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Abstract 
People age differently. Differences in aging might be reflected by metabolites, also known as metabolomic aging. Predicting metabolomic 
aging is of interest in public health research. However, the added value of longitudinal over cross-sectional predictors of metabolomic aging is 
unknown. We studied exposome-related exposures as potential predictors of metabolomic aging, both cross-sectionally and longitudinally in 
men and women. We used data from 4 459 participants, aged 36–75 of Round 4 (2003–2008) of the long-running Doetinchem Cohort Study 
(DCS). Metabolomic age was calculated with the MetaboHealth algorithm. Cross-sectional exposures were demographic, biological, lifestyle, 
and environmental at Round 4. Longitudinal exposures were based on the average exposure over 15 years (Round 1 [1987–1991] to 4), and trend 
in these exposure over time. Random Forest was performed to identify model performance and important predictors. Prediction performances 
were similar for cross-sectional and longitudinal exposures in both men (R2 6.8 and 5.8, respectively) and women (R2 14.8 and 14.4, respectively). 
Biological and diet exposures were most predictive for metabolomic aging in both men and women. Other important predictors were smoking 
behavior for men and contraceptive use and menopausal status for women. Taking into account history of exposure levels (longitudinal) had no 
added value over cross-sectionally measured exposures in predicting metabolomic aging in the current study. However, the prediction perfor-
mances of both models were rather low. The most important predictors for metabolomic aging were from the biological and lifestyle domain 
and differed slightly between men and women.
Keywords: Exposome, Human aging, Metabolomics, Sex differences

Worldwide life expectancy has increased steadily over the 
past century, which increased the proportion of older adults 
in the world population (1). Older adults experience a de-
crease in functionality and an increase in multimorbidity. 
However, there is large heterogeneity in health with aging: 
some can live an active life up to high ages, while others are 
already care-dependent at middle age (1,2). This heterogene-
ity indicates that it is important to distinguish chronological 
age, which is simply age in calendar years, from biological 
aging, which reflects decline in functioning.

To get insight into the process of aging, metabolites have 
been used to create metabolomic biomarker scores, also 
known as metabolomic aging scores (3,4). These metab-
olomic aging scores are associated with disease outcomes 
and mortality (3,4). In 2 prospective cohorts, Kuiper et 
al. demonstrated that the metabolomic aging biomarker 
“MetaboHealth,” stood out as one of the most representa-
tive reflections of biological age (5). Investigating predictors 
of metabolomic aging might help to identify individuals who 
are likely to age faster compared to their peers. Insight into 
these predictors might help to target groups for preventive 
measures.

Health over the life course is determined by a multitude 
of risk factors to which people are exposed during their life 
(1,6). This could be assumed to also be the case for metab-
olomic aging. To take a full multienvironmental exposure 
into account, the exposome approach was proposed by 
Christopher Wild (7). The exposome approach is charac-
terized by taking into account a wide variety of exposures 
from different domains, for example, lifestyle, environmental, 
demographic, and biological (7,8).

Prediction research into metabolomic aging is scarce. In 
a previous etiological study, metabolomic aging was associ-
ated with higher body mass index (BMI) and heavy drink-
ing, but not with smoking and physical activity (9). However, 
this study only took into account a limited number of expo-
sures. Furthermore, although exposures are likely to change 
over time (7,10), the added value of using longitudinal over 
cross-sectional exposures to predict metabolomic aging is 
unknown. This is of interest because aging is often seen as 
an accumulation of molecular and cellular damage due to a 
wide range of lifetime exposures. Compared to longitudinal 
exposure levels, cross-sectional exposure levels are more easy 
and less time-consuming to assess. For clinical practice, use of 
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cross-sectional exposure information would thus be more fea-
sible than use of longitudinal exposure information in deci-
sion making and risk assessment. In addition, one would also 
like to know which exposures predict metabolomic aging. 
This information could help to recognize those who age at a 
fast pace. As men and women have different metabolite con-
centrations (11–13), it could be speculated that predictors of 
metabolomic aging differ for men and women.

In this study, we studied whether longitudinally measured 
exposures predicted metabolomic aging better than cross-sec-
tionally measured predictors. For metabolomic aging, we 
used the metabolomics-based algorithm “MetaboHealth.” We 
included a wide range of predictors with data available over a 
15-year period to reflect an exposome approach. Additionally, 
we investigated which exposures were the most important 
predictors of metabolomic aging. We also investigated if pre-
dictors differed between men and women.

Method
Study Population
The Doetinchem Cohort Study (DCS) is a prospective cohort 
study that aims to gain insight into the impact of lifestyle and 
biological risk factors and health across the life span in Dutch 
adults (14,15). Between 1987 and 1991, 12 405 participants 
(aged 20–59 years) were examined (Round 1, R1). Of those 
participants, a random sample of 7 768 was reinvited to be 
examined in 1993–1997 (R2) and again in 1998–2002 (R3), 
2003–2007 (R4), 2008–2012 (R5), and 2013–2017 (R6). The 
response rate in the first round was 62%, and the response 
rates in the subsequent rounds exceeded 75%. For the anal-
yses, we excluded participants who had missing data on 
metabolomics (N = 56), all exposures (N = 2), and pregnant 
women because of physiological reasons (N = 3), which left 
4 459 participants in the analyses.

Written informed consent from all participants was 
obtained. The DCS was approved by the Medical Ethics 
Committees of the Netherlands Organization of Applied 
Scientific Research.

Metabolomic Age
At Round 4, a total of 226 metabolomic markers were 
measured in stored blood samples by Nightingale Health 
Ltd, Helsinki, Finland, in ethylenediaminetetraacetic acid 
(EDTA) plasma via high-throughput nuclear magnetic reso-
nance (NMR) in 2020. The methodology of NMR has been 
described previously (16,17).

In a past study, 12 cohort studies including a total of 44 000 
individuals who had metabolomics data from the Nightingale 
platform available were used to develop a robust algorithm 
based on these 226 metabolic markers. This algorithm (ie, 
MetaboHealth) includes markers that were independently 
associated with mortality. In the present study, we used this 
MetaboHealth algorithm to calculate metabolomic aging 
(3). MetaboHealth can be calculated via a code available on 
the Github of D. Bizzari (https://github.com/DanieleBizzarri/
MiMIR). The final algorithm included 14 of the 226 metab-
olites: total lipids in chylomicrons and extremely large very 
low-density lipoprotein (VLDL) particle, total lipids in small 
high-density lipoprotein, mean diameter for VLDL particles, 
ratio of polyunsaturated fatty acids to total fatty acids, glu-
cose, lactate, histidine, isoleucine, leucine, valine, phenylal-
anine, acetoacetate, albumin, and glycoprotein acetyls. The 

MetaboHealth score ranged from −2 to 3 in most cohorts 
and a 1-unit increase in MetaboHealth was associated with a 
2.73 times higher mortality risk (3). A higher score represents 
a higher metabolomic age.

Exposure Variables
We included exposure variables from the environmental, life-
style, and biological domain (18), as well as demographic 
variables. All exposures are described below. Most exposures 
were repeatedly measured (R1–R4). An overview of all expo-
sure variables, including in which round of the DCS the vari-
able was collected, can be found in Supplementary Table 1.

Demographics
Self-reported demographics used were: sex (man/woman), 
educational level (low; medium; high), marital status (sin-
gle; never married; married; widow/widower; and divorced), 
household composition (alone; with others), and working 
hours (hours/week).

Biological Exposures
BMI (measured weight [kg]/height [m2]), waist circumference 
(centimeters), blood pressure (systolic/diastolic [mm/Hg]), 
and pulse rate (beats/minute) were assessed by trained staff 
according to standardized protocols. Menopausal status (pre-
menopausal; perimenopausal; postmenopausal), contracep-
tive use (yes/no), cholesterol-lowering medication (yes/no), 
and antihypertensives use (yes/no) were self-reported.

Lifestyle Exposures
Lifestyle exposures were assessed via self-administered ques-
tionnaires. Alcohol use (no; every now and then, but less 
than 1 glass per week; yes; and amount among users) and 
smoking status (never; ex; current, and amount among users) 
were assessed. Smoking pack-years were calculated with the 
participant’s number of years of smoking and the amount of 
cigarettes. For physical activity, 3 measures were included: 
occupational physical activity (sedentary job; standing job; 
manual work; heavy manual work; not applicable) (19), time 
spent on moderate–vigorous activity during leisure time <0.5 
hour; 0.5–3.5 hours; ≥3.5 hours or more, of which <2 hours 
vigorous; ≥3.5 hours, of which ≥2 hours or more vigorous 
(19), and hours of doing sports in a week. The number of 
hours of sleep (≤5, 6, 7, 8, and ≥9 hours) was also assessed. 
Diet was measured with a 178-item validated food frequency 
questionnaire. A modified version of the Dutch Healthy Diet 
index (DHD) 2015 was calculated, ranging from 1 to 130, 
which indicates adherence to elements of the Dutch Nutrition 
Guideline (20). A higher score indicates higher adherence. 
The following food/nutrients intakes were added: energy 
intake (kcal per day), total, animal, and vegetable protein, fat, 
total carbohydrates, total fibers, and total water (all in g/day).

Environmental Exposures
Environmental exposures included factors like NO2, noise, 
and “greenness” of the environment. Total NO2 concentra-
tion (in µg/m3), total PM2.5 concentration (in µg/m3), and total 
elemental carbon concentration (in µg/m3) at the participants’ 
home addresses for Rounds 1–3 were calculated via disper-
sion models based on concentration estimates of the Year 
2000 and for Round 4 were calculated as the average of the 
Years 2000 and 2010 (21). Rail traffic noise levels in 2016 
for the entire 24-hour period at home address (in dB) and 
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road traffic noise levels in 2016 for the entire 24-hour period 
at home address (in dB) were calculated by Standard Model 
Instrumentation for Noise Assessments (22). Greenness was 
measured using the normalized difference vegetation index 
(2010 data) in buffers of 300 and 1 000 m around the par-
ticipants’ home address using Landsat 5 Thematic Mapper 
(United States Geological Service). Both vegetation indexes 
were on a scale from −1 to 1. A higher score indicates more 
greenness.

Statistical Analyses
Our first results showed that female-specific exposures were 
important predictors for metabolomic aging in the total pop-
ulation (Supplementary Figure 1). We therefore stratified 
our analyses by sex and recalculated metabolomic age, that 
is, MetaboHealth, for men and women separately because 
metabolomic age is scaled based on the input sample. In this 
study, metabolomic age was adjusted for chronological age, 
because we were interested whether a respondent is metab-
olomically “older” (positive value) or “younger” (negative 
value) than his/her peers of the same chronological age. We 
therefore calculated the raw residuals of the linear regression 
of metabolomic age and chronological age for all participants 
of the same sex.

To study which exposures were most predictive of metab-
olomic aging at Round 4, we followed the statistical analyses 
steps described previously (23). We investigated the predic-
tors for metabolomic aging in a Random Forest (RF) for both 
men and women. Additionally, these RFs were performed 
with cross-sectionally as well as longitudinally measured pre-
dictors. In the cross-sectional RF models exposures of Round 
4 were included. In the longitudinal RF models, we included 
the average levels and the trend of the exposures over Rounds 
1–4. We describe below how we calculated the average and 
trend of exposures and further steps of the RF models. All 
analyses were performed in R (version 4.2.0) (R Foundation, 
Vienna, Austria).

1.	 For the longitudinal models we calculated the Area-
Under-Exposure (AUE) and Trend-Of-Exposure (TOE) 
for each exposure. The AUE represented the average ex-
posure level from Rounds 1–4. The TOE represented the 
average trend over time from Rounds 1–4. To provide 
further clarification on these 2 metrics: in general, aging 
is seen as an accumulation of deficits, that are build up 
over the life course due to a wide range of exposures in 
interaction with genetic makeup. From that perspective 
one would expect cumulative exposure (eg, AUE) to con-
tribute to metabolomic age. Furthermore, the trend of 
exposure was used, to study if given a similar AUE, dis-
tinguishing between a pattern of increasing or decreasing 
exposure would be of added explanatory value. Further 
details of this method are explained in Loef et al. (23).

2.	 We used the R-package “randomForest” (24) to ana-
lyze which cross-sectional and longitudinal exposures 
contributed most to the prediction of the age-adjusted 
metabolomic age score (25). RF is a machine learning 
technique that uses decision trees to investigate predic-
tors of a specific outcome, in our case metabolomic age 
at Round 4. This technique is nonparametric; therefore, 
we made no assumptions about the distributions of ex-
posures or the outcome. Moreover, RF can deal with cor-
related variables because each tree is built on a different 

bootstrap sample. We tuned the following parameters to 
optimize the RF models: size of random sample of expo-
sures used at each split (mtry), number of trees (ntree), 
minimum number of observations in the final nodes 
(nodesize), and maximum number of terminal nodes 
(maxnodes) (26,27). In addition, we based our optimal 
prediction performance on the root mean square error 
(RMSE), explained variance (R2), and mean absolute er-
ror (MAE). We randomly divided our data sets in 80% 
training set and 20% test data set and performed a 5-fold 
cross-validation to overcome overfitting or selection bias 
issues. This cross-validation was performed with the 
R-package caret2 (28). We used the RMSE, R2, and MAE 
of the optimally tuned cross-sectional and longitudinal 
RF models for the test data set. Moreover, we compared 
these models with the RMSE, R2, and MAE of null mod-
el, which predicts the training data set mean when no 
exposures are included.

3.	 To investigate the most important predictors for metabo-
lomic aging, we examined the variable importance rank-
ing with the optimally tuned RF for men and women. 
The order of the listed predictors is based on the increase 
in the mean square error when the specific predictor is 
excluded from the RF model, keeping all other variables 
fixed. We performed a post hoc cross-validation to inves-
tigate which predictors together are responsible for the 
optimal prediction performance, also called the parsimo-
nious model. To investigate this relation we plotted the 
RMSE for each number of exposures selected. Flattening 
of the RMSE curve means less added value of the com-
bination of variables on the prediction performance. The 
number of exposures selected was based on the flattening 
in RMSE when adding an extra predictor to the parsimo-
nious model.

Results
Table 1 shows a selection of characteristics of the included 
demographic, biological, lifestyle, and environmental expo-
sures stratified by sex, both cross-sectionally as well as longi-
tudinally. The complete table can be found in Supplementary 
Table 2. At Round 4, our study population comprised 4 459 
participants. The age-adjusted MetaboHealth score, which 
reflects whether the participant is “metabolomically” older/
younger than his peers, ranged from −1.5 to 2.3. The par-
ticipants had a mean age of 55 years (range 36–76 years), 
48% of them were men, and they had a mean metabolomic 
age score of −0.03. At Round 4, men were on average 1 year 
older, were more often highly educated, used less often blood 
pressure medication, drank more glasses of alcohol per day, 
had a higher number of smoking pack-years, and had less 
adherence to the DHD-15 than women. The average crude 
MetaboHealth score, BMI, NO2 levels, and elemental carbon 
levels were similar between men and women at Round 4. 
The same tendencies were seen for the longitudinal expo-
sures. Over a 15-year period, men used on average less often 
blood pressure medication and had a lower adherence to the 
DHD-15, while the number of glasses of alcohol per day and 
smoking pack-years was higher than in women. The average 
crude MetaboHealth score, BMI, NO2 levels, and elemental 
carbon levels were similar between men and women from 
Rounds 1–4. With respect to the trend over a 15-year period, 
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men and women only differed in the trend of adherence to 
the DHD-15; adherence increased less in men than women 
from R1–4.

Prediction Performance of Metabolomic Aging 
Models
We tuned the RF in the training data set to investigate which 
cross-sectional and longitudinal exposures are most important 
for predicting the participants’ metabolomic age at Round 4. 
In the parsimonious cross-sectional test data sets, the RMSE 
(0.40 vs 0.41 for men; 0.36 vs 0.39 for women) and MAE 
(0.31 vs 0.32 for men; 0.29 vs 0.31 for women) were almost 
similar compared to the null models (ie, a model without 
any exposures). Additionally, in the parsimonious cross-sec-
tional test data sets, the R2 slightly improved compared to 
the null model (6.8% vs 0.00% for men; 14.8% vs 0.00% 
for women). Similar results were found for the parsimonious 
longitudinal models, which is displayed in Table 2. Because 
the RMSE, R2, and MAE were similar for the cross-sectional 
and longitudinal models, we decided to display only the pre-
dictors of the cross-sectional models.

Predictors of Metabolomic Aging
Figure 1 shows the top 20 ranked predictors of metabolo-
mic aging for the tuned cross-sectional RF model in men and 
women separately on the whole data set. In both men and 
women, the top 10 predictors consisted mostly of biological 
exposures and lifestyle exposures, and included both waist 
circumference in the top 5 ranked predictors. In men, the top 
5 consisted in addition of daily number of cigarettes, intake 
of carbohydrates, intake of vegetable protein, and intake of 
kilocalories. In women BMI, menopausal status, contracep-
tive use, and intake of fat ranked within the top 5. The vari-
able importance plots of the longitudinal model are displayed 
in Supplementary Figure 2 and showed similar predictors in 
the top 20 as the cross-sectional model.

To investigate the number of exposures required for a 
best performing, yet parsimonious model, we performed 
cross-validation with stepwise inclusion of exposures and 
plotted the RMSE per total number of exposures. Figure 2 
shows the results of the RMSE plot of the cross-validation 
of the cross-sectional RF model in both men and women in 
the training data set. For men, the RMSE decreased from 1 
to 10 exposures and flattened out at 10 selected exposures 

Table 1. Selection of Longitudinal and Cross-Sectional Characteristics 
Stratified by Sex

Characteristic Men (n = 2 114) Women (n = 2 345)

Mean/% SD/n Mean/% SD/n 

MetaboHealth 
score*—Round 4

−0.1 0.4 0.1 0.4

Chronological age—
Round 4

56.1 9.8 55.1 9.9

Demographic

 � Educational level—Round 4

  �  Low 7.2 152 8.7 205

  �  Medium 66.0 1,396 71.4 1,674

  �  High 26.5 561 19.6 460

Biological

 � Body mass index (kg/m2)

  �  Average R1–4 25.9 3.0 25.3 4.0

  �  Trend R1–4 0.7 0.7 0.8 0.9

  �  Round 4 26.8 3.4 26.3 4.6

 � Contraceptive use

  �  Average R1–4; 
% time yes

NA NA 6.5 13.8

  �  Trend R1–4; % 
from no to yes

NA NA 20.0 468

  �  Round 4; % yes NA NA 9.1 213

 � Blood pressure medication

  �  Average R1–4; 
% time yes

7.9 20.7 8.9 21.9

  �  Trend R1–4; % 
from no to yes

3.7 78 4.6 108

  �  Round 4 % yes 15.6 329 17.3 405

Lifestyle exposures

 � Glasses of alcohol (per day)

  �  Average R1–4 1.6 1.5 0.6 0.8

  �  Trend R1–4 0.0 0.5 0.1 0.2

  �  Round 4 1.6 1.6 0.7 0.9

 � Smoking pack-years

  �  Average R1–4 12.2 13.9 7.3 10.1

  �  Trend R1–4 1.2 3.4 0.9 2.6

  �  Round 4 13.2 15.8 8.3 12.6

 � Dutch Healthy Diet index

  �  Average R1–4 62.2 12.1 68.6 11.0

  �  Trend R1–4 0.9 6.6 1.6 6.4

  �  Round 4 63.4 14.0 70.5 12.9

Environmental

 � Total NO2 (µg/m3)

  �  Average R1–4 28.7 1.8 28.7 1.8

  �  Trend R1–4 −1.1 0.7 −1.1 0.7

  �  Round 4 26.1 2.1 26.1 2.1

Notes: NA = not applicable; SD = standard deviation.
*Crude MetaboHealth score calculated on the input sample including both 
men and women.

Table 2. Number of Included Exposures, RMSE, R2, and MAE of the 
Cross-Sectional as Well as Longitudinal in the Test Data Set of the RF 
Models in Men and Women

Model Number of Exposures RMSE R2 (%) MAE 

Men

 � Null 0 0.41 0 0.32

 � Cross-sectional 10 0.40 6.8 0.31

36 0.40 7.0 0.31

 � Longitudinal 17 0.40 5.8 0.32

76 0.40 8.8 0.31

Women

 � Null 0 0.39 0 0.31

 � Cross-sectional 15 0.36 14.8 0.29

38 0.37 14.0 0.29

 � Longitudinal 13 0.36 14.4 0.29

81 0.37 13.6 0.29

Notes: MAE = mean absolute error; RF = Random Forest; RMSE = root 
mean square error.
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(dotted gray line). For women, the RMSE decreased from 1 
to 10 exposures and flattened out at 15 selected exposures 
(dotted gray line). Table 2 displays the RMSE, R2, MAE, and 
optimal number of exposures included of all models in the 
test data set.

Discussion
We showed that cross-sectionally measured exposures and 
longitudinally measured exposures predicted metabolomic 
aging similarly in both men and women. However, the pre-
diction performance of both models was rather low. The most 
important predictors for metabolomic aging came from the 
biological and lifestyle domain and differed between men and 
women. These findings are relevant to gain insight into which 
predictors can be used to identify those who age at a fast pace 
based on metabolites.

To our knowledge, this study is the first that has compared 
cross-sectional and longitudinal models in predicting metab-
olomic aging. For the exposures we included cross-sectionally 
measured exposures as well as averages and trends of longi-
tudinally measured exposures. The prediction performances 
of both cross-sectional models and longitudinal models were 
similar in both men and women. Yet, the R2 of the models for 

men were lower than for women. The lack of an added value 
of longitudinal exposures might be a result of the metabolites, 
such as blood lipids and its subfractions, that were included 
in the algorithm of MetaboHealth and can respond to life-
style changes within weeks (29–31). Even though the general 
thought is that cumulative levels of life-long exposures influ-
ence health in later life (18,32), our results suggest that taking 
into account average history of exposure levels (longitudinal 
approach) compared to cross-sectionally measured predictors 
has little to no added value in predicting metabolomic aging. 
This finding is beneficial for clinical practice as current expo-
sures are advantageous because they are more easily accessi-
ble than longitudinal exposures. However, future studies are 
needed to improve better prediction of metabolomic aging 
before this conclusion can be extended to clinical practice.

Although our cross-sectional and longitudinal models 
similarly predicted metabolomic aging, these models only 
slightly predicted metabolomic aging better than the null 
models. For application of the algorithm in preventive or 
clinical practice, we have to consider the performances of 
the models in accurately predicting metabolomic age. In the 
cross-sectional and longitudinal models of men, the RMSE 
was similar as the null models and the R2 was 5.8% to 6.8% 
higher than the null models. In the cross-sectional and longi-
tudinal models of women, the RMSE was 7.7% lower than 

Figure 1. Variable importance ranking of Random Forest (RF) with 
MetaboHealth as outcome and cross-sectionally measured exposures of 
Round 4 in men and women. The x-axis shows the percentage increase 
in mean square error (MSE) when a particular predictor is removed from 
the RF model.

Figure 2. Root mean square error (RMSE) plot of prediction performance 
of X number of selected exposures in Random Forest model with 
MetaboHealth Round 4 (R4) as outcome and cross-sectionally measured 
exposures of R4 in the training data set in men and women. The dotted 
gray line reflects the optimal number of selected exposures (X = 10 men, 
X = 15 women).
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the null models and the R2 was 14.4% to 14.8% higher than 
the null models. We expected a greater improvement, as we 
took into account an exposome approach when we selected 
our predictors. The relatively small improvement might be 
due to: (i) lack of accurate assessment of exposures either 
because of measurement error or because exposures were not 
measured at a critical period during the course life (33), (ii) 
the lack of information on important exposures for metabo-
lomic aging, or (iii) the fact that chronological age might be 
the major predictor of metabolomic aging given the modest 
effects of lifestyle exposures and environmental exposures on 
health in general (34). Future studies are needed to investi-
gate whether the prediction performance can be improved. 
Yet, if these studies fail to improve prediction performance, 
then this measure is not accurate enough to be used in clin-
ical practice.

The most important predictors for metabolomic aging 
came from the lifestyle domain and biological domain in both 
men and women. The fact that especially lifestyle and biolog-
ical exposures were the most prominent predictors for metab-
olomic aging might be related to the fact that the metabolites 
included in the MetaboHealth algorithm are mainly (lipo)
protein-related (3). Some of the top-ranked predictors for 
metabolomic aging differed between men and women. In 
men, smoking behavior was more important as predictor 
for metabolomic aging than in women. In a previous risk 
assessment study, smoking behavior was not associated with 
metabolomic aging based on an alternative metabolomic 
aging score (9); however, this study did not stratify for sex 
while smoking behavior affects healthy aging differently for 
men and for women (35,36). Furthermore, we found that 
contraceptive use and menopausal status were the strongest 
predictors for metabolomic aging in women. Because meno-
pausal status and contraceptive use are likely to be correlated, 
we investigated whether women who had an early menopause 
(menopause before the age of 45 years) significantly differed 
from women that had a normal menopause with respect to 
metabolomic aging (ie, age-adjusted metabolomic age). We 
found no differences in metabolomic aging between these 
groups. Menopausal status and contraceptive use are known 
to change metabolite concentrations (37–39). Given that our 
metabolomic aging biomarker encompasses various lipid frac-
tions, the identification of menopausal status as an important 
predictor may be attributed, in part, to alterations such as the 
adverse shifts observed in cholesterol levels among postmeno-
pausal women (39). Until now, no studies have investigated 
the importance of female-specific exposures like menopausal 
status and contraceptive use to predict metabolomic aging. 
Therefore, our results cast a new light on female-specific pre-
dictors for metabolomic aging.

The top-ranked predictors for metabolomic aging did 
not include exposures like physical activity, education, 
and alcohol use. In previous risk assessment studies, these 
exposures were associated with metabolomic aging and/
or healthy aging (6,9,40). However, associations between 
determinants and outcomes do not directly imply predictive 
value (41). The goal of an association model is to assess 
the relation between exposures and outcomes and thus for 
example find group differences or regression slopes. In pre-
diction models, however, the goal is to build a as good as 
possible model with exposures (predictors) to predict the 
outcome. Physical activity, education, and alcohol might be 
associated with metabolomic aging, but in our study did 

not have predictive value when also other exposures are 
taken into account.

A strength of our study is the use of an exposome 
approach to investigate predictors of the metabolomic aging. 
Additionally, because we had data over a period of 15 years 
we were able to investigate the added value of using longitu-
dinal over cross-sectional exposures in predicting metabolo-
mic aging. Limitations of our study were that even though we 
included a wide variety of exposures from different domains, 
we lacked information of exposures such as factors belong-
ing to the psychological domain, potential contaminants, 
and the working environment. Inclusion of these exposures 
would possibly have improved the prediction performance 
of our models. In addition, only 2 exposures from the envi-
ronmental domain (ie, elemental carbon and NO

2) were in 
the top-ranked predictors for men. This might be explained 
by the fact that the current study was conducted in 1 town in 
the Netherlands, leading to limited variation in these expo-
sures. Lastly, even though we found that contraceptive use 
was an important predictor of metabolomic aging, we lacked 
information on the type of contraceptive used. Therefore, we 
could not investigate whether type of contraceptive use dif-
ferentially affects metabolomic aging.

Early recognition of the heterogeneity in health with aging 
could be unraveled by metabolites-driven aging scores, like 
MetaboHealth. In this study, we showed that taking into 
account history of exposure levels (longitudinal approach) 
over cross-sectionally measured predictors had little to no 
added value in predicting metabolomic age. The most import-
ant predictors for metabolomic aging were mainly from the 
biological and lifestyle domain and differed between men and 
women. However, the prediction performances of both models 
were rather modest. Before this approach can be used in clini-
cal practice, future research is needed to replicate our findings 
and increase model performance to predict metabolomic aging.
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