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A B S T R A C T

Control towers can provide real-time information on logistic processes to support decision making. The question
however, is how to make use of it and how much it may save. We consider this issue for a company supplying
expensive spare parts and which has limited production capacity. Besides deciding on base stock levels, it can
accept or reject customers. The real-time status information is captured by a k-Erlang distributed replenishment
lead time. First we model the problem with patient customers as an infinite-horizon Markov decision process
and minimize the total expected discounted cost. We prove that the optimal policy can be characterized using
two thresholds: a base work storage level that determines when ordering takes place and an acceptance work
storage level that determines when demand of customers should be accepted. In a numerical study, we show
that using real-time status information on the replenishment item and adopting admission control can lead to
significant cost savings. The cost savings are highest when the optimal admission threshold is a work storage
level with a replenishment item halfway in process. This finding is different from the literature, where it is
stated that the cost increase of ignoring real-time information is negligible under either the lost sales or the
backordering case. Next we study the problem where customers are of limited patience. We find that the
optimal admission policy is not always of threshold type. This is different from the literature which assumes
an exponential production lead time.
1. Introduction

Spare parts are the main inputs to the maintenance of capital prod-
ucts that are used in manufacturing and service industries. As failures of
capital products are occasional and random, spare parts demand of an
industrial facility is a highly varying stochastic process which makes the
inventory control difficult. Too much inventory can create significant
financial load for a company whereas stockouts lead downtime costs
to surge. Balancing the holding and shortage costs is especially critical
for slow moving parts such as landing gears in aviation, turbine blades
in power generation or parts for MRI Scanners in healthcare, as these
parts are usually expensive and crucial for operation.

For better management of spare parts supply chains, companies
consider to develop service chain control towers, which can collect and
evaluate real-time information about their business processes, such as
location of pipeline stock (that is, products in transit between locations)
or production status (Topan et al., 2020; Hekimoğlu et al., 2022).
Such information may indicate when an ongoing replenishment will
be fulfilled. Empirical evidence suggests that managers are interested
in analytic tools that can utilize this real-time information to support
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their decision making process. However, the potential cost savings
of real-time decision making through control towers over optimized
tactical control is an issue of discussion in literature. In ProSeloNext, an
extensive, practice-based research project on pro-active service logistics
for capital goods manufacturers (de Boer, 2021), control towers were
investigated and this paper is one of the theoretical results.

In a manufacturing setting, control towers can provide accurate
order progress information into dynamic control on production orders
as well as demand admission. In addition, control towers are shown
to be effective in lowering lead time variance and reducing inventory
costs (Li, 2020; Gaukler et al., 2008).

In this paper, we consider real-time information for the joint opti-
mization of (1) admission control for an incoming spare parts demand
and (2) finished goods inventory in a manufacturing facility producing
to stock spare parts of capital products. We consider the case of
manufacturing expensive spare parts (like landing gear or compressor
blades), for out-of-production systems. For these parts demand is typ-
ically very low (a few per year), implying lot-for-lot ordering. Usually
a limited amount of tooling is available to manufacture those parts,
vailable online 7 August 2023
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which motivates our simplifying assumption of producing only one item
at a time.

In our problem setting, the replenishment (either production or
supply) process consists of multiple observable phases, each of which
takes a random amount of time. The plant manager holds some finished
goods inventory to satisfy random demand and issues a replenishment
order in case of low inventory. When a new customer arrives, the
manager either accepts the order, or the customer is turned down and
directed to another supplier or second hand market. In case the order
is accepted while no on hand stock is available, the status information
is used to give an estimate of when it can be delivered.

Few papers have investigated the value of real-time information
on the status of replenishments (referred to as ‘‘status information’’
hereafter) in case of inventory control. Ha (2000) and Gayon et al.
(2009b) are the main papers, adopting either lost sales or backordering
in a rationing of customer classes setting. They conclude that the
cost of ignoring status information on lead times of replenishments
is negligible for stock rationing. However, status information may be
more influential when admission control is adopted also for the most
important customer class, namely in which case customers can be
rejected or backordered dynamically depending on the state of the
system. Consider the following two cases in a continuous-time setting:
(1) a customer arrives immediately after a replenishment order is
initiated, and (2) a customer arrives when a previous replenishment
order is about to be delivered. Given zero or negative stock on hand,
one would expect that it could be advantageous to reject the customer
in the first case, while to accept the customer in the second case and
let him/her wait shortly.

The main research questions of this paper are threefold: (1) what
is the value of the real-time information when admission control is
deployed? Specifically, what is the cost increase of using either lost
sales or backordering instead of admission control in the setting with
status information? (2) what is the value of having more accurate
real-time pipeline information? and (3) what is the effect of limited
customer patience in case of backordering?

By extending the mathematical model by Ha (2000), we first prove
the existence of optimal control limit policies for reordering as well
as for accepting a customer. This implies that one does not need to
know the status of production for all phases but only if the critical
level has been reached or not. Unfortunately, this result does not hold
if customers can cancel their order. We next show that the cost increase
of ignoring status information is significant under the admission control
policy. The maximum cost increase is two times as high as that of Gayon
et al. (2009b), and ten times as high as that of Ha (2000). The average
increase in cost is three times as high as that of Ha (2000) and seven
times as high as that of Gayon et al. (2009b).

The remainder of the paper is organized as follows. In Section 3
we formulate the problem with and without customer-patience and
characterize the optimal policy. Section 4 presents a numerical study on
the value of real-time information and admission control. The impact of
customer impatience on these values is also investigated. A discussion
and conclusions follow in Section 5.

2. Literature review

Our contribution can be related to three research streams in the
literature, viz. real-time status information, admission control and pro-
duction policies and preemption. A brief review of each research stream
is provided in the following subsections.

2.1. Real-time status information on replenishment items

With a control tower companies can access the information about
which production phase a replenishment item is in. Zipkin (2008)
deals with deterministic supply lead time, and tracks the replenishment
items in each lead time phase. He shows that the optimal ordering
2

quantity is decreasing in the number of replenishment items in any
phase, and it is more sensitive to the more recent replenishment items.
To incorporate the status information on replenishment item with
stochastic production lead time, we employ a 𝑘-Erlang distribution to
model the replenishment lead time. In this way, the replenishment lead
time can be seen as consisting of multiple phases. Among the papers
which use 𝑘-Erlang supply lead times, Johansen (2005) investigates the
base stock policy in a lost sales case with a single customer class. Ha
(2000) and Gayon et al. (2009b) study stock rationing for make-to-stock
queues with 𝑘-Erlang production lead times. Ha (2000) studies the lost
sales case and shows that the optimal policy depends on both inventory
and the status of current production. He also shows that instead of using
these two variables, a single variable, referred to as work storage level,
suffices to represent the system state. As Ha (2000) formulated the
stock rationing problem in an 𝑀∕𝐸𝑘∕1 queue, where the lead time
has multiple phases, the work storage level is measured in units of
lead time phases. In this way work storage level links inventory and
partially completed production. We extend his approach by modifying
the definition of work storage level in our paper. Gayon et al. (2009b)
investigate the backordering case with a 𝑘-Erlang production lead time.
Both papers report in the numerical results that the cost increase of
ignoring real-time information on the production process is small. In
our paper, however, we show that with the admission control, the
real-time information can lead to significant cost savings.

2.2. Admission control and limited customer patience

There is a stream of papers in which customers are rejected or
backordered according to their priority classes. The decision is assumed
to be made on the basis of the amount of stock on-hand. For customers
from the same class, when there is no on-hand stock, either lost sales
(Ha, 1997; Zhou et al., 2011; Isotupa, 2015; Ioannidis, 2011; ElHafsi
et al., 2018; Faaland et al., 2019) or backordering (Gayon et al., 2009b;
Liu et al., 2015; Escalona et al., 2017) is adopted. ElHafsi and Hamouda
(2018) and Hu et al. (2015) consider multiple customers classes, some
of which are lost sales class and others are backordering class. In
another stream of papers customers from any class are backordered
or rejected dynamically based on the state of the system. We refer to
this type of policy as admission control policy. Iravani et al. (2012)
consider two customer classes of which one class is fully backordered
and the other class is managed with admission control. Yu et al. (2017)
use delay announcement to induce desired customer response, joining
or balking. Benjaafar et al. (2010a) show that admission control is of
value with an exponential production lead time, and that the optimal
admission policy is of threshold type. Yet none of these papers allow
for real-time information on the replenishment process.

A factor that may affect the admission decision is customer impa-
tience and the corresponding cancellation cost. The admission policy
determined in the context with customers who will wait till fulfilled
may not be suitable for the case where customers are of limited
patience. Admission control with impatient customers in applications
such as call centers have been well studied in the field of queuing
theory (Ward and Kumar, 2008; Kim et al., 2018). In the field of
inventory control, customers’ impatience arises when backordered cus-
tomers turn to other sources of supply. Das (1977) considers a system
where customers are all initially backordered and will leave if their
demand is not fulfilled within a fixed length of time. To the best of our
knowledge, Benjaafar et al. (2010b) is the only paper which combines
admission control with customer impatience, by extending Benjaafar
et al. (2010a) to a problem with a single class of customers who might
cancel their demand. They prove that the optimal admission policy is
also of threshold type.

Section 3 of our work extends Benjaafar et al. (2010a,b) respec-
tively, to the case with status information. In this regard, our paper is
the first to investigate admission control using real-time status informa-
tion on replenishment item. We prove that when customers are patient,
the optimal admission policy is of threshold type; when customers
have limited patience, our numerical result suggests that the optimal

admission policy is not always of threshold type.
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Table 1
Positioning our paper in the literature.
Papers 𝑘-Erlang Fulfillment decision Limited customer Systems

lead time patience

Ha (2000) ✓ Lost sales – Production
Gayon et al. (2009b) ✓ Backordering – Production
Benjaafar et al. (2010a) – Admission control – Production
Iravani et al. (2012) – Admission control – Production
Benjaafar et al. (2010b) – Admission control ✓ Production
Our paper ✓ Admission control ✓ Production
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2.3. Production policies and preemption

Besides the aforementioned papers, more literature on production
systems using Markov decision process (MDP) assume zero production
cost, and assume preemption does not incur extra cost implicitly (Ha,
1997, 2000), or explicitly (Gayon et al., 2009a; Benjaafar et al., 2010b).
Preemption means the production of an item can be interrupted before
the total completion is attained (do Val and Salles, 1999). However, in
reality, part or all of the production cost is incurred or reserved when
the production is initiated, and this cannot be incorporated with the
preemption approach used in the literature. Moreover, when customer
impatience is taken into account, with the preemption approach, a
withdrawal of a replenishment item in process resulted from a demand
cancellation means, the replenishment item will be preempted without
extra cost. However, withdrawing a replenishment item is not always
possible, or incurs part of the costs which have been incurred. To the
best of our knowledge, Kim and Park (2016) is the first study which
formulates the non-preemptive make-to-stock system with a fixed cost
for each replenishment order. We modify their approach and formulate
the problem with real-time information, and a replenishment item will
always continue to be processed once initiated.

The five most closely related papers to ours on the four aspects
discussed can be seen in Table 1. Our major contribution is that we
show that with the admission control, the use of real-time information
on replenishment item leads to significant cost savings. The other
contributions are: (1) we investigate the value of reducing supply lead
time variance; (2) we also compare the value of admission control
under the setting with and without real-time information; (3) we look
into the impact of customer impatience on the value of reducing lead
time variance, real-time information and that of admission control.

3. A production–inventory model with admission control and sup-
ply information

3.1. Problem formulation with customer-patience

We assume that customers with unit demand arrive according to
a Poisson process with rate 𝜆𝐷. The company can reject, backorder or
satisfy a demand. If the inventory level is non-positive, arriving demand
can be rejected or backordered. If the company rejects a demand
directly, it incurs the lost sales cost of 𝑐𝑟. The backordering and holding
cost rate are 𝑐𝑏 and 𝑐ℎ per item per unit of time, respectively. We
assume 𝑐𝑏 ≥ 𝑐ℎ. Otherwise it is optimal to have zero on-hand stock
and backorder all the demand. There is at most one replenishment item
in process at a time. This is the case for some valuable and critical
parts, typically belonging to out-of-production systems, for which the
special expertise as well as equipment is needed which limits the
capacity for producing to only one item at a time. We also remark that
this assumption is commonly used in inventory control literature and
corresponds to the case where the ordering cycle is large compared to
the lead time (Teunter and Haneveld, 2008). A cost of 𝑐𝑜 is incurred
very time the company initiates the production of a spare part. The
eplenishment lead time 𝐿 has a k-Erlang distribution with mean 𝜇𝐿 =
∕𝜇𝑃 ; that is, the lead time consists of 𝑘 independent exponentially
istributed phases with mean 1∕𝜇𝑃 .The assumption that the phases
3

ave identical length is made for simplicity, as the analysis can easily be
xtended to non-identical exponential phases (Ha, 2000). We assume
hat the company knows how many Erlang phases have passed, either
y information from the production department or by intelligence
n the control tower. This kind of information is not uncommon in
ndustry. We also assume the production cost is smaller than the lost
ales cost (𝑐𝑜 < 𝑐𝑟). Otherwise it is optimal to reject all demand.

Ha (2000) formulated the stock rationing problem in an 𝑀∕𝐸𝑘∕1
ueue using work storage level as the state variable. The work storage
evel is measured in units of lead time phases, and in this way he
inks inventory and partially completed production. We extend Ha’s ap-
roach by modifying the definition of work storage level. Specifically,
et 𝑂(𝑡) ∈ {0, 1,… , 𝑘} be the status of the current replenishment item.

At time 𝑡, 𝑂(𝑡) = 0 indicates that no replenishment item is in process;
≤ 𝑂(𝑡) ≤ 𝑘 indicates that 𝑂(𝑡) − 1 phases of the current replenishment

tem have been completed and the 𝑂(𝑡)𝑡ℎ phase is in process. Let 𝐼(𝑡)
e the inventory level, namely the on-hand stock minus the number of
ackordered demand, 𝐼(𝑡) ∈ Z, where Z is the set of integers. The work
torage level of the system is 𝑌 (𝑡) = 𝑂(𝑡) + (𝑘 + 1)𝐼(𝑡). The state of the
ystem is defined by 𝑌 (𝑡) ∈ Z. The state space is Z, which is the set of
ntegers.

In line with Ha (2000), we let 𝑓 (𝑌 (𝑡)) be the holding and backorder-
ng cost function in terms of work storage level 𝑌 (𝑡), then

(𝑌 (𝑡)) = 𝑐ℎ

⌊

𝑌 (𝑡)
𝑘 + 1

⌋+
+ 𝑐𝑏

⌊

𝑌 (𝑡)
𝑘 + 1

⌋−
. (1)

Here, and in the rest of this paper, we denote 𝑥+ = max{0, 𝑥} and
𝑥− = −min{0, 𝑥}. Let 𝑏(𝑌 (𝑡)) be the number of backorders at time 𝑡,
then

𝑏(𝑌 (𝑡)) =
⌊

𝑌 (𝑡)
𝑘 + 1

⌋−
.

Let a control policy 𝑢 specify the ordering decisions and demand
ulfillment decisions at each state. Let 𝛼 be the continuous discount
ate. For the policy 𝑢, let 𝑁𝑢

𝑟 (𝑡) be the number of demands that have
een rejected up to time 𝑡, and 𝑁𝑢

𝑜 (𝑡) be the number of replenishment
tems that have been ordered up to time 𝑡. We seek to find the optimal
ontrol policy 𝑢 that minimizes the following expected discounted
ystem costs over an infinite horizon:

𝑢
𝑦

[

∫

∞

0
𝑒−𝛼𝑡𝑓 (𝑌 𝑢(𝑡)) 𝑑𝑡 + 𝑒−𝛼𝑡𝑐𝑜 𝑑𝑁

𝑢
𝑜 (𝑡) + 𝑒−𝛼𝑡𝑐𝑟 𝑑𝑁

𝑢
𝑟 (𝑡)

]

, (2)

here 𝑦 is the initial work storage level 𝑌 (0). Let ℎ(𝑦) be the minimum
f the system cost in Eq. (2) over all policies 𝑢 when the initial state is
.

Let 𝛾 be such that 𝛾 = 𝜇𝑃 + 𝜆𝐷. So 𝛾 is the rate that either of the
wo events, demand arrival and phase completion, happens for the first
ime. As 𝛾 and 𝛼 are numbers per time unit we rescale time by setting
+ 𝛼 = 1. This allows us to transform the continuous-time decision

process into an equivalent discrete-time decision process.
At state 𝑦, if no replenishment item is in process, namely 𝑦∕(𝑘 +

1) ∈ Z, the system manager needs to decide whether to initiate the
production of a replenishment item or not; if a replenishment item is in
process, it is not possible to initiate a new one. Then two events might
happen next. First, one phase of the current replenishment item is com-
pleted if one is in process, and the work storage level is increased by
one automatically. Second, a demand arrives, and the system manager

needs to decide whether to accept or reject the demand.
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Table 2
Notation.

Decision variables

𝑢 a control policy.
𝑠∗ optimal base work storage level
𝑧∗ optimal acceptance threshold.
𝑖𝑐 Critical inventory level

Model parameters

𝑐𝑟 The unit lost sales cost.
𝑐𝑏 Backordering cost per item per unit of time.
𝑐ℎ Holding cost per item per unit of time.
𝑐𝑜 Fixed cost of producing a unit.
𝑐𝑝 The unit cancellation cost.
𝐿 Stochastic lead time with mean 𝜇𝐿.
𝑘 The number of phases of the Erlang lead time distribution.
𝜇𝐿 The mean of the Erlang−𝑘 distribution.
𝜇𝑃 The rate of the exponential distribution which comprises the 𝑘−Erlang

distribution.
𝜆𝐷 The rate of the demand arrival event.
𝜇𝑊 The rate of the demand cancellation event.
𝛼 The continuous discount rate.
𝛾 The rate that either one of the two events, phase completion and demand

arrival
happens for the first time.

Model status information

𝑡 Time period.
𝑂(𝑡) The status of the current replenishment item at time 𝑡.
𝐼(𝑡) The inventory level at time 𝑡.
𝑌 (𝑡) The work storage level at time 𝑡.
𝑓 (𝑦) The holding and backordering cost function in terms of the work storage

level 𝑦.
𝑏(𝑦) The number of backorders in terms of the work storage level 𝑦.
ℎ(𝑦) The minimum of the system cost over all policies 𝑢 when the initial state

is 𝑦.

Analysis operators

𝑇𝑃 Lead time phase completion event operator .
𝑇𝐷 Demand arrival event operator.
𝑇𝐶 Comprehensive cost operator.
𝑇𝑊 Demand cancellation event operator.
𝑇 The aggregated dynamic programming operator.

We can write the optimality equations as a fixed-point equation
f an operator: ℎ(𝑦) = 𝑇ℎ(𝑦), where 𝑇 is the dynamic programming

operator and ℎ(𝑦) the value function to be found. For a more detailed
explanation of optimality equation we refer the readers to Puterman
(2005). The optimal value function ℎ∗(𝑦), which solves these equations,
represents the minimum total expected discounted cost just prior to
making an ordering decision. To define 𝑇 we introduce several event
operators. Let 𝑇𝑃 represent the decisions and related costs following
a lead time phase completion event. (3) means the following. If there
is an item in process, namely, 𝑦∕(𝑘 + 1) is not an integer, after a phase
completion event, the item will enter the next processing phase, and the
work storage level is increased by one, resulting in 𝑦+ 1. If there is no
item in process, namely, 𝑦∕(𝑘 + 1) is an integer, the work storage level
will stay unchanged at 𝑦. Let 𝑇𝐷 represent the decisions and related
costs following a demand arrival event. The ℎ(𝑦 − 𝑘 − 1) in (4) means,
accepting a demand will lead to a decrease in work storage level by
𝑘+1. The 𝑐𝑟 +ℎ(𝑦) means that by rejecting a demand, the work storage
level remains at 𝑦, and the rejection cost 𝑐𝑟 is incurred. The decision
is to select the action which leads to the minimum of the two costs.
A comprehensive cost operator 𝑇𝐶 incorporates the calculation of the
holding/backordering cost, in addition to the expected costs incurred
by 𝑇𝑃 and 𝑇𝐷. In (5), 𝜇𝑃 is the rate of the phase completion event, and
𝜆𝐷 denotes the rate of the demand arrival event.

𝑇𝑃 ℎ(𝑦) =

{

ℎ(𝑦 + 1), if 𝑦∕(𝑘 + 1) ∉ Z,
ℎ(𝑦), if 𝑦∕(𝑘 + 1) ∈ Z;

(3)

𝑇𝐷ℎ(𝑦) = min{ℎ(𝑦 − 𝑘 − 1), 𝑐𝑟 + ℎ(𝑦)}; (4)
4

𝑇𝐶ℎ(𝑦) = 𝑓 (𝑦) + 𝜇𝑃 𝑇𝑃 ℎ(𝑦) + 𝜆𝐷𝑇𝐷ℎ(𝑦). (5)
Note in 𝑇𝐶 that if no replenishment item is in process, a lead time phase
completion denotes a dummy transition. Finally, the dynamic program-
ming operator 𝑇 incorporates the production decision in addition to the
integral cost operator and is defined as

𝑇ℎ(𝑦) =

{

min{𝑐𝑜 + 𝑇𝐶ℎ(𝑦 + 1), 𝑇𝐶ℎ(𝑦)}, if 𝑦∕(𝑘 + 1) ∈ Z,
𝑇𝐶ℎ(𝑦), if 𝑦∕(𝑘 + 1) ∉ Z.

The notations used for the model formulation are summarized in Ta-
ble 2.

3.2. Characterization of the optimal policy

In this section, we characterize the structure of the optimal policy
in which we apply a similar approach as Ha (2000). Let  be the set of
all functions 𝑔 ∶ Z → R that satisfy the following properties:

Property 1 (Bounded Difference). For a fixed value of 𝑘 ≥ 1,

(𝑦) − 𝑔(𝑦 − 𝑘 − 1) ≥ −𝑐𝑟, for all 𝑦 ≥ 𝑘 + 1.

Property 2. For a fixed value of 𝑘 ≥ 1,

𝑔(𝑦 + 1) − 𝑔(𝑦) ≥ 𝑔(𝑦 − 𝑘) − 𝑔(𝑦 − 𝑘 − 1), for all 𝑦 ∈ Z.

Property 1 implies that when the inventory level is positive, the
enefit (cost reduction) of having one additional item on hand is lower
han the rejection cost for one demand. Property 2 implies the cost
ncrease of having a higher inventory level is higher, if the work storage
evel is higher.

The following lemma shows that the dynamic programming opera-
or 𝑇 propagates the structure of the functions in :

emma 1. If 𝑔 ∈ , then 𝑇 𝑔 ∈ .

Based on Lemma 1, we can prove the following theorem.

heorem 1. ℎ∗ ∈ .

To describe the optimal policy, which is implied by the above
roperties of the value function, we first define the following two
hresholds 𝑠∗ = min{𝑦|𝑐𝑜 + 𝑇𝐶ℎ∗(𝑦 + 1) ≥ 𝑇𝐶ℎ∗(𝑦), 𝑦∕(𝑘 + 1) ∈ Z}, and
∗ = min{𝑦|𝑐𝑟 + ℎ∗(𝑦) ≥ ℎ∗(𝑦− 𝑘− 1)}, which we use to characterize the
ptimal production policy in the following statement.

heorem 2. There exists an optimal policy that can be specified using
hresholds 𝑠∗ and 𝑧∗. The optimal production policy is a base stock policy
ith base work storage level, 𝑠∗ such that it is optimal to produce if 𝑦 < 𝑠∗,

and not to produce otherwise. The optimal demand fulfillment policy is
an admission policy with an acceptance threshold, such that it is optimal
to reject the customer if 𝑦 < 𝑧∗, and accept the customer otherwise. An
accepted demand is satisfied from on-hand stock if there is any and is
backordered otherwise. Moreover, it is always optimal to accept demand
if there is on-hand stock; that is, 𝑧∗ ≤ 𝑘 + 1.

The proof of Lemma 1, Theorem 1 and Theorem 2 can be found in
Appendix A.1, A.2, and A.3, respectively.

To find the optimal parameters of the control policy using the value
iteration method, one needs bounds on the search space of control
parameters to complete the computation in reasonable amount of time.
The existence of bounds is especially important in problems with a large
state space, and tackling real-time information. In our problem, the
size of state space increases drastically in 𝑘. Benjaafar et al. (2010b)
developed an upper bound on the optimal base stock level for the
problem with an exponential supply lead time, given by the optimal
base stock level of a system where all the demands are rejected directly
if there is no on-hand stock. Note that under certain conditions with the
same mean of the lead time, the optimal base stock level is lower if the
lead time variance is lower (Song, 1994). This implies that the upper
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bound from Benjaafar et al. (2010b) on the optimal control parameters
holds for our case of k-Erlang lead times with the same mean. We
next extend the results of Benjaafar et al. (2010b) by developing a
lower bound on the acceptance threshold in Theorem 3. Using the value
iteration algorithm, we obtain 𝑠∗ and 𝑧∗ via an exhaustive search in a
bounded range in a time-efficient manner.

We show in Theorem 3 how a lower bound on the acceptance
threshold can be obtained based on the following reasoning. Suppose
with the control tower the company can monitor the status of the
pipeline stock continuously and thus has the access to continuous real-
time information. In other words, the production lead time consists of
infinite number of phases, the variance becomes close to zero, and the
supply lead time becomes close to a deterministic lead time. A closed
form of the lower bound on the acceptance threshold can be obtained
by comparing the rejection cost, the expected discounted production
and backordering costs for a given work storage level (see the proof in
Appendix A.4).

Theorem 3.

𝑧∗ > 𝑧∗𝐵 , with 𝑧∗𝐵 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + 1
𝛼𝜇𝐿

ln
(

𝑐𝑏−𝛼𝑐𝑟
𝑐𝑏−𝛼𝑐𝑜

)

, if 𝑐𝑏 − 𝛼𝑐𝑜 > 0 and 𝑐𝑏 − 𝛼𝑐𝑟 > 0,

−∞, if 𝑐𝑏 − 𝛼𝑐𝑜 = 0,

−∞, if 𝑐𝑏 − 𝛼𝑐𝑜 > 0 and 𝑐𝑏 − 𝛼𝑐𝑟 ≤ 0,

where 𝜇𝐿 indicates the mean lead time. When backordering cost
s small enough, or when rejection cost is large enough compared to
roduction cost, Theorem 3 does not yield a lower bound.

.3. Admission control for customers without patience

Backordering customers may be profitable for the production com-
any, but may also cause long waiting times for customers. In this
ection we therefore formulate the problem where backordered cus-
omers are of limited patience and may cancel their demand if they
ave waited long. The resulting cancellation cost for the company is 𝑐𝑝

for each demand. We assume the rejection cost upon arrival is smaller
than the cancellation cost (𝑐𝑟 < 𝑐𝑝). Otherwise it is optimal to accept all
demand (i.e., backorder all demand which is not satisfied directly). We
assume the maximum waiting time of each customer on the waiting list
is exponentially distributed with mean 1∕𝜇𝑊 .

Although manufacturers do give feedback on planned lead times,
they usually do not share the complete status of their manufacturing
system with their customers. Some empirical evidence on lead times
for spare parts by van Wingerden et al. (2014) shows that there can be
substantial deviations from the planned lead times, which is especially
the case for parts of out-of-production systems. So, incoming customers
place an order and wait until they realize the manufacturing system
is overloaded and waiting time gets longer than their expectation.
Procurement managers seek to mitigate this lead time variability risk
by developing alternative supply sources for the same part or look
for substitutes, all leading to cancellation. Although our assumption is
primarily done for tractability reasons, these arguments motivate this
assumption.

Let 𝑁𝑢
𝑝 (𝑡) be the number of demands that have been cancelled up

to time 𝑡. We seek to find the optimal control policy 𝑢 that minimizes
the following expected discounted costs over an infinite horizon with
an initial state 𝑦:

𝐸𝑢
𝑦

[

∫

∞

0
𝑒−𝛼𝑡𝑓 (𝑌 𝑢(𝑡)) 𝑑𝑡 + 𝑒−𝛼𝑡𝑐𝑜 𝑑𝑁

𝑢
𝑜 (𝑡) + 𝑒−𝛼𝑡𝑐𝑟 𝑑𝑁

𝑢
𝑟 (𝑡) + 𝑒−𝛼𝑡𝑐𝑝 𝑑𝑁

𝑢
𝑝 (𝑡)

]

.

(6)

We set the maximum number of backordered demand at a value 𝐽 .
This is in line with the theory (see also H), as there exists a critical level
of backorders, beyond which backordering is not profitable any more
due to the increasing backordering cost, while the cost of rejecting a
5

r

customer remains constant. In the implementation, when the number
of backorders reaches a threshold value 𝐽 , the demand arriving is
rejected with the lost sales cost 𝑐𝑟. J is chosen large enough to have
no effect on the results. In practice, some companies set a threshold of
lead time to decide whether or not to take further orders. If the lead
time of an incoming customer is estimated to exceed the threshold, the
companies will not accept the order. In theory, this can be translated to
the setting with backordering costs. Let 𝑏(𝑦) = max{0,−⌊ 𝑦

𝑘+1 ⌋}, which
s the number of backorders given work storage level 𝑦. The state space
s denoted by  , where  = {−𝐽 (𝑘 + 1),−𝐽 (𝑘 + 1) + 1,… , 0, 1, 2,…}.
et �̃� be the rate that one of the three events, demand arrival, phase
ompletion, and customer cancellation, happens for the first time so,
�̃� = 𝜇𝑃 + 𝜆𝐷 + 𝐽𝜇𝑊 .

We can write the optimality equations as ℎ(𝑦) = �̃� ℎ(𝑦), where the
ynamic programming operator �̃� is defined as follows. Let �̃�𝐷 be the
emand arrival event operator. The difference between �̃�𝐷 and 𝑇𝐷 is
hat in �̃�𝐷, backordering is possible only when the current backordered
emand is smaller than 𝐽 . Let 𝑇𝑊 be the demand cancellation event
perator. Only when there are backordered demands (𝑏(𝑦) > 0), it is
ossible that demand gets cancelled. If a demand gets cancelled, the
tate will increase to 𝑦+ 𝑘+1, and a cancellation cost of 𝑐𝑝 is incurred.
he chance that a demand gets cancelled is proportional to the number
f backordered demands, hence the term ℎ(𝑦+𝑘+1)+𝑐𝑝 is multiplied by
(𝑦). With a chance proportional to 𝐽 − 𝑏(𝑦), no demand gets cancelled
nd the state remains unchanged. Let �̃�𝐶 be the integrate cost operator.
he difference between �̃�𝐶 and 𝑇𝐶 is that in �̃�𝐶 there is one extra event,
emand cancellation, which occurs with rate 𝜇𝑊 . The mathematical
efinitions of the operators are given as follows:

�̃�𝐷ℎ(𝑦) =

{

min{ℎ(𝑦 − 𝑘 − 1), 𝑐𝑟 + ℎ(𝑦)}, if 𝑏(𝑦) < 𝐽,
𝑐𝑟 + ℎ(𝑦), if 𝑏(𝑦) = 𝐽 ;

𝑊 ℎ(𝑦) =

{

𝑏(𝑦)[ℎ(𝑦 + 𝑘 + 1) + 𝑐𝑝] + (𝐽 − 𝑏(𝑦))ℎ(𝑦), if 𝑏(𝑦) > 0,
𝐽ℎ(𝑦), if 𝑏(𝑦) = 0;

�̃�𝐶ℎ(𝑦) = 𝑓 (𝑦) + 𝜇𝑃 𝑇𝑃 ℎ(𝑦) + 𝜆𝐷�̃�𝐷ℎ(𝑦) + 𝜇𝑊 𝑇𝑊 ℎ(𝑦).

Note in �̃�𝐶 that if no demand is backordered, a demand cancellation
enotes a dummy transition. The dynamic programming operator �̃�
hich incorporates the production decision in addition to the integrate

ost operator is:

̃ ℎ(𝑦) =

{

min{𝑐𝑜 + �̃�𝐶ℎ(𝑦 + 1), �̃�𝐶ℎ(𝑦)}, if 𝑦∕(𝑘 + 1) ∈ Z,
�̃�𝐶ℎ(𝑦), if 𝑦∕(𝑘 + 1) ∉ Z.

The optimal admission policy cannot be characterized by an admis-
ion threshold as described in Theorem 2. A counter example is when
𝑜 = 10, 𝑐ℎ = 4, 𝑐𝑏 = 4.5, 𝑐𝑟 = 50, 𝑐𝑝 = 60, 𝜇𝑃 = 1.75, 𝑘 = 7, 𝜆𝐷 =
.05, 𝜇𝑊 = 0.5 and 𝛼 = 0.01, it is optimal to reject a demand when
he work storage level 𝑦 ≤ −4 and −1 ≤ 𝑦 ≤ 1; and it is optimal to
ccept a demand when −3 ≤ 𝑦 ≤ −2 and 𝑦 ≥ 2. An explanation is,
ince the waiting times of the backordered demand follow independent
nd identical exponential distributions, the more backordered demand
here is in the system, the more probably one demand gets cancelled.
t work storage levels where 𝑏(𝑦) + 1 = 𝑏(𝑦 − 1) (for example, when
= 0, we have 𝑏(0) = 0 and 𝑏(−1) = 1), the probability of transit

rom 𝑦 − 1 to 𝑦 + 𝑘 (from work storage level −1 to 𝑘) due to a demand
ancellation is higher than the probability of transit from 𝑦 to 𝑦+ 𝑘+ 1
from work storage level 0 to 𝑘 + 1) caused by a demand cancellation.
herefore Property 2 of the value function ℎ(𝑦), which is essential for a
hreshold-type admission policy to hold, may not be preserved by the
emand cancellation event. As a result, it can happen that it is better
o accept a customer at a low work storage level, while it is better to

eject a customer at a higher work storage level.
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4. Numerical study

4.1. Set-up and alternative policies

In this section, we compare the performance of the policy type
described in Theorem 2, denoted by 𝑃0, with simpler policy types
o obtain the value of reducing supply lead time variance, the value
f real-time information, and that of the admission control. The four
olicy types studied are as follows:

Policy 𝑃0 (Admission policy with real-time information): Demand
hat cannot be fulfilled from on-hand stock is backordered or rejected
ccording to an admission policy with an acceptance work storage
evel. Production is managed according to a base-stock policy with a
ixed work storage level.

Policy 𝑃1 (Lost sales policy): Instead of opting for rejection or
ackordering as in the optimal policy 𝑃0, demand that cannot be
ulfilled from on-hand stock is always rejected. Production is managed
ccording to a base-stock policy with a fixed base-stock level.

Policy 𝑃2 (Backordering policy): Instead of opting for rejection or
ackordering as in the optimal policy 𝑃0, demand is never rejected and
lways accepted (backordered if there is no on-hand stock). Production
s managed according to a base-stock policy with a fixed base-stock
evel.

Policy 𝑃3 (Critical inventory level policy): Instead of using work
torage levels as the decision variables in the optimal policy 𝑃0,
he manager uses inventory levels to determine the admission policy
hether demand that cannot be fulfilled from on-hand stock is backo-

dered or rejected. No use is made of the production status information.
roduction is managed according to a base-stock policy with a fixed
ase-stock level.

With policy 𝑃1 and 𝑃2, the demand arrival event operators, denoted
y 𝑇 (1)

𝐷 and 𝑇 (2)
𝐷 , are defined as follows:

(1)
𝐷 ℎ(𝑦) =

{

ℎ(𝑦 − 𝑘 − 1), if 𝑏(𝑦) > 0,
𝑐𝑟 + ℎ(𝑦), if 𝑏(𝑦) ≤ 0;

(2)
𝐷 ℎ(𝑦) = ℎ(𝑦 − 𝑘 − 1), for all 𝑦 ∈ Z.

We can prove the following theorem (see the proof in Appendix A.5):

heorem 4. In the class of backordering policies (type 𝑃2) a critical level
olicy is optimal.

For the lost sales case we observed the same phenomenon, but we
ould not prove it.

A critical inventory level policy has the following form: reject a
emand if the inventory level 𝑖 ≤ 𝑖𝑐 for some level 𝑖𝑐 and accept
he demand if 𝑖 ≥ 𝑖𝑐 + 1. In the context with real-time information,

critical inventory level policy implies the same admission action
accept/reject) should be taken at states where the inventory level is
𝑐 and no replenishment item is in process. To find the optimal policy
f this form we use enumeration and evaluate each policy using value
teration.

Both Ha (2000) and Gayon et al. (2009b) derive the critical in-
entory level from the critical work storage level. They use inventory
evels which are adjacent to the work storage level as the candidates for
he critical inventory levels. We follow their approach and derive from
olicy 𝑃0 the critical inventory levels for policy 𝑃3. For example, if the
ptimal acceptance work storage level of 𝑃0 is: zero on-hand stock with
n item in the second phase of the production, then the two adjacent
nventory levels are zero on-hand stock, and one on-hand stock. We
valuate these two candidate policies, and choose the one with the
ower total expected discounted cost as the acceptance inventory level
f 𝑃3.

Specifically, denote by 𝑧∗0 the optimal acceptance level. The inven-
ory level which is lower than 𝑧∗0 can be expressed in work storage level
s 𝑧∗ = ⌊𝑧∗∕(𝑘 + 1)⌋(𝑘 + 1) + 1. We denote by 𝑃 (𝐿) the policy with this
6

𝐿 0 3
cceptance inventory level. The inventory level which is higher than 𝑧∗0
an be expressed in work storage level as 𝑧∗𝐻 = ⌈𝑧∗0∕(𝑘 + 1)⌉(𝑘 + 1). We
enote by 𝑧∗𝐻 the policy with 𝑧∗𝐻 as the acceptance threshold. For each
nstance we use, policy 𝑃3 that selects from 𝑃 (𝐿)

3 and 𝑃 (𝐻)
3 the one with

lower total expected discounted cost. Note that when the acceptance
hreshold is such that the real-time information does not play a role
i.e., 𝑧∗0∕(𝑘 + 1) ∈ Z or (𝑧∗0 − 1)∕(𝑘 + 1) ∈ Z), we let 𝑧∗𝐿 = 𝑧∗𝐻 = 𝑧∗0.

We apply the four policy types on each instance from diverse
nstance sets. Same as Gayon et al. (2009a), the numerical results
re obtained using the value iteration on a truncated state space (by
imiting the amount of inventory and number of backordered demand
n the system) to compute the optimal policy and the resulting total
xpected discounted cost, under each of the four policy types. The value
teration algorithm is terminated only when the difference between the
uccessive averages of optimal discounted costs across the state space
s smaller than 10−6. We repeat this with large inventory levels as well
s large numbers of backordered demand, till the weighted-average
ptimal discounted costs across the state space is no longer sensitive
o the truncation level. In other words, denote by 𝜋 the vector of the
teady-state probabilities given the optimal policy, then the weighted-
verage optimal discounted costs across the state space 𝐶 = 𝜋′ℎ∗, where
′ is the transpose of 𝜋. For brevity we will denote it in the sequel by
iscounted costs.

Moreover, for a continuous-time Markov reward process, the fol-
owing relation between the total expected discounted cost across
he state space and average cost per unit time 𝑔 follows from the
xistence of the average optimal cost, as a result of the vanishing
iscount approach (Huh et al., 2011), and the uniformization (Tijms,
003) of continuous time Markov chains: 𝜋′ℎ∗ = 𝑔∕(𝛼∕𝛾). Also, when
he discount rate goes to zero, the problem optimizing total expected
iscounted cost converges to the one optimizing the long-run average
ost (Ha, 2000). We verified this numerically by observing that for
nstances where 𝛼 ranges from 0.01 to 10−6 and the other parameters
re fixed, the optimal production and acceptance thresholds stay un-
hanged, with the average cost calculated by 𝑔 = 𝛼𝐶∕𝛾 changing only
lightly by 0.52%. Therefore, optimizing the total expected discounted
ost with 𝛼 = 0.01 is a good approximation of optimizing the average
ost as well.

For each instance from the instance sets, 𝐶 (𝑘)
𝑖 denotes the optimal

iscounted cost obtained with policy 𝑃𝑖 under 𝑘 lead time phases
here 𝑖 = 0,… , 3,. We increase the number of lead time phases to

nvestigate the value of reducing supply lead time variance. In reality,
his corresponds to adding more checkpoints and reporting the status
ore frequently during the production process. In order to quantify

he value of reducing supply lead time variance, the value of real-time
nformation, and that of the admission control, we define four measures
s follows. First, denote by 𝛥(𝑘)

0 the percentage value of imposing one
ore lead time phase while fixing the lead time mean under policy 𝑃0.
e compute 𝛥(𝑘)

0 as

(𝑘)
0 = (𝐶 (𝑘−1)

0 − 𝐶 (𝑘)
0 )∕𝐶 (1)

0 . (7)

hen 𝛥(𝑘)
0 is the percentage marginal cost savings of imposing one

ore phase on the lead time, with the current number of lead time
hases being 𝑘−1. Because of the relationship mentioned between total
xpected discounted cost and average cost, 𝛥(𝑘)

0 is the same regardless of
hich cost measure is used. The same holds for the other two measures
e are going to introduce next. Second, 𝛿(𝑘)𝑖 denotes the percentage cost
ifference of policy 𝑃𝑖 above policy 𝑃0 under 𝑘 lead time phases. We
ompute 𝛿(𝑘)𝑖 as
(𝑘)
𝑖 = (𝐶 (𝑘)

𝑖 − 𝐶 (𝑘)
0 )∕𝐶 (𝑘)

0 , where 𝑖 = 1, 2, 3. (8)

ence 𝛿(𝑘)1 and 𝛿(𝑘)2 represent the cost increase of excluding admission
ontrol under 𝑘 lead time phases and the setting with real-time infor-
ation. when 𝑖 = 3, 𝛿(𝑘)3 represents the percentage cost difference of

he critical inventory level policy above policy 𝑃 , under 𝑘 lead time
0
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Table 3
Instance set 𝐼 . Non-varying parameters: 𝜆𝐷 = 0.15 (𝜌 = 0.6), 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10,
𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01.

The varying parameter and its range Step Total

Instance set 𝐼(1) 1 ≤ 𝑘 ≤ 30 1 30
Instance set 𝐼(2) 20 ≤ 𝑐𝑏 ≤ 30 0.5 21
Instance set 𝐼(3) 0.05 ≤ 𝜆𝐷 ≤ 0.25 0.01 21
Total number of instances 82

Table 4
Instance set II. Non-varying parameters 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐ℎ = 4,
= 0.01.

Parameter and its range Step Total

Varying parameters 20 ≤ 𝑐𝑏 ≤ 30 0.5 21
0.05 ≤ 𝜆𝐷 ≤ 0.25 0.01 21

Total number of instances 21 × 21 = 441

phases. So 𝛿(𝑘)3 is the cost increase of ignoring real-time information
nder 𝑘 lead time phases. Third, denote by 𝜃(𝑘)𝑖 the percentage cost

difference of policy 𝑃𝑖 above policy 𝑃3 under 𝑘 lead time phases. We
ompute
(𝑘)
𝑖 = (𝐶 (𝑘)

𝑖 − 𝐶 (𝑘)
3 )∕𝐶 (𝑘)

3 , where 𝑖 = 1, 2. (9)

Denote by 𝑠∗𝑖 and 𝑧∗𝑖 , where 𝑖 = 0,… , 3, the critical work storage
level and acceptance work storage level of policy 𝑃𝑖. To make the
thresholds under different 𝑘′𝑠 comparable, we introduce the scaled
work storage level 𝑦′ = 𝑦∕(𝑘+1), given the number of supply lead time
hases. The scaled work storage level indicates the inventory level as
ell as the fraction of replenishment item completed. We calculate the

caled base work storage level 𝑠∗∗𝑖 = 𝑠∗𝑖 ∕(𝑘 + 1) and scaled acceptance
work storage level 𝑧∗∗𝑖 = 𝑧∗𝑖 ∕(𝑘 + 1) (also 𝑧∗∗𝐿 = 𝑧∗𝐿∕(𝑘 + 1) and 𝑧∗∗𝐻 =
𝑧∗𝐻∕(𝑘+1)). Note that 𝑠∗3 = 𝑠∗0; the lost sales policy has a fixed acceptance
hreshold 𝑧∗1 = 𝑘 + 1, and the backordering policy has an acceptance

threshold 𝑧∗2 = −(𝐽 −1)(𝑘+1), where 𝐽 indicates the truncation level of
the number of backorders.

We present the results with customer patience (𝜇𝑊 = 0) in Sections
4.2, 4.3, 4.4 and with limited customer patience in 4.5. In the instance
sets we fix the lead time mean by letting 𝑘∕𝜇𝑃 = 4. We start with
presenting the results for Instance set I where for each subset one
parameter is varied. For Instance set I (1) the number of lead time
phases 𝑘 is varied. For Instance set I (2) the backordering cost rate 𝑐𝑏
is varied such that 1 ≤ 𝑐𝑏∕𝑐ℎ ≤ 15, for Instance set I (3) the demand
rate is varied such that 0.2 ≤ 𝜌 = 𝜆𝐷∕(𝜇𝑃 ∕𝑘) < 1. For each instance
in Instance set I, except for the parameter that is being varied, the
following parameter values are used: 𝜆𝐷 = 0.15 (𝜌 = 0.6), 𝑘 = 7,
𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01. The instances
in Instance set 𝐼 is summarized in Table 3.

We then present the result for Instance set II which includes all the
instances where 1 ≤ 𝑐𝑏∕𝑐ℎ ≤ 15, and 0.2 ≤ 𝜌 < 1, with 𝑘 = 7, 𝜇𝑃 = 1.75,
𝑐ℎ = 4, and other parameters the same as in Instance set I. The instances
of Instance set 𝐼𝐼 are summarized in Table 4.

4.2. Better production lead time information — optimal policy

Modeling the lead time with an Erlang 𝐸𝑘 distribution allows us
to study the effect of increasing 𝑘. This has two effects. On one hand
one gets more precise information on how far the production has
progressed, yet on the other hand the variability in the lead time
decreases. If 𝑘 is very large the lead time is almost deterministic. It
is known that decreasing lead time variability does in general reduce
inventory costs. Having more precise information has a similar effect
as increasing the fineness of a discretization: it also reduces costs. It is
however difficult to study these aspects in isolation as splitting up an
7

Erlang distribution into other, similar distributions is not possible in d
the class of phase-type distributions and brings us outside the world of
continuous-time Markov chains (Devianto, 2018).

In this section we present numerical results concerning this case.
We use admission control and assume customer patience (𝜇𝑊 = 0). We
do so by fixing the mean of the replenishment lead time (𝑘∕𝜇𝑃 ), and
varying the number of lead time phases (𝑘). We present the impact of
the number of lead time phases on the optimal average discounted cost,
and marginal cost savings of imposing one more lead time phase for
Instance set I (1) (Fig. 1).

The discounted cost in Fig. 1 comprises of production cost, holding
cost, rejection cost and backordering cost. Take 𝑘 = 5 as an example,
the discounted cost is 602.04, consisting of production cost 107.36,
holding cost 228.23, rejection cost 213.21 and backordering cost 53.24.
We can see from Fig. 1 that the marginal benefit of having one more
lead time phase has a decreasing trend as 𝑘 increases. This is also
consistent with Henrich et al. (2004), who showed that the marginal
return decreases with more accurate supply information using simula-
tion. The interpretation is as follows. Suppose the lead time is around
one month, and the company gets updated about the status of the
replenishment item every week, the information can help the manager
make decision accordingly. If further, the company gets updated about
the status of the replenishment item every day, then the added value
is insignificant. In practice, imposing more lead time phases involves
technical investment. In this instance set, imposing seven lead time
phases instead of one lead time phase is worthwhile, only when the
cost of increasing the number of lead time phases from one to seven
is lower than 8.18%. Further note that 𝛥(𝑘)

0 is not monotone in 𝑘 due
to 𝑘 being an integer. The cost reduction brought by increasing the
number of phases can be explained by the scaled acceptance thresholds
as shown in Fig. 2. The increase of 𝑘 leads to the adaption of the scaled
acceptance thresholds, the marginal difference of which with one more
lead time phase also decreases as 𝑘 increases.

In the remainder of this section, based on the observation from
Fig. 1, we set the number of lead time phases as seven (𝑘 = 7), at
which the marginal cost savings is just above 0.4%, when we discuss
the impact of backordering cost rate and rejection cost rate on the
performance of different policy types. We also refer to the instance with
parameters 𝜆𝐷 = 0.15, 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4,
𝛼 = 0.01, 𝜇𝑊 = 0, as the pivotal instance, and it has the optimal base
stock level as one and the optimal scaled admission threshold as 5/8 =
0.625.

4.3. Optimal policy compared to critical inventory level policies

In this section, we provide the numerical results illustrating the
value of real-time status information with admission control deployed,
and with customer-patience (𝜇𝑊 = 0). In the following we present how
the number of lead time phases impact the performance of the critical
inventory level policies, compared to the optimal policy.

In Fig. 3 we illustrate 𝛿(𝑘)3 , the percentage cost difference of critical
nventory level policy above 𝑃0, with 𝑘 increasing. We also illustrate the
ain cost drivers of policy 𝑃0 and that of the two critical inventory level
olicies (𝑃 (𝐿)

3 and 𝑃 (𝐻)
3 ) in Fig. 4. We can see 𝑃 (𝐿)

3 has a higher average
ackordering cost resulted from a lower acceptance threshold. While
(𝐻)
3 has a lower average backordering cost, it is accompanied with
igh average rejection cost resulted from a higher acceptance threshold.
he joint effect manifests itself in the fact that 𝑃 (𝐻)

3 has a lower cost
han 𝑃 (𝐿)

3 , and 𝑃 (𝐻)
3 is worse than 𝑃0, with a 6.64% higher average

ost when 𝑘 = 30. The cost increase of ignoring the real-time status
nformation for the pivotal instance is 4.58%.

In Fig. 5 we illustrate the impact of backordering cost rate on the
ost increase of ignoring the real-time information. In Fig. 5(b) the
cceptance thresholds of 𝑃0 ranges from −0.5 to 0.875. In Fig. 5(a), cost
ncrease 𝛿(7)3 first decreases as 𝑧0 attains 0 when 𝑐𝑏 = 10. After that 𝛿(7)3
irst increases, to a maximum of 9.76% as 𝑧0 is around 0.5, and then

ecreases as 𝑧0 approaches 1. An insight is as the acceptance threshold
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Fig. 1. Impact of 𝑘 on the performance of 𝑃0. Instance set I (1): 𝜆𝐷 = 0.15, 𝑘∕𝜇𝑃 = 4, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.
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Fig. 2. Impact of number of lead time phases on policy thresholds of 𝑃0. Instance set
I (1): 𝜆𝐷 = 0.15, 𝑘∕𝜇𝑃 = 4, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.

gets closer to inventory levels (for this range the two integers which
indicate inventory levels are 0 and 1), the cost increase of ignoring
real-time information gets smaller.

Fig. 6(b) shows that the discounted backordering cost decreases, as
the acceptance threshold of 𝑃0 increases. Notice also that within some
ntervals the acceptance threshold remains the same (e.g., 26 ≤ 𝑐𝑏 ≤
38) and results in a slightly higher discounted backordering cost. This
can be explained by that there are only a limited number of phases
(seven phases), such that the acceptance threshold cannot be adjusted
continuously.

In Fig. 7 we illustrate the impact of demand rate on the cost increase
of ignoring real-time information. We observed that when the demand
rate is very low, the base stock level is zero, and so is the discounted
production cost. As these instances are not of interest, we excluded
these instances from the figure. The cost increase is above 6% for the
remaining instances.

Furthermore, we present the numerical results of all the instances
from Instance set II in Table 5, where we excluded instances of which
the discounted production cost and base stock level are zeros. The
instances excluded are: (1) 𝜆𝐷 = 0.05 and 12 ≤ 𝑐𝑏 ≤ 60; (2) 𝜆𝐷 = 0.07
nd 12 ≤ 𝑐𝑏 ≤ 60; (3) 𝜆𝐷 = 0.09 and 18 ≤ 𝑐𝑏 ≤ 60. If we include these
nstances as well, the resulting discounted cost increase is decreased
rom 3.01% to 2.23%, which is still significant.
8

i

.4. Value of the admission control

We illustrate the cost increase of excluding admission control in
ig. 8. If backordering cost rate is high (low), it is better to reject more
less) demand and the performance of 𝑃0 becomes closer to that of the
ost sales policy (backordering policy). The demand rate does not have
significant impact on 𝛿1, as the costs of both 𝑃0 and 𝑃1 increase with

imilar trend. The backordering cost policy gets drastically worse than
0 as 𝜆𝐷 increases, because it lacks the flexibility of rejecting demand.
ost increase of excluding admission control is also higher if policy with
eal-time information (𝑃0) is the benchmark than if critical inventory
evel policy (𝑃3) is the benchmark, as 𝜃𝑖 is lower than 𝛿𝑖. For the pivotal
nstance, 𝜃(7)1 = 0, 𝛿(7)1 = 8.90%; 𝜃(7)2 = 52.86%, and 𝛿(7)2 = 66.46%. In
ther words, admission control has a bigger effect in the context of
ontrol tower where real-time information is accessible and utilized.
he gap between 𝛿𝑖 and 𝜃𝑖 also reflects the increase of ignoring real-time

nformation approximately.

.5. Numerical results on the impact of impatience

In the following numerical study on the impact of impatience rate,
e confine ourselves to instances for which the optimal admission
olicy is of threshold type. Instance set III contains two subsets, with
he impatience rate 𝜇𝑊 equal to 0.1 and 0.2 respectively. For Instance
et IV 𝜇𝑊 is varied on a wider range (0 ≤ 𝜇𝑊 ≤ 2). We use a
emand cancellation cost 𝑐𝑝 = 100 for both instance sets. Similarly,
alue iteration is used for all the instances.

We first present the impact of impatience rate on the value of
educing lead time variance. As can be seen from the results on Instance
et III in Fig. 9, the value of reducing supply lead time variance is
maller if the impatience rate is higher: the achieved cost savings when
he lead time consists of thirty phases compared to only one phase
(𝐶 (1)

0 − 𝐶 (30)
0 )∕𝐶 (1)

0 ∗ 100%) is 10.41% under 𝜇𝑊 = 0; 9.07% under
𝑊 = 0.1; and 8.05% under 𝜇𝑊 = 0.2. Further, the acceptance threshold
ncreases as 𝜇𝑊 increases, which is shown in Fig. 9(b), as well as in
ig. 10 on Instance set IV, where 𝑘 is fixed and 𝜇𝑊 is varied on a wider
ange. The interpretation is intuitive: if the customers are more prone
o cancel their demand, it is better to backorder demand when the work
torage level is higher.

Next, we see that in Fig. 11(a), the cost increase of ignoring real-
ime information decreases as impatience rate increases. The reason
s as follows. When customers are patient, the expected backordering
ost till fulfilling the demand when a replenishment item is half-way

n its process is still lower than the rejection cost. However, when
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Fig. 3. Impact of number of lead time phases on the percentage cost difference of 𝑃3 above 𝑃0. Instance set I (1): 𝜆𝐷 = 0.15, 𝑘∕𝜇𝑃 = 4, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01,
𝜇𝑊 = 0.

Fig. 4. Impact of 𝑘 on the cost structure of 𝑃0, 𝑃
(𝐿)
3 and 𝑃 (𝐻)

3 . Instance set I (1): 𝜆𝐷 = 0.15, 𝑘∕𝜇𝑃 = 4, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.

Fig. 5. Impact of 𝑐𝑏 on the percentage cost difference of 𝑃3 above 𝑃0. Instance set II (2): 𝜆𝐷 = 0.15, 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.
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Fig. 6. Impact of 𝑐𝑏 on the cost structure of 𝑃0, 𝑃
(𝐿)
3 and 𝑃 (𝐻)

3 . Instance set II (2): 𝜆𝐷 = 0.15, 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.

Fig. 7. Impact of 𝜆𝐷 on the percentage cost difference of policy 𝑃3 above 𝑃0. Instance set I (3): 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.

Fig. 8. Impact of on the value of admission control. Instance set I (2) and I (3): 𝜆𝐷 = 0.15, 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01, 𝜇𝑊 = 0.
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𝜇

Table 5
Cost increase of ignoring real-time information.
Percentage cost increase 𝜆𝐷 Average

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23

Maximum 𝛿3 (%) 1.26 1.54 1.83 7.52 8.34 9.76 7.91 8.13 9.17 9.06
Average 𝛿3 (%) 0.97 0.64 0.64 2.91 3.31 3.62 2.97 3.06 3.09 3.06 3.01
Fig. 9. Impact of 𝜇𝑊 on the value of reducing leaf time variance and 𝑧∗∗0 . Instance set III: 𝜆𝐷 = 0.15, 𝑘∕𝜇𝑃 = 4, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝑐𝑝 = 100, 𝛼 = 0.01.
𝑘

Fig. 10. Impact of 𝜇𝑊 on acceptance threshold. Instance set IV: 𝜆𝐷 = 0.15, 𝑘 = 7,
𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝑐𝑝 = 100, 𝛼 = 0.01.

customers are impatient, for the sum of the expected backordering cost
and cancellation cost to be lower than the rejection cost, the work
storage level should be higher. Thus the acceptance level gets higher,
and in this case closer to an inventory level. As a result, the cost
increase of ignoring real-time information gets lower.

Third, Fig. 11(b) shows the cost increase of excluding admission
control decreases as impatience rate increases. It is intuitive that the
cost gap between 𝑃0 and lost sales policy gets smaller because in
this case the acceptance thresholds get closer to one, which is the
underlying acceptance threshold of a lost sales policy. As the optimal
average cost of 𝑃0 gets higher, the gap between 𝑃0 and backordering
11

policy decreases as impatience rate increases.
5. Discussion and conclusion

Our paper provides the insight that to achieve the added value of the
real-time information on replenishment item in a control tower, switch-
ing from a lost sales or backordering policy to an admission control
policy should be considered. The studies of Ha (2000) and Gayon et al.
(2009b) suggest that, the value of real-time information on the status
of the pipeline stock is small. Ha (2000) states that the average cost
increase of ignoring the real-time information over twelve instances
is 0.62%, with a maximum of 1.12%, while the average cost increase
of Gayon et al. (2009b) is 0.32% over a more extensive instance set,
with the maximum as 5.5%. However, our study shows that the real-
time information on replenishment item leads to much larger cost
savings. We observed a maximum as 11.62% and the average as 2.23%
over all instances. The reason is that we decide whether to accept a
demand according to the real-time information on the status of the
replenishment item. To be specific, for the instance where 𝜆𝐷 = 0.15,
= 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝛼 = 0.01 and 𝜇𝑊 = 0,

when there is no on-hand stock and a replenishment item is in the
second half of the whole process, we accept an incoming demand and
reject it otherwise. In this way, the sum of the expected lost sales cost
and backordering cost of the optimal policy is lower than that of the
case where a lost sales policy is adopted, and that of the case where a
backordering policy is adopted. For this instance, our admission control
policy has an optimal base stock level 𝑆∗ = 1. (Fig. 2). Ha (2000)
considers only the lost sales case and considers priority customers
together with larger optimal base stock levels (𝑆∗ = 4). Concluding,
the status information is primarily important to decide on accepting
demands if one is out of stock.

When customers are of limited patience, we find that the optimal
admission policy is not necessarily of threshold type. A simplified
explanation is, if the impatience rate is high and the cancellation cost is
low, at a state with no on-hand stock and no backordered customer, it
may be better to first accept a demand such that a replenishment item

can be triggered and with the backordered customer leaving before
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Fig. 11. Impact of 𝜇𝑊 on 𝛿𝑖. Instance set IV: 𝜆𝐷 = 0.15, 𝑘 = 7, 𝜇𝑃 = 1.75, 𝑐𝑜 = 10, 𝑐𝑟 = 50, 𝑐𝑏 = 20, 𝑐ℎ = 4, 𝑐𝑝 = 100, 𝛼 = 0.01.
being satisfied the transition is made into a state with a replenishment
item in process, which can be used to fulfill future demand to reduce
high rejection cost, and is better than staying unchanged.

Our study also shows with a 𝑘-Erlang supply lead time, the marginal
cost savings of having one more lead time phase decreases as the num-
ber of lead time phases increases. This provides managerial insights on
the trade-off between the benefit and cost of reducing supply lead time
variance. Moreover, Song (1994) shows that in a pure backordering
system, a more variable lead time leads to a higher optimal average
cost. The effect of lead time variability on base stock levels depends
on the inventory cost structure, which involves backordering cost rate
and holding cost rate. We cannot apply the theoretical analysis of Song
(1994) directly to our problem, because we incorporate admission
control, which leads to an acceptance threshold in addition to a base
stock level. Further theoretical analysis is worth investigating.

The assumption of an 𝑘-Erlang distributed lead time may seem re-
strictive, but the existence of an optimal workstorage level for ordering
and one for order acceptance implies that one does not need to know
in which phase one is, but only whether one has reached the optimal
level or not.

The assumption of having only one item in production is another
restrictive assumption, mainly made for tractability reasons. Yet for
accepting new orders it is important to estimate how long it will take
to satisfy them and the Erlang distribution assumption for the lead
time allows an easy computation. A heuristic admission policy could
be formulated using the expected backorder time as basis, but that is
out of scope.
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Appendix. Proofs
A.1. Proof of Lemma 1

To arrive at a proof of Lemma 1, we establish several results
about how each of the properties of the functions in 𝐺 propagate
through the dynamic programming operator. We first introduce and
prove Proposition 1. Lemmas 2 and 3 deal with Properties 1 and 2
respectively.

Proposition 1. The holding/backordering cost function 𝑓 (𝑦), defined in
(1), satisfies Property 1, and 2.

First we show 𝑓 (𝑦) satisfies Property 1. This follows immediately
from that 𝑓 (𝑦 + 𝑘 + 1) − 𝑓 (𝑦) = 𝑐ℎ ≥ −𝑐𝑟 when 𝑦 ≥ 𝑘 + 1.

Second we show 𝑓 (𝑦) satisfies Property 2.

𝑓 (𝑦 + 1) − 𝑓 (𝑦 − 𝑘) − 𝑓 (𝑦) + 𝑓 (𝑦 − 𝑘 − 1)

=

⎧

⎪

⎨

⎪

⎩

𝑐ℎ − 𝑐ℎ, if 𝑦 − 𝑘 − 1 ≥ 0,
𝑐ℎ + 𝑐𝑏, if 𝑘 ≤ 𝑦 < 𝑘 + 1,
−𝑐𝑏 + 𝑐𝑏, if 𝑦 < 𝑘,

≥ 0.

Lemma 2.

(i) If 𝑔 satisfy Property 1, then 𝑇𝑃 𝑔 satisfies Property 1.
(ii) If 𝑔 satisfy Property 1, then 𝑇𝐷𝑔 satisfies Property 1.
(iii) If 𝑔 satisfy Property 1, then 𝑇𝐶𝑔 satisfies Property 1.
(iv) If 𝑔 satisfy Property 1, then 𝑇 𝑔 satisfies Property 1.

Proof.

(i) For all 𝑦 ≥ 𝑘 + 1,

𝑇𝑃 𝑔(𝑦) − 𝑇𝑃 𝑔(𝑦 − 𝑘 − 1) =

{

𝑔(𝑦) − 𝑔(𝑦 − 𝑘 − 1), if 𝑦∕(𝑘 + 1) ∈ Z,
𝑔(𝑦 + 1) − 𝑔(𝑦 − 𝑘), if 𝑦∕(𝑘 + 1) ∉ Z,

≥ −𝑐𝑟,

which follows from Property 2.
(ii) Let 𝑣 be a function on {1, 2} × Z defined by

𝑣(𝑢, 𝑦) =

{

𝑔(𝑦 − 𝑘 − 1), if 𝑢 = 1,

𝑐𝑟 + 𝑔(𝑦) if 𝑢 = 2.
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Let 𝑈 be the set of feasible values for action 𝑢 at state 𝑦 for lead
time phase completion event operator 𝑇𝐷. We have

𝑈 (𝑦) = {1, 2}, for all 𝑦 ∈ Z.

Correspondingly, we can write 𝑇𝐷 as

𝑇𝐷𝑔(𝑦) = min
𝑢∈𝑈 (𝑦)

𝑣(𝑢, 𝑦),

and we express the optimal action for each state as

𝑢∗(𝑦) = arg min
𝑢∈𝑈 (𝑦)

𝑣(𝑢, 𝑦).

Let 𝑢1 = 𝑢∗(𝑦). We have

𝑇𝐷𝑔(𝑦) − 𝑇𝐷𝑔(𝑦 − 𝑘 − 1) ≥ 𝑣(𝑢1, 𝑦) − 𝑣(𝑢1, 𝑦 − 𝑘 − 1)

=

{

𝑔(𝑦−𝑘 − 1) − 𝑔(𝑦 − 2𝑘 − 2) if 𝑢1=1,
𝑔(𝑦)−𝑔(𝑦 − 𝑘 − 1) if 𝑢1=2,

≥ −𝑐𝑟.

(iii) We now combine the previous parts of this lemma.

𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘 − 1)

=𝑓 (𝑦) − 𝑓 (𝑦 − 𝑘 − 1) + 𝜇𝑃 (𝑇𝑃 𝑔(𝑦) − 𝑇𝑃 𝑔(𝑦 − 𝑘 − 1))

+ 𝜆𝐷(𝑇𝐷𝑔(𝑦) − 𝑇𝐷𝑔(𝑦 − 𝑘 − 1))

≥ − (𝜇𝑃 + 𝜆𝐷)𝑐𝑟
≥ − 𝑐𝑟.

(iv) Let 𝑣 be a function on {1, 2} × Z defined by

𝑣(𝑢, 𝑦) =

{

𝑐𝑜 + 𝑇𝐶𝑔(𝑦 + 1), if 𝑢 = 1,
𝑇𝐶𝑔(𝑦), if 𝑢 = 2.

Let 𝑈 be the set of feasible values for action 𝑢 at state 𝑦 for event
operator 𝑇 . We have

𝑈 (𝑦) =

{

{1, 2}, if 𝑦∕(𝑘 + 1) ∈ Z,
{2}, if 𝑦∕(𝑘 + 1) ∉ Z.

Correspondingly, we can write 𝑇 as

𝑇 𝑔(𝑦) = min
𝑢∈𝑈 (𝑦)

𝑣(𝑢, 𝑦),

and we express the optimal action for each state as

𝑢∗(𝑦) = arg min
𝑢∈𝑈 (𝑦)

𝑣(𝑢, 𝑦).

Let 𝑢1 = 𝑢∗(𝑦 + 1). If 𝑦∕(𝑘 + 1) ∈ Z. We have

𝑇 𝑔(𝑦) − 𝑇 𝑔(𝑦 − 𝑘 − 1) ≥ 𝑣(𝑢1, 𝑦) − 𝑣(𝑢1, 𝑦 − 𝑘 − 1)

=

{

𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦 − 𝑘) if 𝑢1 = 1,
𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘 − 1) if 𝑢1 = 2,

≥ −𝑐𝑟.

If 𝑦∕(𝑘 + 1) ∉ Z,

𝑇 𝑔(𝑦) − 𝑇 𝑔(𝑦 − 𝑘 − 1) = 𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘 − 1)

≥ −𝑐𝑟. □

Lemma 3.

(i) If 𝑔 satisfy Property 2, then 𝑇𝑃 𝑔 satisfies Property 2.
(ii) If 𝑔 satisfy Property 2, then 𝑇𝐷𝑔 satisfies Property 2.
(iii) If 𝑔 satisfy Property 2, then 𝑇𝐶𝑔 satisfies Property 2.
(iv) If 𝑔 satisfy Property 2, then 𝑇 𝑔 satisfies Property 2.

Proof.

(i) For all 𝑦 ≥ −(𝐽 − 1)(𝑘 + 1),
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𝑇𝑃 𝑔(𝑦 + 1) − 𝑇𝑃 𝑔(𝑦) − 𝑇𝑃 𝑔(𝑦 − 𝑘) + 𝑇𝑃 𝑔(𝑦 − 𝑘 − 1)
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝑦 + 1) − 𝑔(𝑦 + 1) − 𝑔(𝑦 − 𝑘) + 𝑔(𝑦 − 𝑘), if (𝑦 + 1)∕(𝑘 + 1) ∈ Z,
𝑔(𝑦 + 2) − 𝑔(𝑦) − 𝑔(𝑦 − 𝑘 + 1) + 𝑔(𝑦 − 𝑘 − 1), if 𝑦∕(𝑘 + 1) ∈ Z,
𝑔(𝑦 + 2) − 𝑔(𝑦 + 1) − 𝑔(𝑦 − 𝑘 + 1) + 𝑔(𝑦 − 𝑘), if (𝑦 + 1)∕(𝑘 + 1) ∉ Z

and 𝑦∕(𝑘 + 1) ∉ Z,

≥0.

Note that for the case 𝑦∕(𝑘 + 1) ∈ Z we need to use Property 2
twice:

𝑔(𝑦 + 2) − 𝑔(𝑦 − 𝑘 + 1) ≥ 𝑔(𝑦 + 1) − 𝑔(𝑦 − 𝑘) ≥ 𝑔(𝑦) − 𝑔(𝑦 − 𝑘 − 1),

which leads to

𝑔(𝑦 + 2) − 𝑔(𝑦) ≥ 𝑔(𝑦 − 𝑘 + 1) − 𝑔(𝑦 − 𝑘 − 1).

(ii) We know that at any state both of the two actions, rejecting or
accepting the demand, are feasible, namely 𝑈 (𝑦) = 𝑈 (𝑦−𝑘−1) =
𝑈 (𝑦 + 1) = 𝑈 (𝑦 − 𝑘). Letting 𝑢1 = 𝑢∗(𝑦 + 1) and 𝑢2 = 𝑢∗(𝑦 − 𝑘 − 1),
we have

𝑇𝐷𝑔(𝑦 + 1) − 𝑇𝐷𝑔(𝑦) − 𝑇𝐷𝑔(𝑦 − 𝑘) + 𝑇𝐷𝑔(𝑦 − 𝑘 − 1)

≥ 𝑣(𝑢1 , 𝑦 + 1) − 𝑣(𝑢2 , 𝑦) − 𝑣(𝑢1 , 𝑦 − 𝑘) + 𝑣(𝑢2 , 𝑦 − 𝑘 − 1)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑔(𝑦 − 𝑘) − 𝑔(𝑦 − 𝑘 − 1) − 𝑔(𝑦 − 2𝑘 − 1) + 𝑔(𝑦 − 2𝑘 − 2), if 𝑢1 = 1

and 𝑢2 = 1,

𝑔(𝑦 + 1) − 𝑔(𝑦 − 𝑘 − 1) − 𝑔(𝑦 − 𝑘) + 𝑔(𝑦 − 2𝑘 − 2), if 𝑢1 = 2

and 𝑢2 = 1,

𝑔(𝑦 + 1) − 𝑔(𝑦) − 𝑔(𝑦 − 𝑘) + 𝑔(𝑦 − 𝑘 − 1), if 𝑢1 = 2

and 𝑢2 = 2,

≥ 0.

For the case 𝑢1 = 1 and 𝑢2 = 2,

𝑇𝐷𝑔(𝑦 + 1) − 𝑇𝐷𝑔(𝑦) − 𝑇𝐷𝑔(𝑦 − 𝑘) + 𝑇𝐷𝑔(𝑦 − 𝑘 − 1)

≥ 𝑣(1, 𝑦 + 1) − 𝑣(1, 𝑦) − 𝑣(2, 𝑦 − 𝑘) + 𝑣(2, 𝑦 − 𝑘 − 1)

= 𝑔(𝑦 − 𝑘) − 𝑔(𝑦 − 𝑘 − 1) − 𝑔(𝑦 − 𝑘) + 𝑔(𝑦 − 𝑘 − 1)

= 0.

(iii) We now combine the previous parts of this lemma.

𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘) + 𝑇𝐶𝑔(𝑦 − 𝑘 − 1)

= 𝑓 (𝑦 + 1) − 𝑓 (𝑦) − 𝑓 (𝑦 − 𝑘) + 𝑓 (𝑦 − 𝑘 − 1)

+ 𝜇𝑃 (𝑇𝑃 𝑔(𝑦 + 1) − 𝑇𝑃 𝑔(𝑦) − 𝑇𝑃 𝑔(𝑦 − 𝑘) + 𝑇𝑃 𝑔(𝑦 − 𝑘 − 1))

+ 𝜆𝐷(𝑇𝐷𝑔(𝑦 + 1) − 𝑇𝑃 𝑔(𝑦) − 𝑇𝑃 𝑔(𝑦 − 𝑘) + 𝑇𝐷𝑔(𝑦 − 𝑘 − 1))

≥ 0.

(iv) We know that 𝑈 (𝑦) = 𝑈 (𝑦 − 𝑘 − 1), 𝑈 (𝑦 + 1) = 𝑈 (𝑦 − 𝑘). Let
𝑢1 = 𝑢∗(𝑦 + 1) and 𝑢2 = 𝑢∗(𝑦 − 𝑘 − 1). We have

𝑇 𝑔(𝑦 + 1) − 𝑇 𝑔(𝑦) − 𝑇 𝑔(𝑦 − 𝑘) + 𝑇 𝑔(𝑦 − 𝑘 − 1)

≥ 𝑣(𝑢1 , 𝑦 + 1) − 𝑣(𝑢2 , 𝑦) − 𝑣(𝑢1 , 𝑦 − 𝑘) + 𝑣(𝑢2 , 𝑦 − 𝑘 − 1)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑇𝐶𝑔(𝑦 + 2) − 𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦 − 𝑘 + 1) + 𝑇𝐶𝑔(𝑦 − 𝑘), if 𝑢1 = 1

and 𝑢2 = 1,

𝑇𝐶𝑔(𝑦 + 2) − 𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘 + 1) + 𝑇𝐶𝑔(𝑦 − 𝑘 − 1), if 𝑢1 = 1

and 𝑢2 = 2,

𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦 − 𝑘) + 𝑇𝐶𝑔(𝑦 − 𝑘), if 𝑢1 = 2

and 𝑢2 = 1,

𝑇𝐶𝑔(𝑦 + 1) − 𝑇𝐶𝑔(𝑦) − 𝑇𝐶𝑔(𝑦 − 𝑘) + 𝑇𝐶𝑔(𝑦 − 𝑘 − 1), if 𝑢1 = 2

and 𝑢2 = 2,

≥ 0.

Notice that for the case 𝑢1 = 1 and 𝑢2 = 2 we need to use Lemma
3.3 twice:
𝑇𝐶𝑔(𝑦+2)−𝑇𝐶𝑔(𝑦−𝑘+1) ≥ 𝑇𝐶𝑔(𝑦+1)−𝑇𝐶𝑔(𝑦−𝑘) ≥ 𝑇𝐶𝑔(𝑦)−𝑇𝐶𝑔(𝑦−𝑘−1),
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which leads to

𝑇𝐶𝑔(𝑦 + 2) − 𝑇𝐶𝑔(𝑦) ≥ 𝑇𝐶𝑔(𝑦 − 𝑘 + 1) − 𝑇𝐶𝑔(𝑦 − 𝑘 − 1). □

A.2. Proof of Theorem 1

Proof. If the system starts from any cost function ℎ0 ∈ , ℎ∗ =
lim𝑛→∞ 𝑇 (𝑛)ℎ0, where 𝑇 (𝑛) refers to 𝑛 compositions of operator 𝑇 . More-
over ℎ0 is the zero function on Z and ℎ0 ∈ . Since  is complete, ℎ∗ ∈ 
from Lemma 1. □

A.3. Proof of Theorem 2

Proof. Property 2 guarantees the existence of thresholds 𝑠∗ and 𝑧∗. The
definition of 𝑠∗ and 𝑧∗ implies that the policy with these two thresholds
achieves the minimum of the optimality equation ℎ(𝑦) = 𝑇ℎ(𝑦) and
is therefore optimal. Further Property 1 implies it is always optimal
to accept an incoming demand when there is on-hand stock, hence
𝑧∗ ≤ 𝑘 + 1 follows. □

A.4. Proof of Theorem 3

Proof.
To simplify the analysis, we use the scaled work storage level 𝑦′ =

𝑦∕(𝑘+1). We have proven that the scaled acceptance threshold, 𝑧∗∕(𝑘+
) ≤ 1. Thus a demand will only be backordered when 𝑦′ < 1. Denote by
(𝑦′) the fraction of the pipeline stock that has been finished at 𝑦′. For
n incoming demand, denote by 𝑛(𝑦′) the fraction of the pipeline stock
hat needs to be completed plus the number of backorders that needs
o be satisfied, before the demand can be fulfilled if it is backordered.
hen at 𝑦′ < 1, we have 𝑛(𝑦′) = 1− 𝑞(𝑦′)+ 𝑏(𝑦′), which can be simplified

as 𝑛(𝑦′) = 1 − 𝑦′, since 𝑞(𝑦′) = 𝑦′ − ⌊𝑦′⌋ and 𝑏(𝑦′) = −⌊𝑦′⌋. Recall that
𝑚𝐿 is the length of the supply lead time, then the expected discounted
ordering cost associated to the demand is

𝑢𝑜(𝑦′) = 𝑐𝑜𝑒
−𝛼𝑚𝐿(1−𝑦′).

The expected discounted backordering cost associated to the demand
is

𝑢𝑏(𝑦′) = 𝑐𝑏 ∫

𝑚𝐿(1−𝑦′)

0
𝑒−𝛼𝑥𝑑𝑥 =

𝑐𝑏
𝛼

(

1 − 𝑒−𝛼𝑚𝐿(1−𝑦′)
)

.

It is better to accept a demand than to reject it only when 𝑐𝑟 > 𝑢𝑜(𝑦′) +
𝑢𝑏(𝑦′), namely,

𝑐𝑏 − 𝛼𝑐𝑟) < 𝑒−𝛼𝑚𝐿(1−𝑦′)(𝑐𝑏 − 𝛼𝑐𝑜). (10)

f 𝑐𝑏−𝛼𝑐𝑜 > 0 and 𝑐𝑏−𝛼𝑐𝑟 > 0, which usually holds in practice, we have

′ > 1 + 1
𝛼𝑚𝐿

ln
(

𝑐𝑏 − 𝛼𝑐𝑟
𝑐𝑏 − 𝛼𝑐𝑜

)

.

If 𝑐𝑏−𝛼𝑐𝑜 > 0 and 𝑐𝑏−𝛼𝑐𝑟 ≤ 0, or 𝑐𝑏−𝛼𝑐𝑜 = 0 and 𝑐𝑏−𝛼𝑐𝑟 < 0 inequality
10) holds naturally for all 𝑦′ and it is optimal to backorder all the
emand. If 𝑐𝑏 − 𝛼𝑐𝑜 = 0 and 𝑐𝑏 − 𝛼𝑐𝑟 = 0 inequality (10) will never be
rue and it is optimal to reject all demand. □

.5. Proof of Theorem 4

We first show that base stock policy is optimal for backordering
olicy.

Let 𝑇 (2)
𝐶 𝑔(𝑦) = 𝑓 (𝑦) + 𝜇𝑃 𝑇𝑃 (𝑦) + 𝜆𝐷𝑇

(2)
𝐷 (𝑦) and

(2)𝑔(𝑦) =

{

min{𝑐𝑜 + 𝑇 (2)
𝐶 𝑔(𝑦 + 1), 𝑇 (2)

𝐶 ℎ(𝑦)}, if 𝑦∕(𝑘 + 1) ∈ Z,
𝑇 (2)
𝐶 𝑔(𝑦), if 𝑦∕(𝑘 + 1) ∉ Z.

emma 4.

(i) If 𝑔 satisfy Property 2, 𝑇 (2)
𝐷 𝑔 also satisfies Property 2.
(2)
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(ii) If 𝑔 satisfy Property 2, 𝑇𝐶 𝑔 also satisfies Property 2.
(iii) Let 𝑔 satisfy property 2, 𝑇 (2)𝑔 also satisfies 2.

roof.

(i) Because 𝑇 (1)
𝐷 𝑔(𝑦) = 𝑔(𝑦 − 𝑘 − 1) for all 𝑦 ∈ Z, we have

𝑇 (2)
𝐷 𝑔(𝑦 + 1) − 𝑇 (2)

𝐷 𝑔(𝑦) − 𝑇 (2)
𝐷 𝑔(𝑦 − 𝑘) + 𝑇 (2)

𝐷 𝑔(𝑦 − 𝑘 − 1)

= 𝑔(𝑦 − 𝑘) − 𝑔(𝑦 − 𝑘 − 1) − 𝑔(𝑦 − 2𝑘 − 1) + 𝑔(𝑦 − 2𝑘 − 2)

≥ 0.

emma 4 (ii) can be shown by replacing 𝑇𝐷𝑔 with 𝑇 (2)
𝐷 𝑔, and 𝑇𝐶𝑔 with

(2)
𝐶 𝑔 in the proof of Lemma 3 (iii). Lemma 4 (iii) can be shown by
eplacing 𝑇𝐶𝑔 with 𝑇 (2)

𝐶 𝑔, and 𝑇 𝑔 with 𝑇 (2)𝑔 in the proof of Lemma 3
iv). □

With the similar arguments as in the proof of Theorems 1 and 2, we
an show that there exists 𝑠∗2 = min{𝑦|𝑐𝑜 + 𝑇 (2)

𝐶 ℎ∗2(𝑦 + 1) ≥ 𝑇 (2)
𝐶 ℎ∗2(𝑦)},

uch that under the backordering policy, it is optimal to order when
< 𝑠∗2 and not to order otherwise.
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