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A B S T R A C T   

Background: Identification of individuals at elevated risk can improve cancer screening programmes by 
permitting risk-adjusted screening intensities. Previous work introduced a prognostic model using sex, age and 
two preceding faecal haemoglobin concentrations to predict the risk of colorectal cancer (CRC) in the next 
screening round. Using data of 3 screening rounds, this model attained an area under the receiver-operating- 
characteristic curve (AUC) of 0.78 for predicting advanced neoplasia (AN). We validated this existing logistic 
regression (LR) model and attempted to improve it by applying a more flexible machine-learning approach. 
Methods: We trained an existing LR and a newly developed random forest (RF) model using updated data from 
219,257 third-round participants of the Dutch CRC screening programme until 2018. For both models, we 
performed two separate out-of-sample validations using 1,137,599 third-round participants after 2018 and 
192,793 fourth-round participants from 2020 onwards. We evaluated the AUC and relative risks of the predicted 
high-risk groups for the outcomes AN and CRC. 
Results: For third-round participants after 2018, the AUC for predicting AN was 0.77 (95% CI: 0.76–0.77) using 
LR and 0.77 (95% CI: 0.77–0.77) using RF. For fourth-round participants, the AUCs were 0.73 (95% CI: 
0.72–0.74) and 0.73 (95% CI: 0.72–0.74) for the LR and RF models, respectively. For both models, the 5% with 
the highest predicted risk had a 7-fold risk of AN compared to average, whereas the lowest 80% had a risk below 
the population average for third-round participants. 
Conclusion: The LR is a valid risk prediction method in stool-based screening programmes. Although predictive 
performance declined marginally, the LR model still effectively predicted risk in subsequent screening rounds. An 
RF did not improve CRC risk prediction compared to an LR, probably due to the limited number of available 
explanatory variables. The LR remains the preferred prediction tool because of its interpretability.   

1. Introduction 

The faecal immunochemical test (FIT) measures the faecal haemo-
globin (f-Hb) concentration in stool samples and is used in screening for 
colorectal cancer (CRC). Screening programmes generally invite people 
for FIT-screening every 1 or 2 years and a follow-up colonoscopy is 
performed if the f-Hb concentration exceeds a certain threshold [1]. 
Although screening participants are repeatedly tested, only the current f- 
Hb concentration is typically used as an indicator of (advanced) colo-
rectal neoplasia. 

Previous work introduced a logistic regression (LR) model using sex, 

age and two preceding f-Hb concentrations to predict the risk of CRC in 
the next screening round [2]. Using this LR model, 5% of the participants 
with the highest predicted risk had a 6-fold risk of CRC compared to the 
population average [2]. Although the model was able to identify high- 
risk individuals, its validity for out-of-sample performance and subse-
quent screening rounds were unknown. 

Valid risk prediction could permit effective risk-stratified screening, 
through personalizing the screening interval or the test positivity cut-off 
based on risk. For example, people with repeated negative FITs with f- 
Hb concentrations close to the positivity cut-off could be reinvited to FIT 
sooner or be referred to colonoscopy despite not meeting the 
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conventional positivity criteria. Conversely, people without any traces 
of f-Hb in their stool could be reinvited after an extended interval. 
Several studies have indicated that risk-stratification can enhance the 
benefits of screening, but only when the risk prediction tool demon-
strates adequate quality [3–5]. Thus, it is important that any proposed 
basis for risk stratification is carefully validated.”. 

Machine-learning offers alternative methods for accurate risk pre-
diction. A random forest (RF) model – a machine-learning technique 
known for its parsimonious configuration and predictive ability - often 
outperforms regression models in terms of accuracy and precision [6]. 
Because an RF model combines multiple decision trees, this model can 
fit to input data closer than generalized linear models such as LR [7]. 
Previous research using clinical data showed that RFs can be used as 
prognostic systems for risk stratification in oropharyngeal and breast 
cancer [8–9]. RFs have so far not been used in the prediction of CRC risk 
based on prior f-Hb concentrations. 

In this retrospective study, we aimed to validate the existing LR 
model and to investigate whether the model could be improved on with 
machine-learning. Most FIT-based CRC screening programmes have 
only started within the past decade and the number of screening rounds 
is still accumulating [10], thus validation of the model for subsequent 
screening rounds could particularly be relevant for risk-stratification 
purposes. This is the first validation study of the LR model using data 
from a nationwide screening programme and the first study that uses an 
RF to predict CRC risk based on previous f-Hb results. 

2. Materials and methods 

2.1. The Dutch screening programme 

Data of the first four rounds of the Dutch CRC screening programme 
were used. The programme started in 2014 with a gradual imple-
mentation of FIT-based screening by birth cohort for all Dutch citizens 
aged between 55 and 75. A participant is invited for a follow-up colo-
noscopy if the f-Hb concentration exceeds a positivity threshold. This 
threshold was initially set at 15 micrograms of haemoglobin per gram 
(µg Hb/g) faeces, but was increased to 47 µg Hb/g faeces six months 
after the introduction of the screening programme due to colonoscopy 
capacity constraints [11]. During the follow-up colonoscopy, advanced 
neoplasia (AN) is considered as relevant finding. AN consists of the 
presence of either advanced adenomas or CRC. More details on the 
programme are described elsewhere [11]. 

2.2. Data 

We split the data into a training set and two validation sets. For both 
the LR and the newly developed RF model, the training data contained 
all third-round participants up to 2018. Validation set 1 contained third- 
round participants between 2019 and 2021. Validation set 2 contained 
all fourth-round participants in 2020 and 2021. More details on the 
storage and format of the data can be found in the supplementary ma-
terial (Appendix 1). 

2.3. Prediction models 

An individual’s risk of AN or CRC was predicted based on age, sex, 
and the two most recent f-Hb concentrations before the last screening 
round: round 1–2f-Hb concentrations for prediction of round 3findings, 
and round 2–3f-Hb concentrations for the prediction of round 4 findings. 
The models were trained for two separate binary outcome variables: AN 
and CRC detection. The multivariate LR model used a discretization of 
the continuous f-Hb concentrations, similar to Meester et al: 0 µg/g, 
0.1–9.9 µg/g, 10.0–19.9 µg/g, 20.0–29.9 µg/g, 30.0–39.9 µg/g and 
40.0–46.9 µg/g [2]. The multivariate odds ratios (ORs) and 95% con-
fidence intervals (CIs) were obtained for all covariates. 

In addition to the LR, we applied an RF model. RFs are based on 

decision tree learning, by generating multiple decision trees using 
different subsets (with repeated samples) of the data [12]. The predic-
tion is the average of the optimal decision trees [13]. The number of 
decision trees was set at 100, as a result of parameter tuning, considering 
performance and training speed, with 5 variables per decision tree as the 
default [14]. The RF model included the same inputs as the LR model, 
with the f-Hb inputs using original continuous values and an indicator 
variable of 1 if the two previous f-Hb concentrations were zero. Because 
RFs do not provide model parameters like LR, variable importance was 
evaluated using an earlier developed ranking method [15]. 

2.4. Model evaluation 

The models’ discriminate ability was assessed using receiver- 
operator-characteristic (ROC) curves, evaluating the true-positive and 
false-positive rates at different thresholds, and the corresponding area 
under the curve (AUC). The AUC indicates the probability that an in-
dividual with the outcome variable obtains a higher predicted risk than 
an individual without the outcome variable [16], with an AUC of 0.5 
indicating random predictions and an AUC of 1 indicating perfect pre-
dictions. The variety in AUC labelling systems is substantial, but a value 
of 0.8 is generally considered to indicate a good performance [17]. CIs 
around the AUC were computed using the bootstrap method [18] with 
100 iterations. 

Observed relative risk plots were further used to visualize the 
models’ discrimination between high-risk and low-risk groups. Partici-
pants were ranked by predicted risk and divided into equal-sized sub-
groups, where the proportion of participants with AN or CRC was 
computed and divided by the overall population risk. Models with good 
discriminative power yield high levels of observed relative risk for 
predicted high-risk subgroups and low relative risk for other groups. A 
relative risk of 1 corresponds to the population average. Calibration was 
assessed by plotting predicted relative risk against observed relative risk 
for all subgroups, aiming for close alignment. Using 20 subgroups, we 
were able to visually inspect both discrimination and calibration with 
our relative risk plots. 

2.5. Sensitivity analysis 

A sensitivity analysis was conducted by training the models only on 
participants with a FIT positivity cut-off of 47 µg Hb/g, hence excluding 
those with a cut-off of 15 µg Hb/g. This was compared to the base-case 
analysis in which those with a cut-off of 15 µg Hb/g were also included. 

2.6. Software 

All analyses were performed using R statistical software V4.0.4. The 
randomForest V4.6 package was used for the RF model. 

3. Results 

3.1. Study population 

A total of 1,535,860 participants were identified in the third 
screening round between 2014 and 2020. We excluded participants with 
missing FITs in round 1 and 2 (n = 166,898), positive FITs in round 1 
and 2 (n = 2,356), missing findings in the participant records on sex 
and/or age (n = 96) and participants with a positive FIT but no follow- 
up colonoscopy in round 3 (n = 9,650). The remaining 1,356,860 par-
ticipants were split based on the year of invitation. Data from 219,258 
third-round participants in 2018 and data from their two prior rounds in 
2014–2016 were used to train our models. Data of the 1,137,602 third- 
round participants between 2019 and 2021 were used as validation data 
(Fig. 1). 

There were 209,916 participants in the fourth screening round. 
Similar to round three, we excluded participants with missing FITs in 
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round 2 and 3 (n = 15,182), positive FITs in round 1, 2 or 3 (n = 378), 
missing findings (n = 13) and participants with a positive FIT, but no 
follow-up colonoscopy in round 4 (n = 1,550). The remaining 192,793 
participants formed the sample of the second validation set (Fig. 2). 

Descriptive statistics on the data can be found in Table 1. 

3.2. Model specifications 

The multivariate LR model showed that male sex and all categories 
> 0 µg Hb/g faeces of two previous f-Hb level were statistically signif-
icant predictors for both AN and CRC (Table 2). For AN, the multivariate 

Fig. 1. Study flow diagram and outcomes of round 3 participants. FIT, faecal immunochemical test.  

Fig. 2. Study flow diagram and outcomes of round 4 participants. FIT, faecal immunochemical test.  
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OR (95% CI) varied between 2.5 (2.3–2.7) for the lowest level > 0 and 
10.9 (8.5–14.1) for the highest level of measured f-Hb concentrations 
two prior rounds, compared to 0f-Hb. ORs (95% CI) for f-Hb concen-
trations of the previous round varied between 4.3 (CI: 3.9–4.8) and 9.4 
(CI: 7.5–11.8). For CRC, the OR (95% CI) varied between 1.9 (1.6–2.4) 
and 7.6 (4.2–13.7) for f-Hb levels two prior rounds; and between 3.6 
(2.8–4.7) and 5.6 (CI: 3.1–10.2) for the previous round. The RF model 
showed that the f-Hb values contributed most to the predictions for both 
AN and CRC. The feature importance of age and sex were limited. 

3.3. Performance on validation set 1 

In validation set 1, the LR model attained an AUC (95% CI) of 0.77 

(0.76–0.77) for AN and 0.73 (0.72–0.75) for CRC. These values were 
similar to the values of the training set of 0.78 (0.77–0.79) and 0.73 
(0.71–0.75) (Table 3). For both AN and CRC, we observed similar shapes 
of the ROC-curve for the LR and the RF model (Fig. 3). The RF model 
attained an AUC (95% CI) of 0.77 (0.77–0.77) for AN and 0.73 
(0.72–0.74) for CRC (Table 3). 

The discriminative performance of the LR model was similar to the 
RF model for AN and for CRC. Both models yielded relative risks less 
than 0.6 of AN and 0.9 of CRC for the 80% of the participants with 
lowest predicted risk compared to the population average. The 5% 
participants with the highest predicted risk had a 7.0-fold (6.9-fold) risk 
of AN and 5.8-fold (5.3-fold) risk of CRC compared to the population 
average according to the LR (RF). The predicted relative risks were close 
to the observed relative risks for both models investigated (Fig. 4). 

3.4. Performance on validation set 2 

In validation set 2 with fourth-round data, the LR model attained 
lower AUC values (95% CI) compared to the observed values for third- 
round data: 0.73 (0.72–0.74) for AN and 0.68 (0.66–0.71) for CRC 
(Table 3). For both AN and CRC, shapes of the ROC-curve for the LR and 

Table 1 
Descriptive statistics.   

Training data Validation set 1 Validation set 2 

n % n % n % 

Total population N 219,257 100% 1,137,599 100% 192,793 100%  

Lesion AA 2,237 1.0% 11,648 1.0% 2,095 1.1% 
CRC 472 0.2% 2,209 0.2% 408 0.2% 

Sex male 105,079 47.9% 533,189 46.9% 91,963 47.7% 
female 114,178 52.1% 604,410 53.1% 100,830 52.3% 
total 219,257 100% 1,137,599 100% 192,793 100% 

Age mean 69  68  71  
(at last available screening round) SD 2  3  2  

62–64 1,787 0.8% 165,177 14.5% 0 0.0% 
65–67 46,491 21.2% 462,425 40.6% 7,933 4.1% 
68–70 92,775 42.3% 192,631 16.9% 51,057 26.5% 
71–73 78,204 35.7% 247,276 21.7% 133,586 69.3% 
74–75 0 0.0% 70,090 6.2% 217 0.1% 

f-Hb two rounds ago, µg/g 0 171,052 78.0% 961,891 84.6% 177,691 92.2% 
0.1–2.5 22,779 10.4% 58,536 5.1% 3,519 1.8% 
2.6–9.9 16,361 7.5% 68,125 6.0% 5,521 2.9% 
10–19.9 5,525 2.5% 27,965 2.5% 2,972 1.5% 
20–29.9 1,827 0.8% 10,389 0.9% 1,418 0.7% 
30–39.9 1,075 0.5% 6,756 0.6% 1,042 0.5% 
40–46.9 638 0.3% 3,937 0.3% 630 0.3% 

f-Hb previous round, µg Hb/g 0 199,619 91.0% 1,054,056 92.7% 182,131 94.5% 
0–2.5 4,286 2.0% 18,228 1.6% 1,656 0.9% 
2.6–9.9 7,019 3.2% 27,334 2.4% 3,214 1.7% 
10–19.9 4,000 1.8% 16,316 1.4% 2,372 1.2% 
20–29.9 1,981 0.9% 9,527 0.8% 1,433 0.7% 
30–39.9 1,442 0.7% 7,441 0.7% 1,205 0.6% 
40–46.9 910 0.4% 4,697 0.4% 782 0.4% 

Abbreviations: AA, advanced adenomas; CRC, colorectal cancer; f-Hb, faecal haemoglobin; SD, standard deviation; µg Hb/g, micrograms per gram. 

Table 2 
Specification multivariate regression model.   

Advanced Neoplasia Colorectal cancer 

OR 95% CI p-value OR 95% CI p-value 

Age 1.0 1.0 to 1.0  0.25 1.0 1.0 to 1.1  0.1 
Male sex 1.3 1.2 to 1.4  <0.001 1.2 1.0 to 1.5  0.0 
f-Hb concentration, two rounds ago, µg/g 
0 Ref.   Ref.   
0.1–9.9 2.5 2.3 to 2.7  <0.001 1.9 1.6 to 2.4  <0.001 
10.0–19.9 4.6 4.0 to 5.3  <0.001 3.6 2.5 to 5.0  <0.001 
20.0–29.9 6.0 5.3 to 6.8  <0.001 5.6 3.7 to 8.6  <0.001 
30.0–39.9 7.5 6.0 to 9.4  <0.001 3.8 2.0 to 7.1  <0.001 
40.0–46.9 10.9 8.5 to 14.1  <0.001 7.6 4.2 to 13.7  <0.001 
f-Hb concentration, previous round, µg/g 
0 Ref.   Ref.   
0.1–9.9 4.3 3.9 to 4.8  <0.001 3.6 2.8 to 4.7  <0.001 
10.0–19.9 6.3 5.5 to 7.3  <0.001 5.6 4.1 to 7.7  <0.001 
20.0–29.9 8.5 7.2 to 10.0  <0.001 4.1 2.5 to 6.7  <0.001 
30.0–39.9 8.8 7.3 to 10.6  <0.001 5.5 3.4 to 9.0  <0.001 
40.0–46.9 9.4 7.5 to 11.8  <0.001 5.6 3.1 to 10.2  <0.001 

Abbreviations: OR, odds ratio; CI, confidence interval; f-Hb, faecal haemoglobin; 
µg/g, micrograms per gram; Ref., reference category. 

Table 3 
Values of the area under the curve (AUC) for the training data (third-round 
participants up 2014–2018), validation set 1 (third-round participants 
2019–2021) and validation set 2 (fourth-round participants 2020–2021).   

Outcome AUC Logistic Regression 
(95% CI) 

AUC Random Forest 
(95% CI) 

Training data AN 0.78 (0.77–0.79) 0.79 (0.78–0.80) 
CRC 0.73 (0.71–0.75) 0.76 (0.74–0.78) 

Validation set 1 AN 0.77 (0.76–0.77) 0.77 (0.77–0.77) 
CRC 0.73 (0.72–0.75) 0.73 (0.72–0.74) 

Validation set 2 AN 0.73 (0.72–0.74) 0.73 (0.72–0.74) 
CRC 0.68 (0.66–0.71) 0.68 (0.65–0.72) 

Abbreviations: AUC, area under the curve; CI, confidence interval; AN, advanced 
neoplasia; CRC, colorectal cancer. 
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the RF model were similar (Fig. 5). The RF model attained an AUC (95% 
CI) of 0.73 (0.72–0.74) for AN and 0.68 (0.65–0.72) for CRC, also lower 
than the performance on third-round data (Table 3). 

Given the similar AUCs, both models yielded relative risks of AN 
below the population average for the 80% of the participants with 
lowest predicted risk. The 5% participants with the highest predicted 
risk had a 6.1-fold (5.9-fold) risk of AN and 5.6-fold (5.1-fold) risk of 
CRC compared to the population average according to the LR (RF). The 
observed risks for subgroups with a lower predicted risk did not follow a 
smooth increasing pattern, indicating that the models were less effective 

in discriminating between subgroups with a lower predicted risk. The 
predicted relative risks slightly underestimated the observed relative 
risks (Fig. 6). 

3.5. Sensitivity analysis 

The results of the sensitivity analysis indicated that there were no 
significant differences in the model’s performance when trained using 
all participants until 2018 compared to excluding those with a cut-off of 
15 µg Hb/g (Supplementary material, Appendix 2). 

Fig. 3. Receiver-operating characteristic curves for predicted screening outcomes for third round participants after 2018. For predicting advanced neoplasia, the 
values of the area under the curve (AUC) were 0.77 (95% CI: 0.76–0.77) for the LR model and 0.77 (95% CI: 0.77–0.77) for the RF model. For predicting colorectal 
cancer, the values of the AUC were 0.73 (95% CI: 0.72–0.75) and 0.73 (95% CI: 0.72–0.74) for the LR and the RF respectively. 

Fig. 4. Observed and predicted relative risks by risk groups ordered by predicted risk for third round participants after 2018. The bars represent the risk groups’ 
predicted risk relative to the population risk. The black dots represent a risk group’s observed risk to the predicted population average. The observed risk is 
determined by the composition of the risk group as predicted by the models. The observed relative risk of the highest risk group is reported numerically for both 
models. The grey horizontal line corresponds to a relative risk of one i.e. the mean risk of the total population. Each subgroup contains 5% of the population, 
corresponding to 56,880 individuals. 
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4. Discussion 

This study validated the performance of an existing CRC risk pre-
diction tool based on prior f-Hb values using two separate validation 
sets. The shape and AUC of the ROC-curve for third-round participants 
after 2018 were similar to participants before 2018. The prognostic 
model also produced accurate risk predictions for outcomes in the fourth 
round. The RF model did not improve the predictions of CRC risk 
compared to the LR model for both validation sets. 

To demonstrate generalizability across settings, the model de-
velopers validated the initial LR model against a trial from 2006 [2,19]. 

By contrast, we used nearly complete data from an ongoing national 
CRC screening programme for our validation. As the AUC values for 
third-round participants observed in our study are considered to indi-
cate acceptable to good performance [17], our study offers direct evi-
dence that the prediction model remains valid. The validation on fourth- 
round participants suggests that prognostic models may have some 
utility in predicting the risk of AN and CRC in later screening rounds. 
The performance however decreased compared to third-round 
predictions. 

A possible cause for the decrease in performance in the fourth round 
is that participants were older (71 years ± 2 years) than third-round 

Fig. 5. Receiver-operating characteristic curves for predicted screening outcomes for the fourth screening round. For predicting advanced neoplasia, the values of the 
area under the curve (AUC) were 0.73 (95% CI: 0.72–0.74) for the LR model and 0.73 (95% CI: 0.72–0.74) for the RF model. For predicting colorectal cancer, the 
values of the AUC were 0.68 (95% CI: 0.66–0.71) and 0.68 (95% CI: 0.65–0.72) for the LR and the RF respectively. 

Fig. 6. Observed and predicted relative risks by risk groups ordered by predicted risk for fourth round participants. The bars represent the risk groups’ predicted risk 
relative to the population risk. The black dots represent a risk group’s observed risk relative to the predicted population average. The observed risk is determined by 
the composition of the risk group as predicted by the models. The observed relative risk of the highest risk group is reported numerically for both models. The dashed 
line corresponds to a relative risk of one i.e. the mean risk of the total population. Each subgroup contains 5% of the population, corresponding to 9,641 individuals. 
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participants up to 2018 (69 years ± 2 years). Previous studies associated 
age with a decrease in FIT sensitivity [20]. Because participants with 
false-negative FITs do not receive a follow-up colonoscopy, they were 
considered negative for AN and CRC in our analyses. An increase in the 
number of false-negatives might then lead to an apparent reduction in 
model performance. Another possible cause is that the f-Hb concentra-
tion measured in prevalence rounds should be interpreted differently 
from measurements in incidence rounds. The higher prevalence of 
detectable f-Hb in stool during the initial round observed in this study 
supports this explanation. 

Although RF models have demonstrated success in risk prediction, 
even with small datasets [8–9,21], the limited number of covariates in 
our application resulted in insufficient complexity to fully leverage the 
added flexibility offered by machine learning. Many studies in other 
medical applications also found that machine-learning prediction tools 
did not outperform LR models under all circumstances [22–24]. Sug-
gested reasons for this finding are the limited complexity of covariates in 
medical data, insufficient sample sizes and the lack of unstructured data. 
Moreover, due to its non-parametric character, RF models are less 
interpretable than regression models [25]. We therefore conclude that 
the LR model remains the preferred prediction tool. 

Strengths of our study include the extensive validation of a prog-
nostic model, the large size of the study population and the novel 
application of a machine-learning model for CRC risk prediction. The 
use of data of the nationwide Dutch screening programme with nearly 
complete capture of participants represents additional study strengths. 
However, a limitation of our study is that validation was conducted 
within the same screening programme as in which the LR model was 
built. More research is needed on the performance of our models in other 
settings. A second limitation is that at the time of this study, data on 
interval cancers were unavailable. Incorporating data of patients with 
interval cancers as participants with relevant outcomes would 
strengthen the validity of our study. Third, our validation is limited to 
the third and fourth round of the screening programme. Once available, 
a repetition of this study on data of future rounds could confirm validity 
and demonstrate the incremental value of added information over time. 
Finally, our proposed models do not explicitly consider the temporal 
nature and class imbalance of the data. Further investigation into the 
application of mixed-effect models and synthetic oversampling in this 
context could enhance the predictive performance. 

This is the first study that temporally validated the LR as a CRC risk 
prediction tool. Although several studies have related prior negative 
FITs to the risk of advanced colorectal lesions [26–28], we only found 
one other prognostic model that was evaluated in terms of calibration 
and discrimination [29]. This model used explanatory variables, such as 
body mass index, alcohol consumption and family history of CRC in 
addition to f-Hb concentrations. In the absence of population wide 
surveys on risk factors, this model therefore cannot be used to stratify 
risk groups in screening programmes, nor can it be validated using the 
currently available screening data. 

Our validation offers policy-makers additional evidence that prog-
nostic models can be used for risk-stratification. The potential gains are 
under investigation in clinical trials in which the screening interval or 
test positivity threshold is personalized based on previous f-Hb con-
centrations [30–31]. Nevertheless, the current approaches in these trials 
rely on basic means of stratification that lack the level of precision 
provided by our risk prediction models. Adopting well-developed risk 
prediction models could therefore substantially enhance the potential 
benefits of risk stratifications compared to these relatively crude mea-
sures. The appropriate risk thresholds for inviting individuals for 
intensified or less intensified screening, and the corresponding benefits, 
are context-dependent and could be further investigated in simulation 
studies [3,32]. 

Our validation on fourth-round participants suggests that a model 
trained on the first screening rounds demonstrates potential applica-
bility for subsequent screening rounds. This is particularly useful to new 

screening programs, for which the number of screening rounds is still 
expanding. That many FIT-based screening programmes have not 
reached their steady state yet [10], increases the relevance of valid risk 
predictions in subsequent rounds. Because we observed a decline in 
performance for the fourth round, further research is needed to inves-
tigate whether the LR model can be improved by training it on data from 
new screening rounds. 

5. Conclusion 

In conclusion, a prognostic model using sex, age and previously 
measured f-Hb concentrations is valid to predict the risk of AN and CRC. 
With this validation, the risk prediction tool is ready to be considered for 
implementation in screening programmes, for example to personalize 
the screening interval and/or test positivity cut-off in CRC screening 
programmes. An RF model does not improve CRC risk prediction 
compared to an LR model, probably due to the limited number of 
available explanatory variables. Therefore, the LR remains the preferred 
prediction tool because of its interpretability. 
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