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Simple Summary: The diagnosis and prediction of prognosis for bladder cancer (BC) can be chal-

lenging because of the subjective nature of pathological evaluation. Artificial intelligence (AI) has

emerged as a promising technology for improving the accuracy of BC diagnosis and prediction of

prognosis. We reviewed all available studies that used AI to analyze images from BC tumor tissue

that aimed to improve diagnosis or prediction of prognosis. Studies showed that specific tumor

characteristics can be used to predict treatment response by analyzing BC tumor tissue images. Com-

bining histopathological images with clinical information enables AI models to perform with high

accuracy. In conclusion, AI has the potential to assist physicians in gaining more accurate diagnoses

and treatment response predictions. Yet, important challenges should be addressed, such as ensuring

reliability, interpretability, and performance—future research should address these caveats.

Abstract: Bladder cancer (BC) diagnosis and prediction of prognosis are hindered by subjective

pathological evaluation, which may cause misdiagnosis and under-/over-treatment. Computational

pathology (CPATH) can identify clinical outcome predictors, offering an objective approach to

improve prognosis. However, a systematic review of CPATH in BC literature is lacking. Therefore,

we present a comprehensive overview of studies that used CPATH in BC, analyzing 33 out of

2285 identified studies. Most studies analyzed regions of interest to distinguish normal versus tumor

tissue and identify tumor grade/stage and tissue types (e.g., urothelium, stroma, and muscle). The

cell’s nuclear area, shape irregularity, and roundness were the most promising markers to predict

recurrence and survival based on selected regions of interest, with >80% accuracy. CPATH identified

molecular subtypes by detecting features, e.g., papillary structures, hyperchromatic, and pleomorphic

nuclei. Combining clinicopathological and image-derived features improved recurrence and survival

prediction. However, due to the lack of outcome interpretability and independent test datasets,

robustness and clinical applicability could not be ensured. The current literature demonstrates that

CPATH holds the potential to improve BC diagnosis and prediction of prognosis. However, more

robust, interpretable, accurate models and larger datasets—representative of clinical scenarios—are

needed to address artificial intelligence’s reliability, robustness, and black box challenge.

Keywords: artificial intelligence; bladder cancer; computer-aided diagnosis; computational pathology;

digital pathology; histopathology; image analysis
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1. Introduction

1.1. Artificial Intelligence

Advancements in artificial intelligence (AI) have had a profound impact on society,
particularly in the medical field [1]. AI has shown promising results in diagnostic disciplines
such as radiology and pathology, providing new opportunities to analyze patient data
and improve clinical outcomes [2,3]. AI systems use algorithms, which are mathematical
sequences of well-defined instructions, to mimic human-like decision-making processes.
The two most commonly used techniques in AI are machine learning (ML) and deep
learning (DL). Both aim to enable computers to learn from data, but through different
approaches (Figure 1). ML, a subfield of AI, needs a phase known as feature engineering,
where specific features are manually extracted from data, particularly images, leveraging
image processing techniques and human expertise (Figure 1B). This human-driven process
distills relevant information from data to shape the ML model’s understanding. Next,
the ML model can be trained in a supervised manner, using a set of features with known
diagnosis (e.g., stage/grade) or known clinical output (e.g., recurrence/progression) to
classify input data into similar groups. While ML often needs resource-intensive feature
engineering and domain expertise in its design phase, DL, a subfield of ML, bypasses this
by directly extracting relevant features from raw data itself (Figure 1B). DL has shown
remarkable success in predicting clinical outcomes and detecting diagnostic features [4–6].

                   
 

 

   
     

                       
                         

                       
                       

                 
                           

                            ff  
                             

                     
                   

                         
                                 

                   
                       

                             
                           

                   
 

 
                               
                                 

                             
                                 
                                           
                               

                           
                           

                             
                       

                         
                         
                     
                         

Figure 1. A general overview of types of input, processing methods, output, and applications of AI

systems in analyzing H&E WSIs. (A) Input for the algorithm are the image tiles that are extracted

from WSIs and can be labeled for processing and output evaluation. Labeled data can include

clinical records, molecular data, and annotations like stage, grade, and tissue types. (B) AI, ML,

and DL can be used to process input data. ML is a subfield of AI, and DL is a subfield of ML. ML

algorithms learn from hand-crafted features and require feature engineering in the design phase

to extract a set of features and train the algorithm. DL algorithms automatically extract relevant

features from raw data (without human intervention) to train the algorithm and stratify features

into similar groups via classification networks. (C) Output and applications of CPATH in BC image

analysis can assist pathologists in improving the diagnostic process, predicting clinical outcomes, or

discovering novel features. Diagnostic applications mainly focus on tissue and cell segmentation,

tumor vs. normal tissue detection, grading and staging, and generation of a diagnostic report for

clinical implementation. Current prognostic applications focus on predicting clinical outcomes or

molecular alterations. The output can be evaluated using labels on the dataset. Abbreviations:

WSI—Whole-slide image, AI—artificial intelligence, ML—machine learning, DL—deep learning,

BC—bladder cancer, CPATH—computational pathology, H&E—Hematoxylin and eosin.
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AI systems use different types of input data, such as clinical data, medical images, and
genomic data, to learn and train their algorithms for specific applications. For example,
in pathological applications, whole-slide images (WSIs) of tissue specimens can be used
to train the algorithms. Two basic approaches for training algorithms are supervised
and unsupervised learning [7]. Supervised learning uses labeled data as input to map
data points to the label that describes them (Figure 1B). Labeled data on bladder cancer
(BC) WSIs are, for example, annotating urothelium, detrusor muscle, or immune cells.
Unsupervised learning does not use labeled data for training, and the algorithms operate
independently to find underlying pattern clusters in the data [8].

Computational pathology (CPATH) uses different AI methods to improve diagnosis
by segmentation and classification. Segmentation is the process of delineating a specific
area on an image with a known pathological feature (e.g., urothelium vs. detrusor muscle),
thus helping the user to identify the region of interest (ROI). Classification is identifying
the features that segregate data into groups based on similarities (e.g., tumor vs. normal
tissue, stage, and grade).

1.2. AI in BC Image Analysis

Selecting the optimal therapy for patients with BC to prevent under-/over-treatment
depends on diagnostic features [9]. Current BC risk stratification systems are based on
clinicopathological characteristics, but pathological evaluation suffers from intra- and
interobserver variability [9–12]. Incorrect staging and grading will result in under-/over-
treatment [9,10,13]. Also, increasing pathological workload and complexity highlight the
need for novel tools (i.e., accurate, reproducible, fast, and affordable) to assist patholo-
gists [14]. Extending beyond bladder-centric, several studies have showcased promising
results in leveraging CPATH for improved diagnosis and prognosis prediction, with one
methodology receiving FDA approval [15–19]. This trend is mirrored in bladder cancer,
where there is currently one clinical trial focusing on computational pathology applica-
tions (NCT05825950). In BC specifically, multiple studies have shown promising results
in using CPATH to improve diagnosis and prediction of prognosis through tasks like
detecting tumor tissue and molecular alterations, grading, staging, and predicting clinical
outcomes [4,5].

Despite the rapid development of BC CPATH, it still faces several challenges due to
the complexity of analyzing and interpreting BC WSI [20–22]. In this review, we delve into
the current status of BC CPATH. Specifically, we:

• Provide a comprehensive overview of the present BC CPATH landscape in diagnosis
and prognosis;

• Highlight existing gaps between CPATH research and clinical practice;
• Offer recommendations to address these gaps;
• Discuss challenges that can shape future research in BC CPATH.

2. Materials and Methods

2.1. Literature Review

This review was conducted in accordance with the guidelines of the Preferred Report-
ing Items for Systematic Review and Meta-Analysis (PRISMA) [23]. Both clinical experts
and algorithm developers were involved in the review process to ensure that the informa-
tion presented in the studies was analyzed accurately and critically evaluated. The aim
was to provide a sufficient critique of the data presented. A systematic search of English
articles was performed in March 2022 using Embase, Medline, Cochrane, Web of Science,
and Google Scholar. This systematic review was not registered.

2.2. Study Eligibility and Selection

We employed the specified terms: (bladder cancer) and (artificial intelligence) for
study inclusion, along with any terms relevant or analogous to them. Detailed information
on research terminology for each library and search results are provided in Supplementary
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Table S1. Thus, all relevant studies that analyzed BC histopathological images with an AI
approach were obtained. Five exclusion criteria were applied to evaluate collected studies:

i. No histopathological staining;
ii. Not on bladder cancer;
iii. Not using artificial intelligence;
iv. No full article available;
v. Non-English manuscript.

2.3. Data Extraction

Three reviewers (FK, SF, and NK) independently assessed the relevance of the titles
and abstracts of the studies during the initial screening process. Afterward, the full texts of
the remaining studies were independently reviewed to identify those that met the selection
criteria. If all three reviewers agreed, a paper was selected; if they disagreed after a revision,
the article was discussed with KE to decide on inclusion.

We organized the extracted data into categories, including patient and study character-
istics, as well as CPATH characteristics. We extracted information on the type and number
of patients, type of staining, type of images, magnification used, and performance metrics
of developed algorithms, such as F1 score, accuracy, and specificity. When multiple algo-
rithms were developed with different outcomes, we collected up to three types of outcomes
with the best performance. Diagnostic performance metrics, such as sensitivity, specificity,
and area under the curve (AUC), were extracted at both per-image and per-patient levels
when available. We attempted to calculate missing or unclear performance metrics from
the available data.

2.4. Data Synthesis

Given the major heterogeneity in the application of CPATH systems, study designs,
algorithms, patient cohorts, evaluation strategies, and performance metrics, employing a
narrative synthesis approach was deemed more appropriate than statistical pooling for
our analysis. This approach allows for a detailed description and critical appraisal of the
included studies, which is particularly important in diagnostic test accuracy studies where
patient cohorts and test settings may differ significantly between studies and lead to biased
results. Meta-analysis is not recommended in such cases. Additionally, our analysis did
not include a bias assessment because of insufficient patient selection information in most
studies, coupled with the current lack of a recognized reference standard for CPATH.

3. Results

3.1. Literature Search

The PRISMA flow diagram (Figure 2) provides a graphical representation of the system-
atic search conducted in this study. After the literature search, 2285 studies were included, of
which 720 were removed since they were duplicated. The remaining 1565 documents were
independently assessed by FK, SF, and NK, based on the title abstract, and 1398 studies
were excluded after reaching an agreement. One study could not be retrieved, 166 studies
were independently assessed based on the full text, and 135 studies were excluded accord-
ing to the exclusion criteria. Additionally, two studies were included based on the snowball
search. In the final analysis, 33 studies were included. Table 1 provides a comprehensive
summary of patient characteristics, study aims, and the methods used.
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Figure 2. Flowchart of the study according to the PRISMA statement. PRISMA—Preferred Reporting

Items for Systematic Reviews and meta-analysis.

3.2. Applications of AI Methods for Diagnosis

CPATH systems use WSIs to segment tissue types (e.g., urothelium, connective tissue,
or muscle) and/or identify cell characteristics (e.g., nuclei, cytoplasm) [24–26]. Segmented
tissue can be used for classification, for example, normal vs. tumor tissue, grading, or
staging. Below, we discuss the current knowledge of BC WSI segmentation in more detail.

3.2.1. Tissue and Cell Segmentation

CPATH can accurately detect diagnostically relevant areas at both tissue and cellular
levels from BC WSI. Automated detection of the relevant regions can accelerate pathological
assessment by directing the pathologist and increasing diagnosis accuracy [27].

Niazi et al. developed an algorithm that segmented lamina propria, muscularis
propria, and urothelium with 98%, 98%, and 94% accuracy, respectively [24]. In the same
line, Wetteland et al. developed an algorithm that segmented urothelium, stroma, muscle,
blood, damaged tissue, and background with 96% average accuracy [28]. They showed
that analysis based on different magnification levels improved the segmentation accuracy.
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Segmentation algorithms also showed promising results for segmenting microvessels
and cell nuclei characteristics [26,29]. Neovascularization indicates metastatic potential,
and intratumoral microvessel density can provide diagnostic information [30]. Loukas
developed a model using immunohistochemistry-stained images that segmented microves-
sels with 87% accuracy [29]. Certain characteristics of cell nuclei, such as alterations in
polarization and shape (e.g., loss of roundness), have been found to correlate with worse
clinical outcomes [29]. Nevertheless, analyzing these characteristics is time-consuming and
operator-dependent. Therefore, computationally assessing cell nuclei characteristics has
the potential to improve the prediction of prognosis. Glotsos et al. used BC biopsy images
to develop a cell nuclei segmentation model that reached 94% accuracy [26]. Unfortunately,
clinical outcome was not investigated in these studies.

3.2.2. Detection of Tumor vs. Normal Tissue

Accurate identification of tumor areas within a WSI can improve diagnosis by guiding
the pathologist to a specific ROI, hereby reducing assessment time and intra-/inter-observer
variability [27]. Zhang et al. developed an algorithm to discriminate tumor and normal
areas using WSIs from patients with papillary urothelial carcinoma [5]. Two pathologists
annotated tumor and normal tissue areas to train the algorithm. The algorithm retrieved
the tumor and normal urothelium with a 0.95 true positive rate. Despite the large dataset
in this study, the developed method only focused on papillary tumors; tumor types such as
carcinoma in situ (a flat lesion), which might be more difficult to detect, were not included.

Noorbakhsh and colleagues used WSIs of 19 tissue types to develop an algorithm to
classify tumor vs. normal images, which reached an area under the curve (AUC) of 0.99 [31].
The algorithm trained on BC, invasive breast carcinoma, and endometrial carcinoma could
correctly classify tumor and normal tissue areas in other organ types (with AUC of 0.98,
0.97, and 0.97, respectively). In the same line, Jang et al. used WSIs from bladder, lung,
colon, rectum, stomach, bile canal, and liver tissue to develop an algorithm that classified
normal vs. tumor areas with 0.94–0.98 AUC on BC WSIs (models trained on five different
cancer types other than BC) [32]. Therefore, image datasets from various cancer types could
be used to train an algorithm operated on another tissue type based on morphological
similarities.

For decision assistance, content-based image retrieval (CBIR) systems retrieve com-
parable images with associated information, such as a pathology report or clinical result.
CBIR, by recalling previously diagnosed images/reports, can aid pathologists in identi-
fying similar images and increase diagnostic accuracy. Kalra and colleagues trained an
algorithm with WSIs from 32 tumor types other than BC to retrieve similar cancer-type
images, achieving 96% accuracy [33]. Khosravi et al. also developed a method using WSIs
with bladder, breast, or lung cancer as a general label to classify cancer types, achieving
100% accuracy [34]. These findings suggest that by looking at a new case, CPATH can
retrieve similar cases diagnosed previously.

3.2.3. Grading and Staging

BC diagnosis and current risk stratification systems mainly rely on clinicopathological
factors such as tumor grading and staging [9,10,35]. Incorrect grading and staging can lead to
under-/over-treatment. CPATH has the potential to improve grading and staging diagnosis
by providing pathologists with an accurate and reproducible second opinion [36,37].

Yin et al. developed an algorithm that distinguished Ta vs. T1 disease with 96%
accuracy [37]. Extracted features from images such as nuclear size, cytoplasmic color,
nuclear shape, and the pattern of connective tissue around the tumor were used to train the
ML model. An in-depth analysis of the results showed that desmoplastic reaction was the
most important feature in distinguishing Ta from T1 tumors. A limitation of this study was
the exclusion of challenging cases to distinguish Ta vs. T1 for pathologists, which makes
the dataset unrepresentative of real clinical practice.
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Cancer grading relies on cell nuclei features, and automated identification of cell nuclei
could assist pathologists in improving the grading assessment [38–40]. Spyridonos et al.
developed an algorithm that segmented cell nuclei and, by using ML methods, 36 extracted
nuclei features from annotated regions. This algorithm achieved 88% in classifying tumor
areas into high and low grades [39]. The same group also developed an algorithm based on
the WHO 1973 grading system, which classified selected tumor areas into grades 1, 2, and
3 with an efficiency of 89% in distinguishing grade 1 and 2 cases from grade 3, and 79%
among grade 1 vs. grade 2 cases [40]. In a later study, they developed a grading algorithm
using non-muscle-invasive BC WSIs that achieved 85% accuracy [41].

Zhang and colleagues trained a method to identify tumor areas and provide grades for
these detected areas [5]. The automated results were compared to assessments conducted
by a panel of 17 pathologists performing the same tasks. The developed method outper-
formed the pathologists in grading, achieving 95% accuracy compared to the pathologists’
84% accuracy. The ground truth was based on grading provided by four independent
pathologists. Papageorgiou et al. developed a grading algorithm that achieved 89% and
86% accuracy for high-grade and low-grade tumor areas, respectively [42].

Wetteland et al. developed an algorithm using general grading labels for each WSI
that correctly graded 90% of the WSIs [43]. Different tissue types were automatically
segmented [28], and urothelium was used for grading analysis. Along the same line,
Jansen and colleagues developed two methods to segment urothelium and provide grad-
ing, achieving 76% accuracy for low-grade and 71% accuracy for high-grade cancerous
urothelium in WSIs from non-muscle-invasive bladder cancer (NMIBC) patients [44].

Muscle Invasive Bladder Cancer (MIBC) patients have different histological patterns
associated with varying prognoses and aggressiveness [45]. Jimenez et al. identified three
invasive growth patterns that can predict recurrence in MIBC patients: nodular, trabecular,
and infiltrative [46]. Garcia et al. developed a method using immunohistochemistry-stained
WSIs to classify normal, infiltrative, nodular, and trabecular histological patterns, achieving
an average accuracy of 90% [47].

3.2.4. Generation of a Diagnostic Report

CPATH has shown promising results in tissue segmentation, grading, and staging.
However, the CPATH outcome is often challenging to interpret, especially for DL-based
models, due to the lack of transparency in the decision-making process, often referred
to as the “black box”. Clinicians cannot make healthcare decisions based on the “black
box” unless they can rely on the outcome of a method. Having accurate and reproducible
methods or comprehending the findings’ rationale can shed light on the black box. There-
fore, translating CPATH results into clinically relevant output (e.g., a diagnostic report) is
needed.

Zhang et al. developed a set of algorithms based on pathological reports written for
image patches to describe morphological features [48]. These trained algorithms generated
pathological reports and retrieved the correlated images with 79% accuracy—outperforming
well-known image-to-text-retrieval methods in the same task. In a subsequent study focused
on image-to-text retrieval, two pathologists briefly characterized the cell features of 4253 split
images, and four pathologists transliterated the corresponding reports [5]. An image-to-text
retrieval algorithm was designed to generate diagnostic reports, and a text-to-image retrieval
method was built to visualize the image pixels responsible for the reported findings, thereby
enhancing the interpretability of the outcome. Both methods outperformed state-of-the-art
techniques in report generation. Explaining the CPATH outcome can shed light on the black
box and fill the gap concerning CPATH methods and clinical practice. Nevertheless, CPATH
systems should work together with pathologists in the future and not stand alone.
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3.3. Applications of AI Methods for Prognosis

3.3.1. Predicting Clinical Outcome

Approximately 30–50% of BC patients experience recurrence or progression after treatment,
and predicting clinical outcomes is essential to select the appropriate treatment [9,10,49,50]. The
existing prediction methods rely on clinicopathological data, which are often insufficient, thus
emphasizing the need for an affordable, rapid, reproducible, and effective technique. CPATH
has the potential to predict clinical outcomes by analyzing tumor growth patterns, cell nuclei,
and microenvironments [51–55].

Tumor budding (TB) is represented by a cluster of up to four cancer cells located at the
invasive front of a tumor that correlates with poor prognosis in many cancer types [56,57].
Brieu et al. developed a method to quantify TB using MIBC WSIs, demonstrating a correlation
between TB and poor survival [51]. They showed that combining TB-detected features with
clinical parameters improved the clinicopathological-based prognostic approach by separating
MIBC patients into low and high TB groups associated with disease-specific survival.

Tumor cell nuclei undergo significant changes, and when quantified, these modifications
can diagnose cancer or predict the disease’s course [58]. ML-based CPATH methodologies
that evaluate cellular features show promising potential in predicting cancer recurrence and
survival [52–55]. The mutually analyzed cellular features were mostly cell nuclear area,
skewness of area, and circularity. Tasoulis et al. investigated the quantitative descriptors of
nuclear morphometry (e.g., maximum area, skewness of area, maximum concavity) to predict
recurrence, which achieved an accuracy of 92% [52]. Chen et al. developed an algorithm to
predict overall survival (OS) [53]. Quantitative extracted phenotypic tissue features of object
shape, size, and texture from WSIs (e.g., cell nuclei area, contrast, and distribution) were
combined with clinical information. The developed algorithm in this study, using combined
data, achieved an 81% accuracy in predicting 5-year overall survival (OS) and outperformed
current risk stratification systems based on clinicopathological characteristics. In another
study, the same group developed an algorithm using BC WSIs from patients who underwent
a radical cystectomy to predict OS by extracting and analyzing phenotypic features (e.g.,
nucleus/cell area ratio, nucleus circularity, and cell area) [54]. Extracted features were merged
with the neutrophil-to-lymphocyte ratio obtained from peripheral blood or estimated from
transcriptomic data. Their novel nomogram could predict OS and perform better than tumor
grade and stage systems in decision curve analysis.

Tokuyama and colleagues developed an algorithm using NMIBC WSIs to predict re-
currence using extracted nuclear features from pathologist-annotated ROIs (e.g., area, mean
radius, correlation), which reached 90% accuracy [55]. Gavriel et al. used multiple ML al-
gorithms to predict cancer-specific survival (CSS) from immunofluorescence-stained MIBC
WSIs [59]. Firstly, tumor budding, T-cells, macrophages, and their co-expression of the im-
mune checkpoint ligand PD-L1 were identified. Subsequently, spatial and image features
(e.g., the number and density of different cell types and the total tumor area) were identified
and combined with clinical information to predict CSS. This model had 89% AUC and 80%
accuracy for predicting CSS, outperforming the current clinicopathological-based model. Mi
et al. developed an algorithm based on measured size and angles of cell nuclei that predicted
response to neoadjuvant chemotherapy in MIBC patients with 73% accuracy [60].

Some studies used a DL approach to predict recurrence and lymph node metastases at
radical cystectomy [6,61]. Lucas et al. trained an algorithm to predict 1- and 5-year recurrence-
free survival that reached AUCs of 0.62 and 0.76, respectively—combining image features
with clinical data improved recurrence prediction [6]. Harmon et al. developed a method
to predict lymph node metastasis (LNM) for MIBC patients at radical cystectomy [61]. Saltz
et al. extracted image features from annotated tumor areas were used to develop a multi-
magnification model to show the probability map of LNM, and the result was combined with
spatial tumor-infiltrating-lymphocytes (TILs) probability [62]. Subsequently, the output was
combined with a clinicopathological-based logistic regression model that achieved an AUC of
0.80, higher than the clinicopathological (0.67) or ML (0.78) models alone.
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3.3.2. Detection of Biomarkers and Molecular Alterations

Molecular alterations such as fibroblast growth factor receptor (FGFR) and HER2 have
been shown to be associated with response to treatment and clinical outcome, suggesting them
as predictive factors [63,64]. Nevertheless, detecting molecular alterations in clinical practice
is hindered by high costs and complexity, highlighting the need for alternative, affordable,
and rapid methods. CPATH methods have shown promising results in detecting molecular
alterations and are relatively cheap and fast [4,25,31,34,65]. Therefore, CPATH can be used as
a pre-selection tool to determine eligibility for molecular testing and, ultimately, help with
bridging the gap between molecular identification techniques and clinical practice.

MIBC can be classified into distinct prognostic and predictive molecular subtypes: lumi-
nal, basal squamous, neuronal, and stroma-rich [66–68]. Woerl et al. developed an algorithm
to predict molecular subtypes from MIBC WSIs that reached 75% accuracy [4]. Pathological
interpretations were made on 800 randomly selected tiles from detected areas by the trained
algorithm. The following cellular and histological structures, hyperchromatic nuclei with low
to moderate pleomorphism; large, pleomorphic nuclei with multiple atypical nucleoli; papil-
lary structure; small cellular nests or diffusely infiltrating single tumor cells were identified as
most relevant in double negative, basal, luminal, and luminal p53-like molecular subtypes
respectively. Four pathologists were presented with the algorithm’s detected areas for each
molecular subtype, and their accuracy in predicting molecular subtypes increased from 38%
to 59%.

Noorbakhsh et al. developed an algorithm to detect TP53 mutations using WSIs from
various cancer types, including BC, breast cancer, lung adenocarcinoma, stomach adenocar-
cinoma, and colon cancer. The algorithm achieved an AUC of 0.7 to detect TP53 mutation
from BC WSIs [31]. Similarly, Khosravi et al. developed an algorithm that identified four
BC-specific biomarkers (Table 1) with accuracies of 99% and 83% on two datasets [34].

The expression of Ki-67 (Ki-67 index) is a proliferation marker, and a high expression
correlates with poor clinical outcomes. Lakshmi et al. developed a method for cell nuclei
segmentation and classification to compute the Ki-67 index [65]. Cell nuclei were segmented
with an average accuracy of 93%, and the Ki-67 index was calculated with a margin error
of 2.1%. Manual labeling of cell nuclei to train the algorithm was a limitation of this study,
addressed in a subsequent study by the same group through the use of automatically
labeled data [25]. Their improved algorithm achieved an 89% accuracy in segmenting cell
nuclei, with the Ki-67 index measured with a 0.4% error.

TIL density is correlated with clinical outcomes, such as prolonged disease-free sur-
vival or increased OS, across various cancer types. Saltz et al. developed an algorithm using
WSIs from 13 cancer types, including BC, to detect TILs [62]. To boost the performance,
they developed an algorithm to learn the representation of nuclei and lymphocytes. Then,
the enhanced algorithm was trained and optimized with pathologist-labeled images. The
developed model reached 0.95 AUC to detect TILs.

FGFR mutations are frequently detected in BC and can serve as prognostic markers for
treatment response [69]. Velmahos et al. developed a method to predict FGFR-activating
mutations [70]. A higher frequency of FGFR mutations correlates with a high TIL percentage
and vice versa [71]. Accordingly, the TILs proportion was estimated (using Saltz et al.’s
method [62]) to evaluate FGFR mutations, and the algorithm predicted FGFR mutation
with 0.82 sensitivity and 0.42 specificity. Loeffler et al. developed an algorithm to detect
FGFR3 mutations that reached 0.72 AUC [72]. In summary, CPATH can potentially translate
molecular alterations-based prognostic models into clinical practice.

In light of our findings, we have identified key gaps in BC CPATH and provided
actionable recommendations along with their underlying reasons. Due to the variations
in research questions, validation methods, and the WSIs and corresponding annotation
databases used, a direct comparison of the studies was not feasible. Nevertheless, Table 2
provides a guide to address the existing challenges and effectively incorporate CPATH into
the field of BC diagnosis and prognosis.
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Table 1. Overview of included studies.

Study Year
Aim of the Study (Related to

AI Image Analysis on BC)
Diagnosis or

Prognosis
Dataset

Number of
Patients

Type of Model
in Use

Staining Type

Niazi et al. [24] 2020
Tissue type segmentation

(urothelium, stroma, muscle,
and blood)

Diagnosis In-house 54 (T1 samples) Supervised DL HE

Wetteland et al. [28] 2020
Tissue type segmentation

(urothelium, stroma, muscle,
and blood)

Diagnosis In-house 39 Supervised DL HES

Loukas [29] 2013 Vessel segmentation Diagnosis In-house 107 Unsupervised ML CD31

Glotsos et al. [26] 2004
Cell nuclei segmentation (for
selected urothelium regions)

Diagnosis In-house 50 Supervised ML HE

Zhang et al. [5] 2019
Detecting tumor area, grading

classification, producing an
interpretable pathology report

Diagnosis
TCGA,

in-house
913 Supervised DL HE

Jang et al. [32] 2021

Tissue classification into tumor
vs. normal areas for six cancer

types to assess the
generalizability of diagnostic

DL models.

Diagnosis TCGA NA Supervised DL HE

Kalra et al. [33] 2020

Pan-cancer classification with
CBIR approach to assess

diagnostic consensus through
searching archival WSIs

Diagnosis TCGA 410 (before exclusion) Unsupervised DL HE

Yin et al. [37] 2020 Ta and T1 staging classification Diagnosis In-house 1177 Supervised ML HE

Spyridonos et al. [39] 2001
Nuclei segmentation and

tumor grading
Diagnosis In-house 92 Supervised ML HE

Spyridonos et al. [40] 2002
Nuclei segmentation and

tumor grading
Diagnosis In-house 92 Supervised ML HE

Spyridonos et al. [41] 2006 Tumor grading Diagnosis In-house
129 (NMIBC

patients)
Supervised ML HE

Papageorgiou et al. [42] 2006 Tumor grading Diagnosis In-house 129
Unsupervised and

supervised ML
HE
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Table 1. Cont.

Study Year
Aim of the Study (Related to

AI Image Analysis on BC)
Diagnosis or

Prognosis
Dataset

Number of
Patients

Type of Model
in Use

Staining Type

Wetteland et al. [43] 2021 Tumor grading Diagnosis In-house
300 (NMIBC

patients)
Supervised DL HE

Jansen et al. [44] 2020
Automated tumor detection

and grading
Diagnosis In-house

232 (NMIBC
patients)

Supervised DL HE

García et al. [47] 2021
Detecting histological patterns
(normal, mild, or trabecular in

IHC images
Diagnosis In-house 136 Unsupervised DL

IHC (Cytokeratin
AE1/AE3)

Zhang et al. [48] 2017
Produce an interpretable
pathology report for the

corresponding ROI
Diagnosis TCGA, in-house 32 Supervised DL HE

Noorbakhsh et al. [31] 2020
Classifying tumor/non-tumor

slides, cancer subtype, and
TP53 mutation

Diagnosis and
prognosis

TCGA 27,815 a Unsupervised DL HE

Khosravi et al. [34] 2018
Tissue type (bladder, breast, and

lung cancer) and
biomarker classification

Diagnosis and
prognosis

TCGA and
TMAD

2139 IHC, 543 H&E,
and 2139 IHC images

Supervised DL
HE, IHC (CK14,
GATA3, S0084,

and S100P)

Brieu et al. [51] 2019
Detecting tumor budding to

improve prognosis by
predicting survival

prognosis In-house 100
Supervised DL and

ML
HE

Tasoulis et al. [52] 2006

Collecting and quantification of
cell nuclei characteristics to

improve prognosis by
predicting recurrence

prognosis In-house 127 Supervised ML HE

Chen et al. [53] 2021
Predicting overall survival by
using extracted quantitative
phenotypic tissue features

prognosis
TCGA and
in-house

514 Supervised ML HE
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Table 1. Cont.

Study Year
Aim of the Study (Related to

AI Image Analysis on BC)
Diagnosis or

Prognosis
Dataset

Number of
Patients

Type of Model
in Use

Staining Type

Chen et al. [54] 2021

Provide a novel nomogram for
decision-making and predicting

overall survival by using
extracted quantitative features

and combining them with
neutrophil-to-lymphocyte

ratio information

prognosis
TCGA and
in-house

508 Supervised ML HE

Tokuyama et al. [55] 2021
Predict recurrence by using

extracted quantitative
nuclei features

prognosis In-house
125 (NMIBC

patients)
Supervised ML HE

Gavriel et al. [59] 2021

Predict cancer-specific survival
by combining image, clinical
and spatial features extracted

from IHC images

prognosis In-house 78 Supervised ML
IHC (Pan CK,

CD3, CD8, CD68,
CD163, PD-L1)

Mi et al. [60] 2021
Predict response to neoadjuvant

chemotherapy by using
extracted cell nuclei features

prognosis
TCGA and
in-house

73 Supervised DL

HE, IHC (P16,
P53, P63, Ki67,
CK20, CK5/6,
GATA3, and

Her2Neu)

Lucas et al. [6] 2020
Predicting recurrence by

combining image features with
clinical information

prognosis In-house 359 Unsupervised DL HE

Harmon et al. [61] 2020

Predicting lymph node
metastasis by combining

extracted image features with a
spatial

tumor-infiltrating-lymphocytes
probability model

prognosis TCGA, in-house 307
Supervised DL and

ML
HE

Woerl et al. [4] 2019
Predicting molecular subtypes

from H&E slides
prognosis TCGA, in-house 379 Supervised DL HE
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Table 1. Cont.

Study Year
Aim of the Study (Related to

AI Image Analysis on BC)
Diagnosis or

Prognosis
Dataset

Number of
Patients

Type of Model
in Use

Staining Type

Lakshmi et al. [65] 2019
Estimating Ki-67 index by

segmentation and classification
of cell nuclei

prognosis In-house 8 b Supervised DL Ki-67

Lakshmi et al. [25] 2020

Estimating Ki-67 index by
segmentation and classification

of cell nuclei, which use
automatically labeled data

prognosis In-house 8 b Supervised DL HE

Saltz et al. [62] 2018

Mapping of tumor-infiltrating
lymphocytes by training an

algorithm that shows the
representation of cell nuclei and

lymphocytes, which is
optimized with

pathologist-labeled data

prognosis TCGA 5202 c Supervised DL HE

Velmahos et al. [70] 2021
Predicting FGFR mutation by

estimating TILs proportion
prognosis TCGA 290 Supervised DL HE

Loeffler et al. [72] 2021
Detecting FGFR3 mutation from

H&E images
prognosis

TCGA and
in-house

574 Supervised DL HE

BC—bladder cancer; TCGA—the cancer genomic atlas; TMAD—the Stanford tissue microarray database; AI—artificial intelligence; ML—machine learning; DL—deep learning;
HE—hematoxylin and eosin; HES—hematoxylin eosin saffron; IHC—immunohistochemistry; CD31—a cluster of differentiation 31; NMIBC—non-muscle-invasive bladder cancer;

FGFR—fibroblast growth factor receptor; CBIR—content-based image retrieval; ROI—regions of interest; a —flash-frozen samples from 19 cancer types; b —80 images from 8 patients;
c —from 13 cancer types.
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Table 2. Identified areas to improve and proposed recommendations for future research to integrate

CPATH into BC clinical practice.

Research Phase Area to Improve Recommendation Reason

Data collection Model robustness Large number of patients (>100)
Avoid overfitting and develop

accurate models

Open access resources
Publish WSI and annotation

dataset publicly
Reproducible output

Patient monitoring period Period-covering follow-up
Cover the full timeframe to

assess treatment efficacy

Process uniformity
Standardization of data

collection and keeping records
of each step

Ensure consistency,
reproducibility, and increase

transparency for legal aspects

Data pre-processing Image dataset quality
Remove noise, such as artifacts,

from the images
Increase generalizability

and accuracy

Experiments and analysis Study design transparency
Keep track of collection and

adjustments made in the dataset,
experiments, and algorithm

Reproducible study design and
increase transparency for

legal aspects

Transparent algorithm design
Publish the developed

algorithm publicly
Reproducible output

Results consistency and
standardization

Report all basic results for
classifications (e.g., accuracy,

F1 score, AUC)
Make results comparable

Cross-demographic algorithm
evaluation

Further validation and testing
of CPATH algorithms in diverse

patient populations

ensure generalizability
and accuracy

Interpretation
Transparency in the

decision-making process

Assess the outcome and
interpret the rationale behind

the decision an algorithm
has made

Shed light on the black box for
transparent and legally
acceptable outcomes in

clinical practice

Clinical
implementation

Clinical utility and
efficacy assessment

Implement trained models in
the clinical setting

Integrating the AI models into
the clinical workflow

Adaptive learning
Monitor the model’s

performance and update it with
new data

Maximize the model’s utility in
real-world settings in

varied scenarios

4. Discussion

In this review, we provide a comprehensive overview of CPATH’s role in improving BC
diagnosis and prediction of prognosis. CPATH has shown promising results in enhancing
diagnostic and prognostic prediction accuracy, paving the way for personalized treatment
decisions. Nevertheless, because of variability in performance metrics, datasets in use, and
methodologies across studies, direct comparison of studies was not feasible. This highlights
the need for a standardized framework, as we recommended in Table 2, to facilitate
the integration of research findings, thereby ensuring comparability and reproducibility
across studies.

4.1. CPATH for BC Diagnosis

In the BC diagnostic context, CPATH mainly targets the detection of ROIs (such as tumors,
cell nuclei, and tissue types), the evaluation of their grading and staging, and the production
of diagnostic summaries. To improve the diagnostic CPATH systems’ efficiency, they can focus
on automatically segmented areas with diagnostic relevance, and areas that diagnostically are
not relevant, such as damaged tissue and blood, can be excluded [73]. For instance, segmented
urothelium can be used as input to develop a CPATH algorithm that aims to provide grading.
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On the topic of segmentation, three studies achieved remarkable accuracy, surpassing 89%,
for segmenting urothelium and cell nuclei using CPATH [24,26,28]. Seven studies that used
ML and DL-based CPATH models achieved high grading accuracy (85%–96% for ML-based
analysis of cell nuclei features and 74%–95% for DL-based models) [5,39–44]. However, the
majority of these studies focused primarily on carefully selected ROIs for analysis. This
approach may overlook vital but less conspicuous diagnostic information elsewhere in the
image [74,75]. Additionally, it could lead to models that are less robust due to their dependency
on specific regions, thereby undermining the full potential of CPATH methods. To circumvent
this bias and ensure transferability to clinical practice, all areas on the slide need to be analyzed.
However, some areas, such as those containing artifacts or diagnostically irrelevant features,
can compromise the model’s reproducibility and accuracy. Therefore, excluding these areas
can enhance both reproducibility and accuracy, fostering the development of CPATH methods
with less human intervention. Considering these conditions, Table 2 offers recommendations
to mitigate selection bias and promote the clinical transferability of CPATH methods.

4.2. CPATH for BC Prediction of Prognosis

Prediction of prognosis in BC is a crucial aspect of patient care, guiding treatment plans
and decisions. Currently, clinicopathological factors are the primary determinants used
in clinics, yet their disease course prediction remains suboptimal. Incorporating CPATH
can enhance prognostic accuracy and pave the way for exploring and validating newer,
previously less-investigated biomarkers in BC. For example, one study demonstrated
desmoplastic reaction as a leading indicator for staging [37]. Although well-established
in other types of cancers, such as gallbladder and colorectal, the role of desmoplastic
reaction presents a ripe area for deeper exploration in BC [76,77]. The mentioned study
that highlighted the importance of desmoplastic reaction in BC used an ML-based method
to differentiate between Ta and T1 stages by analyzing H&E WSIs, which reached 96%
accuracy [37]. By tracing back to the influential features in their ML model, desmoplastic
reaction was identified as the leading indicator for staging.

On a similar note, mitotic figures are another prognostic factor in several cancers, such
as breast, bladder, and melanoma [78–80], with their frequency serving as a determinant
in distinguishing low- from high-grade BC and predicting recurrence [79]. In various
cancer types, including breast cancer and melanocyte lesions, mitosis has been successfully
detected using CPATH methods [81,82]. Although one study used automated mitosis
detection for objective grading in BC, there is more untapped potential in this field [83]. The
automated highlighting of mitotic figures in BC WSIs has the potential to decrease inter- or
intraobserver variability in diagnosis. Moreover, detecting and quantifying mitotic figures
can improve the prediction of prognosis; one included study used a similar approach to
enhance the prediction of prognosis through the automated detection of tumor budding [51].
This finding suggests the potential of CPATH in unraveling prognostic and diagnostic
markers in BC.

Segmented cell nuclei features have shown predictive capabilities for prognosis in glioma,
renal cell carcinoma, and lung cancer [84,85]. Building on these findings, five included studies
explored the use of ML-based models and analyzed extracted cell nuclei features to predict
the prognosis of BC [52–55,59]. These models achieved minimum accuracies of 90%, 81%,
and 80% for recurrence, overall survival, and cancer-specific survival, respectively. A key
advantage of these studies was their ability to trace back and identify predictive variables
within their models, demonstrating the strength of ML-based methods in prognostic marker
identification. Two studies employed DL methods to predict recurrence and lymph node
metastasis, achieving AUCs of 0.62 and 0.8, respectively. However, the limited interpretability
of DL models hinders the ability to recognize specific features that contribute to outcome pre-
diction. The study on predicting lymph node metastasis showed that an integrated analysis of
histopathological images and clinicopathological data can improve the prediction. Moreover,
a notable study investigating glioma and clear cell renal cell carcinoma underscored the use
of a multimodal fusion paradigm [85]. This approach enriches prognostic predictions by
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synergistically analyzing genomic features alongside morphological characteristics extracted
from histopathological images. It offers persuasive evidence that future BC studies on the
prediction of prognosis can be improved by adopting such multimodal strategies. For in-
stance, integrating clinicopathological information, histopathological imagery, and molecular
subtyping data can potentially open doors to superior predictive outcomes.

CPATH’s versatility in prognostic tasks extends further; for example, CPATH studies
have demonstrated the promising capability of predicting molecular subtypes from WSIs
in breast cancer [86]. In a notable included study on BC that used a DL-based method,
molecular subtypes were predicted with 75% accuracy and 0.89 AUC [4]. While the per-
formance level has not reached clinical practice standards, it remains significant given
the tumor heterogeneity in BC, where diverse genetic and phenotypic profiles within one
tumor can challenge classifications. Their method’s ability to detect molecular subtypes
from histopathological images without intensive molecular assessment can pave the way
for more efficient diagnostic methods. Moreover, the importance of detecting molecular
subtypes is heightened by their clinical relevance. Furthermore, by evaluating randomly
selected influential areas for the algorithm’s decision, a correlation between distinct molec-
ular subtypes and specific morphological features was found—a novel finding. Thus, when
using DL models, underscoring image areas influencing algorithm decisions improves
transparency and interpretability, secures reliable results, and simplifies decision-making
comprehension. As a result, users can ascertain accuracy, identify biases, improve the
performance and reliability of the methods, and even unlock the potential to discover novel
prognostic features.

4.3. Navigating the Future: Challenges and Improvements in BC CPATH

The above-mentioned findings underscore the effectiveness of CPATH models in tasks
such as predicting prognosis, grading, and segmenting ROIs. Such use of CPATH has the
potential to streamline pathologists’ workflows by guiding their attention towards signif-
icant areas, like tumors, or provide grading. Pathologists’ workload is increasing, given
factors such as population growth, advancements in medical technology, and evolving
diagnostic criteria [14]. In several cancer types, such as prostate, colorectal, and breast, the
potential of CPATH in improving diagnosis and prediction of prognosis has been proven
by multiple notable studies, with one of the methodologies getting FDA approval [15–19].
In BC, this trend is reflected in a present clinical trial focusing on the CPATH approach
(NCT05825950). Moreover, in a recent notable study, Wu et al. developed an AI-based
model to diagnose lymph node metastases in BC from WSIs, which showed superior
diagnostic sensitivity over both newer and experienced pathologists. Impressively, its
diagnostic ability wasn’t limited to BC but extended to breast and prostate cancers as
well. With this AI breakthrough, pathologists are better equipped to identify hard-to-spot
micrometastases that could otherwise be overlooked [87]. However, AI-based models
are not designed to replace human expertise—but to augment the expertise of clinicians.
Consequently, there is a need to foster collaboration between AI system creators and
clinicians to co-design the CPATH methods. Moreover, clinicians cannot make decisions
based on a black box. Thus, enhancing AI model transparency through feature tracing
becomes essential, fostering trust, accountability, and explainability in AI-driven decision
support systems. Additionally, ethical and legal implications such as patients’ privacy,
informed consent, data protection, and fair use of the technology must be considered.
Establishing ethical and legal frameworks can ensure the responsible design and use of
AI-based CPATH.

CPATH’s efficacy is challenged by the need for large, varied datasets, standardized
data practices, and interpretable models for clinical endorsement. The widespread use of
The Cancer Genome Atlas (TCGA) dataset, as seen in 42% of the studies included in our
review, further underscores the importance of addressing dataset biases. Some models
trained on TCGA have shown a tendency to recognize specific institutional patterns, which,
although not medically relevant, could unintentionally affect model performance [88,89].
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Moreover, the lack of cross-validation among different cohorts, potential lab-induced tissue
artifacts, and the biases from institutional patterns limit model generalizability and clinical
application. Elevating the quality and functionality of CPATH in BC demands substantial
clinical datasets with adequate clinical follow-up, image noise removal, standardization,
and tracking of data collection. Validating models on a broad range of datasets outside
of TCGA is essential in upcoming studies to minimize potential biases. Public release of
both WSI and annotation datasets, alongside comprehensive disclosure of the algorithm’s
outcome and clear decision justifications, remains essential.

To maximize the potential of AI in enhancing patient outcomes, it’s essential not just
to develop CPATH models but to effectively integrate them within clinical workflows.
Continuous monitoring and updating of these models are essential for sustaining their
accuracy and reliability. One of the emerging innovations that can help with integrating
CPATH in BC clinical practice is fusion models [85]. These models can offer enhanced
prediction of prognosis by combining multiple AI techniques and acquiring the unique
strengths of individual algorithms.

Patient stratification in clinical trials is essential for their success, which can be aug-
mented by using CPATH’s predictive capabilities. By leveraging CPATH, we can better
predict which patients will benefit from specific treatments, thus refining precision medicine
and enhancing patient outcomes. An example clinical trial can be more efficient by identi-
fying HR-NMIBC patients who are unlikely to benefit from BCG treatment, allowing for
their enrollment in trials investigating other potential treatments; similarly, a subset of
MIBC patients who might benefit from immune checkpoints can be identified. CPATH
can pinpoint these patient groups. Additionally, the adoption of explainable AI offers
transparency into algorithmic decision-making, facilitating clinicians’ understanding and
confidence in these tools. Importantly, the efficacy of CPATH models depends on diverse
datasets, ensuring adaptability across patient groups. Thus, a comprehensive data foun-
dation enhances personalized care for each individual. Beyond its technical innovation,
CPATH is directing the BC field towards a paradigm shift in patient care—when CPATH
meets BC, hope prevails over hype.

5. Conclusions

In conclusion, CPATH holds the potential to improve BC diagnosis and prediction
of prognosis. By using ML and DL algorithms, CPATH can detect ROIs, grade and stage
tumors, and predict clinical outcomes with high accuracy. Importantly, these AI-based mod-
els are not intended to replace pathologists but to augment their expertise, helping them
to make more informed decisions. However, implementing CPATH effectively in clinical
practice requires addressing several challenges. These challenges include standardization
of data collection and analysis, interpretation and explainability of AI models, validation of
diverse patient cohorts, and ethical and legal implications. To improve the reliability and
usefulness of CPATH research, it is important to establish legal frameworks, implement
adequate clinical follow-up and standardize data collection, publish datasets publicly, and
ensure transparency and ethical use of AI-based tools.

Despite these challenges, CPATH has the potential to revolutionize BC management
by identifying novel biomarkers and therapeutic targets and facilitating the development
of more effective treatment strategies. By integrating histological data with clinical and
molecular data, CPATH can provide a more comprehensive understanding of the disease
and its underlying mechanisms, leading to precision medicine and improved patient
outcomes. Thus, AI-based histopathological image analysis is a hope, not a hype, for BC
clinical practice.
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BC Bladder cancer
CPATH Computational pathology
AI Artificial intelligence
WSI Whole-slide image
ML Machine learning
DL Deep learning
ROI Region of interest
PRISMA Preferred Reporting Items for Systematic Review and Meta-Analysis
H&E Hematoxylin and eosin
AUC Area under the curve
TB Tumor budding
OS Overall survival
CSS Cancer-specific survival
MIBC Muscle-invasive bladder cancer
NMIBC Non-muscle-invasive bladder cancer
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TILs Tumor-infiltrating-lymphocytes
FGFR Fibroblast growth factor receptor
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