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A B S T R A C T   

Exposure of inhaled nanoparticles (NPs) to the deep lung tissue results in the adsorption of pulmonary surfactant 
(PSf) on the surface of NPs and the formation of a biomolecular corona. The adsorption of the peculiar phos-
pholipids (PLs) and surfactant proteins (SPs) provides NPs with a new bio-identity, which likely changes their 
corresponding interactions with cells and other bio-systems. Exploring the interaction of NPs with the PSf film at 
the alveolar air-fluid interface can provide valuable insights into the role of biofluids in the cellular uptake of NPs 
and their nanotoxic effects. Wrapping biomembranes around NPs and the formation of lipoprotein corona 
regulate viscoelastic changes, NP insertion into the membrane, and cellular uptake of NPs. In this review, a 
concise overview has been presented on the engineering of PSf on inhaled NPs to operate in lung environment. 
First, the physiological barriers in the pulmonary delivery of NPs and approaches to regulating their pulmonary 
fate are introduced and rationalized. Next, a short description is given on the different sources used for exploring 
the interfacial performance of inhaled NPs in vitro. A discussion is then presented on SP corona formation on the 
surface of inhaled NPs, coronal proteome/lipidome in respiratory tract lining fluid (RTLF), regulation of NP 
aggregation and surfactant flow characteristics, PSf corona and its functional role in the cellular uptake of NPs, 
followed by explanations on the clinical correlations of PSf corona formation/inhibition on the surface of NPs. 
Finally, the challenges and future perspectives of the field have been discussed. This review can be harnessed to 
exploit PSf for the development of safe and bio-inspired pulmonary drug delivery strategies.   

1. Introduction 

The interaction of nanoparticles (NPs) with biological fluid at the 
nano-bio interface can alter their behavior and subsequent interaction 
with cells. This interaction applies to all nano-based platforms, regard-
less of their planned application or exposure route [1]. NPs show the 
potential to interact with different types of proteins in the blood and 
other extracellular fluids to form “protein corona”. The protein corona 
on the surface of NPs is classified as “hard” corona, which contains 
strongly interacted proteins, and “soft” corona, with loosely bound 

proteins [2,3]. Hard corona has a significant impact on the fate of NPs 
when they interact with cells [4,5], as well as NP-based pharmacoki-
netics, therapeutics, and diagnostics [6,7]. 

Several studies have looked into the interaction of proteins and 
complex fluids with different NPs, providing a physical explanation of 
the adsorption mode and associated kinetics [8,9]. However, most of 
these studies have focused on the formation of corona around NPs 
within plasma, with little attention paid to other biofluids. The respi-
ratory tract, in particular, is known as one of the most likely routes for 
NP entry to the body. The physicochemical properties of NPs, as well as 
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the breathing scenario, influence their deposition behavior in lungs. It 
has been demonstrated that large NPs (> 1 µm) are often deposited in 
the upper airways, whereas small NPs (100 nm to 1 µm) can enter the 
alveolar region [10,11]. Inhaled NPs with sizes of 100 nm have been 
found to accumulate in the alveoli [11,12], where they come into con-
tact with interstitial fluid in lung. As a result, the translocation mecha-
nisms are complex, and despite numerous efforts and substantial reports, 
these processes are not fully understood. Thus, both the potential pul-
monary use of NPs, as drug delivery carriers and the associated nano-
safety concerns necessitate conducting in-depth studies to examine the 
fate of NPs after deposition in the deep lung tissue and the interactions 
with respiratory tract lining fluid (RTLF) [13,14]. 

This distinct pulmonary surfactant (PSf) layer, a unique composition 
of lipids and proteins secreted by alveolar epithelial type II (ATII) cells, 
may result in the formation of a corona that differs significantly from the 
one that forms in the blood. While the composition of a plasma corona 
on the surface of NPs is well understood [15–18], little is known about 
how airborne NPs interact with the PSf as a highly complex fluid. As a 
result, several studies have focused on the interaction of NPs with sizes 
less than 100 nm and PSf to investigate the effect of PSf corona’s mo-
lecular structure on NP translocation across the PSf layer. It has been 
demonstrated, for example, that the physicochemical properties of NPs 
control the formation of PSf corona and its translocation across PSf 
monolayers [14,19–21]. Furthermore, it has been expressed that the PSf 
component and the cell type play important roles in the cytotoxicity of 
NPs against lung cancer cells [22]. It was seen that silica (SiO2) NPs at a 
specific dose (128 μg/mL) induced selective cytotoxicity against human 
bronchial epithelial (16HBE) cells derived from the higher cellular up-
take of NPs and inhibition of the activities of ABC transporters in com-
parison with human lung epithelial (A549) cells [22]. Additionally, it 
was found that the incubation of SiO2 NPs with dipalmitoyl phosphati-
dylcholine (DPPC) mitigated the stimulated cytotoxicity against 16HBE 
cells mediated by a significant decrease in the internalization of NPs 
[22]. 

Surfactant protein (SP) adsorption on the surfaces of NPs can, in fact, 
play an important role in NP uptake by alveolar macrophages (AMs), 
and this effect can be equalized or increased in the presence of lipids. 
Furthermore, both phospholipids (PLs) and SPs can adsorb onto NPs 
after inhalation, and NPs can change the lipidomic and proteomic profile 
of the PSf fluid [23–26]. Depending on the physiological properties of 
NPs, they can have varying affinities in their interactions with the sur-
factant layer and adsorbing different layers of PLs [14,19,24,27]. As a 
result, NP-PSf interaction can alter NP dissolution, stability, and cellular 
uptake [28], as well as PSf stability and lateral film organization [29, 
30]. 

Based on the great significance of NP-PSf interactions, several papers 
have recently reviewed the works conducted on revealing the mecha-
nism(s) of such interplays. For example, a review on the pivotal role of 
PSf upon inhalation of NPs demonstrated that the inevitable interactions 
between NPs and PSf are a critical factor in determining the biological 
fate and behavior of NPs in lung tissue [31]. Also, Liu et al. discussed 
how the physicochemical features of NPs influence their fate and the 
physiological behavior of PSf [14]. Furthermore, Wang et al. discussed 
potential strategies for overcoming physiological barriers against pul-
monary drug delivery (PDD) [32]. Huck et al. also reviewed several 
models based on native mucus in the context of PDD research and dis-
cussed the effect of tracheobronchial mucus composition and structure 
on its barrier features [33]. While these works greatly reflect some of the 
significant aspects of NP-PSf interactions, there still seems to be a need 
for a comprehensive understanding of the biophysical nature of PSf 
corona following interaction with NPs. In this review, we aimed to 
overview SP corona formation on the surface of inhaled NPs, coronal 
proteome/lipidome in RTLF, NP aggregation in relation to surfactant 
flow characteristics, and PSf corona as well as its effect on the cellular 
uptake of NPs. 

2. Physiological barriers in pulmonary NP delivery 

NP-mediated PDD is often hampered by two main challenges: 1) lung 
defenses comprised of airways and their mucosa (luminal defense 
mechanisms, epithelial cells, blood-derived cells of the mucosa), and 
alveolar spaces [27,34]; and 2) formation of PSf corona in alveolar re-
gions due to presence of RTLF [35]. It has also been demonstrated that a 
small number of NPs can cross the pneumocyte layers and enter the 
systemic circulation [18]. Recently, Liu et al. overviewed the physico-
chemical properties of NPs influencing their fate in PDD, with a focus on 
NP clearance [27]. Additionally, Wang et al. reviewed the physiological 
barriers in NP-mediated PDD [32]. The readers are referred to these 
works for further information. In general, several major physiological 
barriers to inhaled NPs have already been reported, as summarized in  
Table 1. 

3. Approaches to regulate the pulmonary fate of NPs 

NP compatibility and tolerability offer potential opportunities for 
local NP-based PDD. Based on the physiological parameters of NPs, their 
retention time within the lungs could be regulated by a number of 
barriers, allowing them to stay for as short as a few minutes or for several 
weeks. Furthermore, the colloidal stability of NPs changes significantly 
after interaction with these barriers, which could result in the activation 
of clearance mechanisms. In other words, the type of binding interaction 
between PSf and NPs has the potential to influence the NP fate and its 
clearance in vivo. This type of data could be useful for the advancement 
of nanotherapeutics that target tumor sites, viruses, infections, and AMs. 
Several approaches have been reported to overcome these different 
barriers to develop a potential drug delivery system for NP-mediated 
pulmonary disorders (Table 2). 

4. Different sources used for studying the interfacial 
performance of inhaled NPs in vitro 

BAL is the most common method employed to collect the RTLFs 
derived from the distal lung, which is an invasive and cost-expensive 
procedure. However, some other procedures such as exhaled breath 
condensate and bronchoscopic microsampling have been used to 
address the main concern raised by BAL, discussed in detail in a previous 
study [68]. Also, compositional differences were reported along the 
different respiratory passages, including nasal, tracheobronchial, and 
bronchoalveolar airways. Generally, it has been shown that the major 
components of the RTLFs are mucus gel layer, low molecular weight 
antioxidants (urea, ascorbate, glutathione, α-tocopherol), proteins [al-
bumin, transferrin, immunoglobulins (A, G, M), lysozyme, α −

2-macroglobulin, α 1-antitrypsin, Clara cell secretory protein], surfac-
tants [SP (A, B, C and D), lipids]. 

Although the human sample is considered a potential source as they 
contain all of the lipid and protein patterns, they suffer from several 
disadvantages, including tedious, costly, and time-consuming purifica-
tion procedures, interindividual flexibility, and the presence of 
contaminated samples [68]. Therefore, exploring the cellular in-
teractions of inhaled NPs in vitro by using a medium with sufficient 
supplements is crucial. Gambles solution has long been used as a 
simulated epithelial lung fluid, which mainly contains inorganic salts, 
where later on several modifications were applied to develop the solu-
bility of drugs [69] as well as mimicking the acidic lysozyme environ-
ment, and particle ingestion by AMs [70] However, mixtures lacking 
saturated lipids and SP, which represent low interfacial performance, 
are not clinically capable of developing stable RTLF. The addition of 
DPPC (0.02% 50 w/v) may modulate the wettability, dispersity and 
dissolution of NPs. The solubility of the NPs can be changed under 
increasing lipid and SP concentrations. Therefore, use of an artificial 
surfactant (Survanta) with the composition of phospholipids (25 
mg/mL), triglycerides (0.5–1.75 mg/mL), free fatty acids (1.4–3.5 
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mg/mL), protein ( <1.0 mg/mL) was used for drug solubilization, 
revealing that the utilization of this surfactant as a commercial bovine 
lung fluid could regulate particle solubilization [71]. Therefore, several 
sources such as mucus, porcine surfactant, and bovine surfactant have 
been used to mimic the RTLF (Fig. 1). 

Huck et al. examined the cytotoxic effects of SiO2 NPs against 
macrophage-like THP-1 cells in vitro and found no discernible difference 
between native porcine and clinical Alveofact [72]. They then 
concluded that RTLF containing essential PLs and SPs appear to be an 
appropriate mixture for investigating the interaction of inhaled NPs with 
cells. It appears that a standardized fluid should be supplemented with 
several PLs, including DPPC, POPC, and POPG, as well as essential lung 
SPs. Thus, recombinant or synthetic proteins could be developed and 
used as promising alternatives to establish contaminant-free and 
cost-effective production of RTLF [73–75]. 

5. Surfactant proteins (SPs) 

Because the lung is considered a potential target for the adminis-
tration of several active pharmaceutical NPs through the airway, the 
interaction with PSf can affect the engineered NP’s bio-behavior and 
applications. Thus, determining the in vivo fate of NPs after pulmonary 
administration, examining the effect of NP’s physiological parameters 
on AM uptake as well as the inflammatory and lung clearance responses, 
and investigating the interactions between NPs and major SPs can pro-
vide useful information about the fate of NPs in vivo. It has been evi-
denced that in alveolar spaces, PSf corona formation is an inevitable 
phenomenon due to the presence of RTLF. This fluid contains plasma 
proteins and surfactant lipids [85–90% (w/w) PLs and 10–15% (w/w) of 
SP] [Fig. 2a(i)] [76–81]. 

Due to the unique structure of SPs with multiple domains [Fig. 2a(ii)] 
and different variants, they exhibit multiple structures with varying 
functions and stabilities, where amino acid 85 plays a significant role in 
the oligomerization pattern [78,82]. SP-A1 induces the formation of 
larger oligomers due to the presence of cysteine, in addition to the for-
mation of dimers and hexamers like SP-A2 [83]. SP-A and SP-D show 
comparable characteristic structures through trimeric interaction of 
monomers as the oligomer structure of SP-A is derived from an octa-
decamer with six trimeric subunits in a flower bouquet-mimic archi-
tecture, whereas SP-D displays a cruciform morphology with 12 subunits 
configured in four trimeric subunits [84]. SP-B is a homodimer with 
three intramolecular S-S bonds per monomer and an additional S-S bond 

that stabilizes the dimeric structure [85,86]. SP-C is a specific SP with a 
short lipopeptide with two palmitoylated -SH at N-terminal [86,87]. 
Post-modification of SPs remarkably changes their oligomerization 
pattern and electrophoretic mobility [78]. Furthermore, arginine-85 has 
been unveiled to increase AM phagocytosis and trypsin digestion [88, 
89]. 

5.1. Formation of surfactant protein (SP) corona on the surface of 
inhaled NPs 

SPs play a key role in the fate of NPs in PDD. Hydrophilic SP-A and 
SP-D are more abundant than hydrophobic SP-B and SP-C [79]. Studies 
have displayed that, in addition to playing a critical role in the regula-
tion of the alveolar microenvironment and lung host defense [78], SPs, 
particularly SP-A and SP-D, can also play a role in NP-mediated PDD 
because interactions between NPs and SPs can alter NP biodistribution 
[79]. SP-B and SP-C could also regulate the dynamics of interfacial 
surfactant interactions, lipid transfer, membrane permeability/fusion 
processes, and homeostasis [90,91]. Some other proteins can interact 
with NPs in bronchoalveolar lavage fluid (BALF) and form a hard corona 
that can perform a variety of functions ranging from innate immunity to 
structural/cell trafficking (Fig. 2b)[92]. These proteins include serum 
albumin, apolipoprotein A, actin, cytoplasmic 1, α-1-antitrypsin, com-
plement C3/C4, Ig α/γ-1 chain C region, Ig κ chain C region, hemoglo-
bin, ubiquitin-60S ribosomal protein L40, annexin A2, napsin-A, BPI 
fold-containing family B member 1, α-enolase, polymeric immuno-
globulin receptor, programmed cell death 6-interacting protein, lyso-
zyme C, CD59 glycoprotein, and carcinoma-associated proteins. 

Due to the presence of highly abundant plasma albumin in BALF, 
quantifying other low-abundance proteins, which play a key role in the 
formation of SP corona on NPs, using mass spectroscopy and down-
stream proteomic approaches is complicated and challenging. As a 
result, Kumar et al. depleted albumin from all reconstituted RTLF sam-
ples and investigated the formation of corona on two different NPs [92], 
SiO2 NPs (200 nm) and poly(vinyl) acetate (PVAc) NPs (180 nm). SiO2 
NPs are widely used for the examination of SP corona [93,94] and the 
PVAc NPs are commonly used as a promising nanomedicine component 
[95]. It was discovered that the proteins involved in innate immunity 
constituted the majority of all SP corona components for bare NPs, fol-
lowed by transport, lipid metabolism, structural/cell trafficking, com-
plement, signaling, protease, tissue repair, and apoptosis proteins 
(Fig. 2b) [92]. Also, it was found that the compositions of SP corona 

Table 1 
The physiological barriers to inhaled NPs [32,36].  

Barrier Composition Structural organization Function 

Mucous Water (≥95%), mucin glycoproteins, inorganic salts, 
lipids, proteins, Immune cells, nucleic acids, and 
filamentous-actin 

Mucin glycoproteins Formation of a negative charge, viscoelastic properties, wrapping and 
NP clearance 

Salts and pH Mucus homeostasis, controlling the physiology of mucins, reducing the 
interaction of positively charged NPs with mucins, Regulation of 
viscoelastic properties of mucus 

Lipids and surfactant Lipid: wettability, viscosity and stabilization of airway. 
Surfactant: first renewable barrier against NPs and reducing the surface 
tension; NP clearance through increasing the velocity of the 
mucociliary escalator 

Proteins Antimicrobial, inflammatory, antiproteolytic, and antioxidant peptides 
along with enzymes 

Immune cells, nucleic acids 
and filamentous-actin 

Regulation of immune reaction, mucus rheology, and viscosity 

Innate defense 
functions 

Macrophages, dendritic cells (DCs) and neutrophils Macrophages In bronchial tree and alveolar region regulate the clearance and 
digestion of NPs 

DCs Along with macrophages triggering the immune response 
Pulmonary 

surfactant 
Lipid-protein system Lipids and surfactant 

proteins 
The formation of biomolecular surfactant corona around NPs to 
modulate the fate of inhaled NPs 

Other 
physiological 
barriers 

Inflammatory cytokines, cilia, extracellular matrix 
(ECM), biofilm 

Inflammatory cytokines Stimulated the immune reaction and endocytosis process. 
Cilia NP clearance 
Extracellular matrix (ECM) Formation of tissue desmoplasia as barrier to PDD 
Biofilm As a barrier to PDD  
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formed around SiO2 NPs (200 nm) and PVAc NPs (180 nm) in RTLF 
were dominated by proteins with molecular mass < 70 kDa and iso-
electric point of 7, regardless of NPs’ zeta potential [92]. Furthermore, 
Clemments et al. demonstrated that the high surface curvature of small 
spherical SiO2 NPs (70 nm) results in the potential interaction of smaller 
proteins with low molecular weights (<50 kDa) from biofluids [96]. 
Based on the comparison of the NP sizes in plasma, it can be concluded 
that larger-sized NPs may have a greater tendency to adsorb proteins 
with higher molecular weight. Since Kumar et al. used two different NPs 
with almost comparable size, one can expect that the distribution of the 
total mass of adsorbed SP corona is almost identical [92]. Particle size 
can influence the total amount of protein adsorbed on the surface of NPs 
as well as the SP corona composition. Other factors, such as NP shape, 

functional groups, and colloidal stability, may also play a key role in 
NP-protein interactions. In water, PBS, and biofluids, the zeta potential 
of NPs with different functional groups is always negative. For instance, 
it was disclosed that the zeta potential of citrate-coated gold NPs 
(AuNPs) in deionized (DI) water and BALF were − 46.17 ± 2.17 and 
− 14.25 ± 0.35, respectively. Further, albumin-coated AuNPs disposed 
a zeta potential of − 46.9 ± 1.82 and − 56.35 ± 3.32 in DI water and 
BALF, respectively. These results demonstrate that albumin-coated 
AuNPs were less likely to agglomerate in the presence of SP corona in 
comparison to the citrate counterparts [35,97]. Even for amine-modified 
polystyrene NPs with a size of 100 nm, the overall charge distribution 
was displayed to be negative [98]. Based on the comparable zeta po-
tential of all NPs, it was discussed that any variation in the SP corona 

Table 2 
Strategies for optimization of NP translocation via different barriers in the lung system.  

Barrier Strategy Description Types Mechanism Ref (s). 

Mucus Size of NPs Pore size of the mucus can influence 
the penetration of NPs 

Inorganic and organic NPs Although small sized NPs (<340 nm) can penetrate 
mucus easily, larger-sized NPs can be mechanically 
penetrated 

[37–39] 

Charge/ 
hydration layer 

Anionic mucus prevents the 
adsorption (adhesive interaction) of 
naturally or anionic NPs 

Polyethylene glycol (PEG) PEGylating (2–5 kDa) of NPs may decrease the zeta 
potential and regulate the formation of hydration 
layer, which inhibits the interaction of NPs with 
physiological barriers 

[40–44] 

Pluronic® F127 (F127) Can manipulate the charge distribution and 
hydration shell due to presence of PEG to mitigate 
the interaction of NPs with mucus 

[45–47]  

Fluorination Fluorocarbon segments inhibited adsorption of 
mucin glycoproteins onto surface. 

[48] 

Zwitterionic surface mimics the 
cellular PL membrane 

Polydopamine Polydopamine can facilitate mucus penetrability by 
mitigating interactions with anionic mucin fibers 

[47] 

Pore size of 
mucin network 

Increasing the average pore size of 
mucin by disulfide disruption 

N-acetylcysteine (NAC) NAC pretreatment as a reducing agent could 
regulate the elastic properties of airway mucus and 
enhance mucus penetrability mediated by a 
significant increase in the pore size of airway mucus 

[49] 

-Thiol-carbohydrate structure 
(methyl 6-thio-6-deoxy-I-D- 
galactopyranoside) 
-Tris(2-carboxyethyl)phosphine 

Perform comparable mechanism with NAC, however 
with higher stronger reducing property 

[50,51] 

Increasing the pore size by 
interaction with peptide backbone 
and glycan structure 

Alginate oligosaccharides Interaction with both protein and glycan structures 
through involvement of hydrogen bonds reducing 
the mucin interlinking network 

[52]   

Guluronate oligomers Mitigated steric hindrance deduced primarily from 
lowering the mucin interlinking network 

[53] 

DNA 
degradation 

Increasing DNA degradation can 
result in improved mucus 
penetrability 

Deoxyribonuclease (rhDNase 
dornase alfa, Pulmozyme®) 

In a concentration-dependent manner result in DNA 
degradation and improved mucus penetrability 

[54–56] 

Magnetic 
application 

The magnetic field gradient could 
increase the mucus penetration of 
magnetic NPs. 

Iron oxide NPs The static magnetic field gradient should be much 
higher (295 T/m) than the regular one (10 T/m), 
which result in some serious adverse effects. 

[57] 

Macrophages Size Large NPs are prone to be 
phagocytosed by macrophages 

Modified enzyme responsive- 
nano-in-microgel system 

Increased lung deposition efficiency mediated by 
microgel and avoid MP uptake mediated by NPs 

[58] 

Shape non-spherical NPs can avoid 
macrophage uptake 

Organic and inorganic NPs Controlling high edge curvature regions could 
regulate MP-NP contact area and associated MP 
uptake efficiency of NPs 

[59–61] 

Surface 
modification 

The surface functionalization with 
hydrophilic moieties 

Organic and inorganic NPs PEGylation and modification of NP surface by 
neutral groups can modulate the macrophage uptake 
of NPs through regulation of surface protein corona. 

[27] 

Surface charge Biomimetic coating with Red blood 
cell (RBC) markers, platelet 
membrane coating, cancer cell 
membrane 

Organic and inorganic NPs CD44, and CD47 markers can result in MP scape 
property of NP through regulation of signal 
receptors mediated by lowering the surface charge 
of NPs 

[32] 

PSf Size It’s not clearly determined the effect 
of size on the interaction of NPs with 
PSf 

Organic and inorganic NPs The interaction of NPs with different sized and PSf 
can occur through different mechanisms and the 
effect is not clear yet. 

[62,63] 

Shape The comparable dimension of NPs 
and PSf thickness can play a key role 
in the interaction of NPs and PSf 

Organic and inorganic NPs Rod-like NPs displayed the less contact with PSf 
relative to spherical ones. Also, based on the 
hydrophilicity or hydrophobicity of NPs, the main 
effect of shape is different 

[20,64] 

Surface charge 
and grafting 

Negatively-charged and positively 
charged NPs can interact differently 
with PS 

Organic and inorganic NPs Negatively-charged NPs interact with positively- 
charged SPs, whereas positively-charged NPs 
interact with negatively-charged lipids 

[30,65, 
66] 

Surface 
hydrophilicity 

Translocation of NPs in PSs depends 
on surface hydrophilicity of NPs 

Organic and inorganic NPs Higher translocation of hydrophilic NPs in PS than 
hydrophobic ones, due to less favorable interaction 
of hydrophilic NPs with PSf 

[19,67]  
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between different species of polystyrene NPs could be due to the mode of 
colloidal stability, functional moieties, size, shape, and composition of 
NPs rather than surface charge. For example, although the composition 
of adsorbed SP corona formed on citrate- and albumin-coated AuNPs 
was comparable after BALF exposure [Fig. 2c(i)], the percentage of SP 
corona, concentration, and amount of SP corona per NP were signifi-
cantly different for NPs of different composition (CeO2, SiO2-coated 
CeO2, BaSO4, and ZnO NPs) [Fig. 2c(ii)][35]. 

In general, the colloidal stability of NPs can be explained by the zeta 
potential value. A higher zeta potential value indicates that NPs have 
less agglomeration tendency. Different functional groups on NPs or in-
teractions with proteins can alter the zeta potential value, colloidal 
stability, and physicochemical interactions at the nano-bio interfaces. 
For example, it was exhibited that coating magnetite and TiO2 with SP-A 
[99] or BaSO4 with albumin [35] enhances AM uptake, implying that 
the SP corona can play an important role in NP recognition, phagocy-
tosis, and processing by AMs via changing the colloidal stability of NPs. 
Once NPs have been internalized by AMs, they can be cleared from the 
lungs at a rate that is heavily influenced by the composition of the SP 
corona [100]. In fact, the fast dissolution rate caused by NPs’ high sol-
ubility can result in rapid uptake by AMs. It has been demonstrated, for 
example, that the SP corona with the high amount of albumin may in-
crease the phagocytic activity of macrophages toward NPs [35,101, 
102]. Other studies, however, presented that even with high levels of 
albumin in the SP corona of NPs, macrophage uptake was not significant 
[35,102]. The difference in NP clearance could be attributed to differ-
ences in NP dissolution rate in phagolysosomes [35], the folding state of 
adsorbed protein [102], cryptic epitopes [103], and conformation 
[104]. The amount of SP corona s adsorbed on NPs in BALF was found to 
be variable over time, especially for positively charged NPs, and the 
number of proteins per NP was large, indicating highly dynamic 
NP-protein binding kinetics [98]. 

A small number of proteins are thought to be responsible for a large 
portion of the SP corona [105]. As a result, the most abundant SP co-
ronas could be preserved over time and across different particles, indi-
cating that a small subset of proteins dominates SP corona formation 
[98]. Also, another important aspect of investigating the interaction of 
SP corona with NPs is to examine the composition of BALF to determine 
whether proteins adsorb in a concentration-dependent manner or 
through biophysical attraction. There was no direct correlation between 
the abundance of a specific protein in the SP corona and its 

concentration in BALF, implying that even low abundant proteins can be 
enriched on the surface of NPs via specific binding patterns [98,106, 
107]. According to Vroman theory, high-affinity proteins, even in low 
abundance, can play a significant role in the formation of SP corona on 
NPs over time [108]. Furthermore, oligomerization of SPs and their 
associated large scale (around 40 nm in length) that is comparable to the 
size of NPs may result in some complicated analysis based on SP-NP 
interaction. It is surprising that a single functional domain of SPs, 
rather than the avidity of NPs’ physicochemical properties, plays a key 
role in their binding characteristics. 

6. Coronal proteome/lipidome in RTLF 

The SP corona formed on the surface of NPs following exposure to 
lung tissue is unlikely to be similar to that found after incubation with 
plasma or blood [109] or cell culture medium [110]. However, per-
forming a like-for-like comparison of the coronal proteome of NPs in 
different biofluids is often challenging. According to a review of the 
literature, SiO2 NPs (200 nm) have been evaluated based on the 
composition of protein corona in two different biofluids, BALF [92] and 
plasma [111]. SP-A, albumin, complement C3/C4, and SP-B were 
manifested to be the most abundant proteins in the SiO2 NP SP corona in 
the RTLF biofluid [92]. However, the SP corona composition in plasma 
was strikingly different from that found in the same NPs exposed to 
BALF, which was mostly covered by blood coagulation proteins [111]. 
Comparing the SP corona pattern on different NPs in BALF vs. plasma 
biofluids revealed that, while albumin can have a significant contribu-
tion to the SP corona composition in different biofluids, other specific 
proteins with a significant fingerprint in SP corona composition, such as 
SP-A/B/D, can have a remarkable effect on the NP’s biological function 
(Fig. 3a) [112]. Furthermore, it has been demonstrated that the selective 
interaction of SPs controls the nearly identical lipid corona composition 
of different NPs [112]. For example, proteomic and lipidomic analyses 
of the NP corona in response to PSf interaction revealed that, while NPs 
with different hydrophilicity exhibit different SP corona patterns, they 
have comparable lipid composition [112]. Proteomic analysis revealed 
that several proteins, including SP-A, SP-D, and DMBT1, with high 
abundance in the SP corona of PEG-, PLGA-, and lipid-NP could mediate 
the formation of comparable lipid corona. Therefore, Raesch and co-
workers claimed that the lipid-protein interactions can play a key role in 
the lipidomic profile of NPs in PS fluid and that some specific SP proteins 

Fig. 1. Different sources used for studying the interfacial performance in lung tissue in vitro [72]. Reprinted under the terms of the CC-BY license [72]. Copyright 
2021, Wiley Online Library. 
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Fig. 2. (a) The lipid and protein composition of PSf (i) and the structural organization of SPs (ii) [79]. Copyright 2018, Elsevier. (b) Proteomic characterization of the 
hard PC around SiO2 and poly(vinyl) acetate (PVAc) NPs with BALF [92]. Copyright 2016, Elsevier. (c) 1D gel electrophoresis of proteins eluted from AuNPs (i) and 
different NPs [35]. Reprinted under the terms of the CC-BY license [35]. Copyright 2017, Springer. 
(a) Reprinted with permission from [79]. (b) Reprinted with permission from [92]. 
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with relatively high lipid and surface binding properties can manipulate 
the lipid pattern in coronas of multiple NPs [112]. 

The interaction of NPs with the PS layer differs, depending on their 
hydrophobic/hydrophilic nature. Opsonization of NPs by specific pro-
teins, SP-A/SP-D/DMBT1, results in selective lipid binding mediated by 
these molecules in the case of hydrophilic NPs (PEG-NPs) [Fig. 3b(i)], 
whereas hydrophobic NPs (lipid-NPs) can directly interact with lipid 
layers and their associated proteins [Fig. 3b(ii)] [112]. Also, NP 

wettability could heavily affect NPs– PLs interactions, as hydrophobic 
NPs, CeO2, showed the ability to accumulate inside lipid vesicles (LVs), 
whereas hydrophilic NPs, BaSO4, interacted with the surface of LVs 
(Fig. 3c(i)) [113] determined by TEM analysis (Fig. 3c(ii)) [113]. 

Computational studies have also been conducted to evaluate the 
transport of PL-wrapped NPs. Surface charges of NPs, in addition to 
wettability, can play an important role in the interaction of lipids with 
NPs. As a result, Mandal et al. demonstrated in a molecular dynamic 

Fig. 3. (a) Different patterns of pulmonary surfactant (PSf) corona and plasma corona [112]. Copyright 2015, ACS. (b) Different interactions of hydrophobic and 
hydrophilic NPs with PS layer [112]. Copyright 2015, ACS. (c) Different interaction of NPs with different wettability with PLs, (i) Schematic representation, (ii) TEM 
images [113]. Copyright 208, ACS. 
(a) Reprinted with permission from [112]. (b) Reprinted with permission from [112]. (c) Reprinted with permission from [113]. 

Fig. 4. (a) MD simulation of the effect of zeta potential and hydrophobicity on PL-NP corona formation [114]. Copyright 2018, Elsevier. (b) Time evolution of 
snapshots displaying Pl-AuNP permeation into the LS monolayer at, (a− e) side view and (f− j) top view [115]. Copyright 2021, ACS. (c) Initial and final snapshots of 
NP interactions with PSf along with cross-sectional view [119]. Copyright 2022, Elsevier. 
(a) Reprinted with permission from [114]. (b) Reprinted with permission from [115]. (c) Reprinted with permission from [119]. 
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(MD) simulation study based on scoring the hydrophobicity and hy-
drophilicity of NPs with contact angles (θ) of 100◦ and 0◦, respectively, 
that NPs with low surface charge density cannot form a bilayer unless 
their θ is less than 20◦ (Fig. 4a) [114]. For NPs having a θ > 20◦, a high 
surface charge density is required to cause the formation of bilayer co-
ronas, while lipid monolayers form around less charged NPs with 
θ > 70◦, and bicelles (disk-like portions of a bilayer) are adsorbed to the 
surface of hydrophilic NPs (20◦< θ < 70◦). However, the zeta potential 
of NPs was discovered to be less than 50 mV, indicating that NP hy-
drophobicity, rather than zeta potential, governs the formation of 
NP-lipid corona and relevant architecture. Moreover, it was shown that 
the PL-AuNPs are quickly attached to the surface of the monolayer, and 
some of the ligands are rearranged to facilitate 
hydrophobic-hydrophobic interactions and result in the formation of 
buckle (Fig. 4b), and the presence of PL along with SP peptide syner-
gistically increases the level of cholesterol aggregation, which signifi-
cantly changes the long-term properties of monolayers [115]. The 
surface tension of PSf is important in their interaction with NPs, and 
altering the lipid configuration or removing the proteins normally 
mediated by charged NPs will cause the interaction and penetration of 
NPs to influence the surface tension of the SFs [30]. While the interac-
tion of low concentrations of charged NPs results in the depletion of 
lipids or SPs which has little effect on the surface tension of the SFs, the 
associated adverse effects become significant at high concentrations of 
NPs [30,116]. Furthermore, the infrequent removal of lipids by neutral 
NPs can be compensated by the prompt replacement of bulk lipids from 
the subphase [117]. The biophysical properties of the PSf can influence 
NP penetration through changes in lipid packing during breathing. As 
surface tension reduces (compression), the lipid chain shows highly 
ordered/closely packed lipid structures, preventing the translocation of 
NPs with similar charges to those of lipids across the monolayer. It has 
been manifested that surface tension changes the binding energy and 
energy cost of lipid tails with negatively-charged NPs. As the energy cost 
of repulsing the lipids at the biointerface increases at low surface ten-
sion, NPs cause probable lipid repulsion to the liquid phase, which 
stimulates film protrusion and probable collapse, as reported for hy-
drophobic NPs [118]. 

In general, PSf molecules spontaneously interact with NPs to form 
PSf corona, which normally results in NP dissolution and interferes with 
the typical biophysical performance of PSf. The NP size, molecular 
weight, and surface charge of polymer NPs can all play a role in the 
mechanism of LS adsorption and NP dissolution. Li et al., for example, 
demonstrated that regulating NP physiological parameters can modu-
late competitive interactions between NPs-NPs and NPs-PSf [119]. They 
used five different polymer NPs (Fig. 4c) and MD simulation studies 
disclosed that only polypropylene and polyvinyl chloride were dissolved 
by PSf [119]. This data contradicted previous findings that polystyrene 
NPs are easily dissolved by lipid bilayers [120], which could be attrib-
uted to NP self-assembly and cross-linking. Furthermore, polypropylene 
NPs were demonstrated to be well-dissolved in the vesicular membrane, 
whereas less hydrophobic polyvinyl chloride NPs interacted with the 
outer leaflet head group (Fig. 4c). Smaller-sized NPs (5 nm) have lower 
crosslinking properties and a higher facilitated dissolution rate than 
larger-sized NPs (10 nm) [119]. Moreover, NP dissolution along with 
vesicle formation was assessed by analysis of gyration radius and 
self-assembly energy. It was realized that only polypropylene and 
polyvinyl chloride NPs show a significant increase in the gyration radius 
over time along with having the highest interaction energy [119]. The 
length and shape of polymers in the case of polymer NPs have been 
reported to modulate the bending rigidity that manipulates the cross-
linking performance, dissolution rate and corresponding interactions 
with different types of cancer and non-cancerous cells and tissue accu-
mulation [30,119,121]. For further information regarding polymer ri-
gidity and biomedical applications, readers are referred to the review 
paper reported by Kozlovskaya et al. [121]. 

Exploring the effect of NPs on the function of the PSf film can thus 

provide useful information about NP translocation. The interaction of 
NPs with PSf is most likely caused by NP adherence to the individual 
constituents of the PSf. Charged/hydrophobic NPs can interact with 
lipid heads/tails or deplete some proteins, causing film curvature and 
thus changing surface tension. However, the natural PSf structure and 
geometry are far more complex than the computational models. The 
natural PSf monolayer film coexists with multiple underlying multi-
layers, which may impede subsequent NP translocation due to NP 
interaction with the multilayer surface and/or aggregation. Further-
more, because the conformations of native SPs are more complex than 
those of mini-SPs in theoretical simulations, simulation studies cannot 
potentially model all of their characteristics. It is critical to create more 
advanced PSf models to investigate the functions of the various con-
stituents in the NP-PSf interactions, which will require the use of much 
more dynamic computing software. 

In general, theoretical studies show that moderate surface hydro-
philicity and surface charge can facilitate NP translocation through the 
PSf film. However, even if the neutral NPs translocate across the PSf film 
without significant interaction or adhesion, they may still displace the 
lipids or SPs due to their apparent surface polarity. As a result, the PSf 
film can undergo surface curvature and collapse at low surface tension 
after NP translocation, which warrants further investigation. 

7. Regulation of NP aggregation and surfactant flow 
characteristics 

The main aspects of NP-PSf interaction have been reported to be 
SLBs, cellular uptake mediated by lipid vesicles, and the possible for-
mation of aggregated species of NPs [122,123]. These interactions occur 
spontaneously and can be controlled by manipulating the NP dimension 
and surface chemistry [124–126]. Oikonomou et al., for example, 
demonstrated that dispersed negatively-charged cellulose nanocrystals 
with rod-shaped morphology (200 nm) can form strong electrostatic 
interactions with cationic surfactant, resulting in nanocrystal aggrega-
tion while the formed vesicles are intact (Fig. 5a) [127]. The develop-
ment of intact vesicle deposition on solid support is a key factor in the 
advancement of active ingredient nanocarrier-based PDD systems. 
Based on this, the interaction of positively charged vesicles of ditallo-
wethylester dimethylammonium chloride (DEEDMAC) with smooth 
(viscose) and rough (cotton) negatively charged cellulose fibers (Fig. 5b) 
was investigated [128]. Viscose fibers had greater vesicle deposition 
than cotton fibers, as evidenced by apparent zeta potential changes 
[Fig. 5b(i)] and fluorescence microscopy imaging [Fig. 5b(ii)] [128]. As 
a result, it was discovered that the NP roughness can play a significant 
role in the level of vesicle deposition and its integrity. Furthermore, it 
has been demonstrated that the interaction of positively charged NPs 
with negatively charged vesicles results in the formation of mixed ag-
gregates with enhanced scattering (Job scattering plot, Is) [125]. 
However, SLB formation can mitigate the formation of aggregated spe-
cies of NP-vesicles complex [125]. It has also been demonstrated that, in 
contrast to lipoprotein corona models or even NP wrapping, clinical PS 
vesicles retain their intact structure and Al2O3 NPs are trapped at their 
surface (Fig. 5c) [124], resulting in a sol-gel transition correlated with 
viscoelastic changes (Fig. 5d) [11]. Aggregation of NPs in the surfactant 
phase may change the interaction of NPs with lung cells. In other words, 
aggregation could mitigate the AMs and pneumocytes uptake of NPs by 
slowing the NP diffusion in the hypophase. As a result, it can be 
concluded that nanovehicle aggregation may alter the interfacial and 
bulk properties of PSf and interfere with lung function. 

To modulate the aggregation process, wrapping the bilayers around 
NPs can be a potential strategy for manipulating the development of 
SLB-coated NPs. To achieve this, the membrane elasticity and bending 
energy are crucial factors that mediate the probability of SLB formation 
[125,129]. It has been evinced that the gel-to-fluid transition of Cur-
osurf® occurs at Tm= 29.5 ◦C, implying that at physiological tempera-
ture, PLs provide a long-range structural disorder with an associated 
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decrease in membrane elasticity [125], which can result in the forma-
tion of SLB. In terms of NP colloidal stability, NP internalization into 
vesicles is charge and size-dependent. It has been demonstrated, for 
example, that cationic SiO2 NPs with a size> 20 nm have a high enough 
adhesion energy to be internalized by vesicles [130]. It was also 
discovered that SLB-modified NPs can only enter the outer membrane 
layer of liposomes [130]. Other non-specific interactions causing the 
disintegration, aggregation, and deformation of multivesicular archi-
tectures have been reported following the interaction of titanium oxide 
NPs and PSf [131]. Also, cationic NPs such as modified SiO2 NPs and 
Al2O3 NPs with a size of around 40 nm can change surfactant flow 
characteristics at very low concentrations [132]. It was found that SiO2 
NPs resulted in a reduction of viscosity and associated fluidification, 
whereas Al2O3 NPs stimulated a liquid-to-soft solid transition and 
increased viscosity evidenced by wire-based active microrheology 
technique. Therefore, the capability of NP with high percolation prop-
erties during cross-linking of the vesicular network can play a key role in 
the microrheology of a fluid [132]. Also, the concentration of PSf [133], 
the source of exogenous PSf [134], the size of NPs [135], and the charge 
[130] are all critical issues following exposure of NPs to PSf. As the 
population of hybrid colloids and the viscosity change, the viscoelastic 
properties of the fluid and the associated invagination can change. 

8. Pulmonary surfactant (PSf) corona and its functional role in 
the cellular uptake of NPs 

NP-mediated PDD or inhalation toxicology must be investigated 
primarily from the perspective of the formation of NP-biomolecular 
(protein and lipid) corona found in RTLF [92]. Furthermore, because 
the physiological properties of nanomaterials can play an important role 
in their interaction with biomolecules and associated corona formation 
in lung, NPs can be artificially manipulated to potentially avoid bio-
molecular corona formation through various strategies such as surface 
chemistry modification, stealth technology, and pre-coating with 

specific biomolecules to achieve potential targeting effects in vivo [128, 
136,137]. Furthermore, NPs in each biofluid behave differently, 
resulting in different macrophage immune responses. By manipulating 
the surface of NPs as well as their composition, the proteome and lip-
idome profiles of NPs can be controlled to regulate innate immunity and 
phagocytosis. As a result, for inhaled NPs, the formation of lipid corona 
should be evaluated in addition to manipulation of SP corona based on 
albumin and SPs, as the interaction of proteins and lipids in the corona 
regulates AM uptake of NP. It was discovered, for example, that the SP-A 
interaction can significantly influence the uptake of NPs by AMs, and 
this behavior was influenced by lipids [138]. Also, after being exposed to 
SP-D, AM uptake of single-walled carbon nanotubes increased signifi-
cantly [23], which was further enhanced with PL [139]. Furthermore, it 
has been discovered that accelerated AM uptake of NPs mediated by 
DPPC modification can be delayed by PEG modification (Fig. 6a) [140]. 
As a result, it is possible to conclude that NP clearance can be controlled 
by adjusting the coating composition and interacting with PLs [141]. As 
a result, the data on corona formation in plasma could not be expanded 
to predict downstream pulmonary behaviors to inhaled NPs due to the 
presence of lipids and different types of proteins. Furthermore, due to 
differences in the protein composition of serum and BALF, the time 
frame for the formation of a stable corona on the surface of NPs in these 
biofluids can differ. For example, it was discovered that a stable hard 
corona can be formed between 0.5 and 2 min [15,142] or 5–15 min [92, 
98] following NP exposure in serum or BALF, respectively. 

In some cases, the formation of a biomolecular corona on the surface 
of inhaled NPs is frequently regarded as a major challenge for drug 
delivery applications. According to recent studies, the physicochemical 
properties of the PSf corona influence the cell interaction of inhaled NPs 
[136]. It has been demonstrated, for example, that several parameters 
such as lipoprotein corona deformation, corona density, and 
ligand-receptor binding affinity can influence NP endocytosis. It has 
been demonstrated that lipid corona deformation improves the inter-
action of coating ligands with associated receptors, and that lipid corona 

Fig. 5. (a) Exploring the interaction of dispersed negatively-charged cellulose nanocrystals (CNCs) with rod-shaped morphology with positively-charged surfactants 
results in the formation of intact vesicles and aggregated species [127]. (b) Deposition of positively-charged vesicles of ditallowethylester dimethylammonium 
chloride (DEDMAC) on smooth (viscose) and rough (cotton) negatively charged cellulose fibers were investigated evidenced by zeta potential measurement (i) and 
fluorescence imaging (ii) [128]. Copyright 2016, Elsevier. (c) Biophysicochemical interaction of a clinical PSf with Al2O3 NPs [124]. Copyright 2015, ACS. (d) Sol-gel 
transition stimulated by Al2O3 NPs in a model PSf [11]. Copyright 2022, Elsevier. 
(a) Reprinted with permission from [127], Copyright 2017, ACS. (b) Reprinted with permission from [128]. (c) Reprinted with permission from [124]. (d) Reprinted 
with permission from [11]. 
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density manipulates the quantity of exposed ligands as well as the 
wettability of NPs, influencing endocytosis kinetics based on specific 
and nonspecific bindings. Furthermore, SPs associated with lipid co-
ronas can influence the endocytosis process and NP efficiency (Fig. 6b) 
[136]. However, the uptake of NPs by AMs is strongly influenced by 
lipid corona and to be only slightly affected by hydrophilic SPs [14,23, 
138]. It has been demonstrated that the engulfment potency is primarily 
determined by the NP coverage ratio based on lipid density. A more 
effective way to increase NP uptake by cells such as AMs is to coat them 
with biomolecules rather than surfactant lipids that can anchor to 
membranes (increase adhesion energy) [136]. Therefore, the cellular 
uptake of NPs appears to be significantly reduced in high surfactant lipid 
coverage due to exposure of hydrophobic tails to water, diminishing 
hydrophobicity and reducing membrane lipid extraction. In general, 
deposition of lipid layers and vesicles on the surface of NPs causes the 
formation of either supported lipid bilayers (SLB) or supported vesicular 
layers (SVLs), depending on several factors such as the gel-to-fluid 
transition, NP type, NP roughness, and surface coverage [128]. 
Although vesicle disintegration on the surface of some NPs may not be a 
desirable phenomenon in the development of vesicle-based drug de-
livery platforms, the SLB can be used to manipulate NP cellular uptake. 
It has been demonstrated, for example, that SLB-SiO2 NPs (40 nm) 
reduce the cytotoxicity and rate of cellular uptake in A549 malignant 
epithelial cells [122]. It was discovered that membrane damage and NP 
accumulation/aggregation in the cytoplasm, as well as their localiza-
tion, are heavily SLB-dependent [122]. It was then demonstrated that 
SLBs have a significant influence on cellular interactions and associated 
functions, potentially introducing a new approach to NP coating. As a 
result, it can be claimed that the fate of NPs in the alveolar region, 
whether they translocate through the epithelial cell layer or are inter-
nalized by AMs, is determined by their potential interaction with the PSf 
[32,138,143]. This knowledge has led to the investigation of the NP-PSf 
interaction and its functional role in the cellular uptake of NPs and the 
development of PDD systems. 

9. Clinical correlation 

The lung organ is prone to PDD mediated by inhalation, intranasal or 
intra-tracheal administration routes [144,145]. Indeed, PDD allows for 
potential lung targeting, which has several advantages over other 
administration methods [146]. As a result, compounds with therapeutic 
potential can be directly targeted into the lungs with relatively homo-
geneous distribution and several notable advantages such as avoiding 
first-pass metabolism as well as having a rapid onset of action, a high 
local accumulated dose, and fewer significant side effects [147]. NP 
formulations have demonstrated a number of advantages over tradi-
tional dosage forms, including facilitated dissolution, drug protection, 
and the potential for PDD [148,149]. However, because of their nano-
metric dimension and high surface-to-volume ratio, NP fate associated 
with lung immune response can be completely different from lung de-
livery of free drugs [150]. In general, reports on the interaction of NPs 
with the lungs have focused predominately on the adverse effects of 
inhaled NPs for eco-environmental toxicological investigations [151, 
152] or their promising use as potential nanotherapeutics in lung cancer 
treatment [153,154]. Engineering inhaled or instilled NPs for advanced 
convectional and diffusional mechanisms may help to optimize their 
depositing in all lung regions [155]. NPs can demonstrate sustained drug 
release in lung tissue, as well as high bioavailability and translocation 
from lung epithelium to extrapulmonary organs, by modulating their 
surface using various methodologies [156,157]. As a result, this prom-
ising route of administration can be introduced as an alternative to 
systemic drug delivery systems with significantly reduced dosage [158]. 
Although several NP-based formulations have been studied for PDD 
against a wide range of pulmonary diseases, from cystic fibrosis to lung 
cancer [159,160], others are being developed to treat a variety of 
non-lung-associated disorders [161]. These studies focused primarily on 
the effects of the physicochemical properties of NPs in PDD and their 
clearance [27,162]. Several studies have also revealed some details 
about the molecular interaction of NPs with alveolar components and 
their biodistribution [119,141]. The clearance profile of NPs, as well as 

Fig. 6. (a) PL-functionalized poly(lactide-co-glycolide) micro-based particles for changing the interaction with AMs [140]. Copyright 2019, Elsevier. (b) The 
endocytosis process and efficiency mainly rely on the density of the coating surfactant lipids at the surface of NPs [136]. Copyright 2018, ACS. 
(a) Reprinted with permission from [140]. (b) Reprinted with permission from [136]. 
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their cytotoxicity and nanomedical applications, can be heavily influ-
enced by PSf corona [10,163]. 

PSf function is crucial for the regular physiology of the lung. In 
several pulmonary-related disorders, biophysical changes of the PSf can 
be detected by different techniques. Although it has been widely re-
ported in vitro that NPs stimulated alterations in the biophysical per-
formances of PSf [29,164–166], further investigations are required 
when information is verified and conferred on clinical trials. In general, 
it has been shown that NP concentration and non-specific interactions 
with PSf can be considered as serious side effects against the reduction of 
biophysical function of PSf in vitro, however engineering the formation 
of SLB mediated by functionalization of NPs can result in improved PDD 
with low required NP concentration and high biocompatibility in vivo 
[122,130]. Furthermore, NPs accumulated in isolated lungs were asso-
ciated with the lowest NP concentration used in the various studies 
[167–169]. Also, NP clearance by AMs, newly synthesized surfactant, 
and NP biodegradation could all influence the surfactant/NP ratio [141, 
170]. Considering these approaches, it is surprising that NPs cause se-
vere side effects on PSf performance in healthy individuals. However, for 
patients with lung-related disorders involving PSf dysfunction [77,171, 
172], the detailed effects of NPs on PSf function must be investigated 
further. Importantly, NPs have been shown to cause pulmonary toxicity 
[173,174], which could magnify significant changes in PSf function in 
vivo, particularly in the context of predisposed airway diseases [14, 
175]. Therefore, further biophysical investigations about the influence 
of therapeutic doses of NPs on the performance of PSf are required to 
verify this hypothesis. 

Overall, it has been demonstrated that the introduction of NPs with 
various functional groups and surface charges alters the dynamic surface 
properties of the PSf in different ways. However, some strategies, such as 
PEGylating of NPs [176], steric shielding of NPs with bioinspired 
polymers [177], pre-coating [130], mechanical agitation [130], and 
functionalization with proteolipid [178] or ligand-based surfactant 
[179] can be used as potential strategies for the promising advancement 
of biocompatible nanomedicines (Table 3). The relevant information 
was well-reviewed in a paper published by Hidalgo et al. [81]. 

The ability of various NPs to interact with individual PSf constituents 
such as SPs or lipids is also thought to be an important factor in PSf 
function inhibition. As a result, the surface properties of NPs have been 
widely demonstrated to affect the adsorption patterns of SPs and could 
be related to the contribution in surface tension, phase behavior, and 
foaming capability of PSf. Detailed information about the interactions of 
NPs with PSf components can be used to rationally design and optimize 
colloidal nanocarriers for PDD. In general, overcoming physiological 
barriers, as well as the dissolution and adsorption performance of 
inhaled NPs, have a significant impact on the potential biomedical 
application of inhaled NPs in vivo. 

10. Challenges and future perspective 

To prevent excessive NP consumption and the side effects associated 

with the NP transfer to other tissues, targeted NPs can be delivered into 
the lung using a variety of non-invasive approaches. One remaining 
issue with NP delivery to the lungs is the fate of the NPs and their rapid 
clearance from the respiratory tract, which can be mitigated by tuning 
the physicochemical properties of the NPs, as summarized in Table 2. 
Based on personalized SP corona, it is possible to conclude that the 
composition of intracellular proteins from BALF in healthy lungs differs 
from that of lungs suffering from various diseases [98]. For example, 
mechanical stress-induced lung vascular injury can result in some serum 
protein leakage into the lung from the underlying vasculature, which 
can play a role in the variation of SP corona composition on the NPs. 
Furthermore, the presence of blood proteins on the surface of NPs can be 
attributed to nonvisible ruptures and relevant fluid contamination 
during BAL. The availability of human BALF is limited due to ethical and 
invasive concerns, and experiments on small animals are not recom-
mended as a standard assay of the NP corona in PSf for animal welfare 
reasons. Therefore, this review may highlight the relevance of accu-
rately choosing the media composition when exploring the fate, solu-
bility, and dissolution rate of NPs in the lung system, particularly in the 
early stage of NP design and development in the treatment of lung dis-
eases. In fact, the presence of proteins along with lipids can play a key 
role in the fate of NPs in the respiratory tract. Further investigations 
recruiting a wide variety of the NPs and media composition can help to 
extrapolate the behavior of NPs in the lung system. 

Another challenge is the separation of NPs from native PSf using 
magnetic and nonmagnetic methods. Given that the BALF contains a 
network of interacting conformations, the NP corona after interaction 
with PSf may not be as easily detectable in hard and soft corona, 
depending on the type of separation. 

The lack of access to intact isolated single SPs and lipids in a complex 
BALF hinders the precise determination of the binding affinity of NPs 
towards different PSf structures. Exploring the time-dependent behavior 
of the adsorption layer in future could provide more information about 
the kinetics of PSf corona formation and determine which molecules 
have the greatest affinity for the surface of different types of NPs. It is 
also necessary to investigate how the formation of this PSf corona affects 
the interaction of NPs with biological systems. Furthermore, because 
formed vesicles and aggregated NPs interfere with the DLS signal, this 
technique is not a viable method for analyzing the adsorption of 
different PSf layers on the surface of NPs. 

The size of NPs determined by TEM may be underestimated due to 
variations in dimension and colloidal stability. For example, it was 
found that TiO2 NPs (14 nm) adsorbed a comparable number of proteins 
per NP compared with larger-sized polystyrene NPs (100 nm) [98]. It 
was seen that although the determined size of TiO2 NPs by TEM was 
14 nm in PBS, the hydrodynamic diameter determined by DLS was about 
186 nm, indicating possible agglomeration of NPs in the solution. 

Several contradictory outcomes have been reported about the PSf 
corona architecture, such as the spontaneous formation of SLB [92], 
monolayer [25] or multilayers of PLs [25,186,187], or hybrid NP–ve-
sicle agglomerates after interaction of NPs with PSf [113]. Based on 

Table 3 
Strategies to regulate pulmonary surfactant (PSf) corona formation/inhibition to operate in the lung system.  

Strategies Approaches Method Application Ref. 

PSf corona 
inhibition 

Development of a hydrophilic 
surface 

Surface modification with PEG Development of non-toxic NPs [176] 
Surface modification with poloxamer Development of non-toxic NPs [65] 

Regulation of thickness and 
grafting density 

Formation of large thickness (>3 nm) and brush conformation Development of non-toxic NPs [180] 

Physiochemical properties of 
coated layer 

Poloxamer with high critical micelle concentration and low MW 
induced slight impact on the PS 

Development of non-toxic NPs [181] 

PSf corona 
formation 

Pre-coating Pre-coating with Curosurf®) siRNA delivery [182] 
Lipid modification DPPC modification Modification of acute responses in cancer 

cells 
[183] 

Development of stable DPPC-coated NPs [184] 
Higher deposition therapeutic and long 
retention time efficacy 

[185]  
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these reports, the spatial arrangement of PL membranes in relation to 
NPs, PL composition, and the presence of SPs can all have a significant 
impact on the formation of mono- or multi-coating layers, which can be 
further investigated in future studies. 

Different NP uptake behavior by cells in the presence of PSf has been 
reported. It was discovered that surfactant reduces the uptake of SiO2 
NPs by murine macrophages and lung carcinoma cells [188] and by the 
delivery of siRNA-loaded dextran nanogels. This while the presence of 
surfactants containing SPs increased the cellular uptake of silver NPs 
[189] and proteolipid-coated nanogels [178]. Therefore, the physico-
chemical properties of NPs, as well as the presence of SPs at optimized 
concentrations, can influence the cellular uptake of NPs. Furthermore, 
different cells exhibit multiple uptake mechanisms, signifying that 
further research is needed to understand the fate of NPs in pulmonary 
alveoli. 

According to theoretical simulations, inhaled NPs typically have 
irregular morphologies with heterogeneous surface characteristics. 
These are expected to affect the NP’s bio-behavior in alveoli, as opposed 
to NPs with defined morphology and uniform surface chemistry used in 
computational studies. NPs have a high adsorption affinity for various 
contaminants, resulting in the formation of nanocomposites and asso-
ciated combined cytotoxicity. Thus, by modulating the activation or 
inhibition of nano-bio interactions, the adsorption of other particulate 
compounds on the surface of inhaled NPs can further enhance their 
heterogeneity and relevant bioactivity. Further, NP transformations, 
such as PSf interaction and NP dissolution, may influence the fate of NPs 
after exposure to epithelial cells and AMs. As a result, the NP bio- 
behavior assessed by MD simulations in alveoli may differ from those 
observed in vivo, necessitating additional research. 

In general, future studies should be developed to aid in the realiza-
tion of this critical part of the bio-nano interface, as well as to reveal the 
cytotoxicity of incidentally inhaled NPs and to advance the targeted 
delivery of NPs to the deep lung. 

11. Conclusion 

This review attempted to shed light on the formation of PSf coronas 
on the surface of NPs as well as similar mechanisms involved in NP 
transport across the air-blood barrier. These details can aid in under-
standing how PSf modulates the nanotoxicology of inhaled NPs and 
provide some useful guidelines for developing an NP-based complex for 
promising PDD. To optimize such strategies, a more thorough exami-
nation of the PSf corona that appears around inhaled NPs, whether as a 
toxic particle or a drug carrier, is required. In future studies, it is 
essential to explore the PSf corona’s composition and artificial modu-
lation, which may have a significant impact on their fate and potency at 
the targeted site of action. It is, therefore, crucial to analyze the spatial 
distribution and kinetics of PSf corona formation onto the NPs to predict 
NP–cell interaction and increase their biocompatibility in the lung 
system. 
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