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Background: The human exposome encompasses all exposures that individuals encounter throughout their 
lifetime. It is now widely acknowledged that health outcomes are influenced not only by genetic factors but 
also by the interactions between these factors and various exposures. Consequently, the exposome has emerged 
as a significant contributor to the overall risk of developing major diseases, such as cardiovascular disease (CVD) 
and diabetes. Therefore, personalized early risk assessment based on exposome attributes might be a promising 
tool for identifying high-risk individuals and improving disease prevention.

Objective: Develop and evaluate a novel and fair machine learning (ML) model for CVD and type 2 diabetes (T2D) 
risk prediction based on a set of readily available exposome factors. We evaluated our model using internal 
and external validation groups from a multi-center cohort. To be considered fair, the model was required to 
demonstrate consistent performance across different sub-groups of the cohort.

Methods: From the UK Biobank, we identified 5,348 and 1,534 participants who within 13 years from the 
baseline visit were diagnosed with CVD and T2D, respectively. An equal number of participants who did 
not develop these pathologies were randomly selected as the control group. 109 readily available exposure 
variables from six different categories (physical measures, environmental, lifestyle, mental health events, 
sociodemographics, and early-life factors) from the participant’s baseline visit were considered. We adopted 
the XGBoost ensemble model to predict individuals at risk of developing the diseases. The model’s performance 
was compared to that of an integrative ML model which is based on a set of biological, clinical, physical, and 
sociodemographic variables, and, additionally for CVD, to the Framingham risk score. Moreover, we assessed the 
proposed model for potential bias related to sex, ethnicity, and age. Lastly, we interpreted the model’s results 
using SHAP, a state-of-the-art explainability method.

Results: The proposed ML model presents a comparable performance to the integrative ML model despite using 
solely exposome information, achieving a ROC-AUC of 0.78 ±0.01 and 0.77 ±0.01 for CVD and T2D, respectively. 
Additionally, for CVD risk prediction, the exposome-based model presents an improved performance over the 
traditional Framingham risk score. No bias in terms of key sensitive variables was identified.

Conclusions: We identified exposome factors that play an important role in identifying patients at risk of CVD 
and T2D, such as naps during the day, age completed full-time education, past tobacco smoking, frequency of 
tiredness/unenthusiasm, and current work status. Overall, this work demonstrates the potential of exposome-

based machine learning as a fair CVD and T2D risk assessment tool.
* Corresponding author.

1. Introduction

Risk assessment is essential in the prevention of high-burden dis-

eases, such as cardiovascular disease (CVD) [1–3] and type 2 diabetes 
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(T2D) [4,5]. It has the potential to promote the application of pre-

ventive measures, such as beneficial lifestyle change, and enhance 
adherence to medical advice [6,7]. The importance of early and per-

sonalized risk assessment has led to the development of a plethora of 
tools in the cardiovascular domain. These include the Framingham risk 
score [8], QRISK [9–11], the American Heart Association/Atheroscle-

rotic Cardiovascular Disease (AHA/ASCVD) risk score calculator [12], 
AUDIRISK [13], to name a few. Despite their importance, these tools are 
based on simple algorithms assuming linearity, such as the Cox regres-

sion model [14], while they consider a limited number of traditional 
cardiovascular risk factors. Compared to these approaches, machine 
learning (ML) can handle vast amounts of numerical and categorical 
data without assumptions regarding the nature of the data such as nor-

mality or linearity. Therefore, it is emerging as an alternative for risk 
prediction that will allow the exploitation of additional data to achieve 
early and personalized identification of individuals at high risk of CVD 
and diabetes [15,16].

Exposure data, i.e. environmental, lifestyle, and behavioral factors, 
are of particular interest as potential predictors for such novel ML risk 
assessment models due to the information richness regarding the health 
of individuals that they encompass [17]. The contribution of environ-

mental factors to disease risk is estimated to be 70 to 90% [18–20]. 
Exposures can be divided into external and internal. Typical external 
exposures include toxicants in the general environment and workplaces, 
diet, lifestyle, academic level, and socioeconomic status, while internal 
exposures are related to biological factors such as metabolic factors, gut 
microflora, and inflammation. All the exposures of an individual across 
the life course are called the exposome [21]. The exposome is comple-

mentary to the genome and can provide an improved understanding of 
the relation between risk factors and diseases leading to better preven-

tion of chronic diseases [22]. Unlike clinical and radiological data [23], 
external exposome data are relatively easy to acquire using question-

naires or sensors located in smartphones, computers, or any electronic 
wearable device. The easiness of acquisition of exposome data allows 
for obtaining large volumes of individual-specific information that can 
be used with ML to obtain unprecedented insights into disease and en-

hance risk assessment.

Recently, several studies have used machine learning and statisti-

cal techniques to predict T2D and CVD based on different combinations 
of the aforementioned categories of predictors, as summarized in Ta-

ble 1. More precisely, in the cardiovascular domain, Alaa et al. [24]

predicted CVD risk by using ensemble ML models with data from nine 
categories: health and medical history, lifestyle and environment, blood 
assays, physical activity, family history, physical measures, psychoso-

cial factors, dietary and nutritional information, and sociodemograph-

ics. Widen et al. [25] trained predictors for blood and urine markers 
(e.g. high-density lipoprotein, low-density lipoprotein, lipoprotein A, 
glycated hemoglobin, etc.) from single nucleotide polymorphisms (SNP) 
genotype to predict the CVD risk. Other works detected CVD from car-

diac magnetic resonance imaging (CMR) phenotypes and genetic data 
by means of ML and Mendelian randomization [26–28].

In the study of T2D, associations between T2D and ready-to-eat food 
environments were identified by applying logistic regression on expo-

sure data [29]. Lam et al. [30] developed diabetes prediction models 
using ML algorithms on data from wearable activity sensors, specifi-

cally wrist-worn triaxial accelerometers. Doleza et al. [31] devised a 
T2D risk prediction model using deep learning and features obtained 
by a smartphone, including demographic characteristics, anthropomet-

ric measures, lifestyle measures, medical history, and family history.

Despite the importance of these studies, most of the works included 
biological data, which might not always be available or easily accessi-

ble to the population, limiting their potential as self-assessment tools. 
Moreover, they neglected the use of exposome data or considered a 
very limited number of exposures, while traditional linear modeling 
techniques, such as logistic regression employed in these works, fail to 
2

optimally explore the richness of the exposome data to produce accurate 
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risk estimations. To overcome these limitations, we propose a novel ap-

proach for identifying individuals at risk of CVD and T2D, respectively, 
based on easily accessible exposome factors and a state-of-art machine 
learning model, the XGBoost ensemble model [32]. The main contribu-

tions of this paper are summarized as follows:

• ⋅We present the first study to explore machine learning with a wide 
variety of exposome data, including physical measures, environ-

mental, lifestyle, traumatic and psychosocial events, sociodemo-

graphics, and early-life factors, for CVD and T2D risk prediction 
using such a large and multi-center cohort as the UK Biobank 
(UKBB). The model is evaluated using internal and external vali-

dation based on data from independent assessment centers.

• ⋅Using the state-of-the-art explainability method, SHAP (SHapley 
Additive exPlanations), we have identified key exposome attributes 
in CVD and T2D risk prediction. These features might serve as po-

tential risk factors for CVD and T2D and serve to build a rapid 
and accessible (self-)assessment risk prediction tool. Moreover, the 
knowledge gained regarding exposome CVD and T2D risk factors 
has the potential to drive the implementation of cost-effective pre-

ventive measures and policies to protect individuals’ health from 
adverse environmental and lifestyle exposures [33].

• The proposed model is evaluated in terms of fairness regarding key 
sensitive variables (sex, ethnicity, age). We demonstrate that the 
model exhibits no bias across these variables bringing the model 
closer to real-world implementation.

2. Methods

An overview of the proposed approach is provided in Fig. 1. Each 
step of the pipeline is presented in detail in the following sections.

2.1. Data

Population Data from the UKBB application 65769 was used. The 
UKBB comprises data from 502,664 participants recruited from the UK 
National Health Service between 2006-2019 aged between 37 and 73 
years. The participants have realized up to four assessment visits: a 
baseline visit (2006-2010), a first repeat visit (2012-2013), an imaging 
visit (2014+), and a first repeat imaging visit (2019+). During the first 
assessment visit, participants reported physical measurements, lifestyle, 
environmental, sociodemographic, traumatic, and physiological events, 
early-life factors as well as medical history. In subsequent visits, the 
information regarding medical history was updated. The participants 
consented to provide this information using a computer-based question-

naire under the ethical approval granted to Biobank from the Research 
Ethics Committee - REC reference 11/NW/0382 [34].

For the aim of this study, we used the exposome information gath-

ered during the first assessment visit from participants without CVD 
or T2D to predict the development of the respective pathology as re-

ported in subsequent visits. It should be noted that visits were carried 
out in 19 different clinical centers in the UK (Supplementary Table 1). 
Data from 3 different, independent centers than those used for training 
and internal validation, were used for external validation. The study 
cohort selection process is presented in Fig. 2. In brief, we enrolled 
in our study two groups of participants based on the ICD-10 diagno-

sis codes (see Outcomes definition) to identify those at risk of CVD and 
TD2, separately: i) a diseased group consisting of participants with the 
pathology of interest diagnosed within 13 years after the baseline visit 
(CVD or TD2), and ii) a control group consisting of an equal number of 
randomly selected participants that are healthy or suffering from other 
diseases than the diseases under study. This process resulted in a total 
of 5,348 with CVD and an equal number of participants without CVD 
being used for CVD prediction. Data from participants from 16 centers 

were used for training and internal validation (4,829 participants per 
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Table 1

Predictors used for risk assessment by different state-of-the-art methods. Categories included: Genetic data (GEN); medical imaging (IMG); biomarkers (BIOM) such 
as blood pressure, neuroticism score, and blood assays; environmental (ENV); lifestyle (LIFE); sociodemographic (SOCIOD); mental health (MH); physical measures 
(PHY) and early-life (EALI). The last column (UKBB) indicates whether the work used the UK biobank data.

Disease Publication Category of predictors UKBB

GEN IMG BIOM ENV LIFE SOCIOD MH PHY EALI

CVD Alaa et al. [24] ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

Widen et al. [25] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Zheng et al. [26,27] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Li et al. [28] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

T2D Sarkar et al. [29] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Lam et al. [30] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

Doleza et al. [31] ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

CVD, T2D Proposed approach ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 1. Overview of the proposed approach for identifying individuals at risk of CVD and T2D using exposome data and machine learning (ML).
class, i.e. control group and individuals at risk of CVD), while data from 
the remaining 3 centers were used for external validation (519 partic-

ipants per class). Similarly, 1,534 participants with TD2 and an equal 
number of participants without T2D were used for T2D prediction. From 
those participants, 1,390 per class were used for training and internal 
validation and 144 were kept for external validation.

Outcomes definition Participants with CVD were considered those with 
any of the following ICD-10 codes: coronary/ischaemic heart diseases 
(I20-I25), heart failure events (I50), vascular dementia (F01), and 
cerebrovascular diseases (I60-I69). For identifying participants with 
T2D, we included participants suffering from insulin-dependent (E10), 
non-insulin-dependent diabetes mellitus (E11), malnutrition-related di-

abetes mellitus (E12), and other specified diabetes mellitus (E13).

2.2. Data pre-processing

In total, we considered 109 exposome features from six different 
categories: early-life (14 features), environmental factors (9 features), 
3

lifestyle (46 features), sociodemographics (13 features), mental health 
(18 features), and physical measures (9 features). The complete list of 
features used in this work is provided in Supplementary Table 2.

Pre-processing was performed to curate the dataset for missing val-

ues. More precisely, we excluded from the study participants with 90% 
or above of missing data and those who answered “prefer not to an-

swer” or “do not know” to any question, due to it can be considered as 
a missing value. This resulted in a sample of 1,534 individuals with 
T2D and 5,348 with CVD respectively, diagnosed after the baseline 
visit. An equal number of participants without the diseases under study 
was included in the control group. After removing participants, we 
imputed missing values by replacing them with the median and the 
most frequent value for numerical and categorical data, respectively. 
To choose the imputation approach, we performed a sensitivity anal-

ysis including a popular, more sophisticated imputation method, the 
Missforest algorithm [35]. The analysis consisted in comparing models 
with imputed data using MissForest or simple imputation with differ-

ent percentages of missing values (15%, 20%, 25%, 30%). A paired 
t-test on the distributions of area under the curve (AUC) performances 

was performed in the nested cross-validation framework. No significant 
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Table 2

Participants’ baseline characteristics used for disease prediction (internal|external validations). CVD and T2D stand for cardiovascular disease and diabetes, respec-

tively. The number of individuals (n) and their mean and standard deviation (SD) are reported.

Characteristics CVD Control without CVD T2D Control without T2D

(𝑛 = 4,829|519) (𝑛 = 4,829|519) (𝑛 = 1,390|144) (𝑛 = 1,390|144)

Age, years [mean(SD)] 74.9(6.6)|74.8(7.2) 69.9(8.0)|70.0(8.5) 73.4(7.3)|73.8(7.6) 70.2(8.2)|70.4(8.0)

Sex [n(%)]

- Male 3,175(65.7)|333(64.2) 2,092(43.3)|227(43.8) 836(60.1)|87(60.4) 642(46.2)|69(47.9)
- Female 1,654(34.3)|186(35.8) 2,737(56.7)|292(56.2) 554(39.9)|57(39.6) 748(53.8)|75(52.1)

BMI, 𝐾𝑔∕𝑚2 [mean(SD)] 28.9(5.0)|28.9(5.4) 27.2(4.7)|27.2(4.9) 31.5(5.6)|31.1(5.7) 27.1(4.6)|27.4(4.9)

Ethnicity [n(%)]

- White 4,584(94.9)|479(92.3) 4,570(94.6)|480(92.4) 1,236(88.9)|134(93.1) 1,317(94.6)|140(97.2)
- Mixed 22(0.5)|2(0.4) 26(0.6)|5(1.0) 7(0.5)|2(1.4) 6(0.4)|1(0.7)
- Asian 137(2.8)|11(2.1) 102(2.1)|6(1.2) 74(5.3)|5(3.5) 27(1.9)|1(0.7)
- Black 51(1.1)|15(2.9) 73(1.5)|20(3.9) 47(3.5)|1(0.7) 23(1.6)|1(0.7)
- Chinese 5(0.1)|2(0.4) 14(0.3)|2(0.3) 6(0.4)|0(0.0) 3(0.5)|0(0.0)
- Other group 30(0.6)|10(1.9) 44(0.9)|6(1.2) 18(1.4)|2(1.4) 14(1.0)|1(0.7)

Age completed education,

years [mean(SD)] 16.2(2.2)|16.2(2.5) 16.5(2.2)|16.4(2.0) 16.3(2.1)|16.0(1.8) 16.5(1.9)|16.6(3.0)

Current employment [n(%)]

- Employed 1,792(37.1)|189(36.4) 2,922(60.5)|330(63.6) 591(42.5)|68(47.2) 838(60.3)|94(65.3)
- Retired 2,487(51.5)|241(46.4) 1,572(32.6)|132(25.4) 614(44.2)|60(41.7) 458(32.9)|42(29.2)
- Looking after home 65(1.3)|4(0.8) 137(2.8)|16(3.1) 36(2.6)|5(3.5) 29(2.1)|1(0.7)
- Unable to work 372(7.7)|64(12.3) 111(2.3)|23(4.4) 109(7.8)|10(6.9) 43(3.1)|6(4.2)
- Unemployed 91(1.9)|17(3.3) 64(1.3)|10(1.9) 36(2.6)|0(0.0) 17(1.2)|1(0.7)
- Doing unpaid work 14(0.3)|3(0.6) 13(0.3)|3(0.6) 3(0.2)|1(0.7) 4(0.3)|0(0.0)
- Full or part-time student 8(0.2)|1(0.2) 10(0.2)|5(1.0) 1(0.1)|0(0.0) 1(0.1)|0(0.0)
Fig. 2. Study cohorts selection process. Cardiovascular disease (CVD), Diabetes 
mellitus (T2D).

difference (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05) was observed when using missForest and 
simple imputation, so we adopted the second approach.

Fig. 2 presents the individuals’ selection process, and Table 2 shows 
the population’s characteristics.

2.3. Exposome-based machine learning for risk prediction

We used XGBoost [32] for identifying the participants at risk of de-
4

veloping CVD and T2D. XGBoost is a robust machine learning algorithm 
that achieves high predictive accuracy for high-dimensional problems 
with heterogeneous data (numerical and categorical) and missing val-

ues. It is an ensemble learning method that reaches a decision by com-

bining the outputs from individual decision trees.

2.4. Internal and external validation

To evaluate the performance of our model we used internal and 
external validation groups. The external validation group comprised 
participants from 3 independent assessment centers selected randomly, 
corresponding to 10% of the study population. We studied if the selec-

tion of centers affected the performance of the models, and no signif-

icant difference was found by testing the model in different hold-out 
centers. The internal validation group comprised the participants from 
the 19 remaining centers.

Nested cross-validation with seven outer folds was used to evaluate 
the ML algorithm’s performance in the internal validation group. On 
each of the outer folds, the training fold was divided into 5 inner cross-

validation folds for hyper-parameter tuning. Grid search was used to 
identify the optimal set of parameters and select the best model for each 
outer fold. The selected model was then evaluated in the external vali-

dation group. XGBoost’s learning rate, minimum child weight, gamma 
value, subsample, subsampling of columns per tree, and maximum 
depth parameters were selected from values: [0.05, 0.10, 0.15, 0.20, 
0.25, 0.30], [1, 5, 10], [0.5, 1, 5], [0.6, 0.8, 1.0], [0.6, 0.8, 1.0], [3, 
4, 5], respectively. The XGBoost model was implemented in Python 3.8 
using the Scikit-Learn library 1.0 [36]. The source code of this work is 
available at https://github .com /amatehortual18 /Cardiometabolic -risk -
prediction -with -machine -learning. A comprehensive list of the fields of 
the UK Biobank used to develop the proposed machine learning model 
is provided within our GitHub repository. Interested researchers can ap-

ply for access to the fields by submitting a request to the UK Biobank.

To assess the performance of the proposed model and compare it 
with the reference models we used sensitivity, specificity, precision, and 

area under the receiver operating characteristic curve (AUC).

https://github.com/amatehortual18/Cardiometabolic-risk-prediction-with-machine-learning
https://github.com/amatehortual18/Cardiometabolic-risk-prediction-with-machine-learning
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2.5. Model interpretability

One of the main contributions of this work is the identification of 
potentially modifiable exposome attributes that play a key role in CVD 
and T2D risk prediction. These attributes could be targeted for lifestyle 
and exposure interventions focused on the prevention of CVD and dia-

betes. Toward this aim, we determined the more important features by 
extracting the SHAP (SHapley Additive exPlanations) values [37,38]. 
This method is based on cooperative game theory to determine the im-

portance of a single feature by computing the average contribution of 
that feature to the predictions across all possible feature combinations. 
More precisely, a value, called SHAP value, is assigned to each attribute 
included in the predictive model, based on the change in the prediction 
when a specific feature is included or excluded, taking into account the 
interactions and dependencies between features. Therefore, these SHAP 
values provide an explanation of the contribution of each feature to a 
particular prediction consistently and fairly, giving insights into how 
the ML model arrived at its decision. SHAP values provide individual-

level interpretability as opposed to target-encoder techniques that are 
focused on encoding the target variable’s statistics at a group level, 
providing insights into the average behavior of groups rather than indi-

vidual predictions.

3. Results

3.1. Comparison to existing models

We compared our results to an ML model that uses biological, clin-

ical, physical, and sociodemographic predictors based on the recent 
work by Alaa et al. [24]. In the remainder of the paper, we will refer to 
this model as the biological+clinical model. For the proposed risk mod-

els, we used 109 exposure factors, while excluding medical information, 
biomarkers such as blood assays, and other variables not easily acces-

sible in daily life (i.e. diastolic and systolic blood pressure, impedance, 
arm fat mass, treatment/medication). Moreover, we included 54 expo-

some factors not considered in the existing biological+clinical model, 
such as environmental, early-life, and mental health factors. We focused 
on using only accessible exposome data to estimate the disease risk in a 
more personalized way. These factors are easily interpretable and some 
of them are modifiable.

Moreover, for CVD risk prediction, we compared the performance 
of our algorithm to that of a well-established model, the Framingham 
risk score [39]. The Framingham score is based on a set of conventional 
risk factors: age, sex, LDL cholesterol, HDL cholesterol, systolic blood 
pressure, diabetes, and smoking. Here, we computed the traditional 
Framingham score with the mentioned variables and furthermore, these 
factors were used to train an XGboost ML model to predict the CVD risk, 
using the same experimental setup described for our model.

3.2. Individuals at risk of CVD

At each fold, 3,863 subjects per class, i.e. control group and individ-

uals at risk of CVD, were used to train the machine learning model. The 
remaining 966 and 519 subjects were used for internal and external val-

idation, respectively. The optimal hyperparameters leading to the best 
model (biological+exposome) performance were a learning rate of 0.15, 
a minimum child weight of 5, a gamma value of 0.5, a subsampling rate 
of 0.8, a column subsampling rate of 0.8 per tree, and a maximum depth 
of 4.

Table 3 allows for comparing in terms of sensitivity, specificity, 
precision, and AUC the performance of (i) the proposed ML exposome-

based model, (ii) the biological+clinical model based on the work of 
Alaa et al. [24], (iii) the traditional Framingham risk score [39], (iv) 
an ML model based on XGBoost and the Framingham variables, and 
(v) an XGBoost model comprising all features used in previous mod-
5

els (exposome, clinical and biological information. Using the proposed 
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exposome-based model, we achieved an AUC of 77|78% for identifying 
individuals at risk of CVD in the internal|external validation, corre-

sponding to a statistically significant improvement (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01) 
over the traditional Framingham score that has very limited perfor-

mance in this cohort (AUC of 66|64%). Fig. 3 presents a comparison be-

tween the AUC of the two approaches. The proposed model also outper-

forms the ML model based on the Framingham variables (XGBoost) by 
2|8% with the difference being statistically significant (𝑝 −𝑣𝑎𝑙𝑢𝑒 = 0.04). 
Moreover, the proposed model, despite being solely based on expo-

some data, presented a comparable behavior to the Alaa et al. model 
with no statistically significant difference in the performance of the 
two models in terms of AUC (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05). Lastly, we used all fea-

tures, i.e. exposome, clinical and biological information available, to 
assess the performance of a more complete model. This model out-

performed all models with an AUC of 82% and 80% for internal and 
external validation, respectively. However, this model cannot be used 
for self-assessment, while prescribed medications, an actual indicator 
of the diseases, have the highest weight for the CVD prediction and, 
therefore, are the main contributors to the high model’s performance.

In addition, we evaluated the CVD risk prediction at 5, 9, and 13 
years. The results are provided in Table 4. The exposome-based model 
is able to predict the CVD risk in 5, 9, and 13 years with an AUC 
in the range of 75%-79% (see Fig. 4), achieving the highest perfor-

mance for shorter-term predictions, i.e. 5 and 9 years. Interestingly, the 
exposome-based model outperforms the biological+clinical and Fram-

ingham model (XGBoost) in the external validation cohorts in terms of 
sensitivity, an important performance metric in cases where prediction 
of the individuals at high risk is of higher priority than specificity. More-

over, note how AUC obtained from the exposome-based model presents 
a lower variability at different prediction times (up to 5, 9, and 13 
years), in comparison with the other models (biological+clinical) and 
Framingham model (XGBoost)). This fact implies a higher stability of 
the exposome-based model for the prediction of CVD risk.

The 22 most important variables involved in the CVD risk prediction 
using the exposome-based model are presented in Fig. 5. Please note 
that the number of factors to be displayed was selected after experimen-

tation as a trade-off between clear visualization, feature importance, 
and the category of the exposome factors. However, the importance of 
all factors was calculated, and a complete list is provided in Supple-

mentary Fig. 1. Sociodemographic factors, such as employment status, 
material deprivation as quantified by the Townsend index, qualifica-

tions, nap during the day, and age completed full-time education had a 
high impact on the CVD prediction. Moreover, lifestyle choices such 
as dietary habits, sleep duration, coffee type (decaffeinated, instant, 
ground), and tobacco were associated with CVD risk. This is in agree-

ment with findings from previous studies [40,41]. Notably, factors re-

lated to mental health, such as frequency of tiredness and tenseness are 
among the factors that contribute the most to identifying individuals at 
risk of developing CVD. Please note that SHAP allows quantifying the 
overall effect of each feature by means of the mean absolute SHAP value 
(left panel, Fig. 5), but also the direction of the impact of the features on 
the model output (right panel of Fig. 5). For example, high frequency 
of tiredness values has a high positive contribution to the prediction, 
while lower values of this variable have a high negative contribution, 
indicating that frequency of tiredness is positively associated with the 
risk for CVD.

3.3. Individuals at risk of diabetes mellitus (T2D)

Similarly to CVD, we trained our model to identify individuals at risk 
of T2D. To this end, at each fold, we used 1,112 participants diagnosed 
with T2D and an equal number of control participants. 278 and 144 in-

dividuals per class were used for internal and external validations for 
each fold, respectively. The optimal parameters obtained for the higher 
results (biological+exposome model) were a learning rate of 0.10, a 

minimum child weight of 5, a gamma value of 0.5, a subsample rate of 
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Fig. 3. ROC AUC for predicting the CVD risk by means of the proposed exposome-based ML model (red) and the traditional Framingham risk score (orange). Results 
are presented for the (a) internal, and (b) external validation groups. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Table 3

CVD risk prediction using XGBoost. Mean and standard deviation results are shown from internal|external validation.

Model Sensitivity Specificity Precision AUC

Framingham score 0.43 ± 0.01|0.40 ± 0.02 𝟎.𝟖𝟎± 𝟎.𝟎𝟏|𝟎.𝟖𝟐± 𝟎.𝟎𝟓 0.69 ± 0.01|0.69 ± 0.03 0.66 ± 0.01|0.64 ± 0.02
Framingham score (XGBoost) 0.66 ± 0.01|0.67 ± 0.03 0.70 ± 0.02|0.71 ± 0.04 0.69 ± 0.01|0.69 ± 0.03 0.75 ± 0.05|0.63 ± 0.05
Biological+clinical 0.70 ± 0.02|0.71 ± 0.02 0.77 ± 0.02|0.73 ± 0.01 𝟎.𝟕𝟓± 𝟎.𝟎𝟐|𝟎.𝟕𝟐± 𝟎.𝟎𝟐 0.81 ± 0.02|𝟎.𝟖𝟎± 𝟎.𝟎𝟐
Exposome 𝟎.𝟕𝟐± 𝟎.𝟎𝟏|𝟎.𝟕𝟓± 𝟎.𝟎𝟏 0.68 ± 0.02|0.66 ± 0.01 0.70 ± 0.01|0.69 ± 0.01 0.77 ± 0.01|0.78 ± 0.01
Exposome+Biological+clinical 0.72 ± 0.02|0.71 ± 0.02 0.76 ± 0.02|0.73 ± 0.01 𝟎.𝟕𝟓± 𝟎.𝟎𝟐|0.71 ± 0.01 𝟎.𝟖𝟐± 𝟎.𝟎𝟐|𝟎.𝟖𝟎± 𝟎.𝟎𝟐

Fig. 4. ROC AUC for identifying people at risk of CVD within (a) 5, (b) 9, and (c) and 13 years using the biological+clinical model (blue), the Framingham model-

XGBoost (red), and the proposed exposome-based model (yellow). Results are presented for the external validation group. The gray dashed line represents the ROC 
AUC curve for a random guess.

Table 4

Mean and standard deviation of AUC, precision, sensitivity, and specificity for CVD risk prediction over time in the internal | external validation groups.

Metric Model 5 years (𝑛 = 598|328) 9 years (𝑛 = 318|166) 13 years (𝑛 = 50|25)

AUC Framingham model (XGBoost) 0.75 ± 0.01|0.76 ± 0.03 0.74 ± 0.01|0.75 ± 0.03 0.78 ± 0.04|0.71 ± 0.06
Biological+clinical 0.82 ± 0.01|0.81 ± 0.02 0.80 ± 0.02|0.81 ± 0.02 0.81 ± 0.04|0.80 ± 0.02
Exposome 0.77 ± 0.01|0.79 ± 0.01 0.77 ± 0.01|0.78 ± 0.02 0.78 ± 0.02|0.75 ± 0.05
Exposome+Biological+clinical 0.83 ± 0.01|0.81 ± 0.03 0.81 ± 0.01|0.77 ± 0.03 0.82 ± 0.03|0.80 ± 0.03

Precision Framingham model (XGBoost) 0.69 ± 0.02|0.70 ± 0.02 0.69 ± 0.01|0.70 ± 0.04 0.69 ± 0.04|0.66 ± 0.07
Biological+clinical 0.76 ± 0.02|0.75 ± 0.02 0.75 ± 0.03|0.77 ± 0.01 0.80 ± 0.08|0.71 ± 0.04
Exposome 0.69 ± 0.01|0.71 ± 0.02 0.71 ± 0.02|0.73 ± 0.03 0.69 ± 0.05|0.69 ± 0.05
Exposome+Biological+clinical 0.75 ± 0.01|0.72 ± 0.04 0.75 ± 0.02|0.70 ± 0.04 0.77 ± 0.06|0.78 ± 0.03

Sensitivity Framingham model (XGBooost) 0.67 ± 0.02|0.67 ± 0.02 0.64 ± 0.03|0.66 ± 0.03 0.72 ± 0.06|0.64 ± 0.14
Biological+clinical 0.71 ± 0.02|0.68 ± 0.03 0.69 ± 0.03|0.68 ± 0.03 0.72 ± 0.06|0.70 ± 0.08
Exposome 0.73 ± 0.01|0.72 ± 0.03 0.71 ± 0.02|0.71 ± 0.02 0.75 ± 0.03|0.74 ± 0.03
Exposome+Biological+clinical 0.73 ± 0.02|0.75 ± 0.01 0.70 ± 0.03|0.69 ± 0.04 0.74 ± 0.06|0.65 ± 0.03

Specificity Framingham model (XGBoost) 0.69 ± 0.02|0.71 ± 0.03 0.71 ± 0.02|0.71 ± 0.07 0.68 ± 0.05|0.68 ± 0.05
Biological+clinical 0.77 ± 0.02|0.77 ± 0.04 0.77 ± 0.03|0.79 ± 0.01 0.81 ± 0.08|0.72 ± 0.04
Exposome 0.68 ± 0.02|0.71 ± 0.01 0.70 ± 0.02|0.73 ± 0.05 0.67 ± 0.06|0.68 ± 0.05
Exposome+Biological+clinical 0.76 ± 0.01|0.72 ± 0.04 0.77 ± 0.02|0.70 ± 0.03 0.79 ± 0.06|0.78 ± 0.03
6
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Fig. 5. Exposome-based model interpretability. The left panel provides the 22 most important factors involved in CVD risk prediction as ranked by the mean 
absolute SHAP value. The right panel shows the impact of each feature on the model output. Please note that each point represents a participant. Higher values of 
the features are indicated by orange, while lower with black. Exposome categories: Physical measures; Sociodemographics; Lifestyle; Mental health; 
Environmental.

Table 5

T2D risk prediction using XGBoost. Mean and standard deviation results are shown from internal|external validation.

Model Sensitivity Specificity Precision AUC

Biological+clinical 0.78 ± 0.02|0.71 ± 0.02 0.73 ± 0.04|0.77 ± 0.01 0.74 ± 0.03|0.75 ± 0.02 0.82 ± 0.02|0.81 ± 0.01
Exposome 0.74 ± 0.02|0.70 ± 0.03 0.70 ± 0.04|0.70 ± 0.02 0.70 ± 0.02|0.70 ± 0.02 0.80 ± 0.02|0.77 ± 0.01
Expsome+Biological+clinical 0.78 ± 0.01|0.72 ± 0.02 0.73 ± 0.02|0.75 ± 0.02 0.74 ± 0.02|0.74 ± 0.02 0.83 ± 0.02|0.81 ± 0.01
0.8, a column subsampling rate of 0.8 per tree, and a maximum depth 
of 5. Table 5 shows the predictive performance of the exposome-based 
ML model and the biological+clinical model based on Alaa et al. work 
trained to identify individuals at risk of diabetes. We obtain an AUC per-

formance of around 80|77% during internal|external validation, which 
is 2|4% lower than the performance of the biological+clinical model 
(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.12), whose variables (e.g. number of treatments/medica-

tions taken) require access to clinical services. Furthermore, the model 
performance was evaluated at different time points as presented in Ta-

ble 6. We computed precision, sensitivity, specificity, and AUC based on 
the disease class, in which the diagnosis date is known. The exposome-

based model is able to identify individuals at risk of T2D at 5, 9, and 13 
years with an AUC in the range of 74%-80% (see Fig. 6). Despite the bi-

ological+clinical model achieving better performance in terms of AUC 
than the exposome-based model for different time points, the addition 
of exposome features to biological factors from blood assays provides 
a more reliable and precise prediction in 13 years in terms of AUC, 
which could be interesting for long-term detection of T2D. The expo-

some+biological+clinical model presented a slightly improved AUC by 
1% in internal validation but did not outperform the biological+clinical 
model in external validation (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.26).

Fig. 7 provides the 22 more important variables involved in the T2D 
risk prediction by means of the exposome-based model. Physical mea-

sures, such as waist/hip circumference, weight, and BMI contributed 
the most in identifying individuals at risk of T2D, with higher waist cir-

cumferences and BMI values being associated with a higher probability 
of developing T2D (Fig. 7, right panel). Moreover, sociodemographic 
factors, such as Townsend deprivation index, and those related to the 
individual’s occupation (i.e. unemployment status from current employ-

ment and job involves mainly walking or standing) were associated 
with increased diabetes risk. These findings are aligned with results 
from previous research [42,43]. Using the exposome-based model, we 
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were able to identify different categories of risk factors associated with 
T2D. These include diet-related habits, factors related to socioeconomic 
status (employment status, deprivation index), but also early-life fea-

tures such as childhood sunburn occasions, birth weight, and body size 
at age ten. Furthermore, waist circumference, BMI, frequency of tired-

ness, and naps during the day were found associated with T2D. Many of 
the identified factors are closely linked to known T2D risk factors, such 
as socio-economic factors and early growth, or may represent known 
factors, e.g. sunburn may reflect time spent outside or be related to 
physical activity. Interestingly, we also identified environmental factors 
like average daytime sound level of noise pollution and sun exposure 
also related to the T2D risk. These modifiable factors can be quantita-

tively measured to predict the personalized risk of T2D at the time by 
the exposome-based model. On the contrary, for the biological+clinical 
model, as in the case of CVD, the clinical variables related to the num-

ber of treatments and biological data, such as white blood cell count, 
were the most important to identify individuals at risk of T2D, prohibit-

ing the applicability of such of machine learning for fast assessment 
without the need of blood assays or as a self-assessment tool.

3.4. Exposome-based model with a reduced number of features

We also evaluated the performance of the exposome-based mod-

els for CVD and T2D, respectively using an increasing number of the 
most important features as provided by the Gini importance score of 
the model (Fig. 8). The results demonstrated that by using the 40 or 
20 most important features our model already achieves similar per-

formance (AUC, precision, and sensitivity) to using the entire set of 
exposome features for CVD and T2D prediction, respectively.

Algorithmic fairness Last but not least, we evaluated the fairness of the 
proposed models for CVD and T2D risk prediction by computing the 
statistical parity difference [44] and the disparate impact ratio [45]. 

The results are presented in Fig. 9 and 10. No bias was identified in 
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Fig. 6. ROC AUC for identifying people at risk of T2D within 5 (a), 9 (b), and 13 (c) years using the biological+clinical model (blue) and the proposed exposome-based 
model (yellow). Results are presented for the external validation cohort. The gray dashed line represents the ROC AUC curve for a random guess.

Table 6

Mean and standard deviation of precision, sensitivity, and specificity for T2D risk prediction over time for all clinical centers in the internal | external validations. 
The number of individuals, 𝑛, is shown per class.

Metric Model 5 years (𝑛 = 70|47) 9 years (𝑛 = 100|43) 13 years (𝑛 = 108|54)

AUC Biological+clinical 0.84 ± 0.02|0.80 ± 0.04 0.83 ± 0.03|0.79 ± 0.03 0.82 ± 0.03|0.80 ± 0.03
Exposome 0.80 ± 0.02|0.77 ± 0.05 0.80 ± 0.04|0.74 ± 0.04 0.79 ± 0.02|0.76 ± 0.06
Exposome+Biological+clinical 0.81 ± 0.02|0.79 ± 0.01 0.84 ± 0.02|0.79 ± 0.02 0.85 ± 0.03|0.85 ± 0.01

Precision Biological+clinical 0.77 ± 0.03|0.72 ± 0.04 0.74 ± 0.04|0.70 ± 0.03 0.75 ± 0.03|0.73 ± 0.06
Exposome 0.72 ± 0.01|0.69 ± 0.02 0.71 ± 0.05|0.68 ± 0.04 0.71 ± 0.02|0.68 ± 0.07
Exposome+Biological+clinical 0.73 ± 0.02|0.73 ± 0.03 0.77 ± 0.02|0.70 ± 0.02 0.75 ± 0.01|0.79 ± 0.02

Sensitivity Biological+clinical 0.79 ± 0.01|0.71 ± 0.05 0.77 ± 0.04|0.75 ± 0.05 0.77 ± 0.06|0.75 ± 0.06
Exposome 0.76 ± 0.04|0.74 ± 0.07 0.73 ± 0.05|0.74 ± 0.06 0.75 ± 0.02|0.73 ± 0.03
Exposome+Biological+clinical 0.75 ± 0.01|0.66 ± 0.03 0.80 ± 0.01|0.77 ± 0.03 0.79 ± 0.01|0.73 ± 0.02

Specificity Biological+clinical 0.77 ± 0.04|0.72 ± 0.06 0.73 ± 0.04|0.69 ± 0.03 0.74 ± 0.02|0.73 ± 0.06
Exposome 0.70 ± 0.02|0.67 ± 0.05 0.70 ± 0.07|0.65 ± 0.04 0.69 ± 0.03|0.65 ± 0.10
Exposome+Biological+clinical 0.72 ± 0.01|0.76 ± 0.03 0.76 ± 0.02|0.67 ± 0.03 0.73 ± 0.01|0.81 ± 0.02

Fig. 7. Exposome-based model interpretability. The left panel shows the 22 most important factors involved in T2D risk prediction, which are expressed by the mean 
absolute SHAP. The right panel provides the impact of each feature on the model output. Please note that each point corresponds to a participant in the training set. 
Higher values of the features are indicated by orange, while lower with black. Exposome categories: Physical measures; Sociodemographics; Early-life; 
8

Lifestyle; Mental health; Environmental.
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Fig. 8. Exposome-based model performance considering an increasing number of features for (a) CVD, and (b) T2D risk prediction.

Fig. 9. Fairness performance of the exposome-based model for CVD prediction. Models are considered fair when having a statistical parity difference within the -0,1 
and 01. Similarly, the fair models present disparate ratios between 0,75 and 1,25. Please note younger ages from 20 to 50 years.

Fig. 10. Fairness performance of the exposome-based model for T2D prediction.
terms of any of the considered sensitive variables (ethnicity, gender, or 
age). Please note that in order to assess age-related bias, two age groups 
were evaluated, a group of individuals of younger age (from 20 to 50 
9

years) and a corresponding group of individuals of older age.
4. Discussion

Using a large longitudinal population cohort, the UKBB, we devel-
oped and validated two novel exposome-based ML risk prediction mod-
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els to identify individuals at risk of two major diseases, CVD and T2D 
respectively. The proposed strategy combined exposome features from 
several different categories without including any clinical information 
that might be expensive, tedious, and time-consuming to acquire. The 
easily accessible exposome features highlight the potential of our model 
to be used as a tool for rapid assessment, including self-assessment.

A limited amount of research has employed exposome factors for 
CVD and T2D risk prediction (Table 1). Among those achieving the 
highest accuracy is the work of Alaa et al. [24], which included bio-

logical and clinical markers, as well as a few exposure predictors but 
without considering early-life factors for instance. By means of the 
proposed approach, we achieved comparable performance to this inte-

grative model despite being solely based on readily available exposome 
factors, including early-life factors (AUC of 0.78 ± 0.01 and 0.77 ± 0.01
for CVD and diabetes, respectively, in external validation). For CVD 
risk prediction, the proposed exposome-based model also outperformed 
the widely-used Framingham risk score and an ML model that is based 
on the Framingham risk predictors. Furthermore, our findings demon-

strated that for both CVD and T2D risk assessment, the most influential 
features are a blend of (i) sociodemographic features, including features 
related to work/education status, such as current employment status, 
age completed full-time education, (ii) physical measures, such as waist 
circumference, (iii) mental factors, such as frequency of tiredness and 
tenseness, and (iv) lifestyle factors, e.g. current tobacco smoking, nap 
during the day, alcohol drinker status and dietary habits. These findings 
are aligned with risk factors clinically reported in the literature [46,41]. 
Furthermore, we demonstrated that the exposome-based model is sta-

ble for a few number of features, as illustrated in Fig. 8. Therefore, a 
simpler version of the proposed CVD and T2D models using for example 
40 or 20 features can be established to facilitate users by reducing the 
amount of information that they need to provide, without comprising 
significantly the performance.

In our study, we selected XGBoost as the preferred classification 
algorithm based on thorough experimentation with various state-of-

the-art classification algorithms, including SVM, random forest, and 
AdaBoost. The results indicated that XGBoost outperformed the other 
algorithms. XGBoost has been widely recognized for its efficiency and 
effectiveness in diverse scenarios, outperforming even deep learning 
models for tabular data [47,48]. One of the key advantages of XG-

Boost is its ability to incorporate regularization techniques such as L1 
and L2, preventing overfitting and improving generalization. Given that 
our exposome data encompasses heterogeneous information, we believe 
that the regularization capabilities of XGBoost played a crucial role in 
achieving the best performance in our study. Furthermore, XGBoost 
provided built-in feature importance estimation, identifying the most 
influential features in the complex exposome dataset, being aligned 
with the medical literature.

In addition, to minimize overfitting, in this work, we applied nested 
cross-validation for combined hyperparameter tuning and model selec-

tion based on the internal validation set. This procedure treats hyperpa-

rameter tuning as part of the model selection and evaluates it using an 
outer k-fold cross-validation. Therefore, it allows us to better estimate 
the model’s generalization capability and identify whether overfitting 
occurs [49]. The results show stability without overfitting. Using the 
resulting optimal values for the depth of the trees (max depth) and 
learning rate in the XGBoost models as regularization terms simplify 
the ML model and reduce overfitting. Lastly, we evaluated the devel-

oped models in an external validation cohort. The results in the external 
validation were close to those obtained for the internal validation set 
demonstrating that the model generalizes well to unseen data, even 
from different centers.

Despite the importance of the findings, there exist some limitations 
in the present work. First, a high number of missing values existed in 
the UKBB cohort for some of the exposome variables. This is a com-

mon issue for longitudinal studies. To overcome this limitation, we 
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used a model that handles well missing values, and, additionally, we 
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adopted a simple, yet effective, imputation approach for categorical 
and numerical data [50]. Moreover, the present study was based on 
a predominantly white population from the UK. Future research using 
cohorts from different countries and ethnicities is needed to evaluate 
the generalizability and transferability of the proposed risk prediction 
model.

5. Conclusions

The exposome can modulate genetic effects, representing about 70 
to 90% of the risk for major diseases [51,52]. Therefore, new strategies 
to predict the risk of major pathologies based on the human exposome 
represent an opportunity for improving early prevention and promot-

ing beneficial lifestyle changes [33]. In this context, we performed the 
first study using a wide range of exposome data, including sociodemo-

graphic, lifestyle, environmental, occupational, psycho-social, mental, 
and early-life factors, to identify individuals at risk of two high-burden 
diseases; CVD and T2D. By leveraging machine learning and a large 
population cohort, we were able to exploit the wealth of information 
provided by the human exposome and demonstrate that an exposome-

based machine learning model is a potentially powerful tool for acces-

sible risk prediction in future healthcare in a personalized way.

Summary table

What was already known on the topic

• A large number of information is necessary to develop models for 
a personalized identification of the individuals at risk of diseases, 
however, the clinical information is usually limited to a few sam-

ples.

• Traditional clinical risk scores are based on general populations 
and linear algorithms without taking into account the potential het-

erogeneous information from an individual.

What this study added to our knowledge

• Our study resulted in an exposome-based machine learning model 
that predicts the risk of disease by using a large dataset and outper-

forms a well-established tool, the Framingham risk, and performs 
comparably to a more integrative model requiring clinical informa-

tion

• As well, our machine learning model is interpretable and allows 
identifying key factors involved in the development of cardiovas-

cular disease and type 2 diabetes

• Exposome data is potential information with a large number of 
samples that should support a personalized estimation of the dis-

ease risk
• The exposome-based models could be analyzed for early preventive 

measures such as beneficial lifestyle changes.
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