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2 Chapter 1. Introduction

1.1 Stroke

Stroke is a medical condition which occurs when there is malfunction in the cerebral
blood vessel network. The cerebral blood vessels supply the brain tissue with oxygen
and nutrients. The brain is a complex organ that buffers, regulates and controls the
body. The energy consumption of the brain itself accounts for 20% of total calorie
use in general [1]. Malfunction of the cerebral blood vessel network can lead to the
death of brain tissue. Depending on the affected region, dead brain tissue can result in
neurological deficits like speech, motor or cognition impairment. Stroke is a common
disease in the elderly population and the second cause of death and third cause of
disability worldwide [2]. Moreover, the incidence rate of stroke increases yearly [2].

Depending on the cause of stroke, there are two main types of stroke: ischemic
stroke and hemorrhagic stroke. Ischemic stroke is caused by an occlusion of arterial
vessels. In this case, the blood flow is suppressed. and the affected region is the brain
region that is supplied by the occluded vessels. This is also the most common stroke
type, accounting for approximately 87% of the strokes of the total stroke population
[3]. Hemorrhagic stroke is caused by bleeding of a blood vessel. This lead to the
blood entering the surrounding tissue.Thus the affected region is the blood flooded
brain region and the surrounding brain tissue. In my work, I focused on intracranial
ischemic stroke, in which an intracranial vessel is occluded.

1.2 Acute Ischemic Stroke

Ischemic stroke is caused by a blood clot blocking an arterial vessel. Ischemic stroke
can be classified according to the location of the occluded intracranial arteries. The
intracranial arterial vessels are subdivided in an anterior circulation and a posterior
circulation. The anterior circulation consists of the middle cerebral artery (MCA)
tree and anterior cerebral artery (ACA) tree on the left and right side. The posterior
circulation consists of the posterior cerebral artery (PCA) tree and the cerebellar
arteries on the left and right side. An occlusion occurring in one of the the proximal
segments, such as the first branch of an arterial tree, is a so-called large vessel
occlusion (LVO). Approximately 30% of patients with an acute ischemic stroke has
an LVO, and most of the LVO’s occur in the anterior circulation [4]. Fig.1.1 shows
the MCA and ACA trees highlighted with different color. When the occlusion occurs
beyond the proximal segments of artery trees, it is called a distal occlusion. In current
practice, patients with a more distal occlusion are often not treated yet by endovascular
treatment.

1.3 Imaging in Ischemic Stroke Patient Diagnosis

Patient suspected of having a stroke generally undergo a standard imaging protocol for
further examination and diagnosis. In the Netherlands, the standard imaging protocol
consist of a series of computed tomography (CT) based acquisitions. CT is often
preferred over MRI for logistic reasons (cheaper and faster). First, a non-contrast
computed tomography (NCCT) image is acquired, to determine whether a stroke is
ischemic or hemorrhagic, as the clinical symptoms of hemorrhagic and ischemic stroke
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Figure 1.1: Example of brain vessel annotation with colored anterior vessel
trees for a subject with a large vessel occlusion in the left M2
segment. White represents veins and posterior cerebral artery
trees, red is the right MCA tree, yellow is the right ACA tree,
green is the left ACA tree, blue is the left MCA tree, a: the right
sagittal view; b: the coronal view; c: the left sagittal view.

can be similar; NCCT is currently the gold standard for hemorrhagic stroke diagnosis
due to its high sensitivity [5]. Subsequently, in case of an ischemic stroke, computed
tomography angiography (CTA) and computed tomography perfusion (CTP) images
are acquired to demonstrate a vessel occlusion and its location, to assess the extent of
collateral circulation, and to assess the extent of the brain perfusion abnormalities.
Based on the imaging and clinical parameters (such as patient age, time since the
stroke onset) a decision regarding the type of treatment is made.

In clinical practice, CTA images are acquired by injecting contrast material in-
travenously in the arm. The flow of the contrast agent is a dynamic process. Upon
entering the brain, the contrast agent first flows through the arteries, then to the brain
parenchyma, and subsequently leaves the brain via the veins. This implies that the
visual appearance of a CTA image depends on the timing of the acquisition. For CTP
images, many acquisitions are taken during the flow of contrast material through the
brain. The contrast flow timing, in general, is divided over five phases [6] based on
the Hounsfield unit (HU) of ICA-top and confluence sinus. The five phases include
early arterial phase, peak arterial phase, equilibrium phase, peal venous phase, and
late venous phase. Fig.1.2 shows a CTP image at each of these five contrast phases in
the same subject. This shows that the CTA image appearance depends on the timing
of the image acquisition.

1.4 Treatment Options for Acute Ischemic Stoke

The treatment options for AIS patients are intravenous tissue plasminogen activator
(IV-tPA) for all patients with ischemic stroke who present within 4,5 hours after onset
and endovascular treatment (EVT) for patients with a large vessel occlusion [7, 8, 9].
IV-tPA is a thrombolytic drug introduced into the veins to dissolve the blood clot. EVT
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Figure 1.2: Example of CTP image in different contrast acquisition phase.
a: the early arterial phase; b: the peak arterial phase; c:the
equilibrium phase; d:the peak venous phase; e: the late venous
phase.

is a minimally invasive procedure where microcatheters, inserted from the groin or the
arm, are used to mechanically remove the blood clot and/or deliver the thrombolytic
agent directly to the clot. Since several recent randomized controlled trials [10, 11, 12,
13, 14] demonstrated that EVT is an effective treatment option for patients with AIS
and an LVO, EVT has become a standard procedure for patients with an AIS. However,
not all patients benefit from the treatment. And as the treatment is not without risks,
patient selection, though challenging, remains relevant. A recent treatment outcome
prediction tool, MR PREDICT [15], used semi - automatic imaging biomarkers (visual
scoring based) in combination with clinical parameters to determine the probability
on good treatment outcome for an individual patient.

1.5 Imaging Biomarkers for Treatment Decision Making in
Patients with Acute Ischemic Stoke

Image features that can be used for diagnostic or therapeutic purposes, are so-called
imaging biomarkers [16]. In clinical practice, imaging biomarkers are primarily ex-
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tracted visually and/or manually by radiologists. Empowered by the development
of machine learning methods, including deep learning, automated quantification of
imaging biomarkers has become trending in radiological research and clinical practice.

For the diagnosis and workup of patients with AIS, several baseline image visual
scoring systems have been developed to provide semi-quantitative measures that may
help in determining whether IVT and/or EVT would be beneficial for a specific patient.
Two of the most used image based parameters in clinical practice are the Alberta stroke
program early CT score (ASPECTS) and Collateral score (CS)[17, 18]. ASPECTS
[19] is a measure to quantify the severity of brain tissue damage in NCCT. CS [20] is
a measure to quantify the vessel status in CTA images. Once a main arterial tree is
occluded, blood may still arrive in the affected region via alternative vessels. Those
vessels are so called collateral vessels. In clinical practice, collaterals are scored visually,
by comparing the amount of vessels in the occluded side with the contralateral side.
The most used collateral scale in Netherlands is the four point scale proposed by Tan
et al. [20]. Fig.1.3 shows this four point scale. Visual scoring methods may have large
intraobserver variation [21]. In this case, an automatic biomarker modelling method
might have better consistency in clinical practice.

Figure 1.3: Examples of four collateral score in Maximum Intensity Pro-
jection (MIP) from 3D CTA image acquired in four different
patients. a: collateral score 0; b: collateral score 1; c: collateral
score 2; d: collateral score 3.

1.6 Goals & outline

The primary goal of this work is to develop and evaluate methods to extract quantitative
imaging biomarkers of the cerebral vasculature from CTA images to assist therapeutic
decision making in patients with AIS. The underlining research question is, to what
extent learning based methods can be used in extracting vessel based biomarkers and
beyond. Therefore, Chapter 2 till Chapter 4 investigated collateral scoring related
matters. ?? and Chapter 5 focus on novel methods for extracting relevant image
features via learning based methods.

Chapter 2 investigates a three step approach to modelling collateral score biomarker
based on mincing how a human does the collateral scoring: by comparing the
vessel structures of MCA territories in occluded versus contralateral side.
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?? investigates, to what extent, an end-to-end approach performs well on the collateral
score classification task. The end to end approach is also inherited to the human
visual scoring by comparing the occluded hemisphere versus the non-occluded
hemisphere.

Chapter 3 assesses the performance of the automatic collateral scoring method
developed in Chapter 2 with carefully designed experiments in a random sampled
subset of a randomized control trial.

Chapter 4 uses the automatic collateral scoring method introduced in Chapter 2
to investigate the optimal contrast acquisition time point for CTA images by
computing the CS over all CTP images and associate this with the baseline
clinical parameter.

?? investigates whether the general binary tubular structure output from segmentation
task can be further improved using a post processing network.

Chapter 5 investigates first of all, to what extend the DRL based methods can be
used in the cerebral vessel tracking; secondly, how well the CNN based bifurcation
detection method performed in cerebral vessel network; at the last, to what
extent, the anterior tree extraction methods works with the previous two models
combined.

Chapter 6 provides a general discussion of the results from this thesis and presents
possible future research directions.
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Abstract

The collateral score is an important biomarker in decision
making for endovascular treatment (EVT) of patients with is-
chemic stroke. The existing collateral grading systems are based
on visual inspection and prone to subjective interpretation and
interobserver variation. The purpose of our work is the devel-
opment of an automatic collateral scoring method. In this work,
we present a method that is inspired by human collateral scoring.
Firstly, we define an anatomical region by atlas-based registration
and extract vessel structures using a deep convolutional neural
network. From this, high-level features based on the ratios of
vessel length and volume of the occluded and the contralateral side
are defined. Multi-class classification models are used to map the
feature space to a four-grade collateral score and a quantitative
score. The dataset used for training, validation and testing is
from a registry of images acquired in clinical routine at multiple
medical centers. The model performance is tested on 269 subjects,
achieving an accuracy of 0.8. The dichotomized collateral score
accuracy is 0.9. The error is comparable to the interobserver
variation, the results are comparable to the performance of two
radiologists with 10 to 30 years of experience.
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2.1 Introduction

2.1.1 Clinical Background
Endovascular treatment (EVT) improves outcome in patients with acute ischemic
stroke due to intracranial large vessel occlusion ([7]). Selection of eligible patients
for EVT is important because not all patients benefit and the treatment is not
without risk ([15]). Brain tissue at risk can survive longer in the presence of collateral
circulation, which is a network of arterial anastomoses that provides blood flow to
brain tissue when the principal conduits fail to meet demands ([22]).

The MR CLEAN trial, a multicenter, randomized trial of EVT versus no EVT,
showed that baseline computed tomographic angiography (CTA) collateral status
modified the treatment effect ([23]): patients with higher collateral score will most
likely have better treatment outcome. A clinical decision tool based on multiple
baseline clinical and imaging characteristics for individualized predictions of the effect
of EVT has been developed and includes grade of collateral circulation as prognostic
and predictive marker ([15]). Several collateral status grading systems exist, all based
on visual scoring using coarse classification criteria ([24]). Such visual scoring systems
suffer from subjective interpretations leading to inter- and also intra-observer variation.
An automated scoring system could facilitate an objective and reproducible assessment
of the cerebral collateral status. In our work, we use the four-grade score that was
proposed by [20] as it has proven correlation with outcome and effect of EVT. The
definition of this 4-grade score system is:

• 0: absent collaterals (0% filling in occluded territory)

• 1: poor collaterals (>0% and ≤50% filling in occluded territory)

• 2: moderate collaterals (>50% and <100% in occluded territory)

• 3: good collaterals (100% filling in occluded territory)

Fig. 2.1 shows example images for four different collateral scores in Maximum
Intensity Projection (MIP).

Figure 2.1: Examples of four collateral score in Maximum Intensity Projec-
tion (MIP) from 3D CTA image. a: collateral score 0; b: collat-
eral score 1; c: collateral score 2; d: collateral score 3.
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2.1.2 Related Work
Collateral status scoring relies on the difference between arterial trees in the middle
cerebral artery (MCA) territory of the occluded side and its contralateral side. There-
fore, vessel segmentation is an essential step in our application. [25] and [26] provide a
review of many vessel segmentation approaches that have been developed over the past
decades. For cerebral blood vessel segmentation, [27] summarized non-convolutional
neural network based algorithms with respect to methods, image modality, and cerebral
vessel segments. For example, [28] utilized a level set approach to detect the circle of
Willis (CoW) in 3D CTA images, [29] utilized a Bayesian tracking approach to segment
the internal carotid artery (ICA) in 3D CTA images, [30] utilized graph connectivity
in combination with a tracking approach to obtain the label and vessel structure of the
CoW in Magnetic Resonance Angiography (MRA) images, and [27] utilized a random
forest classifier and histogram to extract the complete vessel structure from 4D CTA
images.

Nowadays, convolutional neural networks (CNNs) have demonstrated in general
superior performance for many medical image segmentation tasks. This trend is
also witnessed in vessel segmentation, [31] summarized vessel segmentation using
conventional and CNN based methods. [32], [33] and [34] employ 3D U-net based CNN
model to extract the cerebral vessel structure from 3D Time-of-flight (TOF) MRA
images, [35] use a 3D U-net based CNN model to extract cerebral vessel structure
from 4D CTA images and further separate the arterial and vein structure by its spatial
features, [36] utilize the 3D U-net frame work and replace the 3D convolution with
a 2D cross-hair filter to segment the cerebral vessel structure and centerline in TOF
MRA data. None of these approaches quantifies the collateral status.

To the best of our knowledge, only [37] published an automatic collateral scoring
method. The region of interest (ROI) is defined by a probability density map that
was generated from an atlas build from lesion segmentation from follow-up CT images.
The 3D Frangi filter ([38]) with visually tuned parameters and a threshold of 200
Hounsfield units (HU) was applied to extract vessel structure in a pre-defined region
of interest. The computed feature is the ratio of vessel volume with intensity between
the occluded side and the contralateral side. The method was assessed on 59 subjects
from which their follow-up non-contrast CT scan was used to construct the probability
density map. The method was assessed on CTA images of patients with an occlusion
in the M1 segment (for the detailed vessel segments in MCA territory please refer
to Fig. 2.6) of the MCA territory, a maximal slice thickness of 1 mm and full coverage
of the intracranial region.

2.1.3 Contributions and Organization of Our Work
In this work, we propose a three-stage algorithm to compute a collateral score. The
collateral scoring method was assessed on 269 subjects.

Data preprocessing and vessel centerline segmentation are explained in Section 5.2,
followed by feature design and a multi-label classification model for collateral scoring.
The data set, collateral score reference standard and annotation strategy are described
in Section 2.3, the experiments and results are detailed in Section 2.4, followed by
discussion in Section 5.5, conclusions are drawn in Section 5.6.
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2.2 Method

The proposed method starts with a pre-processing step to define the anatomical regions
of interest: we use an atlas-based approach which was developed by [39] to obtain
a 3D CTA brain image Ib, an MCA probability density map M and a hemisphere
map H. This method takes the CTA image and an atlas image as input. This step is
followed by a deep learning based segmentation of the brain vasculature (centerlines).
In the final step, the output of the previous stages is transformed into a quantitative
score, and a collateral class score. The algorithm overview is shown in Fig. 2.2. Each
of the steps is detailed below.

Figure 2.2: Block diagram of proposed algorithms.

2.2.1 Pre-processing: Anatomical Region Definition
The purpose of the first step is to define the relevant anatomical regions, i.e. the brain,
the MCA region and both hemispheres (both left and right side of the brain). For the
brain region, we use a CT atlas that was constructed from averaging high-resolution
3D CTA images of 30 healthy subjects ([40]) with a corresponding binary brain mask.
This CT atlas was part of the symmetric CT-MR template of SPM toolbox ([40]). For
the MCA region, we use a MCA probability density map (values ranging from 0 to
1) that represent the likelihood of MCA vessels present based on 50 healthy MCA
vasculatures from the BraVa ([41] dataset. This was done by an affine and deformable
symmetric diffeomorphic image registration of each subject from the BraVa dataset
to the CT-MR template, following by a normalized sum of transformed individual
MCA arterial trees. The hemisphere atlas is a three-value map that represents the
left hemisphere, the right hemisphere and the background. All anatomical regions are
defined in the space of the average CT atlas.
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After registration of the CT atlas to the subject CTA image, the binary brain mask,
the MCA probability density map and the hemisphere map are transformed to the
subject CTA image space. The generated binary brain mask may fail to include vessel
structures near the skull base. Therefore, to fine-tune the CT image space binary mask,
an iterative morphological dilation with a 3D spherical structuring (radius equals 1
voxel) was applied to this binary mask. In each iteration, we remove dilated voxels if
its corresponding 3D CTA voxel value exceed 850 Hounsfield unit (HU). The number
of iterations is defined by the maximal gap, 5 mm, divided by the voxel dimension.
A brain tissue image is constructed by multiplying the binary mask with the CTA
image. After this masking step, the CTA brain image Ib is normalized with min-max
normalization.

2.2.2 Deep Learning for Vessel Extraction
In the second step, the vasculature is extracted from the brain-masked and normalized
CTA image. We opt for a deep learning approach, which trains a detector for
vessel-like structures based on labeled training images; such approaches have been
demonstrating excellent performance in the last years for many medical imaging tasks.
More specifically, we intend to extract vessel structure with an encoder/-decoder
architecture (the U-Net model proposed by [42]); this architecture is simple and still
very effective ([43]). Note that for the final goal of obtaining collateral scores, we do
not require a very precise segmentation of the vessels, rather we want to highlight the
vessel centerlines such that the vasculature can be quantified in subsequent steps. For
this 3D vessel extraction task, we use a standard 3D U-Net model as described in
[44] to which we make modifications in the training process to tailor it to our vessel
centerline segmentation task. Next, we will detail the network architecture, and the
data preparation for the training.

Network Architecture

Our network architecture is shown in Fig. 2.3. The network utilizes the classic encoder
and decoder architecture with a depth of 5 layers. The input data of the proposed
model is a cube of 64x64x64 voxels with 28 convolutional filters in the first stage.
The number of filters was determined according to a set of experiments we describe
in Section 2.4.2. We apply instance normalization to each convolution layer. In the
encoder path, activations are calculated using residual blocks. A residual block is a
type-1 block in Fig. 2.3, including two cascaded 3x3x3 3D convolutional layers and the
identity short connection (dashed lines in Fig. 2.3). This combination is similar to the
context module described in [44], however, in our cases, we didn’t use dropout layer
in between. Two cascaded 3x3x3 3D convolutional layers with a stride of 2 (type-2
block in Fig. 2.3) are added in front of residual blocks in order to obtain more abstract
feature maps as the encoder goes deeper. Leaky rectified linear units (ReLu) ([45]) are
used as the activation function. In the concatenated decoder path, deconvolutional
layers are constructed with an extra deep supervision ([46]) path. This can avoid
information loss and vanishing gradients in each convolutional layer. The proposed
model uses a sigmoid activation layer in the final step to output a 3D voxel-wise vessel
probability map.
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Figure 2.3: Block diagram of CNN model.

Data Preparation

For each brain, we construct ground truth vessel trees. The vessel tree is a 3D binary
mask resulting from the vessel centerline annotation process described in Section 2.3.3.
Then we split the whole brain and vessel tree into 3D cubes of 128x128x128 voxels
for both training data and validation data. During the training process, we extract
64-voxel 3D cubes out of 128x128x128 voxels. In the validation process during training,
we use 128x128x128 voxels as input data size for convenience. Data augmentation is
applied to obtain different training images in each iteration. In the data preparation
stage, we did not resample the image into common space as the training data is
representative for the whole dataset and exhibits little variation in slice spacing and
pixel size.

Deep Learning Post Processing

The proposed CNN model outputs a vessel probability map with values between 0 and
1. We threshold the probability map to obtain a binary vessel map B0 (Fig. 2.4b).
The threshold value is found by optimizing a Dice cost function on the deep learning
validation dataset. There are some small isolated parts (mostly false positive parts) in
the predicted vessel map B0 and connectivity based noise removal ([47]) is applied to
remove these small isolated parts. This results in a binary vessel tree map denoted by
B (Fig. 2.4c).

2.2.3 Quantification
The purpose of the quantification step is to compute a collateral score from the results
of the previous processing steps. Human collateral scoring is based on comparing the
amount of vessels visible in the affected and non-affected side, and we follow a similar
strategy: we compare the affected and non-affected hemisphere of subjects using a
combination of the binary vessel structure from deep learning model output B, the
corresponding MCA probability density map M and hemisphere map H as shown
in Fig.2.2. We assume that it is known a priori (from clinical symptoms) which
hemisphere (left or right) is affected. Based on this information and the hemisphere
map, we generate an affected side binary map HA and a non-affected side binary
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Figure 2.4: The example image of deep learning post processing; a: shows
the cube (100-pixel size) location in coronal view; b: shows an
example binary vessel tree with some isolated parts B0 in 100-
pixel size cube; c: shows an example image of binary vessel tree
B.

map HN . With this information, we compute four different ratios, each representing a
different aspect of the vasculature, as detailed below.

Volume

An obvious quantification is difference in the number of vessels between the affected
and the non-affected hemisphere. Assuming there are more vessels visible in the
non-affected hemisphere, the ratio of vessel volumes (affected divided by non-affected)
should give a number between 0 (no vessels visible in the affected side) to 1 (same
amount of vessels visible in both sides). We propose two variants of this comparison:
one where only the volume (number of voxels) is taken into account, and one where
each voxel is weighted with its intensity rv and rvi respectively:

rv =
∑

p∈B M(p) · HA(p)∑
p∈B M(p) · HN (p) , 2.1

rvi =
∑

p∈B I(p) · M(p) · HA(p)∑
p∈B I(p) · M(p) · HN (p) , 2.2
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where B is the set of voxels that are 1 in isolated part removed binary vessel tree B
, p is a voxel and I is the image intensity.

Length

In addition to volume, we also consider vessel length. For the vessel length computation,
a medial axis skeletonization approach that was developed by [48] is applied first. This
step yields a pixel-wise skeleton structure S0, a 26-connected structure (Fig. 2.5 left)
which is a basic representation of the vessel network. Next, the vessel segments are
determined from the vessel skeleton using a tree topology approach employed in the
work of [47].

Subsequently those vessel segments were fitted by 3D spline curves and further
smoothed ([49], [50]) and interpolated (Fig. 2.5 right), yielding a set of world coordinates
S. For all points p from S we obtain the corresponding MCA probability value
M(p) from the 3D MCA probability density map. In same way, we obtain intensity
values HA(p), HN (p), and I(p). The ratios rl and rli are accumulated values over all
points (weighted with the mean distance w between the point and its neighbours) in
the affected hemisphere and the ones in the non-affected hemisphere:

rl =
∑

p∈S M(p) · HA(p) · w(p)∑
p∈S M(p) · HN (p) · w(p) , 2.3

rli =
∑

p∈S I(p) · M(p) · HA(p) · w(p)∑
p∈S I(p) · M(p) · HN (p) · w(p) . 2.4

Figure 2.5: An example of vessel length computation. Left: the vessel skele-
ton; Right: the smoothed and interpolated vessel segments, the
vessel length computation are based on those segments. Different
segments are shown in different colors.
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Multi-label Classification

In the last step, multi-class classification is used to predict collateral score (0,1,2,3)
from an input feature vector r = [rv, rvi, rl, rli]. We start from the baseline model, in
which we take the median of feature vector r as input and define the threshold value by
utilizing the clinical definition of collateral score. We then define our second model by
using a support vector classifier (SVC) with linear kernel to find the optimal threshold
value for the median of feature vector r. For the third method, we use the complete
feature vector r = [rv, rvi, rl, rli] as input to a random forest classifier. Finally, we use
ordinal regression with the complete feature vector for ordered categorical prediction.

2.3 Data and Annotation

2.3.1 Data Overview
The images used for training and assessing the methods were obtained from the MR
CLEAN Registry ([51]) and MR CLEAN trial ([10]). The MR CLEAN Registry is an
on-going registry that contains patients who underwent endovascular treatment at a
stroke intervention center in the Netherlands since March, 2014. The CTA images are
acquired in clinical routine at several different sites, and thus there is large variation
in image quality, as well as in imaging equipment and acquisition protocols (contrast
phase, brain coverage).

Hence, in order to get a representative set of images, the following selection criteria
have been used to select images in this study:

• Spatial resolution: The average diameter of the M1 segment of the MCA
region is 3.1 ± 0.4 mm and of the M2 segment 2.4 ± 0.4 mm according to [52].
The spatial resolution should be sufficient to visualize the major arterial tree.
Therefore, we only select images of which the slice thickness is smaller than
1.5 mm; additionally we require the slice spacing to be smaller than or equal to
the slice thickness.

• Contrast phase: Five different contrast phases have been previously defined
by [6]: early arterial, peak arterial, equilibrium, peak venous, and late venous,
based on the image intensities in the contralateral ICA and the transverse sinus.
In the early arterial phase, collateral vessels are likely not enhanced yet. In
the late venous phase, the venous structures are more pronounced than arterial
structures. Therefore, in this study we only select images with peak arterial,
equilibrium or the early venous phase.

• Image quality: Image quality in MR CLEAN Registry is rated by the core lab
into the following categories: good image quality, moderate image quality and
bad image quality. A good quality image implies that the image is sufficiently
informative for radiologist to rate. We similarly included good quality images in
our analyses.

• Brain coverage: Brain coverage, the image should cover at least half of the
vertical distance between skull base and vertex.
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At the start of the current study, baseline CTA data of 1594 subjects had been
collected in the MR CLEAN Registry. These data was acquired from 16 March 2014
till 15 June 2016. Of these 1594 subjects, the images of 1058 subjects had good
image quality (based on MR CLEAN Registry core lab readings). 736 subjects fulfill
both image quality and contrast phase criteria. At the end, 585 subjects fulfill all
selection criteria. From this set of 585 subjects, 49 subjects were manually selected for
annotation and training of the CNN. From the remaining 536 subjects, we randomly
selected around half of these subjects (270 images) for our study. This number was
assumed to be sufficient for our evaluation, and also reduced the amount of work
for obtaining a consensus score compared to using the full set. Those 270 subjects
were originally from 14 intervention centers with different vendors (mainly from
Philips, Siemens, Toshiba and GE). For all cases, we obtained the occlusion side and
occlusion position and initial collateral score from the registry information. From
those 270 subjects, one subject was additionally excluded which was considered to have
insufficient image quality by the expert readers. We did not have additional selection
criteria on occlusion location. However, only 6 subjects with A1 or A2 occlusions were
found among the 1574 MR CLEAN registry subjects, and our final set of images did
not contain any A1 or A2 occlusions.

In addition, for training we added five collateral score 0 cases from the MR CLEAN
Trial. Collateral score 0 is rare, and due to the random selection, only two images
with collateral score 0 were in our initial selection. The additional five subjects were
only used in the classifier training process. The accuracy of the algorithm was thus
evaluated on the randomly selected 269 cases.

2.3.2 Collateral Score Reference Standard
To get a consistent and reliable collateral score reference standard for this study, collat-
eral scoring was performed by three radiologists from different medical centers with 10
to 30 years of experience. Two radiologists rated the collateral score independently and
the third radiologist independently rated the cases in which there was disagreement
by the first two radiologists. The radiologists were asked to rate the collateral status
according to the criteria of [20].

In this 269 subjects, the two independent raters had an interobserver agreement
of 0.64, and their scores compared to the consensus score were 0.81 and 0.82. The
details of the 269 test subjects are listed in the Table 2.1. Fig. 2.6 shows the location
of occlusion in the vessel segments that are listed in Table 2.1.

2.3.3 Data Annotation
Training and assessment of the deep learning based vessel extraction requires (manually)
annotated images. In total 9 whole brains and 40 cubes of 128x128x128 voxels were
annotated. The 9 subjects were selected by a radiologist as being cases representative for
daily clinical practice. The 40 subjects for cube annotation were selected to cover large
variation of image quality and acquisition parameters, as well as collateral scores. The
40 cubes were randomly selected from the intracranial region of 40 subjects. Manual
annotation was performed using an in-house developed tool build with MevisLab.
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Figure 2.6: An example of vessel segments in right hemisphere. The vessel
segments include the ICA segment, M1, M2 and the more distal
part of the MCA territory, for simplicity, we have combined M2
and the more distal part into M2.

The annotation task was performed by 1 pre-med student, 3 experienced physicians
and the first author of this paper. The purpose of the annotation task was to label
centerlines of all intracranial vessels. Annotation points needed to be placed in the
center of candidate vessel structures, after which semi-automated processing (shortest
path connectivity, followed by a graph cut segmentation, yielding contours orthogonal
to the centerline ([53]), after which the real centerline defined as the centers of the
segmentation result) was applied. The labelled region also include vessels running
through the skull base and isolated vessel structures. Fig. 2.7 shows the result of a
whole brain annotation.

2.4 Experiments and Results

2.4.1 Implementation
The method consists of three parts: the pre-processing (atlas-based registration), deep
learning based vessel centerline extraction, and classification. The deep learning model
is written using the Keras and Tensorflow frameworks. Model training and validation
are implemented on a local PC equipped with one NVIDIA Titan Xp GPU and 64 Gb
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Property Category Number of subjects

Slice thickness
[0.5-0.75mm) 66
[0.75-1mm) 94
[1-1.5mm] 109

Acquisition phase
peak arterial phase 75
equilibrium phase 115
peak venous phase 79

Collateral score

score 0 2
score 1 83
score 2 124
score 3 60

Occlusion location

ICA 63
M1 155
M2 and above 47
No occlusion found 4

Table 2.1: Data distribution of 269 test subjects.

Figure 2.7: The image in the left is the result of whole brain annotation;
The image in the right is the ground truth image. Different
vessel segments are shown in different colors.

of RAM. The pre-processing, quantification and classification of proposed method
were implemented in MATLAB 2018a.

Registration of the CT atlas to the CTA image was performed with ANTs ([54,
55]), following a previously described CT atlas based registration [39] that consists of
a two-step approach: an initial rigid registration followed by a diffeomorphic non-rigid
registration.

In the deep learning model training process, the network was trained with a batch
size of 8 and 50 steps per epoch. In each epoch, we iterate twice over all 200 training
images of 128x128x128 voxels: once with random shift and flipping along each axis
and once with elastic deformation. We also introduced additive Gaussian noise at the
input layer for regularization. The standard Dice score served as the loss function. We
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chose the root mean square propagation (RMSProp) ([56]) optimizer with an initial
learning rate of 0.1, and halved it every 10 epochs. We stopped training after 300
epochs, as the learning rate was approaching zero.

In the multi-label classification part, the baseline model has fixed threshold values.
The three threshold values(θ1, θ2, θ3) were determined by the clinical definition of
collateral score ([20]). We introduced a small margin to the collateral 0 case, since, in
practice, there were always some vessels in the occluded side. Therefore, we define the
collateral 0 case as less than 10%. The other three threshold values follow the clinical
definition, i.e. θ1 = 10%; θ2 = 50%; θ3 = 100%. For the random forest classifier, we
used five fold cross validation to optimize the maximal depth of the trees, the number
of trees in forest and the number of features used.

2.4.2 Vessel Extraction Model Training and Hyperparameter
Optimization

In the first experiment, we trained the convolutional neural network for vessel extraction.
In this experiment, we first investigated the performance of 3D U-Net model with
different hyperparameters and configurations. Compared to a standard 3D U-Net ([43])
(our baseline model), we first assessed the model performance enhanced by deep
supervision and context modules, and subsequently also assessed the added value of
varying the number of filters at convolutional layers.

The annotation dataset was randomly divided into a training and validation
dataset. The training dataset consisted of 7 whole annotation brains and 20 cubes.
The validation dataset consisted of the other 2 brains and 20 cubes. In order to
guarantee the continuity and completeness of the centerline structure in the training
process, we dilated every single-pixel centerline from manual annotation with a 3x3x3
square structuring element. The resulting ground truth image are shown in Figure. 2.7.

The Dice score on the validation dataset was used to measure model performance.
In the first experiment, we assessed the added value of the various configurations. For
this experiment, 28 input filters were used, as this was the maximal number that fitted
into our GPU memory. The performance of the baseline model is shown in the first
row of Table 2.2. Improvement in Dice score is observed when adding deep supervision
and the context module to the baseline model. A combination of all components (last
row of Table 2.2) shows the highest validation score. We also performed a paired
T-test for two average values µ1 and µi (i = 2, 3, 4), where µ1 is the average of Dice
score on all validation subjects with 3D U-net configuration and µi the average dice
score corresponding to the network configuration in i-th entry of Table 2.2. Whereas
the improvement of the final configuration is not statistical significant at the common
0.05 level, the trend in the Table 2.2 is clear and we attribute the lack of statistical
significance to the limited validation set size. We therefore choose the 3D U-net with
deep supervision and context module for the subsequent experiments.

Whereas the number of input filters increases model capacity, it also greatly affects
the number of parameters of the model, and thus may impact the training process. In
the next experiment, we therefore vary the number of input filters from 4 to 28 for the
configuration in the last row of Table 2.2. The learning curves are shown in Fig. 2.8.
As the number increases, both training and validation scores increase. This trend ends
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Network Configuration Dice
mean

Dice
std p-value

3D U-net 0.53 0.19 -
3D U-net + deep supervision 0.54 0.19 0.69
3D U-net + context module 0.55 0.17 0.17
3D U-net +deep supervision +
context module 0.56 0.16 0.07

Table 2.2: Deep learning test result for different configurations.

when the filter number goes beyond 24, where the improvement to the test score is
marginal. Going from 24 filters to 28 filters, the test score only improves with less
than 1%, compared to an improved of 4% when going from 4 filters to 8 filters.

Figure 2.8: Learning curve with varies filter number.

The average Dice is 0.56 with a minimum of 0.42 and a maximum of 0.67. There
are two outliers (0.27 and 0.28). Fig. 2.9, shows two example vessel trees extracted by
the proposed deep learning model.

2.4.3 Collateral Score Quantification
Next, we evaluated the proposed collateral scoring method. First, we assessed the
accuracy of the three proposed models. Then, we assessed the accuracy of proposed
methods applied to a dichotomized decision based on collateral score.

In the accuracy test for collateral scoring we evaluated the baseline model, a linear
support vector classifier (SVC) with single feature, ordinal regression with four features,
and a random forest model as describe in Section 2.2.3. We used the consensus score
as ground truth label.
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Figure 2.9: Two extracted vessel trees in sagittal view.

In the baseline model, we applied threshold values θ1, θ2, θ3 to the median of
r = [rv, rvi, rl, rli] and derived the collateral scores 0, 1, 2, and 3. Similarly, we use the
median of r = [rv, rvi, rl, rli] with linear SVC model to find another set of threshold
values that maximize the collateral score test accuracy on 269 subjects. The average
threshold values for the SVC model were: θ1 = 7%; θ2 = 55%; θ3 = 99%. We use
ordinal regression with r = [rv, rvi, rl, rli]. The averaged odds ratios of four features
are [1.17, 0.9, 0.92, 1.15]. We further evaluated the added value of random forest in
terms of accuracy. We explored the feature vector r starting from a single feature
towards combined features and tested all 16 possible combinations. We performed
a nested cross-validation with 20 splits at the outer level and 5-fold cross-validation
for parameter tuning. More specifically, we first randomly splitted the 274 subjects
into 20 subsets with a stratified sampler. Then we trained a model with data from 19
subsets and tested on 1 left-over subset. During training, we use 5-fold cross validation
for hyper-parameter optimization of feature vector r. In the end, we have 20 models
with similar performance but with different parameter settings. In this way, we could
fully utilize 269 subjects for testing and reduce the possible bias caused by a smaller
test dataset.

Feature vector [rv, rli] shows the highest prediction accuracy on test subjects. The
results of baseline model, linear SVC, ordinal regression and the random forest with
optimal feature vector are shown in Table 2.3. The proposed baseline model (median
with fixed threshold value) and ordinal regression model have the same performance (ac-
curacy=0.75), marginally different from SVC (accuracy = 0.76). In terms of accuracy,
the random forest classifier outperforms the baseline model by 5%.

In the study of [20], a dichotomized collateral score that was proposed by [57] was
used to assess the correlation with infarct volume before recanalization. Furthermore,
in the MR CLEAN trial, substantial treatment effects were reached in patients with
collateral scores of 2 or 3, whereas in patients with scores of 0 and 1, outcomes were
poor and treatment effects small. Therefore, we focus on the accuracy of dichotomized
prediction, wherein scores 2 and 3 are merged into one class, and score 0 and score 1 are
merged into another class. We follow the same experimental setup as in the previous
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Methods Accuracy
Di-

chotomized
score

median
+fix (baseline) 0.75 0.87

median + SVC 0.76 0.87
ordinal regression 0.75 NA
logistic regression NA 0.89

random forest 0.80 0.90

Table 2.3: The accuracy, dichotomized accuracy of three proposed methods.

accuracy test. We use logistic regression with r = [rv, rvi, rl, rli] for this dichotomized
binary classification problem. The performance of all four models is similar. The
random forest classifier with features rv and rli performs slightly better. The overall
dichotomized accuracy is listed in the dichotomized score column of Table 2.3. For
comparison, clinician 1 and clinician 2 have an accuracy of 0.91 and 0.90 respectively in
this case. We further assessed the performance of this binary class classifier by plotting
receiver operating characteristic (ROC) curve of our proposed methods. Fig. 2.10
shows the ROC of the baseline model, and the performance of the clinicians, linear
SVC and random forest classifier.

Figure 2.10: The ROC curve of baseline model, linear SVC model and
random forest model.

Next, we investigated the misclassified subjects. Fig. 2.11 shows the confusion
matrix test results on 269 subjects, for the two radiologists and the random forest
classifier versus the consensus score. In total, the random forest classifier predicts an
incorrect collateral score for 53 subjects; 26 out of these 53 subjects have predictions
that are consistent with one of the two clinicians. The baseline model predicts an
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incorrect collateral score for 66 subjects; 30 out of these 66 subjects have agreement
with one clinician. Finally, in Table 2.4 we present a subgroup analysis.

The computation time for one brain with 0.5 mm slice thickness is about 15 min. Of
this, the atlas to CTA space registration, MCA map, hemisphere map transformation
with binary skull dilation takes 12 min, of which most time is spent on the Ants
registration. It is likely that this can be optimized for clinical applicability. The vessel
extraction is around 0.5 min. The quantification part in total is around 2.5 min. Those
times were obtained using an implementation that was not optimized for computation
time.

Figure 2.11: Confusion matrix of clinician 1 / clinician 2 / random forest
versus consensus score.

2.5 Discussion

In this work, we proposed an automatic collateral scoring method that is inspired
by human visual collateral scoring. In the method, we compute the collateral score
by comparing the difference of vessel structures in the occluded hemisphere and
contralateral hemisphere. Vessel structure extraction is important for collateral status
quantification. Therefore, we first investigated the performance of CNN and found a
positive effect of context module and deep supervision on the performance of the 3D
U-net vessel centerline segmentation model. We further evaluated network performance
with an increased number of filters at convolutional layers. On average, we achieve a
Dice score of 0.56 on the validation dataset. Whereas this might seem low, a value of
0.56 is reasonable for thin linear structures in 3D, as they contain a large proportion
of boundary voxels. For such long thin structures, a single pixel shift in a direction
orthogonal to the structure have a major impact on the Dice score.

In the collateral scoring assessment, the baseline model with using the median
of feature vector r = [rv, rvi, rl, rli] and fixed threshold values achieved an accuracy
of 0.75 and a dichotomized accuracy of 0.87. This demonstrates that the features
are relevant. We observed that the misclassified subjects are mostly at the border of
decision boundary. The average error distance is 0.25. The error is computed from
the floating point score, and represents the distance to the closest value of interval
of the correct collateral score. For example, [0,1] corresponding to collateral score 0.
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On this scale, the error made in classification is the distance to the closest border
of the correct class. The random forest model on average achieves an accuracy of
0.8, which outperforms the baseline model on the border cases. With two principle
features r′ = [rv, rli], the random forest model achieves a dichotomized accuracy of
0.9, which is comparable to two clinicians (0.91 and 0.9).

In Table 2.4, a subgroup analysis is presented for the acquisition phase, collateral
score, slice thickness and occlusion position. The accuracy does not seem to depend
on acquisition phase or collateral score. It also shows that collateral scoring is less
accurate for more distal occlusions. This can be explained by the fact that a smaller
region is affected in more distal occlusion. This trend can also be observed in the
human scoring. In terms of slice thickness, both error rates increase along the slice
thickness. When the slice thickness increases, the vessel structure is less pronounced
in the 3D CTA image. The data used in this work was acquired 3 to 5 years ago. The
latest images mostly have slice thicknesses less than 1 mm.

The anatomical regions are defined by a conventional atlas-based registration
method due to the fact that the MCA probability density map is an essential element
of the feature computation in the quantification step. In order to align the MCA
probability mask, we need to first register the CT template to the CTA space. The
registration result then can similarly be used to bring the hemisphere and brain
segmentation to the patient space.

Collateral scoring involves only the arterial tree. In our approach, we do not
discriminate between arteries and veins in the centerline segmentation. Application of
the MCA territory mask, which was build from arterial trees of 50 subjects, removes
some of the venous structures from the segmentation. Any remaining venous structures
may affect the final quantification. As the amount of veins in the remaining region
generally is small in the region of interest especially in peak arterial, equilibrium and
early venous phase, and as their presence is expected to be symmetric, the remaining
veins may have a minor effect on the subsequent quantification, which is demonstrated
by our current results. Still, including an artery-vein separation may be a an interesting
direction for future research.

End-to-end training might have been an alternative approach to computing col-
lateral scores. We chose for a slightly more conventional approach for four reasons.
First, the data and corresponding ground truth required for training may be need
to be larger than the set we are using now. This would require additional expert
radiology screening. Second, such approach generally require a network that is trained
with full-size CTA images whereas our current vessel segmentation is trained with 3D
patches. Such a training would be challenging to commonly available GPUs. Thirdly,
the result of such end-to-end training is difficult to interpret, whereas our approach
also gives insight in the vessel segmentation and quantification on which the scoring is
based. Finaly, we aim for a more quantitative analysis of collaterals with a tool that
provides a continuous output instead of a semiquantitative scale with 4 items.

In comparison with [37], the dataset and the level of ground truth are different: [37]
used the data from MR CLEAN Trial ([10]) and we used dataset from MR CLEAN
Registry ([51]). Their collateral score was derived by direct use of feature rvi, and
there was no direct assessment over collateral score; instead they perform a correlation
test between their single feature and the manually obtained collateral score with a
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Spearman correlation test. The result on 59 subjects was a Spearmen ρ = 0.68, p <
0.001. For our method, a Spearmen correlation ρ = 0.80 was obtained on a test set of
269 subjects.

During this study, a collateral scoring product (e-Stroke Suite) became available
from Brainomix. This software was evaluated by [58] recently. Ninety-eight subjects
were used in their work. Their selection criteria were more restrictive than ours (1 mm
slice thickness), and no information is provided on the occlusion location or number
of excluded scans. Also, their consensus score may be biased towards the software
performance, as the consensus score was determined after knowing the software score,
which makes it hard to directly compare their result with ours. Reported accuracy
of software compared to their reference standard is 90%, and they also demonstrate,
similar to our work, that the errors of the software are within the interobserver
variation.

All patients from the MR CLEAN registry that were included in the study had an
acute large vessel occlusion, which was assessed on CTA. In all patients a large vessel
occlusion was detected in one hemisphere only. Although we cannot rule out that small
peripheral emboli were present in the contralateral hemisphere (which were not visible
on CTA) in patients with a cardioembolic etiology, in general, the symptoms caused
by a large vessel occlusion are more prominent than the symptoms caused by potential
small peripheral emboli. Based on that we assume that the symptoms indicate the
hemisphere in which the large vessel occlusion is present. However, outside the MR
CLEAN Registry, indeed cardioembolic stroke accounts for 14-30% of ischemic stroke
population ([59]), and for those cases, the assumption of occluded side as prior might
not be valid. Our method is not intended for those cases.

2.6 Conclusions

We proposed a robust and automated collateral scoring method and evaluated it on a
large set of images acquired in clinical routine as demonstrated in the MR CLEAN
Registry. The proposed method achieves 80% accuracy on the 4 score prediction. In
a dichotomized test, the proposed method achieves 90% accuracy. The result are
comparable to two radiologists with 10 to 30 years of experience.
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Abstract

Purpose: Outcome of endovascular treatment in acute is-
chemic stroke patients is depending on the collateral circulation
maintaining blood flow to the ischemic territory. We evaluated
the inter-rater reliability and accuracy of raters and an automated
algorithm for assessing the collateral score (CS, range: 0–3) in
acute ischemic stroke patients.

Methods: Baseline CTA scans with an intracranial anterior
occlusion from the MR CLEAN study (n=500) were used. For
each core lab CS, ten CTA scans with sufficient quality were
randomly selected. After a training session in collateral scoring,
all selected CTA scans were individually evaluated for a visual CS
by three groups: 7 radiologists, 13 junior and 9 senior radiology
residents. Two additional radiologists scored CS to be used as
reference, with a third providing a CS to produce a 2 out of 3
consensus CS in case of disagreement. An automated algorithm
was also used to compute CS. Inter-rater agreement was reported
with intraclass correlation coefficient (ICC). Accuracy of visual
and automated CS were calculated.

Results: 39 CTA scans were assessed (1 corrupt CTA-scan
excluded). All groups showed a moderate ICC (0.689-0.780) in
comparison to the reference standard. Overall human accuracy
was 65± 7% and increased to 88± 5% for dichotomized CS
(0–1, 2–3). Automated CS accuracy was 62%, and 90% for
dichotomized CS. No significant difference in accuracy was found
between groups with different levels of expertise.

Conclusion: After training, inter-rater reliability in collat-
eral scoring was not influenced by experience. Automated CS
performs similar to residents and radiologists in determining a
collateral score.
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3.1 Introduction

Acute ischemic stroke is mainly caused by the occlusion of one or more brain arteries,
which leads to an inadequate supply of oxygen to a region of the brain [60]. Globally,
ischemic stroke is the second leading cause of death, and a major contributor to
disability-adjusted life years in the population [61]. The most effective treatment in
ischemic stroke is timely reperfusion of the occluded arteries [62]. Patients with an
intracranial large vessel occlusion could be eligible for endovascular thrombectomy
(EVT). The thrombus is thereby removed from the vessel with a stent retriever and/or
aspiration device, restoring the original blood flow and oxygen supply [63]. However,
EVT is not an intervention without risks, and the effect of treatment will vary between
individuals [15]. The effect of EVT is dependent on different clinical and imaging
parameters. These parameters can be assessed pre-operatively to determine the chance
of a treatment benefit and for patient selection, especially in the late time window [10].
Therefore, it is important to investigate how consistent and reliable these parameters
can be obtained pre-operatively.

One of the parameters relevant to determine treatment effect is the collateral
score (CS) [23]. The CS quantifies the contrast filling of the distal MCA branches
through the arterial collateral circulation in the affected hemisphere. The collaterals
are secondary pathways which can function as a back-up when the primary arteries
fail to deliver an adequate blood supply [22]. Brain tissue at risk due to an occlusion
is more likely to survive a period with insufficient blood supply through primary
pathways if oxygen supply is ensured through collateral vessels [22].

Tan et al. developed a 4-point categorical grading system for assessment of
collateral status in the occluded middle cerebral artery (MCA) territory on a computed
tomography angiography (CTA) scan [18]. A score of 0 is given for absent collaterals,
1 for > 0% and ≤ 50% collateral supply filling, 2 for > 50%, and 3 for 100% filling
of the occluded MCA territory [18]. The collateral score for a CTA scan is generally
obtained by visual scoring, which is operator dependent with potential interobserver
variation. Machine learning-based approaches to produce an automated quantitative
collateral score (qCS) showed similar performance to that of experienced radiologists
[21].

In this study, we aim to assess the interobserver variability for the CS and whether
variability is influenced by years of experience [20]. Secondly, we compare the visual
CS given by physicians with the previously mentioned qCS and a reference CS.

3.2 Method

3.2.1 Imaging Data
Baseline CTA scans were acquired from the Multicenter Randomized Clinical Trial of
Endovascular Treatment for Acute Ischemic Stroke in The Netherlands (MR CLEAN,
MR CLEAN Netherlands Trial Registry number: NTR1804. Current Controlled Trials
number, ISRCTN10888758), a prospective, consecutive study which was performed
in 16 stroke centers in the Netherlands [10]. The MR CLEAN study protocol was
approved by the central medical ethics committee of the Erasmus MC and the research
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board of each participating center. All patients or their legal representatives provided
written informed consent before randomization.

The MR CLEAN database contains data from 500 patients with acute ischemic
stroke caused by an occlusion in the anterior circulation. Pre-interventional CTA scans
were rated for CS and occlusion location by a core lab of radiologists without access to
other imaging data or any clinical information. CTA scans with good/moderate image
quality; adequate head coverage; axial series; slice thickness <1.0 millimetres; and
slice increment equal to or smaller than slice thickness were selected. From those CTA
scans, ten scans were randomly selected for each CS. Axial and coronal maximum
intensity projections (MIPs) with slice thickness of 8 millimetres were reconstructed.

3.2.2 Visual Collateral Scoring
If applicable, year of residency was recorded. Seven radiologists and 22 radiology
residents in the Netherlands attended a 1-h training session in collateral scoring. The
rationale and method of scoring were explained, and CS examples were shown and
discussed.

After the training, attendees were asked to score all cases based on the axial CTA
scan and 8 mm MIP reconstructions combined. The occluded vessel (ICA-T/M1/M2)
and affected hemisphere (left/right) were given for each case.

3.2.3 Automated Collateral Scoring
qCS were produced with the model reported by Su et al. [21]. CTAs acquired in
the MR CLEAN study were not used for the development of this model. Processing
of the CTA scan started with an atlas-based registration and segmentation of the
vessel centrelines using a neural network. After this, the relative amount of vessels
in the MCA territory was quantified by comparing the affected hemisphere with the
unaffected hemisphere in terms of vessel volume and vessel length, both weighted and
unweighted for pixel intensity. The four ratios were used to compute a qCS. The qCS
was converted to a collateral score using a modified definition of Tan et al.: collateral
score 0 was defined as equal or less than 10% filling instead of 0% filling of the affected
MCA territory [18].

3.2.4 Reference standard
The CTAs which were evaluated by the imaging core lab were re-evaluated for CS by
two independent and experienced interventional neuroradiologists (A.v.E, P.J.v.D),
who were not part of the group of raters. In case of disagreement, the core lab observer
rating was used as third CS to provide a two-observer consensus.

3.2.5 Statistical Analysis
The results were analysed after grouping the respondents as follows: first and second-
year radiology residents (junior residents, n=13), radiology residents in years 3–5
(senior residents, n=9), all radiology residents (n=22), radiologists (n=7), and all
physicians combined (n=29). The mean and standard deviation of the visual CS were
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Figure 3.1: Visual collateral score grading in patients with an M1 occlu-
sion. 0—absent collaterals, 0% filling of the occluded territory.
1—poor collaterals, >0% and ≤50% filling of the occluded ter-
ritory. 2—moderate collaterals, >50% and <100% filling of
the occluded territory. 3—good collaterals, 100% filling of the
occluded territory .
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calculated. Analysis was performed on the 4-point collateral score and on dichotomized
assessments (CS 0–1: poor collaterals; CS 2–3: good collaterals). Dichotomisation was
performed since treatment effects in MR CLEAN patients with good collaterals were
substantial, whereas treatment effects were small in patients with poor collaterals [23].

Observer variability was reported using an intraclass correlation coefficient (ICC)
using a two-way random, single measures, absolute agreement model [64]. ICC was
calculated for the 4-point collateral score and a dichotomized score for all observers
and for subgroups based on experience in radiological readings: junior residents, senior
residents and radiologists. An ICC below 0.50 indicates poor, > 0.50 and ≤ 0.75
moderate, > 0.75 and ≤ 0.90 good, and > 0.90 excellent correlation. Accuracy for
full CS and dichotomized CS was calculated for each group compared to the reference
standard and qCS. Significant differences were calculated using One-way ANOVA.
Statistical analyses were performed using SPSS Statistics Version 25.

3.3 Results

3.3.1 Selection of Dataset and Reference
From the 500 patients, 148 patients met inclusion criteria. For CS 0–3 (Fig. 4.1), based
on image core lab evaluation, 10 CTA scans were randomly selected per collateral
score. One scan could not be processed to create MIPs, which resulted in a test set
with 39 cases. Fig. 4.2 shows a schematic visualization of the patient selection. For
the 39 selected cases, a reference CS was obtained after rereading the scans: CS 0
(n=5), CS 1 (n=13), CS 2 (n = 10), and CS 3 (n = 11) (Table 3.1). In 31% of the
cases (12/39), a third radiologist was needed to provide consensus.

3.3.2 Inter-rater Variability
The ICC is reported for the 4-point CS (Table 3.2) and for dichotomized CS (Table 3.3).
All groups showed a moderate to good ICC with an ICC of 0.751 (95% CI: 0.665–0.835)
for the combined results (Table 3.2). When dichotomizing CS, ICC for all observers
combined decreased to 0.682 (95% CI: 0.585–0.783) (Table 3.3). No differences in ICC
were demonstrated between the subgroups.

Table 3.1: Reference collateral score and occlusion location.

Reference collateral score Occlusion location TotalICA-T M1 M2
0 1 4 0 5
1 5 7 1 13
2 5 3 2 10
3 3 7 1 11
Total 14 21 4 39
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Figure 3.2: Selection of CTA scans. CTA, computed tomography angiogra-
phy; mm, millimetres .

Table 3.2: Correlation with reference collateral score for physician groups.

Group (n) 4-point collateral score, intraclass correlation coefficient (95% CI)
1st year residents (10) 0.780 (0.696–0.857) 0.775 (0.693–0.853) 0.751 (0.665–0.835)
2nd year residents (3)
3rd year residents (4) 0.766 (0.676–0.849)
4th year residents (4)
5th year residents (1)
Radiologists (7) 0.689 (0.577–0.795)

3.3.3 Accuracy
The mean accuracy for rating CS by the 29 raters was 65± 7%, (Table 3.4). No
significant differences in accuracy were found between the subgroups (Table 3.4).
Accuracy increased to 88± 5% when a dichotomized scale was used; however, the
differences between subgroups remained statistically insignificant (Table 3.5). When
using qCS (categorized, 0–3) as reference score, the mean overall accuracy was 67 ±
8%, which increased to 88 ± 5%, after dichotomization (CS 0–1; poor collaterals, CS
2–3; good collaterals). The accuracy for scoring CS was 62% for qCS, which increased
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Table 3.3: Correlation with dichotomized reference collateral score for physi-
cian groups.

Group (n) Dichotomized collateral score1, intraclass correlation coefficient (95% CI)
1st year residents (10) 0.722 (0.626–0.816) 0.698 (0.602–0.796) 0.682 (0.585–0.783)
2nd year residents (3)
3rd year residents (4) 0.675 (0.566–0.783)
4th year residents (4)
5th year residents (1)
Radiologists (7) 0.636 (0.516–0.755)

to 90% after dichotomization of CS.

3.3.4 Individual Case Analysis
The mean visual CS (range: 0–3) per case ranged from 0.03 to 2.90. Full agreement in
visual CS occurred in 2 cases (5%). Observers appointed 2 different CS in 20 cases
(51%) and 3 different CS in the remaining 17 cases (44%). The qCS (range: 0–100%)
ranged from 3.79 to 100%. Individual cases were sorted by ascending mean visual CS
and visualized in Fig. 4.3.

3.4 Discussion

In this study, we evaluated the observer variability for visual collateral scoring and
compared scores given by respondents after a 1-h training session and scores from
automated software with reference scores. No difference was found between the
different radiology resident groups and radiologists for performance in scoring CS.
Accuracy in comparison with the reference was similar for all groups. Automated CS
performs similar to residents and radiologists in determining a collateral score.

The inter-rater variability of scoring collateral circulation status has been reported
before, but often this is done with Cohen’s kappa [23, 65, 66]. However, using Cohen’s
kappa for a not-dichotomized score is harder to interpret because the differences

Table 3.4: Collateral score accuracy for physician groups.

Group (n) 4-point scale collateral score, accuracy
(standard deviation)1

1st year residents (10) 62±8% 64± 7% 65± 7%
2nd year residents (3)
3rd year residents (4) 66± 7%
4th year residents (4)
5th year residents (1)
Radiologists (7) 67±7%
qCS(1) 62% (n.a.)
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Table 3.5: Dichotomized collateral score accuracy for physician groups.

Group (n) Dichotomized collateral score1, accuracy
(standard deviation)2

1st year residents (10) 87± 5% 87± 5% 88± 5%
2nd year residents (3)
3rd year residents (4) 89± 4%
4th year residents (4)
5th year residents (1)
Radiologists (7) 88± 4%
qCS(1) 90% (n.a.)

Figure 3.3: Collateral scores separated by case and ranked on average col-
lateral score. Black vertical bars: visual collateral score 0. Dark
grey vertical bars: visual collateral score 1. Grey vertical bars:
visual collateral score 2. Light grey vertical bars: collateral score
3. Black tilted square: mean visual score. White box: reference
score. White bar: quantitative score.

between scores must be weighted based on the distance between categories, which
happens when using weighted Kappa or ICC. In a study by Weiss et al., weighted
Kappa was provided for inter-rater reliability in scoring collateral status, but they
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used only 2 readers [67]. An ICC of 0.87 for 4-point CS was given by Tan et al., but
this was also based on 2 readers [18]. Using more observers would be preferable when
assessing inter-rater reliability.

The automated CS shows comparable accuracy with visual raters for both the
4-point CS and the dichotomized score. There are other algorithms reported in
literature for automatic CS. The research from Boers et al. presents a quantitative
model which calculates the percentage of vascular presence of the occluded territory in
comparison to the unaffected hemisphere [68]. A different approach was used for vessel
recognition. It also showed a significant correlation (Spearman ρ: 0.75, P < .001) with
the categorical visual CS (0–3) as defined by Tan et al., but an ICC, accuracy, or error
matrix has not been reported [18].

Research from Grunwald et al. evaluates automated collateral score software from
Brainomix Ltd. in clinical practice [58]. This software uses basic image segmentation
and machine learning, both not further specified. The output is a 4-point scale
collateral score. They reported an agreement of 90% and a non-specified ICC of 0.93
(95% CI 0.90–0.95) for the automated collateral score software in comparison to the
reference score. However, the reference score was constructed with information on the
automated collateral scores.

Collateral status can be used to predict outcome [69]. It is important to use the
correct imaging to assess the collateral status for predicting outcome. Assessment
of collateral status on multiphase CTA instead of single phase CTA showed a better
performance in predicting outcome [70]. Optimal collateral assessment is after the peak
arterial phase [71]. A limitation in the accuracy calculations is the categorical reference
CS. It is difficult to reach consensus, even among experienced neuroradiologists. In 31%
of the cases (12/39), a third radiologist was needed to provide consensus. Incorporating
software to aid in determining collateral status can help to minimize the interobserver
variability while maintaining high accuracy. For the quantitative model, the calculated
CS can be given over the full range from 0 to 100% to add nuance to the score.

Radiological experience differs vastly between radiology residents and senior radi-
ologists; however, no differences were found in accuracy of CS assessment. Based on
those results, we expect other radiologists to perform similar in this setting. For the
same reason, we do not expect the results from residents and radiologists to improve.
Furthermore, the overall performance (ICC: 0.751, 95% CI: 0.665–0.835) is comparable
to previously reported interobserver agreement for scoring collateral circulation status
[18, 23, 66, 72].

We believe that achieving 65% accuracy and an ICC of 0.751 is possible for all
radiology residents and radiologists after basic collateral score training. The definition
of the score requires categorization of a quantitative value based on visual inspection.
A difference between 90 and 20% will be clearly visible, but a difference between
45 and 55% is hard to distinguish. The difference in both situations is 1 point and
questions the use of categorical scoring for collateral status. Using a quantitative scale
rather than a categorical one may result in better treatment decisions. Quantitative
automated CS software could be a solution, but validation is needed before integrating
the software in clinical practice. The next step for validating the automatic CS would
be to investigate the predictive performance: can they predict the functional outcome
of patients based on the baseline scans? The modified Rankin Scale (mRS) 3 months
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after acute ischemic stroke is commonly used to assess functional outcome [73]. The
number of investigated scans (n=39) limits the predictive power of this study, and
therefore the feasibility of analysing predictive performance. Future research using a
larger sample size is recommended to investigate the correlation between automated
CS and mRS in comparison to visual CS. Ideally, a study should be conducted in
which both the visual CS and the automated quantitative CS are used for the same
acute ischemic stroke patients to determine the performance of those collateral scores
in predicting outcome and treatment benefit. Furthermore, not only the collateral
score should be taken into account, also other proven predictors for outcome and/or
treatment benefit should be included, combining those in a large prediction model,
such as the MR PREDICTS decision tool [74]. Then, the performance of the two CS
types can be compared in the prediction model.

3.5 Conclusion

On the individual rater level, there is considerable variability in rating collateral
status. After a 1-h training, the accuracy of scored CS with a reference standard is
not influenced by rater experience. Automated CS shows a similar performance as
experienced radiologists and radiology residents. Automated CS can be an aid for
physicians, especially for cases with borderline collateral scores.
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Abstract

Background and Purpose: The assessment of collateral
status may depend on the timing of image acquisition. The pur-
pose of this study is to investigate whether there are optimal time
points in CT Perfusion (CTP) for collateral status assessment,
and compare collaterals scores at these time points with collateral
scores from multiphase CT angiography (mCTA).

Materials and Methods: Patients with an acute intracra-
nial occlusion who underwent baseline non-contrast CT, mCTA
and CT perfusion were selected. Collateral status was assessed
using an automatically computed Collateral Ratio (CR) score in
mCTA, and pre-defined time points in CTP acquisition. CRs
extracted from CTP were correlated with CRs from mCTA. In
addition, all CRs were related to baseline National Institutes of
Health Stroke Scale (NIHSS) and Alberta Stoke Program Early
CT Score (ASPECTS) with linear regression analysis to find the
optimal CR.

Results: In total 58 subjects (median age 74 years; interquar-
tile range 61-83 years; 33 male) were included. When comparing
the CRs from the CTP vs. mCTA acquisition, the strongest corre-
lations were found between CR from baseline mCTA and the CR
at the maximal intensity projection of time resolved CTP (r =
0.81) and the CR at the peak of arterial enhancement point (r =
0.78). Baseline mCTA-derived CR had the highest correlation
with ASPECTS (β = 0.36 (95%CI 0.11, 0.61)) and NIHSS (β =
−0.48 (95%CI -0.72,-0.16)).

Conclusion: Collateral status assessment strongly depends
on the timing of acquisition. Collateral scores obtained from CTP
imaging do not correlate better with baseline clinical variables
than collateral scores obtained from baseline mCTA imaging.
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4.1 Introduction

Ischemic stroke caused by a proximal occlusion in the intracranial cerebral arteries
normally results in poor clinical outcome [75]. Endovascular treatment (EVT), in which
the intracranial thrombus is removed, improves functional outcome [7]. The collateral
circulation in the presence of an intracranial occlusion is an important determinant
of clinical outcome and might also influence the beneficial effect of EVT [15, 23,
69, 72, 76]. However, accurate assessment of collateral status can be challenging
from two perspectives. First, the current existing semi-quantitative collateral grading
systems are based on visual scoring using coarse classification criteria [24, 77] which
are subject to inter-observer variation. Automatic analysis could potentially overcome
this limitation [21, 37, 58]. Secondly, the collateral grading is affected by the timing
of image acquisition in relation to the start of contrast media injection [78]. For an
accurate prediction of treatment outcome and clinical decision making it is relevant to
know which acquisition time is optimal for assessment of collateral score.

For collateral status assessment, single-phase Computed Tomography Angiography
(sCTA) is commonly used [77, 79, 80]. sCTA comes with the risk of incorrect collateral
grading due to inappropriate scan timing [76] . To avoid this potential bias caused by
incorrect timing, additional temporal CTA acquisitions can be added to the sCTA.
The two most well-known imaging techniques are multi-phase CTA (mCTA) and CT
perfusion (CTP). Multiphase CTA consists of two extra acquisitions with short delays
of 6-8s between the acquisitions [70]. CTP consists of a series of acquisitions with
1.5 to 2 seconds interval and a total length of approximately 1 minute. In previous
studies, a visual collateral scoring system based on mCTA was proven to be superior
to sCTA in clinical outcome prediction [70, 78].

In this study, we applied a previously developed automated collateral scoring
algorithm for CTA data also to CTP data and investigated how collateral status
assessment depends on the timing of image acquisition. Additionally, we extracted
collateral scores at specific time points from the CTP data, and investigated how
these CTP collateral scores relate to mCTA collateral scores. Finally, we assessed the
association of collateral scores from CTP and mCTA with baseline ASPECTS [19]
and NIHSS [81].

4.2 Materials and Methods

4.2.1 Patient Selection
We used data from acute ischemic stroke patients with a large vessel occlusion from
Erasmus MC, who were included in the Multicenter Randomized Clinical Trials of
Endovascular Treatment of Acute Ischemic Stroke (MR CLEAN LATE, MR CLEAN
NOIV or MR CLEAN MED studies from January, 2018 to March, 2020). Detailed
information on inclusion criteria, description of variables and the methods of the three
trials has been reported previously [82, 83, 84]. For this study, we selected patients
with the following inclusion criteria: an intracranial occlusion on one side only, baseline
imaging that contains both non-contrast enhanced CT (NCCT), mCTA and CTP;
slice thickness ≤ 1.5 mm for both mCTA and CTP; complete CTP acquisition (> 55
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seconds), and absence of large motion artifact(s) in both mCTA and CTP. Neurologic
deficit at baseline was assessed with the National Institutes of Health Stroke Scale
(NIHSS; range 0-42, with higher scores indicating more severe neurologic deficits).

4.2.2 Imaging Protocol
All included subjects underwent a standardized imaging protocol for acute ischemic
stroke. This protocol consists of NCCT, CTP and mCTA (Siemens SOMATOM
Definition Edge). The CTP image acquisition was performed with a fixed tube voltage
of 70 kVp and an injection of 40 mL of Iomeron 400 with a saline bolus chaser at
a flow rate of 6 mL/s. The CTP images were reconstructed with a slice thickness
of 1-1.5 mm. A CTP acquisition had a total duration of 55s to 60s and consisted
of 30(±1) volumes. After the CTP, the mCTA acquisition was performed with an
automatic tube voltage of 80-100 kVp, injection of 60 ml of Iomeron 400 with a 40 ml
saline bolus chaser at a flow rate of 4 ml/s. Timing of scanning was based on bolus
tracking. The mCTA consists of three image volumes acquired with delays between
the volumes of 8 seconds on average. The first acquisition of mCTA was defined as the
mCTA baseline. All CTA images were reconstructed with a slice thickness of 0.75 mm
and an increment of 0.4 mm.

4.2.3 Automatic Collateral Scoring and Arterial and Venous
Enhancement Curves

To obtain a consistent location for arterial and venous structures and enhancement
measurements over time, all CTP image volumes were rigidly aligned to the first
acquisition using registration software ANTs [54, 55]. The automatic collateral scoring
algorithm was developed by [21] with collateral ratio (CR) as output (expressed in
percentage %). The proposed CR ranges from 0 to 150. In this method, the middle
cerebral artery (MCA) region was defined with a two-step atlas based registration
using ANTs [54, 55] with initial rigid registration and a subsequent diffeomorphic
non-rigid registration. Vessels were identified using a U-net based vessel segmentation
algorithm. The enhanced vessel volume in the occluded and contralateral MCA region
was computed. In the last step, the CR was calculated as enhanced vessel volume in
the MCA region of the occluded side divided by the contrast enhanced vessel volume
in the healthy side.

Arterial and venous enhancement in the CTP and mCTA images was obtained by an-
notating a small region of interest at the top of the intracranial carotid artery (ICA) (ar-
terial) of the non-occluded side and the confluence sinus (venous). The arterial and
venous enhancement value were determined using the median image intensity of a
spherical region at the locations mentioned above.

4.2.4 NCCT Analysis
Baseline Alberta Stoke Program Early CT Scores (ASPECTS) [19] were assessed
on baseline CT images. ASPECTS was rated by radiologists with 5 to 20 years of
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experience. The raters were blinded to all patient information during ASPECTS
evaluation, except occlusion side on baseline CTA.

4.2.5 CTP Time Intensity Curve and Feature Extraction
To investigate the temporal relationship of enhanced vessel volume, CR, and arterial
and venous enhancement in CTP images, four types of time-intensity curves (TIC)
were generated: contrast enhanced vessel volume in the occluded and contralateral
side (Fig. 4.1a), CR (Fig. 4.1b), arterial and venous enhancement (Fig. 4.1c) and
arterial to venous (AV) enhancement ratio (Fig. 4.1d). In the AV enhancement ratio
curve generation, an average background density value of 40 HU was subtracted from
the arterial and venous density values before calculating the ratio.

From these curves, the following time points were defined to extract a CR: the
peak of vessel volume in the non-occluded side (CRvol_max); the peak of vessel
volume in the occluded side (CRvol_occluded_max); the peak of arterial enhancement
(CRarterial_max); the peak of venous enhancement (CRvenous_max); the point where
the arterial enhancement equals venous enhancement (CRequi) and the peak of AV
enhancement ratio (CRav_max). Also, the time between contrast arrival time and
these time points was calculated. In addition, in CTP images, a time resolved variable
CRmip was generated using the maximal intensity projection (MIP) over time.

4.2.6 mCTA Image Feature Extraction
For the three mCTA volumes, the CR was computed using the automatic collateral
scoring method whereas the arterial and venous enhancement values were obtained
with manual annotation. The AV enhancement ratio was obtained using the same
approach as described for the CTP images.

4.2.7 Alignment of mCTA Acquisitions to the CTP and Across
Subjects

To be able to relate the CR in mCTA to the CRs derived from CTP, and to investigate
the contrast acquisition phase of mCTA volumes, the mCTA images were temporally
aligned to time points in the CTP acquisition in the same patient. This temporal
alignment method was based on the AV enhancement ratios from the mCTA and
the CTP images, using the timing information on the delays between the three
mCTA volumes. We determined the optimal temporal alignment by minimizing the
overall absolute difference of AV enhancement ratio in the mCTA images and the
three corresponding time points in the CTP images. In addition, normalized AV
enhancement ratio curves for all subjects were aligned at the arterial peak and the
mCTA acquisitions were aligned accordingly. Subsequently, the acquisition phase of
the each mCTA image was determined based on the CTP-based acquisition phase
definition as described below. Fig. 4.2 shows the image features of paired mCTA and
CTP acquisitions
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Figure 4.1: An example feature plot. a. the contrast volume changing
over time for both occluded side and contralateral side; b. the
collateral ratio changing over time, three red dots are the cor-
responding collateral ratios of the mCTA; c. the arterial and
venous enhancement curve; d. the arterial to venous (AV) ratio
curve, the three crosses stand for the alignment points based on
AV ratios of the three mCTA acquisitions.

4.2.8 CTP-based Contrast Acquisition Phase Definition
A contrast acquisition phase was defined based on the patient specific normalized AV
enhancement ratio curve. The normalization was done by offsetting the equilibrium
point (where AV enhancement ratio = 1) to 0 and dividing the result by the maximum
value. Fig. 4.3 shows the effect of this normalization for all included subjects, and
also shows the positions of the temporarily aligned mCTA images. Subsequently, the
contrast acquisition phase was defined using this curve as follows: early arterial phase:
upslope in the ratio curve from 0.2 to 1.0; peak arterial phase: downslope from 1.0 to
0.5; equilibrium phase: downslope from 0.5 to 0; early venous phase: 0 to minimum
ratio; late venous phase: minimum ratio to 0.

4.2.9 Statistical Tests
All values are reported as median and interquartile range (IQR). The Spearman
correlation coefficient was used to analyze the relationship between the different CRs.
To test the clinical relevance of choosing the optimal CR we assessed the association
between the CRs and baseline ASPECTS and NIHSS with Spearman correlation
coefficients and linear regression analysis. All statistical tests were performed using
SPSS, IBM (version 26).
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Figure 4.2: The example image of CR changing over time on both mCTA
and CTP. On CTP part, ’f’ indicates the frame number of
CTP images, ’t’ indicates the relative acquisition time. In
this example, mCTA baseline corresponds approximately to f19
in CTP; mCTA delay 1 corresponding to f23; mCTA delay 2
corresponding to f25.

4.3 Results

4.3.1 Patients Characteristics
In total, 335 patients were enrolled in Erasmus MC since January 2018 to March 2020.
Baseline imaging was performed in the Erasmus MC on 106 patients. A CTP with
slice thickness less or equal to 1.5 mm was available for 81 patients. Twenty-three
patients were subsequently excluded because of vessel occlusions on both sides (n=1),
an incomplete CTP acquisition (n=1), no baseline mCTA images (n=7), large motion
artifacts in the CTP acquisitions (n=12), an NIHSS of 42 (n=1) and baseline mCTA
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Figure 4.3: The result of mCTA to CTP alignment and contrast phase
definition. Red dots represent the mapped mCTA baseline; green
dots represent the mapped mCTA delay 1; blue dots represent
the mapped mCTA delay 2. Each line represents a CTP image
series.

with DICOM header error (n=1). The remaining 58 patients were included in this
study. The median age was 74 years (IQR, 61-83 years), 33 were male, the median
ASPECT score was 9, (IQR, 8-10) and the median baseline NIHSS was 16 (IQR 10-20).
Fifteen patients had an occlusion in the intracranial ICA. The other patients had a
middle cerebral artery (MCA) occlusion:27 patients had a M1 segment occlusion, 15
patients had a M2 occlusion and the remaining patient had an M3 occlusion.

4.3.2 Timing of Acquisition and Collateral Status
The CR of the mCTA and CTP images at the predefined time points, and the
corresponding time delay since contrast arrival are shown in Table 4.1. Huge differences
exist between CR from CTP images obtained early after contrast arrival at the peak
of CTP AV enhancement ratio (median 26%, IQR 12-52) and late in the venous phase
at the CTP peak of venous enhancement (median 128%, IQR 88-171). The CR in the
second delay mCTA volume had a median of 160% (IQR 119-241), indicating arrival
of contrast via collateral vessels on the occluded side and diminished contrast in the
healthy side due to normal blood flow.

The Spearman correlation coefficients between all CRs are shown in Table 4.2.
The highest correlation between the CRs extracted from the CTP acquisition exists
between the CR at the peak of contrast volume in the non-occluded side and the CR
at the peak of arterial enhancement (r=0.96; Fig. 4.4a). No correlations exist between
the CRs in the mCTA acquisitions (Table 4.2 and Fig. 4.4b-c). When comparing
the CRs from the CTP vs. mCTA acquisition, the highest correlations were found
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Table 4.1: The characteristic of predefined Collateral Ratios (CR) and the
corresponding time points in the aligned A/V curve.

Timepoint(in sec)
Median [IQR]

CR(%)
Median [IQR]

Observations in the acquision phases (n)
EA1 PA2 EQ3 PV4 LV5

Vessel volume peak at
non-occluded side (vol_max) 7.6 [6.1, 7.6] 53 [39, 74] - 5 53 - -

Vessel volume peak at
occluded side (vol_occluded_max) 9.1 [7.6, 10.6] 83 [66, 102] - - 26 31 1

Arterial peak (arterial_max) 6.4 [4.5, 6.1] 44 [31, 67] - 27 31 - -
Equilibrium (equi) 9.2 [8.3, 10.2] 78 [57, 92] - - 58 - -
Peak venous (venous_max) 12.1 [10.6, 13.6] 121 [88, 171] - - - 56 2
rav peak (av_max) 3.0 [1.5, 3.0] 26 [12, 52] 7 51 - - -
mCTA baseline 8.1 [7.3, 9.0] 71 [46, 90] 2 8 48 - -
mCTA delay 1 15.7 [14.9, 16.7] 125 [86, 183] - - 2 23 33
mCTA delay 2 23.8 [22.9, 24.8] 160, [119, 241] - - - - 3 55

between CR from baseline mCTA and the time resolved CR (r=0.81) and the CR at
the peak of arterial enhancement point (r=0.78). The median time difference between
baseline mCTA and arterial peak was 2.7s, IQR [1.7, 3.2].

4.3.3 mCTA to CTP Time Point Alignment and Phase
Classification

Fifty-six mCTAs out of 58 subjects were automatically temporarily aligned to the
CTP acquisition based on the AV enhancement ratio curve. The two cases that failed
were aligned manually. Fig. 4.3 shows the aligned AV enhancement ratio curves with
the temporally aligned mCTAs. The median of arterial to venous enhancement ratio
difference from three acquisitions of mCTA to three time points of CTP was 0.2 (AV
ratio ranged from 0 to 20). The median of the CR difference between baseline mCTA
and temporally aligned CTP was 6.4% (IQR 2.4-12). The median of absolute CR
difference between 1st delay mCTA and temporally aligned CTP was 16.5% (IQR
0-30). The median of absolute CR difference between 2nd delay mCTA and temporally
aligned CTP was 0.2% (IQR 0-19). The acquisition phase of all predefined CRs are
reported in Table 4.1. The acquisition phase of the CRs differ significantly from each
other. Multiphase CTA baseline images were mainly acquired in the equilibrium phase
(n=48, 83%).

4.3.4 Association of CRs and Baseline Clinical Parameters
Table 4.3 and Table 4.4 list the correlations between the CRs at the proposed time
points and baseline ASPECTS and NIHSS. The strongest correlation with baseline
ASPECTS was found for CR determined from baseline mCTA (β = 0.36 (95%CI
0.11, 0.61)) and on time resolved CTP (β = 0.33 (95%CI 0.07, 0.58)), see (Fig. 4.5a-
b). The strongest association with baseline NIHSS was found for CR at baseline
mCTA (β = −0.48 (95%CI -0.72, -0.16)) and CR at volume peak of non-occluded side
(β = −0.40 (95%CI -0.65, -0.16)), see (Fig. 4.5c-d).
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Figure 4.4: The correlation scatter plot. a.shows the correlation be-
tween the CR at the peak of contrast volume in the non-
occluded side (CRvol_max) and the peak of arterial enhance-
ment (CRarterial_max); b.The correlation between CR of mCTA
baseline and delay 1. c. The correlation between CR of mCTA
delay1 and mCTA delay 2.

Figure 4.5: The linear regression plots. a. shows the linear association
between time-resolved CR (CRmip) and ASPECTS. b. shows the
linear association between CR of baseline mCTA and ASPECTS.
c.shows the linear association between CR at the volume peak
of the non-occluded side (CRvol_max) and baseline NIHSS. d.
shows the linear association between CR of baseline mCTA and
baseline NIHSS..

4.4 Discussion

In this study, we investigated the time dependency of collateral assessment in patients
with an intracranial arterial occlusion. We defined objective CTP time points for
CR extraction based on temporal curves of contrast enhanced vessel volume in the
occluded and contralateral side, arterial enhancement and venous enhancement. We
demonstrated that these CRs were significantly different from each other with an
increase in CR in subsequent image volumes acquired during CTP. We subsequently
compared the mCTA derived CRs with the CRs obtained at predefined time points in
the CTP and demonstrated that baseline mCTA correlates best with the predefined
CTP CR at maximum arterial enhancement. To evaluate the potential significance
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Table 4.3: The association of the predefined collateral ratios with ASPECT
score.

CR variable
(without threshold)

Spearman Correlation Linear Regression
r (p-value) β (95%CI)

CRvol_max 0.37 (<0.01) 0.32 (0.07, 0.58)
CRvol_occluded_max 0.31 (<0.01) 0.24 (-0.03,0.50)
CRmip 0.36 (<0.01) 0.35 (0.10, 0.60)
CRarterial_max 0.38 (<0.01) 0.33 (0.07, 0.58)
CRequi 0.34 (<0.01) 0.28 (0.02, 0.53)
CRvenousmax 0.01 (0.46) 0.06 (-0.21,0.33)
CRav_max 0.30 (0.01) 0.26 (0.05, 0.52)
CRmCT A_baseline 0.45 (<0.01) 0.36 (0.11, 0.61)
CRmCT A_delay_1 0.17 (0.1) 0.20 (-0.06,0.46)
CRmCT A_delay_s -0.11 (0.22) 0.10 (-0.17,0.36)

Table 4.4: The association of the predefined collateral ratios variable with
NIHSS baseline.

CR variable
(without threshold)

Spearman Correlation Linear Regression
r (p-value) β (95%CI))

CRvol_max -0.40 (<0.01) -0.40 (-0.65, -0.16)
CRvol_occluded_max -0.24 (0.17) -0.12 (-0.39, 0.14)
CRmip -0.42 (<0.01) -0.37 (-0.62, -0.12)
CRarterial_max -0.44 (<0.01) -0.39 (-0.64, -0.15)
CRequi -0.37 (<0.01) -0.29 (-0.55, -0.04)
CRvenousmax -0.07 (0.29) -0.02 (-0.29, 0.25)
CRav_max -0.41 (<0.01) -0.32 (-0.58, -0.07)
CRmCT A_baseline -0.53 (<0.01) -0.48 (-0.72, -0.25)
CRmCT A_delay_1 -0.18 (0.10) -0.18 (-0.44, 0.09)
CRmCT A_delay_2 0.36 (<0.01) 0.35 (0.09, 0.60)

of optimal CR assessment we related all CRs to baseline ASPECTS and NIHSS and
demonstrated that baseline mCTA-derived CR had the highest associations.

Collateral status assessed on baseline CTA is an important parameter in clinical
decision making in patients with ischemic stroke due to intracranial large vessel
occlusion and is an important predictor of outcome. Accurate, robust and reproducible
assessment of CR is therefore crucial. The dependency of CR on the timing of image
acquisition in relation to the contrast injection could be worrisome. This is especially
true when automated analysis tools are able to provide a CR on a continuous scale
instead of a semi-quantitative scale with a restricted number of grades (n=4) as is the
case with the current visual analysis. A CR could be two times larger when the CTA is
acquired several seconds later. A CR could even be > 100% when the CTA is acquired
in the venous phase. A previous study reported a higher prevalence of lower collateral
grades in CTA scans acquired in the early arterial phase[4]. The lack of temporal
resolution in sCTA, resulting in a highly susceptible to erroneous assessment of CR,
has been identified before [72] and multiphase CTA has been proposed as reliable
tool to provide a time-resolved collateral assessment [70]. With three CTAs in three
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different phases one may wonder which acquisition should be used for CR assessment,
the authors solved this issue by proposing a new composite semi-quantitative scale
with 6 grades which integrates information from the three phases in the mCTA. This
collateral score for mCTA is different from the CR in our study, in which we assessed
the quantitative CR per mCTA phase. Tong et al. have extracted one CR from
CTP data after temporal fusion of the CTP images creating a time resolved CR.
This approach does not take into account the between patient variation in collateral
recruitment which could have clinical consequences [85]. In our study, we reproduced
this approach by generating an extra time-resolved CRmip.

The relevance of optimal timing of CTA for extraction of diagnostic information has
also been reported for spot-sign detection in patients with intracerebral hemorrhage [6].
The authors proposed a classification for different acquisition phases, ranging from
early arterial to late venous phase. The phase definition was based on absolute
enhancement, expressed in Hounsfield units (HU), in arterial and venous structure.
The dependence of HU on the voltage of the CT X-ray tube, and the dependence of
the iodine concentration on the injection protocol (amount of contrast, concentration
and injection speed) as well as hemodynamic factors [86], makes this definition of the
phases rather arbitrarily. We proposed a phase classification based on a normalized
arteriovenous enhancement ratio curve and demonstrated that most patients have
identical normalized curves allowing a more robust assessment of acquisition phase for
sCTA, mCTA and CTP image volumes.

We investigated in which phases the mCTAs were acquired and temporarily aligned
the three mCTA volume to the CTP volumes based on the arteriovenous enhancement
ratio. Baseline mCTA was acquired mainly in the equilibrium phase, close to maximum
arterial enhancement and therefore, the CR of baseline mCTA was highly correlated
to the CR at maximum arterial enhancement. This consistent acquisition in the
equilibrium phase, close to the maximum arterial enhancement is probably caused
by the use of bolus tracking for timing of CTA in relation to contrast arrival and
means that CR can be assessed reproducible from sCTA or mCTA, timed with bolus
tracking.

The remaining question is which CR correlates best with the real status of brain
perfusion and is optimal for clinical decision making and outcome prediction. We
demonstrated that several CRs are related to each other and could replace eventually
each other. Others are less well correlated indicating that potentially more predictive
information is available in the CTP derived CRs. To evaluate the potential significance
of optimal CR assessment we determined the correlation between the CRs at the
chosen time points to baseline ASPECTS and NIHSS and demonstrated that baseline
mCTA-derived CR had the highest associations and was not outperformed by the
other CRs. This could be explained by consistent acquisition of mCTA close to the
peak of arterial enhancement.

Previous studies have compared the predictive power of mCTA-derived CR with
sCTA-derived CR. Schreder et al., who extracted mCTA volumes from a CTP ac-
quisition could not demonstrate a better outcome prediction compared to sCTA [87].
However, Wang et al. [78] investigated outcome prediction using single phase and
multiphase CTA images, also extracted from CTP acquisition. Considering the poten-
tial variation in hemodynamics between patients, the baseline mCTA and first delay
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mCTA was selected at the peak arterial phase and peak venous phase. The second
delayed mCTA phase was defined by a time interval of 5.5 seconds after peak venous
phase. They concluded that the mCTA composite collateral score performed better
than single-phase collateral score in determining clinical outcome for patients with
acute ischemic stroke. However, it is difficult to compare since the acquisition time of
the single phase CTA in comparison with mCTA images was unknown.

This study has several limitations. First, the dataset size is relatively small,
and was collected in a single center. Further assessment using multi-center data
may be performed to validate the conclusions from this study. Second, we use an
automatic collateral scoring method that was developed for CTA on CTP images.
The scoring method yields a relative value, where the quantification of the occluded
side is normalized with the non-occluded side. We have assumed that this method is
equally valid on CTP images, which may have a lower signal to noise ratio and contrast
intensity compared to mCTA images. Last, we used CTP images to investigate the best
time-point for collateral scoring, based on associations with other baseline parameters.
This study could not demonstrate a better association with baseline clinical (NIHSS)
and imaging parameters (ASPECTS) for one of the CTP derived CRs over the mCTA
derived CR. The small size of the study hampers strong conclusions. Finally, the
choice for a specific CR should be based on an improved prognostic or predictive value,
which should take into account also other predictors. Such an evaluation requires a
large clinical study.

4.5 Conclusion

We conclude that collateral status assessment is dependent on the timing of acquisition.
mCTA with bolus tracking results in a consistent acquisition in the same phase close to
the peak of arterial enhancement. This consistent acquisition in the equilibrium phase
makes CTA derived CR assessment a robust and reproducible approach. Although
CTP can provide other CRs, the clinical value and better predictive value has not been
demonstrated yet and should be assessed in larger studies focusing on the prediction
of outcome.
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Abstract

Extracting the cerebral anterior vessel tree of patients with an
intracranial large vessel occlusion (LVO) is relevant to investigate
potential biomarkers that can contribute to treatment decision
making. The purpose of our work is to develop a method that can
achieve this from routinely acquired computed tomography angiog-
raphy (CTA) and computed tomography perfusion (CTP) images.

To this end, we regard the anterior vessel tree as a set of
bifurcations and connected centerlines. The method consists of
a proximal policy optimization (PPO) based deep reinforcement
learning (DRL) approach for tracking centerlines, a convolutional
neural network based bifurcation detector, and a breadth-first ves-
sel tree construction approach taking the tracking and bifurcation
detection results as input. We experimentally determine the added
values of various components of the tracker. Both DRL vessel
tracking and CNN bifurcation detection were assessed in a cross
validation experiment using 115 subjects. The anterior vessel
tree formation was evaluated on an independent test set of 25
subjects, and compared to interobserver variation on a small
subset of images.

The DRL tracking result achieves a median overlapping rate
until the first error (1.8mm off the reference standard) of 100,
[46, 100] % on 8032 vessels over 115 subjects. The bifurcation
detector reaches an average recall and precision of 76% and 87%
respectively during the vessel tree formation process. The final
vessel tree formation achieves a median recall of 68% and preci-
sion of 70%, which is in line with the interobserver agreement.
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5.1 Introduction

5.1.1 Clinical Background
The cerebral vessel network is a complex network that feeds the brain tissue. Diseases
affecting the cerebral vessel network, such as an intracranial ischemic stroke caused by
a large vessel occlusion, may have severe consequences. In patients with an intracranial
large vessel occlusion (LVO), the occlusion often occurs in the anterior circulation,
which consists of the middle cerebral artery (MCA) vessel tree and anterior cerebral
artery (ACA) vessel tree. Knowing the precise anterior vessel tree with its topology
could provide additional information for the treatment planning of LVO and potentially
contribute to the treatment decision making process. The complete cerebral vessel
centerline annotation with anterior vessel trees is shown in Fig. 5.1.

In clinical practice, 3D modalities such as magnetic resonance angiography (MRA)
and computed tomography angiography (CTA) are commonly used to visualize cerebral
vasculature. In this manuscript, we are focusing on CT-based imaging, which is a
common modality for the workup of stroke patients. CT imaging techniques for
cerebral vessels in clinical practice are CTA (both single phase and multiphase) and
computed tomography perfusion (CTP) ([88]). CTP is an imaging protocol where a
series of 3D CTA images is acquired.

The purpose of our work is to extract the anterior vessel trees as distal as possible
given the initial direction vectors of each tree.

5.1.2 Related Work
Traditionally, vessel tree extraction starts with obtaining a vessel segmentation or
geometric model ([89]). Extensive reviews on vessel segmentation and vessel shape
extraction methods have been presented by [25], [26], and [31]. After obtaining a
vessel segmentation from the input image, various methods can be used to obtain the
vessel tree. [48] used a thinning algorithm, [90] used geodesics in combination with
a minimum spanning tree, [30] used a graph-based tracking approach to obtain the
Circle of Willis and the proximal segment of each arterial trees from 3D MRA images
and [91] utilize the general confluence constraint with minimal arborescence on a
directed graph. Others build the tree in a more explicit way from a set of bifurcations
and connected centerlines, an approach followed by [92] and [93]. In these approaches,
vessel tracking and bifurcation detection are two essential ingredients.

Tracking

In conventional methods, vessel segmentation approaches start with centerline track-
ing. Many tracking methods have been described in the previously mentioned reviews.
Nowadays, deep learning based methods have replaced conventional approaches for
many image processing problems. Also, combinations of convolutional neural net-
works (CNNs) and conventional approaches have become popular. For example, [94]
extract the coronary artery centerline with an iterative tracking approach utilizing a
3D CNN to estimate the orientation and radius from cardiac CT angiography, [95]
use a multi-task CNN method to obtain an estimate of a centerline distance map and
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Figure 5.1: Example of brain vessel annotation with colored anterior vessel
trees for a subject with a large vessel occlusion in the left M2
segment. White represents veins and posterior cerebral artery
trees, red is the right MCA tree, yellow is the right ACA tree,
green is the left ACA tree, blue is the left MCA tree, a: the right
sagittal view; b: the coronal view; c: the left sagittal view.

an endpoint confidence map from coronary CTA images and subsequently a minimal
path method is used to compute the centerline.

Reinforcement learning is a branch of machine learning algorithms that have been
studied in domains such as gaming and control. Deep reinforcement learning (DRL),
which is the fusion of reinforcement learning and deep learning, has been shown
to be able to solve complex image processing challenges by exploiting image fea-
tures ([96]). Such DRL based methods are gradually entering the medical imaging
field ([97]). Tracking is a preferred application direction for DRL approaches, as DRL
learns the optimal policy by maximizing the accumulated reward over time, which
maps nicely to the problem of finding a path through an nD image. The optimal
policy determines the best actions for an agent in each state over time.

There are two main streams in DRL methods, value-based and policy gradient
based. In value-based methods (e.g. deep Q network ([98]) the policy π is directly
obtained by approximating the state-action value Qθ(s, a) as a function of state s and
action a or state value Vθ(s) as a function of a state s. Here, θ represents the network
parameters. For example, [99] apply a deep Q network ([98]) (DQN) approach
with a discrete action space given by a six-connected neighborhood as action space
and a point-to-curve reward function for thoracic aorta centerline tracking in 3D
contrast-enhanced and none contrast-enhanced CT images. [92] similarly utilizes a
double-DQN ([100]) with a discrete 26-connected neighborhood as the action space
to track the coronary centerline. In this work, the bifurcations were detected using
a standalone detector. [101] utilize the DQN approach with predefined orientation
as discrete action space to track coronary centerlines. In addition, the value-based
methods are known to often lead to an overestimation of the action value ([100]).

In policy gradient methods, a parameterized policy is learned directly using a
stochastic optimization algorithm ([102]). Trust region policy optimization (TRPO) ([103])
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and proximal policy optimization (PPO) ([104]) are two well-known methods for such
optimization. [105] utilize PPO for learning the policy for neuronal tracking in 2D
neuronal microscopy images. The above-mentioned DRL-based tracking approach
has demonstrated superior performance in comparison with a benchmark using CNN
based methods.

Bifurcation Detection

Bifurcation detection plays an important role in determining the vessel tree. Some
feature based machine learning methods have been presented in the past. For exam-
ple, [106] utilized the scale-space features of vessel structures to construct a bifurcation
detector on 2D and 3D synthetic images. [107] used Gaussian profiles in cross sections
of bifurcation points to discriminate vessels from bifurcation points in 2D retinal
images. [93] performs bifurcation detection using intensity based spatial clustering
methods for 3D coronary arteries extraction from CTA images. Recently, deep learning
methods have been presented by [108], who utilized a two-stage CNN approach to
detect carotid artery bifurcations from 3D CTA images, and [109], who used a multi-
instance heat map with a U-net architecture ([42]) to estimate vessel crossings and
bifurcation points from 2D retina images. The latter application was also addressed
by [110] utilizing a two-stage refinement approach, in which an RCNN ([111]) based
network first obtained a rough estimation of bifurcations and in a 2nd stage, the same
network architecture was applied to address the errors from the first network.

5.1.3 Contribution and Organization of Our Work
Our aim is to extract the anterior vessel tree from 3D CT images, independent of the
acquisition protocol. For such a task, to the best of our knowledge, most vessel tree
extraction methods and the subsequent tracking and bifurcation steps have focused on
coronary artery tree extraction from 3D cardiac CTA images and vessel tree extraction
from 2D retina scanning laser ophthalmoscope (SLO) images. None of the existing
works presents a method to extract the cerebral anterior vessel tree from 3D CTA
images or methods that perform tree extraction beyond the proximal anterior vessel
tree.

Our work has several contributions. First, we assess a DRL approach that, to
the best of our knowledge, has not been applied yet for cerebral vessel tracking ap-
proaches. Second, the DRL method was adapted to this application. More specifically,
we introduce a novel curve-to-curve distance based reward function and a network
architecture (CNN with recurrent neural network (RNN)) for cerebral vessel tracking,
and we assess the impact of various features of the methods in an ablation study. In
addition, we performed a comparison with an existing baseline method. Finally, all
experiments have been performed with a large set of clinical data.

The remainder of this manuscript is organized as follows. In Section 5.2, we first
present a DRL PPO based directed vessel centerline tracking model, followed by a
CNN-based bifurcation detection, and breadth-first tree formation methods. The
data set, data annotations, and prepossessing are described in Section 5.3. The
implementation, hyperparameter optimizations and experimental results can be found
in Section 5.4, followed by discussion in Section 5.5 and conclusions in Section 5.6.
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5.2 Method

The proposed cerebral anterior vessel tree extraction method starts with a DRL
centerline tracking approach starting from the root of the tree (with an initial direction
vector). Along the tracked path (agent path), a CNN based bifurcation detector is
used to identify the bifurcation points. New tracks are generated from the bifurcation
points detected along the tracks. In the tree formation, stopping criteria are applied
to remove the spurious parts of the tracked paths, and a breadth-first approach is
used to construct the tree from the tracked paths and the bifurcation points.

5.2.1 Directed Vessel Tracking
A reinforcement learning problem can be modeled as a Markov Decision Process (MDP) ([112]).
We, therefore, introduce the key ingredients of our DRL tracker as the components of
an MDP. The environment in our case is the normalized 3D CTA image. The other
components, such as state and action, are introduced below.

State and Action

The agent at time t has an associated state, denoted as st. Next to the current position
in the image, the agent state contains image information from previous steps and
the corresponding displacement vector array. Let p be any discrete 3D position in
a CTA volume. The image information in the state consists of three 21 × 21 × 21
sub-volumes centered at respectively the agent position at pt and two previous agent
positions pt−1, pt−2. This size is sufficient to capture the local neighborhood, even
for large vessels and bifurcations. In addition, the state contains a sub-volume of the
binary agent path centered at pt, which represents the voxels the agent went through.
As a vessel can be viewed as a tubular structure with varying radius, any independent
point in the track through a vessel can be tracked in two directions. Using the image
information from the three previous steps and the binary agent path can help the
agent track the vessel in a directed way. The dynamic displacement vector array at
time t consists of the directional vectors (steps of the agent) from the current position
till the initial position [at, at−1, ..., a0]. The dynamic displacement vector provides
additional directional information on previous steps.

The agent discrete action space is defined as the 26 connected neighboring voxels
of the current position pt in an agent path.

We represent the set of actions by scaled displacement vectors as follows:

∆pt = α × {x, y, z | x, y, z ∈ {−1, 0, 1}}, 5.1

As a consequence, an agent action at can make a step of at least two voxels per episode
step if α = 2.

Reward

The reward function is an essential component for the network to achieve the optimal
policy. The ultimate goal of the vessel tracking training task is to learn the agent
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tracking the vessel centerline by maximizing R, the accumulated discounted instant
reward rt:

R =
T −1∑
t=0

γtrt+1 5.2

The instant reward rt is used to measure the policy performance of the agent at
time t, and thus is relevant for policy optimization. We would like the agent to follow
the reference path Gt, which in our case is a voxelized representation of the annotated
vessel track.

We, therefore, use the difference of the curve-to-curve distance between the agent
path and reference standard between time t and t − 1 to measure the reward of
the corresponding action. The curve-to-curve distance was introduced in [113] to
quantify the distance between coronary centerlines. The curve-to-curve distance is
computed by approximating the surface area spanned between two curves via the
summation of the Euclidean length of all corresponding point-to-point connections.
The optimal (minimal area) correspondence between two curves was determined via
a Dijkstra minimum cost algorithm ([114]). Fig. 5.2 shows examples of surface area
computation (the summation of red lines) in various scenarios.

In addition, we would like to enforce the agent to follow the reference standard Gt.
Therefore, a binary overlap metric, which measures the overlap between the reference
path Gt and the agent path, is part of the instant reward.

We propose an instant reward function that combines binary overlap and the curve-
to-curve distance. The binary overlap metric provides extra positive (+1) feedback
when the agent path and ground truth are overlapping at position pt. Denoting the
surface distance in position pt as Lt, and the binary overlap at position pt as Bt, the
proposed instant reward is defined as follows:

rt =
{

Bt − log(ϵ + |Lt − Lt−1|), if Lt − Lt−1 < 0;
Bt + log(ϵ + |Lt − Lt−1|), otherwise.

5.3

Policy

In our vessel tracking application, the optimal policy is obtained using the PPO method
with the advantage actor critic (A2C) ([115]) framework. The A2C architecture consists
of two networks: an actor network and a critic network. The critic network Vv(s)
estimates the state value and actor network Qw(s, a) learns the state-action value
suggested by the critic. The advantage function A(st, at) (Eq. (5.4)) is introduced to
measure the state action pair at time t:

A(st, at) = Qw(st, at) − Vv(st) . 5.4

It determines how much better a selected action is compared to the expected value
of all possible actions. In this application, generalized advantage estimation (GAE)
([116]) is applied to further reduce the variance of the temporal difference error of the
advantage function.

In policy gradient DRL methods, stochastic optimization algorithms such as
gradient ascent are sensitive to the gradient update step size. To accommodate for the
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Figure 5.2: Example of curve-to-curve distance and CCS metric, the red
dotted line is the reference standard and the blue dotted line is the
actual track, the summation of lengths of the red lines between
the reference standard and track is the computed surface distance;
a: the anterior vessel tree with highlighted color-coded vessel
centerline (corresponding to the colored frame). b: example of
L0. c: example of success tracked case, CCS = 0.87, OR =1.
d: example track at time t, CCS = 0.58, OR = 0.5. e: example
of miss tracked case, CCS = 0.58, OR = 0.09;

step size issue, trust region policy optimization (TRPO) ([103]) was introduced using
KL-divergence ([117]) constraints to stabilize the gradient update step between old
and new policies. However, the use of KL-divergence yields costly computations on
multiple Hessian-vector products ([118]). The PPO method ([104]) which was later
developed to approximate the KL-divergence constraints by a simple but efficient
regularization mechanism in objective function as follows:

J(θ) = E[min(ρ(t)A(st, at), clip(ρ(t), 1 − ε, 1 + ε)A(st, at))] , 5.5

where ρ(t) is defined as the likelihood ratio between policies at two time points:

ρ(t) = πt(st, at)
πt−1(st−1, at−1) . 5.6

Network Architecture

The proposed network architecture is shown in Fig. 5.3. The architecture consists of
an actor network and a critic network. The critic network helps the agent (actor) with
learning the optimal state-action value during the training process. Assuming that
the policy is optimal after training, only actor network is required for obtaining the
tracks in the inference stage.

The agent state consists of sub-volumes sampled from three consecutive points
along the agent path and one sub-volume containing the binary agent path. In the
CNN part, the three sub-volumes generally can not cover the whole path of the agent.
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Figure 5.3: The architecture of the advantage actor critic (A2C) network.
Both actor and critic networks consist of CNN and an RNN. The
RNN part consists of two LSTM cells. The input of the actor
CNN (A) consists of three CTA cubes and one binary agent path
cube (21 × 21 × 21 voxels). The three CTA cubes are centered
at the current position pt and two previous positions pt−1, pt−2.
The binary agent path cube is centered in the current position pt .
The CNN input of the critic network (A ⊕ B) consists of A and
a ternary ground truth cube (B) that is centered at the current
position pt. The RNN input of the critic network is a vector ar-
ray (x) that consists of paired local features along the track. The
RNN input of the actor network is a vector [at, at−1, ..., a1, a0]
that contains the action history.

A recurrent neural network (RNN)([119]) was therefore used to provide extra temporal
information along the agent path.

The architecture of the actor and critic networks are similar, they both consist of
a CNN and an RNN. The CNN model is similar to the architecture proposed by [94]
but with a parametric rectified linear activation function (PReLU) ([120]) instead of
a rectified linear activation function (ReLU) ([45]). The proposed CNN architecture
is based on a dilated network([121]) architecture. Each CNN block consists of a
series of dilated convolutions, with dilation kernels of size 1. For each convolutional
layer, instance normalization was applied. The detailed CNN architecture of the actor
and critic can be found in Table 5.1. The critic CNN takes a ternary ground truth
sub-volume centered at pt as additional input. The dimension of this sub-volume is
21 × 21 × 21 voxels, and each voxel has a value of -1, 0, or 1: the paired ground truth
centerline for the current episode has value 1, other centerlines are labeled as -1, and
the remaining voxels have value 0. This setup ensures a decrease in instant reward if
the agent moves to the wrong vessel.

The RNN in both the actor and critic network consists of two LSTM cells. The
input of the RNN in the actor network is the action history vector; the input vector
x of the RNN in the critic network at time point t consists of the paired instant
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Layer 1 2 3 4 5 6 7
Kernel width 3 3 3 3 1 1 7
Dilation rate 1 1 2 3 4 1 1
Channels 32 32 32 32 64 64 26

Table 5.1: The network architecture of actor/critic CNN. The actor’s input
is 21 × 21 × 21 × 4 and the critic’s input is 21 × 21 × 21 × 5. Each
convolutional layer is followed by an instance normalization and
PReLU..

rewards (rt), the log of instant reward (log(rt)), the intensity value of agent path (It)
and the mean intensity value of a two voxel wide region around the agent path (It):

x =


rt log(rt) It It

rt−1 log(rt−1) It−1 It−1
...

...
...

...
r0 log(r0) I0 I0

 5.7

The outputs of the CNN and RNN are concatenated and fed into a fully connected
layer. The final output of the actor network is a (log) softmax layer, which determines
the direction of the agent in the next state. The final output of the critic network is a
scalar value, which approximates the value of the input state.

The final fully connected layer in the actor network is absent in the critic network.
As the latter network needs to learn the state value, the final fully connected layer is
not necessary.

5.2.2 Bifurcation Detection
To be able to build a vascular tree, a bifurcation detector was developed that can be
applied to each path that was generated by the tracker; from bifurcations, new paths
can be tracked.

We approach bifurcation detection as a binary classification problem. The structure
of the model used for bifurcation detection is similar to the dilated network architecture
in the CNN blocks of the A2C networks, but with only one image cube pt as input.
Each convolutional layer is followed by switchable normalization ([122]) and a dropout
rate of 0.2; we use binary cross-entropy as the loss function. The detailed architecture
of the bifurcation detector can be found in Table 5.2.

Layer 1 2 3 4 5 6 7
Kernel width 3 3 3 3 1 1 7
Dilation rate 1 1 2 3 4 1 1
Channels 32 32 32 32 64 64 26

Table 5.2: The network architecture of bifurcation CNN. The input size is
21 × 21 × 21. Each convolutional layer is followed by a switchable
normalization, a dropout rate of 0.2, and a PReLU activation
function.
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5.2.3 Tree Formation
The anterior vessel tree can be viewed as an arborescence with a given root. We apply
a breadth-first tree formation for the anterior vessel tree extraction. The tracking
agent and bifurcation detector described in the previous paragraph can be applied to
obtain a series of tracks and bifurcation points. Starting from the root, we obtain the
first track. Subsequently, we prune the tracked path based on stopping criteria, and
recursively and in a breadth-first manner, find bifurcations along this pruned tracked
path, and start new tracks from these bifurcations. In this latter step, new paths are
tracked from the bifurcation point in several directions, and then failed or overlapping
tracks are removed.

In an attempt to get a more robust approach, increasing the true positive tracks,
while reducing the missed ones and false positives, we also introduce an ensemble
method with five different vessel tracking models.

Stopping Criteria

Stopping criteria are used to determine the termination point of a track; i.e. the track
will be pruned if one of the following conditions is met:

• the track runs into the brain tissue

• the track runs into the dilated skull,

• the length of the track exceeds a maximal length.

• the track reaches the border of images in z-axis (for half brain coverage cases).

• the track runs into a different arterial territory. e.g. forming ACA tree but
running to MCA territory.

Fig. 5.4b shows the example of the relationship between the anterior vessel trees and
the arterial territory map.

Bifurcation Inference

Application of the bifurcation detection model (Sect. 5.2.2) for all the voxels of a
tracked path yields a probability of a bifurcation being present at each voxel of the
track. The detector may already give some probability to voxels that are close to
a bifurcation, The probabilities in voxels from near a bifurcation to the bifurcation
increase, and have a peak at the bifurcation. We, therefore, extract the bifurcation
points by taking the max probability voxel from a consecutive series of voxels that
consists of at least two voxels with a probability larger than 0.5. The threshold allows
for smaller bifurcations to be detected.
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Bifurcation Path Tracking

After bifurcation detection, new paths must be tracked from the bifurcation. This
may be done using an estimate of the candidate directions based on the vessel features.
We take a two-step approach. In the first step, we start a tracker in all candidate
directions regardless of the presence of vessels. Then, we remove unwanted tracks that
do not satisfy the eligibility criteria. The candidate directions are determined from 26
connected neighborhoods. In order to prevent the tracked paths from following the
original track backward, tracks are only started in the forward direction with regard
to the current position (i.e. if the inner product of the current path and direction
vector of the new path is positive). After tracking these candidate directions, spurious
tracks will be removed based on the amount of overlap with existing tracks and the
length of the track. If the track has an overlap with a previously tracked path that is
larger than or equal to 95 %, the tracked path will be ignored. Short tracked paths
(less than 4.5 mm) will also be ignored.

Ensemble Method

In addition to tracking with one model, the combined policy and models ensemble
method aims to further improve the performance by combining results from multiple
tracking models in two different ways. The first track of each tree is essential for tree
formation. To ensure a good initial track, we use majority voting for the first track:
at each tracking step, we initiate five agents to generate the candidate actions and
select the action (i.e. next voxel) that is closest to the average of the actions of each
of the models. After the first track, the output of all models is used to reduce missed
vessels in bifurcations. The trackers in the ensemble method use the same stopping
criteria as the other trackers (see Section 5.2.3).

5.3 Data

5.3.1 Data Overview
In our study, we used CTA and CTP image data from two sources: MR CLEAN
registry ([51]) and Erasmus MC. The MR CLEAN registry is an ongoing multi-
center registry for stroke patients that underwent endovascular treatment for LVO
in The Netherlands since March 2014. Seventeen centers are involved in this study.
Data selection criteria applied when selecting the images were: (i) slice thickness
≤ 1.5 mm; (ii) slice spacing ≤ 1.5 mm; (iii) for CTA, the contrast acquisition phase
has to be peak arterial, equilibrium or early venous phase according to the definition
of [6]; (iv) brain coverage has to be at least half of the brain, the insula region needs
to present in both hemispheres; (v) no large motion artifact along the time axis for
CTP data; (vi) CTP data has to contain full cardiac cycle from early arterial phase
to late venous phase.

1594 subjects were included in the MR CLEAN registry from March 2014 to June
2016. In a previous study ([21]), we selected 270 images from this set that matched
the inclusion criteria. Of these, 49 were manually selected such that there is variation
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in vendor, image quality, and acquisition phase. In our study, we used these 49 images
(with annotations), and we randomly selected another 26 from the 270 images.

From the 63 registry subjects with CTP images matching our selection criteria,
we randomly selected 35 subjects. In addition, from 58 stroke patients with an LVO
that were admitted from Jan. 2018 to March 2020 at the Erasmus MC, we randomly
selected 15 subjects from the 58 subjects (out of a total of 335) that matched our
selection criteria.

More detailed information on the data selected is presented in Table 5.3.

5.3.2 Data Annotation
The tracks of the anterior vessel tree for training the DRL were manually annotated
by the first author of this manuscript (JS) for all 125 subjects. This annotation was
done under the supervision of an experienced radiologist (20 years of experience) and
a physician (5 years of experience). The annotation task was defined as labeling the
track of every anterior vessel from the ICA-top to the most distal part of the MCA and
ACA vessel tree in the CTA or CTP maximal intensity projection (MIP) images. Each
tree always starts from the ICA-top of the corresponding side, if there is no ICA-top
occlusion. The annotation of a track was discontinued when the artery was not clearly
visible anymore. In our study, the vessel diameter varies from 3.6 ± 0.45 mm at the
ICA top ([52]) to 0.45 mm in the most distal vessels. For this annotation task, we
used an in-house developed annotation tool used in [21]. In order to increase the
number of segments near the skull (which are difficult vessels to track), veins near the
skull were annotated in 10 out of 75 subjects (randomly selected). These veins have
an appearance that is similar to arteries.

5.3.3 Interobserver Variation on Annotation
For such a difficult annotation task, it is relevant to assess the interobserver variation
in the annotation. To this end, a second observer, a medical student (M) was asked to
perform the same annotation. For this, three subjects from the CTP category were
selected, two subjects with middle complexity and one with high complexity. The tree
overlap was calculated using a dilated binary spherical shape with a radius of four
voxels with observer M as the reference standard, in the same way as the overlap is
computed for the method. For the three subjects, the tree overlap was 0.50, 0.70, and
0.88 respectively, with an average overlap of 0.69. The vessels where the annotation
differed were mainly low intensity vessels, and vessels close to the skull.

5.3.4 Data Preparation
In this study, we use both the CTA and the frame with maximal vessel volume from
the CTP series. In order to minimize the variation in spatial resolution, all CTA
and CTP images were resampled to a 0.45 mm isotropic grid using cubic B-spline
interpolation and were normalized to a range of 0 to 1 using min-max normalization.

The annotated vessel tracks were transformed into an arborescence structure from
the root based on the connectivity as shown in Fig. 5.4a. In this way, all the bifurcations



5

72 Chapter 5. Cerebral Anterior Vessel Tree Extraction
P

roperties
D

ata
division

(n=
125)

Set
A

(n=
20)

Set
B

(n=
20)

Set
C

(n=
20)

Set
D

(n=
20)

Set
E

(n=
20)

V
alidation
(n=

10)
T

est
(n=

15)
Im

age
M

odalities
N

um
bers

ofC
TA

(n=
75)

13
10

14
15

12
2

9
N

um
bers

ofC
T

P
(n=

50)
7

10
6

5
8

8
6

B
rain

C
overage

M
ore

than
half(n=

25)
2

6
3

5
5

2
2

C
om

plete
(n=

100)
18

14
17

15
15

8
13

Slice
thickness

[0.50-0.75)m
m

(n=
59)

10
9

9
11

8
6

6
[0.75-1.00)m

m
(n=

32)
5

5
7

3
6

1
5

[1.00-1.50]m
m

(n=
34)

5
6

4
6

6
3

4
A

cquisition
phase

Early
arterialphase

(n=
19)

4
3

3
1

3
0

5
Peak

arterialphase
(n

=
37)

6
6

4
11

6
1

3
Equilibrium

phase
(n=

69)
10

11
13

8
11

9
7

O
cclusion

location
IC

A
(n=

20)
4

4
5

2
2

2
1

M
1

(n=
60)

9
12

11
7

10
4

7
M

2
and

above
(n=

38)
6

3
3

9
8

3
6

O
thers

(n=
7)

1
1

1
2

0
1

1
C

om
plexity

Low
:

<
50

(n=
40)

7
5

8
7

7
1

5
M

edium
:[50-100)

(n=
65)

12
12

10
9

9
6

7
H

igh:
≥

100
(n=

20)
1

3
2

4
4

3
3

P
roxim

al
segm

ents
N

um
bers

(n=
417)

67
65

65
70

64
34

52
Intensity

(H
U

)
311

±
94

306
±

84
280

±
87

312
±

92
321

±
120

256
±

105
274

±
77

Length
(m

m
)

26
±

17
24

±
15

26
±

14
25

±
15

24
±

13
21

±
12

24
±

16
M

iddle
segm

ents
N

um
ber

(n=
3814)

607
693

577
650

564
288

435
Intensity

(H
U

)
161

±
76

161
±

70
152

±
68

153
±

68
167

±
80

153
±

73
143

±
61

Length
(m

m
)

29
±

23
29

±
26

29
±

26
31

±
25

31
±

24
29

±
25

31
±

24
D

istal
segm

ents
N

um
ber

(n=
2436)

343
390

336
432

410
200

325
Intensity

(H
U

)
129

±
66

134
±

61
130

±
64

121
±

54
148

±
84

116
±

51
127

±
65

Length
(m

m
)

27
±

22
29

±
26

25
±

22
28

±
24

28
±

23
27

±
25

28
±

27
N

ear
skull

segm
ents

N
um

ber
(n=

1404)
170

237
216

220
255

112
194

Intensity
(H

U
)

153
±

60
149

±
61

144
±

47
139

±
45

149
±

56
128

±
46

127
±

38
Length

(m
m

)
63

±
40

64
±

40
61

±
39

62
±

38
61

±
37

61
±

40
57

±
39

N
ear

skull
segm

ents
N

um
bers

(n=
595)

121
171

147
94

62
0

0
(A

dded
extra)

Intensity(H
U

)
204

±
81

140
±

56
173

±
83

148
±

63
181

±
95

N
A

N
A

Length(m
m

)
65

±
30

60
±

30
67

±
39

63
±

30
57

±
26

N
A

N
A

T
able

5.3:
T

he
data

distribution
of125

subjects.



5.3. Data

5

73

Figure 5.4: Processing of the anterior vessel trees data preparation; a. shows
the example of the anterior vessel tree structure, the MCA tree
is presented in blue and ACA trees are presented in green; b.
shows the anterior vessel trees and thresholded (0.5) MCA and
ACA mask, the green mask is the MCA mask, the red mask
is the ACA mask; c. shows the segment labels. The proximal
segments are in red, the middle segments are in blue, the distal
segments are in green and the skull segments are in yellow.

and the connected segments (vessel segment) are known. During this transformation
process, two adjacent bifurcations with a distance of less than 1.8 mm were merged
into one trifurcation. The vessel segment representation was subsequently transformed
into a voxelized 26-connected representation for use in the training process of the
directed vessel tracking model. The bifurcations were used for the bifurcation models.
For the tree formation, the initial direction vectors were generated from two manually
annotated starting points from the ICA top to the proximal points of each tree. The
user has to click two points for the initial direction vector.

5.3.5 Segment Label Generation
To permit an analysis of the results (i.e. distal versus proximal), we define four
categories (labels) for the vessels. proximal, near skull segments, middle segments
(majority of the segment inside the MCA / ACA mask), and distal segments (remaining
segments). The proximal segments consisted of M1 and A1, which are defined as the
segments between the given root till the first bifurcation. Near skull segments were
defined as the vessel segments falling into the dilated skull (thresholded at 1000 HU,
dilated with a 5 × 5 × 5 kernel) for consecutive five points. The middle segments were
defined using the MCA and ACA mask, i.e. those segments where the majority of
the points in the segment were inside these masks. The above-mentioned segments
labels and the thresholded MCA and ACA maps are shown in Fig. 5.4b, Fig. 5.4c.
The segment labels are only used in the analysis of the proposed method.
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5.3.6 Experimental Setup
The data in this study is used for training and testing DRL directed vessel tracking and
bifurcation detection model, and for assessing tree formation. In the directed vessel
tracking and bifurcation detection experiments, we use the same data distribution: in
both cases, we use 100 images in a five-fold cross validation setup, where the data was
stratified on complexity (defined as the number of segments per subject). The ten
subjects with extra annotations of segments near the skull were evenly distributed
over each fold. The validation set in the cross-validation consisted of another ten
subjects (from the remaining 25), and this set was kept the same for all cross-validation
experiments. The remaining fifteen subjects were used as an independent test set. The
tree formation assessments were performed on the validation and test sets. 1.8 mm
means 4 voxels, and with a scaling (stepsize) of 2, we thus allow an error of maximal
two steps.

The image characteristics and segment labels of each fold, validation, and test set
are listed in Table 5.3. In the following, we will name the models based on the fold. For
instance, Set A is the test set of tracking model Tr-A and Bifurcation model (Bf-A) in
5 fold cross validation setting. The tracking model Tr-S and bifurcation model (Bf-S)
use set A to E for training, and a test set (n=15) for testing. The validation set (n=10)
is the same for all models.

5.4 Experiments and Results

5.4.1 Implementation

Directed Vessel Centerline Tracking

The proposed PPO based directed vessel tracking approach was implemented in
PyTorch ([123]). The model training and validation were done on NVIDIA A40 GPUs.

The PPO training uses episodic learning with a random start position from the
first position to five voxels before a bifurcation point of a segment. The length of
each episode was therefore arbitrary with a minimal length of five voxels. Each mini
batch consists of 8 episodes, in which one episode corresponds to one segment. The
training was stopped when one of the following criteria was met: 1) the total length
of the track exceeds 1.5 × the length of the reference standard, 2) the agent is off the
reference standard segment for a distance of 1.8mm, 3) the target was reached 4) at
the beginning of the training, if the agent has gone into the direction that is opposite
to the direction of the initial vector.

The hyper-parameters of the PPO were: discount factor γ = 0.9; PPO clip value ϵ =
0.2; GAE parameter λ = 0.95. The model weights were updated 10 times per mini
batch. The initial learning rate for Adam was 1e−5. The learning rate is halved when
the validation score does not improve for five epochs in a row. The lower bound of the
learning rate was 1e−6. During training, the only augmentation applied is the random
flipping of both 3D CTA image and centerline segments along the x- and y-axis with a
probability of 0.5. We use a two-stage training: first, the data from the anterior vessel
tree for learning the general anterior vessel tree track is used until the model stops
converging; in this stage, the target of a track was a bifurcation. In the second stage,
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we added the extra segments close to the skull to better learn to track vessels running
in the vicinity of the skull. Also, the target is set to five points beyond the bifurcation
with both branches with equal probability. In this way, the agent could learn to track
beyond bifurcations.

To monitor the episodic training process, we use a curve-to-curve similarity (CCS)
metric, defined as follows:

CCS = 1 − Lt

L0
5.8

with L0 as the max surface distance at the initial point of the reference standard curve,
see also Fig. 5.2b. This metric is 1 in case of complete overlap and is negative when
the track runs in the opposite position.

Bifurcation Detection

The model implementation and training for bifurcation detection were similar to the
PPO, both using Pytorch and the same GPU. The training samples are sub-volumes
that are at randomly shifted positions along the reference centerlines. This random
offset is to simulate a track resulting from the vessel tracking. The random offsets
were ranging from 1 to 3 voxels. The training label was obtained by dilating the
ground-truth bifurcation points with a binary spherical kernel with a radius of four
voxels, in order to increase the size of true positives and make the classification problem
less imbalanced. During training, the number of true positive samples was equal to
the number of true negative samples. In the training phase, the initial learning rate
was 1e−3 for the Adam optimizer. The learning rate reduction scheme was identical
to the PPO training. The learning rate lower bound was 1e−6 as well.

Tree Formation

The tree formation method was implemented in python. For the stopping criteria,
tracking into brain tissue was defined as an intensity value along the track less than
50 HU for three consecutive points, and tracking into the skull is defined as tracking
into a dilated skull (threshold at 1000 HU, dilated with 5 × 5 × 5 kernel) for three
consecutive points. The maximum length for a track was 330 mm, which is 1.2 times
the maximal length of root-to-leaf distance in the training set of 100 subjects.

Probability density maps of the MCA and ACA regions, as well as a hemisphere
map, were obtained using earlier described atlases ([39]) that were registered to the
images. After transformation to the CTA or CTP images, the MCA and ACA arterial
territory maps were thresholded at 0.5 to obtain a binary mask. The hemisphere
map consists of three values, indicating the left and right brain hemispheres and the
background.

5.4.2 Directed Vessel Tracking Assessment
The assessment of the directed vessel tracking consists of an ablation study, comparisons
with a baseline DQN model and the baseline DQN with our own reward function. In
addition, we assess the impact of using all data. For the final model, we also present an
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analysis per vessel category. We use overlap rate and average distance as metrics, where
the overlap rate (OR) is defined as the part of the track that matches the reference
standard until the first error (distance larger than 1.8 mm). The average distance refers
to the average curve-to-curve distance in world coordinates between the overlapping
part of the tracking path and the reference standard. Statistical significance was
assessed using a paired t-test on all metrics, and a value lower than p = 0.05 was
considered statistically significant. The vessel tracking results are reported using a
median with an interquartile range (IQR).

Ablation Study

In the ablation study, we investigate the importance of our network architecture design
choices, training scheme, and reward function. In addition, we compare our reward
function with an existing reward from [101]. We, therefore, divided our ablation study
into two parts. In part one, the ablation study focused on investigating the added
value of network architecture and training schemes. In part two, the ablation study
investigates the impact of the reward functions.

The network architecture may have a substantial impact on the performance of
DRL methods, and similarly, the activation function has been shown to have an
impact on the performance ([124]). The ablation study part one focuses therefore on
investigating the added value of:

• the RNN module, by comparing the complete model with a model that uses only
a CNN part in the A2C network (CNN only model),

• the RNN module with less image information, by training a model that uses
image information from only one time point with RNN module (One time point
model),

• scaled action space, by removing the scaling factor, (No scaling model)

• PReLU instead of ReLU (ReLU model),

• two-stage training, by adding all data and bifurcation extension throughout the
training process (Single stage model).

For reference, we also train a model that contains all components model Tr-A.
The ablation study part two investigates the impact of various reward functions

with the same model configuration as model Tr-A, by comparing our model with the
following rewards:

• curve-to-curve distance only, by using the log curve-to-curve distance func-
tion (CC distance model),

• the point to curve distance reward of [101] (Li reward)

Fig. 5.5 shows the learning curves with CCS metric and Table 5.4 contains the
test results for the ablation study of network architecture and the training scheme.
The median OR values in the ablation study are 100 %, but the variation in Q1 values
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demonstrates that the distributions are different. The Q3 CCS of most models is above
90 %, except the No scaling model (83%). The difference between Tr-A and the other
configurations is statistically significant for both CCS and OR metrics. In addition,
statistically significant differences were found between the No scaling configuration
and the other configurations in terms of average distance.

Fig. 5.6 shows the learning curves and Table 5.5 contains the results of the reward
functions ablation study. Statistically significant differences were found between the
Tr-A and the other configurations in all of the cases except for the average distance of
Li reward.

Comparison with DQN Baseline

We also compared our method with a popular DQN method. Our baseline model was
introduced by [101]. This method uses the same network architecture as [94], which is
similar to the CNN architecture of our actor network but with one time point and
ReLU activation function. To do a fair comparison, we limit the action space of the
baseline DQN methods to the same action space (26 connected neighborhoods). The
hyperparameters and optimizer settings are the same as for the PPO training. The
data used is the same as in the ablation study. In addition, we also used a baseline
architecture with our own reward function(DQN + ours) to further assess the added
value of this reward function in a different DRL method. The performance of baseline
DQN and (DQN + ours) are shown in Table 5.5 and the learning curves are shown in
Fig. 5.6.

Model CCS
(%)

Average distance
(mm)

Overlap rate
(%)

CNN only 75 [29, 91] 0.64 [0.57, 0.74] 100 [36, 100]
One time point 78 [40, 93] 0.63 [0.56, 0.72] 100 [46, 100]
No scaling 38 [ 3, 80] 0.56 [0.49, 0.66] 72 [18, 100]
ReLU 79 [40, 93] 0.62 [0.55, 0.72] 100 [44, 100]
Single stage 80 [36, 93] 0.61 [0.54, 0.72] 100 [41, 100]
Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]

Table 5.4: Evaluation result of ablation in network architecture and training
scheme (part one) and proposed method on set A.

Model CCS
(%)

Average distance
(mm)

Overlap rate
(%)

CC distance 71 [34, 88] 0.75 [0.66, 0.85] 100 [40, 100]
Li reward 53 [21, 85] 0.64 [0.56, 0.73] 61 [28, 100]
Baseline DQN 26 [13, 53] 0.69 [0.59, 0.78] 29 [13, 58]
DQN + ours 44 [15, 79] 0.73 [0.63, 0.85] 44 [16, 100]
Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]

Table 5.5: Evaluation result of reward function ablation study(CC distance
and Li reward), baseline DQN, DQN with our reward func-
tion(DQN + ours) and proposed method on set A.
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Figure 5.5: Curve to curve similarity (CCS) metrics of the ablation study
models on network architecture and training scheme (part one)
and model Tr-A (All models are trained using set B to E, vali-
dated on set validation and tested on set A.).

Amount of Training Data

We also investigated whether the current amount data training data is sufficient for
our application. For this purpose, we trained a model (model S) with all 100 subjects
from set A to E with the same training scheme as was used in the five fold cross
validation setup. Table 5.6 shows the test results of model S and five models on the
same independent test set. None of the differences is statistically significant.

Model Tr CCS
(%)

Average distance
(mm)

Overlap rate
(%)

Model Tr-A 83 [44, 93] 0.60 [0.54, 0.70] 100 [46, 100]
Model Tr-B 82 [40, 93] 0.60 [0.54, 0.72] 100 [46, 100]
Model Tr-C 84 [49, 93] 0.60 [0.54, 0.70] 100 [47, 100]
Model Tr-D 82 [34, 92] 0.60 [0.54, 0.70] 100 [41, 100]
Model Tr-E 84 [41, 93] 0.61 [0.55, 0.71] 100 [46, 100]
Model Tr-S 85 [50, 93] 0.59 [0.54, 0.70] 100 [46, 100]

Table 5.6: The evaluation result of the five models and model S from bifur-
cation to bifurcation on 15 independent test subjects.
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Figure 5.6: Curve to curve similarity (CCS) metrics of the rewards ablation
study, baseline DQN, DQN with our reward function(DQN +
ours) and model Tr-A. All models are trained using set B to E,
validated on set validation and tested on set A.

Model Tr CCS
(%)

Average distance
(mm)

Overlap rate
(%)

Model Tr-A 82 [44, 93] 0.65 [0.58, 0.75] 100 [50, 100]
Model Tr-B 76 [32, 92] 0.65 [0.56, 0.76] 100 [38, 100]
Model Tr-C 81 [37, 93] 0.65 [0.56, 0.76] 100 [44, 100]
Model Tr-D 78 [35, 92] 0.66 [0.57, 0.75] 100 [44, 100]
Model Tr-E 85 [46, 94] 0.64 [0.56, 0.74] 100 [55, 100]

Table 5.7: The evaluation result of the directed tracking from bifurcation to
bifurcation using five fold cross validation over 100 subjects.

Directed Vessel Tracking Performance

The last tracking experiment focuses on the generalizability of the tracking model
and further analysis of the tracking performance. For this, we used 100 images from
the five fold cross validation. The learning curves of the five fold cross validation are
shown in Fig. 5.7. The test result of the models with their corresponding set is listed
in Table 5.7. Variations in the results may be caused by differences in the validation
datasets. Therefore, we compute the result for all models with the same independent
test set. These results are listed in Table 5.6. It shows only minor differences between
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the results, and there are no statistically significant differences between all listed
models (including model S).

For the same test set and models, we also analyze the tracking performance with
regard to the segment labels. The result can be found in Table 5.8. They show that
the performance of directed vessel tracking depends on how distal the vessels are.
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Figure 5.7: Curve to curve similarity metrics for 5 fold cross validation.

5.4.3 Bifurcation Detection Assessment
The bifurcation detection was tested in two ways. First, the performance was assessed
in the training setup with a dilated reference standard, with random samples from
the randomly shifted voxels along the annotated tracks (see. Sec. 5.4.1). This was
done in a five fold cross validation setup (models Bf-A – Bf-E), and the results are
shown in Fig. 5.8. The test accuracy of all five models with different sets converges to
about 0.82. The accuracy on the validation set was 0.79, slightly lower than the test
performance.

Segments
(type)

CCS
(%)

Average distance
(mm)

Overlap rate
(%)

Proximal 91 [84, 94] 0.61 [0.55, 0.69] 100 [100, 100]
Middle 88 [62, 94] 0.63 [0.55, 0.73] 100 [84, 100]
Distal 80 [44, 91] 0.65 [0.56, 0.74] 100 [59, 100]
Near skull 44 [12, 82] 0.68 [0.59, 0.79] 46 [18, 81]

Table 5.8: Analysis based on the different segment labels on 115 independent
subjects.
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Figure 5.8: Learning curve of bifurcation model 5 fold cross validation with
100 subjects.

The second assessment focused on bifurcation detection on paths that were obtained
from the DRL-based tracker. For this, 100 subjects from the five fold cross validation
and 15 subjects from the independent test set were used.

The directed vessel tracking model was combined with the corresponding bifurcation
detection model. e.g. for the testing set A, tracking model A and bifurcation model A
were used. In addition to the five fold cross validation models, we trained a bifurcation
model Bf-S with 100 subjects. The average precision and recall for the different
sets with corresponding models are listed in Table 5.9. The recall and precision of
bifurcation detection during tree formation are around 76% and 87% respectively, and
there is no statistically significant difference between the models.

5.4.4 Tree Formation
In the tree formation evaluation, we assess the performance of the combined tracker and
bifurcation detector. In addition, we investigate whether the ensemble method would
improve over the single model method, and the consistency of the tree formation method
and we assess the impact of image characteristics. We performed a visual analysis

Model Bf Bf-A Bf-B Bf-C Bf-D Bf-E Bf-S
Precision (%) 86 87 88 87 86 87

Recall (%) 78 77 76 76 75 77

Table 5.9: The evaluation result of bifurcation detection and bifurcation
inference for tree formation over 115 subjects.
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of the false positive and false negative branches. Also, we performed interobserver
analysis of tree formation between two annotators as shown in Table 5.10.

Two features are relevant for the tree formation method: 1) the completeness of the
tree and 2) the topology of the tree (whether connectivity is correct). The completeness
of the tree is measured with precision and recall. To this end, the reference standard
and extracted tree were dilated using a binary spherical shape with a radius of four
voxels (allowing a maximum distance of 1.8 mm). True positives are points along the
extracted tree that are in the dilated reference standard, false positives are points of
the extracted tree that are not being covered in dilated reference standard, and false
negatives are points along the reference standard that are not in the dilated extracted
tree.

The topology was assessed using the correct tree topology (CTT) ratio, which
quantifies the fraction of points of the tree for which the path to the root is similar
(i.e. within 1.8 mm distance everywhere) to the path to the root of the corresponding
point in the reference standard.

Single Model vs Ensemble Method

For the comparison of the single model (Model Tr–S, trained on 100 images) and the
ensemble method (using the five cross-validation models) both the 10 validation and
15 test images were used. The tree formation results are shown in the top row of
Table 5.11. The precision and recall are reported with median and IQR. However,
the CTT was reported using the mean and standard deviation since the median and
IQR in almost all items are 100, [100, 100], except near skull segments. In general,
the performance of the ensemble model is better than the performance of the single
model, in terms of precision and recall. When compared with a single model, the true
positive rate of the ensemble model increases by 14, [6, 30] %.

In addition, we determined the intensity distribution of false positive and false
negative vessels with regard to our reference standard for the ensemble method over
25 subjects. The false positives have a mean and standard deviation of 134 ± 91 HU,
and the false negatives have a mean and standard deviation of 114 ± 62 HU.

Consistancy Test of Ensemble Method

We also perform a consistency test with our final tree formation ensemble method, to
assess the impact of changes in the starting positions. For this experiment, we used
images with moderate complexity (n=13) from the test and validation set. The input
of the methods was varied by randomly shifting the staring position within a range of
five voxels along the given starting centerline. We ran the methods five times with
a randomly shifted initial vector. The first result is used as the baseline of the tree
formation consistency test. We then compute the precision and recall for the other
four results. Both average precision and recall are above 99%.

Interobserver Analysis on Tree Formation

For the interobserver analysis part, we would like to compare the tree formation result
for the three subjects that were annotated by both observers with the annotated
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Figure 5.9: Examples of ensemble method tree formation result in the test
set. Those subjects were selected based on the median value
of recall. Green denotes true positive segments, blue is false
positive, and yellow is false negative. a&b: frontal and sagittal
view of a subject with middle complexity, a precision of 0.85,
and recall of 0.77. c&d: frontal and sagittal view of a subject
with high complexity, a precision of 0.83, and recall of 0.76.

versions. The precision and recall regarding to the different observers were shown in
Table 5.10.

Observer JS Observer M
AgreementPrecision Recall Precision Recall

(%) (%) (%) (%)
Subject 1 0.78 0.57 0.45 0.49 0.50
Subject 2 0.59 0.72 0.53 0.68 0.70
Subject 3 0.71 0.76 0.71 0.54 0.88

Table 5.10: The tree formation result using different reference standard.

Impact of Imaging Characteristics on Tree Formation

To get more insight into the performance of the methods, and how these depend on
the properties of the images (CTA vs CTP, acquisition phase, number of vessels, etc.),
we present the tree formation results for each of these categories in Table 5.11. It
shows that the method performs better in the CTA images compared to CTP and
that proximal vessels are better detected than distal vessels. For the other categories
(acquisition phase, tree type, or complexity), there are no apparent differences in the
results.

5.5 Discussion

In this work, we developed and assessed a method to construct tree models of the
anterior vessel arteries from 3D CTA and CTP images of the brain. The method
consists of a deep reinforcement learning tracking approach, a CNN-based classifier to
detect bifurcations along the tracks, and a breadth-first tree construction algorithm
that uses the tracker and bifurcation detector to construct the tree from the tracking
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and bifurcation detection results. When evaluated on a test set of 25 subjects, the
median precision and recall w.r.t. the manual annotation is 68% and 69%.

For the tracking, we investigate the policy gradient based proximal policy op-
timization DRL approach to perform the directed tracking. The average tracking
performance on directed tracking from bifurcation to bifurcation over 100 subjects with
7026 vessels was 100 [46, 100]. Bifurcation detection is another essential ingredient, it
was tested both in the training scenario and during the single model tree formation
with the same 100 subjects. The accuracy of bifurcation detection over 100 test
subjects was 82%. During the single model tree formation setting, the precision and
recall were on average 87% and 76% respectively. At the final ensemble tree formation
method test on 25 independent subjects, the overall precision and recall were 68 [54,
81] and 70 [57, 81].

An ablation study was performed to assess the added value of various design choices
made. From the results, it follows that most of the choices (including time information
via RNN and multiple time points, activation function, and training strategy) have
a small but statistically significant impact on the final tracking results. Both RNN
and multiple time points serve as a means to include information from previous steps
in the model. From the results it is clear that using RNN with one CNN time point
has a better result than CNN only with more time points; apparently, these elements
of the model permit to focus on different temporal aspects relevant for the tracking.
Adding an RNN module would enhance the tracking ability.

Excluding the scaling of the step size (i.e. taking smaller steps) yields improved
accumulated reward but lower CCS and OR. An explanation could be that, first, the
frequency of calculating the instant reward is at least two times more than the rest of
the configuration. Furthermore, in the no scaling variant, the distance between pt and
pt−2 is 0.9 mm. This leads to very similar image information at the three time points,
which hampers the full exploitation of temporal information. The performance of this
no scaling model is similar to the DQN with our reward function(DQN+ours), which
is the configuration using CNN with one time point.

In the reward ablation study, CC distance performed second best, by comparing the
result of CC distance and our proposed method Tr-A model, adding binary overlap in
the reward function would improve the average distance. The point-to-curve distance
reward has a higher average distance but lower CCS and OR in comparison with
our proposed reward. This result can be observed from both DQN methods and
PPO methods. The curve-to-curve distance reward aims to optimize the surface area
between the reference standard and agent path at t and t − 1, whereas the point-to-
curve distance used by the work of [99] and [101] aim to optimize the distance between
the agent position and corresponding curves. Using the curve-to-curve distance reward
function, the instant reward at t is approximated by the difference in surface area
between the agent path at t and t − 1 with regard to the complete reference standard.
Therefore, the agent moves along the centerline because it minimizes the surface
distance between the agent path and reference standard. This is particularly handy in
the cases of sharp turning vessel structures, e.g helix shape, where the correspondence
between agent position and corresponding reference standard point, such as used in
other approaches, can not be found in an accurate way using the closest Euclidean
distance (e.g using point to curve distance). Therefore, the curve-to-curve distance
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fits better with our application.
Most existing DRL tracking methods use a DQN approach with a customized

reward function; for instance, [101] utilize a DQN tracking approach with the same
network architecture as the state-of-art method of [94] and a point-to-curve distance
based instance reward for coronary tracking in a 3D CTA image. The tracking
performance of the method by [101] outperforms the CNN tracking result of [94]. We,
therefore, used this method as our baseline method. The baseline methods perform less
well in our application. [99] utilize the CNN with one time point (different architecture)
to track the thoracic aorta. The reward function is similar to [101]. [92] utilize the
same CNN architecture with double-DQN methods and the dot product between the
reference standard and agent path of t and t − 1 as the reward function for coronary
centerline tracking. The corresponding point between the reference standard and the
corresponding agent location was determined based on the shortest distance. The
above-mentioned architectures are less complex and are sufficient for tracking the
coronary arteries and aorta. The brain vasculature, as shown in Fig. 5.1, is different
from coronary arteries and aorta, e.g. there is more bending and there is a large
variety in curvatures in cerebral vessels compared to coronary vessels, and they are
much smaller than the aorta. As a consequence, during tracking, a CNN with one
time point only might not be able to provide sufficient information for the network
to make accurate direction estimation. In addition, the agent might have difficulty
finding the correspondence between the agent’s position and the reference standard.

While we were finalizing this manuscript, the work of [125] demonstrated the pos-
sibility of walking outside of the classical reinforcement learning problem formulation,
which is either value-based or policy-based. In contrast, they regard the reinforcement
learning problem as a sequence prediction problem. Similarly, we could use our trained
agent and our reward with the sequential framework in an offline reinforcement learning
fashion, which may improve our tracking performance. To what extent and whether
the transformer would be the best sequential model for our reward function could be
further investigated.

When training DL models, data is essential: both the amount of data and the
quality. To investigate whether adding may further improve the results, we compared
the results of the cross-validation models with a model trained on the full dataset.
The results show that the additional 25% of data does not significantly improve the
results, suggesting that the amount of data is sufficient for the task.

Annotation of anterior vessel trees in brain CT images is a tedious and difficult task,
among others caused by the coexistence of arterial and venous structures in the whole
brain. In Fig. 5.1, the anterior vessel tree is only a small part of the complete brain
vessel annotation. Under such circumstances, kissing vessels, i.e. locations (mostly
distally) where vessels (almost) touch are common. This explains the moderate average
interobserver overlap of 0.69. The intensity distribution in the branches where the
observers disagree is in the range of the low intensity vessels that consist of distal
and near skull segments. Though the annotations are not perfect, we assume that
for the training, because of the large number of vessels, the errors in the annotations
would not greatly impact the models, which is also suggested by the results. Errors
in the annotation also impact the quantitative results. We therefore also compare
the tree formation results with the annotations from two different observers in three
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datasets. The differences again are mainly in the vessels that have a low intensity,
which is harder to annotate, and often are distal vessels. Also, there was a variation
in vessels close to the skull. These errors are similar to the errors of the automated
method, suggesting that these low-intensity vessels are difficult for both humans and
the automated method.

From the analysis of the tree formation result with respect to several imaging
characteristics, it followed that only the imaging modality has a significant impact on
the quantitative results: the tree formation method on CTP performs less than on CTA.
The difference between the validation and test set (the performance on the validation
set was always worse than on the test set), may therefore be caused by the higher
percentage of CTP images in the validation set. The worse performance may be caused
by the use of the maximum volume image for the tracking, whereas the annotation
was done in the MIP image, and the blurring was caused by the interpolation after
the alignment to the first frame. After annotating the vessels of the CTP in the MIP
image, we decided to use the maximum volume CTP image for training and tracking
instead of the MIP. Whereas the MIP is convenient for annotation, its appearance is
different from CTA images, because of the higher background intensities and more
noisy appearance caused by the MIP. This is a limitation of our study, we however
preferred including the (suboptimal) annotations over leaving out the CTP, or redoing
the annotation.

The final result of the method is a tree representation of the brain vasculature, and
this tree representation will be the basis for subsequent works. We intend to use this
tree to e.g. find lesions (occlusions in more distal arteries, such as M2, which is still
a challenging task [126]), better quantification of collateral status, and possibly also
linking/registering the 3D vascular information from CTA and CTP to interventional
DSA images for improving image guidance during endovascular treatment. The tree
formation method performed reasonably well in the proximal and middle segments. In
the distal and near skull segments, the performances were also in the interobserver
ranges. For the DSA to CTA mapping and distal occlusion detection, it is likely that
such tree formation performance is sufficient.

5.6 Conclusion

In this study, we developed and assessed a method to construct a brain vessel tree
from a CTA or CTP image, using a starting point and direction vector. The method
consists of a DRL-based tracker, a CNN-based bifurcation detector, and a breadth-first
tree building. The tracker performance on segments from bifurcation to bifurcation has
a median overlap of 100 %, and the bifurcation detector has a mean accuracy of 82 %.
The combination of both components in an ensemble tree building algorithm yields
trees that have a 69 % overlap with manual annotations, which is in the interobserver
variation range.
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Ischemic stroke is a devastating event caused by the occlusion of intracranial
arteries. Evaluation of cerebral vessels is an essential component for gaining knowledge
about the severity of acute ischemic stroke, the success of treatment, and the outcome
of a patient. The presence and density of cerebral vessels in an ischemic brain area is
a reflection of the extent of collateral circulation which plays an important role in the
survival of brain cells in the ischemic region.

The main methodological contributions of this thesis are aimed at the improvement
of cerebral vessel extraction (Chapter 2 and ??), and cerebral anterior trees extrac-
tion (Chapter 5). The extracted vessel structures in Chapter 2 were used to derive a
collateral score. From Chapter 2 to Chapter 4, we focused on the design, modeling,
and validation of automated collateral score algorithm using large multicenter clinical
datasets.

In Chapter 2 and ?? contain two methods for collateral scoring with the intention
to ultimately replace the repetitive laborious process of manual scoring, which is prone
to inter- and intraobserver variability. In Chapter 2, I used a conventional U-net vessel
segmentation approach to quantify the vessel features of the occluded side and non-
occluded side. The output of this method is a floating point score. In ??, an end-to-end
Siamese model to compare the occluded hemisphere and the contralateral side was used.
The output of this method is a categorical scale. Both methods showed performance
comparable to experienced radiologists. Both methods have similar computation times
due to the registration in the prepossessing step. The idea to develop the end-to-end
approach was to let the network learn the relevant content by itself. However, in
previous experiences of deep reinforcement learning(Chapter 5), using only image
information performs less well than the local feature-guided image information in
the tracking problem. Also, in ??, the preprocessing step was designed to make the
vessel structure more pronounced, in order for the network to more easily learn the
difference between two hemispheres with ’attention’ to vessel structure. At last, the
term ’end-to-end’ is a relative term. It depends on whether the pre-processing step
was taken into account. For future work of image biomarker extraction, the automatic
selection of ’attention’ regions/features might be more relevant than focusing on
’end-to-end’ approaches. In terms of performance, both methods achieve expert-level
performance with sufficiently large evaluation datasets in a well-defined study. The
end-to-end approach has slightly better but not statistically significant performance in
the categorical collateral scores in comparison with the method proposed in Chapter 2.
Other methods in the literature do not provide detailed explanations of the study
design and data distribution. Therefore, it’s difficult to compare.

The question remains, which method is best for implementation in clinical practice.
My answer to this question is related to the current domain gaps between clinicians
and machine learning experts. Machine learning based methods have been applied to
clinical research for a long time, however, barriers do exist to bringing the machine
learning based methods from research to the clinic. One of the barriers is the lack of
explainability in many machine learning based methods [127]. People would rather
use a tool they can understand. The end user of the machine learning based imaging
biomarker methods is a health care professional. Therefore, it is essential for us
to build tools that are understandable by clinical professionals. The automated
vessel segmentation-based collateral scoring method developed in this thesis is a very



6

93

straightforward way to compute the collateral score. The intermediate steps, such
as a segmentation of the vasculature, can be visualized. The vessel feature and the
subsequent collateral score are then easy to interpret. In contrast to this, the end-to-
end approach in ?? is more like a black-box approach. Only input and output are
known. The only intermediate step are the feature maps for each categorical score.
Such feature maps are difficult to interpret. Therefore, the vessel segmentation based
method which is introduced in Chapter 2 would be more appropriate for clinical usage
at this moment even if the performance would be worse.

One of the reasons for developing an automatic biomarker method was to inves-
tigate whether an automatic collateral score instead of a human score could better
reflect the vessel status at the prognosis of a patient and, thus, improves the per-
formance of a treatment outcome prediction model. To this end, we have replaced
the manual collateral score with the automatic collateral score in the existing MR
PREDICT model([128]). The result demonstrated that there is no additional value
(i.e. improvement in outcome prediction) when using automatic collateral scoring. The
model with the automatic collateral scoring method had a similar performance to the
model with collateral score assessed by experienced radiologists. The visual scoring
was evaluated by a corelab which consists of experienced radiologists. Therefore, the
improvement of the model with automatic collateral scoring was not significant in
comparison to the model with the visually assessed collateral scoring. Especially in the
binary collateral score (good or bad collateral), both experienced radiologists and the
automatic collateral score method achieve good accuracy. In the MR PREDICT, the
strongest predictors were clinical variables such as age, baseline NIHSS, and systolic
blood pressure. In Thrive-C, the collateral score was not used. It indicates that the
collateral score itself is less important in the regression-based prediction model

One may thus conclude that automatic collateral scoring has added value in
replacing human visual scoring, and the contribution to binary outcome prediction
models is less. The role of automatically extracted radiological parameters is more
like a tool that improves productivity.

In Chapter 3, the method introduced in Chapter 2 was compared with 29 radiologists
and radiology residents. The performance of the automatic collateral scoring method
was similar to the overall accuracy of these 29 raters. The performance of the rater did
not depend on professional experience. Although the proposed automatic collateral
scoring method achieved similar performance as the trained raters for visual collateral
scoring, the proposed method is not used yet in routine clinical practice. The collateral
score does however act as an inclusion criterion [83] or as one of the variables in clinical
trials. The automatic collateral scoring method can therefore be used in clinical
trials for screening of patients before inclusion to reduce labor costs and interobserver
variability.

In Chapter 4 we demonstrated the usability of quantitative collateral scoring to
assess the time dependency of assessing collateral scoring and to find the optimal
acquisition time. In this work, we demonstrated that the collateral score is changing
with the timing of data acquisition in relation to the contrast injection. The contrast
acquisition phase has an impact on collateral scoring, as a CTA image is acquired at
one time point in the contrast flow cycle. At this moment, both visual scoring and
automatic collateral scoring do not take the contrast acquisition phase into account.
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I used CT perfusion data to construct enhancement curves in order to evaluate the
optimal time point for CTA data acquisition. Although the approximate optimal time
was found using CT perfusion image, the collateral scores did not correlate better to
baseline NIHSS or ASPECT than the collateral score from CTA. However, whether the
currently used time point in CTA is optimal or not is still an open question. Further
investigation into the acquisition timing in a larger data set is needed.

Supervised learning in general requires large sets of labeled data, and the labeling
process is a costly and time-intensive procedure. In ??, we investigated a method
that can effectively use existing labels to improve segmentation results. The proposed
method is easy to use as a standalone post-processing step for tubular structure
segmentation tasks, such as brain vessels or lung airways. This method demonstrated
the possibility of utilizing the explicitly designed synthetic structure error to further
improve the tubular structure. The proposed method in ?? does statistically signifi-
cantly improve lung airway segmentation results. However, the performance in the
vessel centerline segmentation task is better but not statistically significantly better
than the original result that was introduced in Chapter 2.

In Chapter 5, I demonstrated the feasibility of extracting anterior vessel tree from 3D
CTA images. In this chapter, I explored a deep reinforcement learning proximal policy
optimization method for cerebral vessel tracking. I provided insight into the model
architecture, and the formulation of the reward function. I also provided a detailed
description of the data distribution of the anterior tree, the bifurcation detection, and
the tree formation itself. In this work, I learned that image information only yields
sub-optimal results in a tracking approach, and image information with dynamic local
features helps the model better follow the track path. Also, I proposed an elegant
reward function that can be widely applied to any curvature tracking problems. This
work might be of value for other researchers applying deep reinforcement learning to
medical image tracking problems. In addition, the performance of deep reinforcement
learning tracking approach achieved state of art performance and was shown to provide
good tracking results in complex environment. This suggests that such a tracker can be
used in the semi-automatic annotation task to generate vessel centerline in an efficient
manner. The output of the anterior tree extraction method is a graph representation,
such that the vessel feature information, such as, vessel length, number of bifurcations,
and depth of vessel trees can be easily extracted.

Summarizing, the contribution of the thesis is in the demonstration of complete flow
of design, feature engineering, modelling, and validation of learning based algorithms
that may replace the intensive laborious task of manual labeling collateral score. In
addition, it presents a data efficient approach to improve vessel segmentation results
and a deep reinforcement learning approach to extract anterior trees from 3D CTA
images.







Summary

In the last few years, the blooming of learning based methods has brought reincar-
nation to the medical image analysis field. Classical methods were rapidly replaced
by many kinds of learning based methods. This thesis has explored biomarker ex-
traction methods and applications in ischemic stroke. Such biomarkers may be used
in treatment decision making. The first chapters of this thesis focuses on collateral
scoring, including model design, the assessment of model performance and the clinical
use of the automatic collateral scoring method. In of the last chapters this thesis,
a general post-processing method that improves binary segmentation results for the
tubular structure was discussed, and a method that extracts the anterior trees from
CTA images was developed and thoroughly assessed.

In Chapter 2, we designed a method for collateral scoring that follows the human
visual collateral scoring approach. The proposed method consists of three steps. First,
the brain region is defined using atlas based registration. Next, a 3D U-net for vessel
segmentation is applied. Finally, the collateral score is determined using the median
ratio of vessel features on the occluded side versus the contralateral side. The obtained
collateral score is a floating point score. The floating point scores were converted into
categorical scales using a simple regression model or random forest classifier. The
performance of the collateral scoring method was assessed in a randomly sampled
subset of a large multicenter registry dataset (MR CLEAN Registry). The subset
consist of 270 subjects and the collateral reference standard was a consensus score
obtained from three experienced radiologists. The performance of the proposed method
is comparable to an experienced radiologist. In addition, a manually labeled cerebral
vessel centerline dataset was created for training the vessel segmentation model.

In Chapter 3, we validate the performance of the proposed method in Chapter 2
with 29 raters (either radiologist or radiology resident). There is no statistically
significant difference between the accuracy of human raters and the accuracy of the
automatic collateral scoring method.

In Chapter 4, we use the floating point automatic collateral scoring method from
Chapter 2 to investigate the optimal contrast acquisition time point for CTA images
by computing the CS over all timepoints of CTP and mCTA images. This information
is used to temporarily align CTP and mCTA images of the same subjects. The study
shows that collateral scores greatly depend on the timing of the acquisition, that
mCTA images can be accurately timed, and that, when using baseline parameters as
a metric, a CTP image does not have added value for collateral scoring; a good-timed
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CTA image is sufficient.
In Chapter 5, a method for extracting the cerebral anterior vessel tree was pre-

sented. The method consists of three parts, a policy gradient based deep reinforcement
learning (DRL) tracker, a CNN based bifurcation detection, and a classical breadth-
first tree formation method. In the DRL tracking approach, we adopted a proximal
policy optimization deep reinforcement learning method in an online fashion. A
curve-to-curve distance metric reward function was proposed. We also investigated the
network architecture configuration and the training scheme. In addition, we proposed
a metric to better monitor the training process of the DRL tracker rather than relying
on the accumulated reward. The bifurcation detection used a similar architecture but
with switchable normalization after each convolutional layer. At last, a breath-first
tree formation method with a tracking ensemble method was proposed to extract the
anterior tree. The application of anterior tree extraction is novel in the field and the
performance of DRL tracker achieves state of art performance. Moreover, a dataset of
manually labeled cerebral anterior trees over 125 subjects (randomly selected from
MR CLEAN Registry) was created for assessing and training the proposed method.







Samenvatting

In de afgelopen jaren heeft de bloei van op leren gebaseerde methoden een wed
ergeboorte teweeggebracht in de medische beeldanalyse. Klassieke methode werden
snel vervangen door allerlei op leren gebaseerde methoden. Dit proefschrift heeft
methoden voor het bepalen van biomarkers in ischemische beroerten onderzocht. Zulke
biomarkers kunnen bijv. gebruikt worden voor besluitvorming rond de behandeling.
De eerste hoofdstukken van dit proefschrift gaan over het bepalen van een score voor
collateralen; zowel het model ontwerp, het onderzoeken van de performance, en de
klinische toepassing. In de laatste hoofdstukken van het proefschrift introduceren en
evalueren we een generieke methode om de binaire segmentatie resultaten voor het
segmenteren van buisvormige structuren, en een methode die de anterieure vaatbomen
bepaalt in CTA beelden.

In Hoofdstuk 2 hebben we een model om de score voor collateralen te bepalen,
ontworpen. Het model volgt de menselijke manier van scoren. De voorgestelde
methode bestaat uit drie stappen. Eerst wordt via een atlas registratie het brein
bepaald. Vervolgens wordt een 3D U-Net voor vaatsegmentatie toegepast. En tenslotte
wordt de score bepaald door de mediaan van de ratio’s van vaat kenmerken van de
geoccludeerde kant en de contra-laterale kant. Deze scores zijn reëel getallen, en
conversie naar een categorische schaal werd gedaan via regressie of een ‘random forest’
model. De nauwkeurigheid van de scores is geëvalueerd in de beelden van 270 patiënten,
die op een willekeurige manier gekozen zijn uit een grote, multi-centrische verzameling
van beelden (MR Clean Registry). De referentie scores waren bepaald door drie ervaren
radiologen, en de automatische methode heeft resultaten die vergelijkbaar zijn met
de menselijke scores. Voor het trainen van het vaat segmentatie model was ook een
handmatige annotatie van de vaten gemaakt.

In Hoofdstuk ?? hebben we een end-to-end model voor het bepalen van een
collaterale score ontwikkeld. De methode beschouwt het bepalen van een collaterale
score als een classificatie probleem; een Siamees model wordt gebruikt om kenmerken
uit het beeld te halen, en de kant met de occlusie te vergelijken met de andere
kant. Om de vergelijking makkelijk te maken, werd een atlas gebruikt om de linker
en rechter hersenhelft te bepalen. De methode bepaalt hiermee een score met vier
mogelijke waarden. De methode is geëvalueerd met beelden van MR Clean studie. De
nauwkeurigheid van deze methode is vergelijkbaar met de methode uit hoofdstuk 2.

In Hoofdstuk 3 vergelijken we de resultaten van de methode uit hoofdstuk 2 met
de scores die 29 radiologen en radiologen in opleiding hebben bepaald. Er was geen
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statistisch significant verschil in nauwkeurigheid tussen de scores van de radiologen en
radiologen in opleiding enerzijds, en de automatische methode anderzijds.

In Hoofdstuk 4 onderzoeken we het beste tijdstip (na contrast toediening) voor
het maken van een CTA afbeelden. We gebruiken hiervoor de methode uit hoofdstuk
2 en bepalen voor alle tijdstippen van een CTP beeld en van een mCTA beeld een
collaterale score. Met behulp van deze scores worden de CTP en mCTA beelden
langs de tijdsas naast elkaar gezet. De studie laat zien dat de collateralen score erg
afhankelijk is van het moment waarop het beeld gemaakt wordt, dat dat moment voor
mCTA beelden nauwkeurig gekozen kan worden, en dat, als we de collateralen score
vergelijken met andere parameters van de patiënt voor een interventie, een CTP beeld
geen toegevoegde waarde heeft: een CTA beeld genomen op het juiste moment is
voldoende.

In Hoofdstuk ?? wordt een generieke methode om het resultaat van segmentatie
van buisvormige structuren (zoals luchtwegen in de longen, en vaten in het brein) te
verbeteren geïntroduceerd. Om de methode te leren een eerste segmentatie te ver-
beteren, wordt de methode getraind met beelden met synthetische fouten, gegenereerd
door een GAN. Deze methode kan gebruikt worden als een toevoeging op een eerste
segmentatie aanpak. De buisvormige structuren bepaald door deze methode zijn
statistisch significant completer en hebben een betere onderlinge verbinding. In deze
studie is zijn de handmatige intekeningen gemaakt in hoofdstuk 2 gebruikt.

In Hoofdstuk 5 wordt een methode voor de het bepalen van de anterieure
vaatboom in de hersenen gepresenteerd. De methode bestaat uit drie delen: een
deep reinforcement learning gebaseerde methode om een pad in een beeld te bepalen,
een CNN gebaseerde methode om bifurcaties te detecteren, en een klassieke breedte-
eerst methode om een boomstructuur te maken. Een maat om de afstand tussen
twee krommen te bepalen is gebruikt als beloningsfunctie. We hebben de netwerk
architectuur en het trainingsschema onderzocht. Daarnaast hebben we een methode
voorgesteld om beter het trainingsproces van de DRL methode in de gaten te houden
(en niet alleen te kijken naar de beloningsfunctie). De CNN gebaseerde bifurcatie
detectie gebruikt een vergelijkbare architectuur, met een instelbare normalisatie na
elke convolutie laag. De breedte-eerst boom constructie met een de resultaten van
een aantal DRL resultaten is uiteindelijk gebruikt om de vaatboom te beplane. Deze
toepassing was nieuw, en het resultaat is vergelijkbaar met andere methoden. Voor
deze studie is een handmatige annotaties van de vaatbomen in 125 subjects (een
willekeurige selectie uit de MR Clean registry) gemaakt om de methode te trainen, en
te evalueren.
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Biomedical imaging group seminars (biweekly) 2017 – 2022 1Erasmus MC, The Netherlands

Medical Informatics research lunch meeting
(biweekly) 2017 – 2020 1
Erasmus MC, The Netherlands

Stroke research meetings (biweekly) 2017 – 2022 1Erasmus MC, The Netherlands

Total 5.3
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Teaching activities Year
Advanced Image Processing 2020 – 2021Delft University of Technology, The Netherlands

Grants & Awards Year
NVidia GPU grant (together with Dr. Theo van
Walsum) 2018

Pilot grant SURFsara (800,000 billing units) 2018 – 2022

Other Activities Year
Radiology dinner Organizer 2020
Organizing member





Bibliography

[1] M. E. Raichle and D. A. Gusnard, “Appraising the brain’s energy budget,”
Proceedings of the National Academy of Sciences, vol. 99, no. 16, pp. 10 237–
10 239, 2002.

[2] T. Vos, S. S. Lim, C. Abbafati, K. M. Abbas, M. Abbasi, M. Abbasifard, M.
Abbasi-Kangevari, H. Abbastabar, F. Abd-Allah, A. Abdelalim, et al., “Global
burden of 369 diseases and injuries in 204 countries and territories, 1990–2019:
A systematic analysis for the global burden of disease study 2019,” The Lancet,
vol. 396, no. 10258, pp. 1204–1222, 2020.

[3] C. W. Tsao, A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z. Beaton, M. S.
Bittencourt, A. K. Boehme, A. E. Buxton, A. P. Carson, Y. Commodore-
Mensah, et al., “Heart disease and stroke statistics—2022 update: A report
from the american heart association,” Circulation, vol. 145, no. 8, pp. e153–e639,
2022.

[4] N. Lakomkin, M. Dhamoon, K. Carroll, I. P. Singh, S. Tuhrim, J. Lee, J. T. Fifi,
and J. Mocco, “Prevalence of large vessel occlusion in patients presenting with
acute ischemic stroke: A 10-year systematic review of the literature,” Journal
of neurointerventional surgery, vol. 11, no. 3, pp. 241–245, 2019.

[5] J. C. Hemphill III, S. M. Greenberg, C. S. Anderson, K. Becker, B. R. Bendok,
M. Cushman, G. L. Fung, J. N. Goldstein, R. L. Macdonald, P. H. Mitchell,
et al., “Guidelines for the management of spontaneous intracerebral hemor-
rhage: A guideline for healthcare professionals from the american heart as-
sociation/american stroke association,” Stroke, vol. 46, no. 7, pp. 2032–2060,
2015.

[6] D. Rodriguez-Luna, D. Dowlatshahi, R. I. Aviv, C. A. Molina, Y. Silva, I.
Dzialowski, C. Lum, A. Czlonkowska, J.-M. Boulanger, C. S. Kase, et al., “Ve-
nous phase of computed tomography angiography increases spot sign detection,
but intracerebral hemorrhage expansion is greater in spot signs detected in
arterial phase,” Stroke, vol. 45, no. 3, pp. 734–739, 2014.

[7] M. Goyal, B. K. Menon, W. H. Van Zwam, D. W. Dippel, P. J. Mitchell, A. M.
Demchuk, A. Dávalos, C. B. Majoie, A. van Der Lugt, M. A. De Miquel, et
al., “Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-
analysis of individual patient data from five randomised trials,” The Lancet,
vol. 387, no. 10029, pp. 1723–1731, 2016.

119



120 Bibliography

[8] G. W. Albers, M. P. Marks, S. Kemp, S. Christensen, J. P. Tsai, S. Ortega-
Gutierrez, R. A. McTaggart, M. T. Torbey, M. Kim-Tenser, T. Leslie-Mazwi,
et al., “Thrombectomy for stroke at 6 to 16 hours with selection by perfusion
imaging,” New England Journal of Medicine, vol. 378, no. 8, pp. 708–718, 2018.

[9] R. G. Nogueira, A. P. Jadhav, D. C. Haussen, A. Bonafe, R. F. Budzik, P. Bhuva,
D. R. Yavagal, M. Ribo, C. Cognard, R. A. Hanel, et al., “Thrombectomy 6
to 24 hours after stroke with a mismatch between deficit and infarct,” New
England Journal of Medicine, vol. 378, no. 1, pp. 11–21, 2018.

[10] O. A. Berkhemer, P. S. Fransen, D. Beumer, L. A. Van Den Berg, H. F. Lingsma,
A. J. Yoo, W. J. Schonewille, J. A. Vos, P. J. Nederkoorn, M. J. Wermer, et
al., “A randomized trial of intraarterial treatment for acute ischemic stroke,” n
Engl J Med, vol. 372, pp. 11–20, 2015.

[11] M. Goyal, A. M. Demchuk, B. K. Menon, M. Eesa, J. L. Rempel, J. Thornton,
D. Roy, T. G. Jovin, R. A. Willinsky, B. L. Sapkota, et al., “Randomized
assessment of rapid endovascular treatment of ischemic stroke,” New England
Journal of Medicine, vol. 372, no. 11, pp. 1019–1030, 2015.

[12] J. L. Saver, M. Goyal, A. Bonafe, H.-C. Diener, E. I. Levy, V. M. Pereira,
G. W. Albers, C. Cognard, D. J. Cohen, W. Hacke, et al., “Stent-retriever
thrombectomy after intravenous t-pa vs. t-pa alone in stroke,” New England
Journal of Medicine, vol. 372, no. 24, pp. 2285–2295, 2015.

[13] B. C. Campbell, P. J. Mitchell, T. J. Kleinig, H. M. Dewey, L. Churilov, N.
Yassi, B. Yan, R. J. Dowling, M. W. Parsons, T. J. Oxley, et al., “Endovascular
therapy for ischemic stroke with perfusion-imaging selection,” New England
Journal of Medicine, vol. 372, no. 11, pp. 1009–1018, 2015.

[14] T. G. Jovin, A. Chamorro, E. Cobo, M. A. de Miquel, C. A. Molina, A. Rovira,
L. San Román, J. Serena, S. Abilleira, M. Ribó, et al., “Thrombectomy within
8 hours after symptom onset in ischemic stroke,” New England Journal of
Medicine, vol. 372, no. 24, pp. 2296–2306, 2015.

[15] E. Venema, M. J. Mulder, B. Roozenbeek, J. P. Broderick, S. D. Yeatts, P.
Khatri, O. A. Berkhemer, B. J. Emmer, Y. B. Roos, C. B. Majoie, et al.,
“Selection of patients for intra-arterial treatment for acute ischaemic stroke:
Development and validation of a clinical decision tool in two randomised trials,”
bmj, vol. 357, 2017.

[16] J. J. Smith, A. G. Sorensen, and J. H. Thrall, “Biomarkers in imaging: Realizing
radiology’s future,” Radiology, vol. 227, no. 3, pp. 633–638, 2003.

[17] W. J. Powers, A. A. Rabinstein, T. Ackerson, O. M. Adeoye, N. C. Bambakidis,
K. Becker, J. Biller, M. Brown, B. M. Demaerschalk, B. Hoh, et al., “Guidelines
for the early management of patients with acute ischemic stroke: 2019 update to
the 2018 guidelines for the early management of acute ischemic stroke: A guide-
line for healthcare professionals from the american heart association/american
stroke association,” Stroke, vol. 50, no. 12, pp. e344–e418, 2019.



Bibliography 121

[18] I. Tan, A. Demchuk, J. Hopyan, L. Zhang, D. Gladstone, K. Wong, M. Martin, S.
Symons, A. Fox, and R. Aviv, “Ct angiography clot burden score and collateral
score: Correlation with clinical and radiologic outcomes in acute middle cerebral
artery infarct,” American Journal of Neuroradiology, vol. 30, no. 3, pp. 525–531,
2009.

[19] P. A. Barber, A. M. Demchuk, J. Zhang, A. M. Buchan, A. S. Group, et
al., “Validity and reliability of a quantitative computed tomography score in
predicting outcome of hyperacute stroke before thrombolytic therapy,” The
Lancet, vol. 355, no. 9216, pp. 1670–1674, 2000.

[20] J. C. Tan, W. P. Dillon, S. Liu, F. Adler, W. S. Smith, and M. Wintermark,
“Systematic comparison of perfusion-ct and ct-angiography in acute stroke
patients,” Annals of Neurology: Official Journal of the American Neurological
Association and the Child Neurology Society, vol. 61, no. 6, pp. 533–543, 2007.

[21] J. Su, L. Wolff, A. C. M. van Es, W. Van Zwam, C. Majoie, D. W. Dippel,
A. Van Der Lugt, W. J. Niessen, and T. Van Walsum, “Automatic collateral
scoring from 3d cta images,” IEEE transactions on medical imaging, vol. 39,
no. 6, pp. 2190–2200, 2020.

[22] D. S. Liebeskind, “Collateral circulation,” Stroke, vol. 34, no. 9, pp. 2279–2284,
2003.

[23] O. A. Berkhemer, I. G. Jansen, D. Beumer, P. S. Fransen, L. A. Van Den Berg,
A. J. Yoo, H. F. Lingsma, M. E. Sprengers, S. F. Jenniskens, G. J. Lycklama
à Nijeholt, et al., “Collateral status on baseline computed tomographic angiog-
raphy and intra-arterial treatment effect in patients with proximal anterior
circulation stroke,” Stroke, vol. 47, no. 3, pp. 768–776, 2016.

[24] F. Seker, A. Potreck, M. Möhlenbruch, M. Bendszus, and M. Pham, “Compari-
son of four different collateral scores in acute ischemic stroke by ct angiography,”
Journal of neurointerventional surgery, vol. 8, no. 11, pp. 1116–1118, 2016.

[25] C. Kirbas and F. Quek, “A review of vessel extraction techniques and algo-
rithms,” ACM Computing Surveys (CSUR), vol. 36, no. 2, pp. 81–121, 2004.

[26] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3d vessel
lumen segmentation techniques: Models, features and extraction schemes,”
Medical image analysis, vol. 13, no. 6, pp. 819–845, 2009.

[27] M. Meijs, A. Patel, S. C. van de Leemput, M. Prokop, E. J. van Dijk, F.-E. de
Leeuw, F. J. Meijer, B. van Ginneken, and R. Manniesing, “Robust segmentation
of the full cerebral vasculature in 4d ct of suspected stroke patients,” Scientific
reports, vol. 7, no. 1, pp. 1–12, 2017.

[28] R. Manniesing, B. K. Velthuis, M. S. van Leeuwen, I. C. van der Schaaf, P. Van
Laar, and W. J. Niessen, “Level set based cerebral vasculature segmentation
and diameter quantification in ct angiography,” Medical image analysis, vol. 10,
no. 2, pp. 200–214, 2006.



122 Bibliography

[29] M. Schaap, R. Manniesing, I. Smal, T. v. Walsum, A. v. d. Lugt, and W.
Niessen, “Bayesian tracking of tubular structures and its application to carotid
arteries in cta,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2007, pp. 562–570.

[30] D. Robben, E. Türetken, S. Sunaert, V. Thijs, G. Wilms, P. Fua, F. Maes,
and P. Suetens, “Simultaneous segmentation and anatomical labeling of the
cerebral vasculature,” Medical image analysis, vol. 32, pp. 201–215, 2016.

[31] S. Moccia, E. De Momi, S. El Hadji, and L. S. Mattos, “Blood vessel seg-
mentation algorithms—review of methods, datasets and evaluation metrics,”
Computer methods and programs in biomedicine, vol. 158, pp. 71–91, 2018.

[32] P. Sanchesa, C. Meyer, V. Vigon, and B. Naegel, “Cerebrovascular network seg-
mentation of mra images with deep learning,” in 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), IEEE, 2019, pp. 768–771.

[33] M. Livne, J. Rieger, O. U. Aydin, A. A. Taha, E. M. Akay, T. Kossen, J. Sobesky,
J. D. Kelleher, K. Hildebrand, D. Frey, et al., “A u-net deep learning framework
for high performance vessel segmentation in patients with cerebrovascular
disease,” Frontiers in neuroscience, vol. 13, p. 97, 2019.

[34] H. Kandil, A. Soliman, F. Taher, A. Mahmoud, A. Elmaghraby, and A. El-
Baz, “Using 3-d cnns and local blood flow information to segment cerebral
vasculature,” in 2018 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), IEEE, 2018, pp. 701–705.

[35] M. Meijs and R. Manniesing, “Artery and vein segmentation of the cerebral
vasculature in 4d ct using a 3d fully convolutional neural network,” in Medical
Imaging 2018: Computer-Aided Diagnosis, SPIE, vol. 10575, 2018, pp. 394–399.

[36] G. Tetteh, V. Efremov, N. D. Forkert, M. Schneider, J. Kirschke, B. Weber,
C. Zimmer, M. Piraud, and B. H. Menze, “Deepvesselnet: Vessel segmentation,
centerline prediction, and bifurcation detection in 3-d angiographic volumes,”
Frontiers in Neuroscience, p. 1285, 2020.

[37] A. M. Boers, R. Sales Barros, I. G. Jansen, C. H. Slump, D. W. Dippel, A. v. d.
Lugt, W. H. v. Zwam, Y. B. Roos, R. J. v. Oostenbrugge, C. B. Majoie, et
al., “Quantitative collateral grading on ct angiography in patients with acute
ischemic stroke,” in Molecular Imaging, Reconstruction and Analysis of Moving
Body Organs, and Stroke Imaging and Treatment, Springer, 2017, pp. 176–184.

[38] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale
vessel enhancement filtering,” in International conference on medical image
computing and computer-assisted intervention, Springer, 1998, pp. 130–137.

[39] R. Peter, B. J. Emmer, A. C. van Es, and T. van Walsum, “Cortical and
vascular probability maps for analysis of human brain in computed tomography
images,” in 2017 IEEE 14th International Symposium on Biomedical Imaging
(ISBI 2017), IEEE, 2017, pp. 1141–1145.

[40] K. J. Friston, “Statistical parametric mapping,” in Neuroscience databases,
Springer, 2003, pp. 237–250.



Bibliography 123

[41] S. N. Wright, P. Kochunov, F. Mut, M. Bergamino, K. M. Brown, J. C.
Mazziotta, A. W. Toga, J. R. Cebral, and G. A. Ascoli, “Digital reconstruction
and morphometric analysis of human brain arterial vasculature from magnetic
resonance angiography,” Neuroimage, vol. 82, pp. 170–181, 2013.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[43] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein,
“No new-net,” in International MICCAI Brainlesion Workshop, Springer, 2018,
pp. 234–244.

[44] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein,
“Brain tumor segmentation and radiomics survival prediction: Contribution
to the brats 2017 challenge,” in International MICCAI Brainlesion Workshop,
Springer, 2017, pp. 287–297.

[45] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities improve
neural network acoustic models,” in Proc. icml, Atlanta, Georgia, USA, vol. 30,
2013, p. 3.

[46] B. Kayalibay, G. Jensen, and P. van der Smagt, “Cnn-based segmentation of
medical imaging data,” arXiv preprint arXiv:1701.03056, 2017.

[47] L. Risser, F. Plouraboué, and X. Descombes, “Gap filling of 3-d microvascular
networks by tensor voting,” IEEE transactions on medical imaging, vol. 27,
no. 5, pp. 674–687, 2008.

[48] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models via 3-d
medial surface axis thinning algorithms,” CVGIP: Graphical Models and Image
Processing, vol. 56, no. 6, pp. 462–478, 1994.

[49] D. Garcia, “Robust smoothing of gridded data in one and higher dimensions
with missing values,” Computational statistics & data analysis, vol. 54, no. 4,
pp. 1167–1178, 2010.

[50] D. Garcia, “A fast all-in-one method for automated post-processing of piv data,”
Experiments in fluids, vol. 50, no. 5, pp. 1247–1259, 2011.

[51] I. G. Jansen, M. J. Mulder, and R.-J. B. Goldhoorn, “Endovascular treatment
for acute ischaemic stroke in routine clinical practice: Prospective, observational
cohort study (mr clean registry),” bmj, vol. 360, 2018.

[52] A. T. Rai, J. P. Hogg, B. Cline, and G. Hobbs, “Cerebrovascular geometry in
the anterior circulation: An analysis of diameter, length and the vessel taper,”
Journal of neurointerventional surgery, vol. 5, no. 4, pp. 371–375, 2013.

[53] M. Schaap, L. Neefjes, C. Metz, A. v. d. Giessen, A. Weustink, N. Mollet,
J. Wentzel, T. v. Walsum, and W. Niessen, “Coronary lumen segmentation
using graph cuts and robust kernel regression,” in International Conference on
Information Processing in Medical Imaging, Springer, 2009, pp. 528–539.

[54] B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, “A
reproducible evaluation of ants similarity metric performance in brain image
registration,” Neuroimage, vol. 54, no. 3, pp. 2033–2044, 2011.



124 Bibliography

[55] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang,
G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, et al., “Evaluation of 14
nonlinear deformation algorithms applied to human brain mri registration,”
Neuroimage, vol. 46, no. 3, pp. 786–802, 2009.

[56] T. Tieleman, G. Hinton, et al., “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[57] P. Schramm, P. D. Schellinger, J. B. Fiebach, S. Heiland, O. Jansen, M. Knauth,
W. Hacke, and K. Sartor, “Comparison of ct and ct angiography source images
with diffusion-weighted imaging in patients with acute stroke within 6 hours
after onset,” Stroke, vol. 33, no. 10, pp. 2426–2432, 2002.

[58] I. Q. Grunwald, J. Kulikovski, W. Reith, S. Gerry, R. Namias, M. Politi, P.
Papanagiotou, M. Essig, S. Mathur, O. Joly, et al., “Collateral automation for
triage in stroke: Evaluating automated scoring of collaterals in acute stroke
on computed tomography scans,” Cerebrovascular Diseases, vol. 47, no. 5-6,
pp. 217–222, 2019.

[59] A. Arboix and J. Alió, “Acute cardioembolic cerebral infarction: Answers to
clinical questions,” Current cardiology reviews, vol. 8, no. 1, pp. 54–67, 2012.

[60] R. L. Sacco, S. E. Kasner, J. P. Broderick, L. R. Caplan, J. Connors, A.
Culebras, M. S. Elkind, M. G. George, A. D. Hamdan, R. T. Higashida, et
al., “An updated definition of stroke for the 21st century: A statement for
healthcare professionals from the american heart association/american stroke
association,” Stroke, vol. 44, no. 7, pp. 2064–2089, 2013.

[61] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor,
D. A. Bennett, A. E. Moran, R. L. Sacco, L. Anderson, T. Truelsen, et al.,
“Global and regional burden of stroke during 1990–2010: Findings from the
global burden of disease study 2010,” The lancet, vol. 383, no. 9913, pp. 245–255,
2014.

[62] A. A. Rabinstein, “Update on treatment of acute ischemic stroke,” Continuum:
Lifelong Learning in Neurology, vol. 26, no. 2, pp. 268–286, 2020.

[63] J. K. Holodinsky, A. Y. Yu, Z. A. Assis, A. S. Al Sultan, B. K. Menon, A. M.
Demchuk, M. Goyal, and M. D. Hill, “History, evolution, and importance of
emergency endovascular treatment of acute ischemic stroke,” Current neurology
and neuroscience reports, vol. 16, no. 5, pp. 1–14, 2016.

[64] T. K. Koo and M. Y. Li, “A guideline of selecting and reporting intraclass
correlation coefficients for reliability research,” Journal of chiropractic medicine,
vol. 15, no. 2, pp. 155–163, 2016.

[65] F. Kauw, J. W. Dankbaar, B. W. Martin, V. Y. Ding, D. B. Boothroyd, F.
van Ommen, H. W. de Jong, L. J. Kappelle, B. K. Velthuis, J. J. Heit, et
al., “Collateral status in ischemic stroke: A comparison of computed tomog-
raphy angiography, computed tomography perfusion, and digital subtraction
angiography,” Journal of computer assisted tomography, vol. 44, no. 6, p. 984,
2020.



Bibliography 125

[66] L. Souza, A. Yoo, Z. Chaudhry, S. Payabvash, A. Kemmling, P. Schaefer, J.
Hirsch, K. Furie, R. González, R. Nogueira, et al., “Malignant cta collateral
profile is highly specific for large admission dwi infarct core and poor outcome in
acute stroke,” American journal of neuroradiology, vol. 33, no. 7, pp. 1331–1336,
2012.

[67] D. Weiss, B. Kraus, C. Rubbert, M. Kaschner, S. Jander, M. Gliem, J.-I.
Lee, C.-A. Haensch, B. Turowski, and J. Caspers, “Systematic evaluation of
computed tomography angiography collateral scores for estimation of long-
term outcome after mechanical thrombectomy in acute ischaemic stroke,” The
Neuroradiology Journal, vol. 32, no. 4, pp. 277–286, 2019.

[68] A. Boers, R. S. Barros, I. Jansen, O. Berkhemer, L. Beenen, B. K. Menon, D.
Dippel, A. van der Lugt, W. van Zwam, Y. Roos, et al., “Value of quantitative
collateral scoring on ct angiography in patients with acute ischemic stroke,”
American journal of neuroradiology, vol. 39, no. 6, pp. 1074–1082, 2018.

[69] D. S. Liebeskind, T. A. Tomsick, L. D. Foster, S. D. Yeatts, J. Carrozzella,
A. M. Demchuk, T. G. Jovin, P. Khatri, R. von Kummer, R. M. Sugg, et al.,
“Collaterals at angiography and outcomes in the interventional management of
stroke (ims) iii trial,” Stroke, vol. 45, no. 3, pp. 759–764, 2014.

[70] B. K. Menon, C. D. d’Esterre, E. M. Qazi, M. Almekhlafi, L. Hahn, A. M.
Demchuk, and M. Goyal, “Multiphase ct angiography: A new tool for the
imaging triage of patients with acute ischemic stroke,” Radiology, vol. 275,
no. 2, pp. 510–520, 2015.

[71] I. R. Van Den Wijngaard, G. Holswilder, M. Wermer, J. Boiten, A. Algra,
D. Dippel, J. Dankbaar, B. Velthuis, A. Boers, C. Majoie, et al., “Assessment
of collateral status by dynamic ct angiography in acute mca stroke: Timing of
acquisition and relationship with final infarct volume,” American Journal of
Neuroradiology, vol. 37, no. 7, pp. 1231–1236, 2016.

[72] B. Menon, E. Smith, J. Modi, S. Patel, R. Bhatia, T. Watson, M. Hill, A.
Demchuk, and M. Goyal, “Regional leptomeningeal score on ct angiography
predicts clinical and imaging outcomes in patients with acute anterior circulation
occlusions,” American journal of neuroradiology, vol. 32, no. 9, pp. 1640–1645,
2011.

[73] M. B. Maas, M. H. Lev, H. Ay, A. B. Singhal, D. M. Greer, W. S. Smith,
G. J. Harris, E. Halpern, A. Kemmling, W. J. Koroshetz, et al., “Collateral
vessels on ct angiography predict outcome in acute ischemic stroke,” Stroke,
vol. 40, no. 9, pp. 3001–3005, 2009.

[74] E. Venema, B. Roozenbeek, M. J. Mulder, S. Brown, C. B. Majoie, E. W.
Steyerberg, A. M. Demchuk, K. W. Muir, A. Dávalos, P. J. Mitchell, et al.,
“Prediction of outcome and endovascular treatment benefit: Validation and
update of the mr predicts decision tool,” Stroke, vol. 52, no. 9, pp. 2764–2772,
2021.



126 Bibliography

[75] F. O. Lima, K. L. Furie, G. S. Silva, M. H. Lev, É. C. Camargo, A. B. Singhal,
G. J. Harris, E. F. Halpern, W. J. Koroshetz, W. S. Smith, et al., “Prognosis
of untreated strokes due to anterior circulation proximal intracranial arterial
occlusions detected by use of computed tomography angiography,” JAMA
neurology, vol. 71, no. 2, pp. 151–157, 2014.

[76] I. G. Jansen, M. J. Mulder, R.-J. B. Goldhoorn, A. M. Boers, A. C. van Es,
S. Lonneke, J. Hofmeijer, J. M. Martens, M. A. van Walderveen, B. F. van
der Kallen, et al., “Impact of single phase ct angiography collateral status on
functional outcome over time: Results from the mr clean registry,” Journal of
neurointerventional surgery, vol. 11, no. 9, pp. 866–873, 2019.

[77] S. B. Raymond and P. W. Schaefer, “Imaging brain collaterals: Quantification,
scoring, and potential significance,” Topics in Magnetic Resonance Imaging,
vol. 26, no. 2, pp. 67–75, 2017.

[78] Z. Wang, J. Xie, T.-Y. Tang, C.-H. Zeng, Y. Zhang, Z. Zhao, D.-L. Zhao,
L.-Y. Geng, G. Deng, Z.-J. Zhang, et al., “Collateral status at single-phase and
multiphase ct angiography versus ct perfusion for outcome prediction in anterior
circulation acute ischemic stroke,” Radiology, vol. 296, no. 2, pp. 393–400, 2020.

[79] E. Martinon, P. H. Lefevre, P. Thouant, G. V. Osseby, F. Ricolfi, and A.
Chavent, “Collateral circulation in acute stroke: Assessing methods and impact:
A literature review,” Journal of neuroradiology, vol. 41, no. 2, pp. 97–107, 2014.

[80] F. McVerry, D. Liebeskind, and K. Muir, “Systematic review of methods for
assessing leptomeningeal collateral flow,” American journal of neuroradiology,
vol. 33, no. 3, pp. 576–582, 2012.

[81] T. Brott, H. P. Adams Jr, C. P. Olinger, J. R. Marler, W. G. Barsan, J. Biller,
J. Spilker, R. Holleran, R. Eberle, and V. Hertzberg, “Measurements of acute
cerebral infarction: A clinical examination scale.,” Stroke, vol. 20, no. 7, pp. 864–
870, 1989.

[82] V. Chalos, R. A van de Graaf, B. Roozenbeek, A. CGM van Es, H. M den
Hertog, J. Staals, L. van Dijk, S. FM Jenniskens, R. J van Oostenbrugge, W.
H van Zwam, et al., “Multicenter randomized clinical trial of endovascular
treatment for acute ischemic stroke. the effect of periprocedural medication:
Acetylsalicylic acid, unfractionated heparin, both, or neither (mr clean-med).
rationale and study design,” Trials, vol. 21, no. 1, pp. 1–17, 2020.

[83] F. Pirson, W. H. Hinsenveld, R.-J. B. Goldhoorn, J. Staals, I. R. de Ridder,
W. H. van Zwam, M. A. van Walderveen, G. J. Lycklama à Nijeholt, M. Uytten-
boogaart, W. J. Schonewille, et al., “Mr clean-late, a multicenter randomized
clinical trial of endovascular treatment of acute ischemic stroke in the nether-
lands for late arrivals: Study protocol for a randomized controlled trial,” Trials,
vol. 22, no. 1, pp. 1–13, 2021.



Bibliography 127

[84] K. M. Treurniet, N. E. LeCouffe, M. Kappelhof, B. J. Emmer, A. C. van Es,
J. Boiten, G. J. Lycklama, K. Keizer, L. S. Yo, H. F. Lingsma, et al., “Mr
clean-no iv: Intravenous treatment followed by endovascular treatment versus
direct endovascular treatment for acute ischemic stroke caused by a proximal
intracranial occlusion—study protocol for a randomized clinical trial,” Trials,
vol. 22, no. 1, pp. 1–15, 2021.

[85] E. Tong, J. Patrie, S. Tong, A. Evans, P. Michel, A. Eskandari, and M. Win-
termark, “Time-resolved ct assessment of collaterals as imaging biomarkers
to predict clinical outcomes in acute ischemic stroke,” Neuroradiology, vol. 59,
no. 11, pp. 1101–1109, 2017.

[86] F. Cademartiri, A. van der Lugt, G. Luccichenti, P. Pavone, and G. P. Krestin,
“Parameters affecting bolus geometry in cta: A review,” Journal of computer
assisted tomography, vol. 26, no. 4, pp. 598–607, 2002.

[87] K. Schregel, I. Tsogkas, C. Peter, A. Zapf, D. Behme, M. Schnieder, I. L.
Maier, J. Liman, M. Knauth, and M.-N. Psychogios, “Outcome prediction using
perfusion parameters and collateral scores of multi-phase and single-phase ct
angiography in acute stroke: Need for one, two, three, or thirty scans?” Journal
of Stroke, vol. 20, no. 3, p. 362, 2018.

[88] C. A. Potter, A. S. Vagal, M. Goyal, D. B. Nunez, T. M. Leslie-Mazwi, and
M. H. Lev, “Ct for treatment selection in acute ischemic stroke: A code stroke
primer,” Radiographics, vol. 39, no. 6, pp. 1717–1738, 2019.

[89] R. Damseh, P. Delafontaine-Martel, P. Pouliot, F. Cheriet, and F. Lesage,
“Laplacian flow dynamics on geometric graphs for anatomical modeling of
cerebrovascular networks,” IEEE Transactions on Medical Imaging, vol. 40,
no. 1, pp. 381–394, 2020.

[90] S. Moriconi, M. A. Zuluaga, H. R. Jäger, P. Nachev, S. Ourselin, and M. J. Car-
doso, “Inference of cerebrovascular topology with geodesic minimum spanning
trees,” IEEE transactions on medical imaging, vol. 38, no. 1, pp. 225–239, 2018.

[91] Z. Zhang, D. Marin, M. Drangova, and Y. Boykov, “Confluent vessel trees
with accurate bifurcations,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 9573–9582.

[92] Y. Zhang, G. Luo, W. Wang, and K. Wang, “Branch-aware double dqn for
centerline extraction in coronary ct angiography,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention, Springer,
2020, pp. 35–44.

[93] B. Jeon, “Deep recursive bayesian tracking for fully automatic centerline ex-
traction of coronary arteries in ct images,” Sensors, vol. 21, no. 18, p. 6087,
2021.

[94] J. M. Wolterink, R. W. van Hamersvelt, M. A. Viergever, T. Leiner, and I.
Išgum, “Coronary artery centerline extraction in cardiac ct angiography using
a cnn-based orientation classifier,” Medical image analysis, vol. 51, pp. 46–60,
2019.



128 Bibliography

[95] Z. Guo, J. Bai, Y. Lu, X. Wang, K. Cao, Q. Song, M. Sonka, and Y. Yin, “Deep-
centerline: A multi-task fully convolutional network for centerline extraction,”
in International Conference on Information Processing in Medical Imaging,
Springer, 2019, pp. 441–453.

[96] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief
survey of deep reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

[97] S. K. Zhou, H. N. Le, K. Luu, H. V. Nguyen, and N. Ayache, “Deep reinforcement
learning in medical imaging: A literature review,” Medical image analysis, vol. 73,
p. 102 193, 2021.

[98] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[99] P. Zhang, F. Wang, and Y. Zheng, “Deep reinforcement learning for vessel
centerline tracing in multi-modality 3d volumes,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention, Springer,
2018, pp. 755–763.

[100] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble q-learning,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

[101] Z. Li, Q. Xia, Z. Hu, W. Wang, L. Xu, and S. Zhang, “A deep reinforced
tree-traversal agent for coronary artery centerline extraction,” in International
Conference on Medical Image Computing and Computer-Assisted Intervention,
Springer, 2021, pp. 418–428.

[102] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[103] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in International conference on machine learning, PMLR,
2015, pp. 1889–1897.

[104] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[105] T. Dai, M. Dubois, K. Arulkumaran, J. Campbell, C. Bass, B. Billot, F. Uslu,
V. De Paola, C. Clopath, and A. A. Bharath, “Deep reinforcement learning for
subpixel neural tracking,” in International conference on medical imaging with
deep learning, PMLR, 2019, pp. 130–150.

[106] D.-M. Baboiu and G. Hamarneh, “Vascular bifurcation detection in scale-
space,” in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image
Analysis, IEEE, 2012, pp. 41–46.

[107] S. Kalaie and A. Gooya, “Vascular tree tracking and bifurcation points detection
in retinal images using a hierarchical probabilistic model,” Computer methods
and programs in biomedicine, vol. 151, pp. 139–149, 2017.



Bibliography 129

[108] Y. Zheng, D. Liu, B. Georgescu, H. Nguyen, and D. Comaniciu, “3d deep
learning for efficient and robust landmark detection in volumetric data,” in
International conference on medical image computing and computer-assisted
intervention, Springer, 2015, pp. 565–572.

[109] Á. S. Hervella, J. Rouco, J. Novo, M. G. Penedo, and M. Ortega, “Deep
multi-instance heatmap regression for the detection of retinal vessel crossings
and bifurcations in eye fundus images,” Computer Methods and Programs in
Biomedicine, vol. 186, p. 105 201, 2020.

[110] H. Zhao, Y. Sun, and H. Li, “Retinal vascular junction detection and classifica-
tion via deep neural networks,” Computer methods and programs in biomedicine,
vol. 183, p. 105 096, 2020.

[111] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[112] D. P. Bertsekas et al., “Dynamic programming and optimal control 3rd edition,
volume ii,” Belmont, MA: Athena Scientific, 2011.

[113] T. v. Walsum, M. Schaap, C. T. Metz, A. G. Giessen, and W. J. Niessen,
“Averaging centerlines: Mean shift on paths,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer, 2008,
pp. 900–907.

[114] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[115] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International conference on machine learning, PMLR, 2016, pp. 1928–1937.

[116] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” arXiv preprint
arXiv:1506.02438, 2015.

[117] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals
of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[118] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and
A. Madry, “Implementation matters in deep policy gradients: A case study on
ppo and trpo,” arXiv preprint arXiv:2005.12729, 2020.

[119] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[120] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[121] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
arXiv preprint arXiv:1511.07122, 2015.



130 Bibliography

[122] P. Luo, J. Ren, Z. Peng, R. Zhang, and J. Li, “Differentiable learning-to-
normalize via switchable normalization,” arXiv preprint arXiv:1806.10779,
2018.

[123] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[124] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep
reinforcement learning that matters,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 32, 2018.

[125] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement learning
via sequence modeling,” Advances in neural information processing systems,
vol. 34, pp. 15 084–15 097, 2021.

[126] S. P. Luijten, L. Wolff, M. H. Duvekot, P.-J. van Doormaal, W. Moudrous,
H. Kerkhoff, G. J. L. a Nijeholt, R. P. Bokkers, S. Lonneke, J. Hofmeijer, et al.,
“Diagnostic performance of an algorithm for automated large vessel occlusion
detection on ct angiography,” Journal of neurointerventional surgery, 2021.

[127] E. H. Weissler, T. Naumann, T. Andersson, R. Ranganath, O. Elemento, Y. Luo,
D. F. Freitag, J. Benoit, M. C. Hughes, F. Khan, et al., “The role of machine
learning in clinical research: Transforming the future of evidence generation,”
Trials, vol. 22, no. 1, pp. 1–15, 2021.

[128] L. Wolff et al., “Performance of automated imaging biomarkers in an outcome
prediction model for patients with ischemic stroke,” Submitted.


	Title Page
	Dedication
	Table of Contents
	Introduction
	Stroke
	Acute Ischemic Stroke
	Imaging in Ischemic Stroke Patient Diagnosis
	Treatment Options for Acute Ischemic Stoke 
	Imaging Biomarkers for Treatment Decision Making in Patients with Acute Ischemic Stoke
	Goals & outline

	Automatic Collateral Scoring Using Vessel Features
	Introduction
	Method
	Data and Annotation
	Experiments and Results
	Discussion
	Conclusions

	Evaluation of Automatic Collateral Scoring
	Introduction
	Method
	Results
	Discussion
	Conclusion

	Time Dependency of Automated Collateral Scores
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion

	Cerebral Anterior Vessel Tree Extraction
	Introduction
	Method
	Data
	Experiments and Results
	Discussion
	Conclusion

	General Discussion 
	Summary
	Samenvatting
	Acknowledgements
	About the author
	Publications
	PhD portfolio
	Bibliography

