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ABSTRACT
Objective: This work aims to explore the value of Dutch unstructured data, in combination with structured data, for the development of prognostic
prediction models in a general practitioner (GP) setting.

Materials and methods: We trained and validated prediction models for 4 common clinical prediction problems using various sparse text representa-
tions, common prediction algorithms, and observational GP electronic health record (EHR) data. We trained and validated 84 models internally and
externally on data from different EHR systems.

Results: On average, over all the different text representations and prediction algorithms, models only using text data performed better or similar to
models using structured data alone in 2 prediction tasks. Additionally, in these 2 tasks, the combination of structured and text data outperformed
models using structured or text data alone. No large performance differences were found between the different text representations and prediction
algorithms.

Discussion: Our findings indicate that the use of unstructured data alone can result in well-performing prediction models for some clinical
prediction problems. Furthermore, the performance improvement achieved by combining structured and text data highlights the added value.
Additionally, we demonstrate the significance of clinical natural language processing research in languages other than English and the possibility
of validating text-based prediction models across various EHR systems.

Conclusion: Our study highlights the potential benefits of incorporating unstructured data in clinical prediction models in a GP setting. Although
the added value of unstructured data may vary depending on the specific prediction task, our findings suggest that it has the potential to enhance
patient care.
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INTRODUCTION

Electronic health record (EHR) databases form a rich data
source for building prognostic clinical prediction models, and
their development and validation have become increasingly
important in clinical research.1–3 A prognostic model predicts
which patients, among a target population, using predictors
measured during a prior observation time window, will expe-
rience a clinical outcome during a window of time in the
future. While model development typically focuses on the use
of structured EHR data, such as coded conditions, prescrip-
tions, and measurements, most detailed and extensive clinical
information is commonly stored in the vast number of clinical
notes from physicians, nurses, or other caregivers, used for
documentation or communication: the unstructured or free-
text data.4,5 Transforming extensive volumes of clinical text
into structured numerical features for model development is a
resource-intensive process, making the use of text data in pre-
diction models complex in comparison to structured data.
However, incorporating detailed information from clinical
narratives has the potential to improve the predictive

performance of the model, as it provides a more complete and
accurate picture of the patient’s health.

Our previous research reviewed the use of text data in prog-
nostic prediction models in recently published literature and
found that, in addition to structured data, text data improved
the performance of most models.6 However, there are still sev-
eral knowledge gaps that can be addressed. First of all, assessing
generalizability remains important in model development,7,8 but
the majority of developed and published prediction models is
not externally validated.2,6 While external validation of struc-
tured data models is increasingly feasible, for example, by the
use of common standardized clinical concepts and the Observa-
tional Medical Outcomes Partnership Common Data Model
(OMOP CDM),3 external validation of models using text data
is still complicated. This is due to the use of different languages
or clinical sublanguages, the lack of a common structured for-
mat, and noisy and subjective text containing abbreviations and
typos. Furthermore, the focus of clinical prognostic prediction
and natural language processing (NLP) research has been on
English and hospital-care data.6,9 Only a few studies have
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recently incorporated Dutch clinical text in the development of
prognostic prediction models, predicting life expectancy,10 risk
of preterm birth,11 and the risk of inpatient violence.12–15 All
these studies found the use of text data beneficial, yet were also
primarily conducted in a hospital-care setting. However, other
studies have utilized Dutch general practitioner (GP) notes to
predict the risk of lung cancer16 and falls in elderly patients,17

but with no comparison to models using structured data.
Previous NLP research has demonstrated the accurate extraction
of important information from Dutch patient notes18–20 and the
development of large clinical language models,21,22 and high-
lighted the potential added value of text data in prognostic
prediction.

Primary care in the Netherlands serves as the first point of
contact for patients seeking medical attention.23 As such, GPs
play a crucial role in detecting and addressing health concerns
early to prevent disease progression and improve patient out-
comes, often for patients with multiple or chronic conditions.24

Additionally, GP settings generally have limited resources, which
need to be used efficiently to maximize patient benefits. Predic-
tion models can aid the GP to prioritize care and effectively allo-
cate resources. To realize these potential benefits of prediction
models, more large-scale research on model development and
validation in the primary care setting is needed.25 However, GP
patient data in the Netherlands are managed and stored locally
or by third-party EHR system vendors, not centrally. Therefore,
nationwide observational research is challenging due to diverse
data models and the privacy-sensitive nature of the text data.
Furthermore, the clinical GP sublanguage used in the Dutch
notes makes understanding the text data difficult, with the notes
often containing abbreviations, spelling errors, and short forms.
In contrast, the notes in the Medical Information Mart for Inten-
sive Care (MIMIC) III hospital dataset26 commonly used for
English clinical NLP research are more straightforward to inter-
pret and assess. Therefore, developing prediction models using
Dutch GP notes with this distinct sublanguage brings an
additional challenge.27

This work aims to explore the value of Dutch EHR text data,
in combination with structured data, for the development of
prognostic prediction models in a GP setting. We create predic-
tion models for 4 common clinical problems using observational
data from different EHR systems in a large Dutch GP EHR data-
base, sparse text representations, and common prediction algo-
rithms. We evaluate the models using internal and external

validation to assess their generalizability. Additionally, we inves-
tigate the effect of different text representations and prediction
algorithms on prediction performance.

MATERIALS AND METHODS
Dataset and setting

The Integrated Primary Care Information (IPCI) database28 is
a database containing longitudinal data from EHRs of around
350 GP practices, using 6 different EHR systems, throughout
the Netherlands. The database contains 2.5 million patient
records from 1992 to 2022 with a median patient follow-up
duration of 4.8 years. The 1.4 million active patients comprise
8.1% of the Dutch population. The database has been con-
verted to the OMOP CDM, enabling collaborative research in
a large international network of databases using standardized
analytics.29 This research was approved by the IPCI
governance board and registered under code 2023-03.

Prediction problems

We focused on 4 different prediction tasks, for which we for-
mulated a prediction problem with the aid of 2 clinical
experts, according to a standardized patient-level prediction
framework3 and defined it using OMOP CDM cohort defini-
tions, promoting transparency and reproducibility. Table 1
summarizes the target and outcome event, the time-at-risk,
and the observation period for each of the following
problems.

• Hospital readmission—A common problem in hospital-
centric prediction research.2,6,21,22 For every adult patient
discharged from the hospital, we predicted the risk of
another hospital admission between 2 and 30 days after
discharge, starting on day 2 to exclude in-hospital transfers.

• End-of-life conversation—A problem that is specifically of
interest to GPs who aim to identify patients with complex
palliative needs.23–25 At every first yearly GP visit of
patients older than 60 years, with a history of heart fail-
ure, chronic obstructive pulmonary disease, or cancer, we
predicted the risk of the first end-of-life conversation
within 365 days after the visit.

• Asthma exacerbations—Asthma exacerbations are associ-
ated with poor quality of life and a prediction model could
help identify patients for more frequent monitoring or

Table 1. Overview of the prediction problems in the 4 prediction tasks.

Hospital readmission End-of-life care Asthma exacerbations Mortality in COPD

Target event Adult (18þ) patients with
a hospital discharge
between January 2016
and January 2021.

Older (60þ) patients with
a first visit between
January 2016 and
January 2021 and a
prior diagnosis of heart
failure, chronic
obstructive pulmonary
disease, or cancer.

Adult (18þ) patients with
a new asthma diagnosis
under medication
between January 2015
and January 2020.

Adult (18þ) patients with
a new diagnosis of
COPD between January
2015 and January 2020.

Outcome event Hospital readmission First end-of-life
conversation

Asthma exacerbation All-cause mortality

Time-at-risk 2-30 days (1 month) 1-365 days (1 year) 1-730 days (2 years) 1-730 days (2 years)
Observation period 365 days prior to discharge 365 days prior to the visit 365 days prior to the

medication start
365 days prior to the

diagnosis

Abbreviation: COPD, chronic obstructive pulmonary disease.
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step-up of treatment.30–32 We estimated for newly diag-
nosed adult asthma patients who receive treatment the
risk for asthma exacerbations within 2 years of diagnosis.

• Mortality in chronic obstructive pulmonary disease
(COPD) patients—COPD is a leading cause of death and
decreases the quality of life in advanced stages. Palliative
care is suggested in the final year of life, but uptake is low
because death is difficult to predict.29 We predicted for
newly diagnosed COPD patients the mortality risk within
2 years of diagnosis.

For all 4 problems, an observation period of 365 days
before the target event was used for covariate extraction. The
study period of each prediction problem, the time in which a
patient could enter the study, was defined by the last 5 years
in the database before the required time-at-risk. Furthermore,
patients with less than 365 days of observation time and
patients without follow-up, that is, patients who died or left
the practice before the end of the time-at-risk, were excluded.
Only in the hospital readmission task, a patient could have
multiple observations—hospital admissions—in the dataset,

in the other tasks each included patient had 1 observation.
Full cohort definitions, including standardized codes, can be
found in the supplementary material.

Feature extraction

Features were extracted during the observation period of each
prediction task, from both the structured data and the
unstructured data, in a window of 365 days and 30 days
before the target event. An overview of the feature extraction
workflow, including model development and evaluation is
shown in Figure 1.

Structured data
Feature sets from structured data were generated using the Featur-
eExtraction R-package (https://ohdsi.github.io/FeatureExtraction/),
a tool for generating features for a cohort in the OMOP CDM.
These features included patient demographics—age and sex—
and occurrences of all clinical events: conditions, drugs, meas-
urements, and procedures. This resulted in sparse binary feature
vectors indicating the occurrence or not of each medical event

Figure 1. Overview of the experimental setup, showing the feature extraction workflow from both structured data and text data, feature set

combinations, model development, and evaluation.
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in the observation period. We created 2 structured data feature
sets, 1 with only demographic features (D) and 1 with all clini-
cal event features (E).

Unstructured data
All notes within the 365-day observation period were used
and all types of clinical notes were considered for analysis,
including GP notes and communication between care pro-
viders, such as radiology reports and hospital and emergency
department discharge letters. Identifiable information was
removed from the text or pseudonymized at the data
source.28

TRITON
We developed the Text Represented In Terms Of Numeric-
features (TRITON) R-package (https://github.com/mi-erasmusmc/
Triton), a FeatureExtraction extension, to construct text-based
numeric feature vectors from free-text notes in the OMOP CDM
note table. TRITON provides a customizable, modular NLP
pipeline for text preprocessing, tokenization, and vectoriza-
tion (see Figure 2). The pipeline settings are saved with the
processed results for sharing and reproducibility. In this
work, we used 2 different text representations: individual
words (or bag-of-words) and clinical concepts.

Bag-of-words
To create bag-of-words features, we first combined all the
text from the individual notes into a single document for each
observation period. We preprocessed the text by replacing
numeric and new line characters and underscores with empty
spaces. The text was tokenized into individual terms using a
simple tokenizer, splitting the text at spaces and punctuation.
We calculated the term and document frequencies and
reduced the dimensionality of the resulting matrix by remov-
ing noninformative tokens appearing in more than 80% or
less than 0.1% of the documents. For each observation, we
created 2 vectors: one that represented the binary occurrence
of each term (Tterm) and another that represented the term
frequency-inverse document frequency (TF-IDF) (Ttfidf).

Clinical concept extraction
To extract clinical concepts from the text, we used MedS-
pacy,33 a clinical text processing toolkit that enables Unified
Medical Language System (UMLS) concept extraction and
context detection (Figure 2). MedSpacy has been designed to
process text in English, but we replaced the English dependen-
cies with Dutch resources. As a vocabulary for the clinical
concept extraction, we used the Dutch translation of the Sys-
tematized Nomenclature of Medicine Clinical Terms
(SNOMED CT) (https://www.snomed.org/member/netherlands),

Figure 2. Visualization of the TRITON andMedSpacy pipelines to process raw text data from the note table in the OMOP CDM and generate text-based

features for prediction models.
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maintained by NICTIZ, the Dutch National IT Institute for
Healthcare, combined with 5 other Dutch vocabularies from
the UMLS (see Table S1). Furthermore, we used existing Dutch
context rules to detect whether a concept was negated, was
mentioned in a hypothetical or historical context, or concerned
the patient or someone else.34,35 The Dutch spaCy model
(https://spacy.io/models/nl) was used for sentence splitting and
tokenization. This combination of resources enabled the
extraction of concepts and their context from Dutch clinical
text. Using TRITON, we converted the extracted concepts for
each observation into a binary feature vector that indicated
their presence during the observation period (Tcon), in a simi-
lar fashion as for the structured data features.

Machine learning algorithms

We focused on 3 machine learning algorithms that are com-
monly used in predictive modeling2,6,36,37: L1 regularized
logistic regression (LR) or Lasso, extreme gradient boosting
(XGB), and random forests (RF). An overview of the algo-
rithms’ hyperparameters and their value range is presented in
Table S2. Hyperparameters were optimized using 3-fold
cross-validation. Data-driven model training and evaluation
were performed using the PatientLevelPrediction R-package,3

the tool for building and validating patient-level predictive
models using OMOP CDM data. Data-driven implies that the
information extraction process from the text or structured
data was unrestricted and not limited to anticipated signifi-
cant features.

Internal and external validation

We performed both internal and external validation (Figure 3):
internal validation on data from practices that use the same

EHR system, and external validation on data from practices
that use a different EHR system. Specifically, for each predic-
tion task, we ranked the 6 EHR systems according to the num-
ber of observations for that task and only used the data from
the 2 EHR systems with the highest number of observations.
We split the observations in the EHR system with most obser-
vations into a 25% test set and a 75% training set on a subject
level. Every model was trained on the training set and then
internally validated on the test set. For external validation, we
evaluated the resulting models on all the observations in the
second EHR system dataset, assessing their generalizability
over a different population.

Feature set combinations and experimental setup

We conducted several experiments to evaluate the contribu-
tion of text data to prediction models by training them with
different combinations of structured and unstructured data
feature sets (Figure 1). Specifically, we used the demographic
features (D), the clinical event features (E), and 3 text repre-
sentation feature sets: binary bag-of-words (Tterm), TFIDF
bag-of-words (Ttfidf), and extracted clinical concepts (Tcon).
We combined these features to create 7 feature set combina-
tions: a structured data feature set (S: DþE), 3 text-data fea-
ture sets (T: DþTterm, DþTtfidf, and DþTcon), and 3
combined-data feature sets (SþT: DþEþTterm, DþEþTtfidf,
and DþEþTcon). Demographic features were considered sep-
arate from clinical events and combined with text representa-
tions in the textual data feature set because they are always
available for every patient. In total, we trained and evaluated
21 models per prediction task, using 7 feature set combina-
tions and 3 prediction algorithms, 84 models in total. The

Figure 3. Overview of internal validation, external validation, and cross-validation within and between groups of individual general practices that use two

different EHR systems.
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different feature set combinations and methods are also sum-
marized in Table S3.

Model evaluation

We used 2 metrics, the area under the receiver operating char-
acteristic curve (AUROC) and the area under the precision-
recall curve (AUPRC), to evaluate and compare our models’
performance in terms of class discrimination. Additionally,
we calculated the precision, recall, and F1-score of each model
for the probability threshold that maximized the F1-score,
and we measured model calibration using the Brier score. To
determine whether the performance medians for structured
(S), text (T), and combined (SþT) feature sets were signifi-
cantly different across different text presentations and
machine learning algorithms, we conducted 2-sided
Bonferroni-adjusted Wilcoxon tests. Furthermore, we eval-
uated the overall effect of the text presentations and machine
learning algorithms on the model performance by grouping
the models by prediction task and feature set combination,
calculating the median of evaluation metric values for each
group, and subtracting this median from the values in that
group, also called median-centering.

In addition to evaluating the performance of models using
the global evaluation metrics above, we also sought to meas-
ure the degree of predictive multiplicity between models. Pre-
dictive multiplicity refers to differences in predictions that are
made for a given outcome, based on different models or varia-
bles.38,39 Even if models have a similar performance as meas-
ured by AUROC or AUPRC, their predictions may still differ.
This is because a similar performance value can be obtained
by correctly identifying different sets of observations. One
way to assess predictive multiplicity is to calculate the correla-
tion between the predictions made by 2 models. A strong cor-
relation indicates a low degree of predictive multiplicity and
vice versa. Additionally, besides the predictive value,

explainability of the models is important to gain trust in the
predictions and to identify which information in text data is
used to make these predictions.40 The global explainability of
the models was assessed by identifying the most important
features. The importance of features for regularized LR was
based on their beta values, while the mean decrease in impur-
ity was used for random forest, and the average gain for gra-
dient boosting.

RESULTS
Population characteristics

The population characteristics and the characteristics per
observation for each prediction task and EHR system are pre-
sented in Table 2. The 2 largest EHR systems for the end-of-
life conversations, asthma exacerbation, and COPD mortality
tasks were the same, EHR systems A and B. In the readmis-
sion task, EHR systems C and D had the most observations.
The outcome-to-observation ratio differed per prediction task
but was similar between EHR systems. No large differences in
age and sex were found. Some differences were seen for the
median number of clinical events recorded during the obser-
vation periods. For instance, EHR system A showed a higher
median number of conditions than EHR system B, but a lower
median number of drugs. EHR systems C and D, used for the
hospital readmission task, exhibited a higher median number
of extracted concepts as well as words and sentences, mainly
due to an increased number of communication notes between
GP and hospital. However, the number of clinical events was
comparable with the other tasks.

Comparing feature combinations

All 84 trained models were both internally and externally
validated. Figure 4 visualizes the internal and external

Table 2. Cohort characteristics and observation per prediction task and EHR dataset. Each observation consisted of patient notes from the observation

period of 365 days.

Asthma exacerbations Mortality in COPD End-of-life care Hospital readmission

EHR 1 (A) EHR 2 (B) EHR 1 (A) EHR 2 (B) EHR 1 (A) EHR 2 (B) EHR 1 (C) EHR 2 (D)

Cohort characteristics
Number of GPs 114 99 114 96 111 114 73 43
Number of patients 12 385 5086 2067 1749 34 359 15 470 37 443 27 897
Number of observations 12 385 5086 2067 1749 34 359 15 470 55 152 38 633
Number of outcomes 4827 2362 194 158 1490 704 5736 3997
Outcome-to-observation ratio 0.39 0.46 0.09 0.09 0.04 0.05 0.10 0.10
Average age 46.8 46.7 65.5 65.7 73.2 73.7 63.2 62.0
Sex, percentage of male 61 64 48 48 51 50 52 53

Characteristic per observation
Median no. of (distinct) conditions 13 (6) 7 (5) 21 (9) 9 (6) 20 (8) 8 (6) 7 (4) 8 (4)
Median no. of (distinct) drugs 6 (5) 8 (7) 7 (5) 9 (7) 7 (5) 10 (7) 8 (7) 9 (8)
Median no. of (distinct) measurements 9 (7) 15 (12) 25 (20) 24 (20) 25 (19) 27 (21) 23 (16) 20 (14)
Median no. of (distinct) procedures 0 (0) 2 (1) 0 (0) 3 (1) 1 (1) 3 (2) 1 (1) 2 (1)
Median no. of (distinct) extracted concepts 83 (51) 101 (60) 96 (57) 109 (64) 113 (65) 134 (76) 623 (221) 574 (210)
Median no. of notes 28 36 39 44 39 47 47 56
Median no. of characters 2147 2605 2882 3222 2907 3546 16079 14757
Median no. of (distinct) words 318 (211) 389 (244) 430 (266) 480 (282) 430 (244) 530 (302) 2207 (786) 2058 (774)
Median word length in characters 4 4 4 4 4 4 5 5
Median no. of sentences 59 77 82 93 80 101 278 263
Median sentence length in words 5 5 5 5 5 5 8 8
Median no. GP notes 25 34 34 41 34 44 36 42
Median no. communication notes 3 2 5 2 6 2 10 13

Abbreviations: EHR, electronic health record; GP, general practitioner.
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validation performances measured by the AUROC value for
each prediction task and feature combination, over the differ-
ent text representations and machine learning algorithms. Fig-
ure S1 and Figure S2 depict the same for the AUPRC and
Brier evaluation metrics, respectively. The complete evalua-
tion results for both internal and external evaluation of all
models are available in the supplementary material.

The structured data models had acceptable predictive per-
formance in all tasks, with AUROC values ranging from 0.68 to
0.79. The relative predictive performance of text data models
compared to structured data models varied depending on the
task. In the hospital readmission task, text data models per-
formed better than structured data models. In the asthma exac-
erbation, end-of-life conversation, and mortality in COPD
prediction tasks, they performed similarly or worse. In situations
where text data models performed worse than structured data
models, the combined data models showed no significant differ-
ence in performance as compared to structured data models.
However, in the hospital readmission and end-of-life conversa-
tion prediction tasks, where text data models outperformed or

performed similarly to the structured data models, the combined
data model displayed a higher median performance compared
to both the structured and text data models in the external vali-
dation or the internal validation. Similar results were observed
for the AUPRC evaluation metric (Figure S1). Overall, external
validation performance was mostly comparable or lower than
internal validation. The Brier scores (Figure S2) showed that in
the hospital readmission prediction task, text data models were
better calibrated than structured data models.

Comparing text representations and machine

learning algorithms

The performance difference between different combinations of
text representations and machine learning algorithms, for both
internal and external validation and measured by the AUROC,
is visualized in Figure 5. Figure S3 depicts this performance
comparison for the AUPRC. Two-sided Bonferroni-adjusted
Wilcoxon tests across all combinations showed that there is a
significant external validation AUROC improvement of regular-
ized LR with binary bag-of-words features over regularized LR

Figure 4. Distribution of the AUROC values of the internal validation (blue) and external validation (green) for models trained using the different feature

combinations: structured feature set (S), text feature sets (T), and combined feature sets (SþT), per prediction task. The number of models in each

boxplot is indicated above the boxplot. The significant Bonferroni-adjusted Wilcoxon test results between the feature combinations are shown above the

boxplots, where “*” indicates a P value <.05. The points represent the underlying data.
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and RF with TF-IDF bag-of-words features and XGB with clini-
cal concept features. Other effects that were significant in the
internal validation were lost in external validation. No signifi-
cant differences were found for the AUPRC metric.

Predictive multiplicity between models

To answer the question of whether the structured data, text
data, and combined data models predict the same outcomes
for the same patients, we measured the predictive multiplicity
by calculating the correlation between the models’ predicted
probabilities. Figure 6 presents the Pearson correlation coeffi-
cients between predicted probabilities of structured, text,
and combined data models, for each prediction task in the
internal and external validation, averaged across text repre-
sentations and prediction algorithms. Correlations between
text data and structured data models were found to be moder-
ate to strong in most tasks; in the end-of-life conversation
task the correlation was lowest. This indicates that some mul-
tiplicity existed between the text data models and structured
data models. In the mortality in COPD and end-of-life conver-
sation prediction tasks, the combined data models were
equally highly correlated to the text and structured data mod-
els. In the asthma exacerbation task, the combined model had
a higher correlation to the structured data than to the text
data model and the opposite was observed in the hospital
readmission task. No large differences were observed between
the internal and external validation.

Feature importance

The supplementary material contains the top 10 features with
the highest absolute importance in each model. As an exam-
ple, Table 3 displays for each prediction task the top 5 fea-
tures of the text-based regularized LR models using binary
bag-of-words features, a method combination that performed

relatively well (Figure 5). The association between most terms
and the outcome is expected, such as between “lung
carcinoma” or “metastasized” and future end-of-life conver-
sations, but some terms pose interpretation challenges. Fur-
thermore, it should be noted that the features only indicate an
association with the outcome in the database, but not necessa-
rily a causal relationship.

DISCUSSION
Value of unstructured text

In this study, we explored the added value of Dutch unstruc-
tured text data for the development of prognostic prediction
models in a GP setting. We created and evaluated prediction
models for 4 prediction tasks on common clinical problems
using both structured and unstructured data features
extracted from Dutch observational GP data. For each predic-
tion task, we compared the difference in average performance
between models trained on text data and models trained on
structured data. One task showed a higher performance for
text data models and 3 tasks showed a similar or lower per-
formance. Nonetheless, the ability to train well-performing
models for some of the tasks using only unstructured text
highlights the valuable information extracted from clinical
narratives. This result was also found by other recent studies
predicting future events using only GP notes.16,17 On average,
combined data models performed better than models using
only structured data or text data in 2 out of 4 prediction
tasks. This suggests that here the combination of features lev-
erages the strengths of both data types to make more accurate
predictions. Although not all differences observed were statis-
tically significant, there is a discernible pattern indicating that
the addition of information from text to structured data
enhances predictive performance. These findings align with

Figure 5. Distributions of the median-centered AUROC value for the different text representations and machine learning algorithms. The plots on the left-

hand side present the internal validation and the plots on the right-hand side present the external validation. The number of models is noted below each

boxplot. The significant Bonferroni-adjusted Wilcoxon test results between the text representation and machine learning algorithm combinations are

shown above the boxplots, where “*” indicates a P value <.05.
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previous studies that compared the use of text and structured
data in predictive models in other languages and settings.6

Methods comparison

Comparison of performances of different prediction algo-
rithms and text representation combinations indicated that
models using LR and binary bag-of-words features performed
significantly better than 3 out of the 8 other combinations.
This shows that using a relatively simple machine learning
algorithm and a sparse text representation prediction models
can be built that outperform more complex bagging or boost-
ing tree-based algorithms with more dense text features,
which was also found by others.37,41 However, differences
were small and other method combinations showed similar
performances.

Data type information difference

We found some predictive multiplicity between the structured
and unstructured data models in most tasks, suggesting that
the text data offered information not captured by structured

data and the other way around. This could explain why com-
bining information from both structured and text data
improves predictive performance in some prediction tasks.
However, the performance of combined data models did not
show improvement in all prediction tasks where we found a
relatively high predictive multiplicity. Therefore, factors influ-
encing the performance of a model that combines text and
structured data, remain to be explored. Potential factors
include the quantity and quality of information in both data
types. For instance, while longer clinical notes and more
coded conditions potentially contain more relevant informa-
tion, poorly written text or wrongly coded events would
reduce the predictive value.

Strengths and limitations

We used in this study a limited number of sparse text repre-
sentations and common prediction algorithms. While more
advanced NLP and machine learning methods, such as word
embeddings and deep learning, could potentially improve the
accuracy of our predictions, we intentionally limited the

Figure 6. Pearson correlation coefficients between predicted probabilities of the structured data (S), text data (T), and combined data (SþT) models for

each prediction task in the internal and external validation. Horizontal lines indicate thresholds for, from top to bottom, a very strong correlation (r > .8),

strong correlation (.8 > r > .6), and moderate correlation (.6 > r > .4).
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number of studied methods to keep the number of models rea-
sonable, given our consideration of multiple prediction tasks
and external validation. Moreover, our main goal was to
demonstrate the added value of text data and even with these
limited methods, we were able to show an improvement in
predictive performance in certain cases. The strength of our
study lies in the fact that we aimed to assess the added value
of the unstructured text in 4 diverse prediction tasks, with dif-
ferent outcome time-at-risk periods and numbers of observa-
tions, which were not selectively chosen to perform well with
unstructured data. Furthermore, we chose to report the per-
formance of the models over multiple method combinations,
instead of only reporting and comparing the best model
within each group, providing a more complete picture. As
model explainability and trustworthiness are crucial in clini-
cal prediction models, we evaluated their global explanations
by examining their feature importance.40 We found that, gen-
erally, the associations between the features and the outcome
can be expected on a clinical basis; however, some associa-
tions require a more thorough inspection. This demonstrates
that the feature importance values provide valuable insights
into the information employed by the models, which can aid
in understanding or refining the model. Nonetheless, addi-
tional post-hoc explanation techniques, such as local inter-
pretable model-agnostic explanations42 and Shapley values,43

could also be utilized to further enhance confidence in the
model predictions.

The study was conducted on data in a non-English lan-
guage, Dutch, and on a GP database, contributing to previous
prediction research that was mainly focused on databases in a
hospital setting and the English language. The transformation
of independent datasets from different GP EHR systems into
the OMOP CDM enabled our large-scale observational
research and the external validation of text-based models
across GPs in the Netherlands. Additionally, we used standar-
dized feature extraction and prediction modeling tools, pro-
moting reproducibility and transparency. Finally, it is
important to note that the overall performance of the models
may not be sufficient for clinical application yet, and further
improvement, using alternative methods or more data, is cer-
tainly needed. However, with continued refinement and eval-
uation of their clinical utility, these models hold promise as
valuable screening tools, decision support aids for GPs, and
for managing population health.

Future work

The performance of models using unstructured text data var-
ied across the 4 prediction tasks. Further research is needed to
explore reasons for these differences, to understand the infor-
mation differences and overlap between structured and text
data, and to develop different strategies for combining these
data types. For example, an ensemble model strategy could be
considered, where predictions of the separate models are
aggregated. Additionally, we did not use deep learning or
dense text representations, as these models can be prone to
overfitting, in particular on a few thousand observations.44

However, deep learning and dense text representation meth-
ods may find more complex and contextual relations in both
unstructured text and structured data and should be a focus
of future research. Furthermore, it is crucial to promote clini-
cal NLP research in languages other than English and to fur-
ther explore methods for the external validation of text-based
models across databases in multiple languages. Possible meth-
ods include normalizing information between the languages
through translation, training multilingual models, or extract-
ing clinical concepts using a multilingual clinical ontology.
Taking into account language-specific cultural and linguistic
factors across populations and databases may lead to more
robust models and more relevant results.9

CONCLUSION

In conclusion, our study demonstrated the feasibility and
potential value of incorporating unstructured text data from a
large GP database, originating from multiple EHR systems, in
clinical prognostic prediction. The text data models showed
higher or similar performance as compared to models based
solely on structured data in 2 prediction tasks for which fur-
ther combining structured and text data resulted in improved
performance. This shows that the added value of incorporat-
ing unstructured text data in clinical prediction models may
vary depending on the specific prediction problem. No large
performance differences were found between different text
representations and prediction algorithms, but a simple LR
model with a binary bag-of-words input outperformed several
more complex models. Furthermore, the predictive multiplic-
ity found between models trained on structured and text data
suggests that the information in these data types differs.
Therefore, it is essential to explore factors influencing the

Table 3. Lists of the 5 features with the largest absolute beta values in the text-based regularized logistic regression models using binary bag-of-words

features. English translations are provided where necessary. Note that these features only reflect an association with the outcome in the database, not a

causal relationship.

Asthma exacerbations Mortality in COPD End-of-life care Hospital readmission

Term Beta Term Beta Term Beta Term Beta

prednison .412 visite (visit) .762 longcarcinoom (lung
carcinoma)

.662 ct (computed
tomography)

.212

eczeem (eczema) .359 keer (times/turn) �.633 gemetastaseerd
(metastasized)

.623 oncologie (oncology) .194

prednisolon .287 cordis .591 palliatieve
(palliative)

.467 tumor .162

oor (ear) .262 onderzoek
(examination)

.588 meta (metastasized) .425 specialisme
(specialism)

.154

kenacort .192 astma (asthma) �.460 copd �.359 vaatchirurg (vascular
surgeon)

.153

Abbreviation: COPD, chronic obstructive pulmonary disease.
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performance of combining these data types or alternative
methods of combining the individual models. Our study also
demonstrated the value of clinical NLP research in a language
other than English, the feasibility of externally validating text-
based prediction models across EHR systems, and assessing
the model explainability using the global feature importance.
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