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ORIGINAL ARTICLE

Improving knowledge-based treatment planning for lung cancer radiotherapy
with automatic multi-criteria optimized training plans

Kristine Fjellangera,b , Marte Hordnesb, Inger Marie Sandvika, Turid Husevåg Sulena, Ben J. M. Heijmenc,
Sebastiaan Breedveldc, Linda Rossic, Helge Egil Seime Pettersena and Liv Bolstad Hysinga,b

aDepartment of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; bInstitute of Physics and Technology,
University of Bergen, Bergen, Norway; cDepartment of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center,
Rotterdam, Netherlands

ABSTRACT
Background: Knowledge-based planning (KBP) is a method for automated radiotherapy treatment
planning where appropriate optimization objectives for new patients are predicted based on a library
of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency
compared to manual planning, but its performance depends on the quality of the training plans. We
used another system for automated planning, which generates multi-criteria optimized (MCO) plans
based on a wish list, to create training plans for the KBP model, to allow seamless integration of
knowledge from a new system into clinical routine. Model performance was compared for KBP models
trained with manually created and automatic MCO treatment plans.
Material and Methods: Two RapidPlan models with the same 30 locally advanced non-small cell lung
cancer patients included were created, one containing manually created clinical plans (RP_CLIN) and one
containing fully automatic multi-criteria optimized plans (RP_MCO). For 15 validation patients, model per-
formance was compared in terms of dose-volume parameters and normal tissue complication probabil-
ities, and an oncologist performed a blind comparison of the clinical (CLIN), RP_CLIN, and RP_MCO plans.
Results: The heart and esophagus doses were lower for RP_MCO compared to RP_CLIN, resulting in an
average reduction in the risk of 2-year mortality by 0.9 percentage points and the risk of acute esopha-
geal toxicity by 1.6 percentage points with RP_MCO. The oncologist preferred the RP_MCO plan for 8
patients and the CLIN plan for 7 patients, while the RP_CLIN plan was not preferred for any patients.
Conclusion: RP_MCO improved OAR sparing compared to RP_CLIN and was selected for implementa-
tion in the clinic. Training a KBP model with clinical plans may lead to suboptimal output plans, and
making an extra effort to optimize the library plans in the KBP model creation phase can improve the
plan quality for many future patients.
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Background

Manual treatment planning for intensity-modulated radiotherapy
(IMRT) of locally advanced non-small cell lung cancer (LA-NSCLC)
can be complex and time-consuming, and plan quality may
depend on the experience and skills of the treatment planner
and the available time. In recent years, systems for automated
treatment planning have been introduced that can reduce plan-
ning time and improve plan quality and inter-patient consist-
ency, and they are becoming more and more widespread [1].

Automatic multi-criteria optimization (MCO), where
Pareto-optimal plans are created with no user intervention
according to a treatment site-specific wish-list, has shown a
potential to increase the sparing of organs at risk (OARs)
compared to manual planning, also for NSCLC [2–4]. The clin-
ical availability of such systems is however limited. In

knowledge-based planning (KBP), the achievable dose for
each patient is predicted using a library of previous plans, in
order to automatically set suitable planning objectives for
plan generation. KBP can automatically generate plans with
similar or even better quality compared to manual plans [5–
11], but the quality of the output plans depends on the qual-
ity of the plans in the library [12–16]. The commercially avail-
able RapidPlan system for KBP (Varian Medical Systems, Palo
Alto, USA) has been implemented in many centers.

Once a KBP model is implemented in the clinic, it will
likely be used to create treatment plans for a number of
future patients. Therefore, the strategy selected for the
model creation phase is of great importance, as it consist-
ently will affect the plan quality for all these patients. In this
study, we investigate if automatic MCO could be used to
improve training of our clinically available KBP system, and
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thereby indirectly enhance plan quality in a clinic without
routine access to automatic MCO. To this purpose, plans
generated with a KBP model trained with automatic MCO
plans were compared to plans for the same patients gener-
ated with a KBP model trained with previous clinical plans.
The final aim was to select a KBP model for clinical
implementation.

Material and methods

Patients and clinical treatment planning

Forty-five consecutive patients with inoperable non-small cell
lung cancer (stage IB-IVA, mainly stage III) were prospectively
included in this study. All patients received radiotherapy
according to the protocol for LA-NSCLC and concurrent or
sequential chemotherapy at Haukeland University Hospital
between October 2019 and November 2022. The study was
approved by the Regional Committee for Medical and Health
Research Ethics in Western Norway (protocol code 2019/749)
and all participants gave informed consent.

The imaging and delineation procedures have been
described in detail in previous work [17]. The clinical plans
(CLIN) were manually created by experienced treatment plan-
ners in Eclipse version 15.6 or 16.1 (Varian Medical Systems,
Palo Alto, USA) using the Photon Optimizer algorithm for
optimization and the Acuros External Beam algorithm for
dose calculation. Most plans had 6 coplanar IMRT beams
with beam angles based on a template that was individually
adapted, four patients had 5-field IMRT plans and two had
VMAT plans. According to national guidelines, the prescribed
dose was 60 or 66Gy for concurrent chemo-radiation
(depending on lung function, lung dose, and proximity of
the brachial plexus to the PTV) and 70Gy when chemo- and
radiotherapy were delivered sequentially, all in 2 Gy fractions.
The plans were normalized to the median dose in the PTV.
Dose constraints applied for planning are shown in Table 1.

iCE treatment planning

In addition to the CLIN plan, an automatically generated
MCO treatment plan from the novel in-house iCE system was
available for each patient. In iCE, an initial Pareto-optimal flu-
ence-map optimized treatment plan with optimized beam
angles is generated in Erasmus-iCycle [18]. This is a fully
automatic process based on a wish-list containing constraints

and objectives with ascribed priorities, tuned to reflect the
clinical priorities for this patient group in the treating center.
The objectives are first optimized in turn according to their
priorities, keeping the achieved values as constraints in fol-
lowing optimizations. In a second round, objectives that can
be optimized further than their defined goal are optimized
as far as possible within constraints, starting with the highest
priority objective.

In the second step of iCE, the dose distribution from
Erasmus-iCycle is automatically reconstructed in Eclipse,
using patient-specific line objectives that limit the dose for
all volume levels for OARs. This results in a deliverable plan
created without manual intervention. A detailed description
of iCE and the applied wish-list can be found elsewhere [2].
In a previous study, iCE reduced the median Dmean for the
heart and esophagus by 9–10% compared to manual plan-
ning for LA-NSCLC patients, while maintaining similar PTV
coverage and lung dose [2].

RapidPlan model creation

Of the first 40 included patients, 30 were randomly selected
for training of KBP prediction models. The remaining 10
patients and the last 5 included study patients (15 in total)
were used for comparison of MCO-based KBP with CLIN-
based KBP (next section).

First, a RapidPlan (RP) model containing the CLIN plans
(RP_CLIN) of the 30 training patients was created. The model
featured line objectives generated from predicted DVHs for
the lungs, heart, and esophagus, complemented with max-
imum and minimum dose objectives for the PTV and max-
imum dose objectives for the spinal canal and brachial
plexus. The PTV objectives and normal tissue objective (NTO,
see Table 2) were tuned using three of the training patients,
with the goal of achieving similar target coverage as in the
CLIN plans.

A second model, containing the multi-criteria optimized
iCE plans for the same patients (RP_MCO) was then created.
The optimization objectives were re-tuned using the same
approach as above. The objectives in both models are sum-
marized in Table 2. A detailed description of RapidPlan func-
tionality can be found elsewhere [5].

Table 1. Planning dose constraints for the PTV, OARs and normal tissue.

Volume Dose constraint

PTV V95% > 98%
Lungs V5Gy < 65%

V20Gy < 35%
Dmean < 20 Gy

Heart V30Gy < 40%
Esophagus Dmean < 34 Gy
Spinal canal Dmax < 50 Gy
Brachial plexus Dmax < 66 Gy
Patient body Dmax < Dp � 1.07
Dp: prescribed dose. In cases where fulfilling all constraints was impossible,
the responsible oncologist decided whether target coverage or OAR con-
straints should be compromised.

Table 2. Objectives in the RapidPlan models.

Structure Type Volume Dose
Priority

RP_CLIN/RP_MCO

PTV Upper 0% 100.8% 130/140
Lower 100% 99.2% 130/140

Lungs Line Generated Generated Generated
Heart Line Generated Generated Generated
Esophagus Line Generated Generated Generated
Spinal canal Upper 0% 48Gy Generated
Brachial plexus Upper 0% 60Gy 100
Patient body NTO – – 100

NTO: normal tissue objective, with the following fixed parameters: distance
from target border 0.5 cm, start dose 105%, end dose 60% and fall-off 0.15
[19]. For line objectives, the ‘preferring OAR‘ option was used. Only 11 of the
patients had the brachial plexus delineated, and a fixed objective had to be
used as this is too few structures to train a prediction model. The PTV dose
levels of 100.8% and 99.2% were applied in RapidPlan to facilitate a common
model for the different prescriptions (in the manually created plans, the dose
level for the PTV objectives were set 0.5 Gy above/below the prescribed dose).
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Comparison of RapidPlan models

For each of the 15 patients not used in the model building,
one plan was automatically generated with the RP_CLIN pre-
diction model and one with the RP_MCO model, with no
manual interventions. The same beam configuration as in
the CLIN plan was used in the RP plans for each patient.
Relevant dose-volume parameters for the PTV and OARs
were compared. To illustrate the clinical difference, normal
tissue complication probabilities (NTCPs) for radiation pneu-
monitis (RP) grade �2, 2-year mortality, and acute esopha-
geal toxicity (AET) grade �2 were calculated using validated
models described in detail in the Supplementary materials
[20–23]. Goodness of fit statistics (R2 and v2) reported for
each model in the model configuration workspace was also
evaluated.

Comparison with clinical plans

The responsible oncologist evaluated the CLIN, RP_CLIN, and
RP_MCO plans and selected the preferred plan for each
patient, while blinded to the technique. Based on the oncol-
ogist’s preference and the quantitative analysis above, the
best RP model for clinical use was selected and validated
against the CLIN plans using relevant dose-volume
parameters.

Statistical analysis

The two-tailed Wilcoxon signed-rank test was used for statis-
tical testing of dose-volume parameters for RP_MCO plans
vs. RP_CLIN and CLIN plans.

Results

Comparison of RapidPlan models

The dose to the heart and esophagus was lower in RP_MCO
plans than RP_CLIN plans (Table 3, Figures 1 and S1). The
lungs V5Gy was also slightly reduced, while the target cover-
age was similar. The clinical impact for individual patients is
illustrated in Figure 2, showing a modest but consistent
reduction in the risk of 2-year mortality and AET with

RP_MCO compared to RP_CLIN. On average, RP_MCO plans
reduced the risk of 2-year mortality by 0.9 percentage points
(pp) (p< 0.001), and the risk of AET by 1.6 pp (p< 0.001)
(Table 3).

The R2 values were similar, indicating a similar determin-
ation capability of the regression models in RP_CLIN and RP_
MCO, and the v2 values were slightly improved with RP_
MCO, indicating a better fit between original and estimated
values (Table S2).

Comparison with clinical plans

In blinded evaluations, the oncologist preferred the RP_MCO
plan for 8 and the CLIN plan for 7 out of 15 patients. The
RP_CLIN plan was not preferred for any of the patients
(Figure 3). Lower dose to the heart and esophagus were the
main reasons for choosing the RP_MCO plan, and lower lung
dose was the main reason for choosing the CLIN plan. The
oncologist also noted that the Dmax to the spinal canal was
above or very close to the constraint in one or more plans
for 5 of the patients.

As the reported results clearly showed an advantage of
RP_MCO compared to RP_CLIN, the RP_MCO model was
selected for clinical implementation, and the RP_MCO plans
were compared to the CLIN plans also in terms of dosimetric
parameters and NTCP. Dosimetric parameters for the heart
and esophagus were lower in the RP_MCO plans than the
CLIN plans, while the lung dose and spinal canal Dmax were
higher (Table S3). As a result, the average NTCP for RP was 1
pp higher with RP_MCO than CLIN (p¼ 0.04), for 2-year mor-
tality it was 0.4 pp lower (p¼ 0.04) and for AET it was 2.3 pp
lower (p¼ 0.003).

Discussion

To our knowledge, this is the first study to compare the per-
formance of KBP models trained with manual plans vs. gen-
erated plans from a different autoplanning system. Training
RapidPlan with automatic MCO plans gave better model per-
formance than training with clinical plans. RP_MCO improved
the sparing of the heart and esophagus compared to
RP_CLIN, resulting in a reduction in the average NTCPs for

Table 3. Comparison of dose-volume parameters and NTCPs for RP_CLIN and RP_MCO plans.

Metric
RP_CLIN RP_MCO

Average Median 10th–90th percentile Avg Median 10th–90th percentile p-value

PTV V95% [%] 98.9 99.4 96.6–99.8 98.9 99.3 97.1–99.8 0.9
Lungs Dmean [Gy] 13.6 14.1 10.1–16.6 13.5 13.9 10.2–16.5 0.8
Lungs V5Gy [%] 54.5 56.2 39.2–66.8 53.9 55.1 39.0–66.5 0.009
Lungs V20Gy [%] 23.5 22.4 15.8–31.3 23.4 21.7 15.6–32.0 0.5
Heart Dmean [Gy] 9.4 7.8 2.8–22.7 8.3 7.7 2.4–18.3 <0.001
Heart V5Gy [%] 40.1 31.9 10.9–92.0 38.3 29.7 9.9–87.2 0.002
Heart V30Gy [%] 8.1 5.7 1.3–15.5 7.6 4.9 0.7–19.9 0.02
Esophagus Dmean [Gy] 19.3 17.9 6.4–32.1 18.3 17.6 6.0–30.5 <0.001
Esophagus V20Gy [%] 33.7 31.2 11.5–59.4 31.2 27.6 7.5–55.8 0.001
Esophagus V60Gy [%] 10.2 7.3 0.0–24.3 9.2 4.9 0.0–23.7 0.009
Spinal canal Dmax [Gy] 44.5 49.1 28.9–50.4 44.8 48.7 29.9–50.8 0.4
NTCP RP [%] 22.2 22.9 6.6–36.3 22.2 21.8 6.2–37.9 0.9
NTCP 2-year mortality [%] 48.4 43.4 34.7–75.9 47.5 42.2 34.1–73.4 <0.001
NTCP AET [%] 35.3 35.6 10.2–57.3 33.7 35.0 9.2–55.2 <0.001
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2-year mortality and acute esophageal toxicity. The differ-
ence in performance between the models can be explained
by the difference in the dose distributions of the training
plans [2]. In line with previous studies, this demonstrates
that improving the quality of the library improves the model
performance [12–16,24–26].

The most common approach for creating a new RP model
for the clinic is to build a library with manually created, clin-
ically used plans for a group of relevant patients [5–9].
Although these plans have been approved for treatment and
meet the clinical goals, they are usually not optimal. The
treatment planners work under time pressure with limited
time for testing different planning strategies, and generally
do not know when a treatment plan cannot be further
improved.

Some studies have explored different strategies for opti-
mizing KBP model training. Iterative approaches where an
initial RP model was used to generate plans for new

patients that were included in a second RP model improved
OAR sparing in the output plans [12,24,25], while re-opti-
mization with RP for the patients included in the original
model gave a modest improvement for some OARs but also
induces a risk of overfitting [13,14,26,27]. Others have
selected the plans with the best OAR sparing from the ori-
ginal training set for use in the final model, or in an inter-
mediate model for re-optimization of the training plans [28–
30]. In a recent study, periodical updates to a RP model
were performed in order to increase the number of training
patients, and increase the mean plan quality in the training
set [15]. Most of these approaches improved the quality of
the resulting RP plans, illustrating the potential of optimized
training. However, they still depend on the quality of the
plans in the original model, and some approaches are not
applicable when introducing a RP model for a new treat-
ment site, or require extra work and a new validation at a
later time.

Figure 1. Population average DVHs for PTV and OARs for RP_CLIN and RP_MCO plans. Three patients had PTV_60 and 12 had PTV_66. For DVHs with confidence
intervals, see Figure S1 in the Supplementary materials.

Figure 2. Differences in NTCPs between RP_CLIN and RP_MCO plans per patient. The patients are sorted according to the sum of differences for the three NTCPs.
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RapidPlan has previously been combined with manual
MCO-based trade-off exploration (TO) for head and neck and
prostate SBRT [16,31]. The best results were achieved when
both populating the model with training plans manually
optimized with TO and then further individually optimizing
the output plans once more with TO. This requires manual
work for every patient and is dependent on the judgment of
the treatment planner. Only optimizing the training plans
with manual TO would be more efficient and also improved
the model performance compared to using clinical plans for
training [16]. Another study used 20 plans from Pinnacle
Auto-Planning to train a RP model, and found similar plan
quality for RP and Auto-Planning validation plans [32]. In the
current study, we have demonstrated how an automatic
MCO system can be used to optimally train a KBP model, for

seamless integration of knowledge from an independent sys-
tem into clinical routine.

As the NTCP benefit of training RP with MCO plans
instead of CLIN plans is modest, it could be questioned
whether it is worth the extra effort. It should however be
taken into consideration that this is a one-time effort, which
leads to reduced OAR doses for many future patients. In add-
ition, mortality in particular is a complication of paramount
severity and any reduction in the risk could be of
importance.

Both in manual planning and KBP of LA-NSCLC, achieving
a maximum dose to the spinal canal below the constraint
can be a challenge. Also in this study, the dose was slightly
above the constraint for a few patients, and the Dmax was
higher in RP plans than CLIN plans. The model objectives for

Figure 3. Oncologist’s choice in blinded comparison of CLIN, RP_CLIN and RP_MCO plans for the 15 patients. The justification for the choice for each patient is
given inside the boxes.
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the spinal canal could be set stricter in order to automatic-
ally generate plans that are always within the constraint.
However, setting the right model objectives is a fine balance,
and this would limit the possibility to optimize the other
objectives. For clinical implementation, we decided to use
the RP_MCO model, and manually tune the spinal canal dose
for the occasional patient where it is needed.

Although there were some differences in dose-volume
parameters and NTCPs between the CLIN and RP_MCO plans,
these were quite small and it varied which technique was
the best. The blinded evaluation also showed that the quality
of the plans was similar. Therefore, the implementation of
the RP_MCO model is not expected to cause any major dif-
ference in the overall plan quality for this patient group.
However, we do anticipate a reduction in planning time and
more homogeneous plan quality. In addition, the complex
manual planning has been performed by a few highly experi-
enced treatment planners, while with RP, also less experi-
enced planners can take part in the planning for this patient
group.

A limitation of this study was the number of patients
available for validation. In preparation for this study, we
compared RP models with 20, 25, 30, 35, and 40 patients in
the library, and concluded that 30 patients gave sufficient
model quality and that further increasing the number of
patients did not improve the model performance. This left
15 patients for open-loop validation. In addition, we have
only evaluated planned and not delivered dose. However,
we find it likely that uncertainties will affect the delivery of
the different plans in a similar way, and that the differences
found in this study will remain during treatment.

Beam angle optimization was included in the automatic
MCO planning, but not available clinically. Therefore the
manually selected beam angles from the clinical plan for
each patient were used also in the RP plans in this study.
With RP in clinical use, the planning will be quick and auto-
mated, making it easier for the treatment planner to try dif-
ferent options for beam placement.

Sharing of RP models between centers can be challenging
due to differences in delineation, prescription, and planning
techniques and strategies. Still, studies have shown that this
could be feasible in some circumstances. Further work with
homogenization of planning routines would be desirable in
several respects, and could for instance allow centers without
access to automatic MCO to incorporate KBP models from
other centers with MCO training plans.

To conclude, the RapidPlan model based on automatically
generated MCO plans reduced the dose to the heart and
esophagus compared to the model based on clinical plans.
The RP_MCO model was implemented in the clinic, with
manual tuning of the spinal canal dose when necessary, and
is expected to save time in the clinical routine. Training a
knowledge-based planning model with clinical plans may
not be optimal in order to minimize OAR doses, and making
an extra effort to optimize the library plans in the KBP model
creation phase can improve the plan quality for many future
patients.

This study has been evaluated using the RATING criteria
for treatment planning studies and a score of 94% was
achieved [33].
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