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The Daily Patterns of Emergency Medical Events1

Abstract2

This study examines population level daily patterns of time-stamped emergency3

medical service (EMS) dispatches to establish their situational predictability. Using4

visualization, sinusoidal regression, and statistical tests to compare empirical cumulative5

distributions, we analyzed 311,848,450 emergency medical call records from the U.S.6

National Emergency Medical Services Information System (NEMSIS) for years 20107

through 2022. The analysis revealed a robust daily pattern in the hourly distribution of8

distress calls across 33 major categories of medical emergency dispatch types. Sinusoidal9

regression coefficients for all types were statistically significant, mostly at the p < 0.000110

level. The coefficient of determination (R2) ranged from 0.84 and 0.99 for all models, with11

most falling in the 0.94 to 0.99 range. The common sinusoidal pattern, peaking in12

mid-afternoon, demonstrates that all major categories of medical emergency dispatch types13

appear to be influenced by an underlying daily rhythm that is aligned with daylight hours14

and common sleep/wake cycles. A comparison of results with previous landmark studies15

revealed new and contrasting EMS patterns for several long-established peak occurrence16

hours–specifically for chest pain, heart problems, stroke, convulsions and seizures, and17

sudden cardiac arrest/death. Upon closer examination, we also found that heart attacks,18

diagnosed by paramedics in the field via 12-lead cardiac monitoring, followed the identified19

common daily pattern of a mid-afternoon peak, departing from prior generally accepted20

morning tendencies. Extended analysis revealed that the normative pattern prevailed21

across the NEMSIS data when re-organized to consider monthly, seasonal, daylight-savings22

vs civil time, and pre-/post- COVID-19 periods. The predictable daily EMS patterns23

provide impetus for more research that links daily variation with causal risk and protective24

factors. Our methods are straightforward and presented with detail to provide accessible25

and replicable implementation for researchers and practitioners. [284 words/300 word max.]26



The Daily Patterns of Emergency Medical Events27

Much research in social sciences, medicine, public health, epidemiology, and biology is28

devoted to understanding circumstances affecting human health. The present study29

examines time-stamped emergency medical service (EMS) distress calls. For several30

decades, daily patterns have been suggested for specific medical events. Most notably,31

acute myocardial infraction (heart attack), cerebrovascular accident (stroke), and sudden32

cardiac arrest/death have long been perceived as prevalent in the morning (Cohen et al.,33

1997; Elliott, 1998; Muller et al., 1985, 1987; Muller, 1999; Rocco et al., 1987; Thakur34

et al., 1996; Willich et al., 1987). Several reviews and studies, have supported or confirmed35

before-noon occurrence peaks (Akkaya-Kalayci et al., 2017; Buurma et al., 2019; Klerman,36

2005), while others failed to replicate a morning tendency (Faramand et al., 2019; Ni et al.,37

2019; Tripathi et al., 2020; Vencloviene et al., 2017); see Tables 1 and 2.38

The analysis in this paper is not the first attempt to describe or predict general39

rhythms for medical emergencies. Prior research modeled ambulance dispatch40

volumes (Ohshige, 2004; Vile et al., 2012), analyzed EMS events (Jasso et al., 2007; Setzler41

et al., 2009), and studied hospital emergency department visit patterns (Ferrazzi et al.,42

2018; Manfredini et al., 2002; McCarthy et al., 2006). Our analysis expands this body of43

literature by deriving hourly distributional models from a voluminous amount of44

time-stamped data. Our analysis is like that of previous approaches that organize medical45

emergency patterns by specific type (Ferrazzi et al., 2018). In our analysis, daily patterns46

are derived from the hourly occurrence distribution based on the specific time-stamped47

dispatch events, which are organized by chief complaints and priority symptoms.48

Several recent time-of-day studies point to the potential for better outcomes in terms of49

human health and well-being. A number of authors suggest pharmacological intervention,50

usually aligning dosing with specific times of day and/or possible physiological causes or51

risks (Akkaya-Kalayci et al., 2017; Buurma et al., 2019; Cohen et al., 1997; Elliott, 1998;52

Muller et al., 1985; Muller, 1999; Pavlova et al., 2012; Rocco et al., 1987). Others posit53

systemic or individual behavioral interventions, such as aligning youth suicide counseling54

sessions to coincide with evening patterns of social media rumination and suicide55

attempts (Allegra et al., 2001; Dutta et al., 2021), recommending a review of carbohydrate56

sufficiency in hospital meals to counter timing variations of in-patient hypoglycemic57

events (Kerry et al., 2013), or recommending time-of-day posture control findings to58
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optimize return-to-play after sports injuries (Gribble et al., 2007). (See Tables 1 and 2 for59

summaries of authors’ suggested methods of prevention.) Based on found EMS daily60

patterns and contrasting with previous studies, our results suggest that much further61

research is needed regarding causes, risks, and protections for each medical emergency62

category, including the investigation of reasons for consistency in the daily pattern among63

dissimilar event types.64

To date, no researchers have recognized the broad existence of a common daily pattern65

for medical emergencies, nor confirmed patterns for specific cases using a national data-set66

as extensive as NEMSIS. The aims of the present study are to test the suitability of a67

general sinusoidal function, derived using ordinary least squares and linear regression on68

the solitary independent variable hour of day; and visualize these daily patterns to identify69

peak occurrences across major categories of health and across major distinguishable time70

periods. The methods are straightforward and provide replicable and accessible tools for71

researchers and practitioners.72

Materials and Methods73

Data Source and Heritage74

We analyzed the public research data-set for 13 consecutive years, 2010 to 2022,75

obtained from the NEMSIS project (NEMSIS, 2022d). The project is a collaboration76

between the U.S. National Highway Traffic Safety Administration’s Office of EMS and the77

University of Utah’s Technical Assistance Center. The center maintains and publishes a78

data standard modeled on and extending the patient care report, which is broadly used by79

agencies to document EMS events (American Academy of Orthopaedic Surgeons, 2021).80

On an ongoing basis–beginning in 2006 with data from three states and growing to a81

national effort over sixteen years–NEMSIS has received, stored, and shared standardized82

EMS data from U.S. states and territories that in turn receive and curate event data from83

their individual EMS agencies. The overarching goal is to host research data to support84

various analyses–including evaluation of clinical interventions, performance benchmarks,85

and efficiency–for the improvement of pre-hospital patient care.86

As recently as 2014, the NEMSIS version two data-set represented input from 45 states87
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and approximately 72% of all EMS calls in the U.S. (Wei et al., 2019). A dip in state data88

submissions was observed after an update to the latest data standard in 2017; this was89

followed by alignments and adoption of the latest data standard. As of 2020, 47 states and90

three territories used the latest NEMSIS data standard to provide event data for nearly91

43.5 million EMS activations (NEMSIS, 2022a). By 2021, research reported in almost 1,00092

scholarly articles used the data-set (NEMSIS, 2022d). As of 2022, 54 U.S. states and93

territories contribute their data to the project (NEMSIS, 2023).94

Data Description and Provenance95

The NEMSIS data-set, although it is a substantial collection of nearly complete EMS96

event activity, is an acknowledged convenience sample. Captured event data includes97

information from emergency management system software, such as time-stamps for the98

receipt of the EMS call and agency assignment. It also includes monitored patient vitals99

such as pulse rate, oxygen level, blood pressure, outputs from various electronic devices100

e.g., pulse oximeter, automated blood pressure cuff, 12-lead heart monitor, and manual101

entry of event information such as a statement of the patient’s chief complaint recorded by102

paramedics or emergency medical technicians. As pre-hospital healthcare providers,103

paramedics and emergency medical technicians are responsible for completing a patient104

care report at the conclusion of each patient encounter, which begins with the EMS105

agency’s response, triggered by an EMS call (American Academy of Orthopaedic Surgeons,106

2021). The workflow involved in a patient encounter starts with a system-generated date107

and time-stamp that records when the call was received and when the EMS agency was108

dispatched. At public-safety answering points, trained call-operators who are certified109

emergency medical dispatchers code the reason for the call; see Table 4.1 Such reasons are110

part of the universal standard known as the Medical Priority Dispatch111

System (International Academics of Emergency Dispatch, 2022), and have a near112

one-to-one mapping to recorded dispatch types (NEMSIS, 2022b,c).113

Established in 1979, the Medical Priority Dispatch System provides 33 protocols that114

correspond to the chief complaints reported by callers, including emergency life events115

related to medical conditions such as stroke, chest pain, heart problem, diabetes,116

1Other reasons include automated crash notification, fire, medical alarm, healthcare profes-
sional/admission, pandemic/epidemic/outbreak, standby, well person check, air medical transport, intercept,
altered mental status, and no other appropriate choice.
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convulsions/seizures, fainting, sick person, and breathing problems, as well as injuries117

triggered by a physical incident such as an assault, stabbing, gunshot, motor vehicle118

accident, fall, drowning, or electrocution, or a lightning strike, drug overdose,119

poisoning/ingestion, imminent (baby) delivery, and more. Emergency medical dispatchers120

not only facilitate the initial data-gathering but are responsible for determining the reason121

category which best matches the chief complaint described by the caller and for providing122

pre-arrival instructions such as cardiopulmonary resuscitation steps and the administration123

of epinephrine, naloxone, or aspirin.124

Data from patient care reports, completed by local EMS agencies, is sent to the state125

where it is compiled and submitted to the national public research database. This database126

contains all patient events provided by states in a fully de-identified form that is absent the127

patient’s name and address, the provider agency, the transport destination facility, and all128

geographic information except the U.S. census region/division and an urban/rural129

indicator, so that event data is compliant with the Health Insurance Portability and130

Accountability Act of 1996 as well as state data agreements. While some variations in state131

participation and submitted data do exist (NEMSIS, 2022a), date and time-stamps for132

EMS calls are pristine, likely because they are predominantly captured by automated133

public-safety management systems. Figure 1 shows the time-stamped sub-events available134

within the timeline of a single patient care event.135

Preparation of the Data for Modeling and Analysis136

This subsection describes the process used in this study to organize the NEMSIS event137

data in preparation for various pattern exploration activities, including visualization,138

mathematical transformation, model fitting, and statistical analysis. Our study used data139

from thirteen consecutive annual releases of the public research data-set, from years 2010140

to 2022, totaling 311,848,450 EMS activations. A first step in the analysis involved141

harmonizing codes in the established protocol standards of dispatch (International142

Academics of Emergency Dispatch, 2022) with NEMSIS version two and version three143

standards (NEMSIS, 2022b,c). The aligned data is summarized under the 33 categories in144

Table 4, columns 1 and 2. For example, for the overdose/poisoning/ingestion category,145

5,782,437 activations were submitted to NEMSIS over the thirteen year period.146

The next step in the data preparation process was, for each category, to bin each147
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activation based on the hour of day an EMS unit was assigned by dispatch. We used the148

data element for unit dispatch date/time, known by its element name as eTimes.03 in149

version three (NEMSIS, 2022c) and as E05 04 in version two (NEMSIS, 2022b). The150

time-stamp corresponding to unit dispatch was used in this analysis because onset times151

are often rough estimates or are not available. It is noteworthy that public-safety call152

processing times are generally short. Still, call processing plus caller hesitancy (i.e., call-in153

delays following an incident or onset) could potentially bias the horizontal shift.154

Since time-stamps are recorded based on the public-safety call center location, time155

zone was automatically accounted for, although we note the possibility of bias within time156

zones. For example, Montgomery, Alabama lies approximately 1,000 due east of Van Horn,157

Texas – both are in the U.S. central time zone, have approximately the same hours of158

daylight each day, but have sunrise (and sunset) times that are more than one hour159

different. That is, by the time the sun rise occurs in Van Horn, people in Montgomery will160

have already experienced over an hour of daylight, even though the clock time in both161

places is identical. Variation such as this, within time zones, can explain variance in peaks162

and nadirs in processes that are governed by exposure to daylight.163

The binning process converted the 311,848,450 activations to 113,952 bins for each of164

the 33 categories–that is, one bin for each hour in the period from midnight on January 1,165

2010, to midnight on December 31, 2022, or 4,748 days times 24 hours. The set of 113,952166

binned observations, corresponding to hourly dispatches for a given category over the167

thirteen years, is called a horizon data-set for this analysis. A final step in the preparation168

process was to summarize each category by a set of 24 hourly occurrence frequency bins,169

which is called a 24-hour compressed data-set.170

Modeling and Analysis Methodology171

Once the data was prepared into hourly bins, the analysis proceeded by first using172

visualization to examine the daily pattern shapes for each medical emergency dispatch type173

via hourly histograms, also known as discrete empirical distributions. From the174

visualizations, we recognized a strong presence of a sinusoidal function, with a single peak175

and nadir during a 24 hour period, across all categories. This pattern was formalized by176

using sinusoidal regression to fit a model for each category, which allowed us to statistically177

test parameter significance, to assess overall goodness-of-fit, and to observe the degree to178
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which variance was described by each model. An appendix of this paper describes detailed179

steps for transforming data that graphically exhibits a nonlinear sinusoidal form. The180

transformation allows for the direct use of standard linear regression techniques.181

To compare models across categories, we graphed peak and nadir times along with 95%182

confidence and prediction limits. Determining the peak and nadir point estimates used a183

small amount of calculus: We set the first derivative of each fitted sinusoidal function to184

zero and solved to find the maximum and minimum points, respectively. Confidence and185

prediction limits for these points were computed next. Various methods for estimating186

calibration limits from a regression model are available (Lin and Liu, 2005; Ng and Pooi,187

2008); we chose to use a method known as “Single-Use Calibration Intervals” for its188

simplicity (National Institute of Standards and Technology, 2012, Section 4.5.2.1).189

To assess variation from a normative (or reference) pattern, i.e. a nearly common190

shape across all medical emergency dispatch categories, we computed the empirical191

cumulative distribution function CDF for each type. The CDF for each category was192

visualized alongside a reference pattern constructed from observations outside the targeted193

category. Pairwise statistical comparisons were performed via two-sample194

Kolmogorov–Smirnov (Massey, 1951; Boo et al., 2018) and Cramér-von Mises (Anderson,195

1962) tests, as well as Chi-Square (Moore, 1986; Ross, 2014) tests and the Wasserstein196

metric which is also known as the Earth Mover’s distance (Duda, 2018).197

After analyzing the daily pattern by the 33 medical emergency dispatch types, we198

followed the same methodologies to examine daily patterns for the data-set reorganized199

into monthly, seasonal, daylight-savings/civil time, and pre-/post-COVID-19 periods.200

Motivated by the fact that the 33 medical emergency types follow from chief complaint and201

priority symptoms observed by dispatch, and thus do not represent final diagnoses, we202

investigated the pattern of a medical emergency that is uniquely diagnosed in the field:203

acute myocardial infarction (heart attack). The next sections provide the results of analyses204

as well as discussion and conclusions.205

Results206

Our study analyzes hourly occurrence patterns from 311,848,450 events over a thirteen207

year period, sourced from NEMSIS; see Table 3. Our analyses show that a sinusoidal208
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equation fits all emergency dispatch categories, establishing the notion of a common,209

predictable daily pattern of rhythms at the population level. We found that daily EMS210

patterns for acute myocardial infarction (heart attack), chest pain, heart problems, stroke,211

convulsions and seizures, and sudden cardiac arrest/death exhibit peak occurrences in the212

early to mid afternoon, in contrast to previously found morning tendencies. Our analysis of213

the daily pattern for heart attack are based on field diagnoses by 12-lead cardiac monitor.214

The number of total activations used in model building ranged from just over 72,000215

(electrocutions and lightning strikes) to more than 52 million (general sick person), per216

category, for the thirteen years covered by the NEMSIS data-set. With the exception of217

two previous studies, one of comparable size which was really a meta-analysis of 30218

studies (Cohen et al., 1997) and one which is roughly twice the size of our219

smallest (Tripathi et al., 2020), the patient event numbers used to model the daily patterns220

in our investigation dwarf sizes of studies cited in Tables 1 and 2. In the data, there were221

more than half a million activations for almost 85% of the medical event categories; three222

quarters had more than one million activations; and nearly 30% had more than 10 million223

activations; see Table 4.224

Sub-Figures 2a through 2ag show the visualizations of the daily patterns, based on225

hourly call frequencies, for each medical emergency category described in Table 4, together226

with the fitted parameters for the sinusoidal equation. Table 5 provides the results of the227

33 sinusoidal regressions, one row per medical emergency category. Regression parameter228

estimation, together with the visualizations, confirmed the strong daily sinusoidal form,229

with 24-hour cycles, peaks, and nadirs across all types. All 33 models have statistically230

significant coefficient estimates at the α = 0.05 level: In 28 of the 33 medical emergency231

categories, model fitting yielded coefficient estimates with p-values of less than 0.01%. For232

three of the remaining five models, carbon monoxide/hazmat/inhalation/CBRN, choking,233

and pregnancy/childbirth/miscarriage emergencies, only the β̂1 coefficient estimates were234

“less” significant–i.e., p < 0.1% for one and p < 1% for the other two. Inspection of235

visualizations in Figure 1 shows all three models with subtle evidence of a bimodal236

distribution.237

The coefficient of determination, R2, varied from 84.20% (82.70% adjusted R2;238

pregnancy emergencies) to 98.85% (98.74% adjusted R2; industrial accident medical239

emergencies) with most in the mid to high 90%’s, indicating that all sinusoidal models240
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explain hourly variation quite well. (See Table 5.) All 33 models resulted in diminutive241

root mean square error (RMSE) values ranging from 0.0018 to 0.0083. The tiny RMSE242

values are further indication, based on the combined magnitude of residuals, of the models’243

aptness in fitting the data-sets. (See Table 5, far right column.)244

The timelines shown in Figure 3 illustrate the peak and nadir for each of the 33 daily245

medical emergency time-of-day patterns, along with corresponding confidence and246

prediction interval estimates. This figure underscores the consistency of the daily patterns247

of medical emergencies and shows that all but three have confidence and prediction248

intervals that span the afternoon. The visualization and sinusoidal regression results249

indicate a common, normative daily pattern across medical emergency dispatch categories.250

Visualizations comparing the empirical CDF for each medical event category to a251

normative distribution formed by all other event data are given in Figure 4, with statistical252

comparisons in Table 6. While there are subtle deviations in the pairwise visual253

comparisons of some CDFs, the statistical comparisons show no significant differences.254

After analyzing major medical dispatch categories, which showed a consistent255

afternoon peak across types, we extended the analysis to assess whether a daily normative256

pattern persists by considering monthly, seasonal, daylight-savings/civil time, and257

pre-/post- COVID-19 period effects. Results of analysis seeking evidence of these potential258

factors contributing to other hourly variance are summarized in the peak and nadir259

timelines of Figure 5. None of these factors showed an influence on the daily patterns. A260

daily pattern specific to heart attacks (diagnosed by EMS responders in the field) was also261

found to be consistent with the normative pattern, peaking in mid-afternoon. These results262

are discussed in more depth in the next section.263

Discussion264

In this study, we aimed to explore time-of-day patterns from the voluminous and rich265

NEMSIS data-set. The statistical significance of all models and their visually prominent266

shapes corroborate the idea of a normative daily pattern for emergency medical events.267

The daily temporal patterns that emerged are distinct and remarkable, suggesting that268

they are normative. While the data and analysis represent an observational study, that the269

found daily patterns are formed from voluminous data-set, drawn nationally and over a270
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thirteen year period, gives credence to the results of this paper. While all 33 event types271

follow this same pattern, there is variability with respect to time of day for peaks and272

nadirs by medical event type. The daily pattern analysis shows that, for 30 of the 33273

emergency medical events, EMS calls peak during early to mid afternoon. The remaining274

three medical emergencies peak in the early evening hours.275

Our study – based on 13 years of systematically curated U.S. national data comprised276

of nearly one third billion events – reveals that a common pattern persists across the 33277

standardized dispatch categories, various time periods, and field diagnosed heart attacks.278

However there are distinct differences in peak time of occurrence and within the279

distribution of several of these categories. Four daily patterns, while showing exceptional280

fit to the sinusoidal function (Table 5), show visual evidence of a bimodal distribution.281

These patterns correspond to the following four major categories; a.) carbon282

monoxide/hazmat/inhalation/CBRN (NEMSIS version three, dispatch type 2301017); b.)283

choking (NEMSIS version three, dispatch type 2301023), c.)284

pregnancy/childbirth/miscarriage (NEMSIS version three, dispatch type 2301057), and d.)285

traffic/transportation incident (NEMSIS version three, dispatch type 2301069). Their286

patterns correspond to sub-Figures 2h, 2k, 2x, and 2ac respectively and each is, arguably, a287

combination of individual daily patterns. For example, choking (Sub-Figure 2k) appears to288

have lunch- and dinner-time sub-patterns, while morning and evening bursts of CBRN289

(predominantly carbon monoxide exposures) suggest there may be reason-driven290

sub-patterns (sub-Figure 2l).291

Pregnancy emergencies (sub-Figure 2x) also appear to follow a subtle bi-modal shape.292

Recall that coefficient estimates β̂1, β̂2, and β̂3 correspond to the vertical displacement,293

horizontal shift, and amplitude, respectively. Since horizontal shift determines peak and294

nadir times of day, it is logical that bi-modal patterns–insinuated by visual inspection–lead295

to “less significance” for the β̂1 estimate. This is true for the first three of these four296

patterns, i.e. their sinusoidal model parameter estimates are all significant, but some with297

higher p values. The fourth is the pattern for injuries related to traffic and transport298

incidents shown in sub-Figure 2ac which shows swells occurring during common morning299

and evening commute times as well as model parameters all at p < 0.1% levels.300

Three “exception” patterns peaking after 6 PM, as opposed to the more common301

mid-afternoon timing, are: a.) assault (NEMSIS version three, dispatch type 2301007); b.)302
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overdose/poisoning/ingestion (NEMSIS version three, dispatch type 2301053), which303

includes alcohol and other drugs as well as poisonings and ingestions; and c.)304

stabbing/gunshot wound/penetration traumas (NEMSIS version three, dispatch type305

2301063). Their patterns correspond to sub-Figures 2d, 2w, and 2aa respectively. These306

categories are distinguished from other medical emergencies because assaults,307

stabbings/gunshot wound and penetration trauma are forms of interpersonal violence. The308

overdose/poisoning/ingestion anomaly needs further analyses and is reflective of the opioid309

addiction and overdose epidemic that has plagued the U.S. for decades. Potential310

explanations for the later tendency for this group include non-biomedical factors that could311

influence the timing of events leading up to one of these injuries and overdoses, and312

subsequent call for medical help. The evening peak timing is after normal work and school313

hours. In these cases, the distress calls appear to follow human activity and behaviors post314

work and school hours.315

The consistency of the daily pattern across medical emergencies, which run the gamut316

in terms of potential threats to life, seem to indicate that the human sleep/wake pattern is317

the predominant factor in time-of-day occurrence tendency. This indication is re-enforced318

from the comparative analysis on empirical CDFs, as well as the period- and heart319

attack-specific daily patterns. The common patterns shown in our results warrant further320

investigation via more targeted studies that examine the causes, risks, and protections by321

emergency medical event type as well as correlations across categories. Such investigations322

may help to uncover whether or not the time-of-day patterns found in this research, which323

are consistent across seemingly unlike medical emergencies, might be explained by the mere324

propensity for human events to occur squarely in the middle of a wake-state cycle. That325

the general pattern is shared, even between seemingly non-similar medical emergencies,326

suggests a need for studies to unravel what people are doing immediately beforehand.327

We note that dispatch types such as chest pain, heart problem, convulsion/seizures,328

and psychiatric problem/abnormal behavior/suicide attempt are not one-to-one with the329

categories used in previous studies: heart attack, congestive heart failure, epileptic seizure,330

and suicide attempts or ideation; see Tables 1 and 2. For one, a category represents the331

patient’s chief complaint, noted at the time of call receipt, whereas most previous studies332

are based on medical diagnoses by physicians. Nevertheless, the categories intersect, even333

with error in the upstream process. For example, a medical emergency with the chief334
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complaint “breathing problem” is a potential heart attack when accompanied by chest335

pain, nausea, sweating, irregular heart beat, and weakness–symptoms that might not be336

mentioned in the call conversation. In fact, a dispatch for chest pain could end up being for337

a patient with a digestive system problem, such as severe heartburn.338

In general, formal diagnoses are not made until a patient is seen by a physician in an339

emergency room, hospital, or clinical office. Even those diagnoses can be tentative until a340

patient follows up with specialists, has more diagnostic tests, or even (in case of expiring)341

is autopsied (Brush et al., 2017). One exception to this is that paramedics, in the field, can342

pronounce an acute myocardial infarction (heart attack) using a 12-lead electrocardiogram,343

also known as a heart or cardiac monitor. Since not all chest pain dispatches indicate a344

heart attack, we took advantage of the fact that the NEMSIS data-set can include an acute345

myocardial infarction impression (International Classification of Diseases version 10 code346

I21, Centers for Medicare & Medicaid Services (2023)) and a corresponding data field347

interpreted from a field electrocardiogram reading. We used these data fields to isolate and348

observe the daily pattern for responses to acute myocardial infarction events to see if their349

pattern deviated from the chest pain pattern. Our analysis showed that in 694,505350

distinguishable acute myocardial infarction events, the daily pattern was again close to the351

normative pattern, and similar to the pattern for chest pain dispatches, peaking in352

occurrence just before 3 PM. (See last line of Figure 5.) Our findings based on nearly353

700,000 field-diagnosed heart attacks contrast significantly with studies that showed354

morning peaks for heart attack occurrences (Cohen et al., 1997; Muller et al., 1985). The355

mid-afternoon peak found in our study, and its similarity with patterns for other seemingly356

non-similar medical events, suggests that non-biomedical factors may be more357

consequential. Our study’s results suggest that re-investigation is worth-while, particularly358

since pharmacological prevention of acute myocardial infarction is based heavily on359

predominant occurrence time-of-day assumptions (Ruben et al., 2019).360

An emergency medical call to dispatch for medical assistance, along with its361

time-stamp, can be thought of as a distress signal that happens during a perceived medical362

emergency. That is, a medical emergency is arguably a continuous process that begins with363

symptom onset, and the call for help is merely a discrete point in time within process.364

Sometimes there is very little delay between the onset and the call, for example for a365

traumatic injury following a motor vehicle crash. In other times, there is hesitancy – for366
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example, in the case of illegal drug overdose or other reasons for anxiety about being367

exposed to law enforcement (Wagner et al., 2019; Zoorob, 2020). For some medical368

conditions, a patient may not recognize their symptoms, or may be in denial, which has369

been documented for stroke (Fussman et al., 2010). In some cases, for example heart370

attack, certain symptoms may appear for hours in advance (Dracup et al., 1995; Finnegan371

et al., 2000). Currently, there seems to be only high level understanding of the372

circumstances leading up to decisions to call for EMS assistance. That is, it would be373

helpful in analyzing and interpreting daily patterns to know who, why, and when people374

decide to dial 9-1-1 – for example, in Canada, the U.S., Saudi Arabia, and others – or 1-1-2375

– in Sweden, Turkey, and Portugal, and 9-9-9 in the United Kingdom (World Population376

Review, 2023). The vast majority of calls are made by a second party, i.e. a family377

member, friend, or bystander who is someone present with the patient and acting on their378

behalf (Clawson et al., 2015, Figures 3.5a, 3.5b). This is based on limited observation, but379

indicates that patients usually do not make a call for medical assistance themselves. How380

often and for how long might there be delays in calling between symptom onset and a381

distress call? This sort of behavior likely affects the variance and shift in daily patterns.382

Daily pattern for EMS responses to convulsion/seizures (total 9,017,651; see383

Sub-Figure 2l) was also inconsistent with the patterns found by at least two previous384

studies. Activity for medical emergencies of this type peaked in the mid afternoon, at 3:28385

PM, with a wide 95% confidence interval (just after noon to nearly 7 PM), see Figure 3.386

Two existing studies specific to epileptic seizures showed varying peaks under specific types387

of seizure, with a common tendency in the early morning hours (Pavlova et al., 2012;388

Ramgopal et al., 2012). The discord between the EMS pattern and these studies may be389

due to the fact that the convulsions/seizures dispatch type includes various causes, only390

one of which is epileptic seizure. The severity of the seizure, or the likelihood of its being391

witnessed, may also drive more calls during the day. This pattern needs much further392

investigation, including the etiology of convulsions and seizures and variations according to393

age group.394

EMS responses to events in the category of falls (total, 27,130,646) is another example395

of a medical emergency that likely includes a large variation in reasons–from a workman396

falling off a roof to an older adult tripping on a rug. The daily pattern (sub-Figure 2q) and397

peak in mid-afternoon (Figure 3 in this case is consistent with previous findings that398
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showed that posture control is better in the morning (Gribble et al., 2007). However, this399

category is likely composed of many causes, which could include biomedical factors as well.400

For example, drops in blood pressure or glucose can be fall causes.401

Recognition of normative patterns across the spectrum of medical event types sets the402

stage for future research that could advance prevention sciences. There are clear patterns403

of peak occurrence for overdoses, work related injuries, recreational injuries, allergic404

reactions and general sickness, and cardiac events. As noted earlier, overdoses are more405

likely to occur in the early evening. These include opioid drug overdoses. Are overdoses406

more likely to peak in early evening hours because users work during normal business hours407

and therefore the opioids are taken after work? Or is there a relationship to a natural cycle408

or circadian rhythm of neurotransmitter release that affects vulnerabilities for409

overdose (Koob et al., 1998; Kosobud et al., 2007; Tomkins and Sellers, 2001)? Might the410

hourly occurrence patterns identified in the present study enhance the design of addiction411

treatment (Webb, 2017)? Similarly, given that emergencies such as burns/explosions,412

electrocution, eye injuries, lacerations, drowning, and animal bites have predictable daily413

occurrence tendencies and that accidents are a leading cause of death in the U.S. (CDC,414

2023), would these patterns be useful for designing prevention strategies in work and415

recreational settings?416

Of note in the daily patterns is the fact that seemingly dissimilar medical events all417

tend to occur right around 3 PM; for example, abdominal pain, headaches, allergic418

reactions, fainting, and general sick person. Are there any inferences we can draw from this419

common hour of day? Likewise, back pain and non-traumatic chest pain emergency420

medical events are most alike in their tendency to peak around the same time–just after421

1:30 PM, for reasons not yet understood. Breathing and heart problems emergency event422

tendencies also peak at around 3 PM, with 95% confidence interval from 1 to 5 PM and423

95% prediction interval from just before noon to just after 6 PM. Could this be due to a424

similar or shared causes?425

In summary, our analysis revealed a robust daily pattern in the hourly distribution of426

occurrences across 33 major categories of medical emergencies. The consistent pattern427

persisted in extended analyses organized around periods (month, season,428

daylight-savings/civil time, COVID-19), and heart attack-specific events. The common429

sinusoidal cycle demonstrates that all categories of medical emergencies appear to be430
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influenced by an underlying daily rhythm. In several cases, the found daily patterns431

described in this paper are not consistent with long-established morning peaks: specifically432

for acute myocardial infarction, chest pain, heart problems, stroke, convulsions and433

seizures, and sudden cardiac arrest/death. In conclusion, recognition of the trend in daily434

patterns of medical emergencies raises many important questions about causes and435

prevention efforts. The daily predictable EMS patterns presented here may provide impetus436

for further research that links daily variation with causal factors, risks, and protections.437

Limitations438

We note that the 311,848,450 total activations, while a substantial observational439

data-set, may be influenced by duplicate or cancelled calls, and by recognized omissions.440

For example, the New York State Department of Health reported that as of January 1,441

2020, all of its agencies were using the latest NEMSIS standard for electronic capture of442

patient care information, improving the quality and completeness of the data (New York443

State Department of Health, 2021). However, electronic data capture included only444

approximately 90% of statewide activations, reflecting submissions from about half of all445

certified agencies in the state. The remaining data–roughly 10% of statewide446

activations–were documented manually via paper patient care reports, and are not included447

in NEMSIS contributions.448

It is important to note that a category is based on the best-known information at the449

time of EMS activation. For example, an activation for a breathing problem, fall,450

unconscious person, or cardiac arrest might be due to an opioid overdose, falling under the451

overdose/poisoning/ingestion category. In other words, as with any recording of data based452

on human communications and judgement, both error and re-diagnosis are possible. Due to453

the voluminous size of the data-set–nearly a third of a billion activations over a thirteen454

year period–our analysis assumes that such mis- or re-classifications are not more455

significant than a random effect in data. A study to estimate the magnitude of this effect is456

suggested for future research.457
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Appendix468

This appendix describes the step-by-step process used to analyze patterns from the469

NEMSIS data-set, binned by hour of day. The modeling involves a standard polynomial470

transformation from trigonometry, used similarly by previous researchers (Eubank and471

Speckman, 1990). This development is designed so that sinusoidal regression modeling is472

understandable to all, and can be reproduced on any sort of similarly binned data. The473

mathematical elaboration of this section also reveals the equivalency to the cosine form474

which is popular for modeling biological rhythms. This approach for handling binned event475

data, from EMS or other processes, can be readily implemented using common statistical476

packages such as SAS, SPSS, STATA, R, Python, or an MS EXCEL spreadsheet.477

Visualization and Sinusoidal Modeling478

Plotting the 24-hour distribution for each dispatch category or period was the first step479

in the exploration phase of this research. The next methodological step was fitting the480

sinusoidal form (Freegarde, 2013; Vizireanu and Halunga, 2012) to the data for each481
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category or period. We first characterized the sinusoidal form generally as:482

Y = µ+ ρ sin(ωX + θ) (1)

which is a special case of the single-component cosinor (Cornelissen, 2014). Equation 1483

computes Y , the probability of an EMS activation (of a specific category) occurring during484

hour X (the hour of the day – 0, . . . , 23). Parameters µ, ρ, ω, and θ fully characterize485

everything needed for the shape, location, and scale of the equation’s form. Specifically:486

|ρ| reflects the sine wave’s amplitude, or (in its absolute value) the high point of487

occurrences in the day; the amplitude is the hour corresponding to the highest488

percentage of dispatches;489

ω is the frequency, computed from the observed period (ω = 2π/24);490

2π
ω

is the period–the duration represented by a single sine wave (by ocular inspection, this491

is clearly 24 hours);492

θ represents the horizontal shift of the sine wave, or the displacement of the wave’s493

starting point to the right (or left, if negative) of the y axis;494

|θ|
ω

is the horizontal shift scaled to the period; and495

µ is the vertical shift–the displacement up (or down) from the x axis.496

To derive parameters that could be estimated using ordinary statistical modeling, the497

following transformations were applied. First, the dependent variable was transformed by498

standardizing the time interval from [0, 23] (hours) to radians:499

X̃ = 2πX/24 (2)

The transformation of Equation 2 yields a period of 2π, with frequency ω equal to500

one–consistent with the visually verified shapes in Sub-Figures 2a through 2ag. A501

substitution from Equation 2 into Equation 1, with ω = 1, results in:502

Y = µ+ ρ sin(X̃ + θ) (3)
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Using a basic trigonometry identity known as the angle-sum relation for the sine503

function (Zwillinger, 2018, p. 429), Equation 3 is equivalent to:504

Y = µ+ sin(θ) cos(X̃) + ρ cos(θ) sin(X̃) (4)

A diligent substitution of:505

β0 for µ,

β1 for sin(θ),

β2 for ρ cos(θ),

X1 for cos(X̃), and

X2 for sin(X̃)


(5)

yields an equivalent equation:506

Y = β0 + β1X1 + β2X2 (6)

Equation 6 is the widely known linear regression model. It comprises an intercept β0 and a507

linear combination (in β1 and β2) of the dependent variables X1 and X2, which are508

transformations of the original dependent variable X in Equation 1. Parameters β0, β1,509

and β2 are functions of the location and shape variables from Equation 1.510

Equation 4 is not unfamiliar in health and statistical modeling. Public health511

researchers have long used it to model weekly and seasonal patterns of infectious disease512

outbreaks such as influenza. It resembles a form used by epidemiologists to model weekly513

or seasonal effects–for example, the Fourier terms in the negative binomial model (Noufaily514

et al., 2013, Section 3.1). It is also a variant of the cosine circadian and diurnal515

models (Germanó et al., 1984; Rodriguez-Zas et al., 2012; Ware and Bowden, 1977), and of516

basic signal processing used in engineering (Gold and Rader, 1969; Whalen, 1971).517
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Table 1: A summary and analysis of recent articles that reported on time-of-day tendencies
on medical events or illness onset. Recent studies have examined an array of event types,
under various assumptions. However, most of the studies are small in terms of observational
data size. Part 1 of 2.
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Table 2: A summary and analysis of recent articles that reported on time-of-day tendencies
on medical events or illness onset. Recent studies have examined an array of event types,
under various assumptions. However, most of the studies are small in terms of observational
data size. Part 2 of 2.
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Table 3: List of the number of EMS activations captured in the NEMSIS Public Research
data-set for years 2010-2022. Observational data used in this study drew from this data,
specifically for 33 target categories corresponding to major medical events and priority symp-
toms, described in Table 4. The isolated target categories resulted in 311,848,450 EMS ac-
tivations analyzed in this study.

NEMSIS Total Target
Data Activations Category

Year Version (NEMSIS) Activations

2010 v2 9,776,094 7,971,521
2011 v2 14,371,941 11,752,181
2012 v2 19,831,189 15,814,542
2013 v2 23,897,211 19,390,627
2014 v2 25,835,729 21,286,429
2015 v2 30,206,450 24,864,430
2016 v2 29,919,652 24,553,240
2017 v3 7,907,829 6,912,094
2018 v3 22,532,890 19,780,139
2019 v3 34,203,087 30,305,643
2020 v3 43,488,767 38,481,719
2021 v3 48,982,990 43,434,387
2022 v3 53,179,492 47,301,498

Total (2010-2022) 364,133,321 311,848,450
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Table 4: A list of the 33 targeted medical event dispatches within scope of this study, along
with a description of the elements used to isolate them within NEMSIS public research
data-set, 2010-2022. The target activations column provides the total number of instances
for each dispatch category.

Target Daily
NEMSIS NEMSIS Activations Pattern

Reason (Description) Version 3 Version 2 (2010-2022) Figure

Abdominal Pain / Problems 2301001 400 9,261,255 Fig. 2a
Allergic Reaction / Stings 2301003 405 1,989,554 Fig. 2b
Animal Bite 2301005 410 510,180 Fig. 2c
Assault 2301007 415 4,834,719 Fig. 2d
Back Pain / Non-Traumatic 2301011 420 3,022,121 Fig. 2e
Breathing Problem 2301013 425 27,707,426 Fig. 2f
Burns / Explosion 2301015 430 690,226 Fig. 2g
Carbon Monoxide / Hazmat / Inhalation / CBRN† 2301017 435 335,582 Fig. 2h
Cardiac Arrest / Death 2301019 440 4,581,316 Fig. 2i
Chest Pain / Non-Traumatic 2301021 445 18,034,696 Fig. 2j
Choking 2301023 450 908,315 Fig. 2k
Convulsions / Seizure 2301025 455 9,017,651 Fig. 2l
Diabetic Problem 2301027 460 5,095,457 Fig. 2m
Drowning / Diving / SCUBA Accident 2301081 465 125,071 Fig. 2n
Electrocution / Lightning 2301029 470 72,284 Fig. 2o
Eye Problem / Injury 2301031 475 298,327 Fig. 2p
Falls 2301033 480 27,130,646 Fig. 2q
Headache 2301037 485 1,505,375 Fig. 2r
Heart Problems / AICD 2301041 490 3,616,305 Fig. 2s
Heat / Cold Exposure 2301043 495 503,108 Fig. 2t
Hemorrhage / Laceration 2301045 500 5,316,362 Fig. 2u
Industrial Accident / Inaccessible Incident / Other Entrapments 2301047 505 135,077 Fig. 2v
Overdose / Poisoning / Ingestion 2301053 510 5,782,437 Fig. 2w
Pregnancy / Childbirth / Miscarriage 2301057 515 1,801,287 Fig. 2x
Psychiatric Problem / Abnormal Behavior / Suicide Attempt 2301059 520 10,027,625 Fig. 2y
Sick Person 2301061 525 52,086,436 Fig. 2z
Stab / Gunshot Wound / Penetrating Trauma 2301063 530 1,286,719 Fig. 2aa
Stroke 2301067 535 5,880,156 Fig. 2ab
Traffic / Transportation Incident 2301069 540 23,250,395 Fig. 2ac
Traumatic Injury 2301073 545 8,482,885 Fig. 2ad
Unconscious / Fainting / Near-Fainting 2301077 550 14,439,981 Fig. 2ae
Unknown Problem / Person Down 2301079 555 14,969,690 Fig. 2af
Transfer / Interfacility / Palliative Care 2301071 560 49,149,786 Fig. 2ag

Total 311,848,450

† Hazmat indicates a possible exposure to hazardous materials; CBRN indicates a possible chemical, biological,
radiological, or nuclear exposure (American Academy of Orthopaedic Surgeons, 2021, Chapter 40).
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Table 5: Summary of sinusoidal regression results for the 33 targeted NEMSIS dispatch types. All coefficients are
statistically significant, most at the p < 0.0001 level. The coefficient of determination (R2) was between 0.84 and
0.99 for all models, with most falling in the mid- to high-90s.

NEMSIS
Type 95% Confidence 95% Confidence 95% Confidence Adj.

(v3) β̂0 Interval for β̂0 β̂1 Interval for β̂1 β̂2 Interval for β̂2 R2 R2 RSME

2301001 0.0417*** [0.0406 , 0.0427] -0.0072*** [-0.0087 , -0.0057] -0.0077*** [-0.0092 , -0.0063] 0.9137 0.9055 0.0023
2301003 0.0417*** [0.0400 , 0.0433] -0.0101*** [-0.0125 , -0.0078] -0.0199*** [-0.0222 , -0.0176] 0.9501 0.9453 0.0036
2301005 0.0417*** [0.0402 , 0.0431] -0.0104*** [-0.0125 , -0.0084] -0.0259*** [-0.0279 , -0.0238] 0.9743 0.9718 0.0032
2301007 0.0417*** [0.0402 , 0.0431] 0.0117*** [0.0096 , 0.0138] -0.0145*** [-0.0166 , -0.0124] 0.9426 0.9372 0.0032
2301011 0.0417*** [0.0400 , 0.0434] -0.0138*** [-0.0162 , -0.0114] -0.0047** [-0.0071 , -0.0023] 0.8811 0.8698 0.0038
2301013 0.0417*** [0.0403 , 0.0430] -0.0086*** [-0.0105 , -0.0067] -0.0075*** [-0.0094 , -0.0056] 0.8815 0.8703 0.003
2301015 0.0417*** [0.0407 , 0.0427] -0.0074*** [-0.0088 , -0.0060] -0.0183*** [-0.0197 , -0.0169] 0.9760 0.9737 0.0022
2301017 0.0417*** [0.0398 , 0.0436] -0.0059** [-0.0085 , -0.0032] -0.0142*** [-0.0169 , -0.0116] 0.8723 0.8601 0.0042
2301019 0.0417*** [0.0399 , 0.0434] -0.0144*** [-0.0169 , -0.0120] -0.0064*** [-0.0089 , -0.0039] 0.8949 0.8849 0.0038
2301021 0.0417*** [0.0402 , 0.0431] -0.0088*** [-0.0109 , -0.0068] -0.0104*** [-0.0124 , -0.0083] 0.9002 0.8907 0.0032
2301023 0.0417*** [0.0383 , 0.0451] -0.0080* [-0.0128 , -0.0032] -0.0306*** [-0.0354 , -0.0258] 0.8994 0.8899 0.0075
2301025 0.0417*** [0.0403 , 0.0430] -0.0129*** [-0.0147 , -0.0110] -0.0141*** [-0.0160 , -0.0122] 0.9558 0.9516 0.0029
2301027 0.0417*** [0.0406 , 0.0427] -0.0094*** [-0.0109 , -0.0079] -0.0096*** [-0.0111 , -0.0081] 0.9458 0.9406 0.0023
2301081 0.0417*** [0.0390 , 0.0444] -0.0151*** [-0.0189 , -0.0113] -0.0352*** [-0.0390 , -0.0314] 0.9537 0.9493 0.006
2301029 0.0417*** [0.0399 , 0.0434] -0.0129*** [-0.0153 , -0.0104] -0.0186*** [-0.0211 , -0.0161] 0.9449 0.9396 0.0039
2301031 0.0417*** [0.0403 , 0.0430] -0.008*** [-0.0100 , -0.0061] -0.0136*** [-0.0155 , -0.0117] 0.9336 0.9272 0.003
2301033 0.0417*** [0.0405 , 0.0428] -0.014*** [-0.0156 , -0.0124] -0.0108*** [-0.0124 , -0.0091] 0.9600 0.9562 0.0025
2301037 0.0417*** [0.0404 , 0.0429] -0.0071*** [-0.0088 , -0.0054] -0.0125*** [-0.0142 , -0.0107] 0.9344 0.9281 0.0027
2301041 0.0417*** [0.0400 , 0.0433] -0.0129*** [-0.0153 , -0.0105] -0.012*** [-0.0143 , -0.0096] 0.9194 0.9118 0.0037
2301043 0.0417*** [0.0379 , 0.0454] -0.0232*** [-0.0285 , -0.0179] -0.0287*** [-0.0340 , -0.0234] 0.9090 0.9004 0.0083
2301045 0.0417*** [0.0403 , 0.0430] -0.0066*** [-0.0085 , -0.0047] -0.0105*** [-0.0124 , -0.0086] 0.9007 0.8913 0.0029
2301047 0.0417*** [0.0408 , 0.0425] -0.0165*** [-0.0177 , -0.0154] -0.0176*** [-0.0188 , -0.0164] 0.9885 0.9874 0.0018
2301053 0.0417*** [0.0403 , 0.0431] 0.0045** [0.00250 , 0.0064] -0.0188*** [-0.0208 , -0.0168] 0.9520 0.9474 0.0031
2301057 0.0417*** [0.0409 , 0.0425] -0.0018* [-0.0029 , -0.0006] -0.0054*** [-0.0066 , -0.0043] 0.8420 0.8270 0.0018
2301059 0.0417*** [0.0405 , 0.0429] -0.0056*** [-0.0073 , -0.0039] -0.018*** [-0.0196 , -0.0163] 0.9623 0.9587 0.0026
2301061 0.0417*** [0.0402 , 0.0431] -0.016*** [-0.0181 , -0.0139] -0.0105*** [-0.0126 , -0.0084] 0.9451 0.9399 0.0033
2301063 0.0417*** [0.0400 , 0.0433] 0.0088*** [0.0064 , 0.0111] -0.0146*** [-0.0169 , -0.0123] 0.9168 0.9089 0.0036
2301067 0.0417*** [0.0397 , 0.0437] -0.0218*** [-0.0247 , -0.0190] -0.0129*** [-0.0158 , -0.0101] 0.9433 0.9379 0.0044
2301069 0.0417*** [0.0395 , 0.0439] -0.0151*** [-0.0182 , -0.0120] -0.0209*** [-0.0240 , -0.0178] 0.9345 0.9282 0.0048
2301073 0.0417*** [0.0409 , 0.0425] -0.0099*** [-0.0110 , -0.0087] -0.0192*** [-0.0204 , -0.0181] 0.9869 0.9856 0.0018
2301077 0.0417*** [0.0399 , 0.0434] -0.0167*** [-0.0192 , -0.0143] -0.0146*** [-0.0171 , -0.0122] 0.9448 0.9395 0.0038
2301079 0.0417*** [0.0406 , 0.0428] -0.0122*** [-0.0138 , -0.0107] -0.0132*** [-0.0148 , -0.0117] 0.9658 0.9625 0.0024
2301071 0.0417*** [0.0395 , 0.0438] -0.0248*** [-0.0279 , -0.0218] -0.0129*** [-0.0160 , -0.0099] 0.9468 0.9418 0.0047

∗p < 0·01 ∗∗p < 0·001 ∗∗∗p < 0·0001; R2 ≡ coefficient of determination; RMSE ≡ root mean squared error.
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Figure 1: A timeline showing emergency medical services (EMS) events and activities during an activation in response to the emergency medical distress
call for a single patient event. The data for time-stamps and element names is from NEMSIS, described in user documentation version 3 (NEMSIS, 2022b)
and, in parentheses, version 2 (NEMSIS, 2022c). eTimes.03 (E04 04) in red is the time-stamped used as the event occurence reference point for this analysis.
The interval defined by B illustrates the potential time delay between symptom onset and EMS dispatch time, which is elusive due to the subjective nature
of reported symptoms prior to the distress call.
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Figure 2: Daily patterns for all 33 NEMSIS dispatch types, derived from sinusoidal regression. x-axis is the (military) hour of
day. y-axis is the frequency (percent) of dispatch events in the hour. Blue bars are observations to form the 24-hour distribution,
from 2010-2022 NEMSIS data. The red line is the fitted sinusoidal regression model. See equation 1 and its derivation in the
Appendix.
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Figure 3: Peak and nadir times of day for each of the 33 targeted dispatch types, shown with calibrated intervals derived from
the 95% prediction limits and 95% confidence intervals. The peak and nadir times are found via the first derivative of the fitted
sinusoidal function for each type. Intervals are estimated using the standard error from the regression model.
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Figure 4: Visual comparison of each dispatch category’s hourly empirical cumulative distribution (in green) with the empirical
distribution from all other categories (in purple). Subfigures 4ah and 4ai are the overall histogram and cumulative distribution,
i.e. the reference pattern.
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Table 6: Summary of test statistics comparing the empirical cumulative distribution for each
dispatch category to the empirical cumulative distribution formed by all other categories.
The rows of the Table are ordered by ascending Wasserstein distance between the category’s
empirical c.d.f. and the normative pattern c.d.f. from all other observations. TheWasserstein
distances, also called Earth Mover’s distances, and the test statistics show that the c.d.f.’s
are very close – and not significantly different from one another.

Wasser-

NEMSIS NEMSIS KSb KSb CVMc CVMc CSd CSd stein
Ranka V3 Code Dispatch Reason (Description) stat p stat p stat p distancee

- All Reference Pattern 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
1 2301079 Unknown Problem / Person Down 0.0417 1.0000 0.0100 1.0000 0.0011 1.0000 0.0042
2 2301041 Heart Problems/AICD 0.0417 1.0000 0.0100 1.0000 0.0024 1.0000 0.0050
3 2301033 Falls 0.0417 1.0000 0.0104 1.0000 0.0034 1.0000 0.0064
4 2301025 Convulsions / Seizure 0.0417 1.0000 0.0104 1.0000 0.0025 1.0000 0.0086
5 2301061 Sick Person 0.0417 1.0000 0.0100 1.0000 0.0046 1.0000 0.0098
6 2301077 Unconscious / Fainting / Near-Fainting 0.0833 1.0000 0.0139 1.0000 0.0083 1.0000 0.0121
7 2301031 Eye Problem / Injury 0.0417 1.0000 0.0100 1.0000 0.0107 1.0000 0.0137
8 2301027 Diabetic Problem 0.0833 1.0000 0.0122 1.0000 0.0100 1.0000 0.0150
9 2301037 Headache 0.0833 1.0000 0.0135 1.0000 0.0140 1.0000 0.0160
10 2301021 Chest Pain / Non-Traumatic 0.0833 1.0000 0.0152 1.0000 0.0112 1.0000 0.0161
11 2301019 Cardiac Arrest / Death 0.0417 1.0000 0.0100 1.0000 0.0186 1.0000 0.0186
12 2301017 Carbon Monoxide / Hazmat / Inhalation / CBRN 0.0417 1.0000 0.0100 1.0000 0.0212 1.0000 0.0193
13 2301047 Industrial Accident / Inaccessible Incident / Other Entrapments 0.0833 1.0000 0.0152 1.0000 0.0114 1.0000 0.0194
14 2301045 Hemorrhage / Laceration 0.0833 1.0000 0.0174 0.9999 0.0179 1.0000 0.0195
15 2301067 Stroke 0.1250 0.9942 0.0256 0.9965 0.0272 1.0000 0.0204
16 2301029 Electrocution / Lightning 0.0833 1.0000 0.0122 1.0000 0.0159 1.0000 0.0224
17 2301015 Burns / Explosion 0.0417 1.0000 0.0100 1.0000 0.0209 1.0000 0.0237
18 2301073 Traumatic Injury 0.0417 1.0000 0.0100 1.0000 0.0187 1.0000 0.0240
19 2301013 Breathing Problem 0.0833 1.0000 0.0208 0.9995 0.0212 1.0000 0.0245
20 2301001 Abdominal Pain / Problems 0.0833 1.0000 0.0221 0.9990 0.0241 1.0000 0.0249
21 2301011 Back Pain / Non-Traumatic 0.0833 1.0000 0.0174 0.9999 0.0213 1.0000 0.0264
22 2301059 Psychiatric Problem / Abnormal Behavior / Suicide Attempt 0.0417 1.0000 0.0100 1.0000 0.0308 1.0000 0.0273
23 2301003 Allergic Reaction / Stings 0.0833 1.0000 0.0139 1.0000 0.0248 1.0000 0.0280
24 2301071 Transfer / Interfacility / Palliative Care 0.0833 1.0000 0.0278 0.9937 0.0586 1.0000 0.0325
25 2301069 Traffic / Transportation Incident 0.0833 1.0000 0.0308 0.9878 0.0466 1.0000 0.0334
26 2301057 Pregnancy / Childbirth / Miscarriage 0.1250 0.9942 0.0451 0.9317 0.0686 1.0000 0.0403
27 2301053 Overdose / Poisoning / Ingestion 0.1250 0.9942 0.0486 0.9127 0.1186 1.0000 0.0488
28 2301005 Animal Bite 0.0833 1.0000 0.0343 0.9784 0.0611 1.0000 0.0489
29 2301043 Heat / Cold Exposure 0.1667 0.9024 0.0712 0.7725 0.1382 1.0000 0.0548
30 2301063 Stab / Gunshot Wound / Penetrating Trauma 0.1667 0.9024 0.0729 0.7616 0.1651 1.0000 0.0550
31 2301007 Assault 0.1667 0.9024 0.0829 0.7008 0.2160 1.0000 0.0630
32 2301023 Choking 0.1250 0.9942 0.0846 0.6906 0.1343 1.0000 0.0714
33 2301081 Drowning / Diving / SCUBA Accident 0.1667 0.9024 0.1211 0.5074 0.1713 1.0000 0.0769

a Ranking is based on the Wasserstein distance to the reference pattern
b KS ≡ The two-sample Kolmogorov–Smirnov test (Massey, 1951; Boo et al., 2018).
c CVM ≡ The two-sample Cramér-von Mises test (Anderson, 1962).
d CS ≡ The Chi-Square goodness-of-fit test (Moore, 1986; Ross, 2014).
e The Wasserstein distance (metric) between two empirical cumulative distributions. This is also known as the Earth Mover’s distance (Duda, 2018).
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Figure 5: Peak and nadir times of day for the extended analyses, i.e. time periods (month, season, daylight savings/civil
time, COVID-19 periods) and the AMI-specific pattern. The times are shown with calibrated intervals derived from the 95%
prediction limits and 95% confidence intervals. The peak and nadir times are found via the first derivative of the fitted sinusoidal
function for each type. Intervals are estimated using the standard error from the regression model.
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Table 7: List of the number of EMS activations captured in the NEMSIS Public Research
data-set for years 2010-2022. Breakdown by extended analysis category.

Extended
Analysis Total
Category Activations

January 26,042,149
February 23,650,098
March 25,507,966
April 24,845,265
May 26,630,458
June 25,968,185
July 27,750,866
August 27,497,144
September 25,978,081
October 26,838,051
November 25,061,405
December 26,078,782

Spring 77,580,355
Summer 81,343,585
Fall 77,497,596
Winter 75,426,914

Daylight Savings Time 205,341,884
Standard Time 106,506,566

Pre-Covid Before 3/15/2020 190,948,079
Lock-Down 3/15-6/14/2020 8,811,928
Transition 1 - 6/15-9/14/2020 10,080,698
Transition 2 9/15-12/31/2020 11,271,860
Transition 3 - 2021 43,434,044
Transition 4 - 2022 47,301,841

Acute Myocardial Infarction (AMI) 642,499
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Table 8: Summary of sinusoidal regression results for the 25 cases in the extended analysis. All coefficients are
statistically significant, most at the p < 0.0001 level. The coefficient of determination (R2) was between 0.95 and
0.97 for all models, and root mean square error less than 0.003 for all models.

Extended
Analysis 95% Confidence 95% Confidence 95% Confidence Adj.

Category β̂0 Interval for β̂0 β̂1 Interval for β̂1 β̂2 Interval for β̂2 R2 R2 RSME

January 0.0417 *** [0.0406 , 0.0427] -0.0138 *** [-0.0152 , -0.0123] -0.0116 *** [-0.013 , -0.0101] 0.9693 0.9664 0.0023
February 0.0417 *** [0.0406 , 0.0427] -0.0139 *** [-0.0154 , -0.0124] -0.0118 *** [-0.0133 , -0.0103] 0.9681 0.9651 0.0023
March 0.0417 *** [0.0406 , 0.0427] -0.0137 *** [-0.0152 , -0.0122] -0.0125 *** [-0.0140 , -0.0110] 0.9700 0.9672 0.0023
April 0.0417 *** [0.0406 , 0.0427] -0.0137 *** [-0.0152 , -0.0122] -0.0129 *** [-0.0144 , -0.0114] 0.9700 0.9671 0.0023
May 0.0417 *** [0.0406 , 0.0427] -0.0135 *** [-0.0150 , -0.0120] -0.0131 *** [-0.0146 , -0.0116] 0.9701 0.9672 0.0023
June 0.0417 *** [0.0406 , 0.0428] -0.0134 *** [-0.0150 , -0.0119] -0.0132 *** [-0.0147 , -0.0116] 0.9682 0.9651 0.0024
July 0.0417 *** [0.0406 , 0.0428] -0.0130 *** [-0.0146 , -0.0114] -0.0132 *** [-0.0148 , -0.0116] 0.9664 0.9632 0.0024
August 0.0417 *** [0.0406 , 0.0427] -0.0137 *** [-0.0152 , -0.0122] -0.0131 *** [-0.0146 , -0.0116] 0.9709 0.9682 0.0023
September 0.0417 *** [0.0406 , 0.0427] -0.0141 *** [-0.0155 , -0.0126] -0.0129 *** [-0.0144 , -0.0114] 0.9719 0.9693 0.0023
October 0.0417 *** [0.0406 , 0.0427] -0.0142 *** [-0.0156 , -0.0128] -0.0128 *** [-0.0142 , -0.0113] 0.9731 0.9705 0.0022
November 0.0417 *** [0.0407 , 0.0427] -0.0140 *** [-0.0154 , -0.0126] -0.0120 *** [-0.0134 , -0.0106] 0.9728 0.9702 0.0022
December 0.0417 *** [0.0406 , 0.0427] -0.0135 *** [-0.0149 , -0.0120] -0.0119 *** [-0.0134 , -0.0105] 0.9694 0.9665 0.0023
Spring 0.0417 *** [0.0406 , 0.0427] -0.0136 *** [-0.0151 , -0.0121] -0.0130 *** [-0.0145 , -0.0115] 0.9697 0.9668 0.0024
Summer 0.0417 *** [0.0406 , 0.0427] -0.0135 *** [-0.0150 , -0.0119] -0.0131 *** [-0.0146 , -0.0116] 0.9694 0.9664 0.0024
Fall 0.0417 *** [0.0407 , 0.0427] -0.0141 *** [-0.0155 , -0.0127] -0.0124 *** [-0.0138 , -0.0109] 0.9731 0.9706 0.0022
Winter 0.0417 *** [0.0406 , 0.0427] -0.0137 *** [-0.0151 , -0.0122] -0.0119 *** [-0.0133 , -0.0104] 0.9689 0.9660 0.0023
Daylight Savings 0.0417 *** [0.0406 , 0.0427] -0.0136 *** [-0.0151 , -0.0121] -0.0130 *** [-0.0145 , -0.0115] 0.9702 0.9674 0.0023
Standard Time 0.0417 *** [0.0406 , 0.0427] -0.0138 *** [-0.0153 , -0.0124] -0.0118 *** [-0.0133 , -0.0104] 0.9704 0.9676 0.0022
Pre Covid < 3/15/20 0.0417 *** [0.0407 , 0.0426] -0.0127 *** [-0.0141 , -0.0114] -0.0125 *** [-0.0139 , -0.0112] 0.9739 0.9714 0.0021
Lock Down ≤ 6/14/20 0.0417 *** [0.0405 , 0.0429] -0.0150 *** [-0.0167 , -0.0133] -0.0130 *** [-0.0147 , -0.0113] 0.9650 0.9617 0.0027
Trans 1 - 6/15-9/14/20 0.0417 *** [0.0404 , 0.0429] -0.0154 *** [-0.0172 , -0.0137] -0.0132 *** [-0.0149 , -0.0114] 0.9642 0.9608 0.0028
Trans 2 9/15-12/31/20 0.0417 *** [0.0405 , 0.0428] -0.0160 *** [-0.0176 , -0.0143] -0.0127 *** [-0.0143 , -0.0111] 0.9707 0.9679 0.0025
Trans 3 - 2021 0.0417 *** [0.0405 , 0.0429] -0.0152 *** [-0.0169 , -0.0135] -0.0127 *** [-0.0144 , -0.0110] 0.9653 0.9620 0.0027
Trans 4 - 2022 0.0417 *** [0.0404 , 0.0429] -0.0151 *** [-0.0168 , -0.0133] -0.0125 *** [-0.0143 , -0.0108] 0.9627 0.9592 0.0027
Acute Myocardial 0.0417 *** [0.0403 , 0.0430] -0.0134 *** [-0.0152 , -0.0115] -0.0115 *** [-0.0134 , -0.0096] 0.9484 0.9435 0.0029

Infarction

∗p < 0·01 ∗∗p < 0·001 ∗∗∗p < 0·0001; R2 ≡ coefficient of determination; RMSE ≡ root mean squared error.
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Figure 6: Month of Daily patterns for 25 periods in the extended analysis, derived from sinusoidal regression. x-axis is the
(military) hour of day. y-axis is the frequency (percent) of dispatch events in the hour. Blue bars are observations to form the
24-hour distribution, from 2010-2022 NEMSIS data. The red line is the fitted sinusoidal regression model. See equation 1 and
its derivation in the Appendix.
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