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General Introduction

Predicting the future is hard, but the desire to do so has been prevalent throughout human 

history. Whether this is the Celtic druids using bird flight paths to make predictions about the 

weather, or the Pythia prophesising at Delphi, humans have been interested in knowing what is 

going to happen in the future. The same is true today, although the methods of predicting are 

arguably more sophisticated. The central idea remains the same: If I can know what is going to 

happen using the information I have now, I can intervene now to change the future. Considering 

the current “Big Data” era, prediction is everywhere, from the next word suggested when you 

type an email, to whether you get a mortgage or what you will buy next. Healthcare is also 

increasingly opening to the possibilities that prediction modelling will bring, specifically predic-

tions for individual patients and the prospects this brings to personalise their care. Predictive 

analytics have the potential to revolutionise healthcare by increasing the level of personalisation 

across the spectrum of diseases and treatments in a way previously impossible. To do this we 

need to have high performing, trustworthy patient-level prediction (PLP) models. Such models 

could inform healthcare professionals of who is at high risk and this can be used to target 

these patients for closer monitoring, prescribing different medications or a myriad of other 

options for treatment personalisation. The models themselves need to be clearly and effectively 

communicated; it does not matter if you have a perfect model, if no one can find it or use it 

then it may as well not exist. Currently this communication and model dissemination is lacking, 

either the model is not provided, or the results are ambiguously reported. The ideal situation 

is an open reporting system that empowers a community to find, share and contribute to the 

evidence process.

Within healthcare, knowing a patient’s risk, or knowing about some future event can aid 

in the development of a patient’s treatment pathway. Let us consider an example. The Ameri-

can Diabetes Association (ADA) guidelines have been tending towards a more personalised 

treatment pathway over the past 5 years. The 2017 (1) and 2018 (2) ADA guidelines included 

recommendations that at initial diabetes diagnosis, the patient should receive a treatment with 

metformin and lifestyle interventions. If the patient’s HbA1C level remains above 9% after 

three months then a further drug should be added and this should be assessed based upon the 

risk profiles of the drugs which best suit the patient. In the 2019 guidelines (3) the advice was 

updated to stratify patients based upon established heart failure (HF), atherosclerotic cardio-

vascular disease and chronic kidney disease. From this a clear trend is emerging in the desire to 

stratify and personalise treatments. If a patient is at risk of HF, then a diabetes treatment with 

diuretic effects (e.g. sodium-glucose cotransporter 2 inhibitors) is known to be beneficial, but 

if a patient were to take a medication (e.g. thiazolidinediones) which has water retention as a 

known side effect this could be detrimental. It would be beneficial for the patient population 

here to stratify treatment by risk. Then the question becomes what are different risks for the 

patient, what is most concerning, and where can the most benefit be gained. It should be noted 

that the ADA guidelines do not in fact provide any recommendation for how this risk should 
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be assessed, just that it should be. By creating risk prediction models for this problem it is clear 

that these can help in decision making to impact patient care.

When treating a patient according to the aforementioned guidelines, we can expect to 

encounter the following situation. A patient initiating a pharmaceutical intervention for diabetes 

additional to metformin, has multiple options. How to choose between these options is a 

complex question. When population-level effects for the different medications are similar, the 

selection is traditionally decided by physician experience or non-patent centric factors such as 

cost and availability. However, each drug and each patient has a unique risk profile and as such 

on an individual level the reaction of a patient and the effectiveness of the treatment can vary 

wildly. This is where a PLP model can have an impact. If we can predict the risk of an outcome, 

then we can match that risk to beneficial effects of a drug (or avoid drugs with a known 

compounding negative effect). If a patient’s risk of heart failure is known, then their treatment 

can be altered accordingly. Without a PLP model only averages for the population can be given, 

but how relevant would this be to the individual patient? This approach suggests that a patient 

aged 65 with no comorbidities has the same risk of heart failure as a patient aged 90 with fluid 

retention and high blood pressure. Clearly this is incorrect but we have limited information to 

suggest what the difference in outcome risk would be between these patients, other than an 

expectation that the risk is different. Another approach is for the physician to draw on their 

experience and estimate what the risk is, but this is unreproducible, unverifiable, and susceptible 

to bias. The number of patients a doctor will treat in their career lies also in the thousands, but 

there are millions of patients in EHRs now. Failing to utilize this vast collection of information 

would be a missed opportunity to attempt to improve patient care. 

Part I of this thesis concerns itself with multiple aspects of PLP modelling, including technical 

challenges in the development and validation of PLP models, and how best to disseminate the 

results of studies in a manner which facilitates their access, understanding, and validation. Part 

II will cover the development and validation of PLP models for specific clinical applications, 

according to the best practices described in part I of this thesis and literature.

PART I: PATIENT-LEVEL PREDICTION MODELLING

What is PLP modelling, and why is it interesting? Each time a decision is made in healthcare, it 

is a question of assessing the risks of treatment side effects, the severity of these side effects, 

the beneficial effects of treatment and how these combine in the patient pathway. Should I 

give a patient an intervention I know has side effects? Who should be called in for monitoring 

and potentially invasive screening? Who will benefit the most from a treatment in a resource-

restricted environment? All of these involve some form of risk assessment for the patient. The 

underlying idea is to assess the risks, the costs of the potential side effects and the expected 

benefit of the treatment. With the generation of massive amounts of patient data, there is an 
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opportunity to do personalised risk assessment in a consistent, reproducible and open-science 

manner. 

This idea of personalisation is key to the future of healthcare.  As more and more treat-

ments become available, it is likely many of these will be similarly beneficial valuable when 

considered at population level, but can have different impacts for different patients. As such 

there is a huge potential gain from identifying who will respond best to what medication, and 

risk plays an important role in that. 

The potential gains that could be made in personalisation of healthcare through the use of 

PLP modelling has lead to a dramatic increase in the number of models developed each year. 

However, there is a wide diversity in the approaches taken for building prediction models and 

this has led to models of varying quality being produced. Fortunately, there do exist best prac-

tices that if followed can produce models of clinical impact. Building a prediction model consists 

of multiple steps and can be best performed with multiple interdisciplinary stakeholders. Reps 

et al. produced a framework for developing optimal prediction models in a transparent process 

producing results according to open science principles(4-6). This framework is made possible 

through the standardisation of health data to the Observational Medical Outcomes Partnership 

Common Data Model (OMOP-CDM) maintained by the Observational Health Data Sciences 

and Informatics (OHDSI) community (see Figure 1)(7). 

Figure 1 The structure of the OMOP-CDM
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The OMOP-CDM aims to improve both the syntactic and semantic interoperability of 

the health data. Standardising the clinical data to a common format as shown in Figure 1 (blue 

box), enables the use of standardised analysis pipelines such as the PLP framework. The use of 

standardised vocabularies (orange box) improves the semantic interoperability, i.e., it facilitates 

the identification of clinical concepts using a common terminology. More information about the 

OMOP-CDM can be found in The Book of OHDSI (https://book.ohdsi.org). 

As shown in Figure 2, a prediction problem can be defined by the target and outcome 

cohorts (target cohort being patients we want to make a prediction for, outcome being what 

we want to predict) and the time at risk. These three elements, along with the look back period, 

give the minimum requirement for correctly specifying a prediction problem. The index date of 

the target cohort should by defined as the moment the decision is made in clinical practice. For 

example, a model that is intended to inform the decision making of which secondary medication 

to choose for a diabetes patient, should have as index date the date when a secondary medica-

tion is started and not the date of diagnosis or initiation of metformin treatment. Similar care 

should be taken when choosing outcomes and time at risk. The time at risk should use a sensible 

period of time during which it is expected there is some relationship between the target and 

the outcome. For example, a time at risk of 30 days for an oncological outcome is unlikely to be 

sensible, whereas 1-5 years could be informative. 

The method described above can be abstracted into a prediction framework. Changing 

the target and outcome cohorts and the time at risk would allow for the same mechanism to 

be used for different prediction problems. The use of such a framework removes several key 

barriers that have prevented predictive analytics from impacting healthcare. For example, the 

availability of the developed models, the cohorts and model settings required to implement 

the models, and clear instructions on best practices for validation. All of these are included 

Figure 2 Detailing the prediction specification for heart failure occurring within 365 days of initialising met-
formin as an anti-diabetic treatment
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as standard in software packages created in the research pipeline of Reps et al. There remain 

however multiple challenges to the implementation of prediction models in clinical practice. 

These challenges include a lack of trust in the models, a lack of understanding of the models 

and modelling process, difficulties in implementing models (often due to large numbers of 

covariates) and issues with the reporting of models, which often do not follow open science 

principles. Chapter 2 will address the issue of complex models and will demonstrate a solution. 

Further issues of trust will be addressed in chapter 4 by considering how performance should 

be interpreted in terms of the model complexity (how much better is a more complex model) 

and database adjusted performance expectation (a lower performance does not always mean a 

model is bad, it could be the database is harder to predict in). Chapter 5 will address the issues 

of openness, reporting and model availability.

Internal Validation
Demonstrating good performance is often a difficult thing to do.  We could consider a model to 

be performing “well” if a patient’s treatment pathway is improved because of a change in treat-

ment decision based on the model. Clearly this is difficult to demonstrate, for a multitude of 

reasons including the lack of a counter-factual (i.e. we cannot know what would have happened 

in the situation where the model was not used). Further, we need some way of deciding if the 

model works or not before it can be used in clinical practice. 

This leads us to the question of what a good model is and how can this be demonstrated? 

When considering what is important for a prediction, one of the factors is “if I make a predic-

tion does it come true?” This can be reframed in the medical context as “of all the patients who 

are treated, some will go on to experience the outcome. Can they correctly be distinguished 

from the others who will not experience it?” This brings us to the concept of discrimination. 

There are many metrics measuring discrimination, for example, sensitivity: of patients who will get 

the outcome, what proportion do I correctly predict as getting the outcome? and specificity: of patients 

who will not get the outcome, what proportion do I correctly predict not to? These metrics are derived 

from a confusion matrix (Table 1). Fundamentally there are true positives and true negatives 

(correct predictions) and false positives and false negatives (incorrect predictions). Importantly, 

in the case of a regression model, a probability threshold must be set to determine what counts 

as a predicted positive or negative, i.e., everyone above the threshold will be predicted to get 

the disease and everyone below to not get it. Picking this threshold is going to be very specific 

to the problem and the specific implementation. Different problems give different costs to a 

false positive and a false negative. Consider the case of a highly infectious disease. If persons 

Table 1 Definition of a confusion matrix showing what are true/false positives and negatives

Ground Truth Positive Ground Truth Negative

Predicted Positive True Positive False Positive

Predicted Negative False Negative True Negative
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receive a false positive test then the cost is that they will be worried for their health and will 

likely have to isolate for a period of time (or indeed take a new test, which in this case could 

be a nasal swab with mild discomfort). However, a false negative would mean they were then 

going to continue on as normal and likely spread the disease further to a group of people. In 

this situation the false negative has a higher associated cost than a false positive. However, in 

another situation the false positive could lead to further testing which might not be as benign 

as a nasal swab. It could lead to a brain biopsy for example, which is a much more involved 

surgical process and as such the cost here of the false positive increases. Given the nuances here 

it becomes useful to develop a metric that is threshold independent. This is where the concept 

of the receiver operator characteristic (ROC) curve and the area under the ROC curve (AUC) 

comes in.

An example of an ROC curve is presented in Error! Reference source not found.. This curve 

makes it possible to view the trade-off between sensitivity and specificity at the various possible 

thresholds. If the AUC is calculated then this provides a more general view of the performance 

of a model. AUC ranges (generally) between 0.5 and 1, where 1 indicates perfect discrimination 

and 0.5 represents random chance. A useful way of thinking about this is to take the example 

of two randomly picked patients. One of these patients will go on to experience the outcome 

of interest and the other will not. A model with an AUC of 1 will always give the patient who 

experiences the outcome a higher chance than the patient who does not. A model that gives an 

Figure 3 Example of an ROC plot
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AUC of 0.5 will then give this order half the time (equivalent to a coin toss). It is conceivable to 

have an AUC of less than 0.5, but then we could simply invert the suggestion to achieve an AUC 

of greater than 0.5 and therefore the AUC is generally considered to range between 0.5 and 1.

Another important way of considering performance is to determine whether the absolute 

risk assigned by the model is correct. If a patient receives a 25% chance of developing the 

outcome, considering this patient split into 4 parallel universes this risk would be “correct” if 

they were to experience the outcome in 1 of these universes. Unfortunately, we do not have 

access to parallel universes, but we could consider 4 patients, each of whom receive a predicted 

risk of 25%, if one of them goes on to experience the outcome then we would consider this 

risk to be “correct”. This is known as calibration(8, 9). If a model is well-calibrated, then the 

observed fraction of patients who experience the outcome is equal to the fraction predicted 

to experience it. There are various methods of exploring this which give insight into various 

calibration properties. Van Calster et al. excellently describe several of these metrics(10), such 

as calibration in the large which compares the mean predicted risk to the outcome occurrence. 

However these metrics often lack a nuance required for calibration. Often the calibration of 

a model can vary across the predicted risks. For example, the model could be well calibrated 

for a predicted risk of between 0-10% but poorly calibrated for a predicted risk of 40-50%. 

Static metrics that assess the calibration will miss this nuance. A common method of calibration 

assessment is to look at calibration curves(11). 

An example of these is given in Figure 4 Here the predicted risk is plotted against the 

observed outcomes by fitting a LOESS model. The advantage of this over other calibration 

metrics is to show the calibration performance over the range of predicted probabilities and 

then we can see that for different risk ranges (e.g. low, medium and high) whether the model 

Figure 4 A smooth Calibration plot also including the absolute distribution of outcomes. Here Loess is the 
smoothed function to show the calibration of the model, the ideal line shows perfect calibration
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is well or poorly calibrated. There are lots of ways of displaying calibration plots, smoothed as 

seen in the figure here (the authors personal favourite), but the use of splines and even linear 

fit models are acceptable. The smooth plot trades off some simplicity with more flexibility to 

show different miscalibration in different areas.

Internal validation is essential for model development, however it is not enough to satisfy 

requirements for the deployment of models in clinical practice. Internal validation provides 

evidence of how one model performs in one setting in one database. In order to generalise this 

to use the model in wider care more extensive external validation must be performed.

External Validation
Increasingly, external validation is being seen as essential to the understanding, trust in, and 

implementation of PLP models(12-14). Primarily, external validation is used to assess how well 

a model developed in one setting transports to another. An example could be testing a model 

developed in a claims database in another claims database, or it could be examining whether 

a model developed in a Dutch general practice (GP) database transports and performs well 

in a UK GP database. External validation can also mean applying the model in a similar set-

ting; this can include slight differences in the definitions of the target and outcome cohorts. 

External validation has traditionally been a time-consuming and complicated process(15). A 

major reason has historically been the lack of syntactic and semantic database interoperability 

between databases(16). This means that if researchers want to validate a model in new data, 

they need to create new target and outcome cohorts, understand how to map covariates and 

understand any differences in the representation of patients between the original and new 

coding system. With the introduction of a common data model, many of the technical barriers 

have been removed. There remain however several questions surrounding model performance 

evaluation in this context:

Firstly, how should external validation be performed and what are the best practices for 

this? Given that there are multiple differing types of external validation, each assessing a dif-

ferent model characteristic it is essential to define what the validation is aiming to do(17). The 

simplest, and most common, form of external validation is to directly assess the model “gener-

alisability”. This means that a researcher applies the model on new data where the population 

matches to the original setting, e.g. , the target and outcome cohort definitions, and the time at 

risk are identical. Another method can be to examine the “transportability” of the model. This 

involves applying the model on new data with a similar population. Chapter 3 of this thesis will 

address this issue, and methods of assessing external validation in a timely fashion in a federated 

network of databases. This chapter will discuss a framework for performing external validation 

and how this process can be done systematically and efficiently within the OHDSI ecosystem.

Secondly, the technical challenge of externally validating a model, is only one facet of the 

evidence generating process. When externally validating a model, performance must be given 

a context. Context means that the performance can be measured against a reference. Training 
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a model locally in a database, sets this expectation by providing a reference or benchmark. If 

a performance drop is found when externally validating a model compared to the result of the 

internal validation, then this could be because the model was tuned too much to the training 

data to properly transport to unseen data, i.e. the model was overfit or it needs recalibration. 

However, it could also be that the performance achieved is similar to the performance of a 

model that is trained on that same database. In other words, the model performs as well as 

possible in the context of the available data in that database. We need a model development 

approach that provides this context. Furthermore, simpler models are preferred as they are 

more easily clinically implemented and as such understanding the performance gain compared 

to the baseline of using only age and sex is valuable to contextualize the performance of the 

more complex model. Training a baseline model (most commonly age and sex) is essential to 

understanding what the performance gains are in relation to the increasing model complex-

ity and difficulty of clinical implementation. A model with a minor performance increase but 

hundreds of covariates is probably not the best candidate to be used in clinical practice. 

Thirdly, given the interoperability of these databases, there is an opportunity to use them 

not only to perform external validation, but to improve the internal performance of the model 

in the development phase. Current best practice is to develop a model in a single database 

and then perform validations in other databases. However, it is also possible to use data from 

multiple databases at the same time to develop a single model. This could result in a better 

performing model and improved generalisability and transportability. Pooling multiple databases 

and then building prediction models, however, is often not feasible due to strict governance 

rules and patient privacy(18, 19). However, it is possible to use a privacy-by-design approach by 

building an ensemble classifier using a federated network of databases, i.e., the data stays local 

within their safe haven, we bring the tools to the data, and only share the results. Ensemble 

learning is the process of producing multiple models, potentially pruning the set of models and 

then combining the remaining models. Often the ensemble increases model performance and 

stability compared to any single classifier. Ensembles either combine homogeneous models 

(same learning algorithm) or heterogeneous models (different learning algorithms). Homoge-

neous ensembles use the same learning algorithm but modify the perspective by using different 

training data (e.g., different instances, different features or by adding noise), different metrics 

or using different model settings (e.g., hyper-parameter values). Heterogeneous models take a 

different perspective as each learning algorithm makes different assumptions about the data. 

This will be explored in Chapter 1.

Finally, prediction models containing many predictors could have a higher performance than 

those with only a small subset of predictors, but there are clear issues with implementing such 

a model with many predictors in clinical practice.  As a rough estimate, models with more than 

25 predictors start to become challenging when considering the time-restricted environments 

within which the models need to be applied. If the desire is for the model to have immediate 

clinical utility and impact, it is necessary to find some mechanism to develop parsimonious 
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models, or to develop a process of parsimonisation of more complex models. It is possible 

to develop a tool that directly integrates into an EHR system. However, this is a complicated 

process and would likely involve multiple rounds of review and software development, slowing 

down the speed at which the model can find itself in the clinic and increasing the cost. In a time-

sensitive situation, for example at the start of a pandemic, a rapid response is likely to have the 

largest impact. This raises another question which is, for a novel disease or for a disease which 

is rare, what is the best way to develop a model? There has been a large body of research which 

attempts to use complex modelling and multiple steps to develop a model in a data-restricted 

situation. However, why should we necessarily start from nothing? Given insufficient data to 

effectively train and validate a model, a smarter solution needs to be found. This is where proxy 

learning can help. By doing an initial training step in a less restricted environment, for example 

using a disease that has a large cohort of patients, initial training can be performed and then this 

can be externally validated in the true target cohort to assess if performance transfers. Then the 

model can be updated or recalibrated as needed. In doing this the data used from the disease of 

interest can be kept for performance evaluation which then gives more weight to the evidence 

that is generated in this process. This process will be explored in detail in Chapter 2.

Dissemination
There also remains an unsolved problem of dissemination of results in a manner that is acces-

sible, understandable and available to multiple stakeholders of varying degrees of expertise. 

There have been several excellent progressions in the reporting of models, particularly the 

introduction of the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis (TRIPOD) statement and accompanying checklist(20). This has lead to 

increased clarity in reporting and wider sharing of essential information needed to analyse the 

models developed. The TRIPOD statement is an attempt to change what is reported and now 

how it is reported. How a model is reported is usually through the publication of an article 

which contains (hopefully) the essential model information. This is static and does not allow 

for easy model exploration, use and updating. It also does not provide any flexibility on the 

part of the reader to explore the model and its performance. If we turn our focus to models 

developed using the standardised pipeline provided by the PLP package and the OMOP CDM, 

the standardisation means that the modelling process is consistent at every step, including 

the production of a standard results object (this means that it does not matter what specific 

algorithm a researcher uses, or their problem setting, the results object will look identical 

e.g. the performance scores will be located in identical places). This standardisation gives the 

opportunity to create an application that will allow exploration of these results across the data 

network. 

An excellent resource for the assessment of prediction models is the Tufts PACE clinical 

prediction model registry(21). This is an intuitive and easy to access collection of clinical predic-

tion models, in this thesis referred to as patient-level prediction models. It provides the model 
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and often information on the performance and validations of the models as well as published 

articles about the models. The registry itself includes models from diverse sources and as such 

there is no underlying standardisation. This lack of standardisation means the registry has some 

limitations, including displaying models in a common format, facilitating the external validation 

of these models, and the static display of evaluation statistics limiting the flexibility for the user.

A centralised, interactive PLP model library would provide researchers, regulators and clini-

cians with a user-friendly experience to discover and evaluate prediction models. By providing 

this, along with the ability to download models (and the relevant cohorts and parameters 

needed to externally validate a model), upload validations and access relevant articles, many 

barriers to the adoption of PLP models in practice can be removed. By providing the results 

in this dynamic format, stakeholders will not be constrained to the traditional static methods 

of model review, e.g. assessing the limited results provided in a journal article. They will have 

direct access to the aggregated results and graphics and as such have more flexibility to explore 

what they find important or examine data that allows them to address or confirm misgivings 

that they have. By providing researchers with the ability to find these models and to download 

all the necessary components (target and outcome cohorts, full model) to run a validation, it 

is hoped that the rate at which models will be externally validated by independent researchers 

will increase. The current status of dissemination is discussed and an improvement on this is 

developed and demonstrated in chapter 5.

PART II: CLINICAL APPLICATIONS 

The second part of this thesis details two prediction models. These models can be seen as 

intertwined with the research in part 1. They use some of the best practices developed but they 

also generated ideas for some of the research that would be conducted.

The first of these models concerns predicting short-term mortality after a total knee 

replacement (TKR)(22). TKR is a safe and cost-effective surgical procedure for treating severe 

knee osteoarthritis. Although complications following surgery are rare, prediction tools could 

help identify high-risk patients who could be targeted with preventative interventions. By creat-

ing a risk stratification tool to target this outcome, patients can be better informed about 

the risks and decide together with their clinician on whether to proceed with the surgery. 

Specifically a parsimonious model that could be easily distributed and quickly analysed could 

support clinicians in shared decision making and risk assessments when deciding on surgical 

interventions, as well as aiding in targeting preventative treatment. This study is discussed in 

detail in chapter 6.

The second concerns predicting adverse health outcomes amongst rheumatoid arthritis 

(RA) patients. Compared to the general population, patients with RA have an increased risk of 

treatment-related adverse events(23). Identification of RA patients at high risk of adverse health 
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outcomes remains a major challenge (24, 25). Importantly, however, there are treatment options 

available to target these known comorbidities. Initiating methotrexate (MTX) monotherapy 

(with glucocorticoids) immediately post RA diagnosis (26, 27), is the most common treatment 

for RA globally. Using prediction models to evaluate patient-level risks in RA patients initiating 

first-line MTX monotherapy could allow clinicians to target those at high risk of adverse health 

outcomes for increased screening or monitoring throughout the course of treatment. Many 

prediction models have been developed for adverse health outcomes in RA patients, mostly 

focusing on the risk of either cardiovascular disease or serious infection (28-35). Importantly, 

none of these models have been subjected to extensive external validation, which is necessary 

to understand the performance of a prediction model (16). Further details of this process are 

discussed in chapter 7.

An additional clinical model was developed, although this chapter appears in part 1. At the 

onset of the COVID-19 pandemic, it was thought that prediction models could play a vital role 

in the risk assessment both at a patient and health authority/hospital administration level. One 

of the essential ideas behind the modelling in this early stage was to try to reduce the pressure 

on the health system. As such building a model from historical patient information and demo-

graphics (e.g. without requiring any new diagnostic tests) would be beneficial. This is because 

doing so allows for patients to be triaged off site, either by phone or videocall. This could 

potentially have a beneficial impact on the intensity of pressure on the healthcare system by 

reducing the patients seen at either primary or emergency care sites. To do this the COVID-19 

Estimated Risk (COVER) scores were developed. These quantified a patient’s risk of hospital 

admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive ser-

vices, or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis 

using historical data. This modelling process used two interesting techniques to produce models 

rapidly and were easy to use. The first was the use of historical influenza data as a proxy for 

training the models to preserve the COVID data for testing the models, the second was the use 

of phenotype predictors in a process of parsimonisation to produce 9-predictor models. These 

could then easily be deployed. This work is detailed in chapter 2.

All 3 of these studies were produced in a research process called a study-a-thon. This is 

an intense method of performing epidemiological research where a team of researchers focus 

entirely on one project. This involves close cooperation with a large multidisciplinary team to 

symbiotically produce relevant questions, protocols, analysis plans, and to execute the research. 

By cooperating in this manner, the research phase of the projects can be performed within 

a week, compared to months that a traditional study takes. This allows for flexible and rapid 

production of evidence to guide treatment choices. The TKR and RA studies were performed 

in person and the COVID work was done remotely. Both mechanisms worked excellently, al-

though it is certainly more enjoyable to do a study-a-thon in person in Barcelona than remotely 

during isolation.
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Contributing to better healthcare outcomes is, was, and should always remain, the main 

goal of any research performed in the healthcare prediction modelling domain. It is possible to 

lose sight of this and to lose sight of the connection between the modelling process and the 

intricacies of machine learning. What the focus must always be on is that the research will at 

some point contribute to improving outcomes for real patients. These are people with families 

and lives and happiness, mostly they will not care if you use a deep learning model or a LASSO 

or bootstrapping or train test splits. They care about the quality and longevity of their lives. If 

strong evidence of performance of a model can be provided and it can demonstrably help them, 

then the patient will be satisfied.

On that note of providing evidence, we can look to the thoughts of Richard Feynman.

“If it [a theory] disagrees with experiment, it’s wrong. In that simple statement is the key 

to science. It doesn’t make any difference how beautiful your guess is, it doesn’t make any 

difference how smart you are, who made the guess, or what [their] name is. If it disagrees with 

experiment, it’s wrong. That’s all there is to it.”

— Prof. Richard P. Feynman, Lecture at Cornell University, 1964

Aims of the thesis:

1.	 To improve the development process of patient-level prediction models

2.	 To improve the validation of patient-level prediction models

3.	 To improve the dissemination of patient-level prediction models

4.	 To demonstrate how a best practice framework can be applied to specific clinical prediction 

problems.
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ABSTRACT 

Objective: To investigate whether ensembles that combine prognostic models developed using 

different databases (a simple distributed learning approach) perform better in new data than 

single database models?

Materials and Methods: For a given prediction question we trained five single database 

models each using a different observational healthcare database. We then developed and inves-

tigated numerous ensemble models that combined the different database models. Performance 

of each model was investigated via discrimination and calibration using a leave one dataset 

out technique, i.e., hold out one database to use for validation and use the remaining four 

datasets for model development. The internal validation of a model developed using the hold 

out database was calculated and presented as the ‘hypothetical optimum’ for comparison. 

Results: Fusion ensembles generally outperformed the single database models and were 

more consistent when applied to new data. Stacking ensembles performed poorly in terms 

of discrimination when the labels in the new data were limited. Calibration was poor when 

ensembles and single database models were applied to new databases.

Discussion: Fusion ensembles appear to improve model performance in new data and there 

was little difference in discrimination performance across fusion frameworks. Therefore, the 

simple weighted fusion may be preferable. Differences may occur when more database models 

are combined if some of the models perform poorly. Stacking ensembles may improve calibra-

tion but require a sufficient number of labels in the new data, which is a limitation.

Conclusion: A simple distributed learning approach using ensembles that combine models 

developed independently across databases for the same prediction question may improve the 

discriminative performance in new data but will need to be recalibrated.
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BACKGROUND AND SIGNIFICANCE

Big observational healthcare databases, such as insurance claims data or electronic healthcare 

records, often contain data on large and diverse populations. One area where these datasets 

may benefit healthcare is in the application of machine learning to develop prognostic models. 

Prognostic models aim to predict a patient’s risk of experiencing some future event (e.g., car-

diovascular illnesses) [1] based on their current and historic health. In general, a prognostic task 

can be decomposed into three parts, the target population/index, the outcome, and the time-

at-risk [2]. The target population is the set of patients for whom you attempt to predict the risk 

of some future outcome and the index is the point in time you want to make the prediction. 

The outcome is the medical event you want to predict, and the time-at-risk is the time interval 

(relative to the index) you want to predict the outcome occurring within. Prognostic models 

are learned from observational healthcare databases by finding patients in the database who 

historically match the target population, determining features such as age, gender, and medical 

history at index for each patient and then observing whether they had the outcome during the 

time-at-risk. Supervised learning, such as binary classification, is then applied to learn the differ-

ences between the people who had the outcome during the time-at-risk vs the people who did 

not. Often the aim is to develop a model using the historical data but apply the model to current 

patients to calculate a probability of whether they will have the outcome during the future 

time-at-risk. Such models could improve healthcare by informing medical decision making, but 

only if these models perform sufficiently well when implemented in their intended setting. For 

example, a model intended to be used by a family medicine doctor to help them decide which 

patients should be given preventative medicine may be developed using a large insurance claims 

database but needs to transport well into the family medicine setting. The performance in a new 

database (transportability) of a model is initially assessed by externally validating a model across 

diverse datasets with different patient case mixes [2,3]. It is common for a model’s performance 

to deteriorate when transported to a different database [2]. The deterioration in performance 

may be due to the model or the differences between the development and validation popula-

tions [4]. A model that transports well to other databases is much more valuable in clinical 

practice. The question is how to best develop models with high transportability?

Big observational healthcare datasets only contain a sample of the population. This is fre-

quently a non-random sample, for example the data may over sample (or only contain) certain 

ethnicities, genders, ages or patients with low/medium/high wealth. If a database used to develop 

a prognostic model contains a non-random sample of the target population then this will most 

likely negatively affect its performance if applied on the full population. However, different data-

sets, with varying patient case mixes, may give diverse perspectives when developing prognostic 

model for the same prediction task. Learning models across different healthcare datasets (e.g., 

a US insurance claims database, a UK primary care database and a US electronic healthcare 

record database), known as distributed learning [5-8], may lead to more transportable models. 
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There are numerous approaches to distributed learning: i) combine the datasets and develop a 

model using the combined data, ii) apply a distributed algorithm that iterates across datasets or 

iii) combine models developed using different datasets. The first option is generally limited as 

sharing patient-level data between researchers is often not possible due to privacy restrictions 

and therefore it is not possible to train a single model using the combination of different 

datasets. The second option is limited due to the administration required if the algorithm needs 

to communicate with each dataset (held at different physical locations by different owners) 

multiple times. Although some distributed algorithms that only require access to each database 

once, termed ‘one-shot distributed algorithms’, exist for certain generalized linear models [8]. 

The one-shot approach is not suitable for most machine learning models. The third option is 

most feasible, as it is possible for researchers to easily share prognostic models, they develop 

using their own data and these models could be combined via ensemble techniques (ensemble 

modelling is the common machine learning approach used to combine binary classification 

models). This prompts the question; can we implement the third option and combine models 

developed using diverse datasets to improve model transportability in new data (e.g., in a clinical 

setting)? 

Ensemble learning is the process of producing multiple models, potentially pruning the set of 

models, and then combining the remaining models [9]. Often the ensemble increases both model 

accuracy and performance stability compared to any single classifier [10]. Ensembles either 

combine homogeneous models (same learning algorithm) or heterogeneous models (different 

learning algorithms). Homogeneous ensembles use the same learning algorithm but modify the 

perspective by using different training data (e.g., different instances, different features or by 

adding noise), different metrics or using different model settings (e.g., hyper-parameter values). 

Heterogeneous models take a different perspective as each learning algorithm makes different 

assumptions about the data. Combining the models is often done by fusing the classifiers [11], 

stacking [12] or using a mixture of experts [13]. Examples of simple fusing classifiers include i) 

majority vote, the combination technique used by random forest ‘bagging’ [14], ii) calculating 

the mean prediction value across classifiers or iii) weighted mean of the classifier predictions 

based on performance measures. Weighing each classifier’s prediction based on performance is 

better than taking the mean of all classifier predictions when the classifier performances differ 

(e.g., one classifier is better than the others) [11]. A mixture of experts is similar to weighted 

mean but instead of using universal weights across the instances, the weights are assigned per 

instance [13]. These ensembles are considered independent ensemble frameworks, as the mod-

els are trained independently and then combined [10]. A more advanced independent ensemble 

framework is known as ‘stacking’. Stacking is a meta-combination method that uses the set of 

models’ predictions as features and trains a new model that learns to predict the outcome 

using these prediction features [12]. A limitation of stacking is that it requires additional labelled 

data to learn how to best combine the individual models. Alternatively, ‘dependent ensemble’ 

frameworks train classifiers sequentially and each classifier depends on the output of the prior 
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classifier [10]. Boosting is a dependent fusion ensemble framework as models are sequentially 

trained, and weights are assigned to the objective function of each model during training based 

on prior models’ mistakes [15]. The above examples are just a selection of the commonly used 

combination methods and there are numerous other ways to combine the models [10].

Objective
This paper aims to determine whether prognostic model ensembles that combine regularized 

logistic regression models independently developed across different healthcare databases per-

form better in new data (more transportable) than each individual database prognostic model 

(single dataset model). A model with improved transportability is likely to also perform better 

when used clinically for decision making.

MATERIALS AND METHODS

The Observational Health Data Science and Informatics (OHDSI) PatientLevelPrediction frame-

work is used throughout this paper [2] for developing prognostic models using observational 

healthcare data.

Databases
Four US claims and an EHR databases are explored, see Table 1.

Table 1 Summary of the five databases used in this study

Name Type Description Start End
Size 
(million 
lives)

IBM Medicare Supplemental 
Beneficiaries (MDCR)

US 
Claims

Patients aged 65 or older with 
supplemental healthcare.

2000-01-01 2019-12-31 10.115

IBM Medicaid (MDCD)– US 
Claims

Patients with government 
subsidized healthcare.

2006-01-01 2018-12-31 28.777 

Optum® De-Identified 
Clinformatics® Data Mart 
Database (Optum Claims)

US 
Claims

Patients of all ages 2000-05-01 2019-12-31 84.310 

IBM Commercial Claims 
and Encounters (CCAE)

US 
Claims

The patients in this database are 
aged 65 or younger. They are 
employees who receive health 
insurance through their employer 
and their dependents.

2000-01-01 2019-12-31 152.96 

Optum® de-identified 
Electronic Health Record 
Dataset (Optum EHR)

US 
EHR

Patients of all ages 2006-01-01 2019-03-31 96.505 
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The use of IBM and Optum databases were reviewed by the New England Institutional 

Review Board (IRB) and were determined to be exempt from broad IRB approval.

All datasets used in this paper were mapped into the OHDSI Observational Medical Out-

comes Partnership Common Data Model (OMOP-CDM) version 5 [16]. The OMOP-CDM was 

developed to enable researchers with diverse datasets to have a standard database structure. 

This enables analysis code and software to be shared among researchers which facilitates 

external validation of prediction models.

Prediction problem
As an example, the problem: “Amongst patients with pharmaceutically-treated depression, 

which patients will develop <an outcome> during the 1-year time interval following the start of 

the depression episode?” is investigated. 

The target population of pharmaceutically treated depressed patients is defined as: patients 

with a condition record of major depressive disorder and the index date was the first record 

date. Inclusion criteria are:

•	 Antidepressant recorded within 30 days before to 30 days after the target population index 

date

•	 No history of psychosis 

•	 No history of dementia

•	 No history of mania

•	 >=365 days prior observation 

Twenty-one models predicting 21 different outcomes occurring for the first time between 

1 day after index until 1 year after index are developed. The 21 outcomes are: acute liver 

injury, acute myocardial infarction, alopecia, constipation, decreased libido, delirium, diarrhoea, 

fracture, gastrointestinal hemorrhage, hyponatremia, hypotension, hypothyroidism, insomnia, 

nausea, seizure, stroke, sudden cardiac death, suicide and suicidal ideation, tinnitus, ventricular 

arrhythmia and vertigo.

The above definition of prediction problem is the same as used in reference [2]. 

In this study a random sample of 500,000 patients from the target population (>1 million 

patients in Optum claims, >2 million patients in Optum EHR and >2 million in CCAE) were used 

throughout the study. This improved the efficiency of model development and also resulted in 

some low outcome counts, enabling the investigation into whether the outcome count impacts 

the ensemble performance.

Labelled data
We constructed labelled datasets for each database and outcome pair. For the ith patient in 

database k we used one-hot-encoding to create binary features indicating the presence of any 

medical condition or drug recorded prior to index (first record of major depressive disorder) 
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and extracted the patient’s gender and age at index (in 5-year bins). Let 
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database k we used one-hot-encoding to create binary features indicating the presence of any 

medical condition or drug recorded prior to index (first record of major depressive disorder) and 

extracted the patient’s gender and age at index (in 5-year bins).  Let 𝒙𝒙𝒊𝒊𝒌𝒌 represent the feature 

vector for the ith patient in database k.  Labels were determined per outcome, with 𝑦𝑦���  

corresponding to the presence (𝑦𝑦��� = 1) or absence (𝑦𝑦��� = 0) of outcome j in the year after index 

for patient i in database k. This resulted in 105 labelled datasets {(𝒙𝒙𝒊𝒊𝒌𝒌, 𝑦𝑦��� )}�. 

 of outcome j in the year after 

index for patient i in database k. This resulted in 105 labelled datasets 
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seizure, stroke, sudden cardiac death, suicide and suicidal ideation, tinnitus, ventricular 

arrhythmia and vertigo. 

 

The above definition of prediction problem is the same as used in reference [2].  

 

In this study a random sample of 500,000 patients from the target population (>1 million patients 

in Optum claims, >2 million patients in Optum EHR and >2 million in CCAE) were used throughout 

the study. This improved the efficiency of model development and also resulted in some low 

outcome counts, enabling the investigation into whether the outcome count impacts the 

ensemble performance. 

 

Labelled data 

 

We constructed labelled datasets for each database and outcome pair. For the ith patient in 

database k we used one-hot-encoding to create binary features indicating the presence of any 

medical condition or drug recorded prior to index (first record of major depressive disorder) and 

extracted the patient’s gender and age at index (in 5-year bins).  Let 𝒙𝒙𝒊𝒊𝒌𝒌 represent the feature 

vector for the ith patient in database k.  Labels were determined per outcome, with 𝑦𝑦���  

corresponding to the presence (𝑦𝑦��� = 1) or absence (𝑦𝑦��� = 0) of outcome j in the year after index 

for patient i in database k. This resulted in 105 labelled datasets {(𝒙𝒙𝒊𝒊𝒌𝒌, 𝑦𝑦��� )}�. .

Statistical analysis

Binary Classifiers (Level 1 models)
For each database and outcome, a regularized logistic regression model with least absolute 

shrinkage and selection operator (LASSO) penalization was trained [17] using 80% of the data 

to develop the model and 20% of the data were held out to internally estimate the model perfor-

mance (test set performance). Three-fold cross validation was applied in the 80% development 

data to learn the optimal regularization value. The final LASSO logistic regression coefficients 

were learned with the optimal hyper-parameter set using all of the 80% development data. 

Let 
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Binary Classifiers (Level 1 models) 

For each database and outcome, a regularized logistic regression model with least absolute 

shrinkage and selection operator (LASSO) penalization was trained [17] using 80% of the data to 

develop the model and 20% of the data were held out to internally estimate the model 

performance (test set performance).  Three-fold cross validation was applied in the 80% 

development data to learn the optimal regularization value. The final LASSO logistic regression 

coefficients were learned with the optimal hyper-parameter set using all of the 80% development 

data.   

 

Let 𝑓𝑓��(𝒙𝒙): 𝑅𝑅� → [0,1] correspond to the Level 1 logistic regression model that was developed 

using the ith database (database i) to predict the jth outcome (outcome j), where x is the m-

dimension feature vector for a patient.  Given a patient’s feature vector, the Level 1 model 

developed in database i predicts a value between 0 and 1 that corresponds to the probability 

that the patient will experience outcome j.  

 

Performance Evaluation 

 

 correspond to the Level 1 logistic regression model that was 

developed using the ith database (database i) to predict the jth outcome (outcome j), where x is 

the m-dimension feature vector for a patient. Given a patient’s feature vector, the Level 1 model 

developed in database i predicts a value between 0 and 1 that corresponds to the probability 

that the patient will experience outcome j. 

Performance Evaluation
Internal validation is when a model is developed and evaluated in the same database and ex-

ternal validation is when a model is developed and evaluated in different databases. For both 

internal and external validation, model discrimination and calibration were calculated. Model 

discrimination assesses how well a model ranks patients based on risk, this was calculated using 

the area under the receiver operating curve (AUROC). The AUROC is a ranking measure that 

corresponds to the probability that if a non-outcome patient was sampled and an outcome 

patient was sampled, the predicted risk assigned to the outcome patient is greater than the pre-

dicted risk assigned to the non-outcome patient. An AUROC of 0.5 corresponds to randomly 

predicting risk (no discriminative ability) and an AUROC of 1 corresponds to perfect prediction 

(a higher risk is predicted for all patients who will experience the outcome compared to those 

who will not). Calibration assesses how closely the predicted risk matches the true risk. For 

example, if a model is well calibrated, then if 10 patients are assigned a 10% risk, only 1 of them 

should experience the outcome. In this study, calibration was calculated using calibration-in-the-

large [18] which compares the model’s mean predicted risk in the population with the observed 

risk (a model is considered well calibrated if the mean predicted risk matches the observed risk 

in the population). 

The internal validation of each Level 1 model (test set performance) provides a benchmark 

performance for the database and outcome pair. The internal validation of each Level 1 model, 
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trained in database k to predict outcome j, was determined by calculating the AUROC and 

calibration-in-the-large using the predicted risk 
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calibration-in-the-large using the predicted risk 𝑓𝑓���𝒙𝒙𝒊𝒊
𝒌𝒌� and the true label 𝑦𝑦��

�  for each patient in 

the 20% held out set (test set). 

 

 

Binary Ensemble Classifiers (Level 2 models) 

 

The ensembles in this study combine the Level 1 models developed in the different databases 

that predict the same outcome. Generally, an ensemble that predicts outcome j is a function of 

the N Level 1 models that predict outcome j: 

 

𝑓𝑓�(𝒙𝒙) = 𝑔𝑔({𝑓𝑓��(𝒙𝒙)}�∈{�,�,…,�}) 

 

Seven different ensemble approaches were investigated to combine the Level 1 models, that 

predict the same outcome (j) but are trained on N different databases ({𝑓𝑓��}�∈{�,�,…,�}), using 

different heuristics.  

 

A weighted fusion ensemble to predict the outcome j combines the Level 1 models by assigning 

each Level 1 model a weight:  

 and the true label 
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Binary Ensemble Classifiers (Level 2 models) 

 

The ensembles in this study combine the Level 1 models developed in the different databases 

that predict the same outcome. Generally, an ensemble that predicts outcome j is a function of 

the N Level 1 models that predict outcome j: 

 

𝑓𝑓�(𝒙𝒙) = 𝑔𝑔({𝑓𝑓��(𝒙𝒙)}�∈{�,�,…,�}) 

 

Seven different ensemble approaches were investigated to combine the Level 1 models, that 

predict the same outcome (j) but are trained on N different databases ({𝑓𝑓��}�∈{�,�,…,�}), using 

different heuristics.  

 

A weighted fusion ensemble to predict the outcome j combines the Level 1 models by assigning 

each Level 1 model a weight:  

, using 

different heuristics. 

A weighted fusion ensemble to predict the outcome j combines the Level 1 models by 

assigning each Level 1 model a weight: 
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𝑓𝑓�(𝒙𝒙) =  � 𝑤𝑤��𝑓𝑓��(𝒙𝒙)
�

  

where 𝑤𝑤�� is the weight assigned to the Level 1 model trained using database i to predict outcome 

j.  In this study different weighting heuristics are investigated: 

 

1. Mean Ensemble (mean) – for a patient, their predicted risk is the mean of the predicted 

risks of the included Level 1 classifiers (equal weighting so 𝑤𝑤�� = 1/N, where N is the 

number of models being combined) 

2. AUROC Ensemble normalized weights (auc1) – for a patient, their predicted risk is a 

weighted mean of the predicted risks of the included Level 1 models, where each Level 1 

model’s weight is based on the model’s internal area under the receiver operating 

characteristic curve (AUROC) that was calculated in the 20% held out data.  The weights 

are scaled relative to an AUROC of 0.5 and normalized to ensure the total weight across 

models was 1 (AUROC performance weighting so 𝑤𝑤�� =  |���������.�|
∑ |���������.�|�

), where AUROCij 

is the internal AUROC value for the Level 1 model developed in database i to predict 

outcome j. 

3. AUROC Ensemble unnormalized weights (auc2) – similar to 2) a patient’s risk is a weighted 

mean of the predicted risks of the included Level 1 models, where each Level 1 model’s 

weight is based on the model’s internal AUROC.  The weights are scaled between 1 for 

perfect discrimination and -1 for models that predict the opposite labels perfectly ( 𝑤𝑤�� =

where wij is the weight assigned to the Level 1 model trained using database i to predict out-

come j. In this study different weighting heuristics are investigated:

1.	 Mean Ensemble (mean) – for a patient, their predicted risk is the mean of the predicted 

risks of the included Level 1 classifiers (equal weighting so wij = 1/N, where N is the number 

of models being combined)

2.	 AUROC Ensemble normalized weights (auc1) – for a patient, their predicted risk is a 

weighted mean of the predicted risks of the included Level 1 models, where each Level 1 

model’s weight is based on the model’s internal area under the receiver operating charac-

teristic curve (AUROC) that was calculated in the 20% held out data. The weights are scaled 

relative to an AUROC of 0.5 and normalized to ensure the total weight across models was 

1 (AUROC performance weighting so wij = 
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where 𝑤𝑤�� is the weight assigned to the Level 1 model trained using database i to predict outcome 

j.  In this study different weighting heuristics are investigated: 

 

1. Mean Ensemble (mean) – for a patient, their predicted risk is the mean of the predicted 

risks of the included Level 1 classifiers (equal weighting so 𝑤𝑤�� = 1/N, where N is the 

number of models being combined) 

2. AUROC Ensemble normalized weights (auc1) – for a patient, their predicted risk is a 

weighted mean of the predicted risks of the included Level 1 models, where each Level 1 

model’s weight is based on the model’s internal area under the receiver operating 

characteristic curve (AUROC) that was calculated in the 20% held out data.  The weights 

are scaled relative to an AUROC of 0.5 and normalized to ensure the total weight across 

models was 1 (AUROC performance weighting so 𝑤𝑤�� =  |���������.�|
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), where AUROCij 

is the internal AUROC value for the Level 1 model developed in database i to predict 

outcome j. 

3. AUROC Ensemble unnormalized weights (auc2) – similar to 2) a patient’s risk is a weighted 

mean of the predicted risks of the included Level 1 models, where each Level 1 model’s 

weight is based on the model’s internal AUROC.  The weights are scaled between 1 for 

perfect discrimination and -1 for models that predict the opposite labels perfectly ( 𝑤𝑤�� =

 ), where AUROCij is the internal 

AUROC value for the Level 1 model developed in database i to predict outcome j.

3.	 AUROC Ensemble unnormalized weights (auc2) – similar to 2) a patient’s risk is a weighted 

mean of the predicted risks of the included Level 1 models, where each Level 1 model’s 

weight is based on the model’s internal AUROC. The weights are scaled between 1 for 

perfect discrimination and -1 for models that predict the opposite labels perfectly (wij = 
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 ���������.�
�.�

), where AUROCij is the internal AUROC value for the Level 1 model developed 

in database i to predict outcome j. 

4. Similarity Weighted Ensemble (sim)- for a patient, their predicted risk is a weighted mean 

of the predicted risks of the included Level 1 models, but weights are based on how similar 

the Level 1 model’s development population mean value for each predictor are compared 

to the population that the patient is in.  The cosine similarity metric was used for the two 

vectors containing the mean values in the patient’s dataset and the Level 1 model’s 

development data (case mix similarity weighting 𝑤𝑤�� = ������(𝒅𝒅,𝒅𝒅𝒊𝒊)
∑ ������(𝒅𝒅,𝒅𝒅𝒌𝒌)�

) where d is an m-

dimensional vector corresponding to the mean values of the features included in model 

𝑓𝑓��  in the database the ensemble is being applied to and di is an m-dimensional vector 

corresponding to the mean values of the features included in model 𝑓𝑓��  in database i. 

5. Age Weighted Ensemble (age)– for a patient, their predicted risk is a weighted mean 

based on how similar the model development data population mean age was compared 

to the patient’s population mean age (case age similarity weighting 𝑤𝑤�� =  �(���,����)
∑ �(���,����)�

), 

where age is the mean age in years of the patients in the dataset the model is being 

applied to, agei is the mean age of the patients in database i and d(age,agei) = 

1/(1+|𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎�|). 

 

The mixture of expert ensembles 𝑓𝑓�(𝒙𝒙) use the equation:𝑓𝑓�(𝒙𝒙) =  ∑ 𝑔𝑔��(𝒙𝒙)𝑓𝑓��(𝒙𝒙)�   where 𝑔𝑔��is 

the gating function value for Level 1 model developed in database i to predicted outcome j. 

 

), where AUROCij is the internal AUROC value for the Level 1 model developed 

in database i to predict outcome j.

4.	 Similarity Weighted Ensemble (sim)- for a patient, their predicted risk is a weighted mean 

of the predicted risks of the included Level 1 models, but weights are based on how similar 

the Level 1 model’s development population mean value for each predictor are compared 

to the population that the patient is in. The cosine similarity metric was used for the two 
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vectors containing the mean values in the patient’s dataset and the Level 1 model’s develop-

ment data (case mix similarity weighting wij = 
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), where AUROCij is the internal AUROC value for the Level 1 model developed 
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 where d is an m-dimensional 

vector corresponding to the mean values of the features included in model fij in the database 

the ensemble is being applied to and di is an m-dimensional vector corresponding to the 

mean values of the features included in model fij in database i.

5.	 Age Weighted Ensemble (age)– for a patient, their predicted risk is a weighted mean based 

on how similar the model development data population mean age was compared to the 

patient’s population mean age (case age similarity weighting wij = 
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dimensional vector corresponding to the mean values of the features included in model 

𝑓𝑓��  in the database the ensemble is being applied to and di is an m-dimensional vector 

corresponding to the mean values of the features included in model 𝑓𝑓��  in database i. 

5. Age Weighted Ensemble (age)– for a patient, their predicted risk is a weighted mean 

based on how similar the model development data population mean age was compared 

to the patient’s population mean age (case age similarity weighting 𝑤𝑤�� =  �(���,����)
∑ �(���,����)�

), 

where age is the mean age in years of the patients in the dataset the model is being 

applied to, agei is the mean age of the patients in database i and d(age,agei) = 
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, where age 

is the mean age in years of the patients in the dataset the model is being applied to, agei is 

the mean age of the patients in database i and d(age,agei) = 1/(1+|age – agei|).

The mixture of expert ensembles fj(x) use the equation: fj(x) = Σigij(x)fij(x) where gij is the gating 

function value for Level 1 model developed in database i to predicted outcome j.

6.	 Age Mixture of Experts Ensemble (ageME) – for a patient, their predicted risk is calculated 

using the Level 1 model developed using a population with a mean age that most closely 

matches the patient’s age, the gating function is:
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6. Age Mixture of Experts Ensemble (ageME) – for a patient, their predicted risk is calculated 

using the Level 1 model developed using a population with a mean age that most closely 

matches the patient’s age, the gating function is: 

 𝑔𝑔��(𝒙𝒙) =  �
𝟏𝟏, 𝒊𝒊 ≡  𝐦𝐦𝐦𝐦𝐦𝐦

𝒌𝒌
(𝒂𝒂𝒂𝒂𝒂𝒂𝒌𝒌 − 𝒂𝒂𝒂𝒂𝒂𝒂) 

𝟎𝟎,                          𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
 

Where 𝒂𝒂𝒂𝒂𝒂𝒂𝒌𝒌 is the mean age in years of the patients in database k and  𝒂𝒂𝒂𝒂𝒂𝒂 is the age in 

years of the patient whose risk is being calculated.  

 

Stacking ensembles involved training a Level 2 model that uses the Level 1 model predictions as 

features. 

7. Stacking ensemble –a LASSO logistic regression model was trained as the Level 2 model 

that used the predicted risk from each Level 1model as predictors (effectively this learned 

the Level 1 model weightings). The stacking ensemble requires labelled data in the 

validation dataset whereas the other ensembles do not require this.  As it is often not 

possible to get large amounts of labelled data in the validation dataset or application 

dataset, it was investigated how well the stacking ensemble would do if i) only 1,000 

patients (s|1000), ii) only 10,000 patients (s|10000) and iii) all available patients (s|All) 

were used to learn the weightings. 

 

 

 

Where agek is the mean age in years of the patients in database k and age is the age in years 

of the patient whose risk is being calculated. 

Stacking ensembles involved training a Level 2 model that uses the Level 1 model predictions 

as features.

7.	 Stacking ensemble –a LASSO logistic regression model was trained as the Level 2 model 

that used the predicted risk from each Level 1model as predictors (effectively this learned 

the Level 1 model weightings). The stacking ensemble requires labelled data in the validation 

dataset whereas the other ensembles do not require this. As it is often not possible to 

get large amounts of labelled data in the validation dataset or application dataset, it was 

investigated how well the stacking ensemble would do if i) only 1,000 patients (s|1000), ii) 

only 10,000 patients (s|10000) and iii) all available patients (s|All) were used to learn the 

weightings.

Model Transportability
For each ensemble model a leave-one-database out approach was used to estimate external 

validation when the ensemble was transported to new data. Figure 1 illustrates the leave-one-

database out approach. For example, to estimate the mean fusion ensemble performance in 

predicting insomnia when externally validated on MDCR, the Level 1 models trained on the 

MDCD, CCAE, Optum Claims and Optum EHR to predict insomnia were applied to each pa-

tient in MDCR and then the mean of the patient’s predicted risks across the four Level 1 models 
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was calculated per patient. The mean fusion ensemble predictions are then validated using the 

ground truth labels in the left-out database where it was known which patients experienced 

insomnia. This was repeated five times by leaving each database out once.

Denoting the set of feature and label pairs in database k for outcome j as: 
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MDCD, CCAE, Optum Claims and Optum EHR to predict insomnia were applied to each patient in 

MDCR and then the mean of the patient’s predicted risks across the four Level 1 models was 

calculated per patient. The mean fusion ensemble predictions are then validated using the 

ground truth labels in the left-out database where it was known which patients experienced 

insomnia. This was repeated five times by leaving each database out once. 

 

Denoting the set of feature and label pairs in database k for outcome j as: {(𝒙𝒙𝒊𝒊
𝒌𝒌, 𝑦𝑦��

� )}�, the vector 

of predicted risks in database k for outcome j using the mean fusion ensemble but excluding the 

database k model is: 
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Figure 1 The leave-one-database-out design used to evaluate the transportability of the Level 1 models 
trained using a single database and the Level 2 ensembles that combine multiple Level 1 models. 
The figure shows that five different combinations were used, where four of the five databases were used to develop the mod-
els and the final database was used to fairly evaluate the transportability of the models. In addition, a model was trained using 
the left-out database to calculate the internal validation that could be considered the ‘hypothetical optimum’ performance 
for the database given sufficient training data. We compared how similar the external validation of each model was with the 
‘hypothetical optimum’ benchmark. 



1

39

Evaluating transportability of multi-database ensemble models

The external AUROC and calibration metrics for the mean fusion ensemble applied to database 

k for outcome j is then calculated by comparing the predictions and ground truth labels.
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RESULTS

The data sizes are presented in Table 2 and the database characteristics are displayed in Table 3. 

The smallest target population was the one extracted from the MDCR database, and this popu-

lation were older and had higher rates of cancer and cardiovascular issues prior to index. The 

MDCD target population was the youngest and also had the highest rate of obesity recorded 

in the prior year. In general, the characteristics varied greatly across the datasets, indicating 

different patient case-mixes. The outcome count was generally greater than 100 except for 

delirium in MDCD and Optum Claims and Seizure in MDCR and Optum EHR. 

Figure 2 presents box plots of the AUROC_differences per Level 1 model (non-ensemble) and 

Level 2 model (ensemble) when transported to each held out database across the 21 outcomes. 

The non-ensemble box plots show a lower median value and greater range of values compared 

to the fusion ensembles. The fusion ensembles achieved discriminative performances similar to 

Table 2 - The outcome counts and percentage of target population who develop the outcome during the 
tine-at-risk 

Outcome
CCAE 
(N ~499,678) 
(%)

MDCR 
(N ~160,956)
(%)

MDCD 
(N ~469,302) 
(%)

Optum EHR 
(N ~499,881) 
(%)

Optum 
Claims 
(N ~499,753) 
(%)

Acute liver injury 14875 (3.35) 7226 (5.4) 21654 (5.47) 18535 (4.18) 18619 (4.31)

Acute myocardial infarction 1494 (0.3) 935 (0.59) 3800 (0.83) 816 (0.16) 1298 (0.26)

Alopecia 10672 (2.32) 7569 (5.64) 20597 (5.2) 16597 (3.69) 16571 (3.75)

Constipation 4170 (0.85) 6399 (4.39) 9210 (2.05) 10192 (2.13) 10282 (2.16)

Decreased libido 491 (0.1) 1080 (0.69) 905 (0.19) 287 (0.06) 708 (0.14)

Delirium 174 (0.03) 510 (0.32) 86 (0.02) 267 (0.05) 91 (0.02)

Diarrhoea 1661 (0.34) 130 (0.08) 785 (0.17) 1210 (0.24) 1603 (0.32)

Fracture 509 (0.1) 963 (0.61) 894 (0.19) 381 (0.08) 758 (0.15)

Gastrointestinal haemorrhage 985 (0.2) 1298 (0.81) 1666 (0.36) 356 (0.07) 1021 (0.2)

Hyponatremia 19754 (4.65) 7824 (5.95) 33518 (9.82) 24043 (5.65) 23304 (5.67)

Hypotension 380 (0.08) 1153 (0.74) 636 (0.14) 230 (0.05) 683 (0.14)

Hypothyroidism 297 (0.06) 642 (0.4) 1056 (0.23) 162 (0.03) 333 (0.07)

Insomnia 3046 (0.62) 2086 (1.38) 2468 (0.53) 3049 (0.62) 4114 (0.85)

Ischemic stroke all inpatient 3120 (0.64) 1824 (1.19) 2655 (0.57) 2775 (0.56) 4139 (0.85)

Nausea 2722 (0.56) 4071 (2.77) 4033 (0.89) 4368 (0.9) 5846 (1.22)

Open angle glaucoma 6117 (1.33) 3853 (2.83) 5374 (1.22) 8786 (2.03) 9943 (2.33)

Seizure 184 (0.04) 67 (0.04) 307 (0.07) 94 (0.02) 199 (0.04)

Suicide and suicidal ideation 10221 (2.13) 993 (0.62) 21518 (5.09) 9957 (2.1) 8063 (1.67)

Tinnitus 2628 (0.53) 4276 (2.87) 5082 (1.12) 6920 (1.44) 7643 (1.62)

Ventricular arrhythmia and 
sudden cardiac death

20806 (4.91) 6846 (5.12) 27233 (6.92) 23655 (5.6) 23772 (5.89)

Vertigo 2577 (0.53) 748 (0.47) 2269 (0.49) 2341 (0.48) 2782 (0.57)
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the ‘hypothetical optimum’ when transported to new databases (AUROC_difference values close 

to 0). The age-based mixture of expert and stacking ensembles that used 1,000 or 10,000 labels 

generally performed worse than the non-ensembles in terms of discrimination when trans-

ported. The stacking ensemble using all the labelled data available achieved external AUROC 

similar to the ‘hypothetical optimum’ but was not better than the fusion ensembles. The full 

external validation discrimination performance across the 21 outcomes and 5 databases for the 

non-ensembles and ensembles are presented in online Appendix A.

Each calibration in the large (the mean predicted risk) is presented in Figure 3 and Figure 4. 

The calibration in the large plots show the mean predicted risk per Level 2 model (ensemble) 

or Level 1 model (non-ensemble) and the dashed horizontal line is the observed population 

risk. A model is well calibrated if the mean predicted risk matches the observed population risk. 

Figures 3-4 show that the mean predicted risks did not often match the observed population 

risk, except for the stacking ensemble.

DISCUSSION

The results show that weighted fusion ensembles that combine multiple prognostic models 

developed in different databases appear to have more stable discriminative performances when 

transported to new databases compared to the Level 1 (single database) models. However, 

calibration appears to be an issue for all models that are transported to new databases (except 

stacking ensembles with sufficient labels).

Table 3 - characteristics of the target population (patients with depression initiating treatment) per database

CCAE MDCD MDCR
Optum 
Claims

Optum 
EHR

Mean Age 41 35 75 50 49

Male (%) 30.8 25.9 32.2 31.7 29.2

Mean number outpatient visits in prior year 16.3 31.2 26.8 16.6 32.4

Frequency of patients experiencing condition in prior year:

Pain 0.60 0.74 0.74 0.66 0.57

Anxiety 0.41 0.50 0.28 0.42 0.43

Acute inflammatory disease 0.32 0.36 0.24 0.31 0.18

Neoplastic disease 0.22 0.14 0.46 0.27 0.17

Essential hypertension 0.25 0.31 0.69 0.40 0.37

Obesity 0.11 0.19 0.11 0.13 0.17

Heart disease 0.09 0.14 0.46 0.20 0.18

Diabetes mellitus 0.09 0.14 0.27 0.16 0.16

Urinary tract infectious disease 0.09 0.14 0.16 0.12 0.07

Anemia 0.07 0.12 0.20 0.12 0.11
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This study showed that certain ensembles combining models developed independently 

across difference databases transport better than the Level 1 single database models. The 

weighted fusion ensembles and stacking ensemble (that used all data) consistently achieved 

discrimination close to the ‘hypothetical optimum’ in the new data whereas the Level 1 single 

models generally performed slightly worse than the ‘hypothetical optimum’. The Level 1 single 

database models were also less consistent across outcomes and certain database models did 

better than others (e.g., Optum claims models transported better than MDCR models). This 

variability may be due to each database containing diverse patient case-mixes, as seen in Table 

3. The ensembles can combine the perspectives of the Level 1 models trained with different 

populations making them more robust to new populations. The calibrations of the transported 

Figure 2 Box plots showing the difference between the external validation AUROC minus the internal vali-
dation AUROC per non-ensemble (Level 1 model) and ensemble method (Level 2 model) across the five 
databases. The rows represent the external database (the database that was excluded from the model/en-
semble development) that was used to fairly evaluate the models/ensembles. The x-axis represents the model/
ensemble technique. Box plots centred around 0 with a small range indicate highly transportable and consis-
tent external discriminative performance. The dashed vertical lines separate the non-ensembles, the fusion 
ensembles, the mixture of expert ensembles and the stacking ensembles.
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models were generally poor, except the stacking model (using all data) as this used labelled data 

so was effectively recalibrated. If all the Level 1 single database models are mis-calibrated, then 

it makes sense that any ensemble combining them would also be mis-calibrated. This highlights 

the importance of model recalibrating before implementing them in new patient populations. 

It may be possible to recalibrate without labelled data by changing the intercept based on how 

common the outcome is in the target population the model is being applied to. If labels are 

available for some patients, then standard recalibration techniques can be implemented.

The results show the type of ensemble heuristic impacted transportability. The ensembles 

that performed the best in terms of discrimination when transported were the weighted fusion 

ensembles. The stacking ensemble did almost as well as the weighted fusion ensemble when 

there were sufficient labels, but it required labels in the new data it is being transported to 

Figure 3 - The calibration-in-the-large (mean predicted risk) for each non-ensemble (Level 1 model) and 
ensemble (Level 2 model) when externally validated. The rows represent the prediction problem (different 
outcomes) and the columns represent the external validation databases. The x-axis represents the different 
models/ensemble techniques. The solid horizontal line is the observed population risk in the external database. 
The dashed vertical lines divide the non-ensembles, the weighted ensembles, the mixture of expert ensemble 
and the stacker ensembles. A model is well calibrated when externally transported if the top of the bar is near 
to the solid horizontal line.
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whereas the weighted fusion ensembles did not. Requiring labels is a big disadvantage and 

therefore the weighted fusion ensembles are more useful. Interestingly, the simple mean fu-

sion ensemble (uniform weighting) was comparable to the AUROC, age and database similarity 

weighted ensembles. Due to its simplicity, the mean fusion ensemble shows promise at being 

able to lead to more transportable prognostic models. If it worth noting, the age weighted 

ensembles may have benefitted in this study by the databases being similar (mostly US claims 

databases). For example, Optum claims is a mixture of patients that are similar to the patients 

in CCAE and MDCR, Therefore the age weighting may not perform well when the databases 

are more diverse. The weighted fusion ensembles and mixture of expert ensemble may have 

been impacted by the outcome rate differing between the databases. If the outcome is more 

common in a database, then a logistic regression model’s intercept is likely to be greater and 

the model’s mean predicted risk is likely to be higher than a model trained in data with fewer 

Figure 4. The calibration-in-the-large (mean predicted risk) for each non-ensemble (Level 1 model) and 
ensemble (Level 2 model) when externally validated. The solid horizontal line is the observed population risk 
in the external database. The dashed vertical lines divide the non-ensembles, the weighted ensembles, the 
mixture of expert ensemble and the stacker ensembles.



1

45

Evaluating transportability of multi-database ensemble models

outcomes. This effectively may add more weighting to Level 1 models trained in databases that 

have a higher outcome percentage in the data. 

The key advantage of this study is that we were able to compare the transportability of 

Level 1 models (developed in a single database) and ensembles combining Level 1 models 

developed in different databases across many prediction problems and across five datasets. 

In total we trained 21 (outcomes) x 5 (databases) single database models and created 21 

(outcomes) x 5 (databases) x 7 (ensemble methods) ensemble models. The limitation of this 

study is the generalizability of findings as we only investigated one target population and we 

only used US data. In future work it would be useful to repeat this experiment across different 

target populations and externally validate the models (ensemble/non-ensemble) developed in 

this study across non-US databases. The OHDSI network and collaboration could be used to 

scale up this study across more diverse databases in future work [19]. In addition, there are 

numerous ways to combine the Level 1 models into an ensemble and we only investigated 7 

simple approaches. However, these results provide a benchmark for comparing other ensembles 

techniques.

In this study 500,000 patients were sampled from each database as this provided a range 

of outcome sizes for the 21 outcomes investigated and enabled us to investigate the impact of 

outcome count in the study. Predicting rare outcomes is often an area of interest in healthcare 

and this may be where learning across multiple databases is more advantageous.

In future work it would be interesting to investigate whether rescaling the Level 1 models’ 

predictions within the ensemble, to make the mean predicted risk for each Level 1 model within 

the ensemble equal, could improve the weighted fusion or mixture of expert ensembles. In 

addition, in this study we did not investigate pruning the Level 1 models within the ensembles, 

but this is an area of future research that may further improve transportability of an ensemble. 

In this study none of the Level 1 single database models achieved an AUROC ~0.5, but it may 

make sense to prune such models if the situation arises. 

CONCLUSION

In this study we performed a large-scale empirical evaluation to investigate the transport-

ability of a simple and feasible distributed learning approach that combines models developed 

in different databases via simple ensemble techniques. The results show that a mean fusion 

ensemble appears to transport to new data with higher discrimination compared to models 

developed in any single database.  As a consequence, developing a mean fusion ensemble of 

prognostic models developed using different databases may lead to more clinically robust and 

useful prognostic models. However, recalibration is likely to be required. 
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ABSTRACT

Background: We investigated whether we could use influenza data to develop prediction mod-

els for COVID-19 to increase the speed at which prediction models can reliably be developed 

and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores 

that quantify a patient’s risk of hospital admission with pneumonia (COVER-H), hospitalization 

with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 

30-days following COVID-19 diagnosis using historical data from patients with influenza or 

flu-like symptoms and tested this in COVID-19 patients.

Methods: We analyzed a federated network of electronic medical records and administra-

tive claims data from 14 data sources and 6 countries containing data collected on or before 

4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients 

with influenza or flu-like symptoms any time prior to 2020. The first step was to create a 

data-driven model using LASSO regularized logistic regression, the covariates of which were 

used to develop aggregate covariates for the second step where the COVER scores were 

developed using a smaller set of features. These 3 COVER scores were then externally validated 

on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 

diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included 

i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services 

or death, and iii) death in the 30 days after index date.

Results: Overall, 44,507 COVID-19 patients were included for model validation. We identified 

7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, 

hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated 

which patients would experience any of our three outcomes. The models achieved good per-

formance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 

0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations 

with some of the COVID-19 validations being less well calibrated than the influenza validations.

Conclusions: This research demonstrated the utility of using a proxy disease to develop a 

prediction model. The 3 COVER models with 9-predictors that were developed using influenza 

data perform well for COVID-19 patients for predicting hospitalization, intensive services, and 

fatality. The scores showed good discriminatory performance which transferred well to the 

COVID-19 population. There was some miscalibration in the COVID-19 validations, which is 

potentially due to the difference in symptom severity between the two diseases. A possible 

solution for this is to recalibrate the models in each location before use.



Chapter 2

52

BACKGROUND

In early 2020 the growing number of infections due to the coronavirus disease 2019 (COVID-19) 

resulted in unprecedented pressure on healthcare systems worldwide and caused many casual-

ties at a global scale. Although the majority of people had uncomplicated or mild illness (81%), 

some developed severe disease leading to hospitalization and oxygen support (15%) or fatality 

(4%)(1, 2). This presented a challenge both in finding effective treatments as well as in identifying 

which patients were at high risk and as such would benefit from protective measures. The most 

common diagnosis in severe COVID-19 patients was pneumonia, other known complications 

included acute respiratory distress syndrome (ARDS), sepsis, or acute kidney injury (AKI)(1).

The WHO Risk Communication Guidance distinguished two categories of patients at high 

risk of severe disease: those older than 60 years and those with “underlying medical conditions”, 

which is non-specific(3). Using general criteria to assess the risk of poor outcomes is a crude 

risk discrimination mechanism as entire patient groupings are treated homogeneously ignoring 

individual differences. Prediction models can quantify a patient’s individual risk and data-driven 

methods could help to identify risk factors that have been previously overlooked. However, a 

systematic review evaluating all available prediction models for COVID-19(4) concluded that 

despite the large number of prediction models being developed for COVID-19, none were 

considered ready for clinical practice. These COVID-19 prediction models were criticized for 

i) being developed using small data samples, ii) lacking external validation, and iii) being poorly 

reported.

In this article, we describe a process of using a proxy disease to develop a prediction 

model for another disease. This can be used in situations where there is a data scarcity for the 

disease of interest. In this process a model is developed using big data from a proxy disease and 

then assessed in the target disease. This preserves all the target disease data for validation to 

provide a more robust and reliable assessment of model performance in the intended setting. 

This increases the evidence of the performance of a model in the target disease compared to 

if the same data had been used for development. We describe a use-case for this process using 

influenza data to develop a model in the early stages of the COVID-19 pandemic. It has been 

well documented that influenza and COVID-19 have significant differences(5, 6). However, we 

aim to show that influenza data can be used to develop a well performing model that could have 

been transported and used in early COVID-19 cases. The extensive external validation of the 

influenza developed model in early COVID-19 cases will robustly demonstrate the performance 

in COVID-19 patients and show areas that need adjustment and the model’s limitations. The 

lessons learned from this study could be used to inform the development of early prediction 

models in future pandemics.
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METHODS

We performed a retrospective cohort study to develop COVID-19 prediction models for 

severe and critical illness. This study is reported according to the Transparent Reporting of a 

multivariate prediction model for Individual Prediction or Diagnosis (TRIPOD) guidelines(7). 

At the start of the pandemic, there was very limited data available to develop prediction 

models due to the novel nature of the disease. To overcome the shortcoming of small data, we 

investigated whether we could use a proxy disease to develop a prediction model. This allowed 

us to utilise all available COVID-19 data for model validation. We developed models using 

historical data from patients with influenza or flu-like symptoms to assess a patient’s individual 

risk of developing severe or critical illness following infection using readily available information 

(i.e. socio-demographics and medical history). The developed models were validated against 

COVID-19 patients to test whether the performance transferred between the two settings.

We developed COVID-19 Estimated Risk (COVER) scores to quantify a patient’s risk of 

hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring 

intensive services or death (COVER-I), or fatality (COVER-F) due to COVID-19 using the 

Observational Health Data Sciences and Informatics (OHDSI) Patient-Level Prediction frame-

work(8). The research collaboration known as OHDSI has developed standards and tools that 

allow patient-level prediction models to be rapidly developed and externally validated following 

accepted best practices(9). This allows us to overcome two shortcomings of previous CO-

VID-19 prediction papers by reporting according to open science standards and implementing 

widespread external validation.

Source of data
This study used observational healthcare databases from six different countries. All datasets 

used in this paper were mapped into the Observational Medical Outcomes Partnership Com-

mon Data Model (OMOP-CDM)(10). The OMOP-CDM was developed for researchers to 

have diverse datasets in a consistent structure and vocabulary. This enables analysis code and 

software to be shared among researchers, which facilitates replication and external validation 

of the prediction models. 

The OMOP-CDM datasets used in this paper are listed in Table 1. All COVID-19 data was 

collected prior to 4/27/2020.

Participants
For model development, we identified patients aged 18 or older with a general practice (GP), 

emergency room (ER), or outpatient (OP) visit with influenza or flu-like symptoms (fever and 

either cough, shortness of breath, myalgia, malaise, or fatigue), at least 365 days of prior observa-

tion time, and no symptoms in the preceding 60 days. The initial healthcare provider interaction 

was used as index date, which is the point in time a patient enters the cohort.
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Table 1 Data sources formatted to the Observational Medical Outcomes Partnership Common Data Model 
(OMOP-CDM) used in this research (data type: claims, electronic health/medical records (EHR/EMR), general 
practitioner (GP))

Database
Database 
Acronym

Country Data type
Contains 
COVID-19 
data?

Time period

Columbia University 
Irving Medical Center 
Data Warehouse

CUIMC United 
States

EMR Yes Influenza: 1990-2020 
COVID-19: March-April 
2020

Health Insurance and 
Review Assessment 

HIRA South Korea Claims Yes COVID-19: 1st January-
4th April 2020

The Information System 
for Research in Primary 
Care 

SIDIAP Spain GP and hospital 
admission EHRs 
linked 

Yes Influenza: 2006-2017
COVID-19: March 2020

Tufts Research Data 
Warehouse

TRDW United 
States

EMR Yes Influenza: 2006-2020
COVID-19: March 2020

Department of Veterans 
Affairs

VA United 
States

EMR Yes Influenza: 2009-2010,
2014-2019
COVID-19: 1st March- 
20th April

Optum© De-Identified 
ClinFormatics® Data 
Mart Database*

ClinFormatics United 
States

Claims No 2000-2018

Ajou University School 
of Medicine Database

AUSOM South Korea EHR No 1996 - 2018

Australian Electronic 
Practice based Research 
Network

AU-ePBRN Australia GP and hospital 
admission EHRs 
linked

No 2012-2019

IBM MarketScan® 
Commercial Database

CCAE United 
States

Claims No 2000-2018

Integrated Primary 
Care Information

IPCI Netherlands GP Yes 2006-2020

Japan Medical Data 
Center

JMDC Japan Claims No 2005-2018

IBM MarketScan® 
Multi-State Medicaid 
Database

MDCD United 
States

Claims No 2006-2017

IBM MarketScan® 
Medicare Supplemental 
Database

MDCR United 
States

Claims No 2000-2018

Optum© de-identified 
Electronic Health 
Record Dataset

Optum EHR United 
States

EHR No 2006-2018

*Development database
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For validation in COVID-19 we used a cohort of patients presenting at an initial healthcare 

provider interaction with a GP, ER, or OP visit with COVID-19 disease. COVID-19 disease was 

identified by a diagnosis code for COVID-19 or a positive test for the SARS-COV-2 virus that 

was recorded after 1/1/2020. We required patients to be aged 18 or over, have at least 365 days 

of observation time prior to the index date and no diagnosis of influenza, flu-like symptoms, or 

pneumonia in the preceding 60 days.

Outcome
We investigated three outcomes: 1) hospitalization with pneumonia from index up to 30 days 

after index, 2) hospitalization with pneumonia that required intensive services (ventilation, intu-

bation, tracheotomy, or extracorporeal membrane oxygenation) or death after hospitalization 

with pneumonia from index up to 30 days after index, and 3) death from index up to 30 days 

after index. Note that death is included in the second outcome to avoid incorrectly classifying 

patients who died without receiving intensive services as "low risk".

The analysis code used to construct the participant cohorts and outcomes used for develop-

ment and validation can be found in the R packages located at: https://github.com/ohdsi-studies/

Covid19PredictionStudies

Sensitivity analyses
We performed sensitivity analyses which involved using different versions of the COVID-19 

cohort with varying sensitivities and specificities. At the beginning of the pandemic less testing 

capacity was available and as such we wanted to try broader definitions. Hence, we investigated 

three additional definitions where we included patients with symptoms, influenza, and visits any 

time prior to 2020. We then performed identical analysis with these changed cohorts. 

Predictors
We developed a data-driven model using age in groups (18-19, 20-25, 26-30, …, 95+), sex, and 

binary variables indicating the presence or absence of recorded conditions and drugs any time 

prior to the index date. Missing records are thus effectively imputed as zero, exceptions are age 

and sex, which are always recorded in the OMOP-CDM. In total, we derived 31,917 candidate 

predictors indicating the presence of unique conditions/drugs recorded prior to the index date 

(GP, ER, or OP visit) for each patient. When using a data-driven approach to model development, 

generally the resulting models contain many predictors. This may optimise performance, but can 

be a barrier to clinical implementation. The utility of models for COVID-19 requires that they 

can be widely implemented across worldwide healthcare settings. Therefore, in addition to a 

data-driven model, we investigated two models that include fewer candidate predictors.

The age/sex model used only age groups and sex as candidate predictors. The COVER 

scores used a reduced set of variables, which were obtained by the following process:
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1.	 Multiple clinicians inspected the data-driven model to identify variables that had a high 

standardized mean difference between patients with and without the outcome calculated 

using the following equation: 

76 

Predictors 

We developed a data-driven model using age in groups (18-19, 20-25, 26-30, …, 95+), sex, and 

binary variables indicating the presence or absence of recorded conditions and drugs any time 

prior to the index date. Missing records are thus effectively imputed as zero, exceptions are age 

and sex, which are always recorded in the OMOP-CDM. In total, we derived 31,917 candidate 

predictors indicating the presence of unique conditions/drugs recorded prior to the index date 

(GP, ER, or OP visit) for each patient. When using a data-driven approach to model development, 

generally the resulting models contain many predictors. This may optimise performance, but can 

be a barrier to clinical implementation. The utility of models for COVID-19 requires that they can 

be widely implemented across worldwide healthcare settings. Therefore, in addition to a data-

driven model, we investigated two models that include fewer candidate predictors. 

The age/sex model used only age groups and sex as candidate predictors. The COVER scores used 

a reduced set of variables, which were obtained by the following process: 

1. Multiple clinicians inspected the data-driven model to identify variables that had a high

standardized mean difference between patients with and without the outcome calculated

using the following equation: 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  ���� ���� ������������ �����  �������
√�������� ���� ������������  ������� �������

). 

There are often multiple predictors which are related and correlated selected by the

model, for example a model might select a condition occurrence in different time periods

predating the index date. This could be simplified to one predictor saying only “Patient

had condition X in history”, instead of having multiple predictors specifying in which time

period the condition occurred. Likewise, multiple codes that are probably related to a

There are often multiple predictors which are related and correlated selected by the model, 

for example a model might select a condition occurrence in different time periods predating 

the index date. This could be simplified to one predictor saying only “Patient had condition 

X in history”, instead of having multiple predictors specifying in which time period the 

condition occurred. Likewise, multiple codes that are probably related to a specific condi-

tion could be simplified in one predictor. We identified general categories from these such 

as ‘heart disease’ and ‘diabetes’. 

2.	 Phenotype definitions for each category were created. This was performed to make the 

definitions clinically meaningful.

3.	 We trained a LASSO logistic regression model on the original data using age groups, sex 

and the newly created predictors indicating whether the patient had any of the category 

predictors.

4.	 The coefficients of this reduced variable model were then multiplied by 10 and rounded to 

the nearest integer. This was done to make the model simpler to calculate.

5.	 This gave us the simple score-based model.

Sample size
The models were developed using the Optum© De-Identified ClinFormatics® Data Mart Data-

base. We identified 7,344,117 valid visits with influenza or flu-like symptoms, of which 4,431,867 

were for patients aged 18 or older, 2,977,969 of these had at least 365 days of prior observation 

time, and 2,082,277 of these had no influenza/symptoms/pneumonia in the 60 days prior to 

index. We selected a random sample of 150,000 patients from the total population, as research 

showed it is possible to efficiently develop models with near optimal performance, while reduc-

ing model complexity and computational requirements by using a sample of this size(45). Riley 

et al. provide a calculator for minimum sample size, which for number of predictors = 20, event 

rate = 0.05 and R2 = 0.1 would require a minimum of 1,698 patients(46). This subset was used 

to develop the data-driven model. The full set of 2,082,077 patients was then used for the 

development and validation of the simple model. A small subset of this data was used to develop 

the data-driven model and so the presented internal performance could be optimistic. In theory 

this is a limitation, but it has no effect on the evidence of the external validation. Figure 1 is a 

flow chart demonstrating the above exclusions and flow of data through the study.
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Missing data
Age and sex are required by the OMOP-CDM used by OHDSI and will never be missing. For 

each condition or drug we considered no records in the database to mean the patient does not 

have the condition or does not receive the drug. This could lead to misclassification of patients 

if a patient’s illness is not recorded in the database.

Statistical analysis methods
Model development followed a previously validated and published framework for the creation 

and validation of patient-level prediction models(8). We used a person ‘train-test split’ method 

to perform internal validation. In the development cohort, a random split sample (`training 

sample’) containing 75% of patients was used to develop the prediction models and the remain-

ing 25% of patients (`test sample’) was used to internally validate the models. We trained models 

using LASSO regularized logistic regression, using a 3-fold cross validation technique in the 

train-set to learn the optimal regularization hyperparameter through an adaptive search(13). 

We used R (version 3.6.3) and the OHDSI Patient-Level Prediction package (version 3.0.16) for 

all statistical analyses(8).

To evaluate the performance of the developed models, we calculate the overall discrimina-

tion of the model using the area under the receiver operating characteristic curve (AUC), the 

area under the precision recall-curve (AUPRC), and the model calibration. The AUC indicates 

the probability that for two randomly selected patients, the patient who gets the outcome 

will be assigned a higher risk. The AUPRC shows the trade-off between identifying all patients 

who get the outcome (recall) versus incorrectly identifying patients without outcome (preci-

sion) across different risk thresholds. The model calibration is presented in a plot to examine 

agreement between predicted and observed risks across deciles of predicted risk. Calibration 

assessment is then performed visually rather than using a statistic or numeric value as this 

provides a better impression of the direction and scale of miscalibration(14). Summary statistics 

are reported from the test samples.

We performed external validation in databases containing COVID-19 data. To do this we 

assessed patients with confirmed COVID-19. In addition, we performed a classical external 

validation in which we applied the models to identical settings across diverse patient popula-

tions with influenza or flu-like symptoms prior to 2020. We examined the external validation 

using AUC, AUPRC and model calibration in the same way as internally. We provide confidence 

intervals when the number of events is below 1,000. Once the number of events increases, 

confidence intervals become too narrow to provide a good estimate of error.

This study adheres to open science principles for publicly prespecifying and tracking 

changes to study objectives, protocol, and code as described in the Book of OHDSI(15). For 

transparency, the R packages for the development and external validation of the models in any 

database mapped to the OMOP-CDM are available on GitHub at: https://github.com/ohdsi-

studies/Covid19PredictionStudies
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RESULTS

Online results
The complete results are available as an interactive app at: http://evidence.ohdsi.org/Covid19 

CoverPrediction

This application will continue to be updated as the models are validated, an archived version 

of the app that was released to accompany this article is available here: https://zenodo.org/

record/4697417

Participants
Table 2 describes the characteristics at baseline of the patients across the databases used 

for development and external validation. Out of the 150,000 patients sampled with influenza 

or flu-like symptoms in the development database (ClinFormatics), there were 6,712 patients 

requiring hospitalization with pneumonia, 1,828 patients requiring hospitalization and intensive 

services with pneumonia or death, and 748 patients died within 30 days. See Table 2 for the full 

outcome proportions across the databases included in this study. A total of 44,507 participants 

with COVID-19 disease were included for external validation.

In the databases used for external validation, the patient numbers ranged from 395 (TRDW) 

to 3,146,743 (CCAE). The datasets had varied outcome proportions ranging from 0.06-12.47 

for hospital admission, 0.01-4.91 for intensive services, and 0.01-12.27 for fatality. Charac-

teristics at baseline differed substantially between databases as can be seen in Table 2, with 

MDCR (a database representing retirees) containing a relatively old population of patients and 

a high number of comorbidities, and IPCI (a database representing general practice) showing a 

relatively low condition occurrence. 

Model performance
The internal validation performance for each model is presented in Table 3. The external valida-

tion of the COVER scores on the COVID-19 patients is shown in Table 4. Full validation results 

can be seen in Appendix 1B of the online supplement. Receiver operating characteristic and 

calibration plots are included in Figure 2.

Model specification
The data-driven models for hospitalization, intensive services, and fatality contained 521, 349, 

and 205 predictors respectively. The COVER-H, COVER-I, and COVER-F scores are presented 

in Figure 3. After data-driven selection, clinicians reviewed the resulting models and created 

the composite predictors. This produced the COVER scores which include 7 predictors, in 

addition to age groups and sex, that corresponded to the following conditions existing any 

time prior to the index date: cancer, chronic obstructive pulmonary disease, diabetes, heart 

disease, hypertension, hyperlipidemia, and kidney disease (chronic and acute). A description of 
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the covariates can be found in Appendix 1A of the online supplement. The COVER scores are 

detailed in Figure 3 and are accessible online under the calculator tab at: http://evidence.ohdsi.

org:3838/Covid19CoverPrediction/

Figure 3 also provides a risk converter, which allows for easy conversion between the risk 

score and predicted risk of the outcomes. The scores can be converted to a probability by 

applying the logistic function: 1/(1+exp((risk score-93)/10)). Furthermore, we provide a plot 

of the probability distribution for each of the three models from patients in ClinFormatics to 

demonstrate the expected regions the probabilities fall into. To calculate the COVER scores 

using Figure 3, a clinician first needs to identify which conditions the patient has. The points 

for the corresponding predictors are then added to arrive at the total score. For example, if 

a 63-year-old female patient has diabetes and heart disease, then her risk score for hospital 

admission (COVER-H) is 43 (female sex) + 4 (heart disease) + 3 (diabetes) + 15 (age) = 65. The 

risk scores for intensive services (COVER-I) and fatality (COVER-F) are 51 and 47, respectively. 

Table 3 Results for internal validation in ClinFormatics

Outcome Predictors
No. 
Variables

AUC AUPRC

Hospitalization with pneumonia Conditions/drugs + age/sex 521 0.852 0.224

Age/sex 2 0.818 0.164

COVER-H 9 0.840 0.120

Hospitalization with pneumonia requiring 
intensive services or death

Conditions/drugs + age/sex 349 0.860 0.070

Age/sex 2 0.821 0.049

COVER-I 9 0.839 0.059

Fatality Conditions/drugs + age/sex 205 0.926 0.069

Age/sex 2 0.909 0.037

COVER-F 9 0.896 0.039

Table 4 Results of external validation of the COVER scores on COVID-19 patients with a GP, ER, or OP visit 
in 2020 (*Confidence interval is not reported as the number of outcomes is larger than 1000)

Outcome Database
AUC (95% 
confidence interval)

AUPRC

Hospitalization with pneumonia
(COVER-H)

HIRA 0.806 (0.762-0.851) 0.134

SIDIAP 0.748*	 0.072

TRDW 0.731 (0.611-0.851) 0.132

VA 0.689 (0.649-0.729) 0.179

Hospitalization with pneumonia requiring intensive 
services or death
(COVER-I)

CUIMC 0.734 (0.699-0.769) 0.100

HIRA 0.910 (0.889-0.931) 0.053

VA 0.763 (0.708-0.818) 0.058

Fatality
(COVER-F)

CUIMC 0.820 (0.796-0.840) 0.400

HIRA 0.898 (0.857-0.940) 0.150

SIDIAP 0.895 (0.881-0.910) 0.083

VA 0.717 (0.642-0.791) 0.068
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Using the risk converter in Figure 3, a score of 65 corresponds to a risk of 6%. Scores of 51 and 

47 correspond to 1.5% and 1%, respectively.

DISCUSSION 

Interpretation
We developed and externally validated models using large datasets of influenza patients to 

quantify a patient’s risk of developing severe or critical illness due to COVID-19. In the develop-

ment data, the 9-predictor COVID-19 Estimated Risk (COVER) scores were a good trade-off 

between model complexity and performance, as the AUCs were generally close to the large 

data-driven models. In the development database the COVER scores achieved an AUC of 

Figure 2 The ROC and Calibration plots for the validations (internal and external) of the 3 Cover scores
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0.84 when predicting which patients will be hospitalized or require intensive services and an 

AUC of 0.90 when predicting which patients will die within 30 days. When validated on 1,985 

COVID-19 patients in South Korea the COVER-H score achieved an AUC of 0.81, COVER-I 

and COVER-F achieved an AUC of 0.90 and 0.91. When applied to 37,950 COVID-19 Spanish 

patients COVER-H had an AUC of 0.75 and performed better when predicting fatality (COVER-

F: AUC 0.89). When applied to US patients, the COVER-I and COVER-F models achieved AUCs 

of 0.73 and 0.82 in CUIMC, VA performed similarly with AUCs of 0.76 and 0.72 respectively. 

The VA also achieved 0.69 for COVER-H. The results show reasonable performance with some 

inconsistency across a range of countries.

A visual assessment of calibration plots across validations showed reasonable calibration in 

HIRA, SIDIAP, and VA. There was a slight overestimation of risk amongst oldest and highest risk 

strata in SIDIAP, and to a lesser extent in HIRA. The calibration was poor in CUIMC, as risk was 

often underestimated. This may be due to CUIMC containing mostly hospitalized COVID-19 

patients, so the CUIMC cohort are experiencing more severe COVID-19. The VA showed some 

miscalibration in the lowest and highest risk strata. The observed miscalibration is possibly due 

to the differing severities of the diseases used for model development and calibration. However, 

miscalibration could also be due to other differences in populations not caused by the use of a 

proxy disease. The variable calibration results suggest that the model’s performance should be 

assessed and the model should potentially be recalibrated before being implemented in a local 

context. A simple method to do this is by adjusting the baseline risk based upon the differences 

found between development and validation populations using an adjustment factor derived 

from the differences in case mix between development and validation settings(16, 17).

The age/sex models also show reasonable performance, and these predictors are among the 

main contributors to performance in the COVER scores. This suggests these models could also 

be suitable if access to medical history is difficult.

These results showed that training in large historical influenza data was an effective strat-

egy to develop models for COVID-19 patients. We also performed sensitivity analyses using 

more sensitive COVID-19 definitions, for example including patients with symptoms, influenza, 

and visits any time prior to 2020. The results did not show much deviation from the specific 

definition (online supplement Appendix 1B). Our results show that quantifying a symptomatic 

patient’s risk based on a small selection of comorbidities as well as age/sex gives improved 

model performance.

Limitations
First, it has become clear that there are differences in the underlying nature of the two diseases, 

particularly in respect to the severity of symptoms in COVID-19 patients compared with 

influenza patients. Therefore, it is possible another disease may have provided a better proxy 

than influenza.



2

65

Seek Cover: Using proxy learning to predict COVID-19 severity

Second, despite preserving all the target disease data for validation, we still had relatively 

low outcome numbers. In the CUIMC, HIRA, SIDIAP, and VA COVID-19 databases we either 

reached or approached the threshold for reliable external validation of 100 patients who expe-

rience the outcome of interest(18, 19), but the results of TRDW might not be reliable. 

Furthermore, the data reported early during the COVID-19 pandemic was noisy and 

skewed. This might cause misclassification in the target and outcome cohorts. In order to 

counter this, we performed sensitivity analysis using cohorts that included broad and narrow 

COVID-19 definitions, the impact of this on the results was minimal. The use of a 30-day risk 

window has the limitation that if a patient experiences an outcome after the time window, 

this will be (incorrectly) recorded as a non-event. There is further potential misclassification 

of predictors, for example, if a disease is incorrectly recorded in a patient’s history. Moreover, 

the result of the phenotype generation process is not fully reproducible due to the use of 

clinician expertise, which is an unresolved problem in much epidemiological work. However, the 

phenotype development process is reproducible and the phenotypes generated are provided. 

The evidence in the paper shows the models to be robust and transportable.

We were unable to include some suspected disease predictors in the analysis as these are 

not readily available (e.g. lymphocyte count, lung imaging features) or inconsistently collected 

and reported across the various databases included in the study (e.g. BMI, ethnicity). However, 

due to the high load on healthcare systems and the contagious nature of the disease we believe 

it is useful to have a model that does not require a patient to be either in hospital or another 

setting to receive tests. A similar issue also meant we were not able to validate the COVER-H 

score in CUIMC (it mostly contains ER or hospitalized COVID-19 patients) and the COVER-I 

score in SIDIAP (due to a lack of information on intensive services in the database).

Finally, concerns exist over the clinical validity of claims data, however we were able to 

develop models using claims data that transported well into EHR data. There is the potential 

for some overlap of patients between claims and EHR databases, although this number is likely 

to be small. 

Implications
The results show we were able to develop models that use historical influenza patient’s socio-

demographics and medical history to predict their risk of becoming severely or critically ill 

when infected with COVID-19. To our knowledge, this is the first study that has been able to 

extensively externally validate prediction models on COVID-19 patients at a global scale. The 

adequate performance of the COVER scores in COVID-19 patients (as quantified by consistent 

finding of AUC > 0.7 in new settings) show these scores could have been used to identify 

patients who should have been shielded from COVID-19 in the early stages of the pandemic.
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CONCLUSION

In this paper we developed and validated models that can predict which patients presenting with 

COVID-19 are at high risk of experiencing severe or critical illness. This research demonstrates 

that it is possible to develop a prediction model rapidly using historical data of a similar disease 

that, once re-calibrated with contemporary data and outcomes from the current outbreak, 

could be used to help inform strategic planning and healthcare decisions.

Supplementary Information 
The online version contains supplementary material available at https://rdcu.be/c7aDU
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ABSTRACT

Background: To demonstrate how the Observational Healthcare Data Science and Informat-

ics (OHDSI) collaborative network and standardization can be utilized to scale-up external 

validation of patient-level prediction models by enabling validation across a large number of 

heterogeneous observational healthcare datasets.

Methods: Five previously published prognostic models (ATRIA, CHADS2, CHADS2VASC, Q-

Stroke and Framingham) that predict future risk of stroke in patients with atrial fibrillation 

were replicated using the OHDSI frameworks. A network study was run that enabled the five 

models to be externally validated across nine observational healthcare datasets spanning three 

countries and five independent sites. 

Results: The five existing models were able to be integrated into the OHDSI framework for 

patient-level prediction and they obtained mean c-statistics ranging between 0.57-0.63 across 

the 6 databases with sufficient data to predict stroke within 1 year of initial atrial fibrillation 

diagnosis for females with atrial fibrillation. This was comparable with existing validation studies. 

The validation network study was run across nine datasets within 60 days once the models 

were replicated. An R package for the study was published at https://github.com/OHDSI/

StudyProtocolSandbox/tree/master/ExistingStrokeRiskExternalValidation .

Conclusion: This study demonstrates the ability to scale up external validation of patient-level 

prediction models using a collaboration of researchers and a data standardization that enable 

models to be readily shared across data sites. External validation is necessary to understand the 

transportability or reproducibility of a prediction model, but without collaborative approaches 

it can take three or more years for a model to be validated by one independent researcher. In 

this paper we show it is possible to both scale-up and speed-up external validation by showing 

how validation can be done across multiple databases in less than 2 months. We recommend 

that researchers developing new prediction models use the OHDSI network to externally 

validate their models. 
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BACKGROUND

Observational healthcare data often contains longitudinal medical records for large heteroge-

neous populations. There has been increased interest in learning patient-level prediction models 

using these big real-world datasets with the aim of improving healthcare [1]. These patient-level 

prediction models can be used to identify high-risk subgroups that could benefit from interven-

tions. For example, the cardiovascular model QRISK2, that was developed using a UK primary 

care database, is used to identify patients who may benefit from lipid -lowering medication [2]. 

It is important to ensure a model has good performance before it is used clinically and this 

requires external validation [1,3].

Models are often internally validated using the development dataset by withholding a subset 

of that data from the model training stage so that it can be used for evaluating the model 

performance. The majority of patient-level prediction models will report internal validation. 

External validation is accomplished by evaluating the model on a new dataset (that is different 

from the development dataset). Few published patient-level prediction models are externally 

validated, and research has shown that it often takes three or more years for external validation 

to occur once a model is published [4].

External validation of a patient-level prediction model can provide useful insights into the 

accuracy of the model across different patient characteristics and may be used to learn the 

impact of missing predictors. The type of external validation depends on the similarity between 

the development and validation datasets. When a model is validated on a population that has 

similar characteristics to the development data population the ‘generalizability performance’ 

of the model is investigated (i.e., how well the model performs when making predictions on 

similar patients). When a model is validated on a population that has different characteristics to 

the development data population the ‘transportability performance’ of the model is investigated 

(i.e., how well the model performs on different patients). Many observational datasets are not 

representative of the whole population, so the transportability performance of the model 

discovered during external validation on patients with different characteristics is important to 

know when identifying who the model can be broadly applied to. For example, some clinical 

guidelines recommend treatment stratification for patients based on applying a simple risk 

score model that was developed on a small population but the transportability of the model 

to the general population may not have been studied. This may lead to incorrect predictions.

External validation is a slow process due to the difficulty finding suitable data to replicate 

a prediction model on and difficulty replicating a prediction model (e.g., writing code to cor-

rectly extract the same model covariates from the new data). Often published papers lack the 

information required to replicate the model or can be interpreted subjectively (e.g., in defining 

medical conditions or variables) which can be an issue causing models to be replicated incor-

rectly. This prevents efficient and large-scale external validation which likely slows down clinical 
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uptake of published patient-level prediction models or results in the models being applied 

clinically to patient populations where the model transportability is unknown.

A collaborative approach to external model validation has been proposed to enable ex-

tensive evaluation of prediction models [5]. The Observational Healthcare Data Science and 

Informatics (OHDSI) network is a community of researchers that are working towards the 

common goal of improving the analysis of observational data. The OHDSI community have 

developed standardizations that enable efficient collaboration across research sites. The main 

standardization is the common data structure and vocabulary used by all collaborators known 

as the Observational Medical Outcomes Partnership (OMOP) common data model. The OMOP 

common data model ensures all researchers have their data in the same structure so analysis 

codes such as Structured Query Language (SQL) can be shared across sites. This has enabled 

the development of analysis packages in R for causal inference and patient-level prediction 

that can be used by any researcher with data in the OMOP common data model. The OHDSI 

collaborative network, common data model and patient-level prediction package now present 

the opportunity to scale up external validation. 

The aim of this study is to demonstrate that the OHDSI tools and OMOP common data 

model can be used by researchers to investigate the external validation performance of their 

prediction models across a large number of heterogeneous patient populations. Instead of 

taking years to externally validate a model, OHDSI may make it possible to apply a prediction 

models to a large number of datasets in a short period of time. To demonstrate this we selected 

the prediction problem of 1-year risk of stroke in newly diagnosed atrial fibrillation patients 

as there are multiple existing models that are used clinically, namely Anticoagulation and Risk 

Factors in Atrial Fibrillation (ATRIA) (no prior stroke model) [6], Framingham (no prior stroke 

model) [7] , Congestive heart failure, Hypertension, Age > 75, Diabetes, prior Stroke/transient 

ischemic attack (CHADS2) [8], CHADS2-VASc [9] and Q-Stroke (female model) [10]. We show 

these models can be replicated using the OHDSI standardizations and externally validated 

across numerous data sites within the OHDSI network.

METHODS 

Existing stroke prediction models
We selected the problem of predicting stroke in patients with atrial fibrillation as it has been 

well studied and is one of the only prediction problems to have been extensively validated. 

Therefore, we have ample benchmarks to compare to the results of this study. The existing 

models we replicated were ATRIA, CHADS2, CHA2DS2-VASc, Framingham and Q-Stroke. 

The ATRIA [6] model was developed on a cohort of 7,284 patients who were 18+ and had 

an atrial fibrillation outpatient diagnosis during 1997 or 1998. ATRIA was internally validated 

on a 3,643 patient hold out set obtaining a c-statistic of 0.72. In the same paper, the authors 
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also externally validated the model on a cohort of 33,247 patients aged 21+ with inpatient 

or outpatient atrial fib or flutter during 2006-2009, obtaining a c-statistic of 0.7. The CHADS2 

score [8] was developed by combining two other stroke prediction models (using the variables 

from these models and assigning points) and was validated on 1,733 patients aged 65 to 95 years 

who had nonrheumatic atrial fibrillation. The CHADS2 score obtained a c-statistic of 0.81 on 

this population. The CHA2DS2-VASc score [9] is another score-based model that was developed 

using knowledge of risk factors. The model was validated on a cohort of 1,577 patients who 

were 18+ and had atrial fibrillation during 2003 to 2004 from 35 countries. The model obtained 

a c-statistic of 0.61 for this patient population. The Framingham score [7] model was based on 

a Cox model developed using data from 705 patients aged 55 to 94 with initial atrial fibrillation. 

The internal validation, using a bootstrap approach, showed a c-statistic of 0.66. The Q-Stroke 

[10] model was developed using primary care data from the UK consisting of 3, 549, 478 patients 

aged 25-84 with no prior stroke or anticoagulation use (except aspirin) and was internally 

validated on 1, 897, 168 similar patients. When applying the model to predict the 10-year risk of 

stroke in female patients with atrial fibrillation at baseline, the c-statistic was 0.65.

The existing models include a small number of variables, Table 1 summarizes the variables 

included in each model. Some of the variables are unlikely to be available in claims data and 

these are marked with the + symbol. A large number of Q-Stroke variables are not commonly 

recorded in claims data (or are UK specific), so this model is difficult to replicate in external 

non-UK databases. For example, US claims data contain incomplete measurement records and 

rarely record family history but many of the Q-stroke predictors were recent measurements 

or family history. Table 2 presents the internal performance and published external validation 

performance for the five models. Although the internal validation c-statistic for some of the 

models was as high as 0.8, independent external validation studies of the models tend to show 

the models achieve c-statistics between 0.6 and 0.7.

The complete definitions for each variable (sets of SNOMED CT or RXNorm codes) are 

provided in online Appendix A.

Validation Prediction task
Within a target population of female patients with newly diagnosed atrial fibrillation and no 

prior stroke predict who will develop a stroke 1 to 365 days after initial diagnosis of atrial 

fibrillation.

Sources of Data
We validated the existing models using a retrospective cohort design and various observational 

healthcare datasets (e.g., claims data and electronic healthcare data). The datasets used to evalu-

ate the models are:

IBM MarketScan® Commercial Database (CCAE) is a United States employer-sponsored 

insurance health plans claims database. The database contains claims (e.g. inpatient, outpatient, 
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Table 1: The covariates included in ATRIA, Framingham, CHADS2, CHA2DS2VASc and Q-Stroke

Predictor ATRIA Framingham CHADS2 CHA2DS2VASc Q-Stroke

Age 85+ x

Age 75-84 x

Age 65-74 x x

Age 60-62 x

Age 63-66 x

Age 67-71 x

Age 72-74 x

Age 75-77 x

Age 78-81 x

Age 82-85 x

Age 86-90 x

Age 91-93 x

Age >93 x

Age 75+ x x

Female x x x

Diabetes x x x x x

Congestive heart failure x x x

Prior Stroke or transient ischemic 
attack

x x x

Hypertension x x x x

Systolic blood pressure+ x x

Total cholesterol: 
HDL* cholesterol ratio+

x

Townsend deprivation score+ x

Proteinuria x

eGFR*<45 or End stage renal 
disease 

x

Vascular disease x

Congestive heart failure or Liver 
disease

x

Smoking status+ x

Ethnicity+ x

Coronary heart disease x

Family history of congestive heart 
failure+

x

Atrial fibrillation x

Rheumatoid arthritis x

Chronic renal disease x

Valvular heart disease x

Existing models for predicting stroke risk. + indicates predictors are often poorly recorded or missing in claims data. 
* HDL - high-density lipoproteins, eGFR- estimated glomerular filtration rate.
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and outpatient pharmacy) from private healthcare coverage to employees, their spouses, and 

dependents, so patients are aged 65 or younger. The database contains data collected between 

2000-2018.

IBM MarketScan® Medicare Supplemental Database (MDCR) represents health services of 

retirees in the United States with primary or Medicare supplemental coverage through privately 

insured fee-for-service, point-of-service, or capitated health plans. The patients are aged 65 or 

older. The database contains data collected between 2000-2018.

IBM MarketScan® Multi-State Medicaid Database (MDCD) contains adjudicated US health 

insurance claims for Medicaid enrollees from multiple states and includes hospital discharge 

diagnoses, outpatient diagnoses and procedures, and outpatient pharmacy claims as well as 

ethnicity. The database contains data collected between 2006-2018.

Optum© De-Identified Clinformatics® Data Mart Database – Socio-Economic Status (Op-

tum Claims) is an adjudicated administrative health claims database for members with private 

health insurance. The population is primarily representative of US commercial claims patients 

(0-65 years old) with some Medicare (65+ years old) however ages are capped at 90 years. The 

database contains data collected between 2000-2018.

Optum© de-identified Electronic Health Record Dataset (Optum EHR) is a US electron 

health record containing clinical information, inclusive of prescriptions as prescribed and ad-

ministered, lab results, vital signs, body measurements, diagnoses, procedures, and information 

derived from clinical Notes using Natural Language Processing (NLP). The database contains 

data collected between 2006-2018.

Stanford Translational Research Integrated Database Environment (STRIDE) is a clinical 

data warehouse that supports clinical and translational research at Stanford University.  This 

resource includes the EHR data of approximately 2 million adult and pediatric patients cared 

for at either the Stanford Hospital or the Lucile Packard Children’s hospital. This study was 

Table 2: The internal and external validation performances of the existing stroke prediction 
models

ATRIA Framingham CHADS2 CHA2DS2VASc Q-Stroke

Internal c-statistic 0.72 0.66 0.82 0.61 0.65

External c-statistic

UK Electronic Medical 
Records (EMR) 2015 [11]

0.7 (0.69-0.71) - 0.68 
(0.67-0.69)

0.68 
(0.67-0.69)

-

Swedish EMR 2016 [12] 0.71 (0.70-0.71) - 0.69 
(0.69-0.70)

0.69 (0.69-0.70) -

Taiwan 2016 [13] - - 0.66 0.70 -

New Zealand, Russia and the 
Netherlands 2014 [14]

- 0.70
(0.68-0.73)

- - 0.71
(0.69-0.73)

UK EMR 2010 [15] - 0.65 
(0.63-0.68)

0.66 
(0.64-0.68)

0.67 (0.65-0.69) -

Internal and previously published external model fit statistics for each of the five models that predict stroke in atrial fibrilla-
tion patients
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completed on an OMOP-CDM adherent instance of STRIDE.  The database contains data col-

lected between 2000-2018.

Columbia University Medical Center’s (CUMC) data come from New York Presbyterian 

hospital’s clinical data warehouse. The database comprises EHR data on approximately 5 mil-

lion patients and includes information such as diagnoses, procedures, lab measurements and 

prescriptions. The database contains data collected between 1980-2018.

Ajou University School Of Medicine (AUSOM) is a database containing the entire EHR 

data from 1994 to 2018 of Korean tertiary hospital, Ajou university hospital. It contains medical 

record of about 2.9 million patients. The database contains data collected between 1994-2018.

The Integrated Primary Care Information (IPCI) is an electronic health care database 

containing patients of Dutch general practitioners (primary care). The database contains data 

collected between 1996-2018.

Each site had institutional review board approval for the analysis, or used deidentified data 

and thus the analysis was determined not to be human subjects research and informed consent 

was not deemed necessary at any site.

Participants
The existing models were applied to two target populations. Both target populations consisted 

of female patients newly diagnosed with atrial fibrillation and no prior stroke or anticoagulant 

use but target population 1 was patients aged 65 to 95 and target population 2 was all ages. 

Target population 1: The target populations was defined as females aged 65-95 with either: 

•	 2 atrial fibrillation records 

•	 1 atrial fibrillation in an inpatient setting

•	 1 atrial fibrillation with an electrocardiogram (ECG) within 30 days prior

and at least 730 days prior database observation and no prior stroke and no prior anticoagulant. 

Target population 2: The target populations was defined as females with either: 

•	 2 atrial fibrillation records 

•	 1 atrial fibrillation in an inpatient setting

•	 1 atrial fibrillation with an ECG within 30 days prior

and at least 730 days prior database observation and no prior stroke and no prior anticoagulant. 

The target populations may contain different types of patients per database (e.g., different 

country US, European or Asian patients and different types of records such as inpatient and 

outpatient). The different databases used in this study are detailed in section ‘Sources of data’.
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Outcome 
We predicted stroke occurring 1 day until 365 days after the initial atrial fibrillation start date. 

The stroke outcome was defined as:

•	 An ischemic or hemorrhagic stroke recorded with an inpatient or ER visit

The code sets used to define atrial fibrillation, ECG and ischemic or hemorrhagic stroke are 

presented in online Appendix B. The full analysis code (data creation and model evaluation) 

is available at: https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ExistingStrokeR-

iskExternal Validation 

Sensitivity analysis
Patients with a high risk of future stroke are often given anticoagulants as a preventative. If 

a high-risk patient is given an anticoagulant intervention during the 1-year time-at-risk this 

may prevent the stroke. We therefore performed a sensitivity analysis to remove patients who 

had an anticoagulant during the 1-year time-at-risk that may have prevented a stroke. For the 

sensitivity analysis, the target populations were modified by censoring patients at the point 

an anticoagulant was recorded, so any patient with an anticoagulant during the time-at-risk 

period was effectively removed from the target population unless they had a stroke prior to 

the anticoagulant.

Predictors
We calculated existing model predictors using phenotype definitions specified in the paper 

describing the development of the model when provided. If the development paper did not 

provide a definition, we used our own. The definitions for each predictor can be found in online 

Appendix A. 

Missing Data
Age and gender are required by the OMOP common data model used by OHDSI and will never 

be missing.

For each condition (diabetes, chronic heart failure, stroke, hypertension, proteinuria, end 

stage renal disease (ESRD), vascular disease, liver disease, coronary heart disease (CHD), atrial 

fibrillation, rheumatoid arthritis, chronic renal disease and valvular heart disease), we considered 

no records of the condition in the database to mean the patient does not have the condition. 

Ethnicity is often missing completely from a database and when missing we did not include 

it. Smoking status and family history are rarely recorded in claims data, we imputed 0 (never 

smoker and no family history) when the predictor was missing. Townsend deprivation score is 

specific to the UK and was not included as a predictor in our validation. The blood pressure 

and cholesterol measurements are rarely recorded in claims data and were not included as 

predictors in our validation.
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Statistical analysis
The prediction model performances were evaluated using the area under the receiver operating 

characteristic (AUROC) curve which is equivalent to the c-statistic for binary classification. 

Confidence intervals were also calculated when the number of outcome patients was fewer 

than 1000. As the models are being used to predict 1-year risk in diverse patients we recali-

brated the models for each database. The models were recalibrated by fitting a linear model 

to the predicted scores to learn a database specific intercept and gradient. We present the 

calibration plots for each of the five models recalibrated in each of the datasets. For each decile 

we calculate the mean recalibrated predicted risk and plot against the observed fraction of 

patients who have the outcome.

Development vs Validation
We picked participants that matched all eligibility criteria for all 5 existing models being vali-

dated but this may be a subset of the patient population used to develop the model for many of 

the models. Many of the predictors for the Q-stroke model were not available in our data and 

the measurements for Framingham were also no available. The outcome in this validation study 

was 1 year following index but many of the models were developed for 10-year risk.

RESULTS 

Participants
The characteristics of the participants across the network showed that hypertension was very 

common in the patients. Patients were older and often has renal and cardiac issues. See online 

Appendix C for the full characteristic table. 

IPCI did not contain inpatient stroke records, so the models were unable to be evaluated 

on this dataset. The percentage of patients who had stroke recorded within 1 year in each of 

the remaining dataset target populations is presented in Table 3. The percentage of patients with 

stroke during the 1 year following atrial fibrillation diagnosis in the various target populations 

ranged from approximately 1% in CCAE, STRIDE, AUSOM and Optum EHR to 5% in MDCD 

and CUMC. 

Model Performance
The results of the discriminative ability of the five existing models across all eight datasets that 

had inpatient stroke recorded are presented in Table 4. As the AUSOM and STRIDE datasets 

had outcome counts less than 100, we report the performance in Table 4 but do not include it 

in the aggregate summaries due to uncertainty in the estimates as a result of small sample sizes. 

Across the datasets with sufficient outcome counts, ATRIA obtained a mean AUROC of 

0.61 (range 0.57-0.64) on the female patients aged 65 or older and a mean AUROC of 0.63 
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(range 0.58-0.66) on the female patients of all ages. CHADS2 obtained a mean AUROC of 

0.58 (range 0.54-0.60) on the female patients aged 65 or older and a mean AUROC of 0.61 

(range 0.56-0.63) on the female patients of all ages. CHA2DS2VASc obtained a mean AUROC 

of 0.60 (range 0.55-0.62) on the female patients aged 65 or older and a mean AUROC of 0.63 

(range 0.58-0.65) on the female patients of all ages. Framingham obtained a mean AUROC of 

0.60 (range 0.56-0.63) on the female patients aged 65 or older and a mean AUROC of 0.64 

(range 0.57-0.65) on the female patients of all ages. Q-Stroke obtained a mean AUROC of 0.55 

(range 0.53-0.56) on the female patients aged 65 or older and a mean AUROC of 0.57 (range 

0.54-0.61) on the female patients of all ages. 

The calibration plots showed that recalibrating the total scores using a linear model appears 

to work for ATRIA, Q-stroke, CHADS2 and CHA2DS2VASc but the Framingham model may 

need a non-linear recalibration as it appeared to under-estimate risk in the middle risk groups, 

see online Appendix D.

Table 3: The stroke rate (% of target population) across the datasets

Outcome rate % (Target population size)

Target Population CCAE MDCD MDCR
Optum 
claims

Optum 
EHR

CUMC AUSOM STRIDE

T1: Females aged 65+ 
with atrial fibrillation 
no prior stroke or 
anticoagulants

- 4.95 
(25,880)

4.40 
(89,156)

4.07 
(110,905)

1.30 
(149,906)

5.75 
(4,312)

2.61 
(268)

1.37 
(3,366)

T2: Females with atrial 
fibrillation no prior stroke 
or anticoagulants

1.33 
(61,224)

4.61 
(33,262)

- 3.49 
(139,376)

1.13 
(189,815)

5.00 
(5,758)

1.76 
(455)

1.28 
(4,456)

Sensitivity T1: Females 
aged 65+ with atrial 
fibrillation no prior stroke 
or anticoagulants (no 
anticoagulants during tar) 

- 5.04 
(23,586)

5.26 
(56,511)

4.48 
(78,353)

1.44 
(99,212)

6.23 
(3,403)

4.17 
(144)

1.29 
(2,094)

Sensitivity T2: Females 
with atrial fibrillation 
no prior stroke or 
anticoagulants (no 
anticoagulants during tar)

1.28 
(46,054)

4.69 
(29,546)

- 3.73 
(100,757)

1.22 
(128,409)

5.35 
(4,546)

2.73 
(256)

1.22 
(2,786)

(Target population size in each dataset and the percentage of patients with stroke within 1 year of initial atrial fibrillation 
diagnosis)
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Table 4: Discrimination performance of the existing models externally validated across the OHDSI datasets

Database AUROC (95% CIs)

Target 
Population* Model CCAE MDCD MDCR

Optum 
claims

Optum 
EHR

CUMC AUSOM STRIDE

T1: Females 
aged 65+ 
with atrial 
fibrillation no 
prior stroke or 
anticoagulants

ATRIA - 0.57 
(0.55-
0.58)

0.63 
(0.62-
0.64)

0.61 0.62 0.64 
(0.61-
0.68)

0.60 
(0.33-
0.87)

0.49 
(0.40-
0.58)

CHADS2 - 0.54 
(0.53-
0.56)

0.60 
(0.59-
0.61)

0.59 0.60 0.60 
(0.57-
0.64)

0.51 
(0.27-
0.75)

0.48 
(0.39-
0.57)

CHA2DS2VASc - 0.55 
(0.53-
0.57)

0.60 
(0.59-
0.61)

0.59 0.62 0.61 
(0.58-
0.65)

0.53 
(0.32-
0.74)

0.52 
(0.42-
0.62)

Framingham - 0.56 
(0.54-
0.57)

0.62 
(0.61-
0.63)

0.59 0.61 0.63 
(0.60-
0.66)

0.58 
(0.33-
0.83)

0.61 
(0.52-
0.70)

Q-Stroke - 0.53 
(0.52-
0.55)

0.56 
(0.55-
0.57)

0.55 0.56 0.55 
(0.51-
0.59)

0.56 
(0.29-
0.84)

0.50 
(0.41-
0.59)

T2: Females 
with atrial 
fibrillation no 
prior stroke or 
anticoagulants

ATRIA 0.62 
(0.60-
0.64)

0.58 
(0.56-
0.59)

- 0.65 0.65 0.66 
(0.62-
0.69)

0.73 
(0.58-
0.89)

0.52 
(0.44-
0.60)

CHADS2 0.61 
(0.59-
0.62)

0.56 
(0.55-
0.57)

- 0.62 0.63 0.63 
(0.60-
0.66)

0.63 
(0.43-
0.83)

0.50 
(0.42-
0.57)

CHA2DS2VASc 0.63 
(0.61-
0.65)

0.58 
(0.56-
0.59)

- 0.64 0.65 0.64 
(0.61-
0.67)

0.73 
(0.60-
0.85)

0.55 
(0.47-
0.62)

Framingham 0.62 
(0.60-
0.64)

0.57 
(0.56-
0.59)

- 0.64 0.65 0.65 
(0.62-
0.68)

0.70 
(0.53-
0.86)

0.61 
(0.53-
0.69)

Q-Stroke 0.61 
(0.59-
0.63)

0.54 
(0.53-
0.56)

- 0.57 0.58 0.56 
(0.53-
0.60)

0.63 
(0.39-
0.88)

0.51 
(0.43-
0.59)

Sensitivity T1: 
Females aged 
65+ with atrial 
fibrillation no 
prior stroke or 
anticoagulants 
(no anti-
coagulants 
during 1 year 
time-at-risk) 

ATRIA - 0.56 
(0.55-
0.58)

0.63 
(0.62 
-0.64)

0.61 
(0.61 
-0.62)

0.63 
(0.61 
-0.64)

0.65 
(0.62-
0.69)

0.69 
(0.43-
0.95)

0.55 
(0.47-
0.62)

CHADS2 - 0.54 
(0.53-
0.56)

0.61 
(0.60 
-0.62)

0.59 
(0.58-
0.60)

0.61 
(0.59 
-0.62)

0.62 
(0.58-
0.65)

0.61 
(0.36-
0.85)

0.51 
(0.38-
0.63)

CHA2DS2VASc - 0.55 
(0.54-
0.57)

0.61 
(0.60 
-0.62)

0.59 
(0.58-
0.60)

0.63 
(0.61 
-0.64)

0.63 
(0.59-
0.66)

0.64 
(0.45-
0.83)

0.55 
(0.42-
0.67)

Framingham - 0.55 
(0.54-
0.57)

0.62 
(0.61 
-0.63)

0.59 
(0.59-
0.60)

0.62 
(0.61 
-0.63)

0.64 
(0.61-
0.68)

0.68 
(0.44-
0.93)

0.64 
(0.53-
0.74)

Q-Stroke - 0.53 
(0.52-
0.55)

0.57 
(0.55-
0.58)

0.55 
(0.54-
0.56)

0.57 
(0.55 
-0.58)

0.56 
(0.52-
0.60)

0.61 
(0.30-
0.92)

0.47 
(0.35-
0.58)
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DISCUSSION

This study demonstrated the ability to perform external validation across five different data 

sites with access to nine databases in a short period of time. The countries corresponding to 

each database spanned across the USA, Europe and Asia. This shows the OHDSI network and 

tools can be used by researchers to efficiently perform external validation of models developed 

using observational healthcare data. The datasets used for validating the existing models that 

predict stroke in female patients with atrial fibrillation had varied outcome rates (1%-6%) in-

dicating differences between the data. Despite the differences between the datasets there was 

consistently moderate discriminative performance across the databases.

Interpretation
Excluding patients with an anticoagulant after atrial fibrillation who did not have a prior stroke 

increased the incidence rate for all databases except CCAE and STRIDE. This suggests many 

people under 65 who have a stroke within a year of initial atrial fibrillation diagnosis had a 

prior anticoagulant. This may be a consequence of different treatment of patients with atrial 

fibrillation who are under 65 compared to being 65 and older. Atrial fibrillation patients who are 

given an anticoagulant when they are younger than 65 may have other risk factors prompting 

the use of an anticoagulant. 

Table 4: Discrimination performance of the existing models externally validated across the OHDSI datasets  
(continued)

Database AUROC (95% CIs)

Target 
Population* Model CCAE MDCD MDCR

Optum 
claims

Optum 
EHR

CUMC AUSOM STRIDE

Sensitivity 
T2: Females 
with atrial 
fibrillation no 
prior stroke or 
anticoagulants 
(no anti-
coagulants 
during 1-year 
time-at-risk)

ATRIA 0.63 
(0.61 
-0.66)

0.58 
(0.56 
-0.59)

- 0.67 0.67 0.67 
(0.64-
0.70)

0.79 
(0.63-
0.94)

0.53 
(0.43-
0.63)

CHADS2 0.62 
(0.60 
-0.65)

0.56 
(0.55 
-0.58)

- 0.64 0.65 0.64 
(0.61-
0.68)

0.72 
(0.53-
0.91)

0.51 
(0.41-
0.62)

CHA2DS2VASc 0.65 
(0.62 
-0.67)

0.58 
(0.56 
-0.59)

- 0.65 0.67 0.66 
(0.63-
0.69)

0.81 
(0.71-
0.90)

0.55 
(0.44-
0.65)

Framingham 0.64 
(0.61 
-0.66)

0.57 
(0.56 
-0.59)

- 0.65 0.66 0.66 
(0.63-
0.69)

0.76 
(0.59-
0.93)

0.62 
(0.51-
0.72)

Q-Stroke 0.62 
(0.60 
-0.64)

0.55 
(0.53 
-0.56)

- 0.58 0.6 0.57 
(0.53-
0.61)

0.68 
(0.42-
0.94)

0.47 
(0.36-
0.57)

Discrimination performance of the existing models across the datasets. The AUROC 95% confidence intervals were only 
calculated when the outcome count was less than 1000. *- See section ‘Participants’ for full inclusion/exclusion criteria
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The sensitivity analysis shows the AUROC performance of models when removing patients 

with an anticoagulant and no stroke or an anticoagulant prior to stroke is comparable or better, 

see Table 3. This makes sense, for example consider the hypothetical situation where a clinical 

risk model correctly assigns a high risk to a patient who will have a stroke, but this high risk 

leads to a clinician giving the patient anticoagulants before the stroke that prevent the stroke 

occurring. In this situation the model’s performance will be negatively impacted because of the 

intervention as the model was correct to assign a high risk but was wrong due to the interven-

tion preventing the stroke. This raises the issue of how to fairly evaluate models that are already 

being used clinically or in situations where existing guidelines are used to identify patients who 

should being given preventative medicine. A fair evaluation is simple when there is no clinical 

intervention, but complex when preventative medicine exists for the outcome. 

The validation performance of the models replicated using the OHDSI patient-level predic-

tion framework and validated across the OHDSI network are comparable with other published 

results. The Q-Stroke model performed the worst out of all the existing models, but this is likely 

due to many variables of that model being specific to the UK or are things that are missing from 

claims data (such as family history, smoking status and recent measurements). This may indicate 

that Q-Stroke is not transportable to the US population. In addition, the performances of the 

models were worse when applied to older females as age is a key predictor in many of the 

models. In future work it would be interesting to investigate applying more complex machine 

learning methods with data-driven predictor selection to learn more advanced models for 

predicting stroke in older patients with atrial fibrillation and no prior stroke. 

Implications
The external validation was performed over 60 days by five different research sites. Utilizing the 

OHDSI collaboration to validate a new prognostic model would enable extensive external vali-

dation across diverse patient populations. In addition, this could be accomplished in significantly 

less time than the current process for external validation that takes more than three years on 

average for one other researcher to implement the model [4]. The large-scale external valida-

tion was only possible because i) the OMOP common data model and OHDSI standardizations 

enable sharing of analysis code and ii) collaboration that is possible due to the OHDSI network. 

We recommend researchers who develop prediction models gain insight into their model’s 

transportability by utilizing the OHDSI network’s external validation ability. All that is required 

is to replicate their models using the OHDSI Patient-level prediction framework, which would 

also enable other researchers to readily implement the model.

Limitations
The main limitation of this study was the correct replication of existing models. The reason 

external validation rarely occurs is that many published models lack certain details such as 

how to define variables, as code lists are often not published. As a best practice patient-level 
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prediction models should provide full definitions for all variables in the model and provide the 

model. We used the model’s variable definitions when published, but when these were not 

available, we used our own code sets to define the variables. Another limitation in this study is 

the limited target populations investigated. We chose females aged 65 or older with no prior 

stroke as that was the intersection of criteria used when developing the five existing stroke 

models but we also wanted to see the impact of restricting to older patients (as many models 

use age as a variable), so we included a second target population of all females with no prior 

stroke. In future work it would be interesting to investigate the performances of the models 

across many different target populations. Finally, although OHDSI contains a large network of 

databases, it may not be possible to validate every prediction model on each of the databases 

within the network. For example, some databases may not contain the criteria used to identify 

the target population (e.g., if the target population required a specific measurement), may not 

have certain predictors recorded or may not have the outcome recorded (e.g., if the outcome 

requires an inpatient record but the data only contain outpatient records). The databases may 

also have insufficient observation time (e.g., a model predicting 10-year risk of stroke may not 

be suitably evaluated in US claims data such as Optum claims where only 13% of patients have 

5+ years of observation). Future works needs to be done to investigate how to interpret the 

results of external validation across heterogeneous datasets.

CONCLUSION

In this paper we demonstrated the ability to scale-up external validation by using a collaborative 

network where researchers share a common data structure. The existing prediction models 

were validated on 9 databases across 5 sites within two months. We recommend that research-

ers utilize the OHDSI network to externally validate their models at scale across multiple 

datasets to gain insight into the generalizability and/or transportability of their models.

In addition, the results show that the existing stroke in atrial fibrillation models do not 

perform well at predicting stroke in the target population of older females in datasets we 

investigated. This prompts further research into whether a better model can be developed.
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The online version contains supplementary material available at https://rdcu.be/digCJ
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ABSTRACT

Introduction: External validation of prediction models is increasingly being seen as a mini-

mum requirement for acceptance in clinical practice. The lack of interoperability of healthcare 

databases, however, has been the biggest barrier to this occurring at a large scale. Recent 

improvements in database interoperability enable a standardized analytical framework for model 

development and external validation. External validation of a model in a new database lacks 

context, whereby the external validation can be compared to a benchmark in this database. Itera-

tive pairwise external validation (IPEV) is a framework which uses a rotating model development 

and validation approach to contextualize the assessment of performance across a network of 

databases. As a use case we predict 1-year risk of heart failure in patients with type 2 diabetes.

Methods: The method follows a 2-step process involving 1) development of baseline and 

data-driven models in each database according to best practices; 2) validation of these models 

across the remaining databases. We introduce a heatmap visualization that supports the assess-

ment of the internal and external model performance in all available databases. As a use case, 

we developed and validated models to predict 1-year risk of heart failure in patients initializing 

a second pharmacological intervention for type 2 diabetes. We leveraged the power of the 

Observational Medical Outcomes Partnership Common Data Model to create an open-source 

software package to increase the consistency, speed and transparency of this process.

Results: A total of 403,187 patients were included in the study from 5 databases. We developed 

5 models which when assessed internally had a discriminative performance ranging from 0.73 to 

0.81 area under the receiver operating characteristic curve (AUC) with acceptable calibration. 

When externally validating these models in a new database, three models achieved consistent 

performance and in context often performed similarly to models developed in the database 

itself. The visualization of IPEV provided valuable insights. From this the model developed in 

the CCAE (Commercial Claims and Encounters) database is identified as the best performing 

model overall.

Conclusion”Using IPEV lends weight to the model development process. The rotation of 

development through multiple databases provides context to model assessment leading to 

improved understanding of transportability and generalizability. The inclusion of a baseline 

model in all modelling steps provides further context to the performance gains of increasing 

model complexity. The CCAE model was identified as a candidate for clinical use. The use case 

demonstrates that IPEV provides a huge opportunity in a new era of standardised data and 

analytics to improve insights and trust in prediction models at an unprecedented scale.

Key Points

1.	 External validation lacks context which inhibits understanding of model performance

2.	 Iterative Pairwise External Validation provides contextualised model performance across 

databases and across model complexity.
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INTRODUCTION

External validation has been identified as an essential aspect of clinical prediction model devel-

opment. It has previously been shown to be a key part of the evidence gathering process needed 

for creating impactful models that are adopted in the clinic (1). Currently, the majority of 

prediction models are not externally validated and where they are, they are poorly reported (2). 

A major issue preventing the external validation of models is the lack of interoperability 

of healthcare databases (3). There are two main problems to solve. First, databases use differ-

ent coding systems (e.g. International Classification of Diseases 10 (ICD-10) and SNOMED 

Clinical Terms), and second, the structure of these databases is different (4). A solution to this 

is to convert each database into a common format to improve syntactic interoperability and 

standardize to common vocabularies to improve the semantic interoperability.

After the format and vocabulary of these databases has been standardized it allows for the 

development of standardized tools and a framework for conducting prediction research (5, 

6). Using these standard tools, and conducting research according to open science principles 

(7), removes many difficulties associated with externally validating prediction models. Some 

challenges remain, including the interpretation of results in the context of the new database. 

Furthermore, there are important privacy concerns that often need to be respected in the 

development process (8). For example, many data owners are unable to share patient-level data 

and as such any development process must be able to incorporate this (9).

Performance contextualization
Traditionally, a prediction model is trained on one database using predictors selected by domain 

experts and this model is then validated on other databases (10, 11 ). These models often 

consist of a limited number of predictors (12). Recently, data-driven approaches have been 

used to leverage all the information in the electronic health records which can result in models 

with many predictors. The question is how do we decide if the model works well on other 

databases? For this the standard approach is to compare the discriminative performance and 

model calibration with the performance obtained on the training data (13, 14, 15). If a perfor-

mance drop is found then this could be because the model was tuned too much to the training 

data to properly transport to unseen data, i.e. the model was overfit or it needs recalibration. 

However, it could also be that the performance achieved is similar to the performance of a 

model that is trained on that same database. In other words, the model performs as good as 

possible in the context of the available data in that database. We need a model development 

approach that provides this context. Furthermore, simpler models are preferred as they are 

more easily clinically implemented and as such understanding the performance gain compared 

to the baseline of using only age and gender is valuable to contextualize the performance of the 

more complex model (16, 17).



Chapter 4

94

In this paper we introduce Iterative Pairwise External Validation (IPEV), a framework to 

better contextualise the performance of prediction models, and demonstrate its value when 

developing and validating a prediction model in a network of databases. The use case for this 

model is to predict 1-year risk of heart failure following the initialisation of a secondary drug 

to treat T2DM. As described in detail in a literature review (18), the pathophysiological con-

nection between diseases and their frequent adverse interactions should impact treatment 

choice (19). In the 2019 American Diabetes Association guidelines (20) it is advised to stratify 

patient treatments based upon established, or high risk of, heart failure (HF). Specifically, the 

guidelines state that thiazolidinediones (TZD) should be avoided in patients with heart failure 

and that in patients at high risk of heart failure Sodium-glucose co-transporter-2 inhibitors 

(SGLT2i) are preferred. The guidelines appear to be trending towards a more personalized 

treatment strategy (21, 22) and as such there is an opportunity to use risk prediction to further 

personalize treatment in the intermediate steps before treatment with insulin. This use case 

presents the opportunity to both evaluate IPEV and simultaneously create a potentially clinically 

impactful model.

METHODS

Analysis Methods

Iterative Pairwise External Validation 
Iterative Pairwise External Validation (IPEV) is a new model development and validation proce-

dure. It involves a 2-step procedure entailing, in the first step, creating two models per database, 

a model with only age and sex as covariates, which serves as a baseline for what a simple 

model can achieve, and a more complex data-driven model which assesses what the maximum 

achievable performance is. The second step is then validating these models both internally and 

also externally in the other databases. A diagram of this process can be seen in Figure 1. 

Figure 1 Rotation of databases for model development and external validation in the IPEV method. 
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Candidate covariates
Two sets of covariates are used to develop models. One set consists of only age and sex, and 

is used to create a baseline model. The other set is used to build a more complex data-driven 

model and consists of age, sex, and binary variables indicating the presence or absence of 

comorbidity (based on presence of disease codes) any time prior to index, and of procedures 

and drugs that occurred in the year prior to index date. The binary variables constructed are for 

any condition, procedure or drug that is in the history of the patient. For example, if any patient 

has a diagnosis of liver failure recorded in their medical records prior to the index date, then 

we create a candidate binary variable named ‘liver failure any time prior’ that has a value of 1 

for patients with a record of liver failure in their history and 0 otherwise.

The use of these two sets of covariates shows the achievable performance for a simple set 

of covariates which can then be used to assess any added value of a more complex model. This 

gives a context to the performance gains relative to the increased model complexity.

Evaluation Analysis
For performance analysis we consider the area under the receiver operating characteristic 

curve (AUC) as a measure of discrimination. An AUC of 0.5 corresponds to a model randomly 

assigning risk and an AUC of 1 corresponds to a model that can perfectly rank patients in terms 

of risk (assigns higher risk to patients who will develop the outcome compared to those who 

will not). For calibration assessment we use calibration graphs and visually assess whether the 

calibration is deemed to be sufficient. 

Proof of Concept
Predicting 1-year risk of developing heart failure (HF) following initiation of a second pharma-

ceutical treatment for type 2 diabetes mellitus (T2DM) was selected as a proof of concept. This 

case study could help inform treatment decisions by comparing an individual patient’s risk of HF 

with the known safety profiles of the different medications. 

Data Sources
The analyses were performed across a network of five observational healthcare databases. All 

databases contained either claims or EHR data from the US and have been transformed into the 

Observational Medical Outcomes Partnership Common Data Model (OMOP CDM), version 

5 (23). .

Table 1 describes the databases that are included in this study. The complete specifica-

tion for the OMOP CDM, version 5 is available at https://ohdsi.github.io/CommonDataModel/

cdm531.html.
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Cohort definitions

Target Cohort
The target population consisted of T2DM patients who were treated with metformin and who 

became new adult users of one of Sulfonylureas, Thiazolidinediones, Dipeptidyl peptidase-4 

inhibitors, Glucagon-like peptide-1 receptor agonists, or SGLT2is. The index date is the first 

prescription of one of these secondary treatments. We required all subjects to have a T2DM 

diagnosis, which was based upon the presence of a disease code and use of Metformin prior to 

the index date. Patients with HF or patients treated with insulin on or prior to the index date 

were excluded from the analysis. Patients were required to have been enrolled for at least 365 

days before cohort entry.

Outcome definitions
The outcome was defined using the presence of a diagnosis code of HF occurring for the first 

time in the patient’s history, between 1 and 365 days post index.

The cohort definition is available at: https://github.com/ohdsi-studies/PredictingHFinT2DM/

tree/main/validation/inst/cohorts

The study period contained data from 2000-2018. The exact period varies between the 

databases and is available in Table 1.

Covariates
In total, we derived around 39,000 candidate covariates. These included more than 26,000 

conditions, 13,000 procedures and drugs, and demographic information. 

Table 1 Database characteristics

Database Acronym Country Data type Time period
Database 
size (million 
patients)

Optum® de-identified Electronic 
Health Record Dataset

Optum EHR US EHR 2006-2018 87

IBM MarketScan® Commercial 
Database

CCAE US Claims 2000-2018 155

IBM MarketScan® Multi-State 
Medicaid Database

MDCD US Claims 2006-2017 30

IBM MarketScan® Medicare 
Supplemental Database

MDCR US Claims 2000-2018 10

Optum® De-Identified 
Clinformatics® Data Mart Database

Optum 
Clinformatics

US Claims 2000-2018 98
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Statistical Analysis
Model development followed the framework for the creation and validation of patient-level 

prediction (PLP) models presented in Reps et al. (5). We used a ‘train-test split’ method to 

perform internal validation. In each target population cohort, a random sample of 75% of the 

patients (`training sample’) was used to develop the prediction model and the remaining 25% 

of the patients (`test sample’) was used to internally validate the prediction model developed. 

We used regularized logistic regression risk models, also known as least absolute shrinkage 

and selection operator (LASSO). Regularisation is a process to limit overfitting in model devel-

opment. This process works by assigning a “cost” to the inclusion of a variable and the variable 

must contribute more to the model performance than this cost in order to be included. If this 

condition is not met then the coefficient of the covariate becomes 0, which therefore eliminates 

the covariate from the model providing an in-built feature selection (24).

Open source software
We used the PatientLevelPrediction R-package (version 4.0.1) and R (v4.0.2) to perform all 

analyses. All development analysis code and cohort definitions are available at: https://github.

com/ohdsi-studies/PredictingHFinT2DM

The validation package is available here: https://github.com/ohdsi-studies/PredictingH 

FinT2DM/tree/main/validation

RESULTS

Across all databases we selected 403,187 T2DM patients initiating second-line treatment. Of 

these, 12,173 developed HF during the one-year follow-up. Next, patient-level prediction of HF 

was performed. The number of patients and the AUCs are given in Table 2. 

The AUC results, as shown in Figure 2, show reasonable performance. The main diagonal 

of the heatmaps show the internal validation. All other results are from external validation. 

The mean AUCs across internal and external validation were 0.78 (CCAE), 0.76 (MDCD), 0.76 

MDCR, 0.78 (Optum Clinformatics), and 0.78 (Optum EHR). The best performing models in 

Table 2 Number of patients and internal validation performance per database

Database No. of T2DM 
patients

No. of HF 
patients

Incidence 
(%)

Age in years
Mean (SD)

Female
(%)

Full model 
AUC 

Age Sex 
AUC 

CCAE 112,989 1,843 1.6 53 (8) 46 0.78 0.64

MDCD 15,860 650 4.1 50 (12) 64 0.77 0.65

MDCR 22,433 1,658 7.4 73 (6) 48 0.73 0.64

Optum 
Clinformatics

92,272 4,332 4.7 63 (13) 48 0.80 0.69

Optum EHR 159,633 3,690 2.3 58 (12) 49 0.81 0.71
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terms of discrimination were developed in CCAE, Optum ClinFormatics and Optum EHR and 

appear to be the most consistent across the external validations. When comparing the baseline 

model, consisting of only age and sex, with the full model the performances drops. For example, 

for CCAE the data-driven model achieves 0.78 compared to the baseline model of 0.64 and 

similarly for Optum Clinformatics with 0.80 (data-driven) and 0.69 (baseline).

Of note is that models externally validated in the MDCR dataset consistently outperformed 

the model that was developed there. This occurred for the data-driven model (internal: 0.73) 

with the external validation of CCAE, Optum Clinformatics and Optum EHR achieving 0.75, 

0.76, 0.74 respectively.

We assessed the calibration of the three models with the best discrimination (CCAE, 

Optum Clinformatics and Optum EHR). The calibration results from these 3 models across the 

external validations are shown in Figure 3. The models generally appear to be well calibrated. 

Concerning the best model produced, the CCAE and Optum Clinformics had the best 

discrimination performance. The CCAE model contained 195 covariates, compared to 413 for 

Figure 2 A heatmap of the AUC values across internal validation (values on the lead diagonal) and external 
validations of the developed prediction models. The colour scale runs form red (low discriminative ability) to 
green (high discriminative ability. The upper section details the performances for the data driven model. The 
lower half details the same but then for the Age and Sex model. Abbreviations: CCAE: Commercial Claims and 
Encounters, mdcd: Medicaid, mdcr: Medicare, optum EHR: optum electronic health records.
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Optum Clinformatics, and as such is preferred. The names and coefficients of the covariates in 

the CCAE model are available in online Appendix 1.

For the CCAE developed model demographic plots are provided in the electronic supple-

mentary material. These plots show the calibration of the model stratified by sex across age 

groups.

All results are available in a study application located at: https://data.ohdsi.org/Predicting 

HFinT2DM/

DISCUSSION

This study demonstrates the use of IPEV for model development and external validation. 

External validation of a prediction model has traditionally lacked any contextual information 

on what the expected performance in the database should be. By including a baseline and 

data-driven model developed in each database, context can be added to the performance of a 

model externally validated in this database. 

Due to the recent improvements in database interoperability and standardisation of tools, 

it was possible to utilise IPEV to develop and contextually validate models for predicting HF in 

Figure 3 Internal and external calibration of the Optum EHR, Optum Clinformatics and CCAE trained 
models
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T2DM. This contextual validation provides a more rigorous approach to model assessment. For 

example, in the case where a model’s performance drops from training to external validation 

but achieves performance consistent with expectations in the external validation database, 

this then raises the question of what the difference is between the two databases. Similarly, 

if a model achieves a lower performance than expected in a new database, then this can be 

interpreted as overfitting to training data.

The inclusion of a baseline model (using only age and sex covariates) in each training step 

provides context to the performance gain from increasing model complexity. By comparing the 

more complex model with this baseline model, a better assessment of complexity-performance 

trade-off can be made to analyse the potential for clinical implementation. If a large disparity 

in performance between these two models is observed then a parsimonious model (of around 

10 variables) could be created to attempt to bridge the gap between the performance of 

the complex model and the ease of implementation of the baseline model. The interpretation 

of the results is aided by the inclusion of a heatmap. This allows for easy visual inspection 

of performance across external validations. Once differences in performance across external 

validation have been demonstrated, it would be interesting to investigate the case-mix of the 

cohorts in the database as well as the prevalence of the predictors to better understand these 

performance differences (25).

Considering the specific use case, the performance of the CCAE model developed in this 

paper suggests it could be used in treatment planning. This model has good discriminative 

performance that is consistent across external validations (AUC internal: 0.78, external 0.75-

0.79). There is a minor loss in discrimination for some of the external validations, for example 

MDCR has the lowest AUC (0.75). This lower performance is in-line with the databases internal 

validation, and MDCR performs worst across all the external validations suggesting it is a more 

problematic dataset in which to make predictions. Possible explanations of this are that the un-

derlying case-mix of patients could mean discrimination is harder. For example, patients in this 

database are generally older and as such it could become more difficult to separate them, there 

is also little to no overlap in ages of patients between CCAE and MDCR. Another reason could 

be the lower numbers of patients might mean there is insufficient data to provide a reliable 

estimate, or to develop the optimal model. Specifics of performance in different demographics 

is available in the shiny application. The model showed reasonable calibration across internal 

and external validations with some overestimation of risk for the higher risk patients. The 

Optum EHR external validation showed a larger miscalibration and could benefit from some 

recalibration before implementation. When comparing the data-driven models to the baseline 

models. The baseline models had only moderate performance across all the validations for all 

models, often there was a drop of between 0.1 and 0.2 AUC demonstrating that the increase 

in complexity provides significant performance gains. Age and sex alone are not sufficient to 

accurately predict future HF and more complex models are needed. 
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Calibration is important when using a model for clinical decision making and this result 

highlights that our model likely requires recalibration when applied to case-mixes that differ 

from the development database. 

Considering the implementation of the model, this could occur either at a treatment facility 

or health authority level. Using the previously discussed ADA treatment guidelines, the use of 

a risk model to stratify patients can be impactful and the evidence generated in this paper sug-

gests the CCAE developed model can be a candidate for clinical use. As patients can be assessed 

on their risk of HF, their treatment can be personalised helping to prevent medication switching 

or the addition of new medicines to treat HF when there are diabetes treatments with known 

beneficial HF effects. To our knowledge this is the only model that is available in open source 

that can be used for this specific prediction problem. 

This method is scalable and can be expanded to use more databases as they are available. An 

example is through the EHDEN project, which is currently standardizing 100 databases to the 

OMOP CDM. This network could be leveraged to provide context to the external validation 

of prediction models at an unprecedented scale. This would lead to improved models, stronger 

evidence and a bigger clinical impact. When considering the case of a federated data network 

such as EHDEN, IPEV is particularly suitable. As privacy concerns prevent the sharing of patient-

level data, a development and validation process that does not require this is necessary. IPEV 

incorporates “privacy by design” whereby, research can be performed by separate researchers 

at separate locations without the need to share patient data. This is a major advantage as it 

maintains the possibility to produce excellent and clinically impactful research without intro-

ducing any new privacy or security concerns. This means that the method can be used under 

the standard procedures of obtaining IRB approval, maintain the security of data and improve 

the quality of research, without significantly burdening the researchers.

A limitation of this method is that it does use the full data available for training. There is 

evidence to suggest that combining data can improve the internal validation. This however 

requires researchers to share data and violates data privacy concerns. Further, methods such 

as federated learning are compatible with IPEV. If a researcher is particularly concerned with 

improving the performance of the developed model they could combine n-1 databases and test 

in the nth. Then rotate through development using IPEV leaving out one database at a time. 

Increasing the data available for training and maintaining external validity simultaneously.

CONCLUSION

Using IPEV lends weight to the model development process. The rotation of development 

through multiple databases provides context allowing for thorough analysis of performance. 

The inclusion of a baseline model in all modelling steps provides further context to the per-

formance gains of increasing model complexity. IPEV provides a huge opportunity in a new 
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era of standardised data and analytics to improve insights and trust in prediction models at an 

unprecedented scale.
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ABSTRACT

Background: Clinical prediction modelling has seen a rapid rise in interest in the last 10 years, 

but implementation of models in clinical practice still lags behind their development. This is 

mainly because the reporting on the development and performance of prediction models is sub-

optimal, hampering reproducibility and extensive external validation and updating. It is difficult 

to reproduce the model development due to lack of data interoperability and standardisation of 

development steps. The Observational Health Data Sciences and Informatics (OHDSI) initiative 

has developed a framework for prediction model development and validation that enforces best 

practices. This paper introduces the DELPHI library, a database and a graphical user interface 

for sharing, finding, assessing, and validating clinical prediction models developed within the 

OHDSI framework. The aim is to follow the Findable, Accessible, Interoperable, and Re-usable 

(FAIR) principles to improve prediction modelling using observational data. Future validation 

and updating studies for prediction model are expected to benefit from this library.

Main body: A database structure was created to store all relevant information necessary for 

a fully reproducible model development process, and to improve transparency on model per-

formance measures. This data is shared in a graphical user interface which allows independent 

researchers, clinicians, and regulators to access, explore, and assess the models on their own 

data. As a proof-of-concept study we describe how the DELPHI library was used to share 53 

models and their performance. The library is publicly available and will expand as more models 

are developed, validated or updated under the OHDSI framework.

Conclusions: The OHDSI prediction framework in combination with the DELPHI library 

makes prediction models more FAIR. DELPHI enables reproducibility of model development 

and large-scale external validation. This is an important prerequisite for their clinical adoption.



5

109

The DELPHI Library

BACKGROUND

Over the past decade there has been a rapid increase in the number of published clinical predic-

tion models (1). There has not however been a similar rise in the use of these models within 

clinical practice. This gap is due to multiple reasons including insufficient reporting, e.g., models 

are not shared publicly (2), opaque development and validation methods, insufficient testing 

(3), creating a lack of trust from clinical stakeholders. Many models are also often developed 

without a clear clinical use case or implementation strategy in the clinical setting (4).

Recent efforts to improve the utility of clinical prediction models include the Transparent 

reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 

(2), which aimed to standardise and improve the reporting of models. Since the publishing of the 

TRIPOD guidelines there has been some improvement in the standards of reporting. However, 

many models still do not follow best practices in either model development, validation, or 

reporting (1). There is a clear need to further enforce the adherence to these best practices 

(5-7). Another effort to improve model dissemination is the Tufts Clinical Prediction Model 

repository (8). This provides a location for storing published clinical prediction models, in this 

article referred to as Patient-Level Prediction (PLP) models, with short recommendations for 

use of the models and often an attached scientific article detailing the development process. 

What this repository lacks, however, is the ability to explore the results of the model training 

and validation interactively, and it does not allow to download the model and execute it locally 

against data.

In order to create a repository with this functionality, we first need to improve the interop-

erability of the data as well as the prediction models. Differences in data structure (syntactic 

interoperability) and terminology (semantic interoperability) make it hard to enforce a stan-

dardised and reproducible development and validation process. When models are developed 

on databases without a common data model, each model will have to be transformed to the 

format of the database that it needs to be applied in. Furthermore, if a model is developed 

using a database that has diagnoses recorded using International Classification of Diseases 

(ICD-10) codes, the model will need to be translated to be applied in a database that is based 

on International Classification of Primary Care (ICPC) codes. This is not scalable to many 

prediction models and databases. 

In an ideal situation a clinician or researchers interested in a specific prediction problem, 

can search for all relevant prediction models, assess the available performance measures, and 

download the model from a central repository to evaluate the model on its own data. The 

newly obtained model performance can then be added to this central repository to expand the 

body of knowledge. This creates an open science environment for prediction modelling that is 

dynamic and fully transparent.
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Observational Medical Outcomes Partnership Common Data Model 
Improving interoperability of data requires the use of a Common Data Model (CDM). The recent 

widespread adoption of common data models (such as the Observational Medical Outcomes 

Partnership Common Data Model (OMOP CDM) (9) many of the barriers have been removed. 

The OMOP CDM improves the syntactic and semantic interoperability of the data. For example, 

two different databases, database A and database B, have different database structures (e.g., 

tables and columns) and coding systems. If the two databases were mapped to the OMOP 

CDM, then database A OMOP CDM and database B OMOP CDM have the same structure 

and coding system. This means any data extraction code written for database A OMOP CDM 

can also be applied to database B OMOP CDM. By using the OMOP CDM it alleviates many 

of the burdens associated with data extraction for a particular study. When considered in the 

context of a prediction model, what it allows is for a standard set of tools to be developed to 

create, train and evaluate a prediction model based upon the known format of the data model. 

The feature extraction is done using the same code, exactly the same way, for any OMOP 

CDM database. However, for example, when a model is trained in a non-OMOP CDM database 

(diagnoses coded using ICD-10) and applied to a non-OMOP CDM database (diagnoses coded 

using ICPC), the researcher would have to manually write code to extract model features using 

the ICPC coding on a per study basis. This can mean a model changes when validated.

Patient-Level Prediction
A prediction task can be thought as trying to map a set of predictive variables (e.g., history of 

diabetes, age, sex at birth) to an outcome label (e.g., will develop cancer) in a dataset. When 

learning this mapping, or function, an algorithm attempts to learn a set of parameters for predic-

tive variables to better predict the labelled outcome. Patient-Level prediction (PLP) has been 

extensively defined elsewhere (5-7), however in short a prediction task consists of a target 

cohort (those for whom we want to make a prediction), and outcome (the outcome of interest 

to be predicted) and a time at risk (during which the outcome is being predicted relative to 

the target cohort index). To develop a model for a given prediction task, the user needs a 

suitable dataset and must specify the modelling design (data pre-processing, type of classi-

fier, hyper-parameter search). A standardised pipeline for the development and validation of 

models has been produced that enforces these guidelines and produces models with a flexible 

algorithm format and a standardised format. This pipeline is implemented using code from the 

PatientLevelPrediction R package.

The OHDSI PatientLevelPrediction R package software provides standardised tools for 

developing and validating prediction models using data in the OMOP CDM. The PatientLevel-

Prediction package takes standard inputs for the database, the prediction task and the modelling 

design and outputs a standardized structure containing the final model, the model design (in-

cluding the prediction task), internal predictions, internal validation performance (AUC, AUPRC, 
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calibration statistics, etc.) and meta data about the process. The package can be accessed at: 

https://github.com/OHDSI/PatientLevelPrediction.

Findable, Accessible, Interoperable and Re-usable (FAIR)
The FAIR guiding principles are intended to improve the infrastructure supporting the reuse 

of data(10). A major component of this is to make available data and metadata contributing to, 

or produced by, scientific research projects. Given the privacy concerns involved in research 

using observational data, the release of the underlying data used to create prediction models is 

impossible. The DELPHI library leverages the interoperability of the OMOP CDM to be able to 

release all relevant model aggregate performance data and metadata (including the model itself 

and relevant study artefacts such as cohort definitions) in a unique, persistent and accessible 

manner. FAIR principles are key in the motivation and construction of the DELPHI library. 

CONSTRUCTION AND CONTENT

In this paper we propose a centralised repository for PLP models that enables users to explore 

model parameters and model performance in addition to the ability to download and apply the 

models to new data. 

The implementation of this repository consists of two separate parts, 1. a database storing 

all the specifications of the prediction models (e.g. target and outcome cohorts etc.), the per-

formances (both internal and external), and information about the researchers that developed 

the models; 2. A graphical user interface (GUI) to connect to and interact with this database in 

a user-friendly manner. This user interface has the functionality to upload results, explore results 

and to download a software package to enable the external validation of results against new 

data in the OMOP CDM format. 

This can then be shared with the community by uploading the external validation results to 

the DELPHI library.

Database
Due to the standard framework for prediction model development and validation implemented 

within OHDSI, models developed have a standardised output. This means that the creation 

of a relational database containing this information is straightforward. The relational database 

(PostgreSql) consists of 30 tables, each corresponding to an element of the standard output 

from the PLP framework. An entity relation diagram of the database is given in Figure 1.. The 

entity relation diagram shows 6 different interconnected sections. These are models, model 

development settings, performance, database information, researchers, and diagnostics. In the 

model sector, the models themselves are stored and there is a table for recalibration to allow 

for model updating to be done and maintain a link to the original model. The model develop-
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ment settings include all the information needed to replicate the development of the model. 

This is important for the reproducibility of the research. The performance contains all the 

aggregate performance statistics that are generated as standard output form the PLP R package. 

Importantly the prediction per patient any performance metrics generated with low counts 

(standard less than 5 patients) are removed before addition as this is considered patient specific 

information is therefore sensitive. The database information contains the specifics of which 

databases were used for development and validation and relevant meta data such as database 

type (general practice, claims etc). Researchers contains name and contact information for the 

researcher that performed the development or validation. The diagnostics section contains the 

results of the diagnostics that are performed on the analyses when using the PLP R package. This 

is a set of quality control measures that should aid in the generation of high-quality evidence.

Graphical User Interface
The processing of the data is done by the graphical user interface. The GUI was developed 

using .NET (core 3.1), a cross-platform, modular open-source software framework, and En-

tity Framework Core which is a modern object-database mapper built to integrate between 

SQL databases and the .NET framework. This allows for integration of our frontend with the 

PostgreSql database instance. The frontend was built in Typescript a version of Javascript that 

includes cross-browser, multi-platform support for large-scale applications. This combined with 

the React framework creates a UI that can adapt to multiple devices, views and platforms. The 

application is also supported by Electron which allows it to be run as a native windows or Mac 

application. The application is also supported by Docker. This way it is quick and easy to setup 

a new development environment or to install everything on a server, which is easy to maintain, 

update and reinstall.

The GUI has been developed to facilitate the uploading, searching and exploring of models 

and performance. The landing page of the library shown in Figure 2. This shows an overview of 

all the available models that have been developed and added to the system. The main library 

page displays all of the developed models along with high-level information including target and 

outcome cohorts, development database and some performance measures. This is detailed in 

Figure 2 The landing page of the DELPHI library. This figure shows the number of models, patients, databases, 
researchers and external validations contained in the models in the databases.
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Figure 3. Once a model has been selected by the user various aspects of the results can be 

explored. This includes the discrimination and calibration performance as well as information 

about the selected model such as the specific settings used for development, model type and the 

database used. Furthermore, there is a section to explore external validation of the model. This 

is shown in figure 4. This displays comparisons of discrimination and calibration performance 

across the various OMOP CDM database that the model has been evaluated against. 

Search functionality has been added to allow for researchers to search for different models 

using multiple fields. These include the target and outcome cohorts. For example, a user might 

Figure 3 The main repository page of the DELPHI library. This contains information on the target and out-
come cohorts, the database used for the development and validation as well as performance metrics.

Figure 4 The validation tab detailing the ROC plot and calibration plot along with performance metrics to 
analyses the selected prediction model.
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be interested in searching for prediction models for patients who will experience a stroke (an 

outcome cohort search) or they might be interested in modes that predict various outcomes 

for patients that have experience a major adverse cardiac event (a target cohort search). This 

is helpful for clinical researchers to access models relevant to their domain. They likely have 

a specific clinical question e.g., “What is the risk of stroke for a patient with newly diagnosed 

atrial fibrillation?”. The GUI will provide them with search functionality to find the model that 

best matches this. Ideally there is a model for exactly this question, but they could also be in-

terested in models that either match the target (e.g., a model predicting a non-stroke outcome 

for atrial fibrillation patients) or outcome (e.g. prediction of stroke in a not atrial fibrillation 

cohort). Once the relevant models have been identified, these models can be compared to see if 

one is fit for practice. The search result can also be filtered by researcher, by model type which 

again will allow clinical researchers to specify model types they deem to be acceptable for their 

practice and for methodological researchers to assess performance for varying model types 

across a multitude of problems.

There is also an option to download the model. This creates a JSON configuration file with 

the standardized model design settings that were used to develop the model plus the model 

(as a JSON, rds or python pickle file). The downloaded model can be used by the PatientLevel-

Prediction package to develop a new model with the same design in any OMOP CDM data or 

validate the model in any OMOP CDM data. The model validation process requires the user 

to download the model JSON from the repository, open an R session, load the JSON as an R 

object, enter their OMOP CDM connection details and then run the execute function. The 

results of this external validation can then be added back into the DELPHI database. 

The current version of the database contains 53 models, from 5 different databases and 

using the data of more the 3.5m patients.

UTILITY AND DISCUSSION

The main purpose of prediction modelling is to aid decision making in clinical practice. In order 

to do this the level of trust in the modelling process and the models themselves needs to be 

improved. Currently prediction models are spread throughout the scientific literature, often 

the parameters of the models themselves are unavailable and the exploration of results is 

limited to what has been reported and it is often incomplete. This article details an application 

that revolutionises the field by centralising models and results and makes accessible everything 

that is needed to assess and implement prediction models. Models that are currently produced 

are often static, the article is published and little if any updates on evidence (new external 

validations) or model updates (recalibration) follow. 

The creation of a database to store the standardised output of PLP models developed on 

the OMOP CDM increases the findability, accessibility, interoperability, and reusability of the 
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models. Whereas previously an interested party would need to perform a literature search of 

disparate sources and keywords, they are now able to perform a systematic search within a 

single database to find available, ready for implementation models. Once a model is found, all 

relevant model information, for example the performance, definitions of target and outcome 

cohorts (especially relevant for clinical implementation) and importantly the covariates and 

model specification will be readily available. 

As DELPHI develops, the set of PLP problem specifications developed by clinical research-

ers to answer relevant and impactful clinical questions will grow. This provides opportunities 

for the field to create of a set of FAIR benchmarking models for the testing of new algorithms 

and model development techniques. Currently, machine learning models are often developed 

and tested in relatively small, synthetically created benchmark datasets that do not capture 

the complexity of real-world data. Moreover, these lack a direct relationship to the ques-

tions in healthcare that clinical prediction models could help to answer. Within DELPHI, the 

more organically developed set of benchmark models can be used by methods researchers 

to improve their model development and evaluation techniques. This is a deviation from the 

traditional benchmarking conducted using identical datasets (11). Due to, amongst other things, 

patient privacy concerns and inherent biases (12), the provision of a benchmarking dataset from 

observational data is challenging (13). By instead providing a set of models, Benchmark models 

will receive a tag in the database for easy identification. This will provide a better, more relevant 

set of benchmarks and provide more relevant and impactful evidence on the performance of 

new techniques.

A limitation of this software is potentially its reliance on models developed against the 

OMOP CDM which precludes any models generated outside of this framework from being in-

cluded. However, there are instructions available for translating existing model into the OHDSI 

standardized model format and if that is done the model can then be added to the DELPHI 

library repository. This flexibility is provided as well as technical support to map existing models 

to encourage researchers to submit models developed outside of the OMOP CDM to then 

receive easy and rapid validation of the models. 

We believe that the DELPHI library represents a paradigm shift in the field of PLP modelling 

and as such should contribute to a vast improvement in the assessment and uptake of models 

in clinical practice.

CONCLUSION

The DELPHI library presents a significant improvement over the current situation in the field of 

PLP modelling. By creating a centralised standardised location for models and their performance 

the searchability and accessibility of PLP models is dramatically improved. This standardised for-

mat and accompanying software enforces best practices in model development and reporting 
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and as such would help to raise the standard of clinical prediction modelling. It also moves the 

field away from a static publishing model to a dynamic ecosystem where models can continue 

to be analysed and updated on new data and in new settings. We believe that the improved 

flexibility in model exploration will aid in the adoption of PLP models in clinical practice. 
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ABSTRACT

Purpose: The purpose of this study was to develop and validate a prediction model for 90-day 

mortality following a Total knee replacement (TKR). TKR is a safe and cost-effective surgi-

cal procedure for treating severe knee osteoarthritis (OA). Although complications following 

surgery are rare, prediction tools could help identify high-risk patients who could be targeted 

with preventative interventions. The aim was to develop and validate a simple model to help 

inform treatment choices.

Methods: A mortality prediction model for knee OA patients following TKR was developed 

and externally validated using a US claims database and a UK general practice database. The 

target population consisted of patients undergoing a primary TKR for knee OA, aged ≥40 years 

and registered for ≥1 year before surgery. LASSO logistic regression models were developed 

for post-operative (90-day) mortality. A second mortality model was developed with a reduced 

feature set to increase interpretability and usability. 

Results: A total of 193,615 patients were included, with 40,950 in The Health Improvement 

Network (THIN) database and 152,665 in Optum. The full model predicting 90-day mortality 

yielded AUROC of 0.78 when trained in OPTUM and 0.70 when externally validated on THIN. 

The 12 variable model achieved internal AUROC of 0.77 and external AUROC of 0.71 in THIN. 

Conclusions: A simple prediction model based on sex, age, and 10 comorbidities that can 

identify patients at high risk of short-term mortality following TKR was developed that dem-

onstrated good, robust performance. The 12-feature mortality model is easily implemented and 

the performance suggests it could be used to inform evidence based shared decision-making 

prior to surgery and targeting prophylaxis for those at high risk. 
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INTRODUCTION

TKR surgery is generally a safe procedure with fewer than 10% of patients experiencing post-

operative complications. These adverse events include short-term (e.g. 90-day) post-operative 

mortality (1, 2). Mortality following TKA is low and has been declining over recent years (3). 

However, there is a scarcity of data on who is at risk of post-operative death, and a related 

prediction tool or algorithm would help inform decisions for patients subjectively at risk of 

complications. For example, a high-risk patient may opt-out of surgery as the long-term benefits 

are outweighed by the cost. Providing a short-term mortality risk model could help inform 

decision making regarding whether to opt for the surgery and to help target preventative 

interventions.

In order to be clinically useful, covariates included in any model must be readily available at 

the time of model implementation. For this study this means pre-operatively. Current prediction 

model studies of post-operative outcomes after TKR have several limitations. In a recent review 

predicting post-operative infection after total joint replacement (4), most models were not 

externally validated, the process of applying a model in a new database to check if performance 

transfers to new data, and none were ready for clinical use due to issues with application 

(e.g. variables unobtainable at time of use) or insufficient performance. Some models were 

developed using data that were not routinely collected in observational data (e.g., floor of a 

patient’s bedroom, preoperative walking distance) and therefore validation of these models was 

infeasible using the data available in this study. Finally, most models had not taken full advantage 

of all data available in medical records. For example, using a comorbidity index (5) instead of all 

patient characteristics (6). There is currently no TKR specific mortality prediction model. 

A well performing robust model that predicts mortality could be used to aid in decision 

making for TKR as well as targeting interventions for high risk patients. As such the hypothesis 

of this study is that 90-day all-cause mortality is predictable using routinely collected data. 

This will be assessed by developing and externally validating a model using area under receiver 

operator curve. 

MATERIALS AND METHODS

This retrospective cohort study used observational healthcare databases from the UK (The 

Health Improvement Network (THIN) (7)) and US (Optum). Detailed information on these 

databases is available in Table . All databases used in this paper were mapped into the Observa-

tional Medical Outcomes Partnership Common Data Model (OMOP-CDM) (8) . The OMOP-

CDM was developed for researchers to transform diverse datasets into a consistent structure 

and vocabulary. This means studies using these databases are more replicable increasing the 

clinical relevance of evidence.
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Each site obtained institutional review board approval for the study or used de-identified 

data and therefore the study was determined not to be human subjects research. Informed 

consent was not necessary at any site.

Cohorts

Development Target Population Cohort
The target population for model development and validation contained patients with knee 

osteoarthritis undergoing TKR. The first recorded TKR procedure identified was considered 

the event of interest with the date of surgery as index date. Inclusion criteria required patients 

to have at least 1 year of continuous pre-index date recorded observation time. Individuals 

below the age of 40, those with prior evidence of knee arthroplasty, knee fracture, knee surgery 

(except diagnostic procedures), rheumatoid arthritis, inflammatory arthropathies, or septic 

arthritis at any time before the index date. This is because these patients likely have a cause 

other than osteoarthritis for their surgery. Patients with spine, hip, or foot pathology observed 

in the 365 days before index date were also excluded.

The target cohort for TKR is available at: TKR: http://atlas-demo.ohdsi.org/#/cohortdefinition/ 

1776551

Outcome Cohorts
Mortality was defined as all-cause mortality based on records of date of death. This is well 

captured in THIN and in Optum until 2013, when a change in reporting means that the cap-

ture after this time is specific but less sensitive. Available at: http://atlas-demo.ohdsi.org/#/ 

cohortdefinition/1776555 

Patients were considered at risk for mortality from the day after surgery up until day 90.

Candidate Predictors
89,031 candidate predictors were derived from the observational healthcare data that existed 

on or prior to the target index date (TKR surgery date). These variables were demographics, 

binary indicators of medical events (e.g. GP visit, disease diagnosis, medication prescription) and 

Table 1 Data sources formatted to the Observational Medical Outcomes Partnership Common Data Model 
(OMOP-CDM) used in this research (data type: claims, electronic health/medical records (EHR/EMR), general 
practitioner (GP))

Database
Database 
Acronym

Country Data type Time period

Optum© De-Identified Clinformatics® Data 
Mart Database

ClinFormatics US Claims 2000-2018

IQVIA Medical Research Data([IMRD], 
incorporating data from The Health 
Improvement Network [THIN]

THIN UK General Practice 2003-2018
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counts of record types. The demographics were gender, 5 year age groups (40-45, 45-50,…,95+) 

and month of the target index date. Binary indicator variables for medical events were created 

based on the presence or absence of each concept for a patient corresponding to the OMOP-

CDM clinical domains of conditions, drugs, procedures or measurements. For conditions binary 

predictors were created using the 30 days and 365 days prior to index date. For example, there 

exists one covariate for each of ‘Diabetes mellitus’, ‘Hypertensive disorder’, and ‘Hypercholes-

terolemia’ (and similarly for other diseases that appear in the patient records), based on the 

occurrence of a diagnosis code for each condition in the 365 days or 30 days preceding the 

index date. Drug covariates were constructed similarly, but used time windows of 30, 365, 1095 

days and all time prior to target index date. Covariates representing counts how many visits 

(e.g. primary care visit) a patient had in the 365 days and 1095 days prior to the target index 

date were also created. The following existing risk scores (CHADS2, CHA2DS2VASc (both 

stroke risk models), Diabetes Complications severity index, Charlson Comorbidity Index) using 

all data prior to index were also calculated and used as candidate predictors.

Methodology for model development and validation
The study was initially conducted using the THIN and OPTUM datasets. Models predicting the 

90-day mortality in the TKR target population were developed in both databases. The interoper-

ability of the OMOP-CDM was utilised to externally validate in the non-development database. 

Model development followed the framework for the creation and validation of patient-level 

prediction (PLP) models presented in Reps et al (9) , a person ‘train-test split’ method was used 

to perform internal validation. In each development cohort, the random split sample (`training 

sample’) containing 75% of patients was used to develop the prediction models and the remain-

ing 25% of patients (`test sample’) was used to validate the risk scores. The models were trained 

using least absolute shrinkage and selection operator (LASSO) regularised logistic regression, 

using a 3-fold cross validation technique in the training sample to learn the optimal regularisa-

tion hyper-parameter through an adaptive search (10). LASSO regularization (11) helps to limit 

overfitting in model development. This process works by assigning a “penalty” to the inclusion of 

a variable, this variable must then contribute more to the performance than the penalisation. If 

this condition is not met then the coefficient of the covariate becomes 0, which eliminates the 

covariate from the model, thus automating feature selection.

Performance of the model was assessed in terms of discrimination and calibration. Discrimi-

nation assesses how well the model can distinguish which patients experience the outcome 

and calibration assesses whether the predicted risks are in alignment with the observed risks. 

Discrimination was measured using the Area Under Receiver Operator Characteristic Curve 

(AUROC). An AUROC of greater than 0.70 is considered to be a reasonable candidate for 

external validation. The model calibration was assessed by plotting the predicted and observed 

risks across deciles of predicted risk. Calibration assessment is then performed visually rather 
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than using a statistic or numeric value as this provides an impression of the direction and scale 

of miscalibration (12) . Summary statistics were reported from the test samples.

External validation (13) was performed by applying the final prediction models in the dataset 

not used for development. The external validation was analysed in the same way as internally.

Model Parsimonisation 
When using a data-driven approach to model development, generally the final models contain 

a large number of covariates. The full model assesses what is in principle the best possible 

performing model. However, the large number of covariates can create a barrier to implementa-

tion and understanding.

Models were therefore created that could be candidates for the clinical implementation 

by performing further analyses in order to reduce the number of features in the final model 

(improving parsimony). This analysis investigated what the performance loss is when using fewer 

covariates.

The approach involved analyzing the covariates selected by the final model and then using 

clinical expertise to attempt to combine multiple of these covariates, that correspond to a 

similar illness, into a single covariate. Often, LASSO logistic regression models include multiple 

covariates which are clinically related, for example a model might select the same condition 

occurrence but in different time periods predating the index date (e.g., ‘diabetes -30 days to 0 

days prior to index’ and ‘diabetes -365 days to 0 days prior to index’). These could be simplified 

to an aggregate covariate of “History of Diabetes”, rather than multiple covariates specifying 

the specific time frame of the occurrence.

The procedures for developing both the full and parsimonious models will be identical 

except for the covariates. Definitions of the aggregated covariates are available in online Ap-

pendix 2.

All statistical analysis was performed using R (version 3.5.1) and the Patient-Level Pre-

diction. This study was conducted and reported according to the Transparent Reporting of a 

multivariate prediction model for Individual Prediction or Diagnosis (TRIPOD) guidelines (14) . 

All the analysis code used for the development for the models are available on github at https://

github.com/OHDSI/StudyProtocolSandbox/tree/master/mortalityValidation

as well as the developed mortality models themselves for external validation at:
https://github.com/ohdsi-studies/TkrPredictSimple

RESULTS

The target population included 40,950 (THIN) and 152,665 (Optum) patients. 90-day mortality 

occurred in 0.20% (THIN)-0.23% (Optum) of patients (Table 2).
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The 90-day mortality model trained using OPTUM obtained internal AUROC above 0.7 

(Table 3). The external validation of the 90-day mortality models developed on OPTUM and 

THIN ranged between 0.68 to 0.86 and are presented in Table 4. Details of the distribution of 

key covariates can be found in online Appendix 1. 

The OPTUM 90-day mortality model performed better than the THIN 90-day mortality 

model both internally and across the external validation (Table 2). The OPTUM 90-day mor-

tality model achieved a slightly increased performance (AUROC 0.69) in the THIN dataset 

compared to the internal validation of the THIN developed model (AUROC 0.68). For the 

90-day mortality OPTUM model, 102 of 89,031 candidate variables were selected into the final 

model. The full model is available in online Appendix 3.

The models and performance on the test and external validation sets are available to 

explore interactively at http://data.ohdsi.org/TKROutcomesExplorer/

The prevalence of a selection of covariates included in the 90-day mortality model devel-

oped using OPTUM, when assessed in multiple databases can be found in online Appendix 1.

This analysis shows that the covariate prevalence varies between the different databases, 

suggesting the databases have different underlying characteristics. As the models maintain 

performance despite these differences, it suggests that the model is robust to variability in the 

distribution of the covariates.

The 90-day Optum mortality was then parsimonised. The creation of these aggregate 

covariates and their definitions are available in online Appendix 2. This model is detailed in Table 

When the analysis was performed with these covariates, the AUROC was 0.77 internally 

and 0.71 in THIN. The calibration plot for the internal validation and the THIN validation are 

presented in Figure 1. Figure 1 shows that, for the majority of patients, the model is well 

calibrated internally with the ideal line always appearing within the confidence interval. For the 

external validation in THIN, the model is well calibrated however for patients at higher risk 

there is some overestimation of risk in the highest risk groups. For example, a predicted risk 

of 0.02 corresponds to an observed risk of 0.015. The model could potentially benefit from 

recalibration in this setting. 

Table 2 TKR target and outcome population sizes and the internal AUROC achieved

Dataset Target Population 90-day mortality

Size AUROC

OPTUM 152,665 353 (0.23%) 0.78

THIN 40,950 81 (0.20%) 0.68



Chapter 6

130

DISCUSSION

The main finding of this study is the predictability of post-operative 90-day mortality following 

TKR. The AUROC of LASSO logistic regression model was found to be 0.78 in the OPTUM 

database. Validating this model against the other databases resulted in AUROC values of 0.68 

(THIN) indicating that the model is fairly robust. The high number of features (102) in this 

model presents a barrier to implementation in clinics. A parsimonious model was therefore cre-

ated, containing 12 variables. This model achieved AUROC of 0.77 in the training data and 0.71 

in the external validation in the THIN database. The calibration was adequate although there 

appeared to be an overestimation of risk for patients at higher risk when assessed in THIN. As 

the parsimonious model achieved similar or better performance and is more implementable, it 

is preferred. 

The desired operating characteristics when applying the parsimonious OPTUM 90-day 

mortality model to classify patients into those who will die and those who will not within 90 

days of the surgery can be picked based on the prediction threshold, see Table 3. As an example, 

Figure 1 Calibration plot showing the calibration of the parsimonious model internally (Optum) and exter-
nally (THIN). The plot shows the agreement between the observed and predicted risk for patients. This is 
calculated by fitting loess regression.
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if a female patients aged 75 presented to a clinician whilst she had COPD and T2DM, then her 

raw score would be 

–6.64376 (intercept) + 0.60808 (age = 75) + 0.44467 (COPD) + 0.27827 (T2DM) = –5.31274

which maps to a predicted risk of 0.5%. When compared to the outcome prevalence of 0.2% 

this shows the patient is twice as likely as average to die following this surgery.

Table 3 The covariates and values for the parsimonious 90-day mortality model

Covariate Value

Intercept -6.64376

Age Group
40-44
45-49
50-54
55-59
60-64
65-69
70-74 (reference)
75-79
80-84
85-89
90-94

-4.40718
-5.72523
-0.61149
-0.25853
-0.21392
-0.01862
0
0.60808
1.08846
1.88595
-1.42352

Gender
Male
Female (reference)

0.36173
0

History of: 
Cancer (excl non-melanoma skin cancer)
COPD
Gout
Heart Failure or Atrial Fibrillation 
Hypertension
Kidney disease
OA
T2DM
Opioid use
Psycholeptics use

-0.21177
0.44467
0.45821
1.25532
-0.12567
0.5571
-0.4513
0.27827
-0.35781
0.17227

Table 4 The external validation of the 90-day mortality models

Development 
database

Validation 
database

Model Type AUROC
Test 
population

Outcome count in test 
population (incidence in cases 
per 100 patients)

OPTUM OPTUM Full 0.78 38,166 88 (0.23)

OPTUM THIN Full 0.7 57,897 121 (0.30)

THIN THIN Full 0.68 10,237 20 (0.20)

OPTUM OPTUM Reduced 0.77 38,157 88 (0.23)

OPTUM THIN Reduced 0.71 57,897 121 (0.30)

THIN OPTUM Full 0.68 152,665 353 (0.23)
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In contrast to previous studies, the focus of this research was to develop the best perform-

ing predictive model on basis of all clinical and demographic data recorded in the observational 

databases and to then assess how close to this performance a reduced feature set model could 

come. The predictors included in the final model were mostly already known to be related 

to the outcome, what this study adds is to provide a quantitative relationship between the 

combination of these and the probability of the outcome. This was done by performing a regres-

sion analysis using these covariates. The selection of these predictors speaks to the robustness 

of the methods. Previous prediction models in the context of knee replacement have focused 

on patient-reported outcomes or revision surgery/implant survivorship, with little focus on 

complications or post-operative mortality, meaning comparison to these is difficult (15). When 

considering common mortality predictors such as the American College of Surgeons National 

Surgical Quality Improvement Program comparisons are difficult using observational data as 

“Functional status” are not well captured in observational studies. Further, the Revised Cardiac 

Risk Index generally performs with a median AUROC of 0.62 showing lower performance than 

the model developed in this study (16).

Hunt et al. report an incidence of mortality (0.37%) in their study on 45-day mortality 

following knee replacement surgery (17). This is high compared with our reported incidence of 

mortality, which could be due to the limitation of the mortality capture in the databases studied. 

The low incidence of death (around 0.2%) following TKR necessitates large datasets with ac-

curate recording of mortality. The reported 90-day mortality predictive model may be used as 

a complementary element for screening of high-risk patients and better preparation before 

surgery. It could also allow the patient and clinician to be better informed about the potential 

benefit-risk of elective TKR. Given that all-cause mortality was considered, the mortality is not 

necessarily caused by the TKR, however if the patient is deemed to be at a high risk of mortality 

in the 90-day post-operative period then the surgery is still likely inadvisable due to the costs 

to both the patient and the healthcare system without providing benefit.

Limitations of this study include the low number of outcomes in some of the analyses 

meaning that estimates are potentially unreliable, as well as potential misclassification of covari-

ates in the data. The recording of death in the THIN is very reliable but in Optum is known 

to be specific but lacking some sensitivity because in 2013 reporting of death stopped being 

mandatory. This could lead to an underestimation of the number of deaths following a TKR in 

this study. Further limitations are that although large numbers of covariates are included in 

the analysis, some covariates are poorly captured in the data used. Known predictors such as 

surgeon skill and volume are not available in routinely collected healthcare data and as such 

have not been included. As with all observational studies, the models can only be assessed on 

the predictors available and as such any predictors which are not in the source data, will be 

missed by the models.

Limitations of the phenotypes include: i) there is a potential contamination issue in the TKR 

cohort as prior to ICD-10 coding, TKR cohorts will have UKR cases as the same ICD procedure 
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code was valid for both ii) if a patient were to have bilateral TKR only the first surgery would 

be included in our target cohort and the second would be excluded.

A major strength of this study is that the model is already externally validated, demonstrat-

ing its robustness and transportability, a process typically taking 3-years (12). The low number 

of features of this model is a significant advantage to implementation.

CONCLUSION

In conclusion, models were developed and externally validated for 90-day mortality after a TKR 

prediction model that has both good discrimination performance and calibration which are 

maintained across the external validation. Thus, this model is a strong candidate for impacting 

clinical decision making.

Supplementary Information 
The online version contains supplementary material available at https://rdcu.be/digIZ
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ABSTRACT

Background: Identification of rheumatoid arthritis (RA) patients at high risk of adverse health 

outcomes remains a major challenge. We aimed to develop and validate prediction models for 

a variety of adverse health outcomes in RA patients initiating first-line methotrexate (MTX) 

monotherapy. 

Methods: Data from 15 claims and electronic health record databases across 9 countries were 

used. Models were developed and internally validated on Optum® De-identified Clinformat-

ics® Data Mart Database using L1-regularized logistic regression to estimate the risk of adverse 

health outcomes within 3 months (leukopenia, pancytopenia, infection), 2 years (myocardial 

infarction (MI) and stroke), and 5 years (cancers [colorectal, breast, uterine]) after treatment 

initiation. Candidate predictors included demographic variables and past medical history. Mod-

els were externally validated on all other databases. Performance was assessed using the area 

under the receiver operator characteristic curve (AUC) and calibration plots. 

Findings: Models were developed and internally validated on 21,547 RA patients and externally 

validated on 131,928 RA patients. Models for serious infection (AUC: internal 0.74, external 

ranging from 0.62 to 0.83), MI (AUC: internal 0.76, external ranging from 0.56 to 0.82), and 

stroke (AUC: internal 0.77, external ranging from 0.63 to 0.95), showed good discrimination and 

adequate calibration. Models for the other outcomes showed modest internal discrimination 

(AUC < 0.65) and were not externally validated.

Interpretation: We developed and validated prediction models for a variety of adverse health 

outcomes in RA patients initiating first-line MTX monotherapy. Final models for serious infec-

tion, MI, and stroke demonstrated good performance across multiple databases and can be 

studied for clinical use.

Funding: This activity under the European Health Data & Evidence Network (EHDEN) has 

received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agree-

ment No 806968. This Joint Undertaking receives support from the European Union’s Horizon 

2020 research and innovation programme and EFPIA.
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INTRODUCTION

Compared to the general population, patients with rheumatoid arthritis (RA) have an increased 

risk of treatment-related adverse events, such as cytopenia and infection, and comorbidities, 

such as cardiovascular disease (CVD) and cancer (1-3). Although the management and progno-

sis of RA has improved in recent decades, identification of RA patients at high risk of adverse 

health outcomes remains a major challenge (4, 5). 

The European Alliance of Associations for Rheumatology (EULAR) and the American Col-

lege of Rheumatology (ACR) recommend initiating methotrexate (MTX) monotherapy (with 

glucocorticoids) as soon as possible after the diagnosis of RA (6, 7), making this the most 

common treatment for RA worldwide. MTX treatment implies screening or monitoring efficacy 

and side-effects, as with most disease modifying antirheumatic drugs (DMARDs). Using predic-

tion models to evaluate patient-level risks in RA patients initiating first-line MTX monotherapy 

could allow clinicians to target those at high risk of adverse health outcomes for increased 

screening or monitoring throughout the course of treatment. 

Few prediction models have been developed for adverse health outcomes in RA patients, 

with those that have been developed focusing on the risk of either CVDs or serious infection 

(8-15). Challenges in the development of RA-specific prediction models have previously been 

highlighted (10, 16). For example, while existing CVD models estimate 10-year risks, a shorter 

period may be more appropriate, since most RA patients will change treatments several times 

during a 10-year period (10). Additionally, a larger cohort of RA patients would allow for the 

development of RA-specific prediction models using a larger number of candidate predictors 

(8). Finally, most existing models have not been subjected to extensive external validation, which 

is necessary to understand a model’s prediction performance (17). In this study, we aimed to 

develop and externally validate prediction models for a variety of adverse health outcomes in 

RA patients initiating first-line MTX monotherapy, using 15 large-scale claims and electronic 

health record (EHR) databases across 9 countries and 4 continents. 

MATERIALS AND METHODS

This study was conducted within the European Health Data & Evidence Network (EHDEN) 

project and involved a multidisciplinary team of rheumatologists, clinicians, epidemiologists, data 

custodians, and data scientists. We developed and validated prediction models using the Patient-

Level Prediction framework from the Observational Health Data Sciences and Informatics 

(OHDSI) initiative (18). This framework allows for standardized development and extensive 

validation of prediction models using observational health databases and can be applied to 

datasets that are mapped to the Observational Medical Outcomes Partnership Common Data 

Model (OMOP CDM) (19-21). The OMOP CDM was developed to transform source data into 
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a common format and enables analytical source code to be shared among researchers. We 

followed the Transparent Reporting of a multivariable prediction model for Individual Prognosis 

Or Diagnosis (TRIPOD) guidelines for reporting (22).

Data sources
We used 15 claims and EHR databases with data mapped to the OMOP CDM from 6 European 

countries (Spain, Estonia, Netherlands, Germany, France, and the United Kingdom (UK)), the 

United States of America (USA), Australia, and Japan. The databases are listed in Table 1. Data 

from the Optum® De-Identified Clinformatics® Data Mart Database, a USA claims database, 

were used for model development and internal validation. Data from the 14 other databases 

were used for external validation. Each site obtained institutional review board approval for the 

study or used de-identified data. Therefore, informed consent was not necessary at any site. 

Extended descriptions of the databases are provided in Table A.1 in online Appendix A. 

Study population
Adult RA patients (aged 18 years and over) were included in the study population if they had at 

least 365 days of observation in the database prior to the first drug utilization record of MTX 

(the index event) and met all of the following inclusion criteria: 1) a diagnosis of RA within 

5 years prior to or on index, 2) no drug utilization record of any DMARD any time prior to 

index, 3) no drug utilization record of any other DMARD on or within 7 days after index, 4) 

no record indicating any cancer any time prior to or on index, and 5) no record indicating any 

other inflammatory arthritis (psoriatic arthritis, ankylosing spondylitis, reactive arthritis, any 

axial spondyloarthropathy) any time prior to or on index.

Detailed definitions of these inclusion criteria, including code lists, are available at http://

atlas-demo.ohdsi.org/#/cohortdefinition/1773112.

Outcomes
We investigated outcomes for which RA patients have increased risks compared to the general 

population and for which RA patients identified at high risk could be targeted for increased 

screening or monitoring throughout the course of treatment. The first event (binary) of each 

of the following adverse health outcomes within a period after initiating first-line MTX mono-

therapy (the index event) was considered: 1) leukopenia, pancytopenia, and infection (serious, 

opportunistic, all) recorded from 1 day up to 90 days after index, 2) myocardial infarction (MI) 

and stroke recorded from 1 day up to 2 years after index, 3) cancer (colorectal, breast, uterine) 

recorded from 1 year up to 5 years after index.

Detailed definitions of these outcomes, including code lists, are available at: https://github.

com/ohdsi-studies/EhdenRaPrediction/tree/master/inst/cohorts.

For all outcomes, patients who had any record of the specific outcome within 90 days 

prior to or at initiation of MTX monotherapy were excluded from the study population. For 
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cancer outcomes, patients who were lost to follow-up within one year of treatment initiation 

were excluded. For all other outcomes, patients who were lost to follow-up within one day of 

treatment initiation were excluded. Outcomes for which the final study population contained 

less than 25 RA patients with an outcome event were omitted from further analysis.

Candidate predictors
Candidate predictors were extracted from data routinely recorded in the database. This in-

cluded binary indicators of 5-year age groups (i.e., 20-24, 25-29, etc.) and sex, as well as a large 

set of binary indicators of recorded OMOP CDM concepts for health conditions and drug 

groups (44). For health conditions, we considered all data prior to index. For drug groups, we 

separately considered data from the 30 days prior to index and data from the 365 days prior to 

index. Finally, three established risk scores (CHA2DS2-VASc, Diabetes Complications Severity 

Index (DCSI), Charlson Comorbidity Index (CCI) (Romano adaptation)) were calculated using 

all data prior to index (23-26). No clinical measurements or sporadically recorded variables 

were included as candidate predictors to maximize transportability (i.e., ability to apply across 

databases) of the developed prediction models. 

Handling of missing data
In the observational data used in this study, if a candidate predictor was not recorded in a 

patient’s history, we assumed that the candidate predictor was not observed for this patient. 

Age group and sex are required by the OMOP CDM and were always recorded. For our 

analyses, if a health condition or drug group was not recorded in a patient’s history, we assumed 

that the health condition or drug group was absent. 

Statistical analysis methods
We used logistic regression with predictor selection through L1-regularization (27). For each 

outcome, two L1-regularized logistic regression models were developed: 1) one model using all 

candidate predictors for a data-driven approach of predictor selection, and 2) one model using 

only age groups and sex as candidate predictors to provide a benchmark.

A random subset of 75% of the patients was used as a training set and the remaining subset 

of 25% of the patients was used as a test set. First, 3-fold cross-validation was performed on 

the training set to optimize the regularization parameter, after which the test set was used for 

internal validation. Discrimination was assessed numerically using the area under the receiver 

operator characteristic curve (AUC) with a 95% confidence interval (CI). Calibration was as-

sessed graphically by plotting the predicted risks against the observed risks.

To examine model performance across multiple databases, we externally validated the 

models. Only models with an AUC of at least 0.7 on internal validation were considered good 

enough to warrant external validation. External validation of each model was limited to those 
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databases within which the corresponding outcome events could be identified. Discrimination 

and calibration were assessed in the same way as on internal validation.

Software packages containing the analytical source code that was used to develop the 

models and to externally validate the developed models on databases with data mapped to the 

OMOP CDM are available at https://github.com/ohdsi-studies/EhdenRaPrediction.

RESULTS

Study population
In the development database (Optum Claims), 21,547 RA patients met the inclusion criteria. 

For breast cancer and uterine cancer, we only included female patients, resulting in 15,311 

RA patients who met the inclusion criteria. Table 2 shows the number of RA patients and the 

number of RA patients with an outcome event in the final study population for each adverse 

health outcome. An attrition flowchart explaining how we arrived at the number of patients 

in the final study population for each outcome is available in Figure B.1 in online Appendix B. 

Table C.1. in online Appendix C shows demographics and baseline characteristics of the 

final study population for each outcome, based on all data prior to or at initiation of MTX 

monotherapy. Patients with an outcome event on average had more comorbidities at treatment 

initiation. 

Model specification
A total of 12,724 candidate predictors were extracted from data routinely recorded in the 

database, of which 18 were binary indicators of 5-year age groups and sex. 

The number of predictors in each final model is specified in Table 3. Full lists of candidate 

predictors and detailed specifications of all final models are available in an interactive R Shiny 

Table 2. Final study population in the Optum Claims database

Outcome Number of RA patients
Number of RA patients with outcome 
event (%)

Leukopenia 21,452 85 (0.4)

Pancytopenia 21,496 30 (0.1)

Serious infection 21,276 316 (1.5)

Opportunistic infection 21,404 161 (0.8)

All infection 19,163 1,957 (10.2)

Myocardial infarction 21,463 417 (1.9)

Stroke 21,425 527 (2.5)

Colorectal cancer 15,584 53 (0.3)

Breast cancer 11,072 100 (0.9)

Uterine cancer 11,104 18 (0.2)
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web application at https://data.ohdsi.org/EhdenRaPrediction/. The candidate predictors can be 

explored interactively in the ‘Model Table’ under ‘Model’; an overview of the predictors in the 

final model can also be exported from this tab using ‘Download Model’.

Model performance 
Model discrimination on internal validation is presented in Table 3, ordered by highest AUC for 

the data-driven approach. For leukopenia, the AUC was below 0.6, indicating modest discrimina-

tion. For pancytopenia, no predictors were identified for both the data-driven approach and the 

benchmark, and we were therefore unable to develop any prediction model for this outcome. 

For opportunistic infection, and all infection, the AUCs were 0.6 or lower. For serious infection, 

MI, and stroke, the data-driven approach resulted in AUCs on internal validation of 0.74 (0.68-

0.80), 0.76 (0.72-0.81), and 0.77 (0.73-0.81), respectively, indicating good discrimination. For 

colorectal cancer and breast cancer, the AUCs were below 0.65. Finally, for uterine cancer, the 

final study population contained less than 25 RA patients with an outcome event. Therefore, this 

outcome was omitted from further analysis. 

The calibration plots for serious infection, MI, and stroke (Figure D.1-D.6 in online Ap-

pendix D) indicated adequate calibration besides good discrimination. We externally validated 

the models for these three outcomes across the 14 other databases. The AUCs are presented 

in Table 4, ordered by highest AUC for the data-driven approach. Overall, the models dem-

onstrated good performance across multiple databases. Several 95% CIs were wide due to 

limited statistical power, making those results difficult to interpret. We therefore focused on the 

databases within which at least 100 RA patients with an outcome event were identified, which 

is a recommended minimum for external validation (28). In these databases, the data-driven 

approach consistently outperformed the benchmark, with AUCs ranging from 0.62 to 0.76 for 

serious infection, from 0.65 to 0.75 for MI, and from 0.63 to 0.79 for stroke. The correspond-

ing calibration plots from the data-driven approach are presented in Figure E.1-E.16 in online 

Table 3. Internal discrimination of the models developed on the Optum Claims database

Outcome
Data-driven approach (age 
groups, sex, conditions, drugs)

Benchmark (age groups, sex)

Number of 
predictors

AUC (95% CI) Number of 
predictors

AUC (95% CI)

Stroke 90 0.77 (0.73-0.81) 16 0.74 (0.70-0.78)

Myocardial infarction 64 0.76 (0.72-0.81) 16 0.72 (0.68-0.76)

Serious infection 87 0.74 (0.68-0.80) 13 0.68 (0.62-0.74)

Opportunistic infection 12 0.60 (0.51-0.68) 1 0.49 (0.42-0.57)

All infection 62 0.59 (0.57-0.62) 6 0.53 (0.50-0.56)

Colorectal cancer 1 0.55 (0.41-0.69) 2 0.64 (0.48-0.79)

Leukopenia 10 0.50 (0.36-0.64) NA NA

Breast cancer NA NA 4 0.52 (0.42-0.61)
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Appendix E. These plots showed adequate calibration for all three outcomes. As expected, 

the models tend to underestimate or overestimate risk in databases with a higher or lower 

incidence, respectively (29). For example, the model for serious infection underestimated the 

risk in the IQVIA US Hospital database, where the outcome incidence was more than tenfold 

higher than the outcome incidence in the development database. To account for this, the models 

can be recalibrated for use in these databases. 

The final data-driven models for serious infection, MI, and stroke, including intercept, 

coefficients, and OMOP CDM concept IDs, can be found in Table F.1-F.3 in online Appendix F. 

Several age groups corresponding to older age were selected as predictors. Sex was selected 

as predictor in the model for stroke. The CHADS2-VASc score was selected as predictor in 

both the model for MI and the model for stroke. Furthermore, within each model, a large set of 

binary indicators of conditions and drugs was selected as predictors.

DISCUSSION

In this study, we developed and validated prediction models for a variety of adverse health 

outcomes in RA patients initiating first-line MTX monotherapy. For serious infection, MI, and 

stroke, the models demonstrated good performance across multiple databases. Internal valida-

tion of these models resulted in AUCs of greater than 0.70 and adequate calibration. External 

validation of these models resulted in good discrimination, where the data-driven approach of 

predictor selection (age groups, sex, conditions, drugs) consistently outperformed the bench-

mark (age groups, sex). This shows that conditions and drugs extracted from routinely recorded 

data have added value in identifying patients at high risk of serious infection, MI, and stroke. 

The models showed adequate calibration as well, although for some databases, the models may 

benefit from recalibration.

For uterine cancer, we were not able to develop models using our data. For this outcome, 

more data are required. For leukopenia, pancytopenia, opportunistic infection, all infection, 

colorectal cancer, and breast cancer, we did not externally validate the developed models since 

they did not discriminate well (AUC < 0.65) on internal validation. 

We developed our models using large-scale claims and EHR databases that contain rou-

tinely recorded patient information. We chose for a data-driven approach and considered all 

conditions and drugs in a patient’s history as candidate predictors. It is interesting to note 

that this large set of conditions and drugs in a patient’s history also included comedication 

with nonsteroidal anti-inflammatory drugs and glucocorticoids, which may capture aspects of 

RA-specific variables such as disease activity indicators that were not explicitly considered as 

candidate predictors. It is important to note that our study was focused on prediction and 

not on evaluating individual predictor associations; it may be misleading to highlight individual 

predictors as having predictive value by themselves, since this can lead to causal interpretation 
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(30). It could be interesting to investigate whether explicitly considering certain RA-specific 

variables as candidate predictors would improve prediction performance. A potential limitation 

of our study is that we were not able to investigate this using our data.

A potential limitation of our study is that routinely recorded data can be misclassified. If a 

candidate predictor or an adverse health outcome was not recorded in a patient’s history, we 

assumed but could not be certain that there had not been such an event. Variation in prediction 

performance across databases may reflect differences in how data are captured. Another poten-

tial limitation of our study is that our models were developed for RA patients initiating first-line 

MTX monotherapy and are therefore only intended for this target population. However, since 

MTX is the current anchor drug in RA, the developed models are applicable to a large group of 

RA patients initiating first-line treatment. Furthermore, although it is possible that the models 

may be applicable to RA patients initiating other treatments, this has not been investigated in 

our research and would require further validation of the models in those target populations. 

Finally, a potential limitation of our study is that we did not perform any sensitivity analyses on 

the inclusion criteria used to obtain our study population. For example, only patients on MTX 

with no drug utilization record of any other DMARD on or within 7 days after index were 

included. The 7 days after index offset was chosen to avoid any other DMARDs that occurred 

at the index date but were entered late in the record. Although less likely, it is possible that a 

second DMARD that occurred at the index date was entered in the record with a delay longer 

than 7 days after index. 

Our study also has several strengths. To the best of our knowledge, this study is the largest 

cohort study to date on predicting a variety of adverse health outcomes in RA patients. By de-

veloping models using data mapped to the OMOP CDM, we were able to include 14 databases 

for external validation of the models. The scale of the data allowed us to investigate a variety of 

adverse health outcomes and validate the models across multiple international databases. Even 

though more data are still needed for some of the outcomes, our study shows the feasibility 

of this approach. Additionally, we have provided software packages that contain the analytical 

source code used to develop the models and to externally validate our developed models on 

databases with data mapped to the OMOP CDM. 

The models developed and internally validated for serious infection, MI, and stroke using 

a large-scale USA claims database (Optum Claims) showed good performance across multiple 

claims and EHR databases. We do not believe we have sufficient evidence to recommend the 

use of the models in clinical practice, but research could be conducted to prove their value as 

implemented in administrative or EHR software to generate automatic reminders for individu-

als at high risk of these outcomes. The models are based entirely on routinely recorded data, 

minimizing the burden to the clinician. However, regulatory approvals would be required before 

this can be considered, which is beyond the scope of our current work. The models had particu-

larly good external validation performance on the USA databases and appeared to perform well 

(with wider confidence intervals) on the international databases too. RA patients identified at 
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high risk of serious infection, MI, or stroke could be targeted for increased screening or moni-

toring throughout the course of treatment, complementary to current screening or monitoring 

strategies. In this way, the models may enable clinicians to provide better personalized care to 

RA patients initiating first-line MTX monotherapy. 
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The online version contains supplementary material available at https://pubmed.ncbi.nlm.nih.

gov/35728447/
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Why do we want to make predictions in healthcare? It is obvious that if we could predict per-

fectly what would happen to our patients, we could implement proper treatment plans to try to 

intervene in time and avoid a potential bad outcome. Clearly, this perfect world does not exist, 

but nevertheless the health care providers (HCPs) are asked for predictions on a daily basis by 

their patients. When a patient visits a HCP they seek an answer to questions like “What is my 

chance of heart failure now I have been given the diagnosis of diabetes considering my medical 

history?”. But what options do the HCPs have to answer these kind of prediction questions? 

First, they could refer to an estimate obtained by descriptive epidemiologic studies that char-

acterise patients at the population level. For example, on average the chance of patients with 

diabetes to get heart failure is X%. This does not really answer the personalized question the 

patient has asked but it is often the only available option. Second, the HCP could try to compare 

this patient with other patients they have encountered before who have a comparable patient 

profile. This is a difficult and often impossible task considering the complexity of diseases and 

low amount of available data to support this.

A better option would be to automatically learn from data and develop a prediction model 

to support the HCP. A prerequisite for building and validating such prediction models is a large 

amount of such data. Fortunately, data available from EHRs, claims and registry databases around 

the world is massive. This creates big opportunities to use data-driven methods to improve pa-

tient care. A so-called learning healthcare system in which we can use each individual data point 

generated by a patient to improve the life of a next patient, slowly becomes a reality. However, 

important building blocks are needed to achieve this ultimate goal at the necessary scale. 

Firstly, we have to solve the problem of limited interoperability of healthcare data. This refers 

to semantic interoperability challenges since the databases use different coding systems (ICD9, 

ICD10, ICPC, SNOMED, etc.) and syntactic interoperability problems due to different database 

structures. This makes it nearly impossible to perform studies using standardised analytics in a 

network of databases. As shown in this thesis, the use of the OMOP-CDM including its incor-

porated standardised vocabularies has a high impact in unlocking data to improve patient care. 

Its strong uptake across the world enables observational research at an unprecedented global 

scale. For example, the European Health Data and Evidence Network (EHDEN, www.ehden.

eu) project is standardising more that 166 databases to the OMOP-CDM, including general 

practitioners databases, claims, registries etc (https://www.ehden.eu/datapartners/) . 

Secondly, we need to have established best practices, and standardised tools, to generate 

reliable evidence from this large pool of standardised data. OHDSI has been on the cutting 

edge of research to develop standardised analytics for characterisation, population-level effect 

estimation, and patient-level prediction, and has demonstrated its use in many global studies. 

Relevant for this thesis is work done on creating a framework for the development and valida-

tion of patient-level prediction (PLP) models (1, 2). These articles together provide a robust 

framework for the development, validation and external validation of prediction models. By 
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following the principles laid out in these papers, researchers can develop models that have a 

robust body of reliable evidence.

Generating Reliable Evidence 
What do we mean with reliable evidence? To generate reliable evidence, the model development 

and validation should be repeatable, reproducible, and replicable. To have clinical impact the 

prediction model should have a high discriminative performance and should be well calibrated. 

Its performance should be generalizable through assessment in a network of diverse types of 

databases, and the model should be robust (see Table 1): 

•	 Repeatable evidence is obtained when all elements, namely the question, researcher, data, 

and analysis are held constant, and the same result is produced. This seems obvious and 

easy to obtain but proves to be challenging when common analytic code cannot be applied. 

Big steps are made by splitting the journey from source data to reliable evidence into two 

components: standardisation to the OMOP-CDM, and PLP framework code base. 

•	 Reproducible evidence produces identical results when all elements are constant except 

the researcher. This requires that all the steps in the process are fully documented and all 

analytical steps are performed fully automatically. Clearly, also here the PLP framework 

enables this.

•	 Replicable evidence combines the same question and analysis with similar data to achieve 

similar results. For this it crucial to understand whether differences in the results are only 

due to the differences in data and not because of the implementation of the analysis. For 

example, if we share a protocol or even a statistical analysis plan, but not analysis code, with 

data partners in our network, we cannot be sure they implement the analysis in the same 

way. For PLP this is facilitated by performing development and validation on similar datasets 

standardised to the OMOP-CDM using common methods.

•	 Generalizable evidence takes the same question and analysis and produces similar results 

on different data. For example, if a prediction model transports well to another setting this 

would strengthen our belief that this model is reliable. 

•	 Robust evidence is achieved when the same question approached with a different analysis 

gives similar results. This desired attribute can only be obtained if we have tools that can be 

parameterized and can be run on a large number of databases. If the conclusion of the study 

Table 1. Desired attributes for reliable evidence.

Desired Attribute Question Researcher Data Analysis Result

Repeatable Identical Identical Identical Identical = Identical

Reproducible Identical Different Identical Identical = Identical

Replicable Identical Same or Different Similar Identical = Similar

Generalisable Identical Same or Different Different Identical = Similar

Robust Identical Same or Different Same or Different Different = Similar
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is consistent over different analysis settings this would improve our trust in the generated 

evidence. For PLP, this includes running different kinds of algorithms or changes in the 

parameters such as the lookback period or the time-at-risk window length.

Part 1 of this thesis consists of multiple methodological papers that aim to further improve the 

best practices for generating reliable evidence for PLP by contributing to model development, 

validation, and dissemination. In Part 2, two clinical applications of prediction models have been 

presented, which incorporate some of the best practices discussed in Part 1. In the next sections 

we will discuss all the contributions and will then identify opportunities for future research.

PART 1 – PATIENT-LEVEL PREDICTION MODELLING

The aim of our work is to develop and enforce best practices for PLP modelling by making avail-

able a standardised framework for development, validation, and dissemination. In the sections 

below the contributions of this thesis are discussed for these three components.

Model Development
When attempting to improve the performance of a prediction model, different algorithms can 

be applied, e.g. logistic regression, random forests, deep learning, etc. These models are often 

trained on a subset of the data from a single database. This approach often impacts the gener-

alizability of the model since the data used for training and internal validation may be different 

in another setting. This can be due to unique elements of the training database which then 

do not generalise outside of this setting. As an example, the IPCI database is a Dutch primary 

care database and as such contains a subset of all primary care patients in the Netherlands (3). 

Whilst it is hoped that this will provide a representative subset of Dutch patients in primary 

care, it will almost certainly not provide a representative sample of patients in the same set-

ting in other countries. For example, a British primary care database or a US claims database 

represent a different healthcare system and patient mix. This heterogeneity presents an issue 

for generalisability, and is not solved through the standardisation to the OMOP CDM. However, 

we could still take this heterogeneity into account from a prediction modelling perspective. The 

first option would be to pool the data from diverse sources into one dataset and train a model 

using this data. Whilst an interesting idea, this is infeasible due to patient privacy concerns 

preventing the sharing and pooling of patient-level data. The second option would be to use 

something termed “distributed learning”. This is the use of a single algorithm that can be trained 

at multiple sites simultaneously, to produce a single algorithm. This removes the need for sharing 

data but does mean that there needs to be connectivity between the databases which can be 

similarly problematic to the sharing of data. There exist some promising so-called “one-shot” 

algorithms that provide this distributed learning whilst requiring only one instance of a con-
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nection, but the administrative burden of this method is comparatively high. The third option, 

discussed in Chapter 1 of this thesis, is to use ensemble learning to combine models developed 

in multiple databases. The traditional methodology behind building an ensemble model is to use 

multiple different algorithms on the same data source. The principle behind this is that different 

algorithms are better at dealing with different patterns in the data, and that by using different 

algorithms the increase in heterogeneity of the search strategy leads to better performing 

models as they are more adaptable. Using different algorithms is not the only way to increase 

this heterogeneity. Instead of changing the algorithm, it is also possible to change the underlying 

data. Considering the context of a federated network, this provides a clear opportunity to 

utilise the heterogeneity of the different data sources to potentially improve the performance 

of the model overall. 

Learning patient-level prediction models across multiple healthcare 
databases
Building an ensemble using models developed in a federated network only requires researchers 

to develop a model in their own database and then share the model they developed. This 

method of using a network to learn an ensemble model does not require any additional steps to 

what is done when developing an ensemble prediction model normally. After the sharing of the 

developed models, they can be combined to then produce a single output. There are a multitude 

of ways to combine, from a simple majority voting up to the complexity of training a new model 

using the outputs of the base models. What we learnt from the experiment described in Chapter 

1, is that ensemble models generally return an improvement in model performance when com-

pared to the base models, and that the ensemble models tend to transport better as well, when 

considered in terms of discrimination performance. Calibration was a problem when externally 

validating both base and ensemble models, but this can be corrected through re-calibration. 

Another finding from the study was that the choice of ensemble method, also termed the “en-

semble heuristic”, was important for the transportability of the model. The ensemble heuristic 

is an important part of the design process when developing an ensemble model. The findings of 

this study show that using diversified data can aid in producing more robust, better performing 

prediction models. An important takeaway is that despite the performance increases, there is a 

cost associated with ensemble modelling. Firstly, there is the added complexity of the modelling 

process which involves multiple databases and thus likely multiple researchers collaborating 

across institutions to develop models for model development. Secondly, the use of ensemble 

techniques necessarily drives up the complexity of the model and this can then act as a barrier 

to implementation. The heuristic chosen can also increase the complexity of both the model 

and the implementation process as some heuristics require labelled data to be sampled from 

the new database in order to be applied. The final models in this study often contained hundreds 

of covariates that were combined in complex ways and this impacts the implementation of the 

full model in practice. 
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When developing prediction models from observational data, a common issue that can arise 

is that there is a lack of adequate data to perform the required development and validation 

steps. This can be because the disease in question is relatively rare and as such any single 

database is unlikely to contain enough patients for model development, or because it is a novel 

disease (e.g. Covid-19) and as such the records of the patients have not yet filtered through into 

the research databases. This presents a challenge to both the development and the validation 

of the models. The development usually involves splitting the dataset and reserving some of the 

data for the validation. When data is scarce, this splitting can present an issue. There are a few 

ways that this scarcity can be tackled. The first is to wait until more data is available, although 

in a time-sensitive situation such as in a novel pandemic this is a costly sacrifice. A way of im-

mediately using available data, and as such not having to sacrifice the speed of development, is to 

use a proxy disease. A proxy disease is a disease that is used for training of the model to then be 

applied in a different disease cohort. The central idea behind the proxy disease is that the same 

patients who are vulnerable to the target disease are also vulnerable to the proxy disease. Due 

to this common vulnerability, if a model can identify the patients for the proxy, the performance 

should transfer over to the target disease. Importantly, by not using any data from the target 

disease cohort for training, all of the target disease data is then kept for the validation of the 

model in the target disease. This then provides a stronger body of evidence for the performance 

of the model in the target setting due to the increased cohort size used in the validation. 

The research described in Chapter 1, demonstrates the utility of using a proxy disease to 

develop a parsimonious prediction model. The three COVER models with 9 predictors that 

were developed using influenza data perform well for COVID-19 patients for predicting hos-

pitalization, intensive services, and fatality. The scores show good discriminatory performance, 

which transferred well to the COVID-19 population. 

From a methodological perspective, this study demonstrates the possibility of transferring 

performance of models between different patient group settings. Indeed, given the now well un-

derstood differences between influenza and coronavirus, the fact that performance is maintained 

suggests that diseases could be quite different and still vulnerable patients can be effectively 

identified. This suggests that the developed model can be adopted for other situations where 

data is scarce, either due to the novel nature of the disease or due to its rarity. The development 

of a model in abundant data removes the need for many considerations that occur in small data 

sets, the use of bootstrapping, performance instability etc., and as such is advantageous. The 

evidence produced by this study is that even with known differences in disease presentation and 

severity, it is still possible to develop a model using the abundant available data with the proviso 

that there is likely a need for recalibration due to inherent differences in diseases. One potential 

application of the methods described in this chapter is in the development of prediction models 

for rare diseases. Previously it was either challenging or impossible to assemble enough data to 

adequately develop and evaluate a model for a rare disease, but our findings suggest that it may 
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be possible to use a proxy to develop a prediction model for these situations. This remains an 

open research question of much potential value.

The methods developed in Chapter 1 also demonstrated the implementation of a technique 

for parsimonious model development. The lower number of covariates in a parsimonious model, 

while achieving adequate performance, makes it much easier to implement than a data-driven 

model that includes hundreds of covariates. In this chapter we developed baseline, data-driven 

and parsimonious models. These serve different purposes and together provide a stronger body 

of evidence for the use (or rejection) of prediction models in this setting. Firstly, the data-driven 

model provides an upper bound of performance. This is the model which, in theory, provides 

the best possible performance in the setting. However, these models often contain hundreds 

of covariates, and these covariates are also specific codes rather than clinical concepts. The 

large number of covariates present a clear barrier to clinical implementation of the models. 

This motivated the development of the baseline models, which represent a lower bound for 

performance but for a high level of applicability. These models use only age and sex as covariates 

and as such are very easily implemented. The performance of the baseline and the data-driven 

models can then be compared. If the performance difference is small, then likely the baseline 

model can be used clinically. If the performance difference is large, then it demonstrates that 

an increase in model complexity provides a valuable performance increase. In this scenario 

the development of a parsimonious model could find the correct balance in the complexity-

implementation performance trade-off. In order to develop this, candidate covariates are cre-

ated and a limited set of these are then used in the model development to create models with 

a lower number (<20) covariates. After training the parsimonious model, the performance can 

be compared to the data-driven model, and if there is a large gap the parsimonious modelling 

can be reapplied, using e.g. different covariates, to attempt to further increase the performance. 

Once the performance is deemed close enough to the data-driven performance, the model can 

be deemed ready for implementation. 

Model Validation
Proper model validation is needed before implementation in clinical practice. This should 

include both internal validation and external validation. In order to externally validate a model, 

it is helpful to have a high level of interoperability between the source and validation data. By 

taking a collaborative approach to model development and external validation through the 

widespread adoption of the OMOP CDM the external validation of prediction models is much 

better facilitated. 

External validation in a network
When considering trust in models and personalising treatment, several key points need to be 

addressed. These are: does my model perform well on the data it is trained on, does it perform 

well on new data of the same type (e.g. a different EHR or claims database), does the model 
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maintain performance when applied to new data of a different type? In effect the question we 

need to answer is, can I trust this prediction model to continue to perform at an adequate 

level when being used to treat patients in a clinical setting? In order to answer this question, 

models can be externally validated. Historically, external validation has been a slow process, 

with the average time to external validation of a model being three years or more (4), and many 

models never receiving any external validation although this does appear to be improving as 

more attention is paid to the topic (5). The problems of externally validating models are due 

to issues of model sharing, cohort definition sharing, poor setting of prediction problem, and 

more generally there is an issue that is more widespread within science of validation studies 

not being performed. Concerning the technical issues with external validation, the increasing 

interoperability of healthcare databases, through the widespread adoption of the OMOP CDM, 

facilitates external validation of prediction models. By having a common semantic and syntactic 

structure, models can be trained on a database and then can easily be shared between research-

ers, including all necessary data and cohort definitions, to then be validated in new datasets 

without the need for a data engineering step, a major step forward in prediction modelling. 

We have seen, however, that the removal of technical challenges does not guarantee high 

performing models. Often when externally validating a model we see performance changes, 

usually a drop in performance, and this can be concerning when considering whether a model is 

adequate for clinical use. When considering the use case in chapter 3, in which multiple stroke 

prediction models were externally validated, we saw that performance frequently decreased 

from the development setting. This is a common observation for external validation of predic-

tion models. There remain several questions, including why this performance drop occurs, and 

what it actually tells us about the models. 

Should we immediately dismiss a model with poor external validation in one setting? Or 

should we prohibit its use in the specific setting in which it performed poorly? Given the 

Table 2 Common performance assessment metrics and their definitions

Performance Metric Definition

Area under receiver operator curve Calculated by plotting an ROC curve (y = true positive rate, x = false 
positive rate) and then measuring the area under this curve. This is a 
measure of discrimination that measures how likely for a pair of patients, 
that the patient who is at higher risk is to be assigned the higher risk of 
the outcome given by the model.

Area under precision recall curve Calculated by plotting a precision recall curve (y = precision, x = recall) 
and then measuring the area under this curve.

Calibration in the large A measure of calibration which compares the average expected risk to 
the proportion of the patients that get the outcome.

Calibration Slope A measure of calibration where the slope of the outcome model is 
compared to the ideal slope of 0.5.

Graphical calibration (LOESS) This is a manner of calibration assessment where a local area regression 
method is fit to the output of a prediction model. This is then compared 
to a slope with intercept =0 and gradient =0.5.
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essential heterogeneity between different databases (for example a Dutch general practice 

database and hospital database from the US), what does a change in performance between the 

two settings mean? Externally validating from one to the other gives some information on the 

generalisability of a model, but not what the performance means in the local context. In order 

to make meaningful decisions surrounding potential clinical impact we need to give proper con-

text to the performance. To address some of these questions, Chapter 4 discusses a new model 

development and external validation method called Iterative Pairwise External Validation (IPEV). 

IPEV utilises a network of databases to develop and validate multiple prediction models on the 

same problem setting. It trains a baseline and data-driven model at each site and then rotates 

these models through the databases. Once each model has been validated in every database, we 

can give the performance an important context by looking at how a model’s external validation 

performance compares to its internal validation performance. For example, what is the differ-

ence in performance between a model developed in IPCI validated in Optum Clinformatics, 

and a model developed in Optum Clinformatics. This comparison allows us to say more about 

the generalisability of the model and how this compares to the expectations we have for 

performance in a database. If a model trained in a database achieves low performance, then 

we would not expect a model externally validated in that database to have high performance. 

IPEV is a simple way of assessing performance in context and vastly improves our un-

derstanding of the models produced and of the heterogeneity of the databases included. By 

using IPEV we can say whether there is a meaningful difference in the expectation of model 

performance between two databases. This provides some explanation of the difference in per-

formance between internal and external validation of a model. Another benefit of the method is 

to provide context to the impact of complexity on performance. By using this context we can 

demonstrate that increased model complexity provides a measurable benefit (or indeed show 

that this is not the case). 

In Chapter 4, which examined the application of IPEV to the use case of predicting heart 

failure in type-2 diabetic patients, one of the databases produced lower performance for all 

models externally validated on it. These performances were in line with performance of the 

model developed using the data contained in this database. This tells us that it is harder to make 

predictions for the population in this database. The question that remains here is, what does 

this tell us about the performance of the model in general, and how does this performance 

drop affect our understanding of the model itself? If a model is externally validated using this 

population, we expect a lower performance. As such, when observing a lower performance here 

than in either the internal validation or external validations of a prediction model we should not 

then dismiss the model as low performing. We can continue to use the model in the context it 

was developed in but we should be aware of the population it does not work in. The knowledge 

of where it does and does not perform well can be then utilised to inform where we choose to 

apply the model. For example, if one database contains mostly younger patients and a reduction 

in performance is seen, it should be seen as a warning about the performance of the model in 
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younger patients and prompt investigation as to whether this is unique to the database or if this 

is a more commonly seen issue. This is a complex issue without a simple answer. Whilst age is 

often included in models it often has strong interactions with other covariates and the overall 

case-mix of a younger group of patients is likely to differ significantly even when controlling for 

age. Why performance drops is an open, important and interesting research question.

There remain many questions still such as, why do the models perform differently, is it solely 

due to case-mix differences between databases? However, by combining these ideas of external 

validation in a network and IPEV, we can go someway to reinforcing the trust that a model has 

by providing context on its performance, explanation of a performance drop, and reassurance 

that the increased complexity is necessary for the desired results. 

Model Dissemination

The DELPHI library
Developing models and adequately validating them is not, however, the end of the story. Of criti-

cal importance to the implementation of PLP models into clinical practice is the dissemination 

of this research. Currently models are developed, a scientific article is published in a journal, 

and sometimes the models are made available. The TRIPOD reporting standard goes some 

way to addressing the inadequacies that many prediction model articles have, but it does not 

solve the larger problem of dissemination of the model itself. There are some efforts such as 

the PACE repository from Tufts medical centre(21), which contains a description of the model 

and often the model itself in a tabular format. A model in a tabular format lacks an essential 

interoperability that would make it easy to use across multiple sites. The cohort information will 

need to be translated to different settings, and similarly the covariates themselves will need that. 

A solution to these problems is found through the widespread adoption of the OMOP CDM. By 

developing models using data in this common format, and by using a standardised pipeline for 

the development, a standard results and model output format can be created. This format can 

then be incorporated into a repository of models that allow for the easy accessing, evaluation 

and downloading of these models. 

The creation of a database, the DELPHI library, to store the standardised output of PLP 

models contributes to increased visibility, accessibility and investigation of the models by 

researchers, clinicians and regulators. Whereas previously interested parties would need to 

perform a literature search of disparate sources and keywords, they are now able to perform 

a systematic search within a single database to find available models, ready for implementation. 

Once a model is found, all relevant model information, for example the performance, definitions 

of target and outcome cohorts (especially relevant for clinical implementation) and importantly 

the covariates and model specification will be immediately available. By making all of this in-

formation available, interoperable and downloadable, it is hoped that the external validation of 

models will become increasingly common. 
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The library will also provide an interactive results explorer. This will allow interested parties 

to assess the models using a variety of metrics, to observe the differences that occur in per-

formance for different thresholds (e.g. stakeholders might apply different costs (both financial 

and human) to false negatives and positives. The differing costs of these errors will mean that 

stakeholders may desire to set different risk thresholds. The library will provide the ability to 

investigate this. 

PART 2 – CLINICAL STUDIES

The second part of the thesis focusses on the development of prediction models for specific 

clinical problems. These studies produced some well-performing patient-level prediction models. 

A key lesson learnt from these studies was the need for the involvement of a multidisciplinary 

team in the model development process. The major work for these studies was conducted 

during so-called study-a-thons. A study-a-thon involves grouping multiple researchers together 

in a room to intensively work on a question. This created a dynamic environment that allowed 

for the rapid progression of the work. The multidisciplinary nature of the team meant that 

questions could be asked, and answered by experts, with almost no time delay. In doing this, 

discussions could develop rapidly as the clinical partners who had the research questions could 

be helped and guided in the development of that question by experts in the data and in predic-

tion modelling. Having the team in a single location helped to stimulate further questions and to 

highlight some of the challenges that remain in implementing the models into clinical practice.

Predicting all-cause mortality following total knee replacement
The first clinical chapter dealt with the prediction of short-term mortality following a total 

knee replacement. A knee replacement is a safe and effective procedure for the treatment of 

knee complaints in arthritic patients. There are however risks associated with the procedure. 

These risks include amongst others infection, need for reoperation, and death. In this chapter 

we focussed on the prediction of mortality. Whilst the risk of mortality following the surgery is 

low (between 0.2 -0.4% (7)), mortality is of high impact and importance to patients. Considering 

the planning of a patient’s treatment pathway, knowing the risk of mortality following a surgery 

can be useful in the shared decision making process. A patient could be reassured by being 

given a low risk. Another possibility is that a patient has a higher risk and still opts for the 

surgery. In this scenario, patients are making a well-informed decision based upon the best 

information they have available. Aside from having adequate performance, other aspects needed 

to implement a model in practice are that the model is well reported, clearly describes the 

situation it is designed to be used in, and is usable in a practical sense (e.g. that it is not too time 

consuming when calculating a prediction for a patient). The feasibility of application is an issue 

when considering data-driven models. These are often large complex models with hundreds of 



167

General Discussion

covariates. Having such a large number of covariates is clearly a barrier to clinical practice as it 

is too time consuming for a health-care professional to calculate. Reducing the complexity of 

a model whilst maintaining performance is imperative to the implementation in practice, and 

motivated the creation of a 12-feature model in this work. The development of the parsimoni-

ous model follows a similar procedure to that discussed extensively in Chapter 1.

A simple prediction model based on sex, age, and 10 comorbidities that can identify patients 

at high risk of short-term mortality following TKR was developed that demonstrated good, 

generalisable performance. The 12-feature mortality model is easily implemented and the per-

formance suggests it could be used to inform evidence-based shared decision making prior to 

surgery and targeting prophylaxis for those at high risk. This study demonstrated the method 

of parsimonisation of a model. It also provided a use case in leveraging an existing network for 

external validation to produce a model according to best practices detailed in Chapter 3.

Predicting adverse health outcomes in rheumatoid arthritis
In the second clinical chapter, models to identify which rheumatoid arthritis (RA) patients are at 

high risk of adverse health outcomes, were developed. Identifying these patients poses a major 

challenge to the treatment of RA. Being able to identify these patients could provide a major 

benefit by allowing for more personalised treatment choices, more targeted interventions and 

in general providing patients with reassurance and helping them to make informed choices on 

their treatment as part of a shared decision making treatment structure. We aimed to develop 

and validate prediction models for a variety of adverse health outcomes in RA patients initiating 

first-line methotrexate (MTX) monotherapy. Final models for serious infection, MI, and stroke 

demonstrated good performance across multiple databases and can be studied for clinical use. 

This work again followed best practises for model development and external validation in 

a network, however it did not include the parsimonisation of the models and as such there 

is a barrier to clinical implementation unless this, or some form of embedding in the EHR is 

created. The lack of parsimonisation here was in part due to the number of models developed 

and the difficulty with the current time and resource intensive development of parsimonious 

prediction models. This opens the question of how to best automate this process in the future. 

A perspective of this is given in the following section.

FUTURE WORK

Patient-level Prediction
This thesis addresses some of the issues that impact the widespread adoption of prediction 

models in clinical practice. In part 1, we discussed different ideas of model development and 

validation, with a particular focus on the evaluation of models in context and how this can be 
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used to improve the trustworthiness of the models. There remain however many interesting 

topics for future research as presented in this section.

Model parsimonisation
The current major issue preventing model implementation, is the complexity of the models 

developed. As has been explored in multiple chapters in this thesis, a simpler model is preferred 

over a complex model with little or no performance gain. In Chapters 2 and 6 we have explored 

the use of a 2-step modelling technique to produce parsimonious models. This parsimonisa-

tion process was an effective method for producing simple models; however, it has a couple 

of limitations. A major limitation is that there is a high demand on clinician expertise in the 

modelling process. Clinician input is needed for the assessment of the data-driven covariates 

and the creation of various cohorts to be used as covariates. In Chapter 6 this was feasible as 

there was only a single model developed, but this process does not scale well to the creation 

of multiple models, as was experienced during the research phase that produced the content 

of Chapter 7. The inclusion of this manual step is time consuming, and as such an automatic or 

semi-automatic process to produce the parsimonious models would be preferable. Fortunately, 

there exist several ways to produce parsimonious models using automated feature selection. A 

simple option is to increase the penalisation in the LASSO method to such an extent that very 

few covariates are included in the model, but given the L1 properties of this algorithm, LASSO 

with high penalisation is prone to overfitting and the performance collapses when externally 

validated. Work which is currently ongoing, involves experiments with the iterative hard thresh-

olding (IHT) algorithm. This uses an L0 penalisation parameter that selects the best k variables 

to approximate the true function that produces the data. k here is a hyperparameter that decides 

where the hard threshold of (IHT) is fixed, typically 5, 10 or 15 variables. This procedure has 

been shown in preliminary research to better maintain performance when externally validated 

than a LASSO model. This work will be extended to include more parsimonisation methods 

and be applied to more problem settings to produce a more robust analysis of the performance 

of these different parsimonisation processes. The goal of this is to discover a fast, effective and 

scalable parsimonisation method which would allow for the development of more prediction 

models that have a greater chance of clinical impact. 

Multi-database learning
In Chapter 1 we considered how using multiple database to ensemble a prediction model would 

affect the performance and we saw that the ensemble did give improvements in discrimination 

performance but would likely need to be recalibrated. We built an ensemble of linear regression 

models, each model built in a separate database, but another option is to ensemble different 

algorithm types in the same data. Within the PLP package, aside from LASSO regression, there 

are also random forest, gradient boosting machines, deep learning methods etc. available. An op-

tion to utilise this diversity of available methods is to train a selection of these models and then 
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ensemble them (there are also multiple options for this as explored in chapter 1). Currently we 

are training ensembles of random forest, gradient boosting machine, and LASSO in a US claims 

database with the intention to externally validate an ensemble of these models and observe 

how this model performs and if it sufficiently increases the model performance to warrant the 

increase in complexity. One repeated finding in experiments with ensemble modelling is that 

the calibration of the final models is often poor. This occurs both for ensembles developed 

using 1 database as well as in multi-database ensembles. Potential reasons for this are the 

differences in background event rates between the training and validation settings and the fact 

the models are often weighted on discrimination and not calibration, meaning calibration is not 

considered in the ensembling process. Methods of calibration assessment and recalibration will 

be important in ensemble models and are to be further developed for clinical use.

Calibration and recalibration
Almost every study in this thesis used calibration at some point as a performance measure. 

Calibration is however an often neglected part of the prediction model assessment. The impact 

of calibration on clinical performance has been demonstrated but the potential for recalibration 

of models is yet to be fully explored. This can be split into 3 different broad categories. The first 

of these is to simply adjust the intercept of a model, this is the simplest and crudest form of 

recalibration but has produced good results. When validating a model in a new database, if the 

model consistently underestimates risk then simply increasing the value of all risks by the same 

amount can show improvement in the calibration (preserving the discrimination performance). 

The second method is to adjust the intercept and the slope. This is useful when the amount 

of miscalibration varies across the range of predictions and if there is a linear relationship 

between the risk size and miscalibration size. It can be more effective in correcting this than a 

simple intercept adjustment. The third and more complex version of recalibration (and indeed 

there is a question as to whether this can be considered a recalibration) is to use all the 

covariates selected by the original model and then to refit the coefficients using new data. This 

will likely have impact on the discrimination performance but should improve the calibration 

of the model. There is an epistemological question here of whether this is a recalibration or 

simply developing a new model and as such consideration needs to be made if the evidence 

from the internal validation of the original model can still be considered as evidence for the 

new model or if the recalibrated model should simply be assessed on the new evidence. What 

all of these methods require, however, is new data in order to be able to recalibrate and they 

are all done post-hoc. That is to say the model has been run originally and then the adjustment is 

based upon the errors seen in the model. I would like to investigate if it is possible to perform 

beneficial recalibration without the need to use any post-hoc assessment and adjustment. An 

ideal situation would be to use some existing knowledge (e.g. using summary statistics sur-

rounding differences in event rate and prevalence between original and new data source) to be 

able to recalibrate a model effectively.
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Model Fairness
Another major focus of future prediction research will be on social determinants of health. 

Recently there has been a major focus on the provision of adequate and fair healthcare to all 

sectors and peoples in society. It has been demonstrated that historical medical practice has 

unfairly ignored or harmed people from vulnerable and minority groups. A major reason for 

the unfairness is the lack of representation of these people in the data used for conducting 

research. If a patient population is insufficiently represented in the data used for analysis, then 

the model or analysis could perform poorly in this subgroup, but this is then not seen in the 

general results. This raises the question of how to best conduct the assessment of performance 

variation between people from various socio-economic and ethnic backgrounds. In terms of 

prediction modelling, the first task is to assess if the models developed within the OHDSI PLP 

framework have different performances for different demographic subgroups. Given that it is 

likely differences will be measured, the next task is to figure out how to adjust for this. One 

common issue is poor calibration in the subgroup. In theory, this could be fixed using recalibra-

tion. If we observe a systematic over or under estimation of risk, then a simple baseline risk 

adjustment can help. If the miscalibration is more complex, methods such as slope updating and 

covariate refitting could be used. These ideas were discussed earlier, in the recalibration section, 

and the same logic as for the entire population applies here when thinking of adjustment for a 

subgroup. In assessing the differences in performance, simply analysing the performance in the 

subgroup using standard metrics can present an incomplete picture. Specialised metrics such as 

equalised odds can provide a more complete picture and in fact could be used in the training 

process to develop models without fairness issues in the first place.

Of particular importance to this process is to be mindful at every step that research in 

this area can have negative as well as positive impacts on the healthcare of the groups that 

have traditionally been ignored or underserved by the healthcare establishment. As such it is 

essential to include the voices of the affected people in the conduct of this research.

Finally, what have we learnt along the way? Firstly that heterogeneity of patients can be 

used to our advantage. The individuality can be used to personalise treatments to maximise 

the benefit. This can be done through the use of risk-guided intervention choices that are 

supported by PLP models. Secondly, in order to do this we need to have robust, reliable, repro-

ducible and contextualised evidence. In order to produce this, open source and open science 

principles must be applied at all points throughout the research and implementation process. 

Finally, models need to be shared, reported, tested, criticised and improved by a community of 

researchers with a common goal of using massive healthcare data to create evidence to improve 

the treatment pathways of patients. In a learning healthcare system we have a responsibility to 

the patients who have provided the data, to use that data. This thesis detailed multiple ways to 

best leverage the information contained in this data to improve the patient pathways. Prediction 

modelling has the potential to transform treatment decision making. Simple, understandable and 

applicable models are needed to bring about this revolution in care. 
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SUMMARY

At the heart of medicine, lies decision making. Every day clinicians face the complex challenge 

of making decisions about a patient’s treatments. E.g., if a patient has hypertension, which treat-

ment should they choose(1). When deciding on how to treat a patient, the risks of a treatment 

are compared with the benefits in order to choose an optimum treatment pathway(2). For 

example, when a patient is already at a high risk of heart failure, adding a drug which is known 

to increase the risk of heart failure is likely to be discouraged(3-6). Knowing that a treatment 

increases or decreases the risk of an outcome is not the only relevant element of risk. For 

any patient an increase in risk of one outcome can be much more impactful than the increase 

in risk of another. This is the trade-off between relative and absolute risk increases. A small 

increase in a large absolute risk is likely a bigger, more worrying increase than a big increase in 

a small risk(7). Frequently, guidelines recommend that treatments diverge based upon the risk 

of certain outcomes and the different known risk profiles of medications(8, 9). An example 

of this was seen in chapter 4, where, in the relevant guidelines, the selection of a diabetes 

medication depends upon risk of heart failure. However, the same guidelines did not include 

how a patient’s risk should be calculated. When applying the guidelines, the doctor must assess 

what the risk of some event is for a patient. To make this assessment, they might use information 

available to them such as causal inference studies, experience and clinical intuition. The use of 

causal inference studies only takes them so far. These studies provide difference in absolute 

risk, expressed as relative risk across an entire population. This average risk does not account 

for the heterogeneity seen at the patient level. Furthermore, a clinician’s experience is limited 

as they may not see enough patients to identify rare patterns and intuition is limited by things 

they do not know, e.g., the patient’s full history. As such, the assessment of risk recommended 

by the guidelines is a very difficult task at the patient level. This severely limits the possibility to 

personalise the treatment of a patient. In general, the heterogeneity seen at the patient level is 

considered problematic for treatment(10-14). This same heterogeneity can however be used 

for personalisation, if we can leverage it in prediction models. By providing a high performing 

risk model to assess the probability of an outcome, better informed healthcare decisions can 

be made and ultimately lead to the better personalisation of a patient’s medical journey. This 

personalisation will contribute to a better performing, more efficient healthcare system and 

reduce the burden on the clinician and patient. 

To create better risk models, we need to have standardised data, standardised analytic 

pipelines and standardised research practices(15). This allows for more direct comparison of 

models and for the overall increase in trust of the robustness of the methodology used. 

The best way of implementing these standardisations is to start with the data. If the data 

we collect for observational research can be mapped to improve the semantic and syntactic 

interoperability, further standardisations of analytical pipelines become easier. One method is 

to use the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) 
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maintained by the Observational Health Data Sciences and Informatics (OHDSI) community 

(see Figure 1)(16). 

The OMOP-CDM aims to improve both the syntactic and semantic interoperability of 

observational health data. Standardising clinical data to a common format as shown in Fig-

ure 1 (blue box), enables the use of standardised analytic pipelines such as the Patient-Level 

Prediction (PLP) framework. The use of standardised vocabularies (orange box) improves the 

semantic interoperability, i.e., it facilitates the identification of clinical concepts using a common 

terminology. More information about the OMOP-CDM can be found in The Book of OHDSI 

(https://book.ohdsi.org). 

This thesis details work which helps define best practices in conducting PLP research using 

data from a federated network of standardised observational databases.

Part I
In Part I we considered how best to develop and evaluate PLP models within federated data 

networks. A federated network is a network of databases that protect patient information by 

using a privacy-by-design approach(17). As much health data is siloed and not allowed to be 

distributed outside of a specific environment, pooling of data is impossible. A federated network 

removes many of the issues with the siloed of data by implementing a common data model 

across the network to ensure the databases have a high level of interoperability. As we know 

the underlying syntactic and semantic database structure, we can share standard analytic tools 

Figure 1 The structure of the OMOP-CDM
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between databases rather than passing the database to the tool. This means only software and 

summary statistics are shared and no patient data. All the studies in this thesis were conducted 

using data mapped to the OMOP CDM. Without this mapping, this work would have been next 

to impossible. 

Chapter 1 assessed whether transportability of models can be improved by ensembling 

multiple models, each developed in a separate database, and applying this to a new database(18, 

19). Here transportability is defined as a model’s ability to maintain its performance when being 

assessed in a new database (20, 21). Any single database often contains a population that is 
non-representative of the broader disease specific population (e.g., the IBM Marketscan 
Medicare supplemental database contains older patients who are more affluent). We in-
vestigated whether we could combine models developed in different databases (proxy 
for types of populations) to create a model that is better for the general population (and 
therefore should transport better). For each question in a set of 21 prediction questions, we 

trained five single database models each using a different observational healthcare database. We 

then developed and investigated several different ensemble models that combine, or ensembled, 

the five different models. These ensemble models used the performance of the base (or level 

1) models and then applied one of several fusion methods, by matching the new patient to 

the underlying model based on age, or one of 3 different stacking methods using incremental 

amounts of data. The stacking methodology fits a logistic regression model to the outputs of the 

base models to combine these in a more elegant manner (22). This form of ensembling requires 

data from the validation set. Performance of each model was investigated via discrimination and 

calibration using data from a new database not used in the model development. The internal 

validation of a model developed using the hold out database was calculated and presented as 

the ‘hypothetical optimum’ for comparison. Fusion ensembles generally outperformed the single 

database models and were more consistent when applied to new data. Stacking ensembles 

performed poorly in terms of discrimination when the additional data needed to perform the 

stacking process was limited. Calibration was poor when ensembles and single database models 

were applied to new databases. Comparing all the methods detailed above, we observed that 

in general ensemble methods improve performance over base models. This performance must 

be considered with the context of vastly increased model complexity. All the ensemble models 

would need recalibration before clinical implementation. 

Chapter 2 considered the use of proxy learning and parsimonisation (23, 24). Proxy learning 

is the development of a model in a similar 'proxy' population to the main target population 

of interest. This model is then evaluated in the true problem setting in a new dataset. This is 

done because there may be, for a variety of reasons, insufficient data to develop in the true 

population of interest (25). In chapter 2, this involved using data from a different target disease. 

The standard form of external validation is to perform this validation on an identical problem 

setting but then in a new database. This chapter details a model developed at the start of the 

Coronavirus (covid-19) pandemic. As such the models needed to be developed rapidly and at 



176

Summary

a time when there was limited data available on covid-19 infections. The aim was to develop 

a usable model as quickly as possible. The parsimonisation involved a 2-step process of first 

developing a data-driven model, then using clinical expertise to refine the covariates into a 

more manageable number and then comparing performances. The proxy learning used influenza 

data, which is abundant, to attempt to develop a model rapidly to use for covid-19 patients. 

Due to the limited amount of covid-19 data, we decided to use this proxy method to preserve 

the covid data for validation. This increased the strength of evidence of performance without 

having to wait longer to collect more data. We developed three models assessing hospitalisation, 

hospitalisation with intensive services or death and fatality. These three endpoints represent 

different disease severities. The three models performed well both for complex and parsimoni-

ous versions in the influenza dataset for which we sampled 150,000 patients. This performance 

was largely replicated in the multiple international Covid-19 datasets that were at our disposal 

(n=44,507). This analysis demonstrated that proxy learning can be an efficient and effective 

technique. The parsimonious nature of the models developed meant that they can easily be used 

in multiple settings to affect patient care and strategic planning.

Chapter 3 of this thesis establishes a best practice for conducting external validation (26-

28). The chapter demonstrates how the standardisation of data to the OMOP CDM helps 

to facilitate the development of standardised tools. This reduces the burden for externally 

validating a prediction model in a network of observational databases. To do this work, we took 

multiple models from the literature, implemented the models into a OMOP CDM compatible 

format and applied them across six databases. To demonstrate the utility of this pipeline, a use 

case study was performed using five existing models that predicted incident stroke in atrial 

fibrillation patients. The five existing models, (ATRIA, CHADS2, CHADS2VASC, Q-Stroke and 

Framingham) were able to be integrated into the OHDSI framework for patient-level prediction 

(29-31). They obtained mean c-statistics ranging between 0.57-0.63 across the six databases. 

This was comparable with other validation studies. The validation network study was run across 

six datasets within 60 days once the models were replicated. The techniques in this chapter 

were shown to be an effective way to externally validate models. The speed at which the models 

could be validated within the network, after being converted to an OMOP CDM compatible 

format, demonstrates the power of the standardisation of analytic pipelines in aiding in rapid 

and reliable evidence generation.

In chapter 4 we considered how we can best assess the performance of a model in an 

external validation setting (32, 33). This chapter introduced the idea of performance in context. 

In order to make meaningful statements about how performance differs between internal and 

external validation, it is helpful to have an expectation of performance in a new population (34). 

This chapter suggested doing this in a twofold manner. The first is to use a baseline model, we 

suggest a simple age and sex model, which gives context of how impactful increasing model 

complexity is. If the baseline model has similar performance to the complex model, then we 

know that the extra complexity does not provide a relevant performance increase. The second 
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is to set expectations of a “full model” by developing a new model in the external validation 

database to give an understanding of what the expectation of performance in this database is. 

If a model has an internal validation performance of 0.7 in database A but external validation in 

database B of 0.6, this looks bad. However, if we know a model developed in database B has an 

AUC of 0.62, then the drop in performance when externally validated is likely due to case-mix. 

Using this procedure, we observed that often a database can be thought of as harder or easier 

to predict in. This variation in difficulty was demonstrated by a use-case of predicting incident 

heart failure in diabetes patients in the 1 year following initiation of a second diabetes medica-

tion. A total of 403,187 patients were included in the study from 5 databases. We developed 5 

models which when assessed internally had a discriminative performance, assessed by c-statistic, 

ranging from 0.73 to 0.81 and acceptable calibration. When externally validating these models in 

a new database, three models achieved consistent performance and in context often performed 

similarly to models developed in the database itself. This study provided insight not only into 

the potential performance of the clinical model, but also into the databases themselves showing 

some were more difficult to predict in than others. The process of rotating development and 

validation databases and implementing a baseline model is called iterative pairwise external 

validation (IPEV). IPEV demonstrates the potential additive value of using more complex models 

and gives context to model performance in new databases.

Chapter 5 detailed the development and deployment of the DELPHI prediction model 

library. The main aim of this was to ease the dissemination and evaluation of prediction models 

that were developed for OMOP CDM data (35). Given the rapid increase in the development 

of prediction models over the last 10 years, but the lack of improvement in the reporting of 

models, there was a clear unmet need for a centralised repository to standardise the model 

dissemination process. The widespread adoption of the OMOP CDM and the standardised 

analytics made possible using the PatientLevelPrediction R package (36), mean that many predic-

tion models produced now have a common results object. By leveraging this standard results 

object, models and their performance can be easily formatted to a database. We developed a 

database backend that will take the information about a model or the external validation of a 

model and store it. On top of this we developed a Graphical User Interface that allows users 

to interact with the database in a simple and intuitive way. Importantly this loads a dynamic 

results exploration environment. This dynamic environment allows for users of the GUI to 

explore results and change parameters (for example the threshold for a decision) to see how 

this affects the model performance. The models themselves can also be downloaded, evaluated 

on new data, and this performance reuploaded as an external validation. It is hoped that this 

makes external validation easier and thus more commonly performed. By doing this the DELPHI 

library aims to turn results from a static object, e.g., a journal article, to a dynamic ecosystem of 

evidence generation. This should increase the scale at which prediction models will be validated. 

The DELPHI library represents an important step in the implementation of models in clinical 
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practice by improving the flexibility of evaluation by clinicians, regulators and researchers. It is 

hoped that this leads to an increase in trust in the field of PLP modelling.

Part II
The second part of this thesis moved away from methods development and considers specific 

clinical questions that were answered with a multi-disciplinary team. The questions came di-

rectly form clinicians that saw a clear unmet need for a prediction model in their daily practice. 

Chapter 6 detailed the development and validation of a prediction model for 90-day post-

operative outcomes following a total knee replacement (TKR). TKR is a safe and cost-effective 

surgical procedure for treating severe knee osteoarthritis (OA) (37-39). Although complications 

following surgery are rare, prediction tools could help identify high-risk patients who could be 

targeted with preventative interventions (40-42). The aim was to develop and validate a simple 

model to help inform treatment choices. This chapter discusses the development of a prediction 

model for mortality that was conducted during a study-a-thon in Oxford that produced multiple 

articles. The main finding of this chapter was the development of a 90-day mortality predic-

tion model. Both a complex and a simple model were developed for this problem setting. The 

complex model had a c-statistic of 0.78 internally and 0.70 externally. The parsimonious model 

had a c-statistic of 0.77 internally and 0.71 externally. This demonstrates the parsimonious 

model is similarly performant as the complex model and as such is preferred. The performance 

achieved by the parsimonious model suggests that it could be clinically impactful. The use of only 

12 variables in the model means it is implementable and could immediately aid in the decision 

making around surgery.

For chapter 7, we considered a prediction model built for patients with rheumatoid arthri-

tis (RA). Identification of RA patients at elevated risk of experiencing any of several adverse 

health outcomes remains a major challenge (43, 44). This chapter discusses the development 

and validation of prediction models for a variety of adverse health outcomes in RA patients 

initiating first-line methotrexate (MTX) monotherapy. Models were developed and internally 

validated on 21,547 RA patients and externally validated on 131,928 RA patients. Models for 

serious infection (AUC: internal 0.74, external ranging from 0.62 to 0.83), MI (AUC: internal 

0.76, external ranging from 0.56 to 0.82), and stroke (AUC: internal 0.77, external ranging 

from 0.63 to 0.95), showed good discrimination and adequate calibration. Models for the other 

outcomes showed internal discrimination with AUC < 0.65 and were not externally validated. 

We developed and validated prediction models for a variety of adverse health outcomes in RA 

patients initiating first-line MTX monotherapy. Final models for serious infection, MI, and stroke 

demonstrated good performance across multiple databases. These models could potentially help 

to personalise treatment by, for example, implementing prophylactic antibiotic use, increased 

monitoring for patients at high risk, and providing reassurance to patients at low risk. These 

models are candidates to be studied for clinical use.
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In conclusion, prediction models can be impactful in aiding decision making in clinical prac-

tice and personalising healthcare. However, there remain multiple challenges in the development 

of effective and implementable models. To warrant the complex task of implementation, the 

models must demonstrate a strong ability to positively impact patient care. To positively impact 

patient care must remain as the main goal of research into patient-level prediction modelling.
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SAMENVATTING

In het hart van de geneeskunde ligt de besluitvorming. Elke dag staan clinici voor de complexe 

uitdaging om beslissingen te nemen over de behandeling van een patiënt. Als een patiënt bijvoor-

beeld hoge bloeddruk heeft, welke behandeling moet hen dan kiezen (1)? Bij de besluitvorming 

over de behandeling van een patiënt worden de voordelen om een optimaal behandeltraject 

te kiezen vergeleken met de risico's van een behandeling (2). Wanneer een patiënt al een hoog 

risico op hartfalen loopt, zal het toevoegen van een geneesmiddel waarvan bekend is dat deze 

het risico op hartfalen verhoogt, waarschijnlijk worden afgeraden (3-6). De wetenschap dat een 

behandeling het risico op een bepaalde uitkomst verhoogt of verlaagt, is niet het enige relevante 

element van risico. Voor iedere patiënt kan een toename van het risico op één resultaat veel 

belangrijker zijn dan de toename van het risico op een ander resultaat. Dit is de afweging tussen 

relatieve en absolute risicotoename (7). Een kleine toename van een groot absoluut risico 

is waarschijnlijk een grotere, zorgwekkender toename dan een grote toename van een klein 

risico. Vaak wordt daarom in richtlijnen aanbevolen dat behandelingen verschillen op basis van 

het risico op bepaalde uitkomsten en de verschillende bekende risicoprofielen van medicijnen 

(8, 9). Een voorbeeld hiervan is gegeven in hoofdstuk 4, waarin de desbetreffende richtlijnen 

de keuze van een diabetesmedicijn afhangt van het risico op hartfalen. Dezelfde richtlijnen 

vermeldden echter niet hoe het risico van een patiënt moet worden berekend. Bij de toepassing 

van de richtlijnen moet de arts beoordelen wat het risico op een bepaalde gebeurtenis is voor 

een patiënt. Om deze beoordeling te maken, kan hij gebruik maken van informatie waarover 

hij beschikt, zoals causale gevolgtrekkingen, ervaring en klinische intuïtie. Het gebruik van 

causale inferentie studies brengt hen slechts zover. Deze studies geven een verschil in absoluut 

risico, uitgedrukt als relatief risico over een hele populatie. Dit gemiddelde risico houdt geen 

rekening met de heterogeniteit op patiëntniveau. Bovendien is de ervaring van een clinicus 

beperkt, aangezien hij niet altijd genoeg patiënten ziet om zeldzame patronen te herkennen. 

Bovendien wordt intuïtie beperkt door dingen die hij niet weet, zoals bijvoorbeeld de volledige 

voorgeschiedenis van de patiënt. Als zodanig is de in de richtlijnen aanbevolen risicobeoordeling 

op patiëntniveau een zeer moeilijke taak. Dit beperkt in ernstige mate de mogelijkheid om 

de behandeling van een patiënt te personaliseren. In het algemeen wordt de heterogeniteit 

op patiëntniveau als problematisch voor de behandeling beschouwd (10-14). Diezelfde he-

terogeniteit kan echter worden gebruikt voor personalisatie, als we die kunnen benutten in 

voorspellingsmodellen. Door een goed presterend voorspellingsmodel aan te bieden om de 

waarschijnlijkheid van een uitkomst te beoordelen, kunnen beter geïnformeerde beslissingen in 

de gezondheidszorg worden genomen en kan uiteindelijk het medische traject van een patiënt 

beter worden gepersonaliseerd. Deze personalisering zal bijdragen aan een beter presterend, 

efficiënter gezondheidszorgsysteem voor zowel de clinicus als de patiënt. 

Om betere risicomodellen te maken, moeten we beschikken over gestandaardiseerde 

gegevens, gestandaardiseerde analytische verwekingstappen en gestandaardiseerde onder-
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zoekspraktijken (15). Dit maakt een directere vergelijking van modellen mogelijk en zorgt voor 

een algemeen groter vertrouwen in de robuustheid van de gebruikte methodologie. De beste 

manier om deze standaardisaties door te voeren is door te beginnen met de gegevens. Verdere 

standaardiseringen van analytische verwerkingstappen wordt gemakkelijker wanneer de gege-

vens die we verzamelen voor observationeel onderzoek in kaart kunnen worden gebracht om 

de semantische en syntactische interoperabiliteit te verbeteren. Eén methode is het gebruik van 

het Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) dat 

wordt onderhouden door de Observational Health Data Sciences and Informatics (OHDSI) 

gemeenschap (zie Figuur 1) (16). 

Het OMOP-CDM heeft als doel om zowel de syntactische als de semantische interope-

rabiliteit van observationele gezondheidsgegevens te verbeteren. Het standaardiseren van 

klinische gegevens naar een gemeenschappelijk formaat, weergegeven in Figuur 1 (blauw kader), 

maakt het gebruik van gestandaardiseerde analytische gereedschap mogelijk. Het gebruik van 

gestandaardiseerde vocabulaires (oranje kader) verbetert de semantische interoperabiliteit, dat 

wil zeggen het vergemakkelijkt de identificatie van klinische concepten met behulp van een 

gemeenschappelijke terminologie. Meer informatie over het OMOP-CDM staat in het boek van 

OHDSI (https://book.ohdsi.org). 

Dit proefschrift beschrijft het werk dat de best practices helpt te definiëren voor het uit-

voeren van Patient-Level Prediction (PLP) onderzoek met behulp van gegevens uit een federaal 

netwerk van gestandaardiseerde observationele databases.

Figuur 1 De structuur van het OMOP-CDM
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Deel I
In deel I hebben wij bekeken hoe PLP modellen binnen gefedereerde gegevensnetwerken het 

best kunnen worden ontwikkeld en geëvalueerd. Een gefedereerd netwerk is een netwerk van 

databases die patiënten informatie beschermen door gebruik te maken van een op privacy geba-

seerde aanpak (17). Aangezien veel gezondheidsgegevens in datasilos zijn ondergebracht, en niet 

buiten een specifieke omgeving mogen worden verspreid, is bundeling van gegevens onmogelijk. 

Een gefedereerd netwerk neemt veel van de problemen met de silo's van gegevens weg door in 

het hele netwerk een gemeenschappelijk gegevensmodel te implementeren om ervoor te zor-

gen dat de databases in hoge mate interoperabel zijn. Omdat we de onderliggende syntactische 

en semantische databasestructuur kennen, kunnen we standaard analyse-instrumenten delen 

tussen databases in plaats van de database door te geven aan het instrument. Dit betekent dat 

alleen software en samenvattende statistieken worden gedeeld en patiëntgegevens dus niet. Alle 

studies in dit proefschrift zijn uitgevoerd met gegevens die zijn gekoppeld aan de OMOP CDM. 

Zonder deze mapping zou dit werk vrijwel onmogelijk zijn geweest. 

In hoofdstuk 1 is beoordeeld of de transporteerbaarheid van modellen kan worden verbe-

terd door verschillende modellen, elk ontwikkeld in een afzonderlijke database, te ensembleren 

en toe te passen in een nieuwe database (18, 19). Transporteerbaarheid wordt hier gedefinieerd 

als het vermogen van een model om zijn prestaties te handhaven wanneer het in een nieuwe 

database wordt beoordeeld (20, 21). Elke afzonderlijke database bevat vaak een populatie die 

niet representatief is voor de bredere ziekte specifieke populatie (de IBM Marketscan Me-

dicare supplementaire database bevat bijvoorbeeld oudere patiënten die welvarender zijn). 

Wij onderzochten of wij modellen konden combineren die in verschillende databases zijn 

ontwikkeld (in plaats van soorten populaties) om een model te creëren dat beter is voor 

de algemene bevolking (en dus beter transporteerbaar is). Voor elke vraag in een set van 21 

voorspellingsvragen trainden wij vijf basismodellen modellen uit één database, elk met behulp 

van een andere observationele gezondheidszorgdatabase. Vervolgens hebben wij verschillende 

ensemblemodellen ontwikkeld en onderzocht die de vijf verschillende modellen combineren, 

of ensembleren. Deze ensemblemodellen gebruikten de prestaties van de basismodellen (of 

niveau 1 modellen) en pasten vervolgens een van de verschillende fusiemethoden of een van 

de drie stapelmethoden toe. Bij fusiemethoden wordt de nieuwe patiënt gekoppeld aan het 

onderliggende model op basis van leeftijd. Bij een van de drie verschillende stapelmethoden 

wordt gebruik gemaakt van toenemende hoeveelheden gegevens. De stapelmethode past een 

logistisch regressiemodel toe op de outputs van de basismodellen om deze op een elegantere 

manier te combineren (22). Deze vorm van ensembling vereist gegevens van de validatieset. De 

prestaties van elk model zijn onderzocht via discriminatie en kalibratie met behulp van gegevens 

uit een nieuwe database die niet bij de modelontwikkeling werd gebruikt. De interne validatie 

van een model dat is ontwikkeld met behulp van de "hold out" database, werd berekend en ter 

vergelijking gepresenteerd als het "hypothetische optimum". Fusiemethoden presteerden over 

het algemeen beter dan de modellen met één database en waren consistenter bij toepassing 
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op nieuwe gegevens. Stapelmethoden presteerden onvoldoende in termen van discriminatie 

wanneer de extra gegevens die nodig zijn voor het stapelen beperkt waren. De kalibratie was 

onvoldoende wanneer ensembles en modellen met één database werden toegepast op nieuwe 

databases. Bij vergelijking van alle hierboven beschreven methoden hebben wij geconstateerd 

dat ensemblemethoden over het algemeen beter presteren dan basismodellen. Deze prestaties 

moeten worden gezien in de context van een sterk toegenomen complexiteit van de model-

len. Alle ensemblemodellen moeten opnieuw worden gekalibreerd voordat zij klinisch worden 

toegepast. 

In hoofdstuk 2 werd het gebruik van proxy-leren en parsimonisatie overwogen (23, 24). 

Proxy-learning is de ontwikkeling van een model in een soortgelijke "proxy"-populatie als 

de belangrijkste doelpopulatie. Parsimonisatie is het proces waardoor modellen versimpeld 

worden. Dit model wordt vervolgens geëvalueerd in de echte probleemsetting in een nieuwe 

dataset. Dit wordt gedaan omdat er, om uiteenlopende redenen, onvoldoende gegevens kunnen 

zijn om in de werkelijke doelpopulatie te ontwikkelen (25). In hoofdstuk 2 gebeurde dit proces 

gevolgd, met het gebruik van gegevens van een andere ziekte. De standaardvorm van externe 

validatie is om deze validatie uit te voeren op een identieke probleemsetting, maar dan in een 

nieuwe database. In dit hoofdstuk wordt een model beschreven dat is ontwikkeld aan het begin 

van de pandemie van het Coronavirus (covid-19). De modellen moesten dan ook snel worden 

ontwikkeld op een moment dat er weinig gegevens over covid-19-infecties beschikbaar waren. 

Het doel was zo snel mogelijk een bruikbaar model te creëren. De parsimonisatie omvatte een 

proces in twee stappen waarbij eerst een data gedreven model werd ontwikkeld, vervolgens 

klinische expertise werd gebruikt om de covariaten te verfijnen tot een hanteerbaarder aantal 

en vervolgens de prestaties werden vergeleken. Bij het proxy-leren werd gebruik gemaakt van 

griepgegevens, die overvloedig aanwezig zijn, om te proberen snel een model te ontwikkelen 

dat voor covid-19-patiënten kan worden gebruikt. Wegens de beperkte hoeveelheid Covid-

19-gegevens besloten wij deze proxy-methode te gebruiken om de Covid-gegevens te bewaren 

voor validatie. Dit zorgt om de bewijskracht van de prestaties te vergroten zonder langer 

te hoeven wachten om meer gegevens te verzamelen. Wij ontwikkelden drie modellen die 

ziekenhuisopname, ziekenhuisopname met intensieve diensten of overlijden en fataliteit be-

oordelen. Deze drie eindpunten vertegenwoordigen verschillende ziekte-ernstigheden. De drie 

modellen presteerden goed voor zowel complexe als versimpeld versies in de influenzadataset 

waarvoor we 150.000 patiënten bemonsterden. Deze prestaties werden grotendeels herhaald 

in de meerdere internationale Covid-19 datasets waarover wij beschikten (n=44.507). Deze 

analyse toonde aan dat proxy learning een efficiënte en effectieve techniek kan zijn. Door 

het gesimplificeerd karakter van de ontwikkelde modellen kunnen ze gemakkelijk in meerdere 

settingen worden gebruikt om de patiëntenzorg en de strategische planning te beïnvloeden.

Hoofdstuk 3 van dit proefschrift stelt een best practice vast voor het uitvoeren van externe 

validatie (26-28). Het hoofdstuk laat zien hoe de standaardisatie van gegevens naar het OMOP 

CDM helpt om de ontwikkeling van gestandaardiseerde instrumenten te vergemakkelijken. Ver-
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der, zorgen deze standaardisaties dat de last voor het extern valideren van een voorspellingsmo-

del in een netwerk van observationele databases is verminderd. Daartoe hebben wij meerdere 

modellen uit de literatuur genomen, deze geïmplementeerd in een OMOP CDM-compatibel 

formaat en toegepast in zes databases. Om het nut van deze verwerkingstappen aan te tonen, 

werd een use-case studie uitgevoerd met vijf bestaande modellen die incidentele beroerte 

bij patiënten met atriumfibrilleren voorspelden. De vijf bestaande modellen (ATRIA, CHADS2, 

CHADS2 VASC, Q-Stroke en Framingham) konden worden geïntegreerd in het OHDSI-kader 

voor voorspelling op patiëntniveau. Zo genoemde patient-level prediction. (29-31). Zij verkre-

gen gemiddelde c-statistieken tussen 0,57-0,63 voor de zes databases. Dit was vergelijkbaar met 

andere validatiestudies. De validatienetwerkstudie werd binnen 60 dagen uitgevoerd over zes 

datasets nadat de modellen waren gerepliceerd. De technieken in dit hoofdstuk bleken een ef-

fectieve manier om modellen extern te valideren. De snelheid waarmee de modellen binnen het 

netwerk konden worden gevalideerd, nadat ze waren omgezet in een OMOP CDM-compatibel 

formaat, toont de kracht aan van de standaardisatie van analytische verwerkingstappen om snel 

en betrouwbaar bewijsmateriaal te genereren.

In hoofdstuk 4 hebben we bekeken hoe we de prestaties van een model het best kunnen 

beoordelen in een externe validatiesetting (32, 33). Dit hoofdstuk introduceerde het idee van 

prestatie in context. Om zinvolle uitspraken te kunnen doen over hoe de prestaties verschillen 

tussen interne en externe validatie, is het nuttig een verwachting te hebben van de prestaties 

in een nieuwe populatie (34). In dit hoofdstuk werd voorgesteld dit op twee manieren te doen. 

De eerste is het gebruik van een basismodel, wij stellen een eenvoudig leeftijds- en geslachts-

model voor, dat context geeft aan de impact van toenemende complexiteit van het model. Als 

het basismodel vergelijkbare prestaties levert als het complexe model, dan weten we dat de 

extra complexiteit geen relevante prestatieverhoging oplevert. De tweede is het vaststellen van 

verwachtingen van een "volledig model" door een nieuw model te ontwikkelen in de externe 

valideringsdatabase om inzicht te geven in wat de prestatieverwachting in deze database is. Als 

een model een interne validatieprestatie van 0,7 heeft in database A, maar een externe validatie 

in database B van 0,6, ziet dit er onvoldoende uit. Als we echter weten dat een model dat in 

database B is ontwikkeld een AUC van 0,62 heeft, dan is de daling van de prestatie bij externe 

validatie waarschijnlijk te wijten aan case-mix. Met deze procedure hebben wij vastgesteld dat 

een database vaak moeilijker of gemakkelijker te voorspellen is. Deze variatie in moeilijkheids-

graad werd aangetoond aan de hand van een use-case van het voorspellen van incidenteel 

hartfalen bij diabetespatiënten in het eerste jaar na aanvang van een tweede diabetesmedicijn. 

In totaal werden 403.187 patiënten uit 5 databases in de studie opgenomen. Wij ontwikkelden 5 

modellen die bij interne beoordeling een discriminerende prestatie hadden, beoordeeld aan de 

hand van de c-statistiek, variërend van 0,73 tot 0,81 en een aanvaardbare kalibratie. Bij externe 

validering van deze modellen in een nieuwe database presteerden drie modellen consistent 

en in de context vaak vergelijkbaar met modellen die in de database zelf waren ontwikkeld. 

Deze studie gaf niet alleen inzicht in de potentiële prestaties van het klinische model, maar ook 
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in de databases zelf, waaruit bleek dat sommige moeilijker te voorspellen waren dan andere. 

Het proces waarbij ontwikkelings- en validatiedatabases worden gerouleerd en een basismodel 

wordt toegepast, wordt iteratieve paarsgewijze externe validatie (IPEV) genoemd. IPEV toont 

de potentiële toegevoegde waarde aan van het gebruik van complexere modellen en geeft 

context aan de modelprestaties in nieuwe databases.

In hoofdstuk 5 werd de ontwikkeling en invoering van de DELPHI-bibliotheek van voorspel-

lingsmodellen gedetailleerd beschreven. Het hoofddoel hiervan was de verspreiding en evaluatie 

van voorspellingsmodellen die ontwikkeld zijn voor OMOP CDM-gegevens te vergemakkelijken 

(35). Gezien de snelle toename van de ontwikkeling van voorspellingsmodellen in de afgelopen 

tien jaar, maar het gebrek aan verbetering in de rapportage van modellen, was er een duidelijke 

onbeantwoorde behoefte aan een gecentraliseerde opslagplaats om het verspreidingsproces 

van modellen te standaardiseren. De wijdverspreide toepassing van de OMOP CDM en de 

gestandaardiseerde analyses, die mogelijk zijn gemaakt met het R-package PatientLevelPredic-

tion (36), betekenen dat veel geproduceerde voorspellingsmodellen nu een gemeenschappelijk 

resultatenobject hebben. Door gebruik te maken van dit standaard resultatenobject kunnen 

modellen en hun prestaties gemakkelijk worden geformatteerd in een database. Wij ontwik-

kelden een database backend die de informatie over een model of de externe validatie van 

een model opneemt en opslaat. Bovendien hebben we een grafische gebruikersinterface (GUI) 

ontwikkeld waarmee gebruikers op een eenvoudige en intuïtieve manier met de database 

kunnen interageren. Belangrijk is dat hiermee een dynamische resultatenverkenningsomgeving 

wordt geladen. Met deze dynamische omgeving kunnen gebruikers van de GUI de resultaten 

verkennen en parameters wijzigen (bijvoorbeeld de drempel voor een beslissing) om te zien 

hoe dit de prestaties van het model beïnvloedt. De modellen zelf kunnen ook worden gedown-

load, geëvalueerd op nieuwe gegevens, en deze prestaties kunnen opnieuw worden geladen als 

een externe validatie. Het doel is dat externe validatie hierdoor gemakkelijker wordt en dus 

vaker wordt uitgevoerd. Op deze manier wil de DELPHI-bibliotheek de resultaten veranderen 

van een statisch object, bijvoorbeeld een tijdschriftartikel, in een dynamisch ecosysteem van 

bewijsvoering. Dit zou de schaal waarop voorspellingsmodellen worden gevalideerd moeten 

vergroten. De DELPHI-bibliotheek betekent een belangrijke stap in de implementatie van mo-

dellen in de klinische praktijk door de flexibiliteit van de evaluatie door clinici, toezichthouders 

en onderzoekers te verbeteren. Het is te hopen dat dit leidt tot meer vertrouwen op het gebied 

van PLP-modellering.

Deel II
In het tweede deel van dit proefschrift wordt de ontwikkeling van methoden achterwege 

gelaten en worden specifieke klinische vragen behandeld die werden beantwoord met een 

multidisciplinair team. De vragen kwamen rechtstreeks van clinici die een duidelijke behoefte 

zagen aan een voorspellingsmodel in hun dagelijkse praktijk. 
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Hoofdstuk 6 beschrijft de ontwikkeling en validatie van een voorspellingsmodel voor 

90-dagen postoperatieve resultaten na een totale knieprothese (TKR). TKR is een veilige en 

kosteneffectieve chirurgische procedure voor de behandeling van ernstige knieartrose (OA) 

(37-39). Hoewel complicaties na een operatie zeldzaam zijn, zouden voorspellingsmodellen 

kunnen helpen bij het identificeren van patiënten met een hoog risico, voor wie preventieve 

maatregelen zouden kunnen worden genomen (40-42). Het doel was een eenvoudig model te 

ontwikkelen en te valideren dat kan helpen bij het maken van behandelkeuzes. Dit hoofdstuk 

bespreekt de ontwikkeling van een voorspellingsmodel voor mortaliteit dat werd uitgevoerd tij-

dens een study-a-thon in Oxford die meerdere artikelen opleverde. De belangrijkste bevinding 

van dit hoofdstuk was de ontwikkeling van een voorspellingsmodel voor sterfte binnen 90 dagen. 

Voor deze probleemstelling werden zowel een complex als een eenvoudig model ontwikkeld. 

Het complexe model had een c-statistiek van 0,78 intern en 0,70 extern. Het eenvoudige model 

had een c-statistiek van 0,77 intern en 0,71 extern. Hieruit blijkt dat het versimpeld model even 

goed presteert als het complexe model en als zodanig de voorkeur geniet. De prestaties van het 

versimpeld model wijzen erop dat het een klinische impact zou kunnen hebben. Het gebruik van 

slechts 12 variabelen in het model betekent dat het implementeerbaar is en onmiddellijk kan 

helpen bij de besluitvorming rond een operatie.

Voor hoofdstuk 7 hebben wij een voorspellingsmodel ontwikkeld voor patiënten met reu-

matoïde artritis (RA). De identificatie van RA-patiënten met een verhoogd risico op een of meer 

ongunstige gezondheidsuitkomsten blijft een grote uitdaging (43, 44). Dit hoofdstuk bespreekt 

de ontwikkeling en validatie van voorspellingsmodellen voor verschillende ongunstige gezond-

heidsuitkomsten bij RA-patiënten die beginnen met eerstelijns monotherapie van methotrexaat 

(MTX). De modellen zijn ontwikkeld en intern gevalideerd op 21.547 RA-patiënten en extern 

gevalideerd op 131.928 RA-patiënten. Modellen voor ernstige infectie (AUC: intern 0,74, ex-

tern variërend van 0,62 tot 0,83), MI (AUC: intern 0,76, extern variërend van 0,56 tot 0,82), 

en beroerte (AUC: intern 0,77, extern variërend van 0,63 tot 0,95), vertoonden voldoende 

discriminatie en adequate kalibratie. Modellen voor de andere uitkomsten vertoonden interne 

discriminatie met AUC < 0,65 en werden niet extern gevalideerd. Wij ontwikkelden en valideer-

den voorspellingsmodellen voor diverse ongunstige gezondheidsuitkomsten bij RA-patiënten 

die begonnen met eerstelijns MTX-monotherapie. De uiteindelijke modellen voor ernstige 

infectie, MI en beroerte bleken goed te presteren in meerdere databases. Deze modellen kun-

nen mogelijk helpen bij het personaliseren van de behandeling, bijvoorbeeld door profylactisch 

gebruik van antibiotica, meer toezicht op patiënten met een hoog risico en geruststelling van 

patiënten met een laag risico. Deze modellen zijn kandidaat om te worden bestudeerd voor 

klinisch gebruik.

Geconcludeerd kan worden dat voorspellingsmodellen van grote invloed kunnen zijn op de 

besluitvorming in de klinische praktijk en de personalisatie van de gezondheidszorg. Er blijven 

echter meerdere uitdagingen bij de ontwikkeling van effectieve en implementeerbare model-

len. Om de complexe implementatietaak te rechtvaardigen, moeten de modellen een sterk 
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vermogen aantonen om de patiëntenzorg positief te beïnvloeden. Een positieve invloed hebben 

op de patiëntenzorg moet het hoofddoel blijven van onderzoek naar voorspellingsmodellen op 

patiëntniveau.
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