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ABSTRACT

In microscopic imaging, the movement of a living sub-
strate can be caused by its own displacement (e.g., cell mo-
tion/migration) or other technical factors such as microscope
stage drift. This drifting motion is one of the main biases
resulting in poor estimation of particle dynamics since it seri-
ously affects the estimation of the biophysical parameters (the
diffusion constant D and anomalous exponent α), especially
when performed on the basis of mean squared displacement
(MSD) analysis. In this paper, we compare a few substrate
drift correction/registration methods based on the use of addi-
tional fluorescent spots (landmarks). In the particular case of
cell nucleus motion, we labeled telomeres spreading through-
out the cell nucleus. We show that compared to the MSD
analysis, the use of Gaussian processes is an effective and
more accurate way to estimate the substrate drift, and major
biophysical parameters of particle dynamics.

Index Terms— Single-particle tracking, registration,
mean squared displacement, Gaussian processes, cell nuclei

1 Introduction
Image registration is the process of transforming the coordi-
nates of an image (the moving image) to align with a second
one (the fixed image) by applying a series of geometric trans-
formations or local displacements. This problem occurs fre-
quently in many fields, including biomedical imaging (e.g.,
registration of CT/MRI images of brain). Commonly used
geometric transformations include rigid body motion, where
two images are transformed using only rotation and transla-
tion, or non-rigid, where any local transformation is allowed,
defined by the “field” of deformations between the two im-
ages. In addition, registration methods can be intensity-based
strictly using the intensity patterns in the images, or feature-
based using features such as landmarks, lines and points.

Registering the motion of a living substrate (e.g., cell nu-
clei) imaged with fluorescence microscopy is known to be
difficult [1]. The registration of a stack of images is more
complex to achieve in terms of assembling the transformed
images, also requiring more computation time with intensity-
based methods. The latter require the presence of character-
istic intensity patterns (texture) that are typically missing in
images of cell. Nonetheless, depending on the staining pro-

cedure, it is possible to label at least some of the regions, for
example the contour of the nuclear envelop based on a fluo-
rescent DNA dye [2]. Yet, forces driven by both chromatin
and cytoskeleton cause the shape of the nuclear envelope to
dynamically fluctuate over time [3], complicating the possi-
bility to use rigid body image-based registration.

Since no fixed characteristic structure is present in live
cells as a reference for matching alignment, more recent
methods use additional fluorescently labeled spots (as mark-
ers) in the nucleus, for example, labeled chromatin loci [4,5].
In order to estimate the global drift of the nucleus those
“landmarks” are used for image transformations in combina-
tion with so-called point cloud registration methods, which
use rigid/affine transformations [5] or Gaussian Processes
(GPs) [4]. Here, we propose to use labeled chromosome-ends
(telomeres) as markers which can be used by point cloud
registration methods to estimate substrate drift and accurately
estimate motion parameters. Our staining procedure pro-
vides a good amount of (diffraction-limited) spots localized
throughout the nuclear region and stable over time with a
relatively high signal-to-noise ratio. We compare a few reg-
istration methods proposed in the literature (averaging the
tracks, applying affine transformations and Gaussian pro-
cesses), using both synthetic data and telomere trajectories
from real experiments, and compare the estimated motion pa-
rameters before and after applying each method. We conclude
that registration of the substrate drift is more than necessary
for an accurate estimation of the α parameter using the MSD
analysis. The use of Gaussian processes is an effective way
to estimate smoothed drifts. It can also be used to accurately
estimate the motion parameters without prior registration.

2 Methods
2.1 Problem statement
Particle dynamics can be characterized by the diffusion con-
stant D and anomalous exponent α, which can be both es-
timated using a least-square fit to the logarithm form of the
mean squared displacement: MSD(∆t) ∼ D∆tα, where 0 <
α < 2. The position of diffraction-limited fluorescent parti-
cles in each image frame at time t can be accurately estimated
by fitting a Gaussian Point Spread Function (PSF) and then
linked to form trajectories using the nearest-neighbor crite-



Fig. 1: Particles diffusing within a cell nucleus for 75 s and
manifesting a strong drift caused by the cell motion. (left)
Trajectory of a single chromatin locus. (middle) Superposi-
tion of the first (green) and last (red) frames to reveal the drift.
(right) Trajectories of telomere spots.

rion [6]. The result of the particle tracking is a set S of tra-
jectories si ∈ S, i = {1, . . . , P}, where P is the number
of particles, and si(t) = (xi(t), yi(t)) represents the coor-
dinates of a particle at time t. Each particle si diffuses in a
cell nucleus, which adds an unknown global motion (trans-
lation, rotation) to all the trajectories S caused by the cell
motion and any other technical drifts (see example in Fig. 1).
For instance, in the case of a strong drift, the particles might
be wrongly classified as undergoing superdiffusion. Correct-
ing for such global motion corresponds to finding geomet-
ric transformations which can be used to “subtract” this bias
from the particle trajectories, and thus end up with accurate
local behavior. Such transformation can be achieved in sev-
eral ways, discussed below.

2.2 Trajectory averaging
The simplest registration method, which was previously
applied to telomere trajectories [7], consists of averag-
ing all particle positions in every frame. The averages
(mx(t),my(t)) = ( 1

P

∑P
n=1 xi(t),

1
P

∑P
n=1 yi(t)) repre-

sent the estimated global motion, which is later subtracted
from the initial trajectories in S.

2.3 Affine transformations
An affine transformation is a geometric linear mapping that
preserves parallelism and ratios of distances between points,
lines and planes. Additionally to the rigid transformation,
which includes only rotation and translations, the affine trans-
formation can also handle scaling and shearing. Finding the
transformations between two sets of points from two frames
can be done very efficiently, resulting in estimated global mo-
tion on a per-frame basis [5].

2.4 Gaussian processes
A Gaussian process (GP) is a distribution over stochastic
functions f(t) ∼ GP(m(t), k(t, t′)) defined by its mean
function m(t) and covariance function (kernel) k(t, t′) [8].
A GP can be used for different estimation purposes depend-
ing on the chosen mean function and kernel. In our case
we used GPs to estimate the drift for each trajectory. For
this purpose, we used a standard GP model with a zero

mean function and the radial basis function (RBF) kernel,
kRBF(t, t

′) = exp(−||t− t′||2/2l2) where l is the lengthscale
parameter which represents the smoothness of the estimated
function that models the global drift. We used a lengthscale
value of 100 and fed the GP with trajectory displacements.
After estimating the global drift for each track (refered as
GP-RBF), we either subtract the estimates from the corre-
sponding trajectories, or use them as inputs to estimate the
affine transformations.

Within the GP framework, it is also possible to use the ker-
nel which describes the fractional Brownian motion (FBM),
the process that is frequently used in practice to model anoma-
lous diffusion [9]. For this case, the kernel is defined as
kFBM(t, t′) ∼ D

[
|r + 1|α − 2|r|α +|r − 1|α

]
with r = |t −

t′|. This model (referred as GP-FBM) can be used to directly
estimate D and α from the trajectories that contain a global
drift [4]. For each coordinate, xi(t) and yi(t), we built a GP
model with a m(t) = 0 and the FBM kernel, and fed the cor-
responding displacements. The optimal values for the motion
parameters can be estimated by maximizing the log marginal
likelihood. The estimated parameters for x- and y-dimensions
were averaged. We compared our GP-FBM model with the
software package GP-Tool [4], which also uses GPs but in a
different setup and works only with 2-5 trajectories per image
sequence.

3 Results
A set of 5 trajectories (300 frames long) was generated fol-
lowing the FBM diffusion model [9] with α = 0.5 and D =
0.045 [pixel2/frame]. A global motion was simulated by ap-
plying a constant translation and rotation at each frame. The
total translations in the x- and y-dimensions are 20 and -20
pixels, while the total rotation is 15° (Fig. 2a, top panel).

Telomeres in mouse embryonic stem cells (mESC) were
labeled by PiggyBac-mediated stable expression of a hCdt(1-
100)-EGFP-mTERF2 expression construct and imaged on a
Nikon Eclipse Ti-E inverted microscope with a Yokogawa
dual spinning-disc confocal scanning unit (Yokogawa, CSU-
X1-A1) and a Nikon CFI APO TIRF 100x 1.49 NA oil ob-
jective at 37°C and 5% CO2. Cells were excited by a 491
and 561 nm diode laser and images were captured simulta-
neously with a DV2 Beamsplitter (MAG Biosystems) on a
QuantEM512C camera (Photometrics). Stream acquisitions
were acquired in two dimensions for 75 s, with a time inter-
val of 250 ms (300 frames in total). The chromatin locus was
labeled using the ANCHOR3 DNA labeling system [10]. The
tracking was done using the SOS tracker [6] (Fig. 1).

3.1 Synthetic data
We applied the registration techniques described above to
the simulated trajectories (the estimated drifts and registered
tracks are shown in Fig. 2b-e), and computed the motion
parameters of interest using the MSD-based approach. The
absolute errors in estimating α and D are shown in Fig. 3



(left panels). Additionally, we estimated the parameters for
the raw trajectories before and after adding the drift, us-
ing GP-FBM [4] and our own implementation (Fig. 3, right
panels).

The averaging method produces a single drift estimate,
and is therefore unable to correct the drift in the presence of
a substrate rotation (Fig 2b). The estimates generated with
affine transformation are better but rather noisy (Fig 2c).
The GP-RBF method estimated drifts using smooth curves
(Fig 2d). Combining the GP-RBF estimates with the affine
transformations helps in keeping both the smoothness of
drifts and the correct pathways (Fig 2e).

Compared to the MSD method, our GP-FBM produces
very accurate estimates for α with and without the additional
drifts. At the same time, for both the MSD and our GP-FBM,
the estimates of D are quite comparable, with and without
the drift. The estimates given by the GP-FBM [4] are rather
inaccurate for both α and D on our set of trajectories.

3.2 Real data
We also applied the described methods to the analysis of
telomere dynamics, where the ground-truth information about
the global motion and other parameters are unknown. In prin-
ciple, the underlying α and D might vary per telomere spot.

For the time lapse shown in Fig. 1, the results of drift es-
timation are given in Fig. 4, and the parameter estimates for
the registered telomeres (tel 1-5) are given in Table 1. The
α estimates are in the same range for I to IV-MSD and our
GP-FBM implementation. Similarly, the D estimates are in
the same range for the MSD, our GP-FBM, III-MSD and IV-
MSD. The GP-FBM from Oliveira et al (2021) produced dif-
ferent ranges of α and D estimates.

We also applied the transformations to our spot of interest
(a single chromatin locus, Fig. 1a) and estimated its dynam-
ics (Table 1, loc), resulting in α of about 0.1 and a diffusion
constant D of 0.0029 µm2/s, which are interestingly rather
different from the dynamics of the telomere spots.

Track id tel 1 tel 2 tel 3 tel 4 tel 5 loc

α
pr

ed

MSD 0.475 0.465 0.327 0.511 0.598 0.178
GP-FBM [4] 0.357 0.285 0.324 0.363 0.569 —
GP-FBM (ours) 0.264 0.178 0.188 0.279 0.416 0.091
I-MSD 0.297 0.198 0.149 0.245 0.326 0.112
II-MSD 0.299 0.157 0.154 0.258 0.290 0.127
III-MSD 0.262 0.130 0.135 0.234 0.385 0.098
IV-MSD 0.286 0.140 0.138 0.264 0.395 0.114

D
pr

ed

MSD 5.7 3.8 10.2 3.4 4.1 27.8
GP-FBM [4] 4.8 3.1 5.6 2.2 3.1 —
GP-FBM (ours) 6.1 4.5 10.6 3.6 4.3 28.7
I-MSD 4.3 3.1 7.0 3.1 3.4 29.3
II-MSD 4.5 2.0 3.8 3.2 2.7 31.6
III-MSD 5.9 4.0 10.6 3.6 4.1 29.1
IV-MSD 5.9 3.8 10.6 3.4 4.1 28.2

Table 1: Estimated motion parameters on 5 telomere trajec-
tories (tel) and our chromatin locus of interest (loc).
Dpred values are in [10−4 × µm2/s].
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Fig. 3: Absolute errors in the α (top) and D (bottom) esti-
mates for 5 simulated trajectories. (left panels) Registered
tracks per point cloud registration methods: (I) AVG, (II) AT,
(III) GP-RBF, (IV) GP-RBF + AT. (right panels) Raw tracks
with or without the additional substrate drift.

4 Discussion and Conclusion
Several conclusions can be drawn from this comparative
study: (i) the MSD analysis, which is the most commonly
used method for estimation of α and D, cannot cope with a
global drift (for example due to substrate motion), and will
overestimate α; (ii) labeling the telomeres is an efficient way
to obtain multiple trajectories in live cells and successfully
correct for nuclear drift using point cloud registration meth-
ods. This allowed us to estimate the dynamics of a chromatin
locus after correction of substrate drift; (iii) the averaging
of the tracks does not provide accurate registration if the
substrate is rotating. The affine/rigid transformations pro-
duce noisy drift estimates due to the independent calculation
for each pair of frames. The GP-RBF produces smoothed
drift estimates, which in combination with the affine trans-
formation could help in eliminating the local uncertainty bias
of the affine transforms; (iv) finally, directly estimating the
motion parameters with our GP-FBM implementation gave
very accurate estimates in all considered cases. Compared
to Oliveira et al (2021), our implementation can work for a
single track and is not dependent on other trajectories located
within the same substrate. Estimation of the global motion
can still be of interest for other purposes, for instance to ana-
lyze the movement of the substrate itself over longer periods
of time.
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Fig. 2: (a) Simulated tracks with (top) and without (bottom) an additional nucleus drift. (b-e) Estimated drift for each track
with the ground-truth drifts in dashed line (top), registered tracks (bottom) using one of the following registration technique:
track averaging [AVG] (b); affine transformations [AT] (c); Gaussian process estimates with RBF kernel [GP-RBF] (d); affine
transformations using the Gaussian process estimates as inputs [GP-RBF + AT] (e).
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Fig. 4: (a) Telomere tracks. (b-e) Estimated drifts using one of the point cloud registration technique (see caption in Fig. 2).
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