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Abstract

Diagnosis of arbovirus infection or exposure by antibody testing is becoming increasingly

difficult due to global expansion of arboviruses, which induce antibodies that may (cross-)

react in serological assays. We provide a systematic review of the current knowledge and

knowledge gaps in differential arbovirus serology. The search included Medline, Embase

and Web of Science databases and identified 911 publications which were reduced to 102

after exclusion of studies not providing data on possible cross-reactivity or studies that did

not meet the inclusion criteria regarding confirmation of virus exposure of reference popula-

tion sets. Using a scoring system to further assess quality of studies, we show that the

majority of the selected papers (N = 102) provides insufficient detail to support conclusions

on specificity of serological outcomes with regards to elucidating antibody cross-reactivity.

Along with the lack of standardization of assays, metadata such as time of illness onset, vac-

cination, infection and travel history, age and specificity of serological methods were most

frequently missing. Given the critical role of serology for diagnosis and surveillance of arbo-

virus infections, better standards for reporting, as well as the development of more (stan-

dardized) specific serological assays that allow discrimination between exposures to

multiple different arboviruses, are a large global unmet need.

Author summary

Arboviruses are notorious for triggering antibodies that may cross-react with (closely)

related arboviruses, complicating interpretation of serology-based arbovirus diagnostics

and of epidemiological surveys. This is further complicated by the rapid global spread of

arboviruses, that may lead to increasing co-circulation of antigenically related arboviruses,

and by the lack of detailed background information on the population tested, methods

used and background arbovirus exposures such as prior infections or vaccinations.

Here, we aim to provide a better understanding of the complex cross-reactivity pat-

terns as well as the current knowledge and knowledge gaps in differential arbovirus serol-

ogy. We have done a systematic analysis of reported cross-reactivity patterns from

published peer-reviewed articles, using a system that allows assessment of the quality of
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reported cross-reactivity results. We show that using this approach, the majority of studies

lack details needed to reliably assess whether reactivity to antigens from different, related

arboviruses is caused by antibody cross-reactivity, or if it reflects antibodies from multiple

exposures to these different viruses. Furthermore, there is a strong need for standardiza-

tion of assays and study designs in future serological studies to compare cross-reactivity

results from different studies. Tackling this may lead to improved diagnosis and surveil-

lance of (newly) emerging and/or rapidly spreading arboviruses.

Introduction

In the past two decades, the global impact of arthropod-borne (ARBO) viruses has steadily

been increasing due to rapid distribution over larger geographic areas, the emergence of new

variants, and new complications arising from the sequel of viral exposures potentially leading

to enhanced disease [1–3]. Major anthropogenic factors contributing to this global spread are

increased human travel to or from (sub)tropical arbovirus endemic regions, global transporta-

tion of water-retaining objects offering opportunity for dispersal of mosquitos, urbanization

and deforestation. Climate change may also have an impact by influencing the geographical

and temporal distribution of arthropods and/or reservoir hosts such as migrating birds [3–7].

Recent examples of unusual arboviral spread are autochthonous chikungunya virus (CHIKV)

cases that have been reported in Italy and France throughout the past years [8–12], Usutu

virus (USUV) which is frequently observed in birds and occasionally in humans in Europe

[13], the Zika virus (ZIKV) epidemic that rapidly spread to the Pacific islands and the Ameri-

cas [14–20], Crimean Congo Haemorrhagic fever virus (CCHFV) expansion in Europe [6,21–

23], the first autochthonous West Nile virus (WNV) cases in Germany [24] and the Nether-

lands [25], and locally acquired dengue virus (DENV) cases in France and Spain [26]. Further-

more, there are indications that other arboviruses such as Mayaro virus (MAYV) are further

spreading into the Caribbean and Central and South America, likely causing more outbreaks

in the near future [27–32].

As clinical symptoms of most arboviruses are very similar and virological (molecular)

detection is only possible in a short period after clinical symptoms due to the short arbovirus

viremic phase, serology is essential in arboviral diagnosis. However, serology-based differential

arbovirus diagnosis is complicated by antibodies induced by a primary arbovirus infection

that may cross-react with other closely related arboviruses. This is further complicated by the

phenomenon original antigenic sin (OAS), which describes the preferential boosting of these

cross-reactive antibodies upon subsequent heterologous arbovirus infections [33]. Together

with the current global spread of arboviruses, which increasingly co-circulate [34–38], individ-

uals living in arbovirus endemic areas progressively carry cross-reactive antibodies from previ-

ous exposures with increasing age [39]. For instance, even though efforts have been made to

develop assays with increased specificity [40–43], ZIKV and DENV antibodies highly cross-

react in DENV endemic settings [39,44–46]. While serological cross-reactivity between ZIKV

and DENV is expected given that they are closely related, much less is known about cross-reac-

tive antibody patterns of arboviruses other than ZIKV or DENV. This also applies to cross-

reactive antibodies that may be induced by arbovirus vaccination. Given the increased arbovi-

rus spread and co-circulation, there is increasing need for elucidating cross-reactive antibody

responses of less studied but prevalent arboviruses in the context of differential diagnosis.

Besides the diagnostic challenge, understanding patterns of cross-reactivity is also impor-

tant because cross-reactive pre-existing heterotypic arbovirus antibodies can potentially
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enhance infection of a heterologous virus strain via antibody dependent enhancement (ADE),

as seen between different DENV serotypes, which may exacerbate disease [2,47–60]. There-

fore, boosting these cross-reactive antibodies by sequential heterologous arbovirus infections,

may result in higher chances of developing severe disease by ADE. This was recently also con-

firmed in the wake of the Zika virus epidemic demonstrating elevated risk of DENV severe dis-

ease by either a prior ZIKV or DENV infection or both [61]. Moreover, the safety issues seen

with Dengvaxia vaccination; where younger-aged baseline DENV seronegative recipients

experienced enhanced disease approximately 18 months after vaccination, might be explained

by ADE as well [62].The current hypothesis is that Dengvaxia mimics a primary infection in

these DENV seronegative individuals, putting the recipients at risk of ADE and developing

severe disease when experiencing a subsequent DENV infection [62]. However, when it comes

to enhancement of ZIKV infection due to prior DENV infection, there is contrasting evidence

[63]. This possibly might be explained by the DENV antibody levels and length of the time

interval between the sequential heterologous infections being crucial in determining whether

it will lead to protection or enhancement of ZIKV infection [63]. Although ADE and the risk

of developing severe disease has been demonstrated for ZIKV and DENV, it remains to be

determined whether this also plays a role for other arboviruses [64].

The problems of serological differential diagnosis and the potential risk of antibody-medi-

ated enhanced disease highlight the importance of improving insight into the complex anti-

body reactivities following exposure to one or more (neglected) arboviruses. A challenge,

however, is that information that can be used to accurately interpret serological test results,

such as detailed background information on the population tested, methods used, and infor-

mation on background exposures to other arboviruses often are not available or provided, thus

hampering proper interpretation of study results. Therefore, in this review, we have done a sys-

tematic analysis of reported multi-antigen antibody-reactivity patterns from published peer-

reviewed articles, using a system that allows scoring risk of bias and thereby assessment of the

quality of reported results to be able to interpret antibody cross-reactivity. To do this, we

reviewed papers for completeness of information on geographic region, travel history, vaccina-

tion history, infection history, age group, case definitions used, timing of sampling, specifica-

tion of serological methods, confirmation of infection and study size. This information was

subsequently used to determine possible arbovirus background exposure(s) and reliability of

the final diagnosis to estimate whether the results reflect antibody specific- or cross-reactivity.

Materials and methods

Search strategy and selection criteria

We searched Medline, Embase and Web of Science for serological studies on arthropod-borne

Flavi-, Toga-, Bunya-, and Reoviruses using a search strategy specifically designed to capture

studies addressing cross-reactivity of antibodies (Table A in S1 Appendix). The total period

covered was all published articles up to and including March 2023. Reviews, meta-analyses,

case-reports and animal studies were excluded from the search (Table A in S1 Appendix). The

search resulted in a total of 1562 articles, and together with four additional studies found sepa-

rately from the search by PubMed, this amounted up to 911 studies (Fig 1). All articles were

first screened by title and abstract and subsequently by full text, excluding 669 articles not

describing serological cross-reactivity of arboviruses in humans or not in sufficient detail (e.g.,

missing information regarding the specific viruses studied for cross-reactivity) (Fig 1). The

remaining 242 studies were screened for the level of evidence of exposure; only studies in

which at least part of the participants were vaccinees or confirmed positive by molecular

detection or virus isolation were included, since in these cases the causative agent is confirmed
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Fig 1. Overview of article selection in literature search. Overview of the selection process of articles that study

arbovirus antibody cross-reactivity in humans. Only studies with at least one vaccinee study group or one or more PCR

or virus isolation confirmed sample sets were used in this systematic review (N = 102) (A). Studies were subdivided into

1082 individual data sets with different characteristics to assess cross-reactivity (B). Individual data sets were further

subdivided to illustrate different residence and travel areas of included studies (N = 1836) (C). *Reasons for exclusion
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[65–69]. The final selection consisted of 102 articles (Fig 1A and Table B in S1 Appendix and

S1 Datafile). Subsequently, each study that described measured arbovirus cross-reactivity was

subdivided into individual data sets based on different specifics (N = 1082), such as different

methods used to diagnose patients and/or measure the amount of cross-reactivity, as well as

using different case definitions, sampling time, residence and/or travel areas, age, vaccination

status, infection history and study size (Fig 1B). To illustrate all different residence areas and/

or travel areas of the 1082 individual data sets, the data was further subdivided where needed,

even if cross-reactivity results of the data set were not presented per separate residence or

travel area of the studied patients or vaccinees. This amounted to 1836 residence and travel

areas on the level of country (Fig 1C). Figures were made using R software (S1 Datafile).

Reliability scoring system

We aim to gain insight into the reliability of reported serological test results for diagnostic

interpretation, for interpretation of seroepidemiological surveys, and for the assessment of

antigenic cross-reactivity between arboviruses. To achieve this, we developed a reliability scor-

ing system (Table 1), scoring risk of bias of the final serological result by combining a diagnos-

tic specificity score, an arbovirus background score and a weight of the studies by study size

(Table 1 and Fig 2). For each category, variables were either based on WHO and CDC recom-

mendations and literature or defined by the study team (for details, see Supplemental Informa-

tion A and Table C in S1 Appendix). Information provided on the timing of sampling, case

definitions and the choice of assays was used for the diagnostic specificity score to estimate the

probability of a correct diagnosis [65–69]. The arbovirus background score used knowledge

on endemicity of different geographic regions for arboviruses listed in Tables D and E in

S1 Appendix, as well as age, vaccination status and the prior infection history to assess the

probability of presence of antibodies that may bias the serological results [65–69]. The ratio-

nale of scoring each variable was based on WHO and CDC recommendations, literature and

expert input. For detailed information about the rationale of the scoring system and scoring

variables, see Supplemental Information A in S1 Appendix. To equally weigh the three catego-

ries, scores were divided into quartiles for each category (Table F in S1 Appendix) and then

combined into 5 final composite scores from highest quality (Group 1), yielding most conclu-

sive information, to lowest quality studies (Group 5) in which conclusions regarding specificity

of responses cannot be drawn with confidence (Tables G and H in S1 Appendix). This reliabil-

ity system solely scores the level of antibody (cross-)reactivity interpretation, and does not

score the overall quality of study results. For all scoring results of the individual data sets, see

S1 Datafile. The presence of possible cross-reactive antibodies was calculated for each study

and for each virus included in the multi-antigen serology panels. The calculated cross-reactiv-

ity percentages were divided into three groups: option 1) papers that described antibody reac-

tivity in patients with (PCR) confirmed viral infection against both the infecting virus and a

related virus in the same assay and/or the same antibody type (e.g., PCR confirmed ZIKV

cases for which IgM reactivity was measured against both ZIKV and DENV using the same

assay). Option 2) as 1, but where the serology for the heterologous viruses was done using a dif-

ferent assay and/or antibody type (e.g., PCR confirmed ZIKV cases that were also positive for

ZIKV neutralizing antibodies, and for which IgM reactivity was measured against DENV, and

option 3) papers describing antibody reactivity only for the heterologous antigen (e.g., PCR

confirmed ZIKV cases for which IgM reactivity was measured against DENV, but ZIKV

were not studying arbovirus cross-reactivity in humans and/or not describing serological cross-reactivity in sufficient

detail (e.g., describing the specific viruses assessed for cross-reactive binding).

https://doi.org/10.1371/journal.pntd.0011651.g001
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antibody reactivity was not tested or reported). Option 1 reflects the most accurate presenta-

tion of antibody cross-reactivity. All figures were made using R software.

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data inter-

pretation, or writing of the report.

Results

Search overview output

The final selection included 102 publications describing arbovirus antibody reactivity to multi-

ple antigens for vaccinees or patients (partly) confirmed by molecular detection and/or virus

isolation (Fig 1 and Table B in S1 Appendix). Most articles used multiple patient groups

infected with different arboviruses or from different areas in combination with different study

designs and/or methods for virus identification or multi-antigen antibody measurements.

Therefore, all separate patient and/or vaccinee groups were analysed as separate studies,

amounting to a total of 1082 studies. Most studies were focused on DENV (514/1082; 47,5%),

ZIKV (220/1082; 20,3%), Yellow fever virus (YFV) (60/1082; 5,5%) or CHIKV (52/1082; 4,8%)

Table 1. Reliability scoring system categories and variables used for scoring. Principles of scoring are based on either WHO or CDC recommendations [65–69], litera-

ture or were defined by the study team. For details see Supplemental Information A in S1 Appendix.

1 –Diagnostic specificity score 2 –Arbovirus background score 3 –Study size score

Explanation: variables in this score provide information
on the reliability of a positive or negative test result,
assessing parameters needed for proper diagnostic
interpretation (variables b, c, d and e were only scored in
study sets using serology as diagnostic method)

Explanation: variables used to form this composite
score describe the quality of information about possible
prior arbovirus exposures until time of sample
collection

Explanation: this score provides a weight based

on study size.

a. Type of test and confirmation; probability of correctly

defined study groups by assessing type of (infection)

confirmation: vaccinees, PCR or virus isolation and/or

serology used

a. Residence area (Tables C and D in S1 Appendix);

probability of bias by previous exposure to arboviruses

circulating in the residence area. Bias probability is

based on overlap in virus family and serogroup of the

virus tested for cross-reactivity and possible prior

exposure circulating viruses (same virus or unknown

residence area, same serogroup, different serogroup)

a. Study size; probability of overall reliable

cross-reactivity results by study size of groups

used (unknown, 1–10, 11–100, 101–200, 201–

1000)

b. Serological case definition used; paired or single sera,

above cut-off only, seroconversion or 4-fold increase

between samples and 4-fold difference with or lower/

negative result for virus that likely cross-reacts.

b. Travel history (Tables C and D in S1 Appendix); as

above but for travellers

c. Sera sampling timepoints; probability of reliable

serological results by the timing of sampling of sera used

(single serum after 10 days post symptom onset (dpso) or

paired sera before 7 dpso and after 14 dpso in all or part

of samples, other timepoints or unknown)

c. Age; likelihood of previous arbovirus infections

(children, children and adults, adults or unknown)

d. Type of serology method(s);

type of serology assay(s) (ELISA/IFA/HI/rapid test

confirmed by VNT, VNT only, ELISA/IFA/HI/rapid test

only, based on symptoms or unknown) used to confirm

the patient’s infection to assess likelihood of correct

infection confirmation

d. Arbovirus vaccination history; likelihood of bias is

determined based on overlap in virus family and

serogroup between virus tested for cross-reactivity and

virus of previous vaccination (same virus or unknown

arbovirus vaccination history, same serogroup, different

serogroup, no previous vaccination with some or all

possible arbovirus vaccines)

e. Serological method specificity;

probability of reliable outcome by method characteristics

regarding type of antigens used (more-specific or cross-

reactive antigens, whole virus, unknown) and additional

steps to increase specificity (blocking, inhibition).

e. Arbovirus infection history; serological or molecular

evidence of prior arbovirus infection (arbovirus-naive/

primary infection in all individuals or part of them,

arbovirus experienced/ secondary infection or

unknown)

https://doi.org/10.1371/journal.pntd.0011651.t001
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exposed individuals, whereas studies assessing multi-antigen antibody-reactivity for persons

exposed to USUV (8/1082; 0,7%), Toscana virus (TOSV) (8/1082; 0,7%), Saint Louis encepha-

litis virus (SLEV) (5/1082; 0,5%), Ross River virus (RRV) (2/1082; 0,2%) or Barmah Forest

Fig 2. Principle of scoring the reliability of cross-reactivity signals. True cross-reactivity is defined as the combination of a high diagnostic certainty

(diagnostic specificity score), a low chance of bias by possible previous arbovirus exposures (arbovirus background score) together with a large study size (study

size score). Study data sets considered reliable regarding the serological cross-reactivity signals were selected for analyzing cross-reactivity.

https://doi.org/10.1371/journal.pntd.0011651.g002
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virus (BFV) (2/1082; 0,2%) were sparse (Fig 3). The same pattern can be observed when look-

ing at data on potential cross-reactivity; the majority of studies in this context was focused on

ZIKV and DENV cross-reactivity (639 out of 1082; 59,1%), studying ZIKV-infection-induced

antibody cross-reactivity with DENV (201 out of 639), DENV-infection-induced cross-reac-

tive antibodies with ZIKV (235 out of 639) or DENV-infection-induced antibody cross-reac-

tivity with a different DENV subtype (203 out of 639) (Fig 3). The remaining studies were

Fig 3. Overview of studies providing information on multi-antigen antibody-reactivity testing. Overview of all the combinations for which antibody

measurements were done. Colours depict what the exposure had been for individuals sampled for serology testing (specified in the legend and the inner circle

of the figure, ordered by serogroup), and the labels above each bar describe the virus antigens included in (cross-)reactivity panels. Total N is 1082 studies.

Barmah forest (B), Semliki Forest (Se), Venezuelan equine encephalitis (V), Phlebovirus fever (P), Japanese encephalitis (J), Mammalian tick-borne (M), Yellow

fever (Y), Japanese encephalitis, Mammalian tick-borne, Yellow Fever (JMY), Dengue (D), Spondweni (Sp).

https://doi.org/10.1371/journal.pntd.0011651.g003

PLOS NEGLECTED TROPICAL DISEASES The increasing complexity of arbovirus serology

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011651 September 22, 2023 8 / 25

https://doi.org/10.1371/journal.pntd.0011651.g003
https://doi.org/10.1371/journal.pntd.0011651


studying serum panels collected after exposure to a wide range of arboviruses for cross-reactiv-

ity with arboviruses often in the same genus and/or serogroup as the virus of exposure (443

out of 1082, 40,9%) (Fig 3). Of these studies, the presence of DENV cross-reactive antibodies

in sera collected after exposure to YFV (N = 33) and Japanese encephalitis virus (JEV)

(N = 29) was most frequently studied (Fig 3). Out of all studies, cross-reactivity towards

DENV was most often studied (523 out of 1082, 48,3%).

Most studies described persons living in or travelling to South-, Central- or North America,

Europe or South-east Asia (Fig 4), which are all areas where arboviruses are known to co-cir-

culate [70–74] (Table D in S1 Appendix). Serology in residents or travellers to other geo-

graphic areas such as Africa, West and Central Asia and Oceania is less well studied (Fig 4),

although arbovirus circulation has frequently been seen in these areas in the past as well [70–

74] (Table D in S1 Appendix), highlighting an important research gap. In addition, more stud-

ies addressed serology in resident populations (874/1082; 80,8%) than in travellers (111/1082;

10,3%) or both or unknown (97/1082, 8,9%) (S1 Datafile). Most published studies had targeted

diagnostic panels, with South American studies mainly focusing on the Spondweni- (ZIKV),

Dengue (DENV 1–4), Semliki forest (CHIKV, MAYV) and Venezuelan equine encephalitis

Fig 4. Overview of the geographic distribution of residence areas and travel destinations. Overview of all residence areas of studied individuals and travel

destinations of travellers of the included studies (N = 1836). Residence areas of vaccinees or patients that did not have any (reported) prior travel and therefore

(likely) acquired infection at the residence area are depicted in red (N = 1383). For travellers that likely got infected at the travel destination, residence areas are

shown in green (N = 453) and the travel destinations in blue (N = 453). Study frequency is depicted by size and the continents are coloured using a grey-scale.

Figure is made using the R package maps and Natural Earth (Cultural base layer, medium scale, countries). The world map, is made using the world data base

of the R package maps: https://www.rdocumentation.org/packages/maps/versions/3.4.0.

https://doi.org/10.1371/journal.pntd.0011651.g004

PLOS NEGLECTED TROPICAL DISEASES The increasing complexity of arbovirus serology

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011651 September 22, 2023 9 / 25

https://www.rdocumentation.org/packages/maps/versions/3.4.0
https://doi.org/10.1371/journal.pntd.0011651.g004
https://doi.org/10.1371/journal.pntd.0011651


(VEEV) serogroups, whereas the majority of studies performed in other regions had narrow

serology panels mostly limited to arboviruses from only one or two particular serogroups

(S1 Datafile), in line with the known prevalence of circulating arboviruses in each area [70–74]

(Table D in S1 Appendix). As expected, when included in (differential) diagnostic testing in a

specific area, the same pattern was observed on the selection of arboviruses for multi-antigen-

reactivity testing (Table D in S1 Appendix and S1 Datafile).

Scoring studies to assess quality of multi-antigen-serological reactivity

measurements

The results of scoring of the individual categories to assess the reliability of studies of antibody

specificity are summarized in Figs 5 and 6 (for details, see Table C in S1 Appendix and S1

Datafile). Most studies involved persons who were vaccinated or had an arbovirus infection

confirmed by RT-PCR or virus isolation (N = 721), and therefore had the highest score (A) for

the category “diagnostic specificity” (Figs 5 and 6A and Table C in S1 Appendix). Studies

using serology to define what the individuals had been exposed to rarely met the highest score

(N = 15) due to low diagnostic quality or incomplete information regarding timing of sam-

pling, case definitions and/or choice of method (specificity). A clear impact to the lower diag-

nostic specificity score was the limited number of studies reporting paired serum sample

testing with high-quality based evidence (Figs 5 and 6B and Table C in S1 Appendix), which is

considered important for reliable serological testing. Another, related, common issue was the

timing of serum sampling; 76,2% of the studies had the lowest score possible (275/361, 76,2%),

which was mainly due to the lack of this information (260/275, 94,5%) (Figs 5 and 6C and

Table C in S1 Appendix). The type of serological methods used was mainly ELISA, IFA, HI or

rapid diagnostic test only (185/361, 51,2%—low score), rather than the more specific serologi-

cal testing using (confirmation) VNT assays (Figs 5 and 6D and Table C in S1 Appendix).

Regarding (antigen) specificity of the serological methods: the most frequent category was the

low score (200/361, 55,4%), and after that the lowest score as a result of missing details about

method specificity (145/361, 40,2%) (Figs 5 and 6E and Table C in S1 Appendix). Despite the

lower diagnostic specificity score for studies using serology with only 15 studies in the highest

category (15/361, 4,2%—A), the second highest score did slightly have the highest frequency

(137/361, 38%—B) (Figs 5 and 6F).

In order to assess the potential for serological (cross-)reactivity from exposure to other

arboviruses, papers were scored for the risk of presence of (cross-)reacting antibodies from

prior exposure as well as completeness of data provided on area of residence or travel, age and

vaccination and infection history for an “arbovirus background score”. This data was largely

missing, leading to the lowest possible score for most studies in this category. The only excep-

tion was reporting of the area of residence since only few studies did not report this informa-

tion (19/1082, 1,8%). However, the vast majority received the lowest score (839/1082, 77,5%)

(Figs 5 and 6G), meaning they have been executed in residence areas with a high chance of

present arbovirus pre-exposure antibodies that may (cross-)react in serological assays (Table C

in S1 Appendix). Only 9,4% of the studies received the highest score (102/1082, 9,4%) (Figs 5

and 6G), which can be explained by the extensive spread of arboviruses worldwide in which

almost all areas experience increasing concurrent circulation of multiple arboviruses from dif-

ferent antigenic groups[70–74], meaning chances of various (cross-)reacting pre-exposure

antibodies are high in most regions (Tables C and D in S1 Appendix). The same scoring pat-

tern can be observed for travel history: almost all studies were assigned with the lowest score

(1067/1082, 98,6%), which in this case was largely due to not reporting or specifying this infor-

mation (941/1067, 88,2%) (Figs 5 and 6H and Table C in S1 Appendix). The age of patient or
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Fig 5. Overview of scoring results and total reliability of studies. Overview of scoring results of each category (diagnostic specificity, arbovirus

background, study size) and total reliability for all included studies (N = 1082) ordered by publication date (oldest publication (left) to the most

recent (right)). Scores of variables are divided into highest (red), high (orange), middle (dark blue), low (light blue) and lowest (light grey), whereby a

high score indicates a low chance of bias and a low score a high chance of bias. The possible options for scoring can vary between variables (see

legends per variable). Studies scoring highest on type of test and confirmation (studies with vaccinees or patients confirmed by PCR) are not
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vaccination groups studied varied from children only (95/1082, 8,8%) to children and adults (323/

1082, 29,9%), adults only (194/1082, 17,9%) and unknown (478/1082, 44,2%), which resulted in a

slight majority of studies with the lowest score (664/1082, 61,2%) (Figs 5 and 6I and Table C in S1

Appendix). Even though the potential for cross-reactivity from vaccination is well known, this

information was rarely provided; hardly any of the studies reported previous arbovirus vaccina-

tion(s), which was also the reason for receiving the lowest score (930/946, 98,3%) (Figs 5 and 6J

and Table C in S1 Appendix). Testing for possible prior arbovirus infections was only done in

roughly a third of the studies (348/1082, 32,2%), with only 139 studies providing evidence of pri-

mary infection of the studied individuals (139/1082, 12,8%—highest score) (Figs 5 and 6K and

Table C in S1 Appendix). Overall, a poor total arbovirus background score was obtained, with the

majority of studies in the lowest scoring category (D) (917/1082, 84,8%) (Figs 5 and 6L).

The study size of patient groups and/or vaccinees was generally small, varying from 1 to 10

individuals or unknown (454/1082, 42%) (lowest and low score—Group D) to 11 to 100 indi-

viduals (585/1082, 54,1%) (middle score—Group C) (Figs 5, 6M, and 6N and Table C in S1

Appendix). Only a few studies used study sizes of 101 to 200 (21/1082, 1,9%) (high score—

Group B) and 201 to 1000 (22/1082, 2%) (highest score—Group A) (Figs 5, 6M, and 6N and

Table C in S1 Appendix).

Combining all three categories together showed no studies in the highest total reliability

group (group 1), meaning that no studies had the best possible score (Figs 5, 6O, A and

Table H in S1 Appendix). Group 2 (highly reliable, 12/1082, 1,1%) and 5 (least reliable, 129/

1082, 11,9%) contain the minority of studies, whereas the majority of studies is in group 3

(medium reliable, 462/1082, 42,7%) or 4 (low reliable, 479/1082, 44,3%) (Figs 5, 6O, and A and

Table H in S1 Appendix). This means that most of the studies provide mid-range to low quality

evidence with regards to antibody cross-reactivity results. In addition, cross-reactivity reliabil-

ity of studies is not improving over time (Fig 5).

Reliability of cross-reactivity results mapped to antigenic distance

The composite scores, ranging from group 1 (highest) to group 5 (lowest) were used to assess

reliability of cross-reactivity results provided in the publications (Fig 7). Cross-reactivity

results are presented as a calculated percentage based on the total number of confirmed

patients divided into three groups (options 1–3) (see methods section and S1 Datafile). Very

few papers presenting presence of antibodies to multiple arboviruses had the highest quality

scores, and therefore results need to be interpreted with caution. Where tested, a medium to

high percentage of serum samples tested positive for binding to other arboviruses from the

same genus or serogroup, most likely reflecting cross-reactive antibodies (Fig 7). For instance,

this is seen for ZIKV-DENV, DENV-DENV and to a lower extent DENV-ZIKV combinations,

as well as between Tick borne encephalitis virus (TBEV), JEV, USUV, WNV and DENV1-4, in

line with literature and reported protein identity [71,75–79]. However, there also are also some

exceptions: a few publications on CHIKV exposed patients described low to medium levels of

antibodies to ZIKV and DENV and the other way around (Fig 7). CHIKV is in a different fam-

ily of viruses than ZIKV and DENV, and the studies were all in the medium or two lowest reli-

ability groups (Fig 7). Also, most of the highest cross-reactivity percentages seen for these virus

combinations are categorized as option 3 percentages, and are therefore a less accurate

evaluated for the other variables of the diagnostic specificity score weighing the serological diagnostic evidence (NA, dark grey). Total scores of each

category are shown in four groups ranging from high to low: A (dark green), B (light green), C (yellow), D (light grey). The total composite reliability

score of the studies is shown at the bottom ranging from highest (Group 1) to lowest (Group 5) in yellow, turquoise, dark blue, purple and pink,

respectively.

https://doi.org/10.1371/journal.pntd.0011651.g005
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Fig 6. Distribution of (sub)category scores and total reliability groups. Scores per individual variable of each

category and total reliability groups of all studies scored in the reliability scoring system. Color legend as in Fig 5.

NR = information not reported (grey striped pattern), NS = information not sufficiently specified (grey dotted

pattern). The number of studies (N) represents the number of subdivided data sets used to score each variable.

https://doi.org/10.1371/journal.pntd.0011651.g006
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representation of antibody cross-reactivity (Fig 7). Therefore, it is more likely that these obser-

vations are explained by multi-reactivity caused by pre-exposure virus-specific antibodies,

rather than cross-reactivity of antibodies from the recent exposure, since CHIKV, ZIKV and

DENV largely co-circulate [72] (Table D in S1 Appendix). Another clear observation is that

cross-reactivity between arboviruses from a different genus is rarely studied (Fig 7). In 264 cases

it was not possible to calculate cross-reactivity percentages due to missing detailed information

regarding the number of cross-reactive cases and/or positive confirmed patients (264/1082,

24,4%) (S1 Datafile). Similarly, assessing whether estimates differed by serological method was

not possible due to the large heterogeneity of information regarding the controls, cut-offs and/

or sample timing of sera used, or because information was missing or not sufficiently specified

in the selected publications (e.g, type of antigen used or timing of sera sampling) (S1 Datafile).

Discussion

Differential arbovirus diagnosis is becoming increasingly difficult due to the ongoing global

arbovirus spread and, as a result, the increasingly complex antibody landscapes in exposed

Fig 7. Reliability of arbovirus cross-reactivity results mapped to antigenic distance. Calculated percentage of cases exposed to different arboviruses for

which (multi-)(cross-)reactive antibodies were found to viruses listed at the bottom of the panels. The heading of each panel depicts the arbovirus(es) of

exposure. Coloured circles indicate the scoring from group 1 (highest) to 5 (lowest) (yellow, turquoise, dark blue, purple and pink, respectively). The

transparency of the circles corresponds to the different options of calculated cross-reactivity percentages. The blue overlays depict which arboviruses tested for

cross-reactivity are in the same serogroup as the arbovirus of exposure, whereas the dark grey overlays show which arboviruses are within the genus of the

arbovirus of exposure. *YFV, TBEV, JEV represents all different combinations of two of these viruses or all.

https://doi.org/10.1371/journal.pntd.0011651.g007
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groups. In this systematic review, we assess the quality of information from studies aiming to

assess arbovirus antibody cross-reactivity patterns, and highlight the limitations and informa-

tion gaps in arbovirus serology that challenge reliable cross-reactivity results. First of all, one of

the clearest knowledge gaps is that, other than ZIKV-infection and DENV-infection-induced

(cross-)reactive antibody responses, antibody relations between other arboviruses are rarely

studied. This underlines the need for studying cross-reactivity between these other arboviruses

and broaden our knowledge beyond ZIKV and DENV to fully understand the complex anti-

body patterns in order to improve differential diagnosis and interpretation of serosurveys

[3–7]. However, studying cross-reactivity between less well known and/or prevalent arbovi-

ruses comes with the lack of sufficiently powered clinical cohorts, lack of commercially avail-

able reliable serological tests, and the lack of standardisation and quality control panels for in-

house assays.

In addition to this gap of knowledge, there is a geographic bias as well; where geographic

areas such as South-, Central- or North America, Europe and South-east Asia are extensively

studied, far less literature is available for patients from or travellers to Africa, West and Central

Asia and Oceania, even though arboviruses are known to circulate in these areas (in the past)

as well. This is in line with other literature stating arbovirus circulation in Africa, Central Asia

and Oceania is likely underreported and/or underrecognized [80–82]. This may (partly) be

explained by the popularity of travel destinations [83], the lack of medical facilities and/or

research capabilities [84,85], limited surveillance and official reporting of arbovirus cases of

regional laboratories to the WHO [84,85], and scarce availability of English reports on surveil-

lance data in some countries of these areas [80–82].

We show that the majority of publications lack information that would allow reliable inter-

pretation of antibody (cross-)reactivity. For instance, geographic region, travel- and vaccina-

tion and infection history of participants should be included by default in future articles

studying cross-reactivity, to be able to appropriately interpret the results [70]. We show that

knowledge on the background seroprevalence of different arboviruses in different parts of the

world is lacking, which could be addressed by globally standardized serological studies with

multi-antigen panels [70]. Such studies could serve as a global reference for researchers

involved in local studies, as has been recommended for other pathogens as well [86,87]. In

addition to the significant issue of missing data, we show that even in case the residence and

travel areas are known, studies rarely met the highest reliability score for these parameters.

The establishment of geographically dispersed longitudinal prospective or retrospective cohort

studies would significantly improve our knowledge and clarify (complex) cross-reactivity

results, since in this case occurrence of pre-exposures do not need to be estimated. However,

this requires highly specific molecular and/or serology-based arbovirus diagnosis, clear and

comprehensive registration in medical systems, and funding to allow properly powered studies

beyond a single region.

Overall, most studies scored high on diagnostic specificity (group A, 736/1082, 68%), which

is mainly explained by our selection of studies using vaccinees or (partially) molecular or viral-

isolation methods to confirm infection of patients of at least one of the study groups that were

used for testing cross-reactivity in their study. Of the studies solely or partially using serology

methods to confirm virus exposures, only a few were assigned with the highest score A, and

38% of the studies were in the second highest scoring category B (137/361, 38%). Reasons for

this lower score were the limited use of high-quality paired serum sample testing, lack of infor-

mation regarding sampling timepoints and method specificity, as well as choosing serological

diagnostic ELISA, IFA, HI or rapid diagnostic assays over more specific (confirmation) VNT

assays. The method specificity issue here is, however, likely explained by the absence of avail-

able specific assays in most cases or most reliable serological tests being time consuming,
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mostly require large quantities of sera, are difficult to deploy in low resource settings and

require highly trained personnel. Although not described in the results presented here, there

were limitations in estimating and scoring this diagnostic specificity due to inconsistent or

incomplete description of the methodology. For instance, many different cut-offs for serologi-

cal assays were used throughout the publications, or cut-offs were not reported, the use of

(negative and positive) controls was poorly defined, as were the details of sampling (single and

paired sera timepoints; S1 Datafile). Although obvious, the collection of properly paired serum

samples is notoriously difficult, even in costly clinical studies in high-income countries. Based

on these limitations, it was not possible to include these parameters in the diagnostic specificity

category. This greatly underlines the need of standardization when possible and detailed

reporting of method and study characteristics.

Although there are some limitations, this reliability-scoring approach may help to pin-

point weak and strong points of studies regarding reliability of cross-reactivity signals. The

observation that the total reliability score of studies is not improving over time, clearly

underlines the need of more standardized and reliable study designs to be able to compare

cross-reactivity study results from multiple different studies. Therefore, to overcome this,

we propose minimal standards for the reporting of metadata of the studied individuals and

methods used (Tables 2, 3, I, and J in S1 Appendix—blank format and recommendations).

This includes detailed background information on the population tested such as the resi-

dence area or travel locations in the past years and the arbovirus exposure history when

available, and preferentially studying cross-reactivity in populations that are least likely

biased from possible previous arbovirus exposures. When possible, the use of specific (sero-

logical or molecular) methods with standardized control panels and cut-offs as well as stan-

dardized study designs that include paired sera sampling regarding serology and multi-

antigen test panels, would highly improve the diagnostic certainty and comparability. This

may eventually lead the way to improving our understanding of the complex cross-reactive

antibody patterns between (less studied but relevant) arboviruses and how these responses

affect disease outcome. Furthermore, these insights in cross-reactive antibody responses

may help develop specific serological assays and subsequently improve differential arbovi-

rus diagnosis, tackling the challenge of arbovirus diagnosis in a rapidly changing world

regarding global arbovirus spread.

Table 2. A minimum standard for metadata regarding the studied individuals.

Variable Description

Virus of exposure The virus to which the individuals included in the study are

exposed (infection or vaccination)

Residence area (Country, state, city, district) The country and additional information about the residence of

the individuals included in the study

Travel area of travellers (Country, state, city,

district)

The area of acquired infection of travellers included in the

study

Prior travel history (non-travellers & travellers)

(Country, state, city, district)

The prior travel history of the individuals included in the study

Prior arbovirus vaccination history The prior arbovirus vaccination history of individuals included

in the study

Age The age of the individuals (children, adults or both with the

range of ages)

Prior arbovirus infection history Evidence of no or prior infection history by serological or

molecular methods

https://doi.org/10.1371/journal.pntd.0011651.t002
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Supporting information

S1 PRISMA Checklist. PRISMA 2020 main checklist.

(DOCX)

S1 Appendix. Supplemental information. A–Additional information regarding the reli-

ability scoring system. Information about scoring the three categories: diagnostic specificity,

arbovirus background and study size, as well as the overall data quality score. Table A–Search

strategy of three different databases. Three different databases that cover all scientific articles

were used to search articles for this systematic literature search. We aimed to only select arti-

cles studying human arbovirus antibody cross-reactivity in serological assays. Reviews, meta-

analyses, and case reports were excluded from the selection. Table B–Included articles with

their references. The “Study_number” corresponds to the study numbers in the S1 Datafile.

For all details about the results of scoring and the subdivided datasets, see S1 Datafile.

Table C–Overview reliability scoring system. Variables scored in this reliability scoring sys-

tem were classified in three main categories: Diagnostic specificity, arbovirus background and

study size. Maximum number of points for type of test and confirmation was 40, whereas for

all other variables this was 4, or 8 or 2 based on the weight of the variable. Only studies that

received either 18 or 0 points in the type of test and confirmation variable, were further scored

for the other serological variables of the diagnostic specificity score. The highest possible score

of each variable correlates with the lowest bias by diagnostic specificity, arbovirus background

and study size. This means that in this case, the diagnosis of study groups can be viewed as cor-

rectly determined and true, as well as the antibody cross-reactivity results presented by the

Table 3. A minimum standard for metadata regarding the methods used to confirm the virus exposure, determine the prior infection history and test for antibody

cross-reactivity.

Variable Description Category

Confirmation of
arbovirus exposure

Assessment of
arbovirus infection
history

Testing antibody
cross-reactivity

Methods used The molecular and/or serological methods used to confirm the

virus exposure or determine the infection history of the

individuals. The serological methods used to test antibody cross-

reactivity.

x x x

Cut-off used The cut-off used to determine whether the test result is positive or

negative

x x x

Type of antibody tested

(serological methods only)
The type of antibody tested in serological assays x x x

Antigen tested (serological
methods only)

The type of antigen used x x x

Case definition Case definition used to determine the virus of exposure x

Definition of infection

history status

Interpretation of test results with regards to the infection history

status

x

Timepoints of serum

samples

The timing of sera sampling used in the case definition, to

determine the infection history and used in the cross-reactivity

testing

x x x

Controls used The negative and positive controls used x x x

Raw data The raw data output of the method(s) used x x x

# Total confirmed positives The number of total confirmed exposed individuals used to test

antibody cross-reactivity

x

# Confirmed positives that

show reactivity to other

antigens

The number of confirmed exposed individuals that show reactivity

to both the virus of infection and the virus tested for cross-

reactivity

x

https://doi.org/10.1371/journal.pntd.0011651.t003
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study. Table D–Circulation of arboviruses per area used in scoring system. All arboviruses

circulating in specific geographic areas, according to Cleton et al [70,74], additional literature

[16,71–73,88–106], and CDC and WHO circulation maps, were used to calculate chances of

present pre-exposure antibodies in residence and travel areas of study participants. For arbovi-

ruses that only recently circulate, the reported year of the start of circulation in particular areas

was taken into account. For calculating the effect of possible pre-exposure antibodies on the

antibody cross-reactivity results, DENV and ZIKV were considered as the same serogroup

based on their high antigenic similarities. Table E–Classification of residence and travel

areas per geographic area. All residence and travel areas of the literature search were classified

in determined geographic regions that have a similar composition of arbovirus circulation

based on Cleton et al [70,74] and CDC and WHO circulation maps. Table F–Category groups

of sum of points. Total sum of points of each category was divided into four quartiles (Group

A, B, C and D) to be able to equally weigh and compare the total scores of the different catego-

ries. Table G–Overview combinations A, B, C and D of the three categories scoring reliabil-

ity. The table shows an overview of all the possible combinations and the found combinations

(A, B, C and D) of the three main categories scoring reliability of the included studies

(N = 1082). The table is ordered by showing the best possible reliable combination at the top

of the table and the least possible reliable combination at the bottom of the table. Table H–

Overview of total reliability groups based on category combination score. Total reliability

groups were defined per category combination score of A, B, C and D for included studies

(N = 1082). Total reliability group 1 is most reliable, whereas total reliability group 5 is the

least reliable. Number of studies per total reliability group can be seen in the last column.

Table I—A minimum standard for metadata regarding the studied individuals. Table J—A

minimum standard for metadata regarding the methods used to confirm the exposure,

determine the prior infection history and test for antibody cross-reactivity. Fig A–Three-

dimensional plots of category scores and total reliability groups. Scores for all three catego-

ries (study size, diagnostic specificity and arbovirus background) in three-dimensional plots

(N = 1082). Total reliability groups are depicted in colours ranging from group 1 (highest) to

group 5 (lowest) (yellow, turquoise, dark blue, purple and pink, respectively). Frequency of a

specific score is shown by size.

(DOCX)

S1 Datafile. Extracted data of all included articles and scoring.

(XLSX)
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