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Abstract Background: Muscle depletion negatively impacts treatment efficacy and survival

rates in cancer. Prevention and timely treatment of muscle loss require prediction of patients

at risk. We aimed to investigate the potential of skeletal muscle radiomic features to predict

future muscle loss.

Methods: A total of 116 patients with stage IV non-small cell lung cancer included in a rando-

mised controlled trial (NCT01171170) studying the effect of nitroglycerin added to paclitaxel-

carboplatin-bevacizumab were enrolled. In this post hoc analysis, muscle cross-sectional area

and radiomic features were extracted from computed tomography images obtained before initi-

ation of chemotherapy and shortly after administration of the second cycle. For internal cross-

validation, the cohort was randomly split in a training set and validation set 100 times. We used

least absolute shrinkage and selection operator method to select features that were most signif-

icantly associated with muscle loss and an area under the curve (AUC) for model performance.

Results: Sixty-nine patients (59%) exhibited loss of skeletal muscle. One hundred ninety-three

features were used to construct a prediction model for muscle loss. The average AUC was

0.49 (95% confidence interval [CI]: 0.36, 0.62). Differences in intensity and texture radiomic fea-

tures over time were seen between patients with and without muscle loss.
astrichtuniversity.nl (P. Lambin).
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Conclusions: The present study shows that skeletal muscle radiomics did not predict future mus-

cle loss during chemotherapy in non-small cell lung cancer. Differences in radiomic features over

time might reflect myosteatosis. Future imaging analysis combined with muscle tissue analysis in

patients and in experimental models is needed to unravel the biological processes linked to the

radiomic features.

ª 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cachexia is a frequently observed phenomenon of

skeletal muscle and adipose tissue depletion among pa-

tients with non-small cell lung cancer (NSCLC) [1,2].

The progressive loss of muscle has a devastating impact

on the quality of life [3] and survival rates in patients

with NSCLC [2,4e6]. Although both muscle and fat

become depleted, there is evidence that body fat is lost

more rapidly than muscle [7,8]. Cancer may therefore
shift lipid metabolism to a catabolic state, which in turn

may affect skeletal muscle. In cancer, depletion of sub-

cutaneous fat is driven by increased lipolysis [9,10].

Experimental research has shown that lipolysis gener-

ates fatty acids which are able to transport into myo-

cytes and stimulate protein degradation [11]. Indeed,

skeletal muscle of patients with cancer contained more

intramyocellular fat than age- and gender-matched
controls [12]. However, there are currently no (non-

invasive) biomarkers available to predict muscle loss.

Radiomics is a method that quantitatively extracts

features, including shape, size, intensity and texture, that

are related to pathophysiology, from standard-of-care

medical images [13e17]. Until now, radiomics has

mainly been applied to extract tumour features in

oncologic patients to visualise tumour heterogeneity [17]
and to assess prognosis [18e20]. Besides quantitative

evaluation of Hounsfield units, radiomics also explores

patterns. Given the quantitative and qualitative differ-

ences in skeletal muscles of cachectic patients, radiomics

might be helpful to predict future muscle loss. There-

fore, the primary goal of this exploratory study is to

investigate whether baseline skeletal muscle radiomic

features are different between patients who develop
muscle loss and those who maintain their muscle mass

after chemotherapy. We furthermore investigated

longitudinally if muscle loss is associated with changes

in muscle radiomic features.

2. Material and methods

2.1. Patient cohort

Computed tomography (CT) scans derived from the

multicentre randomised phase II trial (NVALT12 trial,

NCT01171170) were investigated. In this trial, the effect
of nitroglycerin added to paclitaxel-carboplatin-bev-

acizumab, on progression-free survival in chemo-

therapy-naı̈ve stage IV non-squamous NSCLC patients
was investigated. The methodology and results of this

trial have been published previously [21].
2.2. Image analysis

CT scans made at baseline and after the second cycle of

chemotherapy, as part of a secondary end-point, were
used [22]. To evaluate whether or not patients lost

skeletal muscle, cross-sectional measurements of skeletal

muscle areas were made on transverse images at the

third lumbar level using Slice-O-matic software, version

5.0 (Tomovision, Montreal, Canada). One slice at the

third lumbar level in each scan was selected for each

patient. During anatomical land marking, the first image

at the third lumbar level with both vertebral transverse
processes clearly visible was used for analysis. Skeletal

muscle cross-sectional area was quantified on the basis

of pre-established thresholds of Hounsfield units (�29 to

150). Boundaries were corrected manually when neces-

sary. It is of note that this delineation excludes intra-

muscular fat. Changes in muscle cross-sectional areas

between CT scans were expressed as a percentage. A

measurement error of 1.3% was adopted, based on
previous reported literature [2,4]. Changes greater than

or equal to �1.3% were considered as ‘loss of skeletal

muscle’, while changes less than �1.3% were considered

‘maintenance of skeletal muscle’. In addition, the mean

Hounsfield units of the muscle cross-sectional area

(CSA) were assessed, as a measure for muscle fat de-

posits. Low values reflect increased muscle fat.

Then, to evaluate radiomic features, skeletal muscle
cross-sectional area was delineated at the third lumbar

level using the same thresholds of Hounsfield units as

described previously. Now, it was extended one slice in

the cranial direction and one slice in the caudal direction

using Mirada software (Mirada Medical, Oxford, UK),

to be able to calculate three-dimensional image features.

Segmentation for radiomics was a semi-automatic pro-

cess which was manually adjusted if needed. Image
features were calculated on both baseline and follow-up

scans, using an adapted version of computational envi-

ronment for radiotherapy research extended with in-

house developed radiomic image analysis software

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(Matlab 2014a; The Mathworks, Natick, MA). Before

the extraction of features, a grey-level discretisation

using a bin width of 25 Hounsfield units was applied. To

minimise the possible effect of the variation in image

parameters, all scans were resampled to a voxel size of

1 � 1 � 3 mm3 using a cubic interpolation as recom-

mended in the study by Larue et al. [23]. Although

collection of the CT scans was predefined in the clinical
trial, the analysis of muscle mass and radiomics was not

part of the pre-registered outcomes of the original trial.

Because of this well-defined randomised patient cohort,

with CT scans executed according to study proto-

colepredefined time points, this was an appropriate

data set to explore our hypothesis.

2.3. Radiomic feature selection and statistics

Intensity and texture features were analysed. Shape and
size features were excluded because the volumes of in-

terest has been segmented manually, which might in-

fluence the outcome of these feature categories. In

addition, a three-dimensional wavelet transformation

was applied to the CT scan to create filtered, next to the

unfiltered intensity and texture features. Features

without a range (i.e. features with an exact similar value

in all patients), which were not able to discriminate
patients, were excluded.

Spearman’s correlation coefficient (r) was used to

assess the correlation between all texture and intensity

radiomic features. Of each feature pair with r > 0.85,

the feature that was strongest correlated to all other

features was excluded. This process was repeated until

no feature pair with all r > 0.85 was remaining.

To calculate to which extent the variation among the
radiomic features on baseline scans is explained by

muscle loss, a logistic least absolute shrinkage and se-

lection operator (LASSO) regression model adopting a

100-fold Monte Carlo cross-validation in Matlab 2017b

was applied (The Mathworks, Natick, MA).

The cohort was randomly split into a training set

(approximately two-third) and a validation set

(approximately one-third). Patients were randomised
such that the ratio between patients with and without
Fig. 1. Skeletal muscle area on transverse CT images at the third lum

area and (b) Mirada software for extraction of radiomic features. CT,
skeletal muscle loss was similar in each group. Features

in the training and validation sets were standardised by

subtracting the respective mean feature value in the

training set and dividing by the feature standard devi-

ation in the training set. The logistic LASSO model was

used to reduce the number of features and estimate

regression coefficients for the remaining features. The

model-intrinsic parameter l was estimated using an in-
ternal fivefold cross-validation on the training set. The

out-of-sample area under the curve (AUC) of the

receiver operating characteristic curve (ROC) was

computed on the validation set to assess the prognostic

power. This process was repeated 100 times, each time

with a different randomisation of the patients into

training and validation sets, and the average AUC over

the hundred different models was calculated. This
analysis was carried out for the radiomic texture and

intensity features of the baseline scan and for the ab-

solute difference in feature values between the baseline

scan and the follow-up scan (delta features). For all

radiomic features that were selected at least once in the

LASSO feature selection procedure, the difference in

feature value between patients with and without muscle

loss was compared by plotting a heatmap. For the
heatmap, all radiomic features were normalised to have

values between 0 and 1. A hierarchical clustering was

applied on the same heatmap to identify clusters of

patients with different radiomic texture and intensity

values.
3. Results

3.1. Patients and characteristics

In total, 223 patients were enrolled in the randomised

controlled trial. One hundred three patients were

excluded because of unavailability of one or both CT

scans, two patients were excluded because L3 was not

evaluable, one patient was excluded because of lacking

overall survival (OS) data and one was excluded for

insufficient quality of the scans. After exclusion, CT
scans from 116 patients were eligible. The mean age was
bar level, using (a) Slice-O-Matic for evaluation of cross-sectional

computed tomography.
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61 years, and 64 patients (55%) were male; survival was

comparable with the whole study group of 223 patients.

3.2. Muscle maintenance and muscle loss

Delineations of skeletal muscle CSA made using Slice-O-

Matic for CSA and using Mirada for extraction of

radiomic features are shown in Fig. 1. Analysis of skeletal

muscle CSA at baseline and during follow-up revealed
that in the whole cohort, skeletal muscle decreased with

mean (�standard deviation) 2.9 � 6.7%. Of those, 69

patients (59%) exhibited loss of skeletal muscle.

3.3. Radiomic features

A total of 1298 radiomic features were extracted. For

analysis of baseline radiomic features, those which had
no range (n Z 9) were excluded. After removing the

redundant features using the spearman correlation

method, 193 radiomic features, 11 unfiltered and 182

filtered, could be used for the analysis.

Fig. 2 shows a heatmap in which radiomic features

that are selected at least once in the LASSO models are

plotted against the patients ranked in descending order

of the decrease in muscle mass. The upper half of the
graph shows the patients with muscle loss, and the lower

half of the graph, the patients with a stable muscle mass.

No difference in radiomic features is seen between those

with maintenance of muscle and those with muscle loss.

The average AUC over 100 repetitions for radiomic

features of the baseline scan, with muscle loss as

outcome, is 0.49 (95% CI: 0.36, 0.62). In addition, no

differences were observed in muscle mass changes be-
tween patients treated with and without nitroglycerin. A

list with the selected radiomic features in alphabetic

order can be found in the Supplementary data Table A.

We also analysed the delta features (differences in

feature values between the baseline scan and the follow-

up scan) with muscle loss as outcome. The average AUC

was 0.68 (95% CI: 0.51e0.84). In this model, the grey-

level co-occurrence matrix (GLCM) was most often
selected (data not shown).

4. Discussion

To the best of our knowledge, this is the first exploratory

study evaluating the potential of skeletal muscle radio-

mics to predict skeletal muscle loss. Some cross-sectional
studies show that baseline low CT-derived muscle mass

is an important prognostic factor for OS [4,24], which

contradicts to other studies [25,26]. The lack of properly

validated and population-specific cut-off values for CT-

derived low muscle mass may explain this discrepancy.
Fig. 2. Heatmap of the normalised selected delta radiomics features in a

material). Patients are ranked according to the descending difference i

and lower half, patients with stable muscle mass.
We therefore were interested to know if radiomic fea-

tures of baseline skeletal muscle are prognostic for

longitudinal muscle loss. In this study, baseline radiomic

features had no discriminatory value with regard to

longitudinal skeletal muscle changes. However, longi-

tudinal differences in radiomic features were seen be-

tween those who lost muscle and those who maintained

muscle mass.
The most distinct delta radiomic feature was a feature

in the GLCM category. To calculate the GLCM, each

pixel in an image is assigned a numerical value

depending on the combination of grey-level intensity

values in two neighbouring pixels. Second-order statis-

tics calculate mathematical algorithms to derive textural

homogeneity, contrast, variance, etc. [27]. GLCM fea-

tures depend on the grey-level pattern, which might
implicate that patients with muscle loss develop more

muscle fat deposits, leading to a more heterogeneous

grey-level intensity pattern (as low grey levels reflect

increased intramuscular fat). Indeed, analysis of muscle

biopsies demonstrated that compared with controls,

patients with cancer exhibited increased numbers of

lipid droplets in skeletal muscle. Moreover, the amount

of lipid droplets increased with progression of weight
loss [28]. Muscle fat depots assessed by muscle radiation

attenuation on CT are associated with poor survival in

cancer [4]. A phantom study showed concordance be-

tween radiation attenuation and muscle lipid content

[29]; therefore, reduced muscle radiation attenuation is

believed to reflect fat infiltration. However, it is unclear

if this radiation attenuation indicates intramyocellular

or extramyocellular lipids. Therefore, the aetiology and
prognostic significance of muscle lipids in cachexia

progression is object for further research.

While the strength of our study comes from the well-

defined randomised patient cohort, with CT scans

executed according to study protocolepredefined time

points, there are some limitations. Pre-treatment

changes in muscle mass are unknown. Patients

currently identified as having ‘muscle maintenance’
could have exhibited muscle loss before the first CT

scan, which may influence radiomic features. The

NVALT12 trial is a multicentre study. Consequently,

the CT scans included in this analysis are performed in

different hospitals on different CT scanners. Although

all scans were low-dose CT scans, there might be dif-

ferences in scan acquisition and the use of contrast. A

phantom study showed that slice thickness variability
influenced radiomic features; however, this variability

can be reduced by resampling to a standardised voxel

size [23]. While it is known that different exposures do

not influence the radiomic features values [23], the

impact of use of contrast is unknown.
lphabetic order (list of features can be found in the supplementary

n muscle mass; upper half are the patients with muscle depletion,
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5. Conclusion

In conclusion, the present study shows that baseline

skeletal muscle radiomics did not predict future muscle

loss in patients with metastatic NSCLC. Nevertheless,

longitudinal differences in intensity and texture muscle

radiomic features are detected, which slightly differ be-
tween patients with muscle loss from patients without

muscle loss. Future research in experimental models and

human radiomics combined with muscle tissue analysis

is required to unravel the biological processes linked to

the radiomic features.
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