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ABSTRACT: Re-engineering of mammalian cell surfaces with polymers enables the introduction of functionality including
imaging agents, drug cargoes or antibodies for cell-based therapies, without resorting to genetic techniques. Glycan metabolic
labeling has been reported as a tool for engineering cell surface glycans with synthetic polymers through the installation of
biorthogonal handles, such as azides. Quantitative assessment of this approach and the robustness of the engineered coatings
has yet to be explored. Here, we graft poly(hydroxyethyl acrylamide) onto azido-labeled cell surface glycans using strain-
promoted azide−alkyne “click” cycloaddition and, using a combination of flow cytometry and confocal microscopy, evaluate the
various parameters controlling the outcome of this “grafting to” process. In all cases, homogeneous cell coatings were formed
with >95% of the treated cells being covalently modified, superior to nonspecific “grafting to” approaches. Controllable grafting
densities could be achieved through modulation of polymer chain length and/or concentration, with longer polymers having
lower densities. Cell surface bound polymers were retained for at least 72 h, persisting through several mitotic divisions during
this period. Furthermore, we postulate that glycan/membrane recycling is slowed by the steric bulk of the polymers,
demonstrating robustness and stability even during normal biological processes. This cytocompatible, versatile and simple
approach shows potential for re-engineering of cell surfaces with new functionality for future use in cell tracking or cell-based
therapies.

■ INTRODUCTION
Cell-based therapies have expanded the repertoire of tools in
modern medicine providing an arsenal of treatments in
addition to conventional drugs or protein-based therapies.
Chimeric antigen receptor (CAR)-T cell therapies have rapidly
emerged as a potential treatment for multiple hematological
malignancies through the introduction of cancer targeting
receptors on T-cell surfaces.1−3 However, viral vector trans-
duction of T-cells, the process which randomly inserts the
CAR transgenes into the genome, presents risks of insertional
oncogenesis and gene silencing. Manufacturing practicality is
also a concern due to production and quality control costs
along with safety and ethical concerns.4,5 Gene knock-in can
mitigate some of these caveats; however, the efficiency of this
procedure is 20%, compared to 68% for retroviruses, and off-
target mutagenesis is still a concern.6,7 Thus, unmodified cells

require significant purification and separation. Genetic
techniques are also not easily adaptable to introduce nonbiotic
components such as drugs, tracking modalities, and non-
natural amino acids.8 Hence, there is considerable opportunity
to explore synthetic tools to adapt cell surfaces both in
medicine and bioscience.
Re-engineering of mammalian cell surfaces with synthetic

polymers is emerging as an approach to enable rapid, simple
and versatile chemical remodeling of cells to introduce non-
natural functionality. Masking of cell surface antigens of
erythrocytes and islet cells has been widely explored using
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polymer coatings to improve blood transfusions,9−11 reduce
malaria parasite binding,12 and prevent the rejection of islet
transplants.13 Enhancement of islet transplants has also been
achieved by controlling the immediate blood mediated
inflammatory reaction through the addition of natural
polymers, including heparin,14 thrombomodulin15 and uroki-
nase.16 Additionally, cell−cell interactions can be controlled
through the addition of biotin/avidin interactions and
hybridization of oligoDNA demonstrating potential future
roles in inducing stem cell differentiation for cell-based
therapies.17

Despite cell surface engineering with natural and synthetic
polymers presenting many potential roles in cell-based
therapies, challenges arise in the formation of effective,
clinical-translatable methods. Amphiphilic polymers, such as
alkylated poly(vinyl alcohol) or lipid-based poly(ethylene
glycol),18,19 allow direct passive insertion into the lipid bilayer
membranes with minimal impact to membrane integrity and
structures. Glycocalyx remodeling using lipid-based glycocon-
jugates has been demonstrated to be a powerful tool to
introduce specific glycan epitopes to the cell-surface, allowing
mediation of multiple biological processes. Bertozzi et al.
demonstrated that introducing lipid-based Siglec-7 allows
immunomodulation of the innate immune system, preventing
natural-killer mediated killing of allogeneic and xenogenic
primary cells.20 Rat cortical neurons engineered with lipid-
terminated chondroitin sulfate glycosaminoglycans (GAGs)
have been used to enhance nerve growth factor-mediated
signaling and promote neural outgrowth.21 Additionally, neural
differentiation of embryonic stem cells has been achieved
through membrane incorporation of neoproteoglycans.22

However, dissociation of lipid-based polymers occurs in
under 24 h, with reports of a 50% drop within 8 h,22 due to
intrinsic membrane turnover processes.21,23,24 Thus, biological
applications are limited to this time frame and the nonspecific
nature of lipid insertion methods.
Additional noncovalent approaches include electrostatic

deposition of polycations onto the negatively charged
membrane. These approaches dramatically and rapidly reduce
cell viability (<1 h), severely damaging the cell membrane even
when contact is minimized with the incorporation of
polyethylene glycol (PEG) chains.25−27 Cell membrane
proteins remain one of the most exploited sites for antibody
conjugation in immunotherapy, especially tyrosine and
selenocysteine residues.28 However, biocompatibility of
protein conjugation approaches varies due to mammalian cell
sensitivity to cell surface modification. Hawker et al.
demonstrated that covalent conjugation of chain transfer
agent (CTA) initiators for “grafting-from” approaches to
membrane proteins resulted in extensive mechanical stress
leading to cell death.29 Limitations of grafting-from approaches
arise due to denaturing of proteins and side-reactions during
the polymerization with protein side-chain functional groups.
Furthermore, most protein conjugation approaches only last
24−48 h18 and will nonspecifically bind to any cell type.
Existing site-specific amino acid modifications mainly rely on
the use of cytotoxic heavy metal catalysts.30−35 A successful
polymer conjugation approach should be simple, robust,
biorthogonal and biocompatible.
Cell surface glycans are desirable binding sites for synthetic

and natural polymer conjugation due to their high abundance
and major structural, metabolic and recognition roles in
biology.36−38 Bertozzi and co-workers have pioneered the use

of metabolic glycan labeling to introduce non-natural
functionality into cell-surface glycans.39,40 For example,
peracetylated N-azidoacetylmannosamine (Ac4ManNAz) can
be used to “hijack” the sialic acid biosynthetic pathway to
incorporate azides on surface sialic acids. Metabolic
oligosaccharide engineering has already proven potential
usefulness in cancer immune therapies by offering biorthogonal
handles for natural polymer conjugation. Shi et al. demon-
strated that metabolically labeled human peripheral blood
mononuclear cells modified with alkynyl-PEG-β-cyclodextrin
and photoswitchable azobenzene-MUC1 aptamers could be
used to target epithelial cancer cells (MCF-7) controllably,
forming a T-cells-cancer cell assembly.41 Furthermore, Wang et
al. have demonstrated that covalent conjugation of silica
nanoconjugates to metabolically labeled cell surface glycans
can promote uptake for potential drug delivery systems.42

Selective labeling of cells with azido sugars has also been
achieved via liposomal delivery targeting overexpressed surface
receptors and in vivo using “caged” azido sugars which label
cells possessing cancer-overexpressed enzymes.43,44 Tomaś and
Gibson have demonstrated that telechelic polymers generated
by reversible activation fragmentation transfer (RAFT)
polymerization can be used to install polymers rapidly and
simply onto metabolically labeled cells, exclusively at the cell
surface.45 Cell surface grafting using this approach demon-
strated several advantages to conventional methods including
cytocompatibility, biorthogonality, and selectivity. However,
optimization and quantitative assessment of the efficiency,
robustness, and stability of metabolic oligosaccharide engineer-
ing for synthetic polymer conjugation remains to be explored.
Here, we present a detailed flow cytometry-based study on

the optimization and ability to label and graft synthetic
polymers to living cells using azido handles installed onto cell
surface glycans. This study reveals a high degree of selective
cell labeling versus nonspecific conjugation methods, with
more than 95% of cells being covalently labeled. Polymers
persisted on the cell surface through multiple cell division
processes demonstrating robustness without negatively impact-
ing cell function. These results provide a guide to simple,
robust and biorthogonal re-engineering of cell surfaces to
explore their biomedical and biotechnological impact.

■ EXPERIMENTAL SECTION
Materials. Ammonium fluoroborate (NH4BF4), dodecanethiol,

tripotassium phosphate (K3PO4), 2-bromo-2-methylpropionic acid,
dichloromethane (DCM), hydrochloric acid (HCl), magnesium
sulfate (MgSO4), hexane, 4-(dimethylamino) pyridine, N-(3-
(dimethylamino)propyl)-N′-ethylcarbodiimide hydrochloride, penta-
fluorophenol (PFP), sodium bicarbonate (NaHCO3), sodium
chloride (NaCl), N-hydroxyethyl acrylamide (HEA), 4,4′-azobis(4-
cyanovaleric acid) (ACVA), toluene, methanol, mesitylene, dibenzo-
cyclooctyne-amine (DBCO-NH2), propyl amine, paraformaldehyde,
phosphate-buffered saline preformulated tablets, dimethylformamide,
N-(5-fluoresceinyl)maleimide, calcium chloride (CaCl), and magne-
sium chloride (MgCl) were purchased from Sigma-Aldrich Co Ltd.
(Gillingham, UK) and used without further purification. Dulbecco
phosphate buffered saline (DPBS), N-azidoacetylmannosamine-
tetraacylated (Ac4ManNAz), and BD FACSFlow Sheath Fluid were
purchased from Fisher Scientific (Loughborough, UK). α2-3,6,8,9
Neuraminidase A (316 000 units·mg−1) was purchased from New
England BioLabs (UK) LTD (Hitchin).

Physical and Analytical Methods. Nuclear Magnetic Reso-
nance (NMR) Spectroscopy. NMR spectra of PFP-DMP (in CDCl3),
PFP-pHEAn, and DBCO-pHEAn (in MeOD) were recorded on a
Bruker HD-300 spectrometer at 298 K. Chemical shifts were reported
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as δ in parts per million (ppm) relative to residual nondeuterated
solvent resonances (CDCl3

1H: δ = 7.26 ppm; 13C δ = 77.16. CD3OD
1H: δ = 3.51 and 4.87 ppm; 13C δ = 47.59 ppm). Polymer
compositions and monomer conversions were determined using
spectra obtained. Bruker Topspin 3.5 Software was used to process
and export spectra.
Size Exclusion Chromatography (SEC). An Agilent Infinity II

MDS instrument equipped with differential refractive index (DRI),
viscometry (VS), dual-angle light scatter (LS) and variable wavelength
UV detectors (set at 309 nm) was used for all SEC analysis. The
system was fitted with 2× PLgel Mixed D columns (300 × 7.5 mm)
and a PLgel 5 μm guard column. The eluent utilized was DMF with 5
mmol NH4BF4 additive at a flow rate of 1.0 mL·min−1 at 50 °C.
Poly(methyl methacrylate) standards (Agilent EasyVials) were used
for calibration between 955 000 and 550 g·mol−1. Samples were
prepared in the mobile phase and passed through a nylon membrane
with 0.22 μm pore size prior to injection. Agilent GPC/SEC Software
was used to determine experimental molar mass (MnSEC),
experimental molecular weight (MwSEC) and dispersity (Đ) of
synthesized polymers.
Infrared (IR) Spectroscopy. Fourier-transform infrared (FTIR)

spectra were acquired using a Jasco FTIR-4200 (Type A)
spectrometer equipped with a PIKE MIRacleTM Single Reflection
Horizontal Accessory possessing a ZnSe single reflection crystal plate
(1.8 mm surface dimensions), rotating high-pressure clamp (applying
maximum pressure), stainless steel crystal plate mount, and 45° angle
of incidence. Analysis of dried crushed samples was completed
following purging the setup with nitrogen for 30 min. Scans (100)
were obtained between 4000 and 400 cm−1 with a resolution of 4
cm−1. Gain, aperture, scan speed, and filter were all set to auto.
Standard source and chamber were used along with a triglycine sulfate
(TGS) detector.
Fluorimetry. Fluorescence emission spectra were obtained using a

Jasco FP-6500 fluorimeter equipped with a DC-powered 150 W
xenon lamp and holographic grating with 1800 grooves mm 1
modified Rowland mount. Excitation and emission bandwidths were
set to 3 nm with a response of 1 s and sensitivity set to medium. The
scanning range was set from 450 to 550 nm, with an excitation
wavelength selected at 494 nm, all with an accuracy of ±1.5 nm and
reproducibility of ±0.3 nm. A scanning speed of 100 nm·min−1 was
chosen and a data pitch of 1 nm.
Confocal Microscopy. Confocal imaging was completed using a

Zeiss LSM 880 inverted microscope with 63× oil immersion objective
lenses, equipped with three photomultiplier detectors (GaAsP,
multialkali and BiG.2) and multichannel spectral imaging with an
ultrasensitive GASP detector. The UV and VIS Laser Modules
allowed selection of excitation lasers with wavelengths of 561 nm
(Cy3) and 488 nm (fluorescein). Zeiss ZEN (blue edition) 2.3 lite
was utilized for image collection and processing. All other imaging was
completed using an Olympus CX41 microscope equipped with a UIS-
2 20x/0.45/∞/0-2/FN22 lens (Olympus Ltd., Southend on sea,
U.K.) and a Canon EOS 500D SLR digital camera. Nuclear staining
was completed using NucBlue Fixed Cell ReadyProbes Reagent
(Fisher Scientific); samples were fixed with 4% paraformaldehyde and
sealed with ProLong Gold Antifade Mountant (Fisher Scientific).
Flow Cytometry. Flow cytometry was performed on a BD Influx

cell sorter (BD Biosciences) running BD FACS Sortware software and
equipped with 355-, 488-, 561-, and 642 nm lasers and detecting up to
24 parameters (21 fluorescence channels, two forward scatter
channels, and one side scatter). Sample analysis required the use of
the 488 nm excitation laser and 530/30 nm filter for fluorescein
measurements and 561 nm excitation laser and 593/30 filter for Cy3
measurements. A 100 μm nozzle was fitted, operating at a pressure of
20 psi (sheath) and 21.5 psi (sample). Stream and laser alignment was
performed using BD Sphero Rainbow Calibration Particles (8 Peaks
3.0−3.4 μm), and all sample measurements consisted of a minimum
of 50 000 recorded events. Cell detachment was completed utilizing
Accutase solution (Fisher Scientific) and passed through Fisherbrand
Sterile Cell Strainers (Fisher Scientific) to ensure single cell analysis.
Voltage settings applied ensured that untreated control cells appeared

at low fluorescence emission intensities (FITC) or to ensure all
treatments were present within the detection range (Cy3). FlowJo X
10.0.7r2 (Tree Star, Ashland, USA) was used for all statistical analysis
and plotting of flow cytometry data.

Polymer Synthesis. Polymerization of Hydroxyethyl Acryla-
mide (HEA) with Pentafluorophenyl 2-Dodecylthiocarbono-
thioylthio)-2-methylpropionic acid (PFP-DMP). This procedure
was adapted from Gibson and co-workers.45,58,59 HEA (1.00 g, 8.69
mmol), PFP-DMP, and 4,4′-azobis(4-cyanovaleric acid) (ACVA)
were dissolved in a 50:50 toluene:methanol solution (8 mL) at ratios
presented in Table 1 to obtain 5 degrees of polymerization (DP).

Mesitylene (150 μL) was used as an internal reference and an aliquot
was taken in CDCl3 for NMR analysis. The reaction mixture was
stirred under N2 for 30 min at RT and a further 90 min at 70 °C. An
aliquot of the postreaction mixture was taken for NMR analysis in
MeOD, allowing percentage conversion calculations. The polymer
was reprecipitated into diethyl ether from methanol three times,
yielding a yellow polymer product. The resulting product was dried
under vacuum and an aliquot was taken for NMR analysis in MeOD.
NMR percentage conversion and SEC results are presented in Table
1. 1H and 19F NMR and IR data for all DP are located in the
Supporting Information,

Functionalization of p(HEA)-PFPn with Dibenzocyclooctyne-
Amine (DBCO-NH2) and Reduction of Thiocarbonate Moiety.
PFP-p(HEA)n (0.20 g, 1 equiv), and DBCO-NH2 (2 equiv) were
stirred in methanol (3 mL) for 16 h. Subsequent addition of
propylamine (1.5 equiv) for 2 h was used to ensure complete
reduction of the thiocarbonate moiety to a thiol group. The polymer
was reprecipitated into diethyl ether from methanol three times,
yielding a white polymer product. The resulting product was dried
under vacuum and DMF SEC analysis was completed. An aliquot was
also taken for NMR analysis in MeOD. 1H and 19F NMR, SEC, and
IR data for all DP are located in the Supporting Information.

Fluorophore Labeled DBCO-p(HEA)n. DBCO-p(HEA)n (0.10 g, 1
equiv) and N-(5-fluoresceinyl)maleimide (1.3 equiv) were dissolved
in DMF (1.279 mL), degassed, and left to stir for 24 h. The yellow
mixture was reprecipitated into diethyl ether from methanol three
times, yielding a yellow fluorescent polymer product. Fluorescein
conjugation was confirmed using fluorimetry following exhaustive
dialysis (Supporting Information).

Cell Culture and Treatment. Cell Culture. Human Caucasian
lung carcinoma cells (adenocarcinomic human alveolar basal
epithelial, A549) were obtained from European Collection of
Authenticated Cell Cultures (Public Health England, UK) and
grown in 175 cm2 Nunc cell culture flasks (ThermoFisher, Rugby,
UK). Ham’s F-12K (Kaighn’s) Medium (F-12K) (Gibco, Paisley,
UK) was supplemented with 10% USA-origin fetal bovine serum
(FBS) purchased from Sigma-Aldrich (Dorset, UK), 100 units/mL
penicillin, 100 μg·mL−1 streptomycin, and 250 ng·mL−1 amphotericin

Table 1. SEC Results of PFP-pHEAn

Polymer

[M]:
[CTA]
(−)

%
Conv.a

Mn(theo)
b

(g mol−1)
Mn(SEC)

c

(g mol−1)
MW(SEC)

c

(g mol−1) Đc

PFP-
pHEA50

50 98 6300 10200 12100 1.19

PFP-
pHEA75

75 93 9100 13300 15800 1.19

PFP-
pHEA100

100 95 12000 15200 18400 1.21

PFP-
pHEA125

125 92 14900 17500 20500 1.17

PFP-
pHEA150

150 94 17800 20200 24500 1.21

aDetermined by 1H NMR against an internal mesitylene standard.
bDetermined by the [M]:[CTA] ratio and conversion, assuming
100% CTA efficiency. cDetermined by SEC in DMF against PMMA
standards.
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B (PSA) (HyClone, Cramlington, UK). A549 cells were incubated in
a humidified atmosphere of 95% air and 5% CO2 at 37 °C. General
maintenance of the cell line was completed by passaging every 7 days
or before reaching 90% confluency and renewing culture medium
every 3−4 days. Cells were dissociated using a balanced salt solution
containing trypsin (0.25%) and EDTA (1 mM) (Gibsco) and
reseeded at a density of 1.87 × 105 cells per 175 cm2 cell culture
flasks.
Resazurin Viability Assay. To determine the effects of

Ac4ManNAz on cell viability, aA549 cells were plated in a 12 well
plate at a density of 2 × 104 cells·mL−1 with media supplemented with
varying concentrations of Ac4ManNAz (10−150 μM) and incubated
in a humidified atmosphere of 95% air and 5% CO2 at 37 °C for 96 h.
Alamar blue reagent (10% v/v in cell media) was added to both
Ac4ManNAz treated and untreated (control) cells. Absorbance
measurements were obtained at 570 and 600 nm using a BioTek
Synergy HT microplate reader to monitor the reduction of resazurin
to resorufin by viable cells. Cells were incubated for 4 h at 37 °C and
5% CO2 with readings obtained every 30 min/1 h. Total cell viability
was reported relative to control cells grown solely in cell culture media
alone. Cytotoxicity of DBCO-p(HEA)n was assessed using a similar
protocol: first A549 cells were incubated with Ac4ManNAz (40 μM,
96 h) and DBCO-p(HEA)n (0.156−10 mg·mL−1, 2.5 h) and Alamar
blue reagent was added 24 h later (10% v/v in cell media).
Quantitative Assessment of Ac4ManNAz Concentrations. A549

cells were plated in a 12 well plate at a density of 2 × 105 cells·mL−1

with media supplemented with varying concentrations of Ac4ManNAz
(10−150 μM) and incubated in a humidified atmosphere of 95% air
and 5% CO2 at 37 °C for 96 h. Following this, cells were incubated
with DBCO-Cy3 (50 μM, 2.5 h), in cell media, and imaged using an
Olympus CX41 microscope. Cell detachment was completed utilizing
Accutase solution, and samples were submitted for flow cytometry.
Confocal Imaging of Ac4ManNAz Concentrations. A549 cells

were seeded in a 12 well plate containing coverslips at a density of 2 ×
105 cells·mL−1 with media supplemented with varying concentrations
of Ac4ManNAz (10, 50, and 100 μM) and incubated in a humidified
atmosphere of 95% air and 5% CO2 at 37 °C for 96 h. Following this,
cells were incubated with DBCO-Cy3 (50 μM, 2.5 h), in fresh cell
media, and stained with NucBlue Live Cell ReadyProbes Reagent.
Confocal images were obtained of fixed samples after mounting the
coverslips onto glass slides using ProLong Gold Antifade Mountant.
Quantitative Assessment of DBCO-pHEAn-Fl Concentrations and

Effects over Time. A549 cells were plated in a 12 well plate at a
density of 2 × 105 cells·mL−1 with media supplemented with
Ac4ManNAz (40 μM) and incubated in a humidified atmosphere of
95% air and 5% CO2 at 37 °C for 96 h. Following this, cells were
incubated with DBCO-pHEAn-Fl polymers (1.25−20 mg·mL−1, 2.5
h), to determine the optimum working concentration, washed three
times with DPBS and imaged using an Olympus CX41 microscope.
Cell detachment was completed utilizing Accutase solution, and
samples were submitted for flow cytometry. Following this, cells
incubated with Ac4ManNAz (40 μM) and DBCO-pHEAn-Fl polymers
(5 and 10 mg·mL−1, 2.5 h) were analyzed 0−72 h postconjugation to
establish polymer loss over time. Cells treated solely with DBCO-
pHEAn-Fl polymers (5 and 10 mg·mL−1, 2.5 h) were also analyzed
using flow cytometry at 0 and 8 h time points to observe nonspecific
binding/uptake and its effects over time.
Confocal Imaging of DBCO-pHEAn-Fl Treated A549 Cells. A549

cells were seeded in 8 well Nunc Lab-Tek II Chamber Slides (Fisher
Scientific) at a density of 6.25 × 104 cell·mL−1 (1.25k cells per well)
and incubated with media supplemented with Ac4ManNAz (40 μM)
in a humidified atmosphere of 95% air and 5% CO2 at 37 °C for 96 h.
Following three washes with DPBS, cells were incubated with DBCO-
pHEAn-Fl polymers (10 mg·mL−1, 2.5 h) in cell media and imaged 0−
72 h postconjugation. To complete this, cells were stained with
NucBlue Live Cell ReadyProbes Reagent, fixed with 4% paraformal-
dehyde and sealed with ProLong Gold Antifade Mountant. Cells
treated solely with DBCO-pHEAn-Fl polymers (10 mg·mL−1, 2.5 h)
were also imaged to observe nonspecific binding.

Neuraminidase Assay. A549 cells were plated in a 12 well plate at
a density of 2 × 105 cells·mL−1 with media supplemented with
Ac4ManNAz (40 μM) and incubated in a humidified atmosphere of
95% air and 5% CO2 at 37 °C for 96 h. Following this, cells were
incubated with α2-3,6,8,9 Neuraminidase A (25 units·mL−1, 1.5 h) in
DPBS either before or after treatment with DBCO-pHEAn-Fl
polymers (10 mg·mL−1, 2.5 h) in cell media. Finally, treated cells
were washed three times with DPBS and imaged using an Olympus
CX41 microscope. Cell detachment was completed utilizing Accutase
solution, and samples were submitted for flow cytometry analysis.

■ RESULTS AND DISCUSSION
RAFT polymerization was used to synthesize well-defined
telechelic poly(hydroxyethyl acrylamide) (pHEA) polymers
bearing a pentafluorophenyl (PFP) ester and masked thiol
(trithiocarbonate) end groups, Figure 1A.46 A library of PFP-

pHEAn polymers ranging in size (DP50−DP150) was
synthesized by varying the monomer/RAFT agent ratio,
Table 1. Polymers were characterized by size exclusion
chromatography (SEC), 1H, 13C and 19F NMR, and infrared
spectroscopy (IR), Table 1 and Supporting Information. Low
dispersities were obtained (<1.2) in all cases and retention of
the PFP group was confirmed by 19F NMR and IR. To
introduce the biorthogonal azide-reactive functionality, PFP

Figure 1. Synthetic and cell conjugation concept. (A) Synthesis of
telechelic poly(N-hydroxyethyl acrylamide) by RAFT polymerization;
(B) DBCO-pHEAn-Fl cell surface conjugation via metabolic labeling
using Ac4ManNAz, adapted with permission from ref 45. Copyright
2018 American Chemical Society.
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displacement was achieved using dibenzocyclooctyne-amine
(DBCO-NH2).

47 Complete PFP removal was confirmed by 19F
NMR and IR spectroscopy (Supporting Information). To
ensure complete trithiocarbonate cleavage, which is partially
cleaved by DBCO-NH2, excess propyl amine was added
revealing a thiol which was subsequently coupled to fluorescein
maleimide. Thus, capitalizing on both end groups to introduce
dual functionality for cell membrane attachment and imaging
capabilities. Polymer/dye conjugation was confirmed using
UV−vis spectroscopy and also UV−vis coupled to SEC. No
free dye was observed postdialysis (Supporting Information).
A549 (adenocarcinomic human alveolar basal epithelial)

cells were incubated with Ac4ManNAz (peracetylated N-
azidoacetylmannosamine) at varying concentrations (10−150
μM), for 96 h, to enable optimization of this step in the
bioconjugation workflow. Cell viability was assessed using the
resazurin reduction assay, revealing an average cell viability of
95% when using less than 75 μM of Ac4ManNAz, Figure 2A.
Significant reduction in cell viability was observed at
concentrations above 100 μM, which was also confirmed by
images showing decreased cell count and changes to cell
morphology (Supporting Information). Chen et al.,48 con-
firmed Ac4ManNAz induces cytotoxicity of A549 cells but at
higher concentrations (>500 μM) through the accumulation of
intracellular acetic acid and pH decrease, resulting from
hydrolysis by intracellular unspecific esterases. Thus, the
cytotoxicity of Ac4ManNAz at lower concentrations found in
this study is likely due to the DMSO solvent used to solubilize
the glycan, known to affect cell swelling, mechanisms, and
volume changes.49 A resazurin reduction assay of A549 cells
incubated with DMSO at exact concentrations used to
solubilize Ac4ManNAz, for 96 h, confirmed these findings,
Supporting Information.
Successful metabolic labeling of cell surface glycans was

visualized using DBCO-Cyanine3 (Cy3), a fluorescent label,
through strain-promoted copper-free azide−alkyne cyclo-
addition, Figure 2B. Confocal imaging revealed cell surface
bound fluorescence, as expected, along with some intracellular
staining at higher Ac4ManNAz concentrations. Intracellular
staining was likely due to nonspecific uptake of DBCO-Cy3
resulting in labeling of azide-mannose in the cytosol. Small
hydrophobic molecule probes need to be dissolved in DMSO,
which promotes this cell uptake and is one of their main
disadvantages for cell tracking and labeling. Wang et al.43

demonstrated passive uptake of DBCO-Cy5 can occur within
30 min and worsens with increasing conjugation times. Flow
cytometry confirmed these findings, revealing heterogeneous
labeling of cells through broadening of the fluorescence
intensity distribution, with large populations of over- and
under-labeled cells, Figure 2C. Finally, confocal imaging and
flow cytometry revealed insignificant differences between
fluorescence emission intensity of cells treated with 40 or 50
μM Ac4ManNAz (96 h) and DBCO-Cy3 (50 μM, 2.5 h).
Thus, to promote sufficient cell surface coverage of azido
groups on surface bound sialic acids, and to minimize the
reduction of major cellular function, A549 cells were treated
with 40 μM Ac4ManNAz for 96 h throughout this study.
The library of DBCO-pHEAn-Fl polymers generated was

tested for azide-reactive functionality on metabolically labeled
cell surface glycans at a range of concentrations (1.25−20 mg·
mL−1), Figure 1B, enabling a complete map of grafting to be
explored as a function of molecular weight, which has never
been previously quantified. First, to confirm surface labeling,

A549 cells were imaged following incubation with Ac4ManNAz
(40 μM, 96 h) and DBCO-pHEAn-Fl (10 mg·mL−1, 2.5 h),
Figure 3. Cell surface bound polymers were clearly visualized
through the highly fluorescent fluorescein moieties, especially
for shorter polymers (DP50−DP100). Reduced grafting
densities were apparent when using higher molecular weight
polymers as cell surface fluorescence intensity decreased along
with overall coverage. These results were attributed to lower
polymer absolute (molar) concentrations and potentially steric
hindrance. Remarkably, polymer coatings resided on cells
undergoing proliferation suggesting potential long-term
stability and was later further investigated to quantify the
robustness of these modifications. Similarly to DBCO-Cy3
labeled cells, DBCO-pHEAn-Fl resulted in some localized
intracellular fluorescence which was unexpected due to the

Figure 2. A549 cells incubated with Ac4ManNAz (10−150 μM, 96 h)
were tested for (A) cell viability using the resazurin reduction assay (n
= 3). Cells treated with Ac4ManNAz (10−100 μM, 96 h) and DBCO-
Cy3 (50 μM, 2.5 h) were analyzed using (B) confocal microscopy and
(C) flow cytometry to visualize the extent of cell surface labeling.
Scale bar = 20 μm. ***p ≤ 0.001.
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polymers hydrophilic properties, avoiding the use of DMSO.
Thus, an endocytosis pathway could not be ruled out.
Confocal images of Ac4ManNAz untreated cells but still
treated with DBCO-pHEAn-Fl revealed minimal internal
fluorescence (Supporting Information) suggesting that endo-
cytosis relies on polymer binding to cell surface bound azido
sialic glycans. Furthermore, the majority of localized
fluorescence is near or overlapping the nucleus where CMP-
Neu5Az is synthesized.50 Thus, polymer uptake is likely caused
by the sialic acid salvage pathway. During this glycan recycling
process, cell surface bound sialoglycoconjugates are liberated
by one of four neuraminidases and internalized via endocytosis
where they are transported to lysosomes to obtain terminal
sialic acid residues, converted to CMP-sialic acid, modified by
the Golgi apparatus and reincorporated into the glycocalyx.51

This mechanism of glycan recycling provides an explanation
for the localized fluorescence in the cytoplasm, its proximity to
the nucleus in Ac4ManNAz treated cells and low nonspecific
uptake in Ac4ManNAz untreated cells. Yamagishi et al.52

demonstrated that DBCO-based fluorescein dyes result in
labeling of intracellular azido sugar localized in the cytosol;
however, these are later (12 h) incorporated into the
glycocalyx via the endoplasmic reticulum, to generate
glycoproteins. Thus, we postulate that some of the intracellular
azido glycan’s labeled with DBCO-pHEAn-Fl may be
reincorporated into the glycocalyx.
Polymer dose- and molecular weight-dependence on this

newly explored grafting to cell surface approach have yet to be
fully quantified. Thus, to provide quantitative insight into cell
surface grafting densities, A549 cells, treated with Ac4ManNAz
(40 μM, 96 h) and DBCO-pHEAn-Fl (1.25−20 mg·mL−1, 2.5
h), were analyzed using flow cytometry, Figure 4. DP50
polymers resulted in significantly higher grafting densities at all
concentrations, with a decreasing trend in grafting density
noted with increasing polymer length, as expected. Despite
this, all polymer lengths demonstrated sufficient cell surface

coverage providing a rapid and versatile polymer grafting
approach that can be fine-tuned for specific applications where
molecular weight dependence has functional importance (i.e.,
linkers to prevent cytotoxicity of cell surface bound charged
species,53 enhancing the activity of surface bound enzymes,54

attachment of large biomolecules).55

Confocal microscopy (Figure 3) suggested limited binding
of DP150 polymers compared to DP50; however, at equal
mass there are fewer end-groups (and hence fluorescein
moieties). Thus, microscopy alone does not provide a
complete picture. A comparison between flow cytometry
results obtained of DP50 and DP100 and DP75 and DP150
polymers, at 10 mg·mL−1 (i.e., half molar absolute concen-

Figure 3. Confocal images ofA549 cells following incubation with
Ac4ManNAz (40 μM, 96 h) and DBCO-pHEAn-Fl (10 mg·mL−1, 2.5
h). Scale bar = 20 μm.

Figure 4. (A) A549 cells were treated with Ac4ManNAz (40 μM, 96
h) and DBCO-pHEAn-Fl (1.25−20 mg·mL−1, 2.5 h) varying in
length. (B) Flow cytometry analysis was used to investigate dose- and
molecular weight-dependence of cell surface grafting with (C) average
fluorescence intensity values plotted to reveal overall increasing trend
(n = 3).
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trations), revealed decreases in fluorescence emission in-
tensities of 59% and 62%, respectively. Thus, proving full
control of grafting density can be achieved through adjustment
of polymer chain length and concentration. We postulate that
the slight difference to the expected theoretical result (50%) is
due to steric hindrance resulting in slower reaction kinetics,
especially at lower concentrations, and less labeling of sialic
acids embedded deep within the glycocalyx or proximal to
already labeled sialic acids. Hawker et al.29 confirmed that
grafting-to approaches using PEG-NHS on yeast cells suffer
from heterogeneous labeling, especially at higher concen-
trations. Furthermore, CTA-modified yeast cells used in their
cell surface-initiated polymerization grafting-from approach,
resulted in fluorescence emission intensities spanning over 4
orders of magnitude. However, flow cytometry revealed that
labeling of cells with DBCO-pHEAn-Fl was fairly homoge-
neous at all concentrations and fitted a narrow Gaussian
distribution (Figure 4B), also showing a significant advantage
to the small molecule probe used which resulted in large
population of cells with different labeling intensities. Thus,
biomolecules can be incorporated onto the surface of cells,
instead of fluorescein, to provide a homogeneous population of
re-engineered cells for cell-based therapies. Fluorescence
emission intensities began to plateau at polymer concen-
trations above 10 mg·mL−1 for all polymer lengths.
Furthermore, DP50 concentrations above 10 mg·mL−1

resulted in grafting densities beyond the detection range of
flow cytometry. Therefore, this was the optimum maximum
concentration for all further studies.
Finally, resazurin cell viability assays were completed on

DBCO-pHEAn treated A549 cells revealing an insignificant
decrease in cell viability respective to polymer length (DP50−
150) and concentration (0.078−10 mg·mL−1) (Supporting
Information), demonstrating an advantage to several cytotoxic
covalent conjugation29 and electrostatic approaches previously
reported.17 Furthermore, cell morphology and counts appeared
unaffected by polymer treatment, Supporting Information.
Cytotoxicity was minimized through the use of highly water-
soluble polymers and rapid kinetics of strained alkyne−azide
reactions allowing conjugation in cell media, removing risks of
starvation and thus exertion of unnecessary cellular stress.
The above results demonstrate controllable, dose-dependent

cell surface binding of the polymers. However, for translational
applications, it was crucial to quantify the extent of nonspecific
binding or uptake especially as large, hydrophobic DBCO end-
groups may interact or insert into the cell membrane. Confocal
images of cells untreated with Ac4ManNAz but still treated
with DBCO-pHEAn-Fl (10 mg·mL−1, 2.5 h) illustrated
minimal nonspecific binding of all polymers (Supporting
Information), even at lower polymer chain lengths (DP50),
Figure 5A. To investigate this further, flow cytometry was used
to quantify the fluorescence intensity of cells treated and
untreated with Ac4ManNAz (40 μM, 96 h) and incubated with
DBCO-pHEAn-Fl (10 mg·mL−1, 2.5 h). Minimal overlap was
found between cell fluorescence emission distributions of azido
treated and untreated cells, confirming that DBCO-pHEAn-Fl
induces minimal nonspecific binding even in the presence of
various biological matrices. A significant difference was also
found between the average fluorescence intensity values of
azido treated and untreated cells, Supporting Information. To
emphasize further the selectivity of this approach, a gating
strategy was applied to determine the percentage of polymer-
azido conjugated cells with fluorescence emission intensity

above that of 99% of control cells (completely untreated) and
99% of azido untreated cells (polymer treated). Irrespective of
polymer chain length, over 99% of azido treated cells possessed
fluorescence emission intensity values above control cells and
over 95% above untreated cells. Thus, demonstrating a highly
efficient approach to covalently labeling cell surfaces, achieving
far greater efficiency values than genetic modification

Figure 5. (A) Confocal images of A549 cells untreated or treated with
Ac4ManNAz (40 μM, 96 h) and treated with DBCO-pHEA50-Fl (10
mg·mL−1, 2.5 h), along with completely untreated control cells for
comparison (see Supporting Information for all polymer lengths). (B)
Flow cytometry analysis of all treatments was completed to quantify
nonspecific binding and (C) the portion of azido−polymer treated
cells with fluorescence emission intensity values above 99% of control
cells and 95% or 99% of untreated Ac4ManNAz cells was reported (n
= 5). Scale bar = 20 μm.
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techniques utilized in, e.g., CAR-T cell engineering. Previously
reported values for the portion of cells labeled using other
polymer conjugation methods are not available, so a more
detailed comparison of conjugation efficiency could not be
made. Nonspecific binding was more noticeable when
treatments were completed with lower concentrations of
DBCO-pHEAn-Fl (5 mg·mL−1, 2.5 h), especially at higher
molecular weight polymers, due to lower specific grafting
densities, Supporting Information.
Following confirmation that nearly all cells (>95%) were

labeled using this approach, with minimal nonspecific binding,
the duration of polymer attachment was investigated using
flow cytometry, Figure 6A,B. A549 cells treated with both

Ac4ManNAz (40 μM, 96 h) and DBCO-pHEAn-Fl (10 mg·
mL−1, 2.5 h) demonstrated cell surface binding for up to 72 h
at all polymer chain lengths, with lower chain length polymers
residing for longer due to higher grafting densities. Kang et
al.56 confirmed that A549 cells treated with Ac4ManNAz result
in cell surface bound azido modified sialoconjugates for 72 h,
determined with a DBCO-Cy5 dye. Thus, polymer conjugation
does not affect the ability for cells to retain cell surface glycans,
demonstrating a completely biocompatible approach. Flow
cytometry revealed extensive polymer loss within 24 h (60%−
77%) of polymer conjugation, with increasing polymer length
resulting in greater polymer loss. However, most nonspecifi-
cally bound polymer was detached within the first 8 h of
conjugation which accounts for 6.5−13% loss in polymer,
Figure 6C, which also scaled with increasing polymer length.
Thus, a large majority of the polymer loss can be attributed to
the de novo synthesis of glycans during cell division, as
suggested by Baskin et al.57 and a small portion due to
detachment of nonspecifically bound polymer. Additional
mechanisms of covalently conjugated polymer loss include
glycan recycling via cell surface neuraminidases confirmed by
increased intracellular fluorescence in confocal images taken at
48 and 72 h time points, Supporting Information. Following 48
h postconjugation, polymer grafting density decreased by a
further 50−60% in comparison to the 24 h time point, further
emphasizing that cell division is most likely the main
contributor to polymer loss. Less polymer loss was
encountered following 72 h of incubation with high variability
(14−38%) due to less polymer grafting of higher molecular
weight polymer (i.e., less polymer to lose). However, the
ability for polymer conjugation to persist through multiple cell
division processes and other potential biological processes
demonstrates a very robust approach. Polymer loss values were
unaffected by polymer concentration (Supporting Informa-
tion).
To assess further the stability and robustness of this

approach, azido labeled cells were treated with α2-3,6,8,9
Neuraminidase A (25 μ·mL−1, 1.5 h) either before or after
polymer conjugation (Figure 7). This approach was designed
to cleave linear and branched nonreducing terminal sialic acid
residues from glycoproteins, glycopeptides, and oligosacchar-
ides. Cells treated with neuraminidase before polymer
conjugation resulted in 29−36% less polymer grafting, whereas

Figure 6. Polymer loss over time for A549 cells (A and B) treated or
(C) untreated with Ac4ManNAz (40 μM, 96 h) and treated with
DBCO-pHEA50-Fl (10 mg·mL−1, 2.5 h) was quantified using flow
cytometry. Fluorescence intensity of covalently bound polymer was
normalized to allow direct comparison between polymer chain lengths
and investigated over 72 h (n = 4). Decrease in nonspecifically bound
polymer was investigated within the first 8 h (n = 3). **p ≤ 0.01.
***p ≤ 0.001.

Figure 7. Average fluorescence intensity of α2-3,6,8,9 Neuraminidase
A (25 μ·mL−1, 1.5 h) treated cells before or after polymer
conjugation, determined using flow cytometry (n = 4). *p ≤ 0.05.
**p ≤ 0.01. ***p ≤ 0.001.
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neuraminidase treatment after polymer conjugation resulted in
13−24% loss of polymer. Thus, supporting the hypothesis that
DBCO-pHEAn-Fl polymers target cell surface modified azido
sialic acids. Enzymatic treatment following polymer conjuga-
tion resulted in less decrease in the overall fluorescence
intensity, which is due to the steric bulk of the polymer on the
sialic acids making it less accessible to the enzyme. Cells
treated with higher molecular weight polymers showed an
overall less decrease in fluorescence emission intensity, further
supporting this claim. However, neuraminidase cleavage was
apparent, confirming that glycan recycling is still possible and
may be one of the mechanisms of polymer loss over time.

■ CONCLUSIONS

Here we have reported a quantitative assessment into the
grafting of synthetic polymers onto metabolically labeled cell
surface glycans, using flow cytometry and confocal imaging. A
library of poly(N-hydroxy acrylamide) bearing a strained
alkyne (for copper-free azide/alkyne click) and a fluorescent
reporter revealed controllable dose- and molecular weight-
dependent grafting onto azide-labeled A549 cells. Cell viability
was retained in all steps through the use of mild and rapid
reaction conditions, a significant advantage to protein
conjugation approaches. The resulting cells were covalently
labeled with above 95% efficiency, resulting in narrow
Gaussian-shaped fluorescence emission distributions, and
demonstrating less heterogeneity compared to previously
reported methods. The impact of polymer molecular weight
was critically evaluated, with longer chains resulting in slightly
lower grafting densities compared to shorter due to steric
constraints. Covalently conjugated polymers were retained on
the cells for 72 h, despite several cell division cycles, showing
that the coatings are both robust and do not interfere with
normal cell function. This, in particular, is an improvement
over lipid-insertion methods where polymers are lost in under
24 h. Neuraminidase cleavage of cell surface sialic acids was
used to prove the site of polymer conjugation. These results
show that polymer attachment onto metabolically labeled
glycans is a rapid, efficient, robust and versatile method to re-
engineer mammalian cell surfaces without affecting cell
function. The biorthogonal nature of this approach ensures
that the conjugation site is controlled, as opposed to passive
insertion methods or random grafting approaches targeting
amines or thiols on the cells, and may be a practical alternative
to genetic methods requiring only an azido (or another
functional handle) bearing glycan. This methodology will
enable the development of new polymer/cell hybrids and
exploit the cell surface to embed tracking, therapeutic or
recognition domains into polymers via a fully nongenetic
approach, for future applications in the study of cell surface
interactions and cell-based therapies.
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