ideas for continuing the projects in the future. These studies will broaden the use of high-

resolution SPM techniques and help create more efficient catalysts and refining processes to

produce cleaner and more efficient petroleum products.
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CHAPTER 2

Methods

In this chapter, I describe the tools and techniques that I used for my thesis research projects,

starting with an explanation of scanning probe microscopy (SPM) tools and the vacuum

chamber that houses them. I then go into more detail explaining the main SPM techniques

used in my thesis; scanning tunneling microscopes (STM) and atomic force microscopes

(AFM).

For STM I describe the basic principles of operation and then I go over the common

modes of STM operation. For AFM, I also go over the basic principles of operation, then

I describe the common mode of operations and describe in detail the relationship between

the measured frequency shifts in AFM to the forces felt between the tip and sample. I end

the AFM section with an explanation of how the probes have changed through the years to

increase their resolution.

In the last sections of this chapter, I describe the sample preparation techniques I used

for my experiments. I start by explaining the process of exfoliation techniques used to

separate layered two-dimensional materials from bulk crystals, I then explain the steps to

use a polymer transfer method and flake transfer station to move exfoliated flakes onto

different supports and how this is used for creating heterostructures. I end this section with

an explanation of cleaning metal substrates using sputter and anneal cycles and a description

of the physical vapor deposition techniques used to deposit molecules on clean surfaces.
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2.1 Ultrahigh Vacuum Chamber and Main Tools

The main instruments I used in my experiments are STM and AFM which are operated

under ultra-high vacuum (UHV) conditions with pressures below 5x10−9 torr and at vari-

able temperatures ranging from room temperature to low temperatures (5K to 10K). These

two techniques have opened the doors to the atomic world and were the starting point in

nanotechnology research [13]. Due to their broad applications and high resolution, these

techniques have been used in the fields of physics, chemistry, biology, engineering, and ma-

terials science.

Typical SPM experiments require a proper clean and controlled environment so they are

carried out in an ultra-high vacuum (UHV) chamber. The base pressure in the chamber is

kept to 5x10−10 torr or below to minimize the number of residual gas contaminants in the

chamber. With fewer contaminants, our surfaces stay clean for a long period of time. Lower

pressure in the chamber also increases the mean free path of the particles inside the chamber

limiting the interactions between them and the clean surfaces used for experiments.

At higher temperatures objects have higher kinetic energy, so to study mobile molecular

samples and to ease the goal of achieving atomic resolution it is best to keep the SPM running

at low and stable temperatures. Having high thermal stability reduces the effect of thermal

drift while imaging.

Figure 2.1 shows a schematic of LEWIS, the dual STM/Non-Contact AFM (NC-AFM)

used in the Hollen Lab, built by RHK Technologies. Although most UHV SPM systems

are customized by each research group to fill specific experimental needs, they mostly all

have the same key components. Typical chambers are made out of stainless steel. A series

of valves and pumps bring the pressure from atmospheric pressure of around 760 torr to

UHV pressures of around 1x10−10. Ion gauges are used to monitor the pressure around the

chamber and thermocouples are used at various stages to monitor temperatures inside the

chamber. Mass spectrometers and other surface characterization tools are also commonly
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Figure 2.1: Schematic of the Hollen Lab’s dual STM/NC-AFM system.

found in UHV chambers, and I used them occasionally. To obtain atomic resolution it is

also important to isolate the SPM stage to minimize noise produced by thermal changes and

vibrations.

Other components are added to help facilitate experiments. Most experiments require

sample preparation techniques that are best done in situ, requiring heating stages, ion guns,

evaporators, leak valves, and dosing ports to modify the surface. Multiple viewing ports let

you see what is going on inside and most SPMs use a viewing camera as well to observe the

SPM stage.

2.2 Scanning Probe Microscopy

Scanning probe microscopes have become an essential tool in the field of nanoscience. The

basic principle for all scanning probes is the interaction between the probe and the sample.

The resolution of SPM techniques is limited by the geometrical shape of the probe. Ideal

probes have a cone-shaped tip and try to have the smallest radius at the tip apex.
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As the probe is scanned across the surface of the sample, local interactions between them

are measured. Piezoelectronics are used to precisely control the movement of the probes in

3 dimensions. An electronic control system is used to control the probe and is monitored

by a computer. The computer takes the local measurements as a function of the probe

position and turns that information into an image. The two main SPM techniques I used

for my experiments are the Scanning Tunneling Microscope (STM) and the Atomic Force

Microscope (AFM).

2.2.1 Scanning Tunneling Microscope

The STM invented by Binnig and Rohrer [6] gathers electronic and topographic data of

conductive samples with atomic resolution. The setup for most systems can be seen in Figure

2.2 A [14]. The schematic shows a sharp metallic probe normally made out of tungsten or

platinum/iridium wire that is approached to a conductive surface. During the approach, a

bias voltage is applied between the tip and the sample. When the tip is close enough to the

surface, around a gap of a couple of angstroms away, then a current can be measured as the

electrons from the material that is biased, tunnel through the gap.

This tunneling is a quantum mechanical effect. Electrons live at specific energy levels.

Electrons fill up energy valleys in the materials (Figure 2.3 A) [15]. The top energy where

electrons can sit is the Fermi energy level. At every energy level, there is a number of

electrons that live in the range ∆ϵ away from ϵ. The density of states (DOS) for a specific

energy is the number of electrons in a given ∆ϵ divided by ∆ϵ.

When the tip and sample are close together there is a vacuum barrier between them

(Figure 2.3 B). Classically, an energy greater than the work function ϕ is needed to move

an electron outside of a material. Quantum mechanically, the wave nature of the electron

allows it to tunnel through the barrier instead. A cartoon representation of this behavior

can be seen in Figure 2.4 [16].

Tunneling electrons still need a place to go, so a bias voltage is applied to either the tip
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Figure 2.2: A) Illustration of an STM setup adapted from Marturi [14]. B) STM image of
Si(111) (7x7) reconstruction taken by the Hollen Lab.

or sample. The bias voltage raises the Fermi energy of the material biased with respect to

the other. This creates states for electrons to tunnel into (Figure 2.3 C).

In the vacuum gap, the wave function ψ of the electrons decays exponentially. Where m

is the mass of the particle and h̄ is Dirac’s constant of 1.05x10−34 J·s.

ψ(z) = ψ(0) exp−
√

2m(ϕ− E)z

h̄
(2.1)

The tunnel current (It) is based on the voltage difference between the tip and the sample.

In Figure 2.3 C the electrons travel from the filled states of the sample into the empty states

in the tip.

The elastic tunneling current from the sample to the tip for states of energy ϵ is:

It = −2e · 2π
h̄

· |M |2(ρS(ϵ) · f(ϵ))(ρt(ϵ+ eV ) · [1− f(ϵ+ eV )]) (2.2)

The factor of 2 in the front is from the spin of the electron, −e is the electron charge,
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Figure 2.3: A) Representation of electrons filling up an energy valley up to the Fermi Level.
B) Electrons in the energy valleys of the tip and sample with an energy barrier in between
them caused by the vacuum gap. C) Applying a bias to the sample to raise the Fermi energy
with respect to the tip’s Fermi energy level. This creates empty states to tunnel into. Figures
redesigned from the Hoffman Group’s STM explanation [15].

Figure 2.4: Illustrating the difference of tunneling through a potential barrier. From Bleaney
1984
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2ϵ/h̄ comes from the time-dependent perturbation theory, Equation 2.3 is the Fermi function

f(ϵ), and Equation 2.4 is the tunneling matrix |M |2.

f(ϵ) =
1

1 + eϵ/kBT
(2.3)

M =
h̄

2m

∫
sample

(ψ∗
S

∂ψt

∂z
− ψS

∂ψ∗
t

∂z
)dS (2.4)

By applying a negative sample voltage of −V there is a dominant tunneling current from

sample to tip. There is also a smaller tunneling current flowing from the tip to the sample.

To find the total tunneling current between tip and sample we have to add both current and

integrate over all energies (ϵ):

It = −4πe

h̄

∫ ∞

−ϵF

|M |2ρS(ϵ)ρt(ϵ+ eV ) · [f(ϵ) · [1− f(ϵ+ eV )]− [1− f(ϵ)] · f(ϵ+ eV )]dϵ (2.5)

For measurements that are made at low temperatures and with a bias of −eV , this

current is approximated to three energy regions: Above the biased Fermi level of the sample

(0 < ϵ), between the biased Fermi level of the sample and the Fermi level of the tip (−eV <

ϵ < 0), and below the Fermi level of the tip (ϵ < −eV ).

The relevant energy region to integrate over to find the tunneling current is between the

biased Fermi level of the sample and the Fermi level of the tip, where −eV < ϵ < 0. If the

bias applied were a positive voltage then the range of integration would be from 0 < ϵ < eV .

It ≈ −4πe

h̄

∫ 0

−eV

|M |2ρS(ϵ)ρt(ϵ+ eV )dϵ (2.6)

Typically STM tips are made out of a material that has a flat DOS within the energy

range of the sample’s Fermi surface. This means we can treat the DOS of the tip as a

constant in our integral:
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It ≈
4πe

h̄
ρt(0)

∫ 0

−eV

|M |2ρS(ϵ)dϵ (2.7)

Since the tip and the sample have their own independent DOS, both their wavelengths

fall exponentially to zero in the tunnel barrier. So if the tip-sample distance is large enough

then the matrix element |M | can be treated as a constant.

It ≈ −4πe

h̄
|M |2ρt(0)

∫ 0

−eV

ρS(ϵ)dϵ (2.8)

Making the assumption that the vacuum barrier is a square barrier and using the WKB

(Wentzel, Kramers, Brillouin) approximation we simplify the tunneling matrix to:

|M |2 = e−2γ (2.9)

Where γ is Equation 2.10, m is the mass of the electron, z is the distance between the

tip and the sample, and ϕ is a mix of the work functions of the tip and sample.

γ =

∫ z

0

√
2mϕ

h̄2
dx =

z

h̄

√
2mϕ (2.10)

Putting this all together, the tunneling current is approximated by:

It ≈
4πe

h̄
ρt(0) exp

−2z

h̄

√
2mϕ

∫ 0

−eV

ρS(ϵ)dϵ (2.11)

The tunneling current falls off exponentially as z increases. With work functions ranging

from 3eV to 5eV for metals a change of 1 angstrom can cause a change of one order of

magnitude in the current. This sensitivity is the reason STM can produce high-resolution

images.

We also see from Equation 2.11, that the tunneling current is proportional to the local

DOS (LDOS) of the sample at the Fermi level, meaning that STM probes the LDOS of the

sample.
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STM Modes

The 2 typical modes of operation for the STM are constant current mode and constant

height.

STMs are most commonly run in constant current mode where the measured current is

set to a specific value. While the tip is rastered across the surface it encounters changes in

“topography” and to keep the current constant a software controller uses a feedback loop

to change the height of the tip to measure the setpoint current. The changes in height are

then used by the software controller to create a topographical map of the surface which in

STM measurements topography means a combination of the changes in height and electronic

structures on the surface. If the tip is well prepared then this technique can achieve atomic

resolution similar and produce images like the one in Figure 2.2 B.

In constant height mode, the feedback loop is turned off and the height of the probe does

not change while scanning. Instead, the changes in the current are measured and mapped

out. The main advantage of this mode is that higher scan rates can be achieved to collect the

data and that is better for observing dynamic processes. Since the feedback loop is turned

off there is a higher risk of crashing the probe.

There also exist multiple spectroscopic techniques that are performed by STM systems

like IV curves and dI/dV curves that provide information on the electronic structure of

the materials. By measuring the current at different bias voltages or different heights the

electronic states that can be tunneled into can be observed. These techniques are useful to

find the bandgap and the local density of states of materials.

2.2.2 Atomic Force Microscopy AFM

STM produces stunning atomic resolution images, but the major limitation is that the

technique only works on conductive materials. To solve this issue Binnig, Quate and, Gerber

invented the AFM to be able to study the surface of bulk insulators as well [7]. Their

technique measured the short and long range forces felt by a sharp probe while approaching
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Figure 2.5: The Lennard Jones potential as a function of distances between the tip and the
sample. The Pauli repulsion term and van-der-Waals forces are also shown. The regime
for contact mode AFM is shaded in blue and the regime for non-contact AFM is shaded in
green. Adapted from Pawlizak et al [17].

a sample surface regardless of its conductivity.

The forces felt by the probe are a combination of short range chemical forces from the

overlap of electron wave functions and from the repulsion of ion cores and long range van-

der-Waals forces caused by induced dipoles. These forces are described by the Lennard-Jones

potential:

VLennard−Jones = 4ϵ[(
σ

d
)12 − (

σ

d
)6] (2.12)

Here the d is the distance between the tip and the sample, ϵ is the depth of the potential

minimum, and σ is a constant distance between the particles when VLennard−Jones = 0. The

positive term describes the repulsive interactions and the negative describes the attractive

interactions seen in Figure 2.5 [17]. Magnetic or electrostatic forces can also occur depending

on the materials of the tip and the sample.

The setup for AFMs are similar to STMs, but instead of a tunneling tip AFM uses a

force-sensing cantilever shown in Figure 2.6. The cantilever has a known spring constant kN

and a sharp tip mounted at the end. The forces bend the cantilever following Hooke’s law

seen in 2.6. The deflection of the probe ∆z is measured as the tip of the cantilever interacts
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Figure 2.6: Schematic of the AFM probe showing Hooke’s law and the equilibrium of the
forces relevant to contact mode AFM. Adapted from Meyer et al [18].

with the surface. The force is used as an input signal to regulate the height with a feedback

loop.

There are multiple different types of AFM systems, but the most common one is a table-

top AFM that uses a laser beam detection system to measure the deflection of the cantilever

as in Figure 2.7 [14]. The laser beam is reflected off the back of the cantilever and shines on a

position-sensitive photodetector. As the tip is scanned across the surface, the forces between

the tip and the sample deflect the cantilever. Those deflections change the position of the

laser on the photodetector and that information is an input signal used to create a feedback

loop where the controller adjusts the tip height to maintain a constant cantilever deflection.

The changes in height are recorded and the controller uses those to generate topographic

maps of the surface features.

AFM Modes

The most common operation modes for AFM are contact and non-contact mode. The ranges

for these modes can be seen in Figure 2.5. In contact mode, the force acting between the tip

and sample is used as the imaging signal. As the probe approaches the surface of the sample,
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Figure 2.7: Illustration of an AFM setup. Adapted from Marturi [14].

the outermost atoms of both materials start to attract each other. Eventually, the distance

between the tip and the sample is small enough that the Pauli exclusion principle triggers

and starts to repulse the atoms deflecting the whole cantilever. Figure 2.6 shows how the

forces are kept balanced by the controller to keep the deflection constant while scanning [18].

In non-contact AFM (NC-AFM) mode, a cantilever is mounted on an actuator and set

to oscillate at its natural frequency. This mode has two operation methods seen in Figure

2.8: constant frequency shift and constant amplitude.

The feedback loop for the constant frequency shift mode is shown in Figure 2.9 [18].

An actuator is driven at a specific amplitude (Aexc) and fixed frequency ω0 that is different

from the natural frequency of the cantilever. The amplitude of the cantilever changes as the

tip interacts with the sample. These changes in amplitude are used as a feedback signal to

collect a topographical image while keeping the frequency constant. The changes in phase

can also be used to reconstruct a phase image.

In constant amplitude mode, the cantilever is set to oscillate at a set amplitude by an

actuator. A phase-locked loop measures the electrical signal proportional to the oscillation of

the cantilever and applies that signal to the actuator after shifting the phase and amplifying
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Figure 2.8: Amplitude versus Frequency curves representing the two operation modes in
NC-AFM. a) Constant amplitude: The frequency change from the tip-sample interactions
is detected. b) Constant frequency shift: The change of amplitude is detected at a constant
frequency shift. Adapted from Meyer et al [18].

Figure 2.9: Schematic of the constant frequency shift feedback loop. Adapted from Meyer
et al [18].
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Figure 2.10: Schematic of the constant amplitude feedback loop. Reproduced from Meyer
et al [18].

the signal. The tip-sample interactions change the frequency of the cantilever. To measure

the change of frequency a fast frequency demodulator is employed, as introduced by Albrecht

et al [19]. The change of frequency is used as the input signal to control the tip-sample

distance. A schematic of this feedback loop can be seen in Figure 2.10 [18].

Relationship between tip-sample forces and frequency shifts

In NC-AFM the frequency shift is the measured observable. To understand how NC-AFM

works, it is important to relate the frequency shift to the forces acting between the tip and

the sample. Giessibl has published detailed reviews that explain the basic operations of the

frequency shift modulation modes [20–22].

The motion of the cantilever, seen in Figure 2.11 with an effective mass m∗ and a spring

constant k can be described by a weakly disturbed harmonic oscillator.

The deflection of the cantilever is q′(t) and the tip-sample distance is q(t). The closest

17



Figure 2.11: Schematic of an oscillating cantilever whose minimum tip-sample distance is d
and the amplitude is A. Reproduced from Giessibl [20].

point to the sample us q = d and q(t) = q′(t) + d+A. The Hamiltonian of the cantilever is:

H =
p2

2m∗ +
kq′2

2
+ Vts(q), (2.13)

where p = m∗dq′/dt. The unperturbed motion is given by:

q′(t) = A cos (2πf0t) (2.14)

The frequency is given by:

f0 =
1

2π

√
k

m∗ (2.15)

If the force gradient kts − ∂Fts/∂z is constant during an oscillation cycle the frequency

shift is:

∆f = f0
kts
2k

(2.16)

In constant amplitude mode kts is not constant during the oscillation cycle, so a per-

turbation approach can be used to solve for ∆f , Giessibl employed canonical perturbation

theory and found ∆f to be:

∆f =
f0
kA2

⟨Ftsq
′⟩ (2.17)

The terms between the brackets are averaged over one oscillation cycle.
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Another approach used to calculating ∆f is to solve the equations of motion of the

cantilever with an effective mass µ∗ and a spring constant k:

µ∗d
2q′

dt2
= −kq′ + Fts(q

′) (2.18)

The motion of the cantilever q′(t) is periodic and is expressed as a Fourier series with

fundamental frequency f :

q′(t) =
∞∑

m=0

am cos (m2πft) (2.19)

Plugging q′(t) into the equation of motion in Equation 2.18 gives:

∞∑
m=0

am[−(m2πf)2µ∗ + k] cos (m2πft) = Fts(q
′) (2.20)

Multiplying both sides by cos (l2πft) and integrating over one oscillation period t = 1/f

gives:

am[−(m2πf)2µ∗ + k]π(1 + δm0) = 2πf

∫ 1/f

0

Fts(q
′) cos (m2πft)dt (2.21)

The orthogonality of the angular functions seen in Equation 2.22 is used to integrate the

left-hand side of Equation 2.20

∫ 2π

0

cos (mx) cos (lx)dx = πδml(1 + δm0) (2.22)

With a weak perturbation q′(t) ≈ A cos (2πft) with f = f0 + ∆f , f0 = (1/2π)
√
k/µ∗,

and |∆f ≪ f0. The first-order perturbation (m = 1) of the frequency shift is given by:

∆f = − f0
kA2

∫ 1/f

0

Fts(q
′) cos (2πf0t)dt = − f0

kA2
⟨Ftsq

′⟩ (2.23)

For small amplitudes, the frequency shift is independent of the amplitude and is propor-

tional to the tip-sample force gradient seen in Equation 2.16. For amplitudes larger than

the tip-sample force range, the frequency is a function of amplitude ∆f ∝ A−1.5. When the
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amplitudes are larger than the range of the relevant forces used then it is useful to introduce

a normalized frequency shift γ:

γ(z, A) =
kA2/3

f0
∆f(z, A) (2.24)

A more detailed calculation of this term is done by Giessibl and Bielefeldt [21]. This nor-

malized frequency shift is useful when comparing results recorded with different experimental

parameters. The units of γ are the geometrical mean to the units of force and potential.

This has been shown by Ke et al [23] and derived by Giessibl et al [21] as well.

Durig demonstrated that the force versus distance curve can be reconstructed from the

frequency shift versus distance curves without the need to know the force law [24]. The force

curve can also be recovered from the frequency curve using a matrix inversion. Sader and

Jarvis introduced an inversion formula that is valid for large and small amplitudes compared

to the interaction lengths. The Sader-Jarvis method converts frequency shifts to interactions

forces F (z) or energies U(z) [25]:

F (z) = 2k

∫ ∞

z

(1 +
A

1
2

8
√
π(t− z)

)Ω(t)− A
3
2√

2(t− z)

dΩ(t)

dt
dt (2.25)

U(z) = 2k

∫ ∞

z

Ω(t)((t− z) +
A

1
2

4

√
t− z

π
+

A
3
2√

2(t− z)
)dt (2.26)

where Ω(z) = ∆ω(z)/ωres. These formulas can be used for any amplitude A.

AFM Probes

The cantilever design for AFM has changed through the years. Initial designs used tunneling

[6, 26], capacitance [27, 28], and laser beam detection [29–31] methods to figure out the

deflection of the probe. These methods relied on an external detection system which limited

the imaging size. [32]

Piezoresistive cantilevers, seen in Figure 2.12 offer a detection scheme that does not

20



Figure 2.12: Piezoresistive AFM probe and atomic resolution images collected by this probe.
a)graphite, b)boron nitride, c)molybdenum disulfide, d)tantulum diselenide.Adapted from
Tortonese et al [32].

require aligning an external detector [32]. These cantilevers made from silicon exhibit a

strong piezoresistive effect that makes it easy to measure the changes in bulk resistivity as

the cantilever deflects [33]. These are especially useful for UHV and low temperatures where

other detection schemes are difficult to implement.

While imaging in non-contact mode the stability of the frequency is the most important

part when it comes to achieving atomic resolution. The piezoresistive probes have been

used to image atomic resolution on multiple inert surfaces (Figure 2.12) [32]. Giessibl et

al were the first to use these probes to obtain atomic resolution on the silicon(111) (7x7)

reconstruction (Figure 2.13 A) [34], but noticed that the method still lacked stability [35].

This led Giessibl to design the qPlus probe, an alternative to the piezoresistive can-

tilever [36]. The qPlus probe is made from a quartz tuning fork that is normally found in

wristwatches. These tuning forks are much stiffer than the silicon cantilevers used for AFM

probes before which means that they oscillate at much lower amplitudes. Giessibl realized
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Figure 2.13: A) First Non-contact image of the Si(111) (7x7) reconstruction obtained with a
piezoresistive Si cantilever, B) Si(111) (7x7) reconstruction using a qPlus probe, C) Si(111)
(7x7) reconstruction using a qPlus probe with a functionalized CO tip. Adapted from
Giessibl et al [33].

that utilizing smaller amplitudes improved the signal-to-noise ratio and attenuated the long-

range forces felt by the cantilever increasing the spatial resolution. The result of using small

amplitudes can be seen in Figure 2.13 B [34]. The qPlus probes are the most commonly

used AFM sensors for low-temperature UHV systems.

The basic components of the qPlus probe can be seen in Figure 2.14 [37]. The quartz

tuning fork is mounted on an actuator. One tine of the fork is fixed in place by epoxying

it to the mount. The other tine is free to oscillate and resembles a conventional AFM

cantilever. A sharp tip is attached to the end of the free tine. The deflection of the qPlus

cantilever is measured by recording the current to keep the electrode on each tine at a

constant potential. [34]

NC-AFM became an important tool to characterize nanostructures at an atomic scale

[38–41]. Then in 2008 Gross et al were able to study the chemical structure of a single

pentacene molecule using high-resolution NC-AFM (HR-AFM) by functionalizng a qPlus

probe. Figure 2.15 shows their results comparing the resolution of STM and HR-AFM

images of pentacene.

To achieve atomic resolution using the HR-AFM, it is necessary to operate in the short-

range repulsive regime 2.5 where the Pauli exclusion principle dominates, because the long-

range van-der-Waals and electrostatic forces do not contribute to the atomic contrast. To

operate the HR-AFM in this regime it is necessary to use a cantilever with high stiffness,
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Figure 2.14: Schematic of a qPlus probe adapted from Stirling [37]. Picture of the Hollen
Lab’s qPlus Probes.

Figure 2.15: STM and NC-AFM imaging of pentacene on Cu(111). A) Ball-and-stick model
of pentacene. B) STM image of pentacene using a CO functionalized probe. C and D)
NC-AFM of pentacene obtained using a CO functionalized probe. Adapted from Gross et
al [43].
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Figure 2.16: Forces acting on the relaxing probe particle represented by the blue ball, which
is the last atom of the flexible tip apex. The forces are a) The spring force to keep the
probe particle below the last atom of the metal tip, which is represented by the yellow ball.
b) The Pauli repulsion and van-der-Waals forces acting between the probe particle and the
fixed atoms on the substrate that are modeled by the Lennard Jones Potential. c) And the
electrostatic forces between the sample and the charged probe particle if the apex is charged.
Adapted from the Hapala et al [44].

operate with small oscillation amplitudes [42], and functionalize the probe. Gross et al [43]

explored different tip terminations but found that CO molecules provided the best lateral

resolution of the pentacene molecules.

Modeling the Forces in HR-AFM

Hapala et al found that the features seen in the HR-AFM images is due to the strong lateral

relaxations of the particle attached to the apex of the tip [?, 44]. The particle relaxes away

from the area where the Pauli repulsion is strong these are the sharp features seen in the

HR-AFM images. Understanding the interactions between the functionalized probe and the

molecule allows us to explain the experimentally recorded HR-AFM images.
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The simulation calculates the Lennard Jones potential seen in Equation 2.12 finding the

Pauli repulsive and van-der-Waals attractive forces, calculates the position where the probe

particle relaxes over the surface to minimize its total energy, and generates a set of simulated

HR-AFM images.

These simulated images can change based on parameters like the stiffness of the probe

particle, the charge of the probe particle, parameters like stiffness and frequency of the

cantilever, and oscillation amplitudes.

Ruben Perez’s group has studied the interactions between functionalized probes and

the molecules imaged by HR-AFM and created an AFM simulation package that has been

incorporated into a database called QUAM-AFM [45, 46]. Their simulations split the tip-

sample interactions into four contributions: short-range, electrostatic, van-der-Waals, and

the tilting angle of the CO functionalizing the probe.

Carracedo-Cosme et al explain the contribution of each force when modeling the tip-

sample interaction forces [45]. The van-der-Waals contribution comes from the atomic

geometry given by the attractive term of the Lennard-Jones potential. The electrostatic

contribution comes from the charge density of the molecule being imaged and the C and O

atoms. The short-range contributions are from the Pauli repulsion between the overlap of

the charge densities of the CO molecule and the molecule on the surfaces. The contribution

from the CO tilting is modeled by having the CO molecule act like a spring that deflects

when approaching the molecule on the surface.

2.3 Sample Preparation

For SPM experiments proper sample preparation and a clean environment are crucial for

achieving atomic resolution. This section contains information on the exfoliation of 2D

materials that were the main samples I used for the experiment I present in Chapter 3.

This section also contains information on metal preparation procedures that I used for the

experiments in Chapter 4.
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2.3.1 Preparation of 2D Materials

2D materials are those that are a single atom or molecule thick. Popular materials in this

2D family are graphene, transition metal dichalcogenides, borophene, and hexagonal boron

nitride. These 2D materials exhibit unique quantum states because the electronic states are

confined to a single layer thickness. The growing family of 2D materials started with the

isolation of graphene by Nosolev and Geim [47] and now there are thousands of materials

discovered or theoretically thought to exist. Data mining has predicted over 1000 potential

2D material candidates [48], but most of these have not been isolated.

These materials can be isolated from bulk samples or grown from base materials. These

2D materials can be stacked and combined to create heterostructures that utilize their unique

electronic properties. These heterostructures are the building blocks of semiconducting de-

vices. [49] The electronic properties of 2D materials and their atomic flatness also make them

an interesting playground for studying chemical reactions [8–10,50,51].

Mechanical Exfoliation

The simplest way to isolate 2D materials is by mechanical exfoliation. The bulk counterparts

to these 2D materials have weak van-der-Waals forces acting between each layer. The forces

are weak enough that by using simple scotch tape the layers can be separated from the bulk.

In the Hollen lab, this is the most common method we use to exfoliate 2D crystals.1

The main steps for mechanical exfoliation using the scotch tape method are shown in

Figure 2.17.

• Grab a long strip of scotch tape. Around 6 inches should be plenty.

• Place one end of the scotch tape strip on a bulk crystal. Apply a small amount of

pressure to remove air bubbles between the tape and the top of the crystal. Using

carbon tip tweezers has worked the best for this in the past.

1Shout out to Tan, Page, Chris, and Caitlyn for all their hard work on improving our exfoliation tech-
niques.
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Figure 2.17: Schematic showing the steps to mechanically exfoliate a 2D crystal.

• Peel off the tape from the crystal. The outermost layers will peel off as well. This

leaves a fair amount of bulk material stuck on the tape. Keep exfoliating the material

on the tape using spots on the tape strip that are empty until a patch of the tape has

material that is barely visible.

• Place that barely visible patch on top of a target support substrate. Typically placed

on a silicon dioxide/silicon chip.

• Remove the taper leaving behind the flakes on the silicon dioxide surface.

After the exfoliation process, the 2D flakes are observed with an optical microscope. The

solicon dioxide layer used as a support has an oxide layer thickness of 300 nm. Under the

optical microscope the oxide layer appears light purple. This exfoliation method often leaves

a large number of flakes on the surface. Figure 2.18 shows how the color contrast changes

on MoS2 as you increase the layer number [52]. This change in color contrast with different

layer thicknesses is similar for all 2D materials. Optical images are taken of the flakes that
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Figure 2.18: Color optical images of monolayer to 15 layered MoS2 on 300 nm SiO2/Si
substrate. The scale bars are 5 µm for images from monolayer to 11 layers and 10 µm for
the image of 12 layers. Adapted from Li et al [52].

could be of potential use for any project.

In the Hollen lab, the images of the flakes are stored in the local computer in the clean

room and uploaded to a shared drive on OneDrive. These images make up our flake library

through the years. Most of the flakes exfoliated in the Hollen lab have been used for a specific

project almost immediately.

While searching for the best mechanical exfoliation process, we have tried implementing

different variations to these steps. Although there is not a lab consensus on what variations

work best, we have used an alternative to scotch tape, Nitto Blue tape which does reduce the

amount of tape residue on the underlying substrate, but does not necessarily yield a higher

amount of desirable flakes compared to scotch tape.

Peeling the tape with a twist or adding a heating step before peeling off the tape are other

variations that have been tried before in the lab, but no obvious improvement to the quality

of the flakes yielded was noticed. These variations and others, like how much pressure is

applied, humidity in the room, and source crystal, do have an effect on the flakes exfoliated,

but this process is mostly a multiple trial effort. To get the best flake just repeat the process

until a desired flake is found. A good project in the future would be to make this exfoliation
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Figure 2.19: Schematic of the Gold Assisted Transfer Process. Adapted from Meditz [53].

procedure more reproducible in our lab, similar to the work being done at the Quantum

Material Press (QPress) facility at Brookhaven National Lab to be able to create any flake

in a controlled environment.

QPress is a modular cluster tool designed to study heterostructure materials and 2D

materials. Tools in the QPress cluster include an exfoliator, cataloger, library, stacker, and

characterization tools like AFM and Raman spectroscopy. Every section of the QPress is

held under a vacuum or an inert atmosphere to be able to handle air sensitive materials. The

tools are also being automated to maximize the speed and reproducibility of flake creation.

Gold Assisted Exfoliation

Another exfoliation technique implemented in the Hollen lab was gold assisted exfoliation

mostly developed by Caitlyn Meditz [53] and adapted from Desai et al [54]. This method

produces large area flakes of transition metal dichalcogenides (TMDC) thanks to the affinity

that chacolgen atoms have with gold [55,56]

The steps for the exfoliation process (Figure 2.19) [53].
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• Place heat resistant tape (Capton tape) on top of the bulk crystal to be exfoliated.

Apply pressure to remove any air bubbles.

• Figure 2.19 A: Evaporate a layer of gold around 100 nm to 150 nm of gold on top of

the crystal/tape stack.

• Figure 2.19 B: Place a small piece of thermal release tape on top of the places where

the gold is covering the bulk crystal.

• Figure 2.19 C: Peel the stack off the heat resistant tape leaving a stack of thermal

release tape/gold/TMDC.

• Figure 2.19 D: This new stack is placed on a target supporting substrate.

• Figure 2.19 E: The stack is heated to release the thermal release tape.

• Figure 2.19 F: Oxygen plasma etch to remove excess tape residue. We did not see

much improvement in cleanliness after this step.

• Figure 2.19 G: Etch away the gold in a potassium iodide and iodine wet solution. This

process takes about 4 minutes

• Figure 2.19 H: Rinse the final TMDC/target substrate in an acetone bath for 10 minutes

to remove any residues from the etching process.

Figure 2.20 shows some examples of 2D materials exfoliated with this technique. The

technique provided a good yield of large area flakes, but they had a lot of residue and the

number of layers was hard to control.

2.3.2 Flake Transfer Station

These exfoliated 2D materials exhibit various intrinsic physical and electronic properties.

Those properties are modified when the 2D flakes are stacked to create heterostuctures or

when the underlying substrate underneath the flake is changed. A flake transfer station
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Figure 2.20: Optical Images of MoS2 flakes exfoliated using the Gold Assisted Transfer
Process

can pick up and move exfoliated flakes to new locations to create these layered structures.

The Hollen lab has a manual transfer system from HQ Graphene. The parts of the transfer

system are labeled in Figure 2.21 [53]. The sample and stamp stages tilt, rotate, and move

in XYZ directions using micrometers. The micrometers control the exact location where the

picked-up flake is meant to be placed. An attached camera above the stages helps the user

visualize the whole flake transfer process. Substrates are held in place on the sample stage

using a built-in vacuum and the stage has a built-in heater that can raise the temperature

up to 200 ◦ C. 2

The main transfer method used in the Hollen lab is a polymer assisted transfer. The

steps for the procedure used in our lab were adapted from the literature by Page Waldo and

Caitlyn Meditz (Figure 2.22) [53].

The polymers used for this transfer are a thin polycarbonate (PC) film and a small

(around 0.5 cm by 0.5 cm) piece of polydimethysiloxane (PDMS). The PC film is made from

a PC solution that is 6% of polycarbonate pellets dissolved in chloroform. The PC solution

should be made in small batches that last roughly 6 months, after that time the PC solution

starts to dry up. The PDMS piece is cut from a larger film that is made by combining a

10:1 ratio of Sylgard silicone elastomer base and Sylgard silicone elastomer curing agent.

The steps to make the PC film are:

2Since the camera is not supported very well, at high temperatures, the camera shakes making it difficult
to visualize what is going on.
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Figure 2.21: Flake transfer station from HQ Graphene setup with labels. Adapted from
Meditz [53].

32



Figure 2.22: Schematic of the Polymer Flake Transfer Procedure. Adapted from Meditz [53].

• Clean two glass slides.

• Place a drop of the PC solution on one end of a glass slide.

• Press the drop using the second glass slide.

• Slide the glass slides apart quickly to leave a thin PC film coating both glass slides.

• Let the PC films dry for at least 15 minutes before use.

The flake transfer process starts by preparing the polymer stack.

• Place the PDMS square on one end of a clean glass slide.

• Cover half of a second glass with scotch tape then make a small window on the tape

that is slightly larger than the PDMS square.

• Peel the tape off the glass slide and place over a glass slide that has a PC film.

• Peel the tape off to pick up the PC film. The PC film should cover the small window

cut in the second step.
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• Place the PC film over the the glass slide with the PDMS aligning the small window

with PC over the top of the PDMS square.

• Use extra tape if need to make sure the stack does not move. Tape down the sides of

the scotch tape holding the PC film on to the glass slide. Make sure not to cover the

back of the glass slide where the polymer stack sits so light can pass through.

The polymer stack is then ready to be used for the flake transfer and can be placed on the

stamp stage. Following the steps in Figure 2.22, the polymer assisted transfer has been used

in the Hollen lab to create stacks of 2D materials like graphene on hexagonal boron nitride

and to move flakes to other supporting substrates. A common setback in this method is that

monolayer flakes of 2D materials were difficult to pick up. Placing another flake partially on

top of the monolayer helped pick up the stack, but this did not work all the time. I also ran

into an issue of only partially picking up larger flakes as well. After a flake is picked up by

the polymer stack it is fairly easy to place on top of a new surface.

The last step not described in Figure 2.22 is to rinse off the PC using a chloroform soak.

This has to be a delicate step because the flake can either get washed off or folded during

the rinse if not making proper contact with the new layer underneath.

2.3.3 Metal

Metal substrates like gold and copper crystals are commonly used surfaces in SPM exper-

iments. Some examples of a clean gold surface are seen in Figure 2.23. Many of these

metal surfaces present interesting physical phenomena that make them the perfect environ-

ment to act as supporting substrates to observe molecular self assembly [57], nanostructure

formation [58] and surface catalysis procedures [9].

With time, contaminants can accumulate on the surface of the metals and this can be

detrimental when it comes to imaging them with SPM. To remove the contaminants the

surface of the crystals is cleaned with a series of sputter and anneal cycles. Before starting

the sputter cycles, make sure to close off any valves to an ion pump. Ion pumps should not
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Figure 2.23: STM images of prepared gold surfaces after sputter and anneal cycles.

be operated at high pressures or exposed to high atomic number gases to avoid any damage

to the pump. An inert gas, commonly argon, is leaked into the chamber through a leak valve

to pressures of 5x10−5mbar. The argon gas is ionized by a voltage of around 0.6 keV to 1keV

typically produced by an ion gun that is positioned in front of the metal crystal. The ions

accelerated toward the crystal clear off any contaminants on the surface and can clear off

the top metal atoms.

The crystal is then annealed to temperatures around 550 ◦ C to 600 ◦ C to smooth out the

surface after the ion bombardment. The annealing process can also bring out impurities from

the bulk to rise to the surface. Multiple sputter/anneal cycles should be performed to ensure

a clean crystal surface. Controlled annealing creates steps and terraces on the surface of the

crystal. These areas are the perfect playground to deposit and grow molecules to observe

their molecular self-assembly [57] and to find adsorption and nucleation sites. Different

crystal cuts allow for different steps and surfaces to be produced, but also controlling the

temperature and time of the anneal can help control the number of steps and size of the

terraces. It is always important to make sure not to go near the melting point of the crystal.

2.3.4 Freeze-Pump-Thaw Cycles and Thiophene Dosing

The Freeze-Pump-Thaw Cycle is an effective method to degas solvents, solutions, and liquid

reagents. This technique is used in Chapter 3 to degas a thiophene solvent which we dosed
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into the vacuum chamber.

The Freeze-Pump-Thaw Cycle procedure:

• In a chemical fume hood, place a couple of ml of the solvent into a container that can

be sealed and attached to the gas manifold.

• Once attached, freeze the solvent using liquid nitrogen. Should take less than a minute.

• Open the valve to a roughing pump to pump out any impurities found in the line.

• Let the solvent thaw this releases more solvent vapors.

• After multiple iterations of these steps the line will be filled with a pure solvent vapor.

• Close the valve to the main liquid solvent.

After the Freeze-Pump-Thaw cycles we filled the gas manifold in the chamber with thio-

phene vapor. A leak valve was used to dose into the chamber directed by another line pointed

towards the SPM stage. The chamber was pressurized to 5E−5 torr.

2.3.5 Molecular Deposition Using Physical Vapor Deposition

Physical vapor deposition is an easy way to deposit molecules on a target surface. The

molecules or molecule mixture to be studied starts as a chemical powder. The powder is

placed in a holder that is heated inside the UHV chamber and degassed to remove water and

trapped gasses initially. After degassing, the sample is placed in the line of sight of a target

sample surface and heated again. As the holder is heated the powder starts to sublimate

and molecules are deposited on the target surface.

The implementation varies between setups, but the setup that I have seen work the best

is the one done by Dr. Zahl at Brookhaven National Lab. Dr Zahl places a few crumbs of

the chemical powder on a silicon wafer. The powder is sublimated or flashed off the surface

by heating the silicon wafer. After the deposition, the leftover crumbs can be seen visually

through a viewport giving you initial information on the amount of material deposited. Dr.
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Pohl at UNH had a similar setup but instead used an envelope made from a molybdenum

sheet to hold the powder and the sample was heated through a tungsten wire wrapped

around the envelope. Each source is calibrated to ensure a controlled deposition. The

molecular coverage needed for calibration can be determined by an STM or other surface

characterization techniques like auger electron spectroscopy.
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CHAPTER 3

Scanned probe microscopy studies of MoS2 catalysis on insulating substrates

3.1 Introduction

Refineries transform crude oil into petroleum products that we use daily through a series

of chemical and physical processes. One of the most important processes is sulfur removal

also known as hydrodesulfurization (HDS) reactions. These HDS reactions reduce the sulfur

concentrations of the initial crude oil and the final refined petroleum products. The initial

elimination of sulfur from crude oil protects noble metal catalysts that are easily poisoned by

sulfur. Refineries also use a final HDS process to make sure that their petroleum products

meet specific sulfur level requirements set by strict government regulations.

The combustion of these petroleum products containing sulfur produces harmful sulfur

oxide byproducts. High concentrations of sulfur oxides can harm plants and trees by deteri-

orating their leaves and decreasing their growth, can make it harder for humans to breathe,

and if mixed with other particles in the atmosphere can create a haze of particular matter

that if deposited can stain and damage materials. For these reasons, the EPA has been re-

ducing the allowed sulfur levels in fuels in the past decades and now they are around 10 to 15

ppm for gasoline and diesel fuels respectively. These HDS reactions also prevent palladium

and platinum catalyst from getting poisoned. This expands the lifetime and efficiency of

these catalysts.

Molybdenum disulfide (MoS2) is one of the most commonly used catalysts for HDS and

has been used for oil feedstocks since WWII [59]. The widely accepted model is that the

sulfur vacancies in MoS2 edge sites are involved in the HDS reactions, but this model was
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developed using spectroscopic techniques that do not provide information on the structure,

morphology, or active sites of the MoS2 catalysts. This information is crucial when developing

new and improved catalyst designs. Surface characterization techniques have provided more

information on the growth, structure and morphology of these edges [60], but still lack the

resolution to provide information about the active catalytic sites. In recent years scanning

probe microscopy (SPM) techniques have demonstrated that they can localize sulfur vacan-

cies and pinpoint where sulfur containing molecules interact with the MoS2 catalysts. [60]

However, all STM experiments of MoS2 catalysis have employed metal substrates, [61–

63] which are not industrially relevant catalyst supports. Most of the substrates in STM

experiments used have been Au(111) surfaces due to their inertness, its a typical substrate

used for nanoparticle growth and its a conductive sample needed for STM experiments [64].

Although the underlying gold substrates do not strongly interact with the MoS2, DFT studies

do show that the bonding strength of S atoms is slightly increased with the presence of

gold [60], leading us to question the role of the gold substrates.

Other studies on MoS2 have shown that strain, grain boundaries, and sulfur vacancies

play a role in catalysis reactions [65–71]. The strain caused by the underlying substrate and

at grain boundaries changes the electronic bandgap of the MoS2. Controlling the amount of

strain applied can help design a better catalyst and selecting a proper underlying substrate

can tune the amount of strain applied.

In this chapter I describe the work I did to investigate the roles of substrate, strain,

and lattice defects on the HDS reaction on two novel experimental systems using scanning

tunneling microscopy (STM) and non-contact atomic force microscopy (NC-AFM), both

atomic-scale probes. Improving HDS catalyst design will rely on our knowledge of the

catalyst on industrially relevant, insulating substrates that do not have an effect on the

catalytic sites.
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Figure 3.1: Hydrodesulfurization Reaction. R represents an alkyl, an alkane missing one
hydrogen.

3.2 Scientific Background

Hydrodesulfurization is the catalytic chemical process that is used to remove sulfur from

refined petroleum products. Removing the sulfur reduces the emission of sulfur dioxide when

these products are combusted. [72] The early removal of sulfur from oil feeds can also prevent

the poisoning of platinum and palladium catalysts down the process line. HDS is known as a

hydrogenolysis reaction meaning it is also a hydrogenation reaction. Hydrogenation reactions

occur when hydrogen reduces the double and triple bonds in hydrocarbons in the presence

of a catalyst. The hydrogenolysis reaction cleaves the C-S bond resulting in the formation

of C-H and H-S chemical bonds (Figure 3.1).

The most commonly used catalyst for this reaction is MoS2 enhanced with either cobalt

or nickel supported on alumina with high surface areas. [59]. Earlier models of these catalysts

were developed by spectroscopic techniques that did not provide structural information about

the catalyst or any information about the preferred adsorption sites of sulfur-containing

molecules to react with. The catalytic activity of this process remains an active area of

investigation and can provide insight on similar reactions that occur for hydrodenitrogenation

and hydrodeoxygenation processes [60].

To understand HDS reactions and related catalysts there has been an emphasis on in situ

characterization experiments. There are conflicting results between industrial and laboratory

setting studies on how this reaction works [59]. The in situ characterization of HDS is limited

to remote probes like spectroscopy. Chianelli’s group at The University of Texas at El Paso

studied industrial catalyst by synchrotron x-ray and high-resolution transmission electron
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microscopy (TEM). These studies determined the catalyst structure in the active phase [73].

The same group also found evidence that linkages between MoS2 and the alumina supports

destroy edge states [74]. X-ray photoelectron spectroscopy (XPS) compared a model catalyst

to an industrial catalyst and found that they were similar [75]. Another approach used STM

to correlate the concentration of the model catalyst to the activity of an electrocatalytic cell

made using the imaged sample [63]. Based on these studies, there needs to be more emphasis

on having agreeing experiments in both industrial and laboratory settings.

The structural models of this HDS are consistent: the active phase of this HDS reaction

is a single layer of MoS2 particles that interact with the alumina substrate underneath [60].

Investigating the interactions between the two-dimensional (2D) material catalysts and their

surroundings in a controlled environment is needed to understand the differences between

industry and laboratory findings.

SPM techniques have been to study the structure of these catalysts under controlled UHV

environments. The first of these studies was done by Besenbacher, who performed an STM

study of the structures of in situ grown nanoislands of MoS2 and CoMoS on top of a Au(111)

surface 3.2 [76]. Other surface characterization techniques have provided information on the

growth and morphology of these catalysts on different substrates like carbon [50, 51] and

alumina [60]

The advantage of using SPM techniques is that single defects can be imaged and SPM

techniques can localize where molecules are interacting with the catalysts. Besenbacher’s

group studied the interaction of thiophene and these MoS2 nanoislands. Thiophene was

used because it is the simplest sulfur containing compound found in crude oil. The group

performed STM experiments on the system before and after the thiophene dose (Figure 3.3

A) [8]. These STM experiments revealed one-dimensional edge states, or brim states, that

demonstrated stronger binding and partial decomposition of the thiophene molecule (Figure

3.3 C) [8]. Their initial explanation was that sulfur vacancies play little role in the HDS

reaction and that these brim states provide the mechanism for catalysis similar to noble
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Figure 3.2: (a) Atom-resolved STM image of a triangular MoS2 nanocrystal on Au(111)
together with a ball model of the proposed edge structure reflecting Mo edge with a 100%
S coverage (S: yellow, Mo: blue). b) Atom-resolved STM image of a truncated triangular
Co-promoted (so-called CoMoS) nanoparticle. The interior part is MoS2, but favorable
substitution of Co is concluded to be at the S edge. (Co: red). Adapted from Grønborg et
al [76]

metal catalyst. The discovery of these brim states led to the development of improved HDS

catalyst named BRIM created by Besenbacher’s group and Haldor Topsoe A/S.

STM experiments in different gas environments show the structural changes of the MoS2

catalysts on Au(111) under HDS reactions [76,77]. Figure 3.4 shows how the structure of the

MoS2 is sulfided and sulfo reduced when exposed to hydrogen disulfide or hydrogen gas 3.4.

Under ambient conditions this still holds true and Mom et al show that under HDS reaction

conditions the structure of the edges changes to accomodate adsorbtion of the molecules

that take part of the HDS reaction. Figure 3.5 shows the structure of the MoS2 edges under

various gas environments. These structural changes depend on the temperature, pressure,

and original structure of the catalyst [77].

Besenbacher’s proposed catalytic mechanism relies on the formation of one-dimensional

edge states [8]. Supports and catalysts have been shown to have strong interactions between

them. According to DFT calculations by Bollinger these edge states are intrinsic to the

MoS2 and the substrate underneath has little to no effect on the electronic structure of the
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Figure 3.3: Thiophene is adsorbed on to a triangular MoS2 nanocluster pre-exposed to
atomic hydrogen. (A) Atom-resolved STM image (It =0.50 nA, Vt = 331 mV) showing
species adsorbed at sites on the metallic edge states. The image dimensions are 50Å × 54Å.
A bean-like structure is seen in a position adjacent to the bright brim. (B) STM line scans
along the nearby edge protrusions of the clean edge (black) and an edge with a molecule
adsorbed on the edge state (red). A decrease of 0.4Å of the protrusion located in front of
the bean-like structure is observed, together with an increase of 0.2Å at the two neighboring
protrusions. The associated with changes in the LDOS due to molecule adsorption. (C)
Cut-out from the STM image in (A) illustrating the features associated with each molecule.
(D) Simulated STM image from the DFT calculations of the structure, with individual
molecules adsorbed in a repeated geometry along the edge. The hydrogenated thiophene
species, C4H7S (cis-but-2-ene-thiolate), coordinated to the edge state primarily through the
terminal S atom is seen to reproduce the details of the experimental STM image. Adapted
from Lauritsen et al.[8]
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Figure 3.4: Reshaping effect of MoS2 and CoMoS nanoparticles on Au(111) imaged with
STM. a) MoS2 nanoparticles in sulfiding conditions (s-MoS2) and in sulfo-reductive condi-
tions (r-MoS2). Insert: atom-resolved STM image of a r-MoS2 nanoparticle. b) Top view
ball model showing an example of an r-MoS2 nanoparticle. Ball model is shown without
edge vacancies on Mo edges. c) CoMoS nanoparticles in sulfiding conditions (s-CoMoS) and
in sulfo-reductive conditions (r-CoMoS). Insert: atom-resolved STM image of a r-CoMoS
nanoparticle. d) Ball model of a r-CoMoS nanoparticle. Edges are shown without S vacan-
cies and H adsorbates. Scale bars are 4 nm in large scale images, and 1 nm in the inserts,
respectively. Color code: S: Yellow, Mo: blue, Co: red. Adapted from Grønborg et al [76]

Figure 3.5: MoS2 edge structure in various gas environments. a), b), and c) depict the
averaged edge unit cell obtained from the original images seen in d), e), and f). Blue: Mo,
yellow: S. Adapted from Mom et al [77]
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Figure 3.6: Steam vapor etching of Mo2 flakes in a)1D, b)2D, and c)3D. Adapted from Wang
et al [82]

MoS2. [78] Other DFT calculations by Gronborg have shown that the substrate can affect

the bonding of the MoS2 flakes on the substrate. [76]

Looking more in detail at the electronic structure of MoS2 DFT calculations by Davelou

found that these metallic edge states exist on MoS2 nanoribbons and these states change

as the width of the ribbons increase. Hai studied these MoS2 nanoribbons with STM and

found that the location and binding to the underlying gold surface changed the electronic

structure [65,79]. These studies show that any electronic interaction of the catalyst with the

substrate will play an important role in the mechanism.

Previous studies on the impact of substrates for MoS2 catalysts found that MoS2 interacts

strongly with alumina substrates and forms Mo-O-Al linkages at MoS2 edges, but these links

are not formed on carbon or silica substrates making them easier to sulfide [74]. Controlling

the edge structures of the MoS2 catalysts is important when tuning the material for optimal

chemical activity [80,81]. New edges can be created by etching away the MoS2 to create new

catalytic sites that improve the electrocatalytic ability of MoS2 catalysts (Figure 3.6) [82].

There has also been an interest in investigating how the catalytic activity of MoS2 is

improved by adding strain to the system [65–71]. It has been shown that the catalytic

activity of MoS2 for hydrogen evolution increases by a factor of three when the basal plane

is activated by applying strain and combining that with the generation of S vacancies on

nanopatterned Au substrates. [70] Even small factors of strain of about 0.02% are enough to

improve the hydrogen evolution activity. [68] Other experimental results found that there is
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Figure 3.7: Schematic of the originally proposed experiment

limited role played by S vacancies, but there needs to be more work on how vacancies and

strain affect the catalytic activity.

Recent progress in NC-AFM techniques have produced amazing atomic-scale images of

single molecules. [12, 83–85] NC-AFM has the potential to study these catalytic systems on

insulators that are industrially relevant in the future but also has not yet been developed. [86]

Here I show the progress I made in studying HDS reactions using STM and NC-AFM on an

industrially relevant substrate.

3.3 Experimental Design

For the original experiment, we developed two novel experimental systems shown in Figure

3.7: Flakes of MoS2 on top of a silicon dioxide (SiO2)/silicon (Si) substrate and MoS2 on

top of anodized alumina oxide (AAO). The flat SiO2 substrate is a common support for

exfoliating 2D materials like MoS2. The AAO support was chosen so the MoS2 can drape

over the surface that is filled with nanoscale hills, valleys, and holes. On the AAO we see

regions of strained and unsupported MoS2.

The experimental plan to study the HDS reaction on these more industrially relevant

supports was:
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• Exfoliate flakes of MoS2 on top of the support (SiO2 or AAO).

• Image flakes using NC-AFM.

• Dose thiophene molecules into the chamber.

• Image flakes once more looking for thiophene binding sites.

For the HDS reaction, we chose to study thiophene, a simple and common sulfur-

containing hydrocarbon found in crude oil. This study would also compare to the work

done by Lauritsen et al [9]. Thiophene was dosed through a homemade Schlenk line inte-

grated into our UHV system (LEWIS) after multiple Freeze-Pump-Thaw cycles described in

Chapter 2. The Freeze-Pump-Thaw clear make sure we are dosing just pure thiophene into

the chamber. The thiophene used for this experiment was obtained from Sigma Aldritch

(≥99%).

Understanding the role that insulating supports have on catalysts at an atomic scale has

been difficult since electrical contact is needed to do STM. The small semiconductor flakes

can be studied by STM, but making contact with them requires lithographic patterning

techniques that introduce significant contamination. Recent advances in NC-AFM make it

a great tool to replace STM to be able to perform these experiments.

Our goal was to use NC-AFM to image the flakes of MoS2 before and after the thiophene

dose. I wanted to explore the active catalytic sites of the MoS2 where the thiophene would

bind to. The results obtained by the work done by Besenbacher’s group at Aarhus University

showed that the bonded thiophene molecules appeared caused a topographical change in the

original image by 20pm to 40pm that are seen in Figure 3.3 B.

Commercial NC-AFM systems like the SPM 150 Aarhus with KolibriSensor system have

atomically resolved the Si(111)-(7x7) and the herrringbone reconstruction on Au(111). Fig-

ure 3.8 and Figure 3.9 show the capabilities of these commercial systems to resolve features

which have corrugations on the order of 15 to 100 pm [87, 88]. The main assumption of
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Figure 3.8: A corrugation up to 120 pm is typically observed. Adapted from SPeCS uploaded
notes on their SPM 150 Aarhus with KolibriSensor system.[87]

Figure 3.9: (a) High resolution NC-AFM image showing the atomic details of the herringbone
reconstruction. (b) Fast fourier transformation of image (a) revealing the hexagonal ordering
of the Au(111) surface. The atomic corrugation is about 15 pm. Adapted from SPECS
uploaded notes on their SPM 150 Aarhus with KolibriSensor system.[88]
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Figure 3.10: qPlus probes from RHK.

Figure 3.11: A) NC-AFM image of a HOPG step, B) STM image of gold on mica, C) NC-
AFM of AAO.

our experiment was that the RHK system in the Hollen Lab would be able to resolve these

features on this scale as well.

The qPlus probes from RHK (Figure 3.10) use cut Pt/Ir tips attached to a tuning fork.

To check the resolution of the RHK system’s qPlus probes in both STM and NC-AFM we

tested multiple surfaces that can be seen in Figure 3.11including NC-AFM of HOPG steps,

STM of gold atoms on mica, and NC-AFM of the AAO surface.

3.4 Results and Discussion

3.4.1 Creating Experimental Systems

MoS2 bulk crystals were obtained from HQ Graphene and Graphenea. The flake samples

were prepared by mechanically exfoliating bulk MoS2 onto the insulators. The flakes were

identified using an optical microscope. Figure 3.12 shows the bulk MoS2 crystal and some
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Figure 3.12: A) Bulk MoS2 crystal 15mm across, B,C) Exfoliated flakes of MoS2, D) Trans-
ferred Flakes on AAO

optical images of flakes on Si before being placed into the SPM.

Exfoliating on SiO2 produced a large number of MoS2 flakes. Although it was difficult

to produce a high yield of large area monolayer MoS2 using the mechanical exfoliation tech-

niques. We explored multiple exfoliation techniques like gold assisted exfoliation1 to produce

larger MoS2 flakes. Exfoliating on AAO did not have a large yield of flakes. Most times the

exfoliation process just left depressions on the AAO surface with the outline of the flakes.

Because it was difficult to exfoliate directly on the AAO, we transferred the flakes exfoliated

on the SiO2 onto the AAO, as seen in Figure 3.12 D, using a polymer transfer method2.

1See Methods Section 2.2.1
2See Methods Section 2.2.2
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Figure 3.13: View from the optical camera on the MoS2 on SiO2 system

3.4.2 NC-AFM imaging MoS2 on SiO2

We started by imaging flakes of MoS2 on SiO2 in the SPM. The SiO2 with flakes was placed

on a sample holder and then into the SPM base. Figure 3.13 shows our view of the SiO2

surface. The tip from one of our qPlus sensors is seen approaching in this image. The flakes

we identified before with the optical microscope similar to the ones seen in Figure 3.12 could

not be seen optically using our camera looking into the SPM stage.

Even though we could not locate the same flakes that we saw in the optical images we

still attempted to image using NC-AFM. The feedback loop did not keep the frequency shift

setpoint o while approaching on the SiO2 surface, so we had to try to approach on the surface

multiple times before we could image. While imaging at 9K we are limited to a small area

of 1.5 x 1.5 micron2, so it was difficult to know if we were imaging on the flakes or on the

SiO2 substrate. Eventually we managed to find the flakes and collect NC-AFM images seen

in Figure 3.14. Since the flakes were in the range of 10’s of micrometers lateral size and
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Figure 3.14: NC-AFM images of the MoS2 flakes on SiO2 at 9K

the distance between the flakes was much larger than that, it was time-consuming finding a

single flake with the scan area available.

The flakes imaged were thicker than the range we had available in the Z direction at

9k. At some points during imaging the probe drifted away from the surface and we lost the

feedback loop, so we had to reapproach. Upon reapproaching onto the surface we did not

find the same areas that we imaged before.

To help find the location and make the imaging of the flakes more efficient and repro-

ducible in the UHV chamber a gold grid was evaporated on the sample using a thermal

evaporator. A TEM shadow mask covered the flake, then we evaporated a sticking layer of

chromium and then a final layer of gold on top of the surface to create the grid.

Using optical images seen in Figure 3.15 A and 3.15 B we can pinpoint where the flake

is and then using the view from the camera looking into the SPM stage seen in Figure 3.15

C we approached closer to the location of the target flake.

In a complimentary approach with the help of the Ishigami Group at the University of

Central Florida, I designed an electron beam (e-beam) lithography pattern that makes the
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Figure 3.15: A) Optical image of the gold grid used to find the flakes. B) Zoomed-in image
of the red dot in A, where the flake of interest is located. C) View from the optical camera
looking into the SPM chamber.

Figure 3.16: A) Optical image of the e-Beam arrow pattern around the flakes of MoS2. B)
Tabletop AFM image of the e-Beam arrow pattern around the flakes of MoS2.

search for the flakes much easier. This e-beam pattern seen in Figure 3.16, has an array of

arrows that get smaller as you approach the flake. The arrows in the grid were meant to

provide recognizable features in the SPM images that could be used to find the location of

the flake.

While the grids did help find the flakes faster, the imaging conditions were still very

unstable, the setpoint was not kept by the feedback loop and we had to reapproach multiple

times. It was hard to localize the flake after some scans. At one point we took the image

seen in Figure 3.17 B. This NC-AFM image is the same location where the flake seen in
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Figure 3.17: A) Optical images of the MoS2 flake surrounded by gold grid. B) NC-AFM
image of the area where the flake in A should be. C) Optical image of the same area in A
and B after the NC-AFM imaging showing the flake is no longer there.

Figure 3.17 A should be, but we saw a different feature than what we expected. We decided

to take out the sample and look at the area once more using an optical microscope. The

optical image Figure 3.17 C showed that the flake was no longer there and that the areas

of gold around were also being destroyed. It is clear the tip was making contact with the

surface during the approach or while scanning. This also explains why it was difficult to

image the flakes with and without the grid.

Despite these issues, multiple flakes were imaged during this set of experiments thanks

to the help of the gold grids and by imaging at higher temperatures. Higher temperatures

allowed us to have a larger scan window and made it easier to find the flakes. Figure 3.18 is

an example of the NC-AFM images collected at 115K.

From the scale bars we see that there are high features on the surface of the sample.

These high features are likely residue from the gold evaporation process. Figure 3.19 shows

a line scan across one of the bright features showing it reached 100 nm in height. From

the collected images none of them had a resolution compared to the 15 to 100 pm range we

needed to collect the information of where the thiophene molecules would bind.

To see where the active catalytic sites are on the MoS2 we need to be able to resolve

where the thiophene will bind on the MoS2. We tried dosing on the same sample seen in
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Figure 3.18: NC-AFM image of a MoS2 flake surrounded by a gold grid taken at 112K.

Figure 3.19: Line scan of the contaminants on the surface seen on the right.
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Figure 3.20: NC-AFM images of MoS2 flakes after a thiophene dose. A) Taken at 85K. B)
Taken at 293K.

Figure 3.18, but similar to before we could not find the same flake there, so we moved to a

new area. Figure 3.20 A shows a NC-AFM image after a thiophene dose. It is impossible to

determine if the contaminants on the surface were before or after the dose, but they seems

similar to the contaminants seen in other images from the gold evaporation.

Since we could not tell if we had thiophene on the surface of the MoS2 we increased the

temperature to attempt to desorp the thiophene off the surface of MoS2. After imaging once

more we were again not able to see the same flake as before, likely we were still damaging

the flakes or moving some of the contaminants while imaging. Figure 3.20 B show the

NC-AFM imaging of the flakes after warming to room temperature. From these images it

was inconclusive to say where the thiophene bind to the surface, since we could not get a

reproducible before and after image to compare the surface of the MoS2.

3.4.3 MoS2 on AAO

The transferred flakes of MoS2 draped over the AAO as we expected they would to create

regions where the flake was strained. From optical images we could not tell that this was

happening (Figure 3.21, but by characterizing the sample with a regular tabletop AFM we
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Figure 3.21: A) Optical image of an MoS2 flake on top of AAO. B) Tabletop AFM image of
an MoS2 flake on top of AAO.

were able to see that the pattern of the AAO was still visible in the areas covered by the

MoS2, which can be seen in Figure 3.21 B. An undergrad in the Hollen Lab, Tan Dao did a

lot of the work to help create and characterize these samples.

Dao used an AFM to characterize the MoS2 flake on AAO and measured the corrugation

of the flake seen in Figure 3.22. Using this information Dao was able to calculate the tensile

strain (ϵ) felt by the MoS2 by modeling the hills of the AAO as a sphere with a radius of 50

nm and the MoS2 stretches on top of that sphere. The strain obtained is the average over

the top hemisphere described by the equation:

ϵ =

√
2RS√
RS + z

− 1 (3.1)

Where ϵ is the tensile strain, RS is the 50 nm radius, and z is the change is the height

of the corrugations seen in the AFM images. Using this Dao found a 0.3% tensile strain

in the areas where the MoS2 makes contact with the AAO. This is higher than the 0.02%

strain calculated by Li et al that has an impact on the catalytic effect of MoS2 during the

hydrogen evolution reaction.

The goal was to image these samples with the NC-AFM, but with the difficulties ex-

perienced while using the NC-AFM to image the MoS2 on SiO2 samples, we decided that

we would get similar inconclusive results on this sample and decided to not continue the
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Figure 3.22: AFM image of MoS2 on AAO. The line profile shows the corrugation of the
bare AAO and the area covered by the MoS2. Taken by Undergrad Tan Dao.

research project.

3.5 Conclusion

The 2D materials used as catalysts in hydrotreatment reactions of crude oil have been mostly

developed by large averaging spectroscopic techniques. To fully understand the mechanisms

of the catalysis reactions it is important to study them in a controlled environment and view

the reactants, intermediates, and products at a molecular and atomic level. STM studies

have shown promising results to explain the mechanism of why these 2D materials like MoS2

make such good catalysts, but they are all studied on metal surfaces that are not industrially

relevant substrate.

Here I presented my work done to study the catalytic sites of MoS2 on industrially

relevant substrates: SiO2 and AAO. For these studies, we used NC-AFM, but found that

with our current setup at the Hollen Lab, we were limited by our resolution. To find the

active catalytic sites we wanted to image the MoS2 on these insulators before and after a

thiophene dose to see where the thiophene bound to the surface which would give us insight

into where these hydrodesulfurization reactions take place.

To improve the resolution of the NC-AFM we need to be able to functionalize the tip of
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our qPlus probes with a CO molecule. This CO functionalization is done on metal surfaces

or on a few layers of NaCL, but there does not seem to be a method developed to pick these

up on an insulating surface. To be able to study these molecules on an insulator we need to

develop a way to functionalize the probe on these insulating surfaces.

We also experienced multiple crashes while approaching the probe onto the insulating

surfaces. This destroyed our samples and also ruined the quality of our tips. A way to tackle

this problem could be to attempt to do a controlled approach by measuring the forces at

various steps during the approach to create a force curve and then using that as a reference for

future approaches instead of relying on the auto approach function from the RHK software.

The last limitation seemed to be the cleanliness of the samples. The exfoliation process

produced nice flat flakes, but they were hard to find without a pattern on the surface to map

out the location of the flakes. Using a pre-patterned substrate could be a cleaner approach

instead of the gold grid we evaporated onto the surface. A clean and flat sample is really

important while doing NC-AFM, this is why most groups only work on metals, since a CO

functionalized tip can be lost easily when there are a lot of contaminants on the surface.

In conclusion, I took the first NC-AFM images of MoS2 flakes on an industrially relevant

insulating material. Limited by the resolution of our system, I could not image the active

catalytic sites of MoS2. Before NC-AFM can be used reliably a method has to be developed

to functionalize the qPlus probes with a CO molecule or other molecules on insulating

substrates, develop a more gentle approach method to reduce crashes, and improve the

overall cleanliness of the samples.
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CHAPTER 4

Automating Scanning Probe Microscopy With Machine Learning Algorithms

4.1 Introduction

Since the invention of the first scanning tunneling microscope at IBM Zurich, scanning probe

microscopy (SPM) has revolutionized nanoscience. SPM techniques include a wide range of

probes that can be used to measure the physical properties of a material like electronic,

chemical, and magnetic signatures. The major drawback of these SPM techniques is that

they are very time intensive. In order to collect any valuable data for scientific analysis,

imaging parameters have to be optimized. Even for expert SPM users optimizing these

parameters requires multiple iterations of tip prep and time spent searching for an optimal

imaging site.

With recent advances in machine learning an artificial intelligence (AI) can be trained

to perform tedious image optimization steps in SPM like finding features of interest and

performing tip tuning procedures [89, 90]. The AI can be taught to recognize patterns

commonly seen in SPM images to perform experiments autonomously [91] and to help with

data analysis [92, 93]. These elements will help to build a fully automated SPM, but a

framework is needed to integrate all these individual tasks into a single machine.

In this chapter, I explain my work to create a modular framework that is to be the base for

a fully automated SPM AI controller. Utilizing open-source machine learning platforms and

computer vision tools I created machine learning models to perform SPM tasks. My work

led to the creation of Auto-HR-AFM, an AI script that autonomously controls the SPM to

collect HR-AFM images of hydrocarbons. Future additions can be added to Auto-HR-AFM
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to make it an all-around autonomous SPM.

4.2 Scientific Background

While scanning across a surface an SPM probe measures a physical property of the surface.

An image is constructed using the intensity of the measured signal as a function of the

position. This technique has provided stunning images through the years and has given

a visual representation of our atomic world. SPM data showcased in presentations and

papers is a small fraction of the data actually collected. To produce good data a user has to

consistently monitor the state of the probe and imaging conditions.

A user has to select areas to image and has to assess the quality of the data based on

previous experience. If the user deems the quality of the images to be poor they have to

perform either tip-tuning actions to improve the resolution or they have to find a new area

to scan. These conditioning actions are performed multiple times until the user is satisfied

with the results. This can be a very time-consuming process and takes away from the limited

time some experiments have.

To improve imaging efficiency, we turn to automation. Most of the SPM actions are

controlled using computer software and people have started creating automation scripts to

perform these. [94] Still these actions depend on the user deciding when to do a specific task.

With the advancement of AI, we can train a computer to assess current imaging conditions

and make a decision on what the next best action to take is.

Machine learning is growing at a fast pace and we see it every day with the advancement of

self-driving cars, better ways our emails detect spam mail, and YouTube algorithms deciding

what new videos to recommend to us. An AI controls these actions, they are trained to learn

from visuals around them and to learn from the data we give them. Similar tools can be

used to automate SPM as well.

A good example of AI applied to SPM, is the work done by Krull et al in the development

of the DeepSPM, an AI framework that is meant for SPM automation [89]. DeepSPM
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Figure 4.1: Machine learning architecture for DeepSPM and Map of automatic navigation.
Adapted from Krull et al [89].

automates the navigation of the SPM probe and assesses the quality of the probe and imaging

conditions. If DeepSPM decides the surface is not ideal, then it moves on to the next area

to image. After multiple bad image regions, the AI then decides to tune the probe in a

previously deemed good area.

The framework of DeepSPM can be seen in Figure 4.1. The two main AI components

in DeepSPM are the image classification models that are used to assess the imaging quality

(Blue box in Figure 4.1) and another reinforced learning model to assess the quality of the

probe (Orange box in Figure 4.1).

The model to assess the quality of the probe is similar to Auto-CO-AFM created by

Aldritt et al to recognize if an AFM tip is functionalized. Auto-CO-AFM uses an image

classification script to determine if the probe is functionalized or not with a CO molecule [90].

Figure 4.2 shows an STM map of where the CO molecules are detected on a Cu(111) surface,

Auto-CO-AFM then determines if the images are from a bad or good CO functionalized
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Figure 4.2: STM map of CO molecules on Cu(111) and a collection of NC-AFM images of
CO that have good or bad CO functionalization. Adapted from Aldritt et al [93].

tip. Some examples of good and bad CO functionalized tips are seen in Figure 4.2. CO

functionalization increases the sensitivity of AFM probes. The increased sensitivity allows

AFM probes to collect high-resolution images. Auto-CO-AFM automates the assessment of

the probe quality and even automates the task of CO functionalization.

Wang et al developed another AI tool to check the quality of their STM probe by as-

sessing spectroscopy data on a Au(111) sample [95]. The AI was trained to recognize dI/dV

spectrums of clean Au(111) surfaces. When their tip needs to be tuned they utilize their

AI tool to find a clean area on the Au(111) surface. The AI then performs a tip-tuning

procedure and then moves to a new clean area to check the quality of the probe by collecting

and assessing a dI/dV spectrum. The process is repeated until the AI determines that the

probe is optimized.

These machine learning automated SPM tasks focus on assessing the quality of the probe

and surface. The AI replaces a user in looking over the data and determines what action

to take immediately. The setback of these SPM automation techniques is that they are all

trained on specific datasets and in order to generalize them to any SPM tasks the models have

to be trained once more to include features specific to a new surface or whatever specific
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techniques, to recognize and to teach them what actions they can take. A more general

framework is needed that can combine all of these. The fast-paced growth of machine

learning models also means that the models require constant development to keep them up

to date.

4.3 Computing Setup and Methods

There are multiple open-sourced machine learning framework packages that are toolboxes

designed to create machine learning algorithms. The most common ones are Tensorflow

(Combined with Keras) and PyTorch. There is a debate on which one of the two is better,

but mostly it is a user preference. The two frameworks are not needed to create a machine

learning model, but they both have the tools necessary to speed up the model design and

tools to test and check model performance. Using Tensorflow or PyTorch allows developers

to start a whole machine learning project from scratch with tools at hand to build on the

base package.

Even though it is possible to run and develop machine learning codes on a CPU, it is

recommended to switch over to a modern NVIDIA GPU, especially when working on projects

that require imaging processing. The task of training models requires a significant amount

of computational power and the multiple cores in a GPU are designed to perform parallel

processing computations that expedite computational jobs by a factor of 5 to 10 compared

to just using a CPU.

A good starting point for those who want to get into machine learning is to use online

host networks that provide GPU run times like Google Collaboratory (Colab). Colab is

great for small-sized dataset projects that do not require a lot computational power. Diving

deeper into the field, and as the size of a machine learning project increases it gets harder

to manage everything on host networks like Colab. For larger projects, the recommendation

is to use either a large cloud service or to use a local GPU.

Cloud services are offered by most of the major tech companies and have become a
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profitable avenue for host startup companies. These services provide modern GPUs that can

be accessed online and can provide cloud storage for data freeing up local drives. The cost

of these cloud services scales with the number of resources used, but on average the most

commonly used GPUs can be rented for $1 to $3 dollars per hour. This adds up over time

but is generally lower than the cost of purchasing a local GPU.

Many research institutes also have high performance computer clusters available for re-

searchers. These clusters are best suited for large computational problems that can be

divided into multiple tasks. They are used for tasks that require large amounts of memory,

storage, or runtime. If a machine learning project has a large workload, these computer

clusters would be a perfect place for students and researchers to carry out their projects.

For the work done in this chapter, the size of the dataset and the workload for the machine

learning projects was minimal compared to the size of most large collaborations that need a

cloud server or computer cluster. All the work was done on an NVIDIA GEForce RTK 3080

GPU, running all the scripts on a Jupyter notebook.

Jupyter notebooks are widely used in the data science and machine learning communities.

Most tutorials and machine learning classes offer Jupyter notebook files to follow along with.

The notebooks are files that are edited in a browser window. Python code can be executed

and annotated in notebooks. Longer code files can be broken down into components and the

annotations can help explain what each part of the code does. Each component of the code

can be run individually, which is useful when it comes to finding bugs in your code. This

is a tool I recommend using while coding and learning, but the python scripts created for

machine learning can be run on a terminal or other environments like PyCharm.

A good place to store coding projects and share them with others is Github. Software

projects can be tracked on Github, which makes the tool especially useful when collaborating

with multiple people. A record is kept by Github on all the changes done by collaborators.

Most machine learning projects are kept in a repository uploaded to Github as well, so you

can find projects related to your own and work from there. Many tutorials are also kept on
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Github with all the required documentation needed to understand the codes fully.

The initial work done on this project was to select a proper setup and to choose what

machine learning model frameworks would be the most useful to automate SPM tasks.

Coming from an SPM background, having minimal coding experience, and knowing little to

nothing about machine learning meant that I had to explore multiple options to teach myself

machine learning. The most helpful tools for me were books and online video tutorials. A

couple books worth mentioning are Chollet’s Deep Learning with Python [96] and Geron’s

Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow [97]. Sergio Canu creator

of Pysource and Nicholas Renotte offer very useful video tutorials on YouTube and blogs on

machine learning projects as well. These tools helped me understand that the first thing to

develop a machine learning model is to define the task that we want the model to perform.

With a task in mind, we can start to collect and process data to train a model. With the

processed dataset we create a machine learning model, starting from a base model provided

by either Tensorflow or PyTorch. After multiple iterations of testing and optimizing we have

a finished model.

4.4 Project Definition and Results

The original goal for this project was to build upon existing models to create a more generic

and customizable framework that can lead to a fully autonomous SPM in the future. Previous

SPM automation work seemed to cover the basic tasks of navigation and tip tuning, but they

were either outdated codes or needed to be retrained to include a larger dataset.

The data I used to train my machine learning model was a collection of high-resolution

NC-AFM (HR-AFM) images, mostly of hydrocarbons, provided by the low-temperature

dual STM/NC-AFM system operated by Dr. Percy Zahl at Brookhaven National Lab. This

system is used to collect STM and HR-AFM images of organic molecules on top of metal

surfaces. We based the tasks for our machine learning model project on automating the data

collection for these experimental systems. Implementing these machine learning automation
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tools at national user facilities makes these more efficient for visiting scientist.

Here I present the ideas and models we developed during the course of the project leading

to the creation of Auto-HR-AFM [?], our AI framework that is the initial tool to build a

fully automated SPM.

4.4.1 Computer vision feature detection

A major task in SPM experiments is finding regions of interest to probe. Most features in

SPM images are simple geometric shapes. Vacancies and adatoms look like tiny circles in

the imaging, steps have very defined sharp lines and molecules are mostly just blobs on the

surface in STM images. Computer vision tools are being adopted for data processing and

data analysis to find these features on the surface.

Edge detection scripts can be used to find features on the surface. These edge detectors

apply filters on the images to pinpoint exactly where edges of the regions of interest are.

The edges can be contoured and then overlapped over the original image to help the user

locate the features. some examples of this are from Gudinas [98], who developed a tool

to count defects in black phosphorus and Hellerstedt [99] created a code to find molecules

on surfaces. When it comes to more complicated environments with multiple features with

similar shapes these tools can get confused, and mislabeling can occur. Figure 4.3 shows

an edge detector tool I developed to find petroleum molecules on a copper surface with

different user-set thresholds. High thresholds found little to no molecules (Figure 4.3 A).

Low threshold mislabeled areas, especially around step edges (Figure 4.3 B).

4.4.2 Image Classification with Quam AFM

To teach the AI what a good HR-AFM image looks like we required a labeled dataset of

images. One of our original ideas was to have the AI recognize different heights in the HR-

AFM image and then have the AI adjust the probe to collect a more optimal image. In our

first attempt, we considered this an image classification problem.
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Figure 4.3: Edge detector script used to find molecules on a Cu(111) surface. The threshold
conditions are changed for each image.

The idea is similar to having a neural network distinguish between a cat or a dog: we

have the AI assess the HR-AFM image and label the different regions of the molecule to

specific height regions. For this to work we needed to collect and label HR-AFM images of

molecules with different heights. We were going to use old experimental data, but found a

dataset of simulated AFM images called Quam AFM from the Autonomous University of

Madrid [45]. Not only did this dataset resemble actual AFM images, the images were also

already separated into ten different height folders that we used as labels. Figure 4.4 shows

some examples of the data provided by Quam AFM. The first column is a ball and stick

model of the molecules and the other columns show the simulated molecules at five different

probe heights ranging from 2.9 angstroms to 3.7 angstroms.

Although the data was already labeled by height, we ran into issues when training the

classification model. The model took in input AFM images and their respective heights as

features to recognize. Ideally I wanted the model to recognize the aromatic rings in the

molecules and base the decision of how close based on those, but the model was looking over

the color contrast of each input image instead and basing the height off of that. Special

difficulties arose when a molecule was not completely planar. This meant that the parts of

the image had different contrast, the AI misunderstood this and labeled the molecule with

an incorrect height.

I believe that using this dataset is still beneficial to train an in depth machine learning

model, but the way that the data is labeled has to be modified in order to use it as a good
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Figure 4.4: Collection of simulated NC-AFM images of hydrocarbon containing molecules
used as a first training data set. The different heights were used as labels for 10 different
heights. Adapted from Carracedo-Cosme et al [45].

assessment for the height of the probe above the molecule.

4.4.3 Instance Segmentation Using Detectron 2

Since the classification system using neural networks and Quam AFM labeled data did not

produce the results we expected, we moved on to a different approach. While looking for

new way to process and find features in images I learned about Detectron 2. Detectron 2 is

an instance segmentation model created from the group at Facebook AI [100].

Instance segmentation models take an input image and find features of interest in the

image. The models create an overlapping image with either bounding boxes or contour

masks around the feature of interest and they label the item accordingly. These models are

being used to automatically detect cancer cells [101] saving patients time to get results and

used commonly in the development of self-driving cars to recognize using the car’s cameras

where objects near the car are while driving.

I started testing Detectron2 to train it to recognize a single class object: The aromatic
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rings that are the building blocks of these molecules. I started manually labeling the aromatic

rings in both simulated and experimental data and worked with a Detectron2 base model.

These base models are pre-trained on datasets from Common Objects in Context (COCO)

[102] which contain more than two hundred thousand labeled images of everyday objects.

Using my own labeled data I retrained the base models from Detectron2. This process

is called transfer learning, where a pre-trained model is used as the starting point to create

a new one. The initial results of using this model to find these rings are seen in Figure 4.5.

In simulated data, my instance segmentation model detected all of the rings in the original

image. My initial model did make mistakes when looking at experimental data, but it still

detected most of the rings add only a small amount of mislabeled spots.

I was pleasantly surprised that this model performed as well as it did to find rings, so

I continued to expand this method to try and classify these rings into different regions. I

expanded the single class model that recognized aromatic rings to a three class model that

recognizes close, ideal imaging, and far regions. This formed the base for the AI decision-

making for Auto-HR-AFM which shall be discussed in the next section.

4.4.4 Auto-HR-AFM

This section contains a combination of the draft and supplemental material of the submitted

paper titled ”Autonomous Molecular Structure Imaging with High Resolution Atomic Force

Microscopy for Molecular Mixture Discovery”. As of the date of my defense, the paper was

submitted to the Journal of Physical Chemistry A and we were working on revisions.

Introduction

Recent advances in molecular imaging by high-resolution atomic force microscopy (HR-AFM)

provide a first look at the diverse structures that make up complex molecular mixtures,

such as petroleum [12, 83, 103–109], soot from combustion or pyrolysis [84, 110, 111], and

organic molecules found in meteorites, oceans, and around Titan’s hazy atmosphere. [85,112,

70



Figure 4.5: First results of using an instance segmentation model to find aromatic rings in
NC-AFM images of petroleum molecules. Color scheme is random and represents a single
instance, used to distinguish in case of any overlapping instances.

113]. For complex mixtures, especially for those comprised of large molecules with numerous

possible structural isomers, HR-AFM provides unique insight into the identity of molecules

in the mixture. This information is nearly impossible to obtain with traditional analytical

techniques. The single molecule sensitivity of a CO-functionalized [43, 44] HR-AFM tip

makes HR-AFM capable of directly imaging individual molecules with atomic resolution

[84, 106, 108]. This advance opened the door to structural and reactivity studies of novel

aromatic hydrocarbons, and was used to discover non-combustible uses of these abundant

hydrocarbons [11]. HR-AFM has the potential to become a mainstream characterization

technique for complex mixtures, revealing otherwise inaccessible molecular structure and

statistics, but several significant experimental challenges must be overcome.

Before a single image can be obtained, the HR-AFM technique requires a significant

amount of user expertise, resources, and time due to demanding experimental conditions.

The experiments must be performed at extreme conditions of low temperature (5K) and

ultra-high vacuum pressures of 1x10−10 torr provided by a liquid helium bath cryostat in
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ultra-high vacuum to maintain an atomically clean and mechanically extremely stable en-

vironment for extended periods of time. The user has to possess significant knowledge of

physics and specific instrument training to prepare the system, samples, and probe before

any of the experiments take place. HR-AFM experiments can take days, weeks, or even

several months to collect a satisfactory amount of data. This process is very time-consuming

because molecules need to be individually imaged and the imaging must be optimized to

reveal all their details. Each image can take a few hours, even under ideal conditions, to

find optimal imaging conditions for a complex molecule. For a complex molecular mixture,

at least 50 molecules need to be imaged for the dataset to be statistically relevant, and

compare with bulk analysis techniques such as nuclear magnetic resonance spectroscopy and

mass spectroscopy. The more molecules imaged the better since many unique molecules have

identical molecular weights, and so the HR-AFM imaging often reveals otherwise unknown

molecular structures. The imaging conditions can change at any moment because the tip-

sample junction, which is critical to the imaging, is fragile. This means the experiments

require constant supervision by an expert user to optimize data collection. Any interrup-

tions from fatigue or user mistakes cause setbacks and reduce the amount of data collected

for projects with a set time frame, common on user tools. To maximize the amount of time

the HR-AFM is collecting high quality data, we turn to automation using machine learning

(ML) and AI.

With recent advances in ML there is major progress in automating machines to recognize

patterns and perform human actions. Similar to with training self-driving cars, we can

train an AI to operate an HR-AFM. Work in this field already includes automating certain

aspects of scanning probe microscopy (SPM) like navigation [89], tip tuning [93, 114], and

spectroscopy [91]. These AI techniques use a series of neural networks to recognize features

from collected data, this information is then used by the AI which decides on the next best

action to take. These elements will help to build a fully automated SPM, but a framework

is needed to integrate all these individual tasks into a single machine.
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Here we present Auto-HR-AFM [?], an AI script that autonomously controls the SPM

to collect HR-AFM images of hydrocarbons. Auto-HR-AFM assesses collected images using

a trained ML model and adjusts the probe-molecule distance to optimize the image of each

molecule. The ML model we trained for Auto-HR-AFM is an instance segmentation model

based on Detectron2 [100] that recognizes patterns in HR-AFM images of hydrocarbons.

Our model segments the collected images into three different classes that characterize the

proximity of the CO-functionalized probe to the molecule: too close, too far, or at an ideal

distance for imaging molecules. The model outputs are then used by GXSM [115,116], open-

source software that controls the SPM, to determine what direction the probe should move

to collect a more optimal image. Once the best image is collected, the SPM proceeds to

collect images of the other molecules in the experiment until a complete dataset is achieved.

Our technique, which builds upon the SPM automation foundation that already exists [89,

91, 93, 114], provides an open-source platform on which specific tasks can be combined to

create a fully automated SPM capable of routine characterization of molecular mixtures.

Methods

Auto-HR-AFM’s Decision Making Auto-HR-AFM, similar to what an expert user

would do, monitors the imaging conditions and reacts accordingly to get an optimized im-

age. Auto-HR-AFM assesses the collected images and adjusts the probe-molecule distance

to collect a more optimal image of each molecule. Auto-HR-AFM’s decision making uses

an instance segmentation model we trained using transfer learning starting from a Detec-

tron2 [100] archetype that we trained to recognize features in HR-AFM images of complex

molecular mixtures of petroleum pitch samples

Instance segmentation is widely used to contour unique instances of objects in image

segmentation models. These models are trained to locate and label each instance of a specific

object in an image and can be applied to images with multiple objects of interest, and have

been recently used to find features that could signal diseases in biological samples [117], find
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Figure 4.6: Architecture of the AI decision-making script showing all the parts of the machine
learning model based on Detectron 2

structural damage in infrastructure [118], and to find population of invasive species [119].

In most applications the models are trained to recognize simple shapes experts in that field

tend to look for. We apply the same technique to SPM images, since the SPM user focuses

on features in SPM images. A model can be trained to recognize the features of interest of

a trained SPM user.

The base model we used has a ResNet+feature pyramid network (FPN) architecture

[120] and was originally trained on a collection of everyday objects featured in the COCO

database [121]. The COCO database is a large-scale object detection, segmentation, and

captioning dataset that contains over 200,000 labeled images.

The main architecture of the base model from Detectron2 is shown in Figure 4.6. The

architecture consists of four major sections; a backbone feature pyramid network (FPN) [122],

a region proposal network (RPN) [123], and two region of interest (ROI) heads [124], one

for the box heads and the other for the masks.

The FPN takes in the input HR-AFM image and extracts multiple feature maps at

different scales with varying receptive fields. The RPN detects regions of interests in the

feature maps produced by the FPN and provides (by default) 1000 boxes with respective

confidence intervals. The ROI heads take those 1000 boxes from the RPN and fine tune
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using a fully connected network. Our model was trained on an NVIDIA GEForce RTK

3080, running all the scripts on a Jupyter notebook.

Experimental Methods The first step in training these models is collecting the data by

imaging the molecules of interest. Our dataset consists of 599 images of 160 unique molecules

found in petroleum compounds. SPM measurements were performed with a Createc-based

low-temperature (LT)-STM system custom upgraded with HR-AFM capability and operated

using the open-source GXSM control software [116]. The UHV system base pressure was

7e-11 torr. Our system uses a qPlus sensor [22] that has a 25 µm PtIr tip wire attached. The

wire was cut and sharpened by focused ion beam (FIB) milling. The sensor went through

a final cleaning procedure in UHV using Ar+ sputtering from three directions before being

mounted on the SPM scanner.

Sample and tip preparation A clean Cu(111) surface was prepared using standard Ar+

sputter anneal cycles for refreshing a previous clean crystal. A typical cleaning consists of 3

to 4 cycles of 4 to 5 µA at 1 kV Ar+ sputtering on a 8mm diameter crystal for 15 minutes

each followed by 10 to 25 minutes annealing up to 550 ◦C. After the Ar+ sputter anneal

cycles the crystal is loaded into the microscope and cooled to 5 K.

We directly deposited molecules on the cold surface. Pure molecules were typically sub-

limated, while molecular mixtures are usually “flashed” (quick one shot heat up to over

800◦C) from miniature amounts of powder adhered to a silicone carrier substrate that was

heated by direct current. Depending on the molecules, they may be pre-purified via a brief

test sublimation process in UHV before exposing the source to our Cu(111) surface. This

also allows for a simple visual rate adjustment via finding the onset of powder on the carrier

starting to diminish during the sublimation process. During deposition via the cryostat door

into the STM on the sample the temperature rose briefly due to radiation exposure to about

10 K.

Ultimate metal tip apex shaping was performed via controlled nano indentations into the
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copper metal crystal and bias pulsing.

The last preparation step always was exposing the sample to a small CO dose while at

5 K, specifically 10 s CO exposure at 2× 10−8 mbar via the cryostat door as required for tip

functionalization purpose only.

The qPlus sensor used for this work operated at a resonance of 30210 Hz with a typical Q-

factor of 10’000. The CO pickup from Cu(111) was achieved simply via consecutive scanning

over a CO molecule in very close proximity in STM mode with a bias of a few mV and various

currents up to 50 pA.

Information on HR-AFM measurements performed using GXSM HR-AFM mea-

surements were performed using GXSM’s special constant height control mode with auto-

mated constant current (STM mode) transitions if a compliance setting (probe safety or also

automated big/3D molecule lift mode) of a max allowed tunnel current is exceeded. There-

fore a small bias of 20 mV was typically applied in HR-AFM-mode. For frequency detection,

the custom hi-speed GXSM RedPitaya-PAC-PLL controller was used in combination with

the MK3-A810 SPM-Controller 1. Tip oscillation amplitudes were typically around 60 pm.

STS and dI/dV spectroscopy was performed using an external Lock-In Amplifier (SRS

Model 7265 Dual Phase DSP Lock-in Amplifier). The bias was modulated at 299 Hz at

typically 10mV or 5mV pure sine amplitude.

Data preparation All the images collected for the dataset had a 330 x 330 pixel resolution

and were fed into the model as jpg files. 60 images were randomly picked from the 599

images and were simply augmented by flipping and slight shearing. These augmented 60

images were used to train our machine learning model to recognize three different classes

of probe-molecule distance, which can be seen in Figure 4.11. Regions where the probe-

molecule distance is ideal for imaging hydrocarbon molecules are colored in green, regions

1More information about GXSM can be found at http://gxsm.sf.net. See also the GXSM project page
and related forums
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where the probe is too far away are colored in red, and regions where the probe is too close to

the molecules are colored in purple. The three classes are used to teach the AI to distinguish

between the different heights the probe may have while imaging. The other 539 images were

used to test the efficiency of the model.

Labeling data An essential step to train the machine learning model used by Auto-

HR-AFM was to create and label a training dataset. The quality of the model depends on

the quality of the annotated data. The training dataset was made up of HR-AFM images of

hydrocarbons that were previously collected.

Figure 4.7: Examples of labeled data using makesense.ai.

The HR-AFM images were labeled using a web browser tool called makesense.ai [125]2.

Such labeling tool was chosen due to its simple and efficient design. Figure 4.7 shows exam-

ples of the annotations created using the labeling tool. Regions where the probe-molecule

distance is ideal for imaging hydrocarbon molecules are labeled with a green polygon, regions

where the probe is too far away are labeled with a red polygon, and regions where the probe

is too close to the molecules are labeled with a purple polygon.

makesense.ai is capable of creating commonly used annotations: rectangles, points, lines

and polygons. Figure 4.8 Rectangles are known as bounding boxes and are typically used

2More information about makesense.ai can be found at https://www.makesense.ai and at
https://skalskip.github.io/make-sense/
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Figure 4.8: User interface of the makesense.ai labeling tool. The browser allows for new data
to be uploaded and labeled. Different annotation styles can be selected in the right column.
The annotations can be tracked and edited from the right column as well. Prepared labels
can be downloaded in multiple formats.

for object detection and image localization machine learning models. Points are used to

detect small objects and shape variations and are typically used to detect facial features,

expressions, emotions, body part movements, and poses. Lines are typically used to recognize

and detect lanes and outlines. Polygons are used the same way as bounding boxes but are

more precise in finding the exact shape and location of the object, a reason why we chose to

use these for this specific project.

The prepared labels can be downloaded in one of the supported formats. The most com-

mon formats are COCO, Pascal VOC, and YOLO. For this training dataset we downloaded

the labels to json file in the COCO format [121], since that is the file type read by Detec-

tron2. Labeling projects can be reuploaded to the makesense.ai browser tool to continue

editing the labeling process which is useful especially when you want to add on more labels

or expand previous datasets. The labeling process can take a significant amount of time and

depends on the details of the molecules, the number of classes created, and the size of the

dataset. For this training dataset, I labeled 599 images averaging around 50 to 100 images
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Table 4.1: Hand-Counted vs AI Found

Hand Counted Instances Ideal Rings Found Far Regions Found Close Regions Found
3193 2195 1235 876

Table 4.1: Number of hand-counted ring instances compared to the number of ring instances,
far, and close regions found by the AI.

Table 4.2: Regions of Interest Percentages

ROI Percentage
Rings Found 68.7%
Mislabeled Regions 2.95%
Flat Planar Molecules 3.84%

Table 4.2: Rings Found: The number of rings found by the AI compared to the hand-counted
rings, Mislabled Regions: Percent of AI mislabeled areas that did not correspond to an area
on the molecules, Flat Planar Molecules: Percent of the total images that were planar and
laid flat on the surface.

per hour using the 3 classes.

Model Performance

Auto-HR-AFM outputs an instance segmentation of the input HR-AFM image using the

three classes. Example outputs can be seen in Figure 4.9. All the ring instances were also

counted by hand and we found 3193 instances of ideal aromatic rings throughout the 599

images in the dataset. Auto-HR-AFM found 68.75 % of these rings but was also more

selective than the user to count an ideal ring. Rings that had a very faint contrast, but were

still visible by a user were accounted for in the 1235 instances of far regions found. The rest

of the rings that Auto-HR-AFM grouped in the 876 instances of close regions were mostly

due to them having a bright feature close to them.

Out of the 599 HR-AFM images, 3.84 % were of flat planar molecules. These images had

100% of their rings identified. The more complex, non-planar molecules have a combination

of two or all of the different classes. Only 2.95 % of the images had mislabeled regions that
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Figure 4.9: Visual representations of the outputs from the instance segmentation models.
The top row are the images taken by the HR-AFM that are used as inputs for the model.
The bottom row overlays how the model segments the image based on the distance between
the tip and the molecule.
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did not correspond to the molecule. The output of the model locates the regions of the

image that correspond to the three different classes and stores that information in an array.

Knowing which class is predominant in an image helps Auto-HR-AFM classify the image

into either an ideal image or an image where the probe is either too far or too close to the

molecule. After this classification, the AI decides whether to adjust the probe height and

retake the image before proceeding to the next molecule.

Installing Detectron2 and PyTorch

Auto-HR-AFM requires Detectron2, Pytorch, and torchvision to be installed. Detailed in-

stallation instructions for these packages can be obtained at:

Detectron 2 - https://detectron2.readthedocs.io/en/latest/tutorials/install.html

Pytorch and torchvision: https://pytorch.org/

These packages have their own requirements for installation. The versions of the installed

Pytorch and torchvision packages have to be compatible with the CUDA toolkit installed in

the system. If previous versions of these packages are installed already installed it is best to

either reinstall them or install them individually to make sure two versions are not installed

at the same time.

Results and Discussion

Automating SPM tasks using AI is especially important for experiments that require col-

lecting a large set of images in a limited time frame. Delegating tasks to the AI optimizes

the time the SPM is in use. In this work, we developed and tested Auto-HR-AFM on

images of a mixture of petroleum molecules deposited on Cu(111) and imaged with a CO-

functionalized probe. Here we describe the steps that Auto-HR-AFM takes to automatically

collect optimized data using our instance segmentation model.

Auto-HR-AFM operates in a loop composed of four parts as shown in Figure 4.10. It

takes as an input an overview STM Figure 4.10 a an image containing a distribution of
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tagged molecules. Auto-HR-AFM then collects optimal images of these molecules in both

STM (Figure 4.10 b) and HR-AFM (Figure 4.10 c,d) modes, unsupervised.

Before running Auto-HR-AFM, the user obtains a CO-functionalized tip and then takes

an STM image of a region of the sample that contains a distribution of molecules. The

user manually selects target molecules from the overview and then starts the Auto-HR-AFM

script. Regions of interest containing target molecules can also be selected using a script that

automatically finds molecules on the surface like the one used by Hellerstedt [99], but these

scripts can confuse similar molecules, and their performance is affected by other features on

the surface, so it is more robust to manually select the regions of interest. The order these

molecules are selected will be the order the script will continue to image them while in the

loop.

Next, the script moves the tip to the first target molecule and initiates a high-resolution

STM image Figure 4.10 b. Depending on the time between the first overview image and

the zoomed image, there could be some thermal drift that has shifted the position of the

molecule. To make sure that the molecule is centered, the script calculates the center of

mass of the molecule and then resets the center of the image to that location and re-images.

Next, Auto-HR-AFM determines a safe initial height value to take the first HR-AFM

image by checking the current around the molecule in STM mode to estimate its height on

Cu(111). Typical values are: Then Auto-HR-AFM performs an STM-to-HR-AFM transition

using the SPM software and starts to collect an initial HR-AFM image. For molecules in a

complex mixture, this initial image is not often ideal, especially for larger molecules whose

apparent heights are not uniform.

The final part of the operation loop assesses this initial HR-AFM image and decides

what action to take to collect a better image: Figure 4.10 c. Auto-HR-AFM uses a trained

instance segmentation model to determine regions in the imaged molecule where the probe is

too close or too far to collect a sharp HR-AFM image and regions where the probe-molecule
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Figure 4.10: Auto-HR-AFM Script Architecture. a) Overview STM image with molecules
queued to be imaged. b) Zoomed in STM image of the selected molecule, the center of mass
of the molecule is used as the center coordinate to keep the molecule in frame. c) Auto-
HR-AFM switches to HR-AFM mode and collects an initial image. d) The image from c) is
passed through a ML algorithm to assess then optimize the quality of the imaging. Once an
optimal HR-AFM is collected Auto-HR-AFM continues with the next selected molecule.
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Figure 4.11: The three regions of probe-molecule distances Auto-HR-AFM is trained to
detect using a diverse range of input data sources. Regions with an ideal distance for
optimal HR-AFM images are seen in green. Regions that are too close or too far are seen in
purple and red respectively. Left: Hydrocarbons found in petroleum mixtures, Top Right:
Graphene Nanoribbon

distance is ideal 3. These regions can be seen in Figure4.11. The instance segmentation model

was trained and tested on previously collected HR-AFM images of hydrocarbons found in

petroleum mixtures and can also recognize probe-molecule distances in other molecules like

graphene nanoribbons as seen in Figure 4.11.

When the probe is too far or too close to the molecule, Auto-HR-AFM takes a single

step of ± 0.3 Angstroms and takes another, now more optimal image. For molecules lying

flat on the Cu(111) surface, the AI’s decision is straightforward, either move closer, move

further away, or continue on to the next molecule if the height is already optimal. For more

difficult situations when the molecules are more complex and not lying flat on the surface

there is a combination of the three different regions. Auto-HR-AFM segments the molecule

into too far, too close or ideal imaging regions. Based on which region is predominant on the

3Details of these regions seen in the Data Labeling section of this Chapter
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molecule, Auto-HR-AFM adjusts the probe to take a more optimal image of the molecule.

Similar to a human user, Auto-HR-AFM moves on to the next molecule once an optimal

image is collected. Auto-HR-AFM’s script can be customized to collect a series of images

on any given molecule or to perform other SPM tasks before moving on. When the script

decides to move on to the next molecule, the loop repeats. The loop ends when there are

no more molecules to image in a given overview area. The user could then select a new area

to image and restart the script to continue data collection. Considering that each molecule

could take somewhere between thirty minutes to an hour, and there are overview scans that

have greater than ten molecules of interest in them, this tool can be applied overnight or left

running for days depending on how many target molecules are defined by the user.

A functionalized CO probe can be stable throughout multiple data collection runs, but

there is always the possibility for the CO at the tip apex becomes lost or shifted during

any run. If this happens as the script is running, the loop will continue but all the HR-

AFM images will appear dark and no atomic resolution will be achieved. At this point,

the user has to intervene and functionalize the probe with CO once more. Once the probe

is functionalized again the user can run the script once more to continue imaging where it

left off or to repeat some of the imaging while the CO was lost. A future instance of the

script will be able to recognize this situation and interrupt the loop to wait for the user’s

intervention.

We explored and demonstrated the first practical operation of fully automated HR-AFM

imaging applied to multiple distinct molecules in petroleum-based molecular mixtures. Our

Auto-HR-AFM script is fully open-source and customizable, ready to be expanded for wide

use. Potential next steps to improve Auto-HR-AFM would be to include other SPM ML

tools like navigation and tip tuning [89, 93], and to expand the different types of molecules

that the script can recognize, specifically molecules without carbon rings. Combining these

ML tools is the launching point for a fully automated SPM that can handle any molecular

mixture characterization project from start to finish.
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Figure 4.12: Automatically collected A) STM and B) HR-AFM of Hydrocarbons found in
petroleum mixtures.

STM and HR-AFM images acquired automatically Before the incorporation of our

trained machine learning models we tested the automation scripts included into Auto-HR-

AFM. Figure 4.12 showcases SPM images of hydrocarbons found in a complex molecular

mixture collected by the automation script before the incorporation of our final machine

learning model to find the optimal distance. The top row are STM images of the molecules

that show with a red marker where the center of mass of each image is located by the script.

The bottom row are the HR-AFM images that were collected by the automation script while

being supervised by a user in case the initial image needed to be optimized.

Some of these initial images needed user intervention4 to optimize the imaging as seen

in Figure 4.13, where a user tuned the probe-molecule distance to get more data on the

molecules. Without the machine learning model incorporated in Auto-HR-AFM, the script

collected SPM images but had no way to optimize them.

4Our script allows users to tweak parameters and intervene flow control while running.
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Figure 4.13: Hydrocarbons found in petroleum mixtures collected by the automation script
and tuned by a supervising user. A) STM images, B) HR-AFM images, C) HR-AFM images
after the user tuned the imaging parameters.
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Figure 4.14: STM map for Auto-HR-AFM run with selected molecules.

Detailed transcript log of fully automated AI controlled HR-AFM molecule imag-

ing In the latest version of Auto-HR-AFM, the HR-AFM image instance segmentation

model and interpretation via AI based regional classification is fully incorporated. We added

a live visualization of the AI instance segmentation model that can be used to monitor its

performance.

A transcript logfile is written by the Auto-HR-AFM script to document every step taken

by Auto-HR-AFM to collect an optimal HR-AFM image. Figure 4.15 shows the detailed

log that keeps track of the timestamps of major actions performed by Auto-HR-AFM on

the STM map shown in Figure 4.14. The log tracks the adjustments that Auto-HR-AFM

performs on the probe-molecule distance based on the information provided by the instance

segmentation model.

In the logfile excerpt as shown in Figure 4.15 we added related images and AI generated

feature maps for far, ideal, and close regions as used for decision making and resulting
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Figure 4.15: Excerpt for a generated transcript log that describes the actions Auto-HR-AFM
takes to optimize the imaging along with collected images. Here annotated with mating,
auto-generated images and generated AI feature maps as used for decision making. Note:
Data of a petroleum-based molecule mixture sample flash deposited on Au(111).

actions. For the first selected molecule labeled with “RectangleM00” the initial probe-

molecule distance ended up a being too close. The AI optimized the probe-molecule distance

by the third image and then proceeded to the next selected molecule“M01”. This starts out

more usual and a bit on the far side. After two AI-steered tweaks it accepts and proceeds.

Conclusions

The use of HR-AFM to image and study the chemical structure of individual molecules

will help us understand the chemical structure of complicated molecules [126], identify the

composition of complicated molecular mixtures [108], and differentiate heteroatoms [127].

Training a machine learning model to recognize the patterns commonly seen in an SPM
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experiment can help shift the routine work from user to AI. We created Auto-HR-AFM to

automate HR-AFM image collection of molecular mixtures. Auto-HR-AFM uses an instance

segmentation model we trained to recognize three different probe-molecule distances. Using

this information Auto-HR-AFM adjusts the probe-molecule distance to collect the best pos-

sible image of each molecule. Auto-HR-AFM receives instructions to image certain molecules

and one by one collects the most optimal image of each molecule.

Auto-HR-AFM’s AI-guided, automated scanning for AFM imaging enables unsupervised

imaging. Using Auto-HR-AFM will lead to more high-quality data being collected in the

limited time frame SPM users are allocated per project. This is specifically useful at national

labs where typical projects are only allocated one to two weeks at a time. This optimizes the

use of the SPM and related resources needed to keep the system running. Most importantly,

because imaging each molecule is automatically optimized, projects will achieve higher fi-

delity structure interpretation, and also a more diverse data pool, since images of non planar

molecules are also collected.

Despite these advantages and significant improvements, future additions and improve-

ments will be needed. First, adding more ML decision-making tools to Auto-HR-AFM will

lead to a fully-automated SPM. Recent work automating SPM actions like navigation, tip-

tuning, and spectroscopy [89,91,93,114] can be updated and integrated with Auto-HR-AFM

to make the technique more broadly applicable.

Second, recent work using ML models to identify chemical structure and determine

the nomenclature of molecules imaged by HR-AFM [92, 128]. Auto-HR-AFM’s script can

be modified to integrate these molecular identification techniques. By collecting multiple

molecules at a series of different heights, we can use these as input for molecular identifica-

tion techniques and identify molecules in real-time.

Third, Auto-HR-AFM can learn to recognize more details in the HR-AFM images if we

expand the three classes used in the instance segmentation model. By implementing more

chemistry rules as we create more classes, the AI could recognize the number of carbon atoms
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in the rings of these molecules. Six-membered rings are most common and are expected for

aromatic structures, five-membered rings are also possible, but three, four, seven, or eight

membered-rings are rare and have not been reported. Also, all carbons need to satisfy

tetravalency for most stable molecules, although other valencies are possible such as stable

free radicals. Structures have to be consistent with their sources, formation conditions, or

reactivities. For example, some aromatic structures are extremely reactive and unstable.

Training a machine learning model to recognize these chemistry rules while scanning will

facilitate the discovery of these unusual structures.

Auto-HR-AFM can recognize the common patterns and what a trained SPM user sees.

Having this visual aid helps the AI decide on what the next best action is to optimize the

imaging. Depending upon SPM users to make these decisions is the reason why these SPM

experiments require intense supervision. Fully automated SPM frees the instrument from

the user and enables maximum output of the SPM.
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CHAPTER 5

Conclusions

Realistically cutting our ties with petroleum will not happen overnight. Our natural supplies

will last us at least 50 to 100 years more [108]. It is important to continue researching new

and efficient ways to make these reservoirs last as long as possible while attempting to

produce the least amount of pollutants as we can. Designing new refining processes can be

difficult since there is still much we do not know about the chemical structures of crude and

refined products.

NC-AFM provides structural information on the molecules that compose crude oil, in-

termediates, and final products. Although the technique is complicated and time-consuming

it provides the most detailed atomic scale information of the molecular structures found in

complex mixtures. Since NC-AFM does not require conductive supports for their samples,

it is a great tool to explore these refining processes on industrially relevant experimental

systems.

The work I present in this dissertation uses NC-AFM to investigate the active catalytic

sites of Mo2 on industrially relevant supporting substrates (Chapter 3) and integrates ma-

chine learning/AI tools to automate NC-AFM data collection (Chapter 4).

In Chapter 3 the goal was to perform NC-AFM studies on the active catalytic sites of

MoS2 on top of insulating substrates. Due to limitations our resolution mostly from the

RHK system setup this project was left incomplete. However, hydrotreatment processes

using catalysts like MoS2 have gained more interest recently, since there is a rise in biofuels

that have a high C-O bond content. Understanding the role that catalysts like MoS2 have
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on hydrodesulfurization reactions and improving those processes can help create efficient hy-

drodeoxygenation (HDO) processes to reduce the amount of C-O bonds in biofuels. Creating

new efficient hydrotreatment processes will help create cleaner fuel sources.

If this project were to continue in the Hollen lab two main issues have to be resolved to

improve the stability of the NC-AFM while imaging. The first is improving the resolution of

the qPlus sensors in both STM and NC-AFM modes. The second is to reduce the number

of procedures done during sample preparations to reduce surface contaminants.

To improve the resolution of the qPlus probes, I suggest taking a step back and testing

the probes on a metal surface like gold or copper. The metal surfaces are a good playground

to develop a tip functionalization procedure that is needed for high-resolution imaging of

molecules. Imaging a CO molecule or another test molecule would be a good starting ground

to test the noise limitations of the system. Once a solid understanding of using qPlus

probes on metals and a tip functionalization procedure is developed, then it will be easier to

transition to insulating surfaces.

The second issue involves the cleanliness of the samples used for this project. The reason

that NC-AFM works so well on metals is that the probe is operating on a clean and flat

surface. Contaminants on the surface cause the tip to misbehave and can potentially cause

crashes that might affect the tip quality. Typical systems use STM mode as a backup to

make sure the tip does not crash. When dealing with insulator surfaces, the STM backup is

not an option. Exploring the high resolution capabilities of the qPlus probes on insulators

is something that has not been explored much.

Limiting the contaminants on the surface will improve the stability of the probe. When

creating the MoS2 on SiO2 samples, the exfoliation produced flakes that were clean and

flat, but it was difficult to image them without having a large overview scan or a marker

to pinpoint their location. Adding the gold grid helped in finding the flakes, but I believe

introduced multiple contaminants near the flakes, especially from the chromium sticking

layer. Increasing the size of the flakes so that they are easier to find or moving smaller flakes
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to a pre patterned clean surface would be a better process to create these samples. For the

MoS2 on AAO, increasing the size of the MoS2 flakes so that we can find them easily is the

best option since it would be difficult to pattern.

Creating a procedure to functionalize the qPlus tips on insulators and changing the

stiffness of the tuning forks used could also improve the stability. Measuring the forces on

the qPlus probes when approaching insulating surfaces under different functionalizations

could be an interesting project in creating a qPlus sensor that is dedicated to a stable

approach and imaging on insulators.

While NC-AFM can provide high-resolution images of chemical structures, intermediates,

and final reaction products the technique requires stable and low temperatures to freeze

molecular motion. These low temperatures are far from the ranges in which hydroprocessing

catalysis processes take place. To study these processes near-ambient pressure microscopes

have to be developed that can also achieve high resolution. These can be used similarly to

the ambient pressure STM to study reactions in more relevant pressure environments.

To conclude in Chapter 3, here is a list of potential improvements for NC-AFM experi-

ments of 2D flakes on insulating supports in the Hollen Lab:

• Improve Exfoliation techniques to produce larger flakes of MoS2 or any other 2D ma-

terial.

• Explore the capabilities of the qPlus.

- Create a procedure to dose CO into the chamber.

- Create a procedure to functionalize qPlus tips with a CO molecule.

- Run NC-AFM tests with a functionalized tip on conductive test samples to get

high-resolution imaging working.

- Consider physical changes to probe design or RHK system to reduce noise

- Explore the capabilities of imaging insulators while pursuing stabilizing the qPlus

sensors.
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• Dosing experiments: STM studies of the thiophene on gold or another sulfur-containing

molecule. Switch to powders potentially.

In Chapter 4 I present my work to create an initial SPM automation script that trains

artificial intelligence with computer vision and machine learning algorithms. The main result

of the chapter is the creation of Auto-HR-AFM, an AI script that collects optimal HR-AFM

images of hydrocarbons. Auto-HR-AFM is open source and customizable to integrate future

SPM tasks. Eventually providing a framework for a fully automated SPM script that can

control a system from tip approach to data collection.

The field of automation using machine learning and computer vision is growing rapidly in

many fields, especially in computer science and robotics leading to commercial applications

like self-driving cars, AI art and text generators like Dall-E and ChatGPT. Similar to these

commercial applications there is an interest in utilizing these machine learning models and

computer vision tools in the field of SPM. Initial applications have focused on automating

specific tasks to navigate, perform spectroscopy, and to check the quality of the tip. Our

work added automating the collection of HR-AFM images to that list. Future work should

aim to combine all these automation tools into a single framework that is easy to customize

and update.

For a single framework to automate every SPM task in a specific system, a main issue to

take into consideration is compatibility. With Auto-HR-AFM we designed it to be modular

so that it can be a living project that can be updated when a new tool is developed for

it. This is especially useful in the field of ML where there is a fast-paced growth in new

techniques. Older models and automation scripts also can be outdated easily and should be

updated frequently to make sure that they are compatible with newer models created in the

future.

With regards to Auto-HR-AFM specifically, there are many different avenues to continue

improving the functionality of the script. To make the script more robust, more trials are

needed to check for any bugs or to see where the code can be improved. Adding a larger
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data set with more labeled classes to teach the AI to recognize more features would be a

good next step.

There is work being done to label and name the molecules seen in NC-AFM images

using ML techniques [93, 129]; this can be integrated into Auto-HR-AFM to perform these

techniques in real-time during the data collection. To have the AI recognize more molecules

faster, more chemistry rules should be input into the training data set to categorize and

create more classes. This would help the AI check for aromaticity, label carbons in rings,

and label heteroatoms as well, making the process of identifying the molecules in real time

much more effective.

Combining all these tools with the past ones will enable a fully automated SPM script

that can control every aspect of data collection. Still there will always be more improvements

to perform new experiments. This is a continuous process that has to be updated and has to

evolve to continue to be useful. If achieved, this automation will make data collection much

more efficient and will relieve the time users have to spend on collecting optimal data.

Improving SPM techniques with automation will help accelerate discovery of petroleum

molecules and help scientists and engineers tune the refining processes used. Petroleum

products and intermediates are complicated. To design better refining processes we need to

understand their exact composition. NC-AFM is the best tool to collect this data, but the

technique is still complicated and time-consuming. Automation will help utilize the technique

more efficiently. The technique can also help us understand some of the current refining

processes in more industrially relevant environments, but there are still limitations when

performing NC-AFM at ambient pressures and on insulators. The continuing improvement

of these techniques can help us understand the petroleum world more each day.
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APPENDIX A

Codes for Auto-HR-AFM: Training Detectron2 and Automation Script

This section contains Python code that was used to train our instance segmentation model

and the SPM automation script described in Chapter 4. The first code was originally written

in a Jupyter notebook and is used to train Detectron2 on a custom dataset. The second code

is the code for Auto-HR-AFM written in Python. Both these are available on Github [?]:

https://github.com/Sarias13/Auto-HR-AFM

A.1 Training Detectron2 on your own dataset

This code was written on a Jupyter notebook and was used to train the instance segmentation

model used in Chapter 4. The code also includes sections that use OpenCV 2 to help visualize

how the instance segmentation model is performing through the steps. There are details in

the comments for each block that is separated by a string of # signs. I recommend using a

Jupyter notebook to test this code out, having each block as an input. Inputting one block

at a time into a Jupyter notebook can help with the debugging process and makes the code

easier to follow.

A nice tutorial for training instance segmentation models and learning about how to use

Detectron2 on your own datasets can be found at in the Detectron2 documentation site [100]:

https://detectron2.readthedocs.io/

1 ###################################################################

2

3 # Import Detectron2 should be installed in your local computer. https ://

detectron2.readthedocs.io/en/latest/tutorials/install.html

108



4 import detectron2

5 from detectron2.utils.logger import setup_logger

6 setup_logger ()

7

8 # import some common libraries

9 import numpy as np

10 import cv2

11 import matplotlib.pyplot as plt

12

13 # import some common detectron2 utilities

14 from detectron2 import model_zoo

15 from detectron2.engine import DefaultPredictor

16 from detectron2.config import get_cfg

17 from detectron2.utils.visualizer import Visualizer

18 from detectron2.data import MetadataCatalog , DatasetCatalog

19

20 ###################################################################

21

22 #Register the dataset and metadata for the model.

23 #the dataset are the files used for the training , testing , and validation

used.

24 #Inputs for the register_coco_instances (" Given_Dataset_Name", {}, "

Label_info_json_file", "Path_to_files_to_be_included"

25

26 #Given_Dataset_Name: Name that you want to register this group of files as

.

27 #{}: left blank.

28 #Label_info_json_file: Path where the json file is with your labeled data

and metadata.

29 #Path_to_files_to_be_included: Path to the files you want to include in

these instances.

30

31 from detectron2.data.datasets import register_coco_instances
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32 register_coco_instances("3class_train", {}, "./ ncfiles3/

labels_clasestres_2022 -07 -26 -01 -21 -07. json", "./ ncfiles3/files")

33 #register_coco_instances ("3 class_val", {}, "./ labels_clasestres_2022

-07 -26 -01 -21 -07. json", "./3 class/valid")

34 #register_coco_instances ("3 class_test", {}, "./ labels_clasestres_2022

-07 -26 -01 -21 -07. json", "./3 class/test")

35

36 ###################################################################

37

38 #Check To see that the files/labels are uploaded correctlly on 3 random

files.

39 import random

40 from detectron2.data import DatasetCatalog , MetadataCatalog

41 from detectron2.utils.visualizer import ColorMode

42

43 dataset_dicts = DatasetCatalog.get("3class_train")

44 microcontroller_metadata = MetadataCatalog.get("3class_train")

45

46 for d in random.sample(dataset_dicts , 3):

47 img = cv2.imread(d["file_name"])

48 v = Visualizer(img[:, :, ::-1], metadata=microcontroller_metadata ,

scale =1.3, instance_mode=ColorMode.SEGMENTATION)

49 v = v.draw_dataset_dict(d)

50 plt.figure(figsize = (14, 10))

51 plt.imshow(cv2.cvtColor(v.get_image ()[:, :, ::-1], cv2.COLOR_BGR2RGB))

52 plt.show()

53

54 ###################################################################

55

56 #Check the metadata to see what is labeled.

57 microcontroller_metadata

58

59 ###################################################################
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60

61 #Get Config Files and Trainer.

62

63 from detectron2.engine import DefaultTrainer

64 from detectron2.config import get_cfg

65 import os

66

67 cfg = get_cfg ()

68 cfg.merge_from_file(model_zoo.get_config_file("COCO -InstanceSegmentation/

mask_rcnn_R_50_FPN_3x.yaml")) #Pick your favorite from model zoo

69 cfg.DATASETS.TRAIN = ("3class_train",) # comes from the file registered

above

70 cfg.DATASETS.TEST = ()

71 cfg.DATALOADER.NUM_WORKERS = 2

72 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO -

InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")#Pick your favorite

from model zoo

73 cfg.SOLVER.IMS_PER_BATCH = 2

74 cfg.SOLVER.BASE_LR = 0.00025

75 cfg.SOLVER.MAX_ITER = 1000

76 cfg.SOLVER.STEPS = [] # do not decay learning rate

77 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4 #Change depending on how many classes

you have. Some lablers add an extra class , so double check

78

79 os.makedirs(cfg.OUTPUT_DIR , exist_ok=True)

80

81 #Uncomment below to train model. Leave commented to just load the config

file

82

83 #trainer = DefaultTrainer(cfg)

84 #trainer.resume_or_load(resume=False)

85 #trainer.train ()

86
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87 ###################################################################

88

89 # Load weights from model and decide on Threshold. Run predictor

90 cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR , "model_final.pth")

91 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5

92 cfg.DATASETS.TEST = ("3class_train", )

93 predictor = DefaultPredictor(cfg)

94

95 ###################################################################

96

97 #Run model on one specific File

98 #Change Filename.png for the file you want to test model on.

99

100 from detectron2.utils.visualizer import ColorMode

101 im = cv2.imread("Filename.png")

102 outputs = predictor(im)

103 v = Visualizer(im[:, :, ::-1],

104 metadata=microcontroller_metadata ,

105 scale=1,

106 instance_mode=ColorMode.IMAGE_BW # remove the colors of

unsegmented pixels

107 )

108 v = v.draw_instance_predictions(outputs["instances"].to("cpu"))

109 plt.figure(figsize = (20, 10))

110 plt.imshow(cv2.cvtColor(v.get_image ()[:, :, ::-1], cv2.COLOR_BGR2RGB))

111 plt.show()

112

113 ###################################################################

114

115 #Run on multiple files in a specifi directory.

116

117 from detectron2.utils.visualizer import ColorMode

118
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119

120 microcontroller_metadata = MetadataCatalog.get("3class_train")

121 for filename in os.listdir("./"):

122 if (filename.endswith(".jpg")):

123 #text = np.load(filename)

124 im = cv2.imread(filename)

125 #print(im)

126 outputs = predictor(im)

127 v = Visualizer(im[:, :, ::-1],

128 metadata=microcontroller_metadata ,

129 scale =1.2,

130 instance_mode=ColorMode.IMAGE_BW # remove the

colors of unsegmented pixels

131 )

132 v = v.draw_instance_predictions(outputs["instances"].to("cpu"))

133 plt.figure(figsize = (14, 10))

134 plt.imshow(cv2.cvtColor(v.get_image ()[:, :, ::-1], cv2.

COLOR_BGR2RGB))

135 plt.show()

136 #cv2.imwrite(’result_ ’+filename+’’,v.get_image ()[:, :, :: -1]) #

uncomment to Save file if you want

137

138 ###################################################################

139

140 #Run model on 3 random files in your dataset if registered. Typically used

on validation or test. With a bigger dataset.

141 from detectron2.utils.visualizer import ColorMode

142 dataset_dicts = DatasetCatalog.get("3class_train") #Used on train here to

double check.

143 #print(dataset_dicts)

144 #dataset_dicts = "Ringers"

145 for d in random.sample(dataset_dicts , 3):

146 im = cv2.imread(d["file_name"])
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147 outputs = predictor(im)

148 v = Visualizer(im[:, :, ::-1],

149 metadata=microcontroller_metadata ,

150 scale=1,

151 instance_mode=ColorMode.IMAGE_BW # remove the colors

of unsegmented pixels

152 )

153 v = v.draw_instance_predictions(outputs["instances"].to("cpu"))

154 plt.figure(figsize = (14, 10))

155 plt.imshow(cv2.cvtColor(v.get_image ()[:, :, ::-1], cv2.COLOR_BGR2RGB))

156 plt.show()

157

158 #outputs all the information given by the model on a given file or the

last file it ran on.

159 print(outputs["instances"]. pred_classes)

160 print(outputs["instances"]. pred_boxes)

161 print(outputs["instances"])

162

163 ###################################################################

164

165 #Visualize the ouputs as a mask. Different than the one detectron2 uses.

166

167 mask_array = outputs[’instances ’]. pred_masks.to("cpu").numpy ()

168 num_instances = mask_array.shape [0]

169 scores = outputs[’instances ’]. scores.to("cpu").numpy()

170 labels = outputs[’instances ’]. pred_classes .to("cpu").numpy()

171 bbox = outputs[’instances ’]. pred_boxes.to("cpu").tensor.numpy()

172

173 mask_array = np.moveaxis(mask_array , 0, -1)

174

175 mask_array_instance = []

176 #img = np.zeros_like(im) #black

177 h = im.shape [0]
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178 w = im.shape [1]

179 img_mask = np.zeros ([h, w, 3], np.uint8)

180 for i in range(num_instances):

181 if labels[i]==0:

182 color = (250, 43, 138)

183 elif labels[i]==1:

184 color = (0, 0, 255)

185 else:

186 color = (0 ,255,0)

187 img = np.zeros_like(im)

188 mask_array_instance.append(mask_array [:, :, i:(i+1)])

189 img = np.where(mask_array_instance[i] == True , 255, img)

190 array_img = np.asarray(img)

191 img_mask[np.where (( array_img ==[255 ,255 ,255]).all(axis =2))]=color

192

193 img_mask = np.asarray(img_mask)

194 output = cv2.addWeighted(im , 0.7, img_mask , 0.3, 0)

195

196 ###################################################################

197

198 #See mask produced.

199 plt.figure(figsize = (14, 10))

200 plt.imshow(cv2.cvtColor(img_mask , cv2.COLOR_BGR2RGB))

201 plt.show()

202 #cv2.imwrite(’result.jpg ’,img_mask)

203

204 ###################################################################

205

206 #Remove black background from files.

207

208 import cv2

209 file_name = "result.jpg"

210
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211 src = cv2.imread(file_name , 1)

212 tmp = cv2.cvtColor(src , cv2.COLOR_RGB2GRAY)

213 _,alpha = cv2.threshold(tmp ,25,255,cv2.THRESH_BINARY)

214 b, g, r = cv2.split(src)

215 rgba = [b,g,r, alpha]

216 dst = cv2.merge(rgba ,4)

217 cv2.imwrite("test.png", dst)

218

219 ###################################################################

220

221 #Uncomment this section if you would like to use Tensorboard to check the

progress of you model.

222

223 #Load Tensorboard if you want to see how model is working

224 #%load_ext tensorboard

225 #%tensorboard --logdir output

Listing A.1: Jupyter Notebook: Training Detectron2 on your own dataset and tools to help

visualize results.
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A.2 Auto-HR-AFM Full Script

This is a modular Python code that controls the GXSM SPM software. The code is split

into commented parts and the functionality of the code is explained in Chapter 4. The code

includes the instance segmentation model seed in Section A.1.

The start of the code includes triggers to turn sections of the code on or off. The

instance segmentation model has to be loaded from an existing file on your computer. If

using a different SPM software controller, the sections to send commands to the SPM have

to be modified before using the script.

1 ### MODES

2 ### Trigger modes to check parts of the script. Set to True to use that

part of the script.

3 ### do_auto_locate: Includes a CV package to find molecules on a surface.

4 ### do_stm: If you want to collect STM images

5 ### do_afm: If you want to collect HR-AFM images

6 ### do_AI_afm: If you want to run the AI automation script to collect HR-

AFM images.

7

8 TEST_AI=False # Test Mode

9

10 do_auto_locate = False

11 do_stm = True

12 do_afm = True

13 do_AI_afm = True #False

14

15 ###############################################

16 ## INSTRUMENT

17 ## Initial instrument parameters for GXSM

18

19 ZAV =8.0 # 8 Ang/Volt in V

20
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21 ### SETUP ENVIRONMENT CONFIGURATION

22 map_ch =6 # MAP IMAGE CHANNEL (0....N)

23 map_diffs=gxsm.get_differentials(map_ch)

24 afm_ch =2 # HR_AFM IMAGE (0...N)

25

26 ### DEFAULTS

27 # Up to 8 ScriptControls (sc)

28 # Level , I in pA

29 sc = dict(STM_Range =45, AFM_Range =45, Molecule=1, I_ref=20, CZ_Level

=100.0 , Z_down =1.3, Z_start =0.0, Tip_Z =0.0, Tip_Z_Ref =0.0,

AutoAFMSpeed =1)

30

31 STM_ref_bias = 0.6 # 0.1

32 STM_scan_current = 0.0025 # 0.01

33 STM_points = 160

34 STM_dx=sc[’STM_Range ’]/ STM_points

35

36 AFM_points = 330

37 AFM_dx=sc[’AFM_Range ’]/ AFM_points

38 #sc[’STM_Range ’]

39

40 #CZAFM_Iref =0.04

41 #CZAFM_Zoff =-0.1

42 #CZ_FUZZY_level =0.1

43

44

45

46

47 ################## Imports ############################

48 import sys

49 sys.modules[__name__ ]. __dict__.clear()

50

51 from string import *
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52 import os

53 import logging

54 from string import *

55 import os

56 import datetime

57

58

59 import time

60 import random as rng

61 import cv2

62 #import netCDF4 as nc

63 import struct

64 import array

65 import math

66 import numpy as np

67 from skimage.color import rgb2gray

68 from skimage.color import gray2rgb

69 import itertools

70

71 import torch

72 x = torch.rand(5, 3)

73 print(x)

74 print(’CUDA: ’,torch.cuda.is_available ())

75 print(’***’)

76

77 # Import Detectron2 should be installed in your local computer. https ://

detectron2.readthedocs.io/en/latest/tutorials/install.html

78 import detectron2

79 from detectron2.utils.logger import setup_logger

80 setup_logger ()

81 # Import some common detectron2 utilities

82 from detectron2 import model_zoo

83 from detectron2.engine import DefaultPredictor
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84 from detectron2.config import get_cfg

85

86 #Register the dataset and metadata for the model.

87 #the dataset are the files used for the training , testing , and validation

used. No need for all 3 to run.

88

89 from detectron2.data.datasets import register_coco_instances

90 from detectron2.data import DatasetCatalog , MetadataCatalog

91

92 ## Setup logfile

93 full_path_name = gxsm.chfname (0).split()[0]

94 ##

95 print(’Starting here , Logfile setup.’)

96 print(full_path_name)

97 ncfname = os.path.basename(full_path_name)

98 folder = os.path.dirname(full_path_name)

99 name , ext = os.path.splitext(ncfname)

100 logfile_name = folder+’/’+name+’-AIrun -initial.log’

101 print(’Logging to: ’, logfile_name)

102

103 logging.basicConfig(filename=logfile_name , encoding=’utf -8’, level=logging

.DEBUG , format=’%( asctime)s %( message)s’)

104 logging.info(’Auto -AFM -AI logfile start. [{}]’.format(logfile_name))

105

106 #logging.debug(’This message should go to the log file ’)

107 #logging.info(’So should this ’)

108 #logging.warning(’And this , too ’)

109 #logging.error(’Error ’)

110

111

112

113

114 DatasetCatalog.clear()
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115

116 #Register the data. Where is it located locally?

117 # download , and extract , adjust path below accordingly: https :// bnlbox.

sdcc.bnl.gov/index.php/s/9 xoFrTsPWmcB9Gp

118 AI_base_dir = ’/home/percy/AI-data’

119 register_coco_instances("3class_train", {}, AI_base_dir+’/

labels_clasestres_2022 -07 -26 -01 -21 -07. json’, AI_base_dir+’/files ’)

120

121 dataset_dicts = DatasetCatalog.get("3class_train")

122 microcontroller_metadata = MetadataCatalog.get("3class_train")

123

124 cfg = get_cfg ()

125 cfg.merge_from_file(model_zoo.get_config_file("COCO -InstanceSegmentation/

mask_rcnn_R_50_FPN_3x.yaml"))

126 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4

127 # Load weights from model and decide on Threshold. Run predictor

128 cfg.MODEL.WEIGHTS = AI_base_dir+’/AI_model.pth’

129 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5

130 predictor = DefaultPredictor(cfg)

131

132

133

134

135 ################################### Function Definitions

############################################################################################

136 # Setup SCs

137 def SetupSC ():

138 for i, e in enumerate(sc.items()):

139 id=’py -sc{:02d}’.format(i+1)

140 print (id , e[0], e[1])

141 gxsm.set_sc_label(id , e[0])

142 gxsm.set(id, ’{:.4f}’.format(e[1]))
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143

144 SetupSC ()

145

146 # Read / Update dict

147 def GetSC():

148 for i, e in enumerate(sc.items()):

149 id=’py -sc{:02d}’.format(i+1)

150 #print (id, ’ => ’, e[0], e[1])

151 sc[e[0]] = float(gxsm.get(id))

152 #print (id, ’<=’, sc[e[0]])

153

154 # Update SCs

155 def SetSC():

156 for i, e in enumerate(sc.items()):

157 id=’py -sc{:02d}’.format(i+1)

158 gxsm.set(id, ’{:.4f}’.format(e[1]))

159

160

161 #GetSC ()

162 #SetSC ()

163

164 gxsm.set(’script -control ’,’1’)

165

166 def export_drawing(ch=0, postfix=’-dwg’):

167 full_original_name = gxsm.chfname(ch).split ()[0]

168 print(full_original_name)

169 folder = os.path.dirname(full_original_name)

170 ncfname = os.path.basename(full_original_name)

171 name , ext = os.path.splitext(ncfname)

172 dest_name = folder+’/’+name+postfix

173 print(’Exporting: ’, dest_name)

174 gxsm.chmodea(ch)

175 gxsm.autodisplay ()
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176 time.sleep (1)

177 gxsm.save_drawing(ch , 0,0, dest_name+’.png’)

178 gxsm.save_drawing(ch , 0,0, dest_name+’.pdf’)

179

180 def export_png(ch=0, postfix=’autoexport ’):

181 full_original_name = gxsm.chfname(ch).split ()[0]

182 print(full_original_name)

183 folder = os.path.dirname(full_original_name)

184 ncfname = os.path.basename(full_original_name)

185 name , ext = os.path.splitext(ncfname)

186 dest_name = folder+’/’+name+postfix

187 print(’Exporting: ’, dest_name)

188 gxsm.chmodea(ch)

189 gxsm.autodisplay ()

190 time.sleep (1)

191 gxsm.save_drawing(ch , 0,0, dest_name+’.png’)

192

193

194 def init_force_map_ref_xy(bias =0.02 , level =0.111 , ref_i =0.05 , zoff =0.0,

xy_list =[[0 ,0]]):

195 print("Measuring Z at ref")

196 # set ref condition

197 gxsm.set ("dsp -fbs -bias","0.1") # set Bias to 0.1V

198 gxsm.set ("dsp -fbs -mx0 -current -set","{:8.4f}".format( ref_i)) # Set

Current Setpoint to reference value (nA)

199 gxsm.set ("dsp -fbs -mx0 -current -level","0.00")

200

201 time.sleep (1) # NOW SHOULD ME ON TOP OF MOLECULE

202 gxsm.set ("dsp -fbs -bias","0.02") # set Bias to 20mV

203 gxsm.set ("dsp -fbs -mx0 -current -set","0.05") # Set Current Setpoint to 50

pA

204 # read Z ref and set

205 svec=gxsm.rtquery ("z")
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206 print(’RTQ z’, svec [0]* ZAV)

207 pts=1

208 z=svec [0]* ZAV

209 zmin=zmax=z

210 for r in xy_list:

211 gxsm.moveto_scan_xy(r[0], r[1])

212 time.sleep (0.1)

213 for i in range (0,5):

214 svec=gxsm.rtquery ("z")

215 time.sleep (0.02)

216 zxy=svec [0]* ZAV

217 if zmin > zxy:

218 zmin=zxy

219 if zmax < zxy:

220 zmax=zxy

221 #print(r, " => Z: ", zxy , " Min/Max: ", zmin , zmax)

222 z=z+zxy

223 pts=pts+1

224 z=z/pts + zoff # zoff=0 for auto

225 time.sleep (1) # NOW SHOULD ME ON TOP OF MOLECULE

226

227 print("Setting Z-Pos/Setpoint = {:8.2f} A".format( z))

228 gxsm.set ("dsp -adv -dsp -zpos -ref", "{:8.2f}".format( z))

229 gxsm.set ("dsp -fbs -bias","%f" %bias)

230 gxsm.set ("dsp -adv -scan -fast -return","5")

231 gxsm.set ("dsp -fbs -scan -speed -scan","8")

232 gxsm.set ("dsp -fbs -ci","3")

233 gxsm.set ("dsp -fbs -cp","0")

234 levelreg = level *0.99

235 gxsm.set ("dsp -fbs -mx0 -current -level","%f"%level)

236 gxsm.set ("dsp -fbs -mx0 -current -set","%f"%levelreg)

237 gxsm.set ("dsp -fbs -bias","%f" %bias)

238 return z
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239

240 def exit_force_map(bias =0.2, current =0.02):

241 gxsm.set ("dsp -adv -scan -fast -return","1")

242 gxsm.set ("dsp -fbs -mx0 -current -set","%f"%current)

243 gxsm.set ("dsp -fbs -mx0 -current -level","0.00")

244 gxsm.set ("dsp -fbs -ci","35")

245 gxsm.set ("dsp -fbs -cp","40")

246 gxsm.set ("dsp -fbs -scan -speed -scan","250")

247 gxsm.set ("dsp -fbs -bias","%f" %bias)

248

249 def process(input_list , threshold =20):

250 combos = itertools.combinations(input_list , 2)

251 points_to_remove = [point2 for point1 , point2 in combos if math.dist(

point1 , point2)<=threshold]

252 points_to_keep = [point for point in input_list if point not in

points_to_remove]

253 return points_to_keep

254

255 def auto_afm_scanspeed(y):

256 ms = gxsm.get_slice(2, 0,0, y,1) # ch , v, t, yi , yn ## AFM dFreq in

CH3

257 med = np.median(ms)

258 dFspan = np.max(ms) - np.min(ms)

259 if dFspan > 1.0:

260 gxsm.set ("dsp -adv -scan -fast -return","5")

261 time.sleep (1)

262 gxsm.set ("dsp -fbs -scan -speed -scan","8")

263 elif dFspan > 0.8:

264 gxsm.set ("dsp -adv -scan -fast -return","5")

265 time.sleep (1)

266 gxsm.set ("dsp -fbs -scan -speed -scan","10")

267 elif dFspan > 0.5:

268 gxsm.set ("dsp -adv -scan -fast -return","5")
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269 time.sleep (1)

270 gxsm.set ("dsp -fbs -scan -speed -scan","15")

271 elif dFspan > 0.4:

272 gxsm.set ("dsp -adv -scan -fast -return","2")

273 time.sleep (1)

274 gxsm.set ("dsp -fbs -scan -speed -scan","20")

275 elif dFspan > 0.3:

276 gxsm.set ("dsp -adv -scan -fast -return","2")

277 time.sleep (1)

278 gxsm.set ("dsp -fbs -scan -speed -scan","30")

279 else:

280 gxsm.set ("dsp -adv -scan -fast -return","1")

281 time.sleep (1)

282 gxsm.set ("dsp -fbs -scan -speed -scan","50")

283 #print(’Median: ’, np.median(ms))

284 #print(’Min: ’, np.min(ms))

285 #print(’Max: ’, np.max(ms))

286 #print(’Range: ’, np.max(ms) - np.min(ms))

287

288

289 def get_gxsm_img_bypkt(ch):

290 # fetch dimensions

291 dims=gxsm.get_dimensions(ch)

292 #print (dims)

293 geo=gxsm.get_geometry(ch)

294 #print (geo)

295 diffs=gxsm.get_differentials(ch)

296 #print (diffs)

297 m = np.zeros ((dims[1],dims [0]), dtype=float)

298 for y in range (0,dims [1]):

299 for x in range (0, dims [0]):

300 v=0

301 m[y][x]=gxsm.get_data_pkt (ch, x, y, v, 0)*diffs [2] # Z value in
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Ang now

302 return m

303

304

305 def get_gxsm_img(ch):

306 dims=gxsm.get_dimensions(ch)

307 return gxsm.get_slice(ch , 0,0, 0,dims [1]) # ch , v, t, yi , yn

308

309

310 def get_gxsm_img_cm(ch):

311 # fetch dimensions

312 dims=gxsm.get_dimensions(ch)

313 print (dims)

314 geo=gxsm.get_geometry(ch)

315 print (geo)

316 diffs=gxsm.get_differentials(ch)

317 print (diffs)

318 m = np.zeros ((dims[1],dims [0]), dtype=float)

319

320 for y in range (0,dims [1]):

321 for x in range (0, dims [0]):

322 v=0

323 m[y][x]=gxsm.get_data_pkt (ch, x, y, v, 0)*diffs [2] # Z value in Ang

now

324

325 cmx = 0

326 cmy = 0

327 csum = 0

328 cmed = np.median(m)

329 print (’Z base: ’, cmed)

330 b=2

331 for y in range (b,dims[1]-b):

332 for x in range (b, dims[0]-b):
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333 v=0

334 m[y][x]=m[y][x] - cmed # Z value in Ang now

335 if m[y][x] > 0.5:

336 cmx = cmx+x*m[y][x]

337 cmy = cmy+y*m[y][x]

338 csum = csum + m[y][x]

339 if csum > 0:

340 cmx = cmx/csum

341 cmy = cmy/csum

342 else:

343 cmx = dims [0]/2

344 cmy = dims [1]/2

345 print(’PointCM: ’, int(round(cmx)), int(round(cmy)))

346 gxsm.add_marker_object(ch , ’PointCM ’,1, int(round(cmx)), int(round(cmy))

, 1.0)

347 export_drawing(ch , ’-CM’)

348 return m, cmx , cmy

349

350 def ai_decide(ch):

351 full_path_name = gxsm.chfname(ch).split()[0]

352 cfname = os.path.basename(full_path_name)

353 folder = os.path.dirname(full_path_name)

354 name , ext = os.path.splitext(ncfname)

355 print (’AI decide on: ’, name)

356

357 img = get_gxsm_img(ch) # Load image from AFM channel

358 norm_img = cv2.normalize(img , None , 0, 255, cv2.NORM_MINMAX , cv2.CV_8U)

# Normalize the color scale of the image from 0 to 255

359 rgb_img = gray2rgb(norm_img) # Turn Grayscale to RGB

360 im_bgr = cv2.cvtColor(rgb_img , cv2.COLOR_RGB2BGR) # Turn RGB to BGR

361 print(im_bgr.shape) #Print Shape to double check correct input. Should

be (330 ,330 ,3)

362 outputs = predictor(im_bgr) # Using the predictor from the model.
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363

364 # Place the outputs into arrays to use them easier.

365 mask_array = outputs[’instances ’]. pred_masks.to("cpu").numpy ()

366 num_instances = mask_array.shape [0]

367 scores = outputs[’instances ’]. scores.to("cpu").numpy()

368 labels = outputs[’instances ’]. pred_classes .to("cpu").numpy()

369 bbox = outputs[’instances ’]. pred_boxes.to("cpu").tensor.numpy()

370

371 #print (’Mask Array:’)

372 #print (mask_array)

373

374 # Create a mask for the Input AFM image

375 mask_array = np.moveaxis(mask_array , 0, -1)

376 mask_array_instance = []

377 height = im_bgr.shape [0]

378 width = im_bgr.shape [1]

379 img_mask = 255*np.ones([height , width , 3], np.uint8) # zeros

380

381 for i in range(num_instances):

382 if labels[i]==0:

383 # color = (250, 43, 138) #Purple Color for close and distortion

regions

384 color = (128, 43, 250) #Purple Color for close and distortion

regions

385 elif labels[i]==1:

386 # color = (0, 1, 255) #Red Color for far regions

387 color = (255, 1, 0) #Red Color for far regions

388 else:

389 # color = (0 ,255,0) #Green color for ideal ring regions

390 color = (0 ,255,0) #Green color for ideal ring regions

391 image = np.zeros_like(im_bgr)

392 mask_array_instance.append(mask_array [:, :, i:(i+1)])

393 image = np.where(mask_array_instance[i] == True , 255, image)
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394 array_img = np.asarray(image)

395 img_mask[np.where (( array_img ==[255 ,255 ,255]).all(axis =2))]=color

396 img_mask = np.asarray(img_mask)

397 #gxsm.load(9, img_mask)

398 purple = np.where(img_mask [:,:,1] == 43)

399 red = np.where(img_mask [:,:,1] == 1)

400 green = np.where(img_mask [:,:,1] == 255)

401 p = purple [0]. size

402 r = red [0]. size

403 g = green [0]. size

404 sum = p + r + g

405 #print(purple [1]. size)

406 #print(red [1]. size)

407 #print(green [1]. size)

408 #print(sum)

409 if ( g > p and g > r):

410 print("Good")

411 action = ’okay’

412 elif( p > g and p > r):

413 print("Close")

414 action = ’close’

415 else:

416 print("Far")

417 action = ’far’

418 logging.info(’ai_decide on {}: {}’.format(name , action))

419 return action , img_mask

420

421

422 def ai_mask_to_gxsm_ch (ai_mask_img , chm):

423 img_shape= ai_mask_img.shape

424 rgb = np.moveaxis(ai_mask_img , 0, -1)

425 rgb = np.moveaxis(rgb , 0, -1)

426 n = np.ravel(rgb) # make 1-d
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427 mem2d = array.array(’f’, n.astype(float))

428 mem2d=np.resize(mem2d , 4* img_shape [0]* img_shape [1])

429 gxsm.chmodea (chm)

430 gxsm.createscanf (chm , img_shape [1], img_shape [0], 4, 45, 45, mem2d ,

False)

431

432 full_original_name = gxsm.chfname(afm_ch).split ()[0]

433

434 print(full_original_name)

435 folder = os.path.dirname(full_original_name)

436 ncfname = os.path.basename(full_original_name)

437 name , ext = os.path.splitext(ncfname)

438 dest_name = folder+’/’+name+’_ai_mask ’

439 print(dest_name)

440 gxsm.save_drawing(chm , 0,0, dest_name+’.png’)

441

442

443 def locate_molecule_ch(ch ,thresh_val):

444 img = get_gxsm_img(ch)

445 norm_img = cv2.normalize(img , None , 0, 255, cv2.NORM_MINMAX , cv2.CV_8U)

446 gray_img = rgb2gray(norm_img)

447 max_thresh = 255

448 thresh = thresh_val

449 def thresh_callback(val):

450 threshold = val

451 canny_output = cv2.Canny(gray_img , threshold , threshold *2)

452 contours ,_ = cv2.findContours(canny_output , cv2.RETR_TREE , cv2.

CHAIN_APPROX_SIMPLE)

453 contours_poly = [None]*len(contours)

454 boundRect = [None]*len(contours)

455 centers = [None]*len(contours)

456 radius = [None]*len(contours)

457 x_y_coord = []
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458 for i, c in enumerate(contours):

459 contours_poly[i] = cv2.approxPolyDP(c, 3, True)

460 boundRect[i] = cv2.boundingRect(contours_poly[i])

461 centers[i], radius[i] = cv2.minEnclosingCircle(contours_poly[i])

462 if radius[i] < 3 and radius[i] > 1:

463 if centers[i] not in x_y_coord:

464 x_y_coord.append(centers[i])

465

466 return (x_y_coord)

467 x_y_molecules = thresh_callback(thresh)

468 return (x_y_molecules)

469

470 def do_stm_and_lock_on_center(mi):

471 print(’STM: Scanning M’,mi)

472 gxsm.startscan ()

473 time.sleep (2)

474 gxsm.set ("dsp -fbs -scan -speed -scan","225")

475 time.sleep (1)

476 print(’waiting ....’)

477

478 l=0

479 while l >= 0 and int(gxsm.get(’script -control ’)) >0:

480 l =gxsm.waitscan(False)

481 #print (’Line=’,l)

482 time.sleep (2)

483

484 gxsm.stopscan ()

485 time.sleep (2)

486

487 print(’STM completed. Centering.’)

488

489 #print (’... cleanup old markers (make sure) ’)

490 #r=gxsm.marker_getobject_action (0, ’PointCM ’,’REMOVE ’)
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491 #print(r)

492 time.sleep (1)

493 print(’calculate CM’)

494 m, cx, cy = get_gxsm_img_cm (0)

495 print(’CM:’ ,cx ,cy)

496 time.sleep (1)

497 print(’Adjust Offset ’)

498 r=gxsm.marker_getobject_action (0, ’PointCM ’,’SET -OFFSET ’)

499 print(r)

500 time.sleep (2)

501 print (’cleanup marker ’)

502 r=gxsm.marker_getobject_action (0, ’PointCM ’,’REMOVE ’)

503 print(r)

504

505

506 def do_HR_AFM(mi , tipz):

507 GetSC()

508 z = sc[’Tip_Z_Ref ’]

509 sc[’Tip_Z’] = -tipz

510 sc[’Molecule ’] = mi

511 SetSC()

512 gxsm.set ("dsp -adv -dsp -zpos -ref", "{:8.2f}".format( z-tipz))

513 print(’HR -AFM: Scanning M’,mi, ’ at Z=’, z-tipz)

514 gxsm.startscan ()

515 time.sleep (2)

516 print(’waiting ....’)

517 gxsm.set ("dsp -fbs -scan -speed -scan", "10")

518 time.sleep (1)

519 gxsm.set ("dsp -fbs -scan -speed -scan", "8")

520 l=0

521 lp=1

522

523 next_ai_check =25
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524

525 #while gxsm.waitscan(False) >= 0 and int(gxsm.get(’script -control ’))

>0:

526 while l >= 0 and int(gxsm.get(’script -control ’)) >0:

527 l =gxsm.waitscan(False)

528 #print (’Line=’,l)

529

530 if do_AI_afm and l > next_ai_check:

531 next_ai_check=l+25

532 result , ai_mask_img = ai_decide(afm_ch)

533 ai_mask_to_gxsm_ch (ai_mask_img , 10)

534

535 time.sleep (5)

536 GetSC()

537 if l > lp and sc[’AutoAFMSpeed ’] > 0:

538 auto_afm_scanspeed(l)

539 lp=l+1

540

541 print(’HR -AFM completed , saving ...’)

542

543

544 ##################################################################

545

546 max_mol = 50

547

548

549 if TEST_AI:

550 afm_ch =0

551 mask_ch =9

552 ct = datetime.datetime.now()

553 print (ct , ’ ** Test AI on ch’, afm_ch)

554 result , ai_mask_img = ai_decide(afm_ch)

555 print (ct , ’ ** ’)

134



556 #ai_mask_to_gxsm_ch (ai_mask_img , 10)

557

558 print (’Mask’)

559 img_shape= ai_mask_img.shape

560 print (img_shape)

561 #rgb = ai_mask_img

562

563 afmimg = get_gxsm_img(afm_ch) # Load image from AFM channel

564 print (’AFM img’)

565 print(afmimg.shape)

566 afm_norm_img = cv2.normalize(afmimg , None , 0, 255, cv2.NORM_MINMAX , cv2.

CV_8U) # Normalize the color scale of the image from 0 to 255

567 afm_rgb_img = gray2rgb(afm_norm_img) # Turn Grayscale to RGB

568 print(afm_rgb_img.shape)

569

570 rgb = afm_rgb_img * (0.5*0.5* ai_mask_img /255)

571 ai_mask_img = rgb

572

573 rgb = np.moveaxis(ai_mask_img , 0, -1)

574 rgb = np.moveaxis(rgb , 0, -1)

575 print(rgb.shape)

576

577

578 n = np.ravel(rgb) # make 1-d

579 mem2d = array.array(’f’, n.astype(float))

580 mem2d=np.resize(mem2d , 4* img_shape [0]* img_shape [1])

581 #mem2d=np.roll(mem2d , -330*330)

582

583 #afm = get_gxsm_img(afm_ch) # Load image from AFM channel

584 #afmn = np.ravel(afm) # make 1-d

585 #mem2d_afm = array.array(’f’, afmn.astype(float))

586 #mem2d = np.concatenate ((mem2d_afm , mem2d))

587

135



588 gxsm.chmodea (mask_ch)

589 gxsm.createscanf (mask_ch ,img_shape [1], img_shape [0],4, 45, 45, mem2d ,

False)

590 #gxsm.add_layerinformation ("@ "+str(flv)+" Hz",10)

591 #gxsm.createscanf : Create Scan float: gxsm.createscan (ch,nx,ny,nv

pixels , rx ,ry in A, array.array(’f’, [...]) , append)

592

593 max_mol = 0

594

595

596 ##################################################################

597

598 print(’Map in CH’, map_ch +1)

599

600 print(’Removing all Rectangles!’)

601 r=gxsm.marker_getobject_action(map_ch , ’Rectangle ’,’REMOVE -ALL’)

602 print(r)

603

604

605

606

607 if do_auto_locate:

608 ##### Locate Molecules using OpenCV Some functions might be extra could

be use for later ...###

609 print(’Finding Molecules ’)

610 #molecule_coord = locate_molecule_nc(basefile , 65)

611 molecule_coord = locate_molecule_ch(map_ch , 65)

612 pro_molecule_coord = process(molecule_coord)

613 time.sleep (1)

614 print(’Found Molecules:’,len(pro_molecule_coord))

615

616 ##### Clean Up the channel being used ################

617 print(’Removing all Rectangles!’)
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618 r=gxsm.marker_getobject_action(map_ch , ’Rectangle ’,’REMOVE -ALL’)

619 print(r)

620 time.sleep (1)

621

622 print(’Cleanup Points ’)

623 r=gxsm.marker_getobject_action(map_ch , ’Point ’,’REMOVE -ALL’)

624 print(r)

625 r=gxsm.marker_getobject_action(map_ch , ’*Marker ’,’REMOVE -ALL’)

626 print(r)

627 time.sleep (1)

628

629 #### Here add for loop to add boxes and labels to each molecule ######

630 print(’Marking Molecules at’)

631 print (pro_molecule_coord)

632

633 for i in range(len(pro_molecule_coord)):

634 gxsm.add_marker_object(map_ch , ’PointM {:02d}’.format(i),1, int(

pro_molecule_coord[i][0]) ,int(pro_molecule_coord[i][1]) , 1.0)

635

636 time.sleep (1)

637

638 if max_mol > 0:

639 gxsm.set(’script -control ’,’2’)

640 print(’waiting as long as sc >1’)

641 while int(gxsm.get(’script -control ’)) > 1:

642 time.sleep (0.5)

643

644 print(’List Objects , Mark Mol , Setup Rects ’)

645 k=0

646 for i in range(0, max_mol): ##len(pro_molecule_coord)):

647 o=gxsm.get_object (map_ch , i+k) ## adjust for inserted object -- always

pre pended to list!

648 print(’O’, i, ’ => ’, o)
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649 if o == ’None’:

650 break

651 print(’Marking M’, i)

652 r=gxsm.add_marker_object(map_ch , ’RectangleM {:02d}’.format(i), 0

xff00fff0 , round(o[1]),round(o[2]), sc[’AFM_Range ’]/ map_diffs [0])

653 k=k+1 # we have not one more object prepended to the object list!

654 print(r)

655

656 SetSC()

657 time.sleep (1)

658

659 if max_mol > 0:

660 gxsm.set(’script -control ’,’2’)

661 print(’waiting as long as sc >1 -- check configurations now’)

662 while int(gxsm.get(’script -control ’)) > 1:

663 time.sleep (0.5)

664

665 GetSC()

666

667 # make sure STM safe mode

668 exit_force_map (0.1, current =0.006)

669

670

671 gxsm.set(’script -control ’,’3’)

672

673 for mi in range(0,max_mol): ##len(molecule_coord)):

674 full_path_name = gxsm.chfname (0).split()[0]

675 ncfname = os.path.basename(full_path_name)

676 folder = os.path.dirname(full_path_name)

677 name , ext = os.path.splitext(ncfname)

678

679 sc[’Molecule ’] = mi

680 SetSC()
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681

682 if int(gxsm.get(’script -control ’)) < 1:

683 break

684

685 time.sleep (1)

686 print(’selecting M’,mi)

687 r=gxsm.marker_getobject_action(map_ch , ’RectangleM {:02d}’.format(mi),’

GET -COORDS ’)

688 print(r)

689 if r != ’OK’:

690 break

691

692 GetSC()

693 STM_points = round(sc[’STM_Range ’]/ STM_dx)

694 gxsm.set(’PointsX ’, ’{}’.format(STM_points)) # readjust points

695 gxsm.set(’PointsY ’, ’{}’.format(STM_points))

696

697 gxsm.set (’RangeX ’,’{}’.format(sc[’STM_Range ’])) # Readjust range to

make all of them the same size.

698 gxsm.set (’RangeY ’,’{}’.format(sc[’STM_Range ’]))

699 time.sleep (1)

700

701 if do_stm:

702 do_stm_and_lock_on_center(mi)

703 time.sleep (1)

704

705 logging.info(’*** Next Molecule #{:d} {} -- centering.’.format(mi , name)

)

706

707 if int(gxsm.get(’script -control ’)) < 1:

708 break

709

710 # Setup AFM Scan
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711 GetSC()

712 AFM_points = round(sc[’AFM_Range ’]/ AFM_dx)

713 gxsm.set(’PointsX ’, ’{}’.format(AFM_points)) # readjust points

714 gxsm.set(’PointsY ’, ’{}’.format(AFM_points))

715

716 gxsm.set (’RangeX ’,’{}’.format(sc[’AFM_Range ’])) # Readjust range to

make all of them the same size.

717 gxsm.set (’RangeY ’,’{}’.format(sc[’AFM_Range ’]))

718 time.sleep (1)

719

720 # only do reconfigure scan geom -- todo: do not save

721 gxsm.startscan ()

722 time.sleep (3)

723 gxsm.stopscan ()

724 # do STM orbital scans +2V/-1.5V or so?

725

726 if do_afm:

727 print(’moving tip on top of molecule to measure Z at ref conditons for

HR -AFM’)

728

729 # initial setpoint determinaion on this grid -- make better: assure on

molecule!

730 ds = 2.0

731 c = 0.0

732 ref_xy_list = [ ]

733 for i in np.arange (-1,2):

734 for j in np.arange (-1,2):

735 ref_xy_list.append ([c+i*ds, c+j*ds])

736

737 print(’HR -AFM transitioning ...’)

738 GetSC()

739 z=init_force_map_ref_xy (0.02 , level=sc[’CZ_Level ’]*1e-3, ref_i=sc[’

I_ref ’]*1e-3, zoff = sc[’Z_start ’], xy_list=ref_xy_list)

140



740 sc[’Tip_Z_Ref ’] = z

741 SetSC()

742 tipz =0

743 logging.info(’*** Init AFM mode , start at Tip_Z_Ref = {:.2f}A - tipz=0

A’.format(z))

744 z_ai_dir =0

745 z_ai_step =0.3

746 while int(gxsm.get(’script -control ’)) >1 and tipz <= sc[’Z_down ’] and

tipz < 2.0:

747 logging.info(’Starting AFM image’)

748 do_HR_AFM(mi, tipz)

749 time.sleep (4)

750

751 if tipz == 0:

752 # set RectangleID/Label to McBSP Freq file name -- 1st of Z series

753 full_original_name = gxsm.chfname (2).split ()[0]

754 ncfname = os.path.basename(full_original_name)

755 bname , ext = os.path.splitext(ncfname)

756 print(bname)

757 ### CUSTOM FOR TOIS FILE NAMEING SCHEME ###

758 filenumber = bname [11:14]

759 print(’File Number: ’, filenumber)

760 r = gxsm.marker_getobject_action(map_ch , ’RectangleM {:02d}’.format

(mi),’SET -LABEL -TO:’+filenumber)

761 print(r)

762 logging.info(’*** AFM File: {} *** RectangleM {:02d} = #{}’.format(

bname , mi , filenumber))

763

764 if do_AI_afm:

765 result , ai_mask_img = ai_decide(afm_ch)

766 ai_mask_to_gxsm_ch (ai_mask_img , 10)

767 export_png(afm_ch , ’afm’)

768 if result == ’okay’:
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769 logging.info(’Z Adjust none’)

770 break ## OK done

771 elif result == ’far’:

772 if z_ai_dir < 0:

773 z_ai_step = z_ai_step *0.5

774 if z_ai_step < 0.1:

775 logging.info(’Z Adjust done. far , but been downwithin 10pm’)

776 break ## OK done

777 logging.info(’Z Adjust revert {:.1f}A’.format(z_ai_step))

778 tipz = tipz+z_ai_step # down a step

779 z_ai_dir =1

780 logging.info(’Z Adjust down’)

781 else:

782 if z_ai_dir > 0:

783 z_ai_step = z_ai_step *0.5

784 if z_ai_step < 0.1:

785 logging.info(’Z Adjust done. close , but been up within 10pm’

)

786 break ## OK done

787 logging.info(’Z Adjust revert {:.1f}A’.format(z_ai_step))

788 tipz = tipz -z_ai_step # up a step

789 z_ai_dir=-1

790 logging.info(’Z Adjust up’)

791 else:

792 tipz = tipz +0.3 # simple down steps as programmed

793 logging.info(’Z Adjust to Tip_Z_Ref = {:.2f}A - tipz ={:.2f}A’.format

(z, tipz))

794

795 if int(gxsm.get(’script -control ’)) >5:

796 print(’waiting for re run as long as sc >5’)

797 while int(gxsm.get(’script -control ’)) > 5:

798 time.sleep (0.5)

799
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800 logging.info(’*** Exit AFM mode ***’)

801 exit_force_map (0.1, current =0.006)

802

803 logging.shutdown ()

Listing A.2: Auto-HR-AFM: Python script as of 04/26/2023
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