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Abstract

Free college proposals have become increasingly popular in many countries of the world.

To evaluate their potential effects, we develop and estimate a dynamic model of college

enrollment, performance, and graduation. A central piece of the model, student effort,

has a direct effect on class completion, and an indirect effect in mitigating the risk of

not completing a class or not remaining in college. We estimate the model using rich,

student-level administrative data from Colombia, and use the estimates to simulate free

college programs that differ in eligibility requirements. Among these, universal free college

expands enrollment the most, but it does not affect graduation rates and has the highest

per-graduate cost. Performance-based free college, in contrast, delivers a slightly lower

enrollment expansion yet a greater graduation rate at a lower per-graduate cost. Relative

to universal free college, performance-based free college places a greater risk on students

but is precisely this feature that delivers better outcomes. Nonetheless, the modest increase

in graduation rates suggests that additional, complementary policies might be required to

elicit the large effort increase needed to raise graduation rates.
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Resumen

Las propuestas sobre educación universitarias gratuita se han vuelto cada vez más

populares en muchos páıses del mundo. Para evaluar sus efectos potenciales, desarrollamos

y estimamos un modelo dinámico de matŕıcula, desempeño y graduación universitaria.

Una pieza central del modelo, el esfuerzo de los estudiantes, tiene un efecto directo sobre

el desempeño y un efecto indirecto en la mitigación del riesgo asociado. Estimamos el

modelo utilizando datos a nivel de estudiantes en Colombia, y usamos las estimaciones

para simular programas de universidad gratuita que difieren en requisitos de elegibilidad.

Entre estos, el programa sin requisitos es el que más expande la inscripción, pero no afecta

las tasas de graduación y tiene el costo más alto. El programa basado en rendimiento,

por el contrario, ofrece una expansión de matŕıcula ligeramente menor pero una mayor

tasa de graduación a un costo más bajo. En relación con el programa sin requisitos, aquel

basado en rendimiento supone un mayor riesgo para los estudiantes, pero es precisamente

esta la razón de los mejores resultados. No obstante, el modesto aumento en las tasas de

graduación sugiere que podŕıan ser necesarias poĺıticas complementarias adicionales para

incentivar el esfuerzo necesario para aumentar las tasas de graduación.

Palabras clave: Educación superior, universidad gratuita, ayuda financiera.
Clasificación JEL: E24, I21
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1 Introduction

In modern economies, higher education is crucial role to the formation of skilled human capital.
Not only can higher education raise a country’s productivity; it can also lower income inequality.
By subsidizing access to higher education, policymakers can contribute to these two roles. The
question, of course, is how large a subsidy they should provide. Advocates of free college argue
that policymakers should provide a full subsidy, resulting in zero tuition for students. While
free college has existed for years in a number of countries,2 free college proposals have sprouted
recently in other countries, including the United States, Chile, and Colombia.

Free college advocates claim that only when college is free can it realize its promise, partic-
ularly that of lowering inequality. Given Latin America’s distinction of being the most unequal
region of the world (World Bank 2016), many in the region view free college as the ultimate
solution to persistent, intergenerational inequality, and as an engine for social mobility. The
existing evidence on government spending in higher education in the region, however, does not
bode well for free college. As Figure 1 shows, countries in the region that finance a greater
share of higher education spending do have higher enrollment rates (panel a), yet they fail to
have higher graduation rates (panel b).

Figure 1: Higher Education Enrollment and Graduation by Public Spending Share in
Latin America.
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Source: UNESCO for enrollment rates (panel a) in year 2017; own calculations based on SEDLAC (household
surveys) for graduation rates in yearn 2017 (panel b); own calculations based on UNESCO for share of public
spending (year 2017).
Notes: Panel a shows gross enrollment rate, defined as the ratio between higher ed enrollment and the number
of individuals ages 18-24. Panel b shows graduation rate, defined as the ratio of individuals ages 25-29 who
have graduated from higher education, and the number of individuals ages 25-29 who have ever started higher
education. Share of public spending is defined as government spending in higher education relative to total
spending in higher education.

To investigate the potential effects of free college, in this paper we develop a dynamic model
of college enrollment, performance, and graduation. In the model, a college student faces risks

2Among the countries surveyed by OECD (2018), college is free at public institutions in Argentina, Brazil, Cuba,
Czech Republic, Denmark, Ecuador, Estonia, Egypt, Finland, Germany, Greece, Iceland, Mexico, Norway,
Panama, Poland, Slovenia, Sweden, Turkey, and Uruguay.
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that may prevent her from completing a class or remaining in college. Through her effort, the
student can mitigate these risks. We estimate the model with unique administrative data on
the universe of higher education students in Colombia, a country which is highly representative
of Latin America and the Caribbean, and use the parameter estimates to simulate free college
programs differing in eligibility requirements. We study whether free college affects the risk
facing students and perform a simple cost-benefit analysis of free college.

Understanding the trade-offs involved by free college is critical for any country considering
it, particularly in developing economies. In Latin America, higher education enrollment rates
rose from 21 to 40 percent between 2000 and 2010 (Ferreyra et al 2017). Since only 14 percent
of the working age population has completed higher education, Mincerian returns are high (104
percent on average relative to a high school diploma). All Latin American countries subsidize
public education at high rates, yet few provide student loans or funding for students at private
institutions. While students in several of these countries have recently taken to the streets in
demand of free college, the feasibility of free college has been called into question by the low
growth and tight fiscal constraints of these countries in recent years - conditions, of course, that
have only been aggravated by the COVID-19 pandemic.

For our analysis of Colombia, we focus on bachelor’s programs, which capture 80 percent of
higher education enrollment. In the high school class of 2005, 70 percent of students come from
low-income families, and only 32.3 percent of students enroll in college within a five-year window.
Among those who enroll in college, only 46 percent graduate, mostly late. Although student
income and ability seem strongly related with enrollment, only ability seems strongly related
with dropout rates – and this is through first-year dropouts, who account for most dropouts
and are largely low-ability students. Meanwhile, the average number of classes completed
by students per year (henceforth, performance) varies little across ability groups yet greatly
within ability groups. The speed at which students complete the classes required for graduation
(henceforth, “cumulative performance” or “cumulative classes completed”) is highly persistent:
the more classes a student completes in her first year, the more likely she is to keep the pace in
subsequent years. Conversely, students with poor initial performance find it difficult to catch
up later and are more likely to fall behind or drop out.

We write a model that captures these features of the data. In the model, high school grad-
uates who are heterogeneous in income, ability, and idiosyncratic preferences decide whether
to enroll in college. Depending on their final educational attainment, they will earn the wage
corresponding to a high school graduate, college graduate, or college dropout. College grad-
uation requires the completion of a set number of classes; students can take between 5 and
8 years to graduate. Each year, a college student chooses the number of classes she expects
to complete (henceforth, her target), and this determines the effort she must make. Effort is
costly, particularly for low-ability or low-income students. The number of classes completed by
the student in a year is a function of her ability, effort, and a performance shock which depends
partly on her cumulative performance. At the end of the year she receives a dropout shock,
also dependent on cumulative performance, which may force her to drop out. Effort, then, has
a direct effect on the number of classes completed in a year, and an indirect effect on the risk
to class completion in subsequent years and to college continuity.

In order to graduate from college, the student must complete a predetermined number of
classes, and each one must be completed in its totality. These indivisibilities limit policy impact:
to affect class completion, a policy must induce a discrete, non-marginal effort change such that
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the student completes at least one additional class. And, to affect graduation rates, the policy
must induce a large enough effort increase to complete all the required classes. These discrete
effort changes may be simply too costly for some students.

We estimate the model using Simulated Method of Moments. We fit moments related to
dropout, graduation, and cumulative performance (including patterns of persistence, catching
up, and falling behind). The model evaluated at the parameter estimates (henceforth, the
baseline) fits the data well. According to our estimates, effort has much greater impact than
ability on the production of classes completed. If effort were not modeled as an input to classes
completed, we would overestimate the role of ability by about 75 percent. From a policy
standpoint, this would lead to an over-reliance on policies that promote selection of the most
able students (positive selection) rather than policies which explicitly promote effort.

We simulate multiple free college programs differing in eligibility requirements: 1) universal
(all students), 2) need-based (low-income students), 3) ability-based (high-ability students),
and 4) performance-based (all students eligible in the first year; eligibility conditional on past
cumulative performance in subsequent years). We also simulate a need-based version of (3) and
(4). In each counterfactual we distinguish between existing students (who enroll in the baseline
and the counterfactual) and new students (who do not enroll in the baseline but enroll in the
counterfactual) to assess the impact of free college on graduation.

By lowering tuition to zero, free college raises consumption during college. This enhances
the attractiveness of the being a college student (the “college experience”) and has three effects
on effort. First is the loss-of-urgency effect, whereby the student wishes to enjoy the enhanced
college experience and loses the urgency to graduate. Second is the substitution effect, whereby
the enhanced consumption compensates for greater effort. Other things equal, the loss-of-
urgency effect leads to lower effort, whereas the substitution effect leads to more effort. Third
is the risk effect, as the effort changes induced by the other two effects lead to performance
changes which, in turn, affect the performance and dropout risks. Further, the longer the
student stays in college, the more she exposes herself to risks. Which of these three effects
prevails varies across students and eligibility requirements.

At the aggregate level, all free college programs expand enrollment. The largest expansion is
for universal free college, followed by need-based and performance-based free college. Relative
to the baseline, these programs increase enrollment by 70-85 percent. In our simulations, on
average new students are of lower income and ability than existing students. The exception is
ability- and ability-and-need-based free college, which induce positive selection of new students
and attract new students who are more able, on average, than existing ones.

In contrast with these large enrollment rate effects, overall graduation rate effects are modest
– between -2 and 7 percent relative to the baseline. For new students, the graduation rate
effect depends on the policy-induced type of selection. For existing students, only performance-
based programs accomplish an effect substantially different from zero, raising graduation rates
between 9 and 14 percent relative to the baseline. This is because, by making free college
contingent on performance, these programs incentivize effort and eliminate the loss-of-urgency
effect, making students frontload effort in the early years. These results are consistent with
the literature on college financial aid in the U.S., which has generally found positive and large
effects on enrollment, small or null effects on graduation, and larger graduation effects for
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performance-based than unconditional financial aid.3

At the same time, these aggregate effects mask great heterogeneity across students. Con-
sider, for instance, universal free college. Enrollment effects are largest for low- and middle-
income students, and for mid-ability students. Hence, universal free college subsidizes many
students who, by virtue of their ability or income, do not need the subsidy as they already enroll
in the baseline. Graduation rate effects are similarly heterogeneous across students. They fall
for high-ability or high-income students, who experience a strong loss of urgency, while they rise
for low-ability or low-income students, who experience a strong substitution effect. In contrast
to universal free college, performance-based free college induces greater effort on the part of all
students and leads them all to higher graduation rates.

Our counterfactual findings provide an explanation for the enrollment and graduation rate
patterns presented in Figure 1. Greater college funding substantially raises enrollment rates
when a large fraction of high school graduates faces severe financial constraints, as they do in
Latin America. It does not, however, raise graduation rates unless it is performance-based to
incentivize effort, which is not the case in Latin America.

Interestingly, the higher effort and graduation rates induced by performance-based free
college come at the cost of placing greater risk on students. We develop a measure of student
anticipated risk in each year (equal to the coefficient of variation of the value of college), and
compare it for the baseline and counterfactuals. We find that, in every scenario, anticipated risk
falls when students exert greater effort or accumulate more completed classes. Anticipated risk
is high in the initial two years and decreases rapidly afterwards, once students survive the initial
attrition and settle on a performance path. In the initial years, universal free college lowers
students’ risk relative to the baseline by enhancing the college experience, whereas performance-
based free college raises it by making the college experience contingent on performance. Facing
the students with this greater risk, however, induces them to exert greater effort, which is
their ultimate insurance mechanism. In other words, better college outcomes do not come from
providing full but rather partial insurance to students.

At the same time, even the graduation rate increase from performance-based free college is
relatively small. This is, in part, due to a composition effect, as the new college students in
several programs are less likely to graduate than the existing ones. But, even among existing
students, graduation rates rise relatively little. In other words, free college alone cannot sub-
stantially raise graduation rates. The indivisibilities discussed above help explain why: while
free college might raise effort for some or even all students, it still fails to induce in many
students the large effort increase needed to complete all graduation requirements.4

For a policymaker committed to providing free college, the question is how to choose among
the programs presented here. We conduct a simple cost-benefit analysis to illuminate this
question, and compare the per-graduate cost across programs. We find that all programs raise
the per-graduate cost – if anything, because fewer students pay for college than in the baseline.
For a policymaker who wishes to raise the fraction of high school graduates that finish college
while limiting costs, the best option is performance-based or even need-based free college – but
not universal free college. Nonetheless, the per-graduate cost of every scenario studied here is

3For recent reviews of this vast literature, see Avery et al (2019) and Dynarski and Scott-Clayton (2013).
4This result is reminiscent of Oreopoulos and Petronijevic (2019), who find that even when students realize that
more effort is needed to improve outcomes, they adjust by lowering expectations rather than increasing effort.
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far from low – ranging from one (baseline) to 2.5 (universal free college) times the per capita
GDP – and should be considered with great care given current fiscal constraints.

By construction, our counterfactuals assume the most favorable scenario for free college. We
assume that colleges have no capacity constraints; the average and marginal cost of educating
new and existing students are the same; and free college does not crowd out parental transfers
to their children in college. Further, we do not model taxation (which might be required to
pay for free college programs), and assume that the wage of college graduates relative to high
school graduates (henceforth, the college premium) does not fall with more college graduates.5

Relaxing any of these assumptions would lead to less favorable free college outcomes.

The rest of the paper is organized as follows. Section 2 describes the related literature, and
Section 3 describes our data. Section 4 presents our model, and Section 5 discusses its empirical
implementation. Section 6 describes the estimation strategy and results. Section 7 presents the
free college counterfactuals, including analyses of anticipated risk, fiscal costs, and potential
general equilibrium effects on the labor market. Section 8 concludes.

2 Related Literature

Our paper relates to a large literature estimating sequential schooling models under uncertainty,
with seminal contributions by Keane and Wolpin (2001), Eckstein and Wolpin (1998), and
Keane (2002). This literature models college enrollment, performance, and college outcomes,
and uncovers structural parameters based on students’ observed choices during college. In
one strand of this literature, researchers model students as acquiring information (learning)
throughout college – regarding, for instance, their ability and preferences for college or specific
majors, and their expected labor market performance. This literature includes, among others,
Arcidiacono (2004), Arcidiacono et al (2016), Ozdagli and Trachter (2011), Stinebrickner and
Stinebrickner (2014), and Trachter (2015). As in these papers, students in our model learn about
their graduation probability based on their classes completed, and choose effort accordingly.

The idea that higher education is risky is not new (Levhari and Weiss 1974, Altonji 1993,
Akyol and Athreya 2005), but the recent availability of college transcript data in the U.S. has
helped estimate the role of risk in students’ performance. These data reveal substantial and
persistent heterogeneity in students’ credit accumulation rates, which are strongly related to
graduation probability. According to Hendricks and Leukhina (2017, 2018), based on their
credit accumulation rates more than 50 percent of college entrants should be able to forecast
whether they are at least 80 percent likely to graduate. According to Stange (2012), the large
uncertainty faced by students makes them place a high value on the ability to drop out at any
point in college rather than pre-commit to completing all graduation requirements. Our paper
is similar to these in the use of administrative data to track students’ performance, but different
in that the risk associated to class completion or college continuity is not fully exogenous as in
these two papers, but depends on an endogenous variable – student effort.

While the literature has placed much attention on the role of ability in performance and
college outcomes, a growing line of research highlights the role of effort. Zamarro, Hitt, and

5In Section 7 we investigate potential general equilibrium effects associated with the greater supply of college
graduates. Since we find them to be very small even in the medium run, we conclude that we can abstract
away from them in our analysis.
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Mendez (2019) use data from the Program for International Student Assessment (PISA) to
show that different effort measures explain about a third of observed cross-country test score
variation. Stinebrickner and Stinebrickner (2004) rely on time use surveys to estimate the
effects of study time on grades. Ariely et al (2009) show that the use of incentives can help
the average student improve her test performance, though the effect is more limited on high-
ability students. Beneito et al (2018) provide evidence that the tuition increase implemented
by Spanish colleges in 2012 boosted student effort. Ahn et al (2019) model effort in response to
grading policies. We contribute to this line of research by explicitly modeling the role of effort
and embedding it in a dynamic setting, where it affects class accumulation and risk mitigation.

In an efficient and equitable world, college enrollment would depend on student ability rather
than parental resources (Cameron and Heckman 1998 and 1999, Carneiro and Heckman 2002).
In Colombia, as in other countries, parental resources matter greatly to college enrollment even
controlling for ability. This provides strong evidence for credit constraints limiting college ac-
cess, as discussed in a large literature. Lochner and Monge-Naranjo (2011) develop a model that
helps explain the rising importance of family income for college attendance in the U.S. even in
the presence of credit. Solis (2017) finds that relaxing credit constraints in Chile had an imme-
diate impact on enrollment and number of college years completed, particularly for low-income
students. Parental resources and background, however, may be of limited importance. Hai and
Heckman (2017) show that equalizing initial ability has larger effects on college outcomes and
inequality than equalizing parental background. The importance of credit access weakens when
students can supply work as a source of funding college, as suggested by Garriga and Keightley
(2007). Although Colombia is a large developing economy, the market for student loans is very
limited, covering only 7 percent of students in 2003 (ICETEX 2010). Lack of family resources,
limited opportunities to work during college, and missing credit markets for student loans are
clear impediments to college access in countries such as Colombia.

In this context, tuition subsidies appear as a simple tool to broaden college access. Our free
college counterfactuals complement the literature on the recent free college policies in Chile
(Bucarey 2018) and the elimination of free college in England (Murphy et al 2019). It also joins
in the vast literature of college financial aid,6 including the recent literature on free community
college and the so-called “Promise” programs implemented in multiple U.S. states.7

3 Data and descriptive statistics

In this section we describe the salient features of our data. These shape our model, and give
rise to the moments we match in estimation.

3.1 The 2005 cohort

Our data consists of student- and program-level information drawn from three different admin-
istrative datasets: Saber 11, SPADIES, and SNIES. The first one, Saber 11, contains students’

6For recent reviews of this vast literature, see Avery et al (2019) and Dynarski and Scott-Clayton (2013). Section
7.5 contains further references.

7These programs provide zero tuition to eligible students for state or local community colleges or four-year
institutions. See, for instance, Carruthers et al (2018), Dynarski et al (2018), and Gurantz (2020).
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test scores at the national mandatory high school exit exam (also named Saber 11), along with
socio-economic information reported by the students when taking the test. Saber 11 is a stan-
dardized test that covers multiple academic fields and measures students’ academic readiness
for higher education. We average field scores and standardize the average by semester-year. We
use the resulting standardized score as a measure of student ability, broadly understood as her
preparedness for higher education – reflecting not only her innate ability but also her primary
and secondary education quality. Family income is reported in brackets defined relative to the
monthly legal minimum wage (MW), which is equal to 381,000 Colombian pesos (COP) in 2005
(US$ 1 = 2,321 COP in 2005.)

The second dataset, SPADIES, tracks college students. For each semester, it records the
number of classes for which a student registers and the number of classes she passes, as well
as her graduation or dropout date. It does not record the specific classes in which a student
enrolls, how many times a class is taken until passing, or class grades. The third dataset,
SNIES, contains program-level information including institution, field, and tuition.

We focus on the 2005 cohort, which is the group of approximately 415,000 students ages
15-22 who took Saber 11 in 2005. Since students typically graduate from high school the same
year they take Saber 11, we can view this cohort as the high school graduates from 2005. We
calculate deciles and quintiles of their ability distribution; in what follows, ability deciles and
quintiles always refer to this distribution. For consistency with the model, in the statistics below
we classify students into “student types” defined by combinations of student ability quintiles
and family income brackets. Table 1 below shows the distribution of student types in the 2005
cohort. It shows that, while a remarkable 70 percent of high school graduates come from the
lowest two income brackets, less than 5 percent come from the top one. It also shows that
high-income students are more likely to belong to high-ability levels than their lower-income
counterparts due to the strong, positive correlation between income and ability.

Table 1: Family income and Ability Distribution of High School Graduates.

Income Ability quintile
Bracket 1 2 3 4 5 Total

5+ MW 0.21 0.31 0.48 0.90 3.15 5.05
3-5 MW 0.88 1.08 1.37 1.94 3.43 8.69
2-3 MW 2.72 2.94 3.30 3.69 3.95 16.60
1-2 MW 8.47 8.99 9.16 8.69 6.64 41.95
<1 MW 7.95 6.89 5.80 4.58 2.49 27.71

Total 20.23 20.21 20.11 19.80 19.65 100.00

Source: Calculations based on Saber 11. The distribution refers to 415,269 high school graduates from 2005.
Notes: Family income is reported in brackets; MW = monthly minimum wage. Ability is reported in quintiles
of standardized Saber 11 scores. Quintile 1 is the lowest.

3.2 Enrollment rates

Although Colombia’s higher education offers short-cycle and bachelor’s programs (akin to two-
and four-year programs in the U.S. respectively), we focus on bachelor’s programs, which cap-
ture approximately 80 percent of the country’s total higher education enrollment. In what
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follows, “college” refers to bachelor’s programs, and “college outcomes” to the final outcomes
-graduation and dropout, along with their timing (e.g., on-time graduation). We classify a
student from the 2005 cohort as having enrolled in college if she did so between 2006 and 2010.8

In Colombia, as in our sample, enrollment in bachelor’s programs is almost evenly split
between public and private institutions. Since public institutions are heavily subsidized, they
charge much less than private institutions. For an individual with an annual family income of
twelve MWs, annual average tuition for a bachelor’s program at a public and private higher
education institution is equal to 24 and 135 percent of the familiy income, respectively.

Table 2 shows enrollment rates by student type for the 2005 cohort. Although the overall
enrollment rate is 32 percent, enrollment rates vary widely among student types, from 9 to 84
percent.9 Enrollment rates rise both with income and ability. On average, the enrollment gap
between the highest and lowest income brackets is equal to 55 percentage points (pp) - similar
to the 50-pp point gap between the highest and lowest ability. These gaps suggest that free
college may have ample room to raise enrollment.

Table 2: Enrollment Rates by Income and Ability.

Income Ability quintile
Bracket 1 2 3 4 5 Total

5+ MW 32.85 44.14 58.87 69.23 83.85 73.38
3-5 MW 28.71 39.75 48.41 62.99 79.24 62.03
2-3 MW 20.34 28.72 36.96 48.03 67.88 43.50
1-2 MW 13.94 18.36 23.85 33.84 54.22 28.05
<1 MW 9.05 12.67 17.20 26.56 43.93 17.67

Total 13.43 19.15 26.20 38.93 63.74 32.29

Source: Calculations based on SPADIES and Saber 11, for 2005 high school graduates.
Notes: Each cell reports percent of high school graduates from a given income bracket and ability quintile
who enrolled in a bachelor’s program between 2006 and 2010. Income reported in brackets; MW = monthly
minimum wage. Ability reported in quintiles of standardized Saber 11 scores; quintile 1 is the lowest.

3.3 Graduation and dropout rates

For the analysis of college outcomes and performance that follows, we focus on students from
the 2006 college entry cohort that enroll in five-year bachelor’s programs.10 Our sample includes
27,344 students, of whom only 45.7 percent graduates - 15.1 percent graduates on time (in five
years) and 30.6 percent graduates late (in 6-8 years).11 The dropout risk is thus substantial.

8Among the 2005 high school graduates that enroll in college within that five year window, only 35 percent do
so immediately following high school. A five-year window, then, provides a more accurate enrollment rate.

9For comparison, in the US the enrollment rate of individuals ages 16-24 who graduated high school in 2005 is
44.6 percent (Source: Digest of Education Statistics). If this enrollment rate allowed for a five-year window as
in Colombia, it would clearly be higher.

10To analyze dropouts and cumulative performance, it is customary to focus on a group of students from the
same entry cohort who study programs of the same length. Five-year programs in Colombia capture about
three-quarters of the enrollment in bachelor’s programs. Dropout rates correspond to the student’s first higher
education program.

11For comparison, in the US 59.2 percent students from the 2006 cohort graduate within six years - 39 percent
on time (in four years), and 20.2 percent late (in five or six years). Source: Digest of Education Statistics.
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Dropout rates are far from uniform over time. As Figure 2 shows, over a quarter of college
students (or half of all dropouts) leave in year 1. Further, the first two years account for about
70 percent of all dropouts.

Figure 2: Dropout Timing.
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Figure 3: College Outcomes by Ability.
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Similar to enrollment rates, dropout rates vary widely across student types, ranging from
39 to 81 percent (Table 3). Conditional on income, higher ability students have lower dropout
rates. On average, the dropout rate gap between the highest and lowest ability quintiles is
equal to 25 pp. Dropout rates vary much less by income, as illustrated by the dropout rate gap
of 14 pp between the highest and lowest income, and only 8 pp between the second highest and
the lowest income. Free college, then, might affect enrollment more than dropout decisions.

Graduation rates are closely related to ability (Figure 3). Higher ability students are more
likely to graduate, whether on time or late. Conversely, lower ability students are more likely
to drop out, particularly in year 1. They are still more likely than other students to drop out
afterwards, but the ability-based dropout rate gap becomes much smaller. While the fraction
of graduates who finish on time is equal to one third, this fraction declines slightly with ability
-from 38 percent for the lowest ability, down to 32 percent for the highest.

Taken together, these facts suggest that the dropout risk is asymmetric over time and across
abilities, and is greatest for low-ability students in year 1. As a result, ability is a good predictor
of dropout in year 1 but much less so in subsequent years - at which point, as explained below,
the number of cumulative classes completed becomes a more powerful predictor.
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Table 3: Dropout Rates by Income and Ability.

Ability quintile
1 2 3 4 5 Total

5+ MW 81.36 65.83 61.48 52.13 39.04 44.73
3-5 MW 74.23 69.44 62.21 57.86 43.77 51.33
2-3 MW 68.54 67.58 63.73 57.68 46.53 55.09
1-2 MW 71.59 66.64 62.21 57.66 50.56 57.82
<1 MW 69.04 67.95 61.34 55.94 50.30 58.71

Total 70.99 67.44 62.37 56.96 45.84 54.36

Source: Calculations based on SPADIES. Students belong to the 2006 entry cohort (first semester).
Notes: Each cell reports percent of students from a given income bracket and ability quintile who drop out
of their bachelor’s program. A student is classified as a dropout if she does not graduate within eight years
of having started her program. Income is reported in brackets; MW = monthly minimum wage. Ability is
reported in quintiles of standardized Saber 11 scores. Quintile 1 is the lowest.

3.4 Cumulative classes completed

3.4.1 Cumulative classes completed and ability

Since every program requires a different number of classes for graduation, we normalize the
requirement to 100 for all programs to facilitate exposition.12 Lacking data on the number
of classes that students must complete per year for on-time graduation, we assume the same
number (20) for every year.13 We use the term “classes completed” (or “performance”) to denote
the number of classes completed in a given year. We use “cumulative classes completed” (or
“cumulative performance”) for a given year as the total number of classes completed over all
years up to (and including) that one. A student is on track for on-time graduation when she
has completed her cumulative requirement up to that year - namely, when she has completed
20, 40, 60, 80, and 100 classes by the end of years 1 through 5 respectively.

It is useful to classify students into tiers based on cumulative performance relative to cu-
mulative requirement. Tiers 1 through 4 correspond to students who complete the following
percent of their cumulative requirement for the year: 95 percent or more for tier 1, (85, 95]
percent for tier 2, (65, 85] percent for tier 3, and 65 percent or less for tier 4. To exemplify,
consider a student who accumulates 16, 35, 42, 50, and 60 classes by the end of years 1 through
5 respectively, or 80 (=16/20*100), 88 (=35/40*100), 70, 62.5, and 60 percent of the cumu-
lative requirements by year. This student falls in tiers 3, 2, 3, 4, and 4 in years 1 though 5
respectively. Appendix Table A.1 provides further details on tier classification. Importantly, a
student can change tiers over time.

Figure 4’s panel a shows the average number of classes completed by ability quintile in
year 1. The thick black line depicts average over all students, whereas the color lines depict
averages among the students who go on to attain the following outcomes: on-time graduation,

12For example, if a program’s graduation requirement is 50 classes, completing 10 classes is equivalent to
completing 20 percent of the program - or 20 classes, in our normalization. Since we do not observe each
program’s graduation requirement, we proxy for it by using the average number of classes completed by the
program’s graduates.

13In the data, we observe that students who graduate on time indeed complete classes at this pace. Our
assumption of an equal number of classes per year is thus plausible.
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late graduation, dropout in year 1, and dropout later.14 While the figure focuses on year 1,
a similar pattern holds for subsequent years. In other words, average classes completed varies
little across abilities, both overall and conditional on outcomes. Nonetheless, it varies greatly
within abilities: for a given ability, on-time graduates complete more classes than late graduates,
who complete more than dropouts; among these, dropouts after year 1 complete more classes
than year 1 dropouts. In other words, the number of classes completed -as early as in year
1- is a powerful predictor of college outcomes. This point is further illustrated in panel b,
which classifies students into tiers by the end of year 1. Consistent with panel a, it shows the
strong predictive power of early performance, suggesting that cumulative performance is highly
persistent over time.

Figure 4: First-year Classes Completed and College Outcomes.
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Source: Calculations based on SPADIES. Students belong to the 2006 entry cohort (first semester).
Notes: In panel a, each color represents a college outcome. The green line, for instance, shows the average
number of classes completed by the end of the first year by students of each ability quintile who went on to
graduate on time. The thick black line does the same for all students regardless of their college outcome. In
panel b, students are classified by their tier of classes completed at the end of the first year. The graph shows
the percent of students of a given tier who attain each college outcome. For the first year, tier 1 corresponds to
19+ classes completed; tier 2 to [17, 19); tier 3 to [13, 17); and tier 4 to [0, 13).

3.4.2 The persistence of cumulative performance

To explore this persistence, we consider whether students transition among performance tiers
over time. Figure 5 depicts the probability of the following four outcomes for each year con-
ditional on the previous year’s tier: same-tier persistence, dropout, catch up, and fall behind.
For example, a student who finished her first year in tier 2 has second-year probabilities of
persistence, dropout, catch up, and fall behind equal to 29, 14, 20, and 39 respectively. If, for

14Some students drop out in the first semester of a given year. Since a period in our model is a school year
(rather than a semester), for those students we impute a number of classes completed in their dropout year
equal to twice the observed number for their last semester. This is a reasonable imputation, given that, in
their dropout year, second-semester dropouts complete approximately twice as many classes, on average, as
first-semester dropouts.
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instance, she falls to tier 3 in her second year, then these probabilities for her third year are
equal to 49, 12, 21, and 18 percent respectively.15

Panel a shows that same-tier persistence rises over time. This is, in part, associated to
dropout rates that fall over time (panel b). Two issues related to dropout rates are worth
noting. First, lower-performing students are more likely to drop out. Second, students from all
tiers face a non-zero probability of dropping out. In other words, all students are subject to a
dropout risk, although the risk is higher for low-performing students and, as we saw in Section
3.4.1, for low-ability students.

Figure 5: Tiers of Cumulative Classes Completed: Transitions Throughout College.
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Source: Calculations based on SPADIES. Students belong to the 2006 entry cohort (first semester).
Notes: Each panel shows the probability that a student who ended the previous year in a given tier has one of
the following outcomes in the current year: persist in that tier (panel a), drop out (panel b), catch up – namely,
rise to a higher tier (panel c), or fall behind – namely, fall to a lower tier (panel d). For a given year and tier,
probabilities add up to 100 across panels. For example, a student who finished year 1 in tier 3 is depicted in
green. In year 2, she is 35, 23, 18, and 24 percent likely to persist in tier 3, drop out, catch up to tiers 1 or 2,
and fall behind to tier 4 respectively.

Some students move across tiers (by catching up or falling behind), as shown in panels c
and d. Higher-performing students are more likely to catch up and less likely to fall behind
than others. At the same time, all students face a non-zero probability of falling behind. In
other words, students are subject not only to a dropout but also a performance risk.

Taken together, these panels provide evidence of persistence in cumulative performance,
explaining why first-year performance is a powerful predictor of college outcomes. A strong
first year, however, is no guarantee of graduating or of not falling behind. Meanwhile, a poor
beginning is hard to reverse and significantly raises the dropout risk. From the student’s point
of view, being on track with completed classes mitigates the risk of falling behind or dropping
out, even if it does not fully eliminate it.

15These transitions hold for students as long as they are enrolled. Beginning in year 5, students can “transition”
into graduation as well.
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3.4.3 More on the role of ability, performance, and college outcomes

In Section 3.4.1, we established that, while there is little variation in academic progression
across abilities, there is much more variation within abilities. We now explore this further by
relying on our tiers.

Ability affects cumulative performance, particularly in year 1. Panel a of Figure 6 shows,
for each ability quintile, the distribution of individuals across tiers at the end of year 1. Not
surprisingly, high-ability students are most likely to belong to the top tier while low-ability
students are most likely to belong to the bottom tier. Nonetheless, performance varies greatly
within each ability quintile, and a sizable fraction of students from each quintile are concentrated
in the middle tiers. Consistent with Section 3.4.1, this “thick middle” makes the cumulative
performance vary little, on average, across abilities. A similar picture holds for year 5 (panel
b), although by then the cumulative peformance distributions are more concentrated in tiers 1,
2, and 3 because most low-performing students have already dropped out. Note, also, that the
distribution for higher ability students is more concentrated than that of less able students in
both years, suggesting that lower-ability students face greater performance risk.

Figure 6: Tiers of Cumulative Classes Completed, by Ability.
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Not every student that reaches year 5 manages to graduate. Figure 7 shows that year 5’s
top tier students are more likely to graduate, and to do it on time. In contrast, bottom tier
students are more likely to drop out than to graduate. By year 5, then, cumulative performance
emerges as the main determinant of college outcomes.16

16The figure shows some patterns that may require additional explanation. Although students in tier 1 are closest
to graduating, 40 percent of them graduate late - perhaps because they start working, or some graduation
requirement (such as a thesis, or an English test) delays them. Some Tier 2 students graduate on time even
though they have completed less than 95 percent of classes in year 5. Since we do not observe the actual
number of classes required but rather the average number passed by graduates, these tier-2 students may
have completed the required number of classes but not the graduates’ average. A similar reasoning applies to
on-time graduates from tiers 3 and 4. Of course, measurement error in number of classes passed or graduation
date might also explain the on-time graduation rate in tiers 2, 3, and 4.
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Figure 7: Graduation by Cumulative
Classes Completed in Year 5.
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Figure 8: Average Number of Classes
Taken in Year 1, by Ability.
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3.5 Number of classes taken

Although a student cannot fully control her performance, she can control the number of classes
she takes in a given year. While the student may not pass all the classes for which she registers,
this number is informative of her intended effort.

Figure 8 shows year 1’s average number of classes taken, by ability decile, and depicts two
important facts. First, on average students register for fewer than the 20 required classes.
Second, on average higher ability students enroll in more classes. The first fact indicates that
effort is costly - if it were not, students would register for 20 classes. The second fact indicates
that effort is more costly for lower ability students - if it were not, they would enroll in the same
number of classes as higher ability students. We will return to these facts when discussing the
identification of effort in our empirical model.

Taking stock. The data shows that students of higher income or ability are more likely to
enroll in college. Conditional on enrolling, lower ability students are much more likely to drop
out, particularly in year 1. Through this channel, ability serves a strong predictor of graduation.
Ability, however, is not a strong predictor of cumulative performance. Although cumulative
performance varies little, on average, across abilities, it varies greatly within abilities. Further,
cumulative performance is highly persistent over time - students who start on track are more
likely to remain on track, less likely to fall behind, and more likely to catch up should they
fall behind. As a result, cumulative performance is highly predictive -as early as in year 1- of
final outcomes. Nonetheless, both performance and final outcomes are subject to shocks; even
on-track students face the risk of falling behind or dropping out. The model presented below
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seeks to capture these data features.

4 Model

We model high school graduates who differ in ability, family income, and idiosyncratic pref-
erences, and who choose whether to enroll in college or enter the labor force as high school
graduates. College graduation requires the completion of a set number of classes. The com-
bination of ability, effort, and performance and dropout risks determines class completion and
college outcomes. Students can mitigate risk by being on track in class completion. After
college, students enter the labor market, where wages depends on educational attainment (high
school graduate, college graduate, or college dropout) and years of work experience, and remain
there until retirement.

4.1 Student endowments and preferences

High school graduates differ in ability, θ ∈ {θ1, θ2, . . . , θnθ}, and in the parental resources
received if they enroll in college, y ∈ {y1, y2, . . . , yny}. The combination of ability and parental
resources defines the student’s type j = 1, 2, . . . , J , with J = nθ × ny. For simplicity we refer
to y as “income.” Students receive y only if they enroll in college; if they do not, they receive
their labor market wage as explained below.

A period, t, is equal to a year. For college students, instant utility depends on consumption,
c, and study effort, e. Effort cost is heterogeneous across students as it depends on ability.
The instant utility at t is U(ct, et, θ) = u(ct) − g(et, θ). Function U satisfies u′ > 0, u′′ < 0,
g1, g11 > 0, g2 < 0, and g12 < 0. Thus, effort cost is increasing in effort and convex, and total
and marginal effort costs are lower for higher-ability students.

For workers, instant utility depends only consumption. Both for college students and work-
ers, the discount factor is β = 1/(1 + r), where r > 0 is the economy’s risk-free interest rate.

4.2 College decisions

We model college as a multi-period, risky investment. To graduate, students must complete a
required number of classes, hgrad. Students must spend at least five years in college in order
to graduate, not to exceed eight. We use three concepts related to the number of classes per
year. First is x̄, the annual number of classes required to graduate on time. Second is qt, the
expectation formed by the student, at the beginning of the year, of how many classes she will
complete (henceforth, “target.”) The target can be greater or smaller than x̄. Importantly, the
student chooses effort for the year based on her target. Third is xt, the actual number of classes
she completes by the end of the year, which is a function of her effort, ability, and intervening
luck. It can be greater or smaller than qt because of “good” or “bad” luck, respectively.

Note that the model does not include the concept of “registering” for a class, and qt should
not be viewed as the number of classes for which the student registers. Instead, we assume
that the student simply takes a class. This is because, in Colombia, there is no cost to add
or withdraw from a class. Hence, students in Colombia register for the maximum number of
classes they might complete, which is not necessarily the number they expect to complete.
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For example, a student may start two classes but expect to complete only one (qt = 1),
perhaps because the other class is poorly taught. She may find out that that class is better
taught than expected and complete the two classes (xt = 2); or that both classes are poorly
taught and complete none of them (xt = 0); or that her expectation was correct and complete
just one (xt =1.) Since the student’s behavior is dictated by the number of classes she expects
to pass rather than the number she registers for, we model the former. In estimation we do use
data on the number of classes for which students register, viewing it is an upper bound for qt.

4.2.1 College technology

Let ht denote the cumulative number of classes completed up to the end of t, or ht =
∑t

n=1 xn.
Let h̄t denote the average number of classes completed per year up to end of t, or h̄t = ht/t.
We assume that students start college with h0 = h̄0 = 0, and by the end of year 1 attain
h1 = h̄1 = x1.

While enrolled in college, students complete classes in year t according to the following
production function:

xt = H(θ, et, zt) x. (1)

The function describes completed classes, xt, as a multiple of x. The scalar H(.) is a function
of ability, effort, and a shock to classes completed (or performance shock), zt > 0. We assume
H is nonnegative and can be lower or greater than one. The shock, drawn from a continuous
distribution known to the student, includes a random i.i.d. component, as well as a component
that depends on the student’s ability, cumulative classes completed up to beginning of t, and
year. The dependence of the shock on past cumulative classes completed seeks to capture the
observed persistence of classes completed, described in Section 3. Students can thus affect
their “luck” next period by accumulating as many classes as possible this period. We allow
the shock to depend on ability in order to capture the fact that ability may be correlated with
other elements, not modeled, that systematically affect “luck.”17

If the student knew zt when choosing her effort, then choosing et would be equivalent to
choosing classes completed, xt. Since, as explained below, the student chooses et before zt is
realized, choosing effort is equivalent to choosing a target, qt, where qt = E(xt). Thus,

qt = E[H(zt, θ, et)] x. (2)

Assuming that H(·) is linear on zt so that it can be expressed as H(zt, θ, et) = ztH̃(θ, et), target
and effort are functions of E(zt):

qt = E(zt)H̃(θ, et) x and et = H̃−1
e [θ, qt/(E(zt) x)]. (3)

Meanwhile, the actual number of classes completed, xt, is a function of the effort chosen given
the target, and of the realized zt. Cumulative classes completed by the end of the year, ht, is

ht = ht−1 + xt. (4)

17For example, lower ability students may choose less selective programs than others, or may have lower levels of
the non-cognitive skills necessary to succeed in college. These examples would lead to a negative and positive
relationship between ability and the shock, respectively. In our estimation we let the data identify the sign of
the relationship.
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Finally, we assume that the production function in (1) is such that, when the student
supplies zero effort, she completes zero classes: H(zt, θ, 0) = 0. For every student type, there
always exists a level of effort, et, that allows her to complete x, or H(zt, θ, et) = 1. Also,
students of low ability can compensate for it, or for expected “bad luck”, with high effort. For
instance, consider students i and l , with θi < θl and E(zi) < E(zl). The low-ability student can
compensate with higher effort, ei > el, in order to have the same target as the other student,
or E[H(zi, θi, ei)] = E[H(zl, θl, el)].

4.2.2 The student’s optimization problem

The student faces a sequential problem. We differentiate between the pre-graduation years
(when she cannot yet graduate) and the graduation years (when she is eligible to graduate
depending on her cumulative number of classes completed). We divide each year into two sub-
periods. In the first subperiod, the student chooses her target number of classes and hence effort.
At the end of it she receives the shock to the number of classes completed, which determines
her actual (as opposed to target) number of classes completed and hence her cumulative classes
completed. In the second subperiod, she graduates if she has accumulated the required number
of classes; otherwise she draws a shock that determines whether she will remain in college next
year or drop out (“dropout shock”). Thus, as long as she has not completed her graduation
requirements, the student draws two shocks per year – one to classes completed in the year, and
another to college continuity. The two shocks are endogenous in the sense that they depend on
the student’s cumulative performance, which she can affect through effort. In a given year, the
state vector for a college student is (t, ht−1, θ, y). Appendix Figure A.1 summarizes the timing
of events and decisions, described in detail below.

Pre-Graduation Years (t = 1,...,4). During these years, students have not yet accumu-
lated the required number of classes for graduation, or ht < hgrad. In year 1, students start zero
cumulative classes completed, h0 = 0, and are heterogenous only in their type. Since students
of a given type may vary in their first-year completed classes h1 (depending, as we will see
below, on their z1 shock), from year 2 onwards students are heterogenous not only in their type
but also in their cumulative classes completed at the beginning of the year, ht−1.

At the beginning of the first subperiod, the student chooses et (and hence qt) before zt is
realized. As in (2), the chosen target is a function of the E(zt). At the end of the first subperiod,
zt is realized and determines the number of cumulative classes completed, ht ≥ ht−1.

In the second subperiod, the student receives her dropout shock, ddropt = {0, 1}, which deter-
mines whether she will remain in college next year or drop out, respectively. The probability
that this shock leads her to drop out is a function of her cumulative classes completed after the
realization of zt, that is ht, as well as her type and the year:

Pr(ddropt = 1 | zt) = p̃d(t, ht, θ, y). (5)

We assume that, by the end of t, if the student has accumulated less than a pre-specified number
of classes for the year, hdropt , she must drop out: p̃d(t, ht < hdropt , θ, y) = 1. If, in contrast, she
completes x̄ classes each year and is on track for on-time graduation, her dropout probability
is very low: p̃d(t, ht, θ, y) ≈ 0. In general, p̃d is decreasing in ht. Importantly, the student can
lower p̃d by exerting effort, which raises ht.
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If the student drops out, she will receive the market wage of a college dropout from the
following year onward; the value of dropping out is V drop(t+1).Meanwhile, the value of remainng
in college is V coll(t+ 1, ht, θ, y).

Graduation Years (t = 5,...,7). These years are different from the previous ones in that
college students become eligible to graduate depending on the number of cumulative classes
completed. Those who have fulfilled graduation requirements, ht ≥ hgrad, will graduate and
enter the labor market, whose value is V grad(t + 1). For them, additional classes beyond hgrad

yield zero marginal benefits. Remaining students draw the dropout shock to determine college
continuity the following year.

Terminal year (t = 8). This is the last year that a student is allowed in college. At the
end of it, only two outcomes are possible –the student graduates if h8 ≥ hgrad, or drops out
otherwise- and continuation values are equal to V grad(9) and V drop(9) respectively.

We can now present the student’s dynamic optimization problem from the first subperiod
of each college year:

V coll(t, ht−1, θ, y) = max
et

{
U(ct, et, θ) + βEz

[
1{t≥5}Pr

(
ht ≥ hgrad

)
V grad(t+ 1) +

Pr
(
ht < hgrad

) [
p̃d(t, ht, θ, y)V drop(t+ 1) +

(
1− p̃d(t, ht, θ, y)

)
V coll(t+ 1, ht, θ, y)

] ]}
,

(6)

s.t. ct = y − T (t, ht−1, θ, y)

ht = ht−1 + xt

xt = H(zt, θ, et)x

ct > 0.

Here, the argument of Ez[·] is the continuation value function. Variable T (·) is tuition, constant
regardless of the target, qt.

18 To accomodate our counterfactuals, we write T (·) in general form
so that it can vary by year, cumulative classes completed, ability, or income. In our baseline it
varies only by y, as described in Section 5.2.1 below. For low-income students, tuition might
exceed income, which would violate the ct > 0 constraint and make enrollment unfeasible. Note
the severe credit constraint: students cannot borrow to pay for tuition, nor can they save.19

The policy function is the sequence of optimal efforts, e∗(t, ht, θ, y), that solve the dynamic
problem defined in (6).

18This is in keeping with the Colombian context, where students pay a fixed tuition regardless of the number
of classes taken.

19We do not model student’s decision to work while in college because our administrative data does not record
this information. Further, data from Colombia’s National Survey of Time Use (ENUT ) reveals that high-
income college students are more likely to work while in college than their lower-income counterparts, suggest-
ing that the primary motivation to work is not necessarily to pay for college (details available upon request).
For a model of student workers, see Garriga and Keightley (2007).
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4.3 Workers

An individual can join the labor force after graduating from high school or college, or after
dropping out from college.20 The worker’s optimization problem, written in recursive form, is

V m(t) = max
ct
{u(ct) + βV m(t+ 1)}, (7)

s.t. ct = wmt ,

where V m(t) is the value function of a worker with educational attainmentm = {hs, grad, drop},
denoting high school graduate, college graduate, and college dropout respectively. The worker’s
wage, wmt , is specific to educational attainment, and varies with t to allow for returns to
experience. Note that V m depends on t because of w, and because the value of working depends
on the total number of years worked, given by the entry date into labor force.

4.4 Enrollment decision

In order to decide whether or not to enroll in college, a high school graduate compares the
expected payoff of two choices - going to college, or joining the labor force as a high school
graduate. The enrollment decision is a discrete choice problem, where the payoff associated to
each option is the sum of three components. The first component is the expected value of going
to college, V coll(t = 1, h0 = 0, θ, y) or of entering the labor force as a high school graduate, V hs.
The second component is a type-specific preference for college enrollment, ξj = ξ̃(θj, yj), which
captures type-related unobserved factors, such as parental education, that affect enrollment.
We normalize the unobserved preference for joining the labor force as a high school graduate
to zero for all types. The third component is an idiosyncratic choice-specific shock for each
individual, εhs and εcoll, corresponding to working as a high school graduate or enrolling in
college, respectively. Thus, all individuals face the same V hs, and individuals of a given type
face the same V coll and ξj; yet individuals within and across types differ in their idiosyncratic
shocks. We assume that εhs and εcoll are iid and distributed Type I Extreme Value with a
scaling factor of σε. The individual chooses to attend college if

V coll(1, 0, θj, yj) + ξj + σεε
coll

Value of going to college

≥ V hs + σεε
hs

Value of working as a high school graduate
(8)

As a result, the probability of college enrollment for an individual of type j is

P coll(θj, yj) =
exp{(V coll(1, 0, θj, yj) + ξj)/σε}

exp{(V coll(1, 0, θj, yj) + ξj)/σε}+ exp{V hs/σε}
, (9)

Its complement, P hs(θ, y) = 1−P coll(θ, y), is the probability of joining the labor force as a high
school graduate.

20We assume that workers consume all their earnings and do not have access to credit markets, which is an
accurate representation of developing economies. Since wages rise with experience and workers discount the
future at the interest rate, they have no incentives to save.
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5 Empirical implementation

In this section we describe the parameterization and computational version of the model. We
also describe the algorithm to compute model predicted values for a given parameter point.

5.1 Functional forms

In the model, t = 1 corresponds to age 18. Retirement age is 65, or t = 48. Regardless of her
educational attainment or when she joined the labor force, the individual accrues returns to
experience (or becomes ”experienced”) from age 35 (t = 28) onwards.

The utility of college students is given by

U (c, e, θ) =
(c+ c)1−ρ − 1

1− ρ
− µ eγ

(1 + θ)k
. (10)

where the need to meet the minimum consumption level, c, might limit low-income students’
ability to enroll in college. To prevent this, we set c equal to one million COP.21 The utility of
workers is given by

u(c) =
c1−ρ − 1

1− ρ
. (11)

We set r = 0.04, and assume σε = 1.

The production function to complete classes has constant returns to scale in ability and
effort:

xt = H(zt, θ, et)x = zt(θ
αe1−α

t )x, (12)

where α ∈ (0, 1) is the elasticity of classes completed with respect to ability. Consistent with
the model, we set x̄ = 20 classes. We set the minimum number of classes required to graduate,
hgrad, equal to 98.22

The functional form for the zt shock is as follows:

zt = exp{− exp{−(κ0 + κ1d1 + κhh̃t−1 + κθθ + (σ + σ1d1 + σθθ)νt)}}, (13)

where h̃t−1 is a measure of past cumulative number of classes completed, with h̃t−1 = ln(h̄t−1)
for every t > 1, and h̃0 = 0 for t = 1.The terms associated with d1 allow the shock distribution
to differ in year 1, when d1 = 1.23 The shock also depends on an iid component, νt, drawn
from the uniform distribution U(0, 1). The functional form in (13) ensures that zt ∈ (0, 1) for
any combination of parameter values and for all h̃, θ ∈ R. Importantly, all the parameters in
(13) affect the mean and variance of zt. In Section 6.3 below we discuss the effect of h̃t−1 and

21Our chosen value for c guarantees that, in our computational models, all students attain positive consumption
if they enroll in college. We can think of c as the minimum consumption guaranteed to college students
through student subsidies, such as those for food and transportation.

22We set this requirement to 98 rather than 100 because we observe students who graduate with slightly fewer
than 100 classes - perhaps due to measurement error.

23In year 1, h̃0 = 0, whereas h̃ is positive in subsequent years. This creates scaling problems in year 1, which we
solve through κ1. As documented in section 3.4.3, the variance of classes completed is higher in year 1 than
in other years, which we capture with σ1.
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κθ on this mean and variance at our specific parameter estimates.

We parameterize the probability of dropping out as

p̃d(t, ht, θ, y) =
exp{δ(t, θ, y) + πh̃t}

1 + exp{δ(t, θ, y) + πh̃t}
, (14)

where δ(t, θ, y) is a year-, ability- and income- specific fixed effect, and h̃t measures cumulative
performance over all periods, including the current one. Evaluating p̃d(t, ht, θ, y) at π = 0
yields the “exogenous dropout probability” - namely, the dropout probability that students of
a given type would have, in a given year, if they had accumulated no classes. It is “exogenous”
because it is independent of effort. For example, low-income, low-ability students may have a
high exogenous dropout probability in year 1 -perhaps because they lack parental guidance on
how to navigate college- yet a lower one in subsequent years.

The model’s full parameter vector is Θ̃ = (Θ, ξ, δ), where

Θ = (ρ, µ, γ, k, α, κ0, κy1 , κh, κθ, σ, σy1 , σθ, π) (15)

is the vector of parameters common across individuals. Vector ξJ×1 contains type-specific unob-
served preferences for college, ξj (see (9)) and δ(J∗8)×1 contains exogenous dropout probability
fixed effects, δ(t, θj, yj), for the J types and 8 years (see (14)).

5.2 Computational representation

5.2.1 Student types

To build the empirical distribution of ability and income for school graduates, Φ(y, θ), we start
from Table 1, which classifies 2005 high school graduates by ability quintile and income bracket.
We refine this table to work with ability deciles rather than quintiles, for a total of fifty student
types. To construct values for θ, we start from the distribution of standardized Saber 11 test
scores and normalize them between 0 and 1.24 Our θ values are the 5th, 15th, ...95th percentiles
from the normalized scores. We calculate the y value corresponding to each income bracket as
the average annual per-capita income for that bracket, computed from Colombia’s household
survey data (SEDLAC) on family income and size. Lacking student-level data on tuition
expenses, we estimate the tuition paid by students of a given y as the average annual tuition
paid by students from the corresponding income bracket at public institutions, calculated from
SNIES and SPADIES.25

Table 4 shows the resulting income and tuition corresponding to the underlying family
income brackets. As the table shows, income varies greatly across income brackets. Although
public institutions provide income-based tuition discounts, the highest income individuals do
not pay proportionally to their income. While their per-capita income is about twenty times
as large as that of the lowest-income individuals, their tuition is only 2.5 times as large.

24Let sts denote the standardized test score. The normalized sts is equal to (sts − min(sts))/(max(sts) −
min(sts)).

25We use tuition at public HEIs because there is always a public HEI that the student can attend. Modeling
the choice of college type (public or private) is beyond the scope of this paper.
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Table 4: Income and Tuition.

Income Avg. Per-Capita Avg. Per-Capita
Bracket Household Income Tuition

5+ MW $ 21,027,690 $ 2,195,972
3-5 MW $ 9,191,642 $ 1,826,386
2-3 MW $ 5,337,010 $ 1,177,543
1-2 MW $ 2,952,288 $ 978,690
<1 MW $ 1,119,633 $ 855,493

Source: Calculations based on Saber 11 and SEDLAC (household surveys) for per-capita income; Ministry
of Education of Colombia and SPADIES for tuition.
Notes: Since Saber 11 provides income brackets rather than actual income, we use SEDLAC (household
surveys) data on household income and household size to calculate the average per-capita household income
corresponding to households of a given bracket. To calculate the average tuition for a given bracket, we
assign to each student the average tuition paid by students in her program, and average over students.
Income is reported in brackets; MW = monthly minimum wage.

5.2.2 Workers

We use household surveys to compute the average wages earned by individuals with different
educational attainment and experience in 2005. For workers aged 18-65, the average wage of
a college graduate, a college dropout with at least one year of complete college, and a college
dropout with less than one year of complete college is 160, 58, and 28 percent higher than the
average wage of a high school graduate respectively.26 Among college (high school) graduates,
the average wage of experienced workers is 35 (29) percent higher than the average wage of
inexperienced workers. Consistent with the data, we assume that the returns to experience of
college dropouts are the same as those of high school graduates.

5.3 Computing predicted values

Since the model does not have a closed-form solution, we use a numerical algorithm to solve
students’ dynamic optimization problem for a given value of Θ. Appendix A.4 provides a full
description of the algorithm. The estimation of δ and ξ is nested within the model solution for
a given of value of Θ, in the spirit of Berry, Levinsohn and Pakes (1995).

In anticipation of next section, a couple of remarks are in order. First, our model solution by
construction replicates observed enrollment rates by type. Hence, we do not match enrollment
rates in the estimation. Second, although our model solution attempts to replicate observed
dropout rates at the (year, ability quintile, income) level, it does so with mixed success (see
Appendix A.4.3 for further details). As a result, we are able to match dropout rates in the
estimation.

26This creates, in effect, four college attainments - high school, college, some college (one year), some college
(two or more years). The two “some college” categories correspond to college dropouts. We work with two
rather than one dropout category because their wages are quite different from one another and hence provide
different incentives to college students over time.
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6 Estimation

In this section we describe the estimation strategy and identification. We also present parameter
estimates, describe the model’s fit, and address the role of effort given our estimates.

6.1 Estimation Strategy

We estimate the model parameters using Simulated Method of Moments (SMM). Our estimation
searches for the value of Θ whose predicted moments, M̂(Θ), best match the observed ones,
M. The moments we match are listed in Table 5. They reflect the patterns of dropout, college
outcomes, classes completed, and targets discussed in Section 3. Matching these 585 moments
enables us to estimate our 13 parameters.

Table 5: Moments Matched in Estimation.

Number of
Data aspect Moments Moments

Dropout rates Dropout rate by year. 8
Dropout rate by ability quintile and income. 25
Dropout rate by ability decile. 10

College outcomes College outcomes by ability quintile. 25
Fraction of students that graduate by year (years 5-8). 4

Cumulative classes
completed

Average number of cumulative classes completed by
year, ability quintile, and college outcome.

140

Average number of cumulative classes completed by
year and ability decile (years 1-5).

50

Distribution of students into tiers of cumulative classes
completed, by year.

24

Distribution of students into tiers of cumulative classes 75
completed, by ability quintile and year (years 1-5).

Transition probabilities Pr(tier Y in t+ 1|tier X in t) for years 1-7. 112

Pr(ddropt = 1|tier X in t) for years 1-8. 32

Target number of classes Average target number of classes by ability decile and
year.

80

Total 585

Source: Own estimation.
Notes: Moments per year are computed for years 1-8 unless otherwise specified. Tiers are 1-4, based on
cumulative classes completed (see Subsection 3.4.1 and Appendix Table A.1 for further details). For “College
outcomes,” outcomes include on-time graduate, late graduate, drop out first year, drop out second year, drop
out after second year. In “Cumulative classes completed,” which are calculated by year, outcomes include
on-time graduate (until year 5), late graduate, drop out this year, drop out later (until year 7); “this year”
and “later” refer to the year under consideration. In “Transition probabilities”, t refers to year; tiers X
and Y are 1,...,4. Observed data for target number of classes is average number of classes for which the
corresponding students registers.

Formally, our SMM parameter estimates solve the following problem:

arg min
Θ

(M̂(Θ)−M)′W−1(M̂(Θ)−M), (16)
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where Θ is a 13×1 vector of parameters, M and M̂ are 585×1 vectors of sample and predicted
moments, respectively, and W is a diagonal weighting matrix whose diagonal contains the
standard error of the sample moments. We compute numerically the predicted values, M̂, for
every value of Θ as explained in Appendix A.4.

6.2 Identification

A critical challenge is identifying the role of ability, effort, and performance shocks in the
production of classes completed. Below we provide intuition for identification.

Effort. If effort had no role in the number of classes completed (α = 1), or if it were
costless (µ = 0), then all students would take the required number of classes per year. The
fact that most students take, on average, a lower number classes (see Section 3.5) indicates
that effort does have a role in classes completed and helps identify µ. An increase in µ leads
to lower targets, effort, and number of classes completed. An increase in µ also leads to lower
college enrollment - particularly for low-income students, who have lower consumption than
their wealthier counterparts to compensate for effort. The speed of accumulation of classes
completed, as well as the transitions among tiers over time, helps identify γ. A high γ penalizes
high effort levels and makes it costly to catch up. The fact that higher ability students take
more classes, on average, than their lower-ability counterparts indicates that their effort cost is
lower and identifies k. An increase in k raises the variance of average target, effort, and classes
completed across abilities.

Performance shock. Despite the low variation of average classes completed across abilities,
number of classes completed varies widely within abilities. Conditional on ability, effort varies
by income. This explains some, but not all, of the within-ability variation of classes completed.
The remainder of this variation, then, is explained by the performance shock, z. Since θ is
between 0 and 1, we restrict z to be in this range as well. This helps us pin down the scale
for effort. An increase in κ0 makes shocks more favorable to all students, thus raising the
number of classes completed and lowering dropout rates across the board. Parameter κ1 is an
intercept shifter that makes the scale of z comparable across years. An increase in κθ makes
the expected shock relatively more favorable for low-ability students, and raises the dispersion
in average classes completed and college outcomes across abilities. Parameter σ is identified
by the overall variation of classes completed conditional on ability, whereas σθ is identified by
the greater variation of classes completed among low- than high-ability students. The higher
overall variation of classes completed in year 1 relative to other years identifies σ1. After year
1, κh is identified by the persistence of students in their performance tiers.

Ability. Given the role of effort and performance shocks in the production of classes
completed, the variation of average classes completed across abilities identifies α. This variation
rises with an increase in α.

Other parameters. An increase in ρ raises the aversion to consumption variations over
time and decreases the propensity to college enrollment. It also lowers the speed of class
accumulation and increases time-to-degree. Finally, the sensitivity of dropout rates with respect
to current classes completed, conditional on student income and ability, identifies π.

A sufficient condition for local identification is that the matrix of first derivatives of the
moments’ predicted values with respect to the parameter vector has full column rank when
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evaluated at the true parameter point. Evaluated at our parameter estimates, this matrix has
full column rank in our sample.

6.3 Parameter Estimates

We now turn to our parameter estimates, shown in Table 6.

Table 6: Parameter Estimates.

Parameter Symbol Estimate

Utility function
Consumption curvature ρ 0.882
Effort weight µ 0.062
Effort curvature γ 4.727
Effort cost w.r.t. ability k 1.225

Number of classes completed
Elasticity w.r.t. ability α 0.085

Performance shock
Constant κ0 -4.207
Year 1 shifter κ1 3.534
Persistence component κh 1.304
Ability component κθ 0.407
Std. dev. of iid shock σ 1.789
Std. dev. of iid shock - Year 1 shifter σ1 0.317
Std. dev. of iid shock - Ability shifter σθ -1.282

Dropout shock
Cumulative performance component π -2.951

Source: Own estimation.

The estimated α is low, consistent with low variation of average classes completed across
abilities. As a result, the estimated elasticity of credits completed with respect to effort (equal
to 1 − α) is high. We emphasize that our ability measure captures college academic readiness
as measured by Saber 11 and not necesssarily ”true” ability. Hence, our estimate indicates that
college academic readiness plays a small role in the accumulation of classes completed relative
to effort. Therefore, policies must affect effort in order to affect classes completed.

The estimated ρ < 1 indicates that students have low risk aversion to consumption changes
over time and implies an elasticity of intertemporal substitution (equal to 1/ρ) greater than
one. This makes students quite willing to attend college and graduate on time.

The estimated γ, equal to 4.73, indicates a very high marginal cost of effort, exceeding
typical quadratic costs, which prevents large catch-up efforts. The estimated k indicates that
effort is negatively and strongly related to ability. When k = 0, effort cost is the same for all
abilities, whereas when k = 1 effort cost falls with ability, at a decreasing rate. Our estimated
value of 1.23 yields the same qualitative pattern as k = 1, but an even greater gap in effort cost
among high and low ability students.

Given estimates for the shock-related parameters, we find that E(zt) is higher for students
with higher past performance, which creates persistence. In addition, low-ability students
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have higher E(zt) and V ar(zt) than high-ability students. Their (slightly) higher mean of
z is consistent with the observed fact that they enroll in less selective (and presumably less
demanding) programs than their abler counterparts.27 Without this higher mean, it would
be difficult to match the good performance and graduation of some low-ability students (see
Sections 3.3 and 3.4). The more dispersed shock for lower-ability students, in turn, helps us
match their higher variance of classes completed (see Section 3.4.3.)

To examine the relative impact of past performance and ability on z, consider students A
and B. At the beginning of t, A has completed one more class than B and is more able, with
∆θ = θA− θB = 0.22. This is a large ability difference, equal to the difference between the 55th
and the 5th percentile, or between the 95th and the 75th percentile. Because A is abler than
B, her E(zt) should be lower than B’s, yet because she has completed more classes, her E(zt)
should be higher. As it turns out, just having completed that one additional class gives her the
same E(zt) as B’s, even though B is much less able. In other words, ht−1 has a relatively larger
impact than θ on E(zt).This makes z highly persistent and more dependent on something the
student can control -her performance- than on ability, which she cannot control.

Finally, the estimated π indicates that an additional class completed by the end of the
year, on average, decreases the probability of dropping out by about 5 pp. Since p̃d(·) has a
logistic functional form, this marginal effect -and therefore the incentive to accumulate classes
completed- is stronger for students with intermediate values of the dropout probability rather
than values close to zero or one.

Our full set of parameter estimates includes the dropout probability fixed effects in (14),
δ̂(t, θ, y). To illustrate the relative magnitude of π̂ and δ̂(t, θ, y), consider the average number of
additional classes that a student from the second ability quintile (“Q2 student”) must complete
to attain the same dropout probability as a student from the top ability quintile (“Q5 student”).
In year 1, she must complete more than 4 additional classes, or 25 percent of the annual
requirements, reflecting a high exogenous dropout probability. In year 5 she only needs one
additional class completed, as the Q2 students reaching year 5 are approximately on par with
Q5 students. The important point is that, early on, low-ability students face a high exogenous
dropout probability, which can only be reversed through very high initial effort or very favorable
performance shocks.

6.4 Goodness of fit

The estimated model fits the data well, and replicates the patterns described in Section . The
observed graduation rate is 45.64 percent, and the predicted one is 45.02 percent. The model
captures the distribution of dropouts over time (Table 7) and across student types (Table 8).
As Figure 9 shows, it also captures the distribution of college outcomes by ability. The on-time
graduation rate (15.1 percent) is predicted perfectly. The observed fraction of 2005 high school
graduates that complete college is 14.7 percent, and the predicted one is 14.5 percent.

As Appendix Tables A.3-A.10 show, we capture average classes completed by year and
ability, and conditional on final outcome.28 Therefore, the model replicates the wide variation

27We measure program selectivity as the average Saber 11 test score of the program’s students. We find a
negative correlation between student ability and program selectivity. In other words, less able students choose
less selective programs.

28When assessing goodness of fit, it should be kept in mind that the use of a weighting matrix in (16) implies that
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Figure 9: Goodness of Fit: College Out-
comes.
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Table 7: Goodness of Fit: Dropout Year.

Year Observed Predicted

1st 27.41 27.92
2nd 10.38 10.43
3rd 4.77 4.94
4th 2.7 2.83
5th 2.61 2.81
6th 2.74 2.92
7th 2.48 1.94
8th 1.28 1.19

Total 54.36 54.98

Source: SPADIES for observed data; fitted values for
predicted data.
Notes: Table shows the observed and predicted per-
cent of students who drop out each year.

Table 8: Goodness of Fit: Dropout Rates by Income and Ability.

Ability quintiles
Income Observed values Predicted values
Bracket 1 2 3 4 5 Total 1 2 3 4 5 Total

5+ MW 81.4 65.8 61.5 52.1 39.1 44.7 84.4 67.8 63.4 51.9 40.7 46.7
3-5 MW 74.2 69.4 62.2 57.9 43.8 51.3 81.6 68.3 62.2 57.3 44.4 52.5
2-3 MW 68.5 67.6 63.7 57.7 46.5 55.1 70.8 67.5 61.9 60.1 44.4 55.6
1-2 MW 71.6 66.6 62.2 57.7 50.6 57.8 69.9 66.5 60.9 56.2 46.9 56.7
<1 MW 69.0 67.9 61.3 55.9 50.3 58.7 69.6 66.3 58.6 53.7 46.2 57.5

Total 71.0 67.4 62.4 60.0 45.8 54.4 71.3 66.9 61.0 56.6 44.8 55.0

Source: Source: SPADIES for observed data; fitted values for predicted data.
Notes: Values are expressed in percentages (%). Income is reported in brackets; MW = monthly minimum
wage. Ability is reported in quintiles of standardized Saber 11 scores. Quintile 1 is the lowest.

in classes completed within abilities, as well as the low variation across abilities (Appendix
Figure A.2). Further, the model captures the qualitative patterns of persistence, drop out,
catch-up and fall behind (Table 9), as well as the progressive concentration of students in the
upper tiers over time (Figure 10). Finally, Appendix Figure A.3 shows average predicted target
and average number of classes taken by the student. Recall that the latter is theoretically an
upper bound for the former (see Section 4.2.) As such, our average predicted target is lower
than the average observed number of classes.

moments with a greater number of underlying observations (such as those from early years, or for higher-ability
students) will attain a better fit.
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Table 9: Goodness of Fit: Transitions Among Tiers of Cumulative Classes Completed.

Observed values Predicted values
Year 2 Year 3 Year 4 Year 5 Year 2 Year 3 Year 4 Year 5

Persistence
Tier 1 64.33 79.78 86.98 79.89 63.70 75.80 75.10 74.30
Tier 2 28.67 39.23 51.47 57.76 22.80 38.40 53.70 60.10
Tier 3 34.94 49.44 60.94 69.04 35.10 59.20 71.20 78.80
Tier 4 29.67 45.75 57.87 58.59 37.10 42.50 60.70 76.00

Dropout rate
Tier 1 12.16 4.03 1.75 0.71 11.60 4.20 3.00 2.20
Tier 2 14.43 6.50 3.25 1.52 16.20 6.40 4.60 3.00
Tier 3 23.02 12.30 7.29 4.02 25.10 9.20 7.00 5.20
Tier 4 54.23 41.95 28.24 24.24 55.20 50.70 35.20 21.40

Prob. of Catch up
Tier 3 to Tiers 1 & 2 18.10 20.42 20.61 19.63 26.60 20.30 13.10 9.40
Tier 4 to Tiers 1 & 2 4.26 0.55 0.22 0.14 0.82 0.00 0.00 0.00

Prob. of Fall behind
Tier 1 to Tiers 3 & 4 11.01 5.41 2.54 1.66 4.30 1.20 0.30 0.00
Tier 2 to Tiers 3 & 4 36.8 28.77 17.70 18.40 26.00 25.60 22.80 24.40

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

Figure 10: Goodness of Fit: Tiers of Cumulative Classes Completed, by Year.
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6.5 The Role of Effort

Our estimates show that class completion is much more responsive to effort than ability. Given
the importance of effort, we begin by looking at average student effort by year (Figure 11). On
average, effort is relatively high in years 1 and 4. In year 1, students work hard to complete
classes and mitigate dropout risk. In year 4, they work hard in order to graduate. After year
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5, average effort falls as the remaining students have few classes left.

Figure 11: Predicted Average Effort by Year.
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Notes: The figure shows average student effort for each year in the simulated baseline.For a given year, individual
efforts are normalized by the 95th percentile of the year’s effort distribution.

In general, administrative datasets do not provide effort measures. When these datasets
are used to estimate the relationship between classes completed and ability, the lack of effort
measures might bias the estimates. We investigate this issue in Table 10. We begin with the
regression of log classes completed, ln(xt), on log ability for the observed data (column 1) and
the simulated baseline (column 2). The coefficients on log ability in columns (1) and (2) are
very close, which is additional evidence of our good fit. In both cases, log ability explains about
20 percent of the variation in log classes completed.

Table 10: Classes Completed Per Year.

Actual data Simulated Data
(1) (2) (3) (4)

ln(ability) 0.166∗∗∗ 0.156∗∗∗ 0.090∗∗∗ 0.085∗∗∗

(0.015) (0.005) (0.005) (0.000)
ln(effort) 0.854∗∗∗ 0.915∗∗∗

(0.004) (0.000)
ln(shock to classes completed) 1.000∗∗∗

(0.000)
Constant 2.060∗∗∗ 2.748∗∗∗ 2.197∗∗∗ 2.996∗∗∗

(0.012) (0.004) (0.004) (0.000)

R2 0.213 0.204 0.518 1.000
Num. Obs. 123,101 127,044 127,044 127,044

Source: OLS estimation using SPADIES for actual data; model’s baseline predictions for simulated data.
Notes: Dependent variable is ln(classes completed per year), or ln(xt) in the model. An observation is a
student-year; years 1-8 are included. Ability is θ, effort is e∗t , and shock to classes completed is zt. All
regressions include year fixed effects (not shown). Standard errors (in parentheses) are clustered by student.
* p < 0.10, ** p < 0.05, *** p < 0.01.

One advantage of our structural model is that we can recover variables -effort and shocks-
not observed in the administrative data. This allows us to expand regression (2) in order to
gauge the relative roles of effort, performance shocks, and ability. Adding effort (column 3),
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we explain an additional 30 percent of the variation in classes completed. As expected, we
explain all the variation in classes completed when we add the shock as well (column 4), with a
coefficient on log ability equal to our point estimate for α. Further, in column 4 effort and the
shock acount for 47 and 52 percent of the variation in classes completed, respectively, leaving a
mere 1 percent explained by log ability. In other words, in our model almost the whole variation
in classes completed is due to effort and shocks.29

Importantly, when effort is not controlled for, the coefficient on ability is overestimated by
about 75 percent. Therefore, when we do not control for effort, which is typically unobserved in
administrative data, we attribute to ability an effect that is actually mediated through effort,
since higher ability students have lower effort cost and exert more effort). By underestimating
the role of effort, policies might place too much weight on a student trait -ability- that cannot
be changed rather than on a student choice -effort- that could, in principle be changed.

These findings elicit two important questions. The first is whether policies could actually
raise the number of classes completed. Combining equations (3) and (12), we arrive at the
effort associated with a particular target:

et =

(
qt

x̄E(zt)θα

) 1
1−α

. (17)

As the expression shows, effort is greater the higher the target, the lower the expected shock,
and the lower the ability. If a policy aims at raising classes completed, it must raise a student’s
optimal target, q∗t , and its corresponding effort. Since the number of classes completed is discrete
(for instance, a student can raise q∗t from 14 to 15, but not to 14.5), a target increase requires a
non-marginal effort increase. The answer to the first question, then, is that a policy can raise
the number of classes completed provided it incentivizes a non-marginal effort increase.

Assuming a policy can accomplish this goal, the second question is which students are most
likely to respond to it. A student chooses effort as the solution of the dynamic optimization
problem in (6). In a given period, her chosen effort is related to her ability, income, target
number of classes, cumulative classes completed (which may create the need to catch up),
expected shock to classes completed, and graduation probability. In principle, the relationship
between ability and effort is ambiguous. On the one hand, higher-ability students have lower
effort costs, which induces them to exert greater effort. On the other hand, they need less effort
to attain a given target, which induces them to exert less effort.

Using the simulated data from our model, Table 11 shows the correlates of effort based on
some reduced-form regressions. In addition to ability, column 1 controls for target number of
classes, whereas columns 2, 3, and 4 control for other variables that determine target and effort
– namely, past cumulative classes completed (proxied by average classes completed per year in
past years), expected dropout probability, and expected shock to classes completed. Column
1 shows that higher ability students exert lower effort, whereas column 2, 3 and 4 show the
opposite. The reason for these opossing results is that column 1 shows the effect of ability
controlling for target (i.e., the effect indicated in equation 17), by which higher ability students

29These results are based on a R-squared decomposition of the regression in column 4, whcih quantifies the
fraction of R-squared that is attributable to each independent variable. Note that the fraction attributable to
the shock is partly attributable to past effort, since the shock is a function of past classes completed, which
depends on past effort.
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need less effort for a given target, whereas the other columns show ability effects including those
on target choice, by which higher ability individuals choose higher targets and effort.

Table 11: Effort.

(1) (2) (3) (4)

ln(ability) −0.015∗∗∗ 0.076∗∗∗ 0.107∗∗∗ 0.067∗∗∗

(0.003) (0.003) (0.003) (0.003)
ln(target) 0.787∗∗∗

(0.004)
ln(average classes completed) −0.173∗∗∗

(0.008)
ln(expected dropout probability) 0.022∗∗∗

(0.000)
ln(expected shock to classes completed) −0.159∗∗∗

(0.006)
Constant −1.537∗∗∗ 1.019∗∗∗ 0.764∗∗∗ 0.519∗∗∗

(0.011) (0.018) (0.003) (0.006)

Adj. R2 0.766 0.285 0.557 0.286
Num. obs. 127,044 127,044 127,044 127,044

Source: OLS estimation using model’s simulated baseline values.
Notes: The dependent variable is ln(effort), or ln(e∗t ) in the model. An observation is a student-year. Ability
is θ, target is qt, and cumulative classes completed is h̄t−1. Expected shock to classes completed is E[zt]; it
varies across students and over time. Expected dropout probability is E[p̃d(t, ·)], calculated by the individual
prior to the realization of zt. All regressions include year and income fixed effects (not shown). Standard
errors (in parentheses) are clustered by student. * p < 0.10, ** p < 0.05, *** p < 0.01.

Column (2) shows that students with better past perfomance exert less effort. This is the
outcome of a direct and an indirect effect of past performance on effort, both of which move
in the same direction. Because of the direct effect, students with better past performance
are closer to completing graduation requirements and need less effort. Because of the indirect
effect, they expect better shocks to classes completed and a lower dropout probability, both
of which make effort less necessary (columns 3 and 4). The direct and indirect effects of past
performance illustrate the importance of a strong beginning: students who perform well in the
early years can expect better ”luck” in the future and a higher graduation probability, thereby
eliminating the need for a costly catch-up.

We can now return to our second question. Policies that seek to affect effort might be more
successful among high-ability students, whose effort cost is lower. But, importantly, they should
aim at raising effort in the early years so that students have less need of a costly catch-up later
on. As a result, free college targeted to specific students (e.g., of high ability), or contingent
on student’s cumulative classes completed (e.g., performance-based policies) might be highly
effective at raising effort and number of classes completed. These conclusions motivate some of
the counterfactuals presented below.
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7 Free college simulations

In this section we present counterfactual simulations of alternative free college programs. We
begin by describing their setup as well as the theoretical impact of free college on student
decisions. Then we describe free college’s aggregate effects on enrollment and graduation, and
examine effort in order to understand graduation rate effects. We then turn to the heterogeneity
of free college effects by student type, and relate our counterfactual results with findings from
the empirical literature on college financial aid. We analyze the role of risk, both in the baseline
and under free college. We conduct a simple cost-benefit analysis of free college, and conclude
with an examination of the possible long-run effects of free college.

7.1 Counterfactuals’ setup

We simulate the following free college programs, which provide free tuition to the students
listed below:

• Universal free college: all college students.

• Need-based free college: low-income students, defined as those from the lowest two
income brackets.

• Ability-based free college: high-ability students, defined as those from the highest
ability quintile.

• Ability- and need-based free college: students who are both low income and high
ability – namely, students from the lowest two income brackets and the highest ability
quintile.

• Performance-based free college: all students in year 1, but only high-performing
students afterwards. In a given year, a high-performing student is one who finished the
previous year in tiers 1 or 2 based on her cumulative performance. Note that a student
may be high-performing in one year but not in another, depending on her cumulative
classes completed.

• Performance- and need-based free college: all low-income students (from the lowest
two income brackets) in year 1, but only to students who are both low-income and high-
performing afterwards.

Note that, by design, performance-based and performance- and need-based free college entail
a risk for the student, as the zero tuition is not guaranteed but must be attained through
performance. In contrast, the other free college programs guarantee zero tuition based on
ex-ante student traits, which are not contingent on performance.

As we analyze these counterfactuals, it is convenient to distinguish between two groups of
students–existing and new. For a given counterfactual, we define existing students as those
who enroll both in the baseline and at least in year 1 of the counterfactual. In contrast, new
students are those who do not enroll in the baseline but enroll in the counterfactual.
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Three important assumptions hold in our counterfactuals. First, we assume a perfectly
elastic higher education supply, whereby institutions can adjust capacity as needed in order to
absorb additional students at a constant marginal cost, and tuition does not rise in response
to greater demand. If there were capacity constraints, institutions would need to ration free
college. Second, we assume that parents continue to transfer the same y to their children in
college even when college becomes free. In other words, public college funding does not crowd
out private funding at all. If, in contrast, parents reduce their transfers one-for-one (full crowd-
out), free college has no effects and is similar to the baseline. More generally, crowding out of
any degree is analogous to a reduction in tuition subsidy.30 Third, we assume that the average
cost of educating new and existing students is the same. This does not hold, for instance, when
new students need additional services, such as remedial education or non-academic supports.
If new students are more costly, then a government with fixed resources cannot fund as many
students. Since these assumptions provide the most favorable setting possible for free college,
the results presented below are best viewed as an upper bound on free college effects.

7.2 Free college and student choices

Free college affects students on the extensive and intensive margins. On the extensive margin
it raises college entry by adding new students, thereby affecting the size and composition of the
student body. On the intensive margin, it affects student effort via the following channels:

1. Loss-of-urgency effect. By raising consumption during college, free college enhances
the ”college experience,” as it raises the value of being a student relative to joining the
labor force and makes the student less eager to leave college. Other things equal, this
effect leads to lower effort.

2. Substitution effect. Since free college raises consumption while in college, it allows
students to exert more effort without losing utility – in other words, it provides additional
consumption to compensate for greater effort. Other things equal, this effect leads to
higher effort.

3. Risk effect. The performance and dropout shocks, zt and ddropt respectively, depend on
the number of cumulative classes completed, which in turn depends on effort. To the
extent that free college raises (lowers) effort, it also lowers (raises) risk. Further, the
longer (shorter) a student spends in college, the greater (lower) her exposure to risks.

At the extensive margin, free college affects enrollment. At the intensive margin, it affects
graduation; whether graduation rises or falls depends on the net effect on effort. Importantly,
performance- and performance-and-need based free college provide a direct incentive to student
effort by making tuition contingent on performance. As a result, they eliminate the loss-of-
urgency effect.

30There is a large literature endogenizing parental transfers as a function of education cost and labor market
returns. See, for instance, Keane and Wolpin (2001), Restuccia and Urrutia (2004), and Abbot et al (2013).
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7.3 Aggregate Outcomes

7.3.1 Enrollment and graduation

Table 12 shows the aggregate effects of the free college programs on enrollment and college
outcomes. All these programs raise enrollment relative to the baseline, albeit in different
magnitudes. Universal free college delivers the largest enrollment increase (28 pp), followed
by need-based free college (23 pp) and performance-based free college (21.3 pp). In contrast,
ability-based free college (whether need-based or not) has the smallest effect on enrollment rates
(3 or 4 pp). The magnitude of the enrollment effect is related to the percent of high school
students who are eligible for free college – equal to 100 for universal and performance-based
free college, 71 percent for need-based and performance- and need-based free college, and only
20 percent for ability-based free college.

New students account for almost half of the student body under universal free college but
just about 10 percent under ability-based free college. The entry of new students changes
not only the size but also the composition of the student body. The fraction of low-income
students rises in all programs, particularly those that are need-based. As for the fraction of
high-ability students, it rises with ability- and ability-and-need based free college because these
programs induce a positive selection of new students, who are of higher ability than the existing
ones on average. The other programs, in contrast, induce a negative selection of new students.
Nonetheless, performance- and performance-and-need based free college attract new high-ability
students at a higher rate than universal- and need-based free college.

While four out of six programs raise enrollment rates by more than 15 pp, no policy affects
graduation rate by more than 3 pp, and two programs (universal and need-based free college)
actually lower it. These aggregate effects are small yet mask considerable differences between
existing and new students. For existing students, graduation rate remains almost constant in
all counterfactuals except for performance and performance-and-need based free college, which
raise it by 4 to 6 pp. For new students, graduation rate depends on the policy-induced selection
of new students. In programs with positive selection, the graduation rate of new students is
almost 10 pp higher than that of existing students in the baseline, consistent with the greater
effort exerted by higher-ability students. In the other programs, new students graduate at
lower rates than existing ones. Still, performance and performance-and-need based free college
graduate new students at higher rates than universal and need-based free college. In terms of
on-time graduation rate, aggregate effects are very small (between -1 and 1 pp.), though they
are large among the positively-selected new students under ability-based free college.

The ultimate goal of free college programs is raising the fraction of high school graduates
completing college. By definition, this fraction is the product of enrollment and graduation
rates. All programs raise this fraction relative to the baseline. Universal free college deliv-
ers the greatest increase (about 12 pp), followed very closely by performance-based free col-
lege. Relative to universal free college, performance-based free college delivers a lower increase
in enrollment rates, as many students seek to avoid the risk involved in it. However, since
performance-based free college graduates students at a higher rate than universal free college,
it delivers almost the same increase in the fraction of high school graduates completing col-
lege. The trade-off between risk and outcomes illustrated by this comparison is a theme in the
analysis that follows.
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Table 12: Free College Counterfactuals: Aggregate Outcomes.

Ability Perf.
Attribute Data Baseline Universal Need Ability & need Perf. & need

Enrollment rate (%) 32.3 32.3 59.9 54.9 36.8 35.4 53.6 49.7
Eligible students (%) 100.0 71.0 20.0 9.8 100.0 71.0

Student body
composition (%)

New students 46.1 41.2 12.2 8.9 39.8 35.0
Low income 52.4 52.4 66.0 72.1 54.5 56.6 64.0 69.0
High ability 39.5 39.5 28.8 29.0 46.9 44.9 30.9 31.0

Graduation rate (%) 45.6 45.0 43.5 43.6 45.6 45.7 47.8 44.9
Existing students 45.8 45.6 44.4 44.8 51.3 48.7
New students 40.9 40.8 54.3 54.1 42.7 42.6

On-time
graduation rate (%) 15.1 15.1 13.9 14.4 15.2 15.6 15.9 16.1

Existing students 14.0 14.5 14.3 14.8 16.0 15.9
New students 13.8 14.3 22.2 24.2 15.7 16.4

High school
graduates that
complete college (%) 14.7 14.5 26.1 24.0 16.8 16.2 25.6 22.3

Source: Model’s predictions for baseline and counterfactuals.
Notes: In these simulations, college is free for the following: all students (universal); students from the two
lowest income brackets (need-based); students from the top ability quintile (ability-based), students from the
two lowest income brackets and the top ability quintile (ability-and-need based); students classified in Tiers
1 or 2 the previous period (performance-based), students classified in Tiers 1 or 2 the previous period from
the two lowest income brackets (performance- and need- based). Eligible students are those who could, in
principle, make use of free college. Existing students are those who enroll both in baseline and counterfactual.
New students are those who do not enroll in baseline but enroll in counterfactual. Low income=two lowest
income brackets; high ability=top ability quintile.

7.3.2 Graduation and effort

With the goal of understanding the graduation rate difference between universal and performance-
based free college, we focus on existing students and examine how their average effort and
accumulation of classes completed differs between baseline and counterfactuals.

Under universal free college, on average students increase effort in the first two years but
backload it afterwards. The substitution and risk effects prevail in years 1 and 2, leading
students to work harder (Figure 12 panel a) and accumulate more classes (panel b) than in the
baseline. Nonetheless, this greater accumulation of classes, together with the loss-of-urgency
effect, leads students to work less and accumulate fewer classes than in the baseline in years
3-5. To compensate for their slower pace and graduate, students raise effort in years 6-8. Thus,
students conduct an intertemporal re-allocation of effort which, on average, delivers almost the
same graduation rate as the baseline, yet a lower on-time-graduation rate.

In contrast, under performance-based free college students frontload effort. Absent the loss-
of-urgency effect, the substitution and risk effect lead students to work harder than in baseline
in years 1-3. Since this makes them accumulate more classes than in the baseline in those years,
they can work less later while still accumulating more classes than in the baseline. These effort
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Figure 12: Free college: Changes in effort and cumulative classes completed

−.04

−.02

0

.02

.04
C

h
an

g
e 

in
 e

ff
o

rt

1 2 3 4 5 6 7 8
Year

Universal free college Performance−base free college

−1

−.5

0

.5

1

C
h

an
g

e 
in

 n
u

m
b

er
 o

f 
cu

m
u

l.
cl

as
se

s 
co

m
p

le
te

d

1 2 3 4 5 6 7 8
Year

Universal free college Performance−base free college

a. Change in effort w.r.t. to baseline b. Change in number of cumulative classes

Source: Model’s simulations.
Notes: For existing students in the counterfactuals, panel a shows average effort in the corresponding counter-
factual minus average effort in the baseline. Panel b does the same for average number of cumulative classes
completed.

changes imply not just an intertemporal reallocation of effort but also a net effort increase,
which raises both graduation and on-time graduation rates relative to the baseline. In sum, the
effort incentives contained in performance-based free college are the key to their success with
graduation rates.

7.4 Outcomes by student type

The aggregate outcomes shown above mask great heterogeneity among student types. To
explore it, we classify students into nine groups based on income and ability. Income groups
include high, middle and low-income–corresponding to the top, two middle, and two bottom in-
come brackets respectively. Ability groups include high, middle, and low-ability–corresponding
to the top, two middle, and two bottom ability quintiles respectively.

7.4.1 Enrollment

Table 13 shows the enrollment rate for each student group in the baseline (panel a) and the
enrollment rate increase relative to the baseline under universal and performance-based free
college (panels b and c, respectively). We focus on these two counterfactuals because the
remaining four are special cases of these. For example, the “low income” row of panel b
displays the effects of need-based free college, and the “high ability” column displays the effects
of ability-based free college.

Both free college programs raise enrollment rates for all student groups. Under universal
free college, the greatest effects are for low- and middle-income students, who are most budget-
constrained in the baseline. As a result, enrollment rates become more equal among student
groups. For instance, the baseline enrollment gap between high-income, high-ability and low-
income, low-ability students is equal to 70.2 = 83.8 − 13.6 pp, but shrinks to 49.5 = (83.8 +
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Table 13: Free College Counterfactuals: Enrollment Effects.

a. Baseline b. Universal c. Performance-Based
Enrollment Rate Free College: Change Free College: Change

Ability
Income High Mid Low High Mid Low High Mid Low

High 83.8 65.5 39.3 7.1 11.4 12.0 5.8 9.0 9.2
Mid 73.1 47.4 27.3 15.0 21.1 18.3 12.5 16.8 13.9
Low 51.4 26.0 13.6 32.2 36.5 27.8 27.1 28.5 20.1

Source: Model’s predictions for baseline and counterfactuals.
Notes: For each student type, panel a shows predicted enrollment rate (%) in the baseline; panel b shows the
enrollment rate difference (pp) between universal free college and baseline; and panel c shows the enrollment
rate difference (pp) between performance-based free college and baseline.

7.1)− (13.6 + 27.8) pp under universal free college. From the point of view of policy design, the
greater responsiveness of low- and middle-income students to free tuition justifies targeting it
to them, as in our need-based free college simulation. In contrast, the lower responsiveness of
high- than mid-ability students to free tuition indicates that ability-based free college cannot
be justified by enrollment considerations. Instead, it can be justified on the grounds that it
raises overall graduation rate through the positive selection of new students, and it lowers the
income-based enrollment gap among high-ability students (from 32.4 to 7.3 pp.)

As for performance-based free college (panel c), its enrollment effects are qualitatively similar
to those of universal free college, albeit smaller. Effects are similar because performance-based
free college does provide free college to all students in year 1. Effects are smaller because some
potential students do not enroll in order to avoid the effort necessary to remain in tiers 1 or 2.

Our enrollment results are consistent with the small free college program run in Colombia
between 2015 and 2018, Ser Pilo Paga (”being diligent pays off.”) This was an ability-, need-,
and performance-based program that offered free tuition to high-ability, low-income students
for the theoretical duration of their program; students who dropped out were required to pay
the tuition back. Among the eligible population, the program raised college enrollment rates
by 32 pp (Londoño et al 2020), in line with the 27-32 pp increase depicted in Table 13 (panels
b and c) for these students.

7.4.2 Graduation

To compare graduation rates in the baseline and counterfactuals we focus on existing students,
whose graduation rate changes are entirely driven by the incentives created by free college.31

Following the same logic as with enrollment, Table 14 shows baseline graduation rates (panel
a), as well as the graduation rate changes relative to baseline under universal and performance-
based free college (panels b and c, respectively.)

Universal free college. Although it raises graduation rates for some groups, it lowers
them for others. The reason is that the prevailing effort effect –loss of urgency, substitution, or
risk– varies among student groups. In general, loss of urgency is stronger among higher-income

31Free college generates incentives both for existing and new students. We focus our analysis on existing students
because they allow us to compare behavioral changes between the baseline and the counterfactuals. Since new
students do not enroll in the baseline, they do not allow for this comparison.
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Table 14: Free College Counterfactuals: Graduation Rate Effects for Existing Students.

a. Baseline b. Universal c. Performance-Based
Graduation Rate Free College: Change Free College: Change

Ability
Income High Mid Low High Mid Low High Mid Low

High 59.3 44.4 26.3 -1.8 -1.9 3.9 4.4 3.2 5.5
Mid 55.6 39.9 29.9 -1.9 3.5 1.7 4.9 6.6 6.5
Low 53.3 42.5 32.1 -1.3 4.4 -1.5 8.1 8.8 2.6

Source: Model’s predictions for baseline and counterfactuals.
Notes: For existing students of each type, panel a shows predicted graduation rate (%) in the baseline;
panel b shows graduation rate difference (pp) between universal free college and baseline; and panel c shows
graduation rate difference (pp) between performance-based free college and baseline.

students, whose high baseline consumption only gets higher with free college. The substitution
effect is stronger among lower-ability students, for whom effort is more costly and for whom
free college provides greater compensation for additional effort. The risk effect is stronger for
students with fewer cumulative classes completed, particularly when the loss of urgency has led
them to delay graduation and has exposed them to risk for a longer time.

As panel b shows, graduation rates fall in the upper triangle (students of high ability or
high income) and generally rise in the lower triangle (students of low ability or low income).
In the upper triangle, baseline effort is already high because effort cost is low and consumption
high. Since there is little room for additional effort, the substitution effect is weak. And, since
consumption is already high, the loss-of-urgency effect is strong and prevails, leading to lower
effort, greater risk, and lower graduation rates.

The story is reversed in the lower triangle. Baseline effort is low because effort cost is high
and consumption low, which gives room for a strong substitution effect. Since consumption
remains low even with free college, the loss-of-urgency effect is weak and the substitution effect
prevails, leading to higher effort, lower risk, and higher graduation rates.

The exception in the lower triangle is the students with the lowest income and ability,
for whom graduation rates fall. The combination of lowest ability (which renders effort very
costly) and lowest income (which makes consumption as a college dropout higher than as a
college student, even with free college) leads these students to lower effort and drop out at
higher rates.

Performance-based free college. In contrast to universal free college, performance-based
free college raises graduation rates for all student groups by eliminating the loss-of-urgency
effect. The substitution effect prevails and leads to greater effort, which in turn mitigates risk.
In the aggregate, performance-based free college raises the graduation rate of existing students
from 45 to 51.3 percent (see Table 12), which is the greatest graduation rate increase for existing
students among all programs considered here. Even new students attain a higher graduation
rate under performance-based than universal free college (42.7 v. 40.9 percent).

Ultimately, the policymaker is interested in raising the fraction of high school graduates
who complete college. Table 15 shows this fraction in the baseline (panel a) as well as the
differences with respect to it under universal and performance-based free college (panels b and
c, respectively.) This fraction rises for all student groups in both counterfactuals. Performance-
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based free college is at least as effective as universal free college for every student group except
low-income students of middle or low ability. For these students, enrollment rates rise substan-
tially more under universal than performance-based free college given their inherent difficulty
in meeting the zero-tuition performance requirements.

Table 15: Free College Counterfactuals: Percent of High School Graduates That Com-
plete College.

a. Baseline
Percent of High b. Universal c. Performance-Based

School Graduates Free College: Change Free College: Change
Ability

Income High Mid Low High Mid Low High Mid Low

High 49.7 29.1 10.3 2.9 3.1 5.1 7.1 5.9 5.3
Mid 40.7 18.9 8.2 6.7 10.1 6.4 10.7 10.1 6.4
Low 27.4 11.0 4.4 16.7 17.5 8.5 19.1 15.5 7.0

Source: Model’s predictions for baseline and counterfactuals.
Notes: For existing students of each type, panel a shows the percent of high school graduates that graduate
from college; panel b shows difference (pp) in this variable between universal free college and baseline; and
panel c shows difference (pp) in this variable between performance-based free college and baseline.

7.5 Discussion

Our predicted effects are consistent with some empirical regularities as well as the literature
on higher education financial aid. For Latin America, they provide an explanation for the
cross-country evidence depicted in Figure 1, which shows that government funding for higher
education has a large, positive relationship with enrollment rates but a weak (actually negative)
relationship with graduation rates. This evidence is consistent with our counterfactuals, which
show a greater impact of free college on enrollment than graduation rates. The graduation rate
evidence is also consistent with the financial aid regimes prevailing in those countries, which
are typically universal, need-based or ability-based – but not performance-based (Ferreyra et
al 2017). Indeed, for the most common regimes in Latin America, namely universal and need-
based financial aid, our counterfactuals predict a decline in graduation rate (see Table 14),
consistent with Figure 1.

Our findings are also consistent with the literature on U.S. higher education financial aid,
which has found positive effects of financial aid on enrollment and graduation.32 In recent years,
states have implemented a variety of financial aid programs, based on merit and/or aid,33 as
well as “Promise” programs, which provide zero tuition to eligible students for local community
colleges or state four-year institutions.34 Overall, these programs have had positive effects on

32See, for instance, Bettinger (2004), Dynarski (2003), Hoxby and Turner (2013) and the references therein, as
well as the surveys by Avery et al (2019), Deming and Dynarski (2009), Dynarski and Scott-Clayton (2013),
Long (2008), Page and Scott-Clayton (2016).

33See, for instance, Bettinger et al (2019), Castleman and Long (2016), Cornwell et al (2006), Dynarski (2000,
2004, 2008), Scott-Clayton (2011), Scott-Clayton and Zafar (2016), and the references therein.

34These programs vary across states in terms of eligible institutions (community colleges v. four-year institu-
tions) and students. See, for instance, Carruthers et al (2018), Dynarski et al (2018), Gurantz (2020).
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enrollment and graduation. Also consistent with our counterfactuals, the literature has found
greater effects of financial aid on enrollment than on graduation, with the latter ranging from 0
to 6-7 pp.35 As in our counterfactuals, the literature has found that performance-based financial
aid improves college outcomes more than unconditional aid.36

Even though performance-based free college raises graduation rates more than other free
college programs in our simulations, it still delivers a relatively small graduation rate increase
(between 6 and 14 percent of the baseline graduation rate depending on whether we consider
existing or new students, and whether it is need-based). Further, graduation rate effects are
small not only in our counterfactuals but also in the literature, as discussed above. Such small
effects beg the question of why free college (or financial aid, in general) fails to substantially
raise graduation rates.

The answer emerging from our model is that free college fails to deliver a large, non-marginal
effort increase. As Table 11 shows, students who need to catch up exert more effort. Particu-
larly when the student has fallen far behind, catching up is difficult (see Section 3.4.2), which
renders performance incentives of limited use. This suggests that additional supports promoting
class completion, particularly in year 1, may be needed.37 These include remedial education,
advising, mentoring, and tutoring.38 Recent evidence (Deming and Walters 2017) indicates the
effectiveness of directing funding to institutions for these supports. Indeed, in their examina-
tion of possible policies to raise graduation rates in the U.S., Avery et al (2019) conclude that
need-based free college combined with higher funding to institutions might be the most cost-
effective policy. A cautionary tale, however, comes from Oreopoulos and Petronijevic (2019),
who find that these supports help students realize the need for greater effort but have little
effect on college continuity or graduation. The reason is that students respond not by raising
effort, but by expecting less of themselves.

Moreover, our counterfactuals have assumed two highly favorable – perhaps unrealistic –
conditions. First, we have assumed no capacity constraints in higher education. Free college,
however, would likely meet capacity constraints – in which case institutions would ration access.
Bucarey (2018) explores the potential effects of free college (gratuidad) in Chile, where it was
introduced in 2016 for the bottom 60 percent of the income distribution. Data prior to 2016
shows that when low-income students are given additional financial aid, institutions respond
by becoming more selective, thereby leading to a lower share of low-income students. Using his
structural model, Bucarey (2018) predicts that capacity-constrained institutions would follow
a similar strategy in the presence of free college, with similar effects. Second, we have im-
plicitly assumed that college quality remains the same after college becomes free. This might
not happen, for instance, if the policymaker reimburses colleges for less than the full tuition.
Murphy et al (2019) provide evidence that higher education quality rose in England when free
college ended. The reason is that, under free college, the institutions were not receiving enough
funding. The abolition of free college has been implemented as an income-contingent loan from
the government, which covers full per-student costs throughout college. Murphy et al (2019)

35For recent, well-identified studies, see Bettinger et al (2019), Denning (2017), Mayer et al (2015), and Scott-
Clayton (2011).

36See Dynarski and Scott Clayton (2013).
37In the context of our model, these policies would amount to changing parameters from the distribution of z

in order to reach higher E(z) and lower V (z).
38Clotfelter et al (2018), Evans et al (2017), Scrivener et al (2015) and Sommo et al (2018) document positive

effects of these supports on graduation rates.
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show that the new system has led to higher enrollment, greater participation of lower-income
students, and higher per-student funding.

7.6 Free college and anticipated risk

For students, college is a risky investment. They are uncertain about the number of classes they
will be able to complete in a given year as well as their chances to remain enrolled from year to
year. In this section we investigate whether free college can mitigate risk. Free college affects
risk through two channels. First, it raises the value of remaining in college relative to dropping
out by raising consumption during college and enhancing the ”college experience.” Second, it
affects effort through the loss-of-urgency, substitution, and risk effects described above. Effort
changes affect the number of classes completed, which in turn affects the future shocks to classes
completed and the dropout probability.

These consumption and effort changes are distinctive of our setting. Consumption changes
are of great importance in Colombia’s severely credit-constrained economy. In an economy
with credit, consumption is more closely related to lifetime income (as in standard Ben-Porath
models), and this channel is hence more muted. Effort changes, in turn, are not present in
models with exogenous risk, in which risk is unrelated to effort (e.g. Hendricks and Leukhina
2017).

In our model, these consumption and effort changes affect the distribution of the value
of college, V coll(t, ht−1, θ, y), defined in (6). Whereas V coll(t, ht−1, θ, y) is calculated for the
student’s optimal effort, e∗t , while taking expectation over zt, we now define the college payoff
from any given effort and realization of zt:

Ṽ coll(t, ht−1, θ, y; zt, et) = U(ct, et, θ) + β

[
1{t≥5}Pr

(
ht−1 +H(zt, θ, et) x̄ ≥ hgrad

)
V grad(t+ 1)+

Pr
(
ht−1 +H(zt, θ, et) x̄ < hgrad

) (
p̃d(t, ht−1 +H(zt, θ, et) x̄, θ, y)V drop(t+ 1)+

(
1− p̃d(t, ht−1 +H(zt, θ, et) x̄, θ, y)

)
V coll(t+ 1, ht−1 +H(zt, θ, et) x̄, θ, y)

)]
.

(18)

From here, it follows that Ez[Ṽ
coll(t, ht−1, θ, y; zt, e

∗
t )] = V coll(t, ht−1, θ, y).

Our proposed measure of anticipated risk for student i, at the beginning of period t under
scenario p (baseline or counterfactual) is the coefficient of variation of her college payoffs:

CV p
it =

√
Varz

[
Ṽ coll(t, hit−1, θ, y; zit, e∗it) | p

]
Ez

[
Ṽ coll(t, hit−1, θ, y; zit, e∗it) | p

] , (19)

where the right-hand side is the ratio between the standard deviation and expected value of
college payoffs, calculated for the student’s optimal effort, e∗it, chosen under scenario p. Given
e∗it, the randomness in Ṽ coll(·) comes from the performance and dropout shocks, z and ddrop

respectively, which are associated with cumulative classes completed and therefore effort. Note
that anticipated risk varies across students and programs, and over time.

An important question is whether, in our baseline, effort lowers anticipated risk. To inves-
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tigate this matter, in principle we might think of using our simulated baseline data to regress
anticipated risk on effort, controlling for cumulative past performance. However, this regression
would suffer from endogeneity, as optimal effort would appear in both sides of the regression.
Since e∗it is a function of the state variables, t, hit−1, θi, and yi, we instrument for effort using
the state variables, and run the second-stage regression reported in Table 16.39 The regression
indicates that, in our baseline model, effort does lower anticipated risk. Further, the effect is
large. Students, indeed, use effort very effectively to mitigate performance and dropout risk.

Table 16: Anticipated Risk.

Dependent variable
ln(Anticipated risk)

ln(effort) −2.340∗∗∗

(0.089)
ln(average classes completed) −1.767∗∗∗

(0.043)
Constant −0.772∗∗∗

(0.068)

Num. obs. 116,761

Source: 2SLS estimation using model’s simulated baseline values.
Notes: The dependent variable is ln(anticipated risk), or ln(CVit) for the baseline. An observation is a
student-year. Included students are “existing” in both counterfactuals; upper 5% tail of risk has been
trimmed. Effort is e∗it, instrumented with by classes completed, as well as year, income, and ability fixed

effects. ln(average classes completed) is h̃it−1, as defined in the model. The regression includes year fixed
effects (not shown). Standard errors (in parentheses) are clustered by student. * p < 0.10, ** p < 0.05, ***
p < 0.01.

Figure 13 shows the average anticipated risk in the baseline, and under universal and
performance-based free college. To facilitate comparisons, we focus on the set of students
who enroll in college in all three scenarios (akin to our previous “existing students” concept).40

In the three scenarios, average anticipated risk is U-shaped with respect to time. In year
1, it is high for two reasons. The first is student body composition, which includes a large
share of students with a high exogenous dropout probability (many of which, indeed, drop out
in the initial years). The second is that individual students are uncertain about their future
performance, and their exogenous dropout probability is higher in year 1 than in subsequent
years. In years 2 through 5, anticipated risk falls as many high-risk students drop out while
the remaining students settle on a performance path. Anticipated risk rises after year 6, as the
students who remain at that point face the risk of not graduating at all.

Relative to the baseline, free college raises Ez[Ṽ
coll(·)] by raising consumption while in college

and, in some cases, effort (see Figure 12). Free college also raises Varz[Ṽ
coll(·)] at least in year

1, although at some point Varz[Ṽ
coll(·)] becomes lower than in the baseline. The net result is

that, relative to the baseline, universal free college raises anticipated risk in year 1 but lowers
it afterwards. Meanwhile, performance-based free college raises it in years 1 through 3, and

39First-stage results can be found in Appendix Table A.11.
40While students are the same in year 1, they might not be in subsequent years because free college affects

dropout rates. All measures reported in this section eliminate the 5-percent upper tail, which contains
extreme values.
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Figure 13: Anticipated Risk.
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lowers it afterwards. Note, however, that free college changes anticipated risk little relative to
the baseline because effort changes little, as discussed in Section 7.5.

It is interesting to compare anticipated risk under universal and performance-based free
college. On the one hand, performance-based free college elicits greater effort than universal free
college. On the other hand, it makes consumption while in college contingent on performance.
These two forces have opposing effects on anticipated risk. When the consumption force prevails
(years 2-5), anticipated risk is higher under performance-based than universal free college. In
other words, performance-based free college exposes students to greater risk than universal free
college, but also elicits greater effort from them.

To summarize, college is a risky enterprise. Effort, however, can substantially lower an-
ticipated risk. Risk is frontloaded and decreases dramatically after the first two years, once
students survive the initial attrition and settle on a performance path. Universal free college
lowers risk relative to the baseline after year 1, albeit very little. By introducing uncertainty in
free college availability, performance-based free college subjects students to greater anticipated
risk than the baseline or universal free college, but this very uncertainty leads them to higher
effort and graduation rates.

7.7 A simple cost-benefit analysis of free college

As we saw in Section 7.4, free college programs vary in their ultimate outcome, namely the
fraction of high school graduates who finish college. Nonetheless, the policymaker would be
mistaken in simply choosing the policy that maximizes this fraction, as it might also be the
most costly. Hence, in this section we conduct a simple cost-benefit analysis of the simulated
free-college programs. The benefit is the fraction of high school graduates who finish college,
and the cost is the net public spending incurred to produce them.
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Lacking data on the annual cost of educating a college student, C, we assume it is equal to
the tuition paid by students from the highest income bracket at public universities (equal to 2.2
million COP on average; see Table 4). This is a lower bound of the true cost, as public colleges
subsidize tuition even for the highest income students, and private universities (whose tuition
might be closer to actual costs) charge more than 6 million COP on average. We continue to
assume a perfectly elastic college supply and a constant annual cost per student. We calculate
the average net cost per graduate under policy p as follows:

ancp =

∑8
t=1

∑Np
t

i=1(C − T p(t, hit, θi, yi))
Gp

, (20)

where Np
t is the number of students enrolled under policy p in year t, C is the annual cost of

educating a college student (constant across programs and students, and over time), and T p(·)
is the tuition paid by student i under policy p. In the baseline, tuition varies across students
based on income, as described in Table 4. In the counterfactuals, it varies as described in Table
4, with the modifications created by the corresponding free college policy. Equation (20) takes
into account that the policymaker incurs a cost C to educate every student but may collect
tuition from some of them. By adding over all students enrolled (rather than just those who
graduate) in the numerator, the net cost per graduate incorporates the cost of dropouts.

For each policy, Figure 14 shows the net cost per graduate (panel a). For convenience, it
also shows the fraction of high school graduates who finish college (panel b), which provides a
measure of G. We measure the net cost per graduate relative to per capita GDP.

Figure 14: Free College Cost
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Source: Model simulations for enrollment and graduates. See the text for (gross) cost assumptions. GDP per
capita is from the National Administrative Department of Statistics (DANE).
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Net cost per graduate is already high in the baseline – about the same as per capita GDP.
Even if enrollment did not rise, free college would raise net cost per graduate just because fewer
students would pay tuition. The combination of lower tuition revenues and higher enrollment
raises net cost per graduate under all free college regimes. The cost rises the least under
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ability-and-need based free college, and the most under universal free college.This is, of course,
a reflection of the number of graduates from each policy: while universal free college adds the
most graduates relative to the baseline, ability-and-need based free college adds the least.

Consider, now, a policymaker who is interested in maximizing the number of graduates
subject to a budget constraint. Universal and performance-based free college maximize the
number of graduates, yet performance-based free college does it at a lower per-graduate cost
than universal free college. This is because the incentives embedded in performance-based free
college produce fewer dropouts and graduate students faster than universal free college. By
adopting performance-based rather than universal free college, the policymaker would save no
less than 50 percent of per capita GDP in each graduate. Further, he would raise efficiency
relative to the baseline by incentivizing effort and focusing public spending on the students
who, given their performance, are most likely to graduate.

Despite these public savings and efficiency gains, the policymaker might be reluctant to
adopt performance-based free college due, perhaps, to political considerations. Indeed, stu-
dents throughout Latin America have been clamoring for unconditional, universal free college
(gratuidad). As Figure 14 shows, universal free college raises the number of graduates only
slightly more than need-based free college yet costs an additional 50 percent of per capita
GDP per graduate. The reason is that universal free college provides a transfer to medium-
and high-income students who would attend college even anyway. Therefore, when having to
choose between universal and need-based free college, the latter is preferrable.

One caveat is in order before finishing this section. College dropouts seem to acquire human
capital during their time in college, as given by their wage premium relative to high school
graduates (see Section 5.2.2). This may motivate the policymaker to raise enrollment regardless
of graduation. The question, then, is whether starting but not completing a bachelor’s program
is the most efficient way of acquiring human capital beyond high school. A short-cycle program,
lasting two or three years, might be a more cost-effective option, and one that would avoid the
psychic cost for students derived from starting but not finishing a bachelor’s program. It would
also avoid the overcrowding of bachelor’s programs during the initial years, which are critical to
final outcomes. The policymaker might consider providing free college for short-cycle programs,
in the spirit of the relativley higher tuition subsidies provided for community colleges rather
than bachelor’s programs at public institutions in the United States (Denning 2017).

7.8 Long-run effects

One limitation of the current analysis is the assumption that, despite the greater supply of
college graduates due to free college, the college premium does not change. In reality, however,
the college premium might fall, thereby reducing the incentives to attend college. In addition,
financing free college might require taxes, which would further depress after-tax wages for
college graduates. In other words, free college might unleash general equilibrium effects that
could undermine some of the effects previously described.41

To analyze the equilibrium relationship between the college premium and the number of
college graduates, we postulate a production function following Katz and Murphy (1992),

41Heckman et al (1998) conclude that ignoring general equilibrium effects can bias the estimated effects of
tuition subsidies.
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Heckman et al (1998), and Card and Lemieux (2001). Ignoring for the moment the con-
nection between capital and technology, consider a CES production function, F (Nh

t , N
g
t ) =(

Aht (N
h
t )λ + Agt (N

g
t )λ
) 1
λ , that combines high school and college graduates, whose amounts

are Nh
t and N g

t respectively. In this function, Aht and Agt , are efficiency parameters, and
ω = 1/(1 − λ) is the elasticity of substitution between college and high school graduates.
In a competitive labor market, the college premium is equal to

wgt
wht

=
Agt
Aht

(
N g
t

Nh
t

)λ−1

, (21)

where wgt and wht are the wages of college and high school graduates, respectively. Taking logs
on both sides and defining a time difference (4) yields an expression commonly used to study
changes in wage inequality:

4 ln

(
wgt
wht

)
= 4 ln

(
Agt
Aht

)
− 1

ω
4 ln

(
N g
t

Nh
t

)
. (22)

In this equation, changes in relative wages depend on two components. The first is technical
changes in the relative productivity of the two labor inputs. Skill-biased technical change, or

4 ln(
Agt
Aht

) > 0, increases the college premium. The second is changes in relative supply, adjusted

by the elasticity of substitution. An increase in the supply of college graduates, N g
t , lowers the

college premium by an amount inversely related to ω. Over time, the evolution of the college
premium depends on the relative strength of these two opposite forces.

To investigate the extent to which the increased supply of college graduates might depress
the college premium, we focus on universal free college, which increases supply the most and
provides an upper bound to the potential college premium decline. We examine short- and long-
run effects. For the latter, we assume that universal free college becomes a permanent policy
beginning with our 2006 cohort, and simulate the evolution of the share of college graduates
and college premium. We assume no skill-biased technical change, which delivers an upper
bound to the college premium decline.

The critical parameter for this exercise is ω, which we estimate as 3.2 for Colombia.42 Using
this estimate, the top and bottom panel of Figure 15 show the evolution of the share of college
educated workers and the college premium, respectively. The former rises over time as young,
more educated cohorts replace older, less educated ones. The replacement is complete around
the year 2045, when the economy reaches steady state.

As in our model, the 2006 entry cohort starts to graduate in 2010. In 2006, the initial
share of college graduates in the workforce equals 27 percent.43 Universal free college raises

42In the literature there is a large number of estimates for this parameter. For example, Katz and Murphy
(1992) estimate it to be 1.4 for the U.S. for the period 1963-1987, but the low range of estimates also include
0.5. Card and Lemieux (2001) estimate it for the United States (1959 to 1996) and the United Kingdom
(1974-1996) and find estimates in the (2- 2.5) range. Following Card and Lemieux (2001), we estimate the
prodution function parameters using Colombia’s household surveys (SEDLAC) for 2001-12. Due to data
limitations, college graduates include those from 2- and 4-year programs.

43Notice that the initial share of 27 percent is higher than the initial fraction of high school graduates that finish
college, equal to 14.5 in the baseline. The reason is that 27 percent includes graduates from all bachelor’s
programs (rather than only five-year programs) as well as graduates from two-year programs. This is because
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Figure 15: Free College and and the College Premium
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this share for a particular cohort by 12 pp, to a long-run value of 39 percent (panel a). The
college premium falls relatively little (panel b), from 2.6 to 2.28. Further, the decline is slow.
The reason is that, in the short-run, the increase in college graduates from the first few cohorts
represent a small addition to the stock of college-educated workers, which encompasses 35 to
40 cohorts. Holding other things constant, the impact on the share of college-educated workers
and the college premium is negligible. Over time, the continuous inflow of a greater number
of college graduates produces a larger impact. This, however, is quite small for our estimated
elasticity, and unlikely to dissuade many high school graduates from college enrollment. As
a robustness check, panel b depicts the implied path of the college premium for a range of
ω estimates for developed economies.44 The college premium declines more for these values,
yet even the greatest decline -down to 1.70- still leaves the economy with a substantial college
premium, comparable to that in the U.S. Skill-biased technical change, of course, would lead to
a smaller decline for any value of ω. While forecasting technical change is clearly difficult, our
working asumption of no skill-biased technical change should probably be viewed as extreme.

In sum, both the short- and long-run decline of the college premium induced by free college
would likely be small in Colombia. As a result, abstracting away from the general equilibrium
implications of free college might not substantially bias our predicted effects. College, thus,
would remain a worthy investment even if more college graduates entered the labor market.45

the college premium is calculated for all higher education graduates, based on data that does not distinguish
between graduates from bachelor’s and two-year programs.

44We use the point estimates of 1.4 from Katz and Murphy (1992) and Heckman et al (1998), 2.5 from Card
and Lemieux (2001), and include lower value of 1.2. For each elasticity value, the intercept has been adjusted
to generate the same college premium for the year 2012.

45These results are consistent with Garriga and Keightley (2007), who conduct a similar analysis for the U.S. in
a model that endogenizes the college premium, government budget constraint, after-tax earnings, and labor
supply decisions. They show that tuition subsidies have small effects on the college premium even when
accounting for taxes. Their results are partly due to the limited effects of the policy on graduation rates, and
to the high elasticity of substitution between college and high school graduates.
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8 Conclusions

In this paper we have developed and estimated a dynamic model of college enrollment, per-
formance, and graduation. A central piece of the model, student effort, has a direct effect on
the completion of classes, and an indirect effect mitigating the risk of not completing a class
or not remaining enrolled. We have estimated the model using rich administrative data for
Colombia. According to our estimates, effort has much greater impact than ability on class
completion. Failing to model effort as an input to class completion leads to overestimating the
role of ability by about 75 percent, and to favoring policies that promote positive selection of
new students rather than effort. We have used our parameter estimates to simulate free college
programs differing in eligibility. According to our simulations, universal free college expands
enrollment the most but has the highest per-graduate cost and does not raise graduation rates.
Performance-based free college, in contrast, delivers a slightly lower enrollment expansion but
has a greater graduation rate and a lower per-graduate cost. Performance-based free college
faces students with greater risks than the current baseline or universal free college, but precisely
for this reason elicits greater effort and graduation rates.

For existing students, free college has little impact on effort and graduation rates, even
when it is performance-based. This suggests that additional, complementary policies might
be needed. Given the high persistence of performance, improving first-year performance and
retention is critical. Supports such as tutoring, remedial education, mentoring, and advising
might be helpful, particularly for the most disadvantaged students. Further, most college
programs in Latin America start with classes specific to the major or field, and rarely include
general education requirements that transfer easily across majors. As a result, changing majors
typically implies starting from scratch, which leads many students to abandon higher education.
Shortening bachelor’s programs (which last five or six years) and connecting them with the labor
market might raise effort and graduation rates as well.

Finally, there might be an additional reason why free college fails to elicit large effort changes:
particularly for low-income students, free college might not be enough. For them, the effort
necessary to complete college might require not only free tuition but also an additional, generous
stipend. In countries with limited fiscal resources, providing this additional stipend might
require lowering the existing college subsidies for affluent students – a redistribution that, while
politically costly, would nonetheless enhance equity and efficiency.
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A Appendix

A.1 Tiers of cumulative classes completed

Table A.1: Tiers: Lower Bound by Year.

Tier Year 1 Year 2 Year 3 Year 4 Year 5

Tier 1 19 38 57 76 95
Tier 2 17 34 51 68 85
Tier 3 13 26 39 52 65
Tier 4 0 0 0 0 0

Recommended cumulative classes 20 40 60 80 100

Source: Own classification.
Notes: This table shows the lower bound for each tier, by year, expressed in number of cumulative classes
completed. For a given year, tiers are defined by the percent of the year’s recommended cumulative classes
that have been completed by the student. Tier 1: 95 percent or more; Tier 2: (85, 95] percent; Tier 3: (65,
85] percent; Tier 4: 65 percent or less. For example, in year 2 the lower bounds (expressed in cumulative
classes completed) are as follows: 38 classes = 0.95× 40 for Tier 1; 34 classes = 0.85× 40 for Tier 2; and 26
classes = 0.65× 40 for Tier 3.

A.2 Wages in Colombia by Educational Attainment and Age

Table A.2: Average hourly wage by age bracket and educational attainment.

Age bracket
18-60 18-22 23-35 36-60

College graduates 6,308 3,636 5,305 7,171
HS graduates 2,424 1,845 2,213 2,864
College dropouts; completed 1 year or less 3,091 2,349 2,897 3,619
College dropouts, completed 2 years or more 3,824 2,459 3,340 4,451

Source: Household surveys for Colombia (SEDLAC); year 2005.
Notes: Wages are expressed in Colombian pesos (COP) of 2005. Calculations include males and females
who work. Attainment reflects an individual’s highest completed level of schooling.

A.3 Model timeline

The figure below summarizes the timing of events and student decisions:
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Figure A.1: Summary of Timing of Events and Individuals’ Decisions
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A.4 Computation and Estimation

In this appendix we first summarize the computational solution of the model, and then provide
detail on its main steps.

A.4.1 Solving the model: a summary

Recall that the state vector is (t, ht−1, θ, y).We discretize the state space for a total of 40,400
points. We simulate N = 100,000 high school graduates from the empirical distribution of
ability and income, Φ(θ, y).46 From a given student type, a fraction of the simulated high
school graduates receives a college enrollment shock equal to 1 and enrolls in college (thus
becoming the ”simulated college students”); the fraction is equal to the type’s observed college
enrollment rate (see Appendix A.4).47

To compute the model’s predictions for a given value of Θ, the algorithm proceeds as follows:

1. For each point in the state space, use backward induction to solve for the sequence
of optimal efforts (i.e., the policy function) and the value function, e∗(t, ht−1, θ, y) and
V coll(t, ht−1, θ, y) respectively.

2. For each simulated college student, and for every year she is enrolled, combine her optimal
effort with the corresponding νt shock to determine the year’s classes completed and

46For each simulated high school graduate, we draw one i.i.d. shock per possible year, {νit}8t=1. For a given
simulated high school graduate, these shocks are the same for parameter vector values, and at baseline and
counterfactuals.

47In the free-college counterfactuals, the fraction of enrolled students is given by equation ((9)), where the value
of college changes in response to free college.
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probability of dropping out, p̃d(t, ht, θ, y). Draw the binary dropout shock; the shock is
equal to 1 with probability p̃d(t, ht, θ, y).

3. Based on step 2, aggregate the simulated dropout decisions to obtain a predicted dropout
rate for each of the 400 (t, θ, y)-combinations.

4. Find the vector δ that minimizes the distance between the predicted and observed dropout
rate for each (t, θ, y)-combination, using the contraction mapping algorithm described in
Appendix A.4.3.

5. By comparing the value of going and not going to college for each type, V coll(1, 0, θ, y)
and V hs, respectively, find the type-specific college enrollment shock, ξj, that renders the
type indifferent between going and not going to college. Further details are provided in
Appendix A.4.4.

Solving steps 1-5 of the dynamic optimization problem for 100, 000 simulated high school
graduates and 40, 400 states takes approximately 8 minutes in a 1.4 GHz Intel Core i5 processor.
Since the model does not have a closed-form solution, in estimation the problem must be solved
anew for each value of Θ. Note that the estimation of δ and ξ is nested within the model
solution for a given of value of Θ, in the spirit of Berry et al (1995), as described in Appendix
A.4.3.

A.4.2 Further details on solving the model

The solution of the dynamic problem and computation of predicted outcomes for a given value
of Θ involve three steps: calculating the value of working by educational attainment, solving
for the policy and value functions, and simulating college students.

Calculating the value of working by educational attainment Since we solve the stu-
dent’s dynamic programming problem by backward induction, we begin by calculating the final
value of the individuals’ finite horizon problem. We calculate the value of future discounted
payoffs of working as a college graduate, high school graduate, college dropout with one year
of college, and college dropout with two or more years of college. In the timing of the model,
t = 1 when the individual is 18 years old, and either starts college or joins the labor force as a
high school graduate. The value of working as a high school graduate since t = 1 onward is

V hs =
L∑
t=1

βt−1u(whst ), (23)

where whst is the average wage for a high school graduate in year t, and L is retirement age
(65 years old, or L = 48). For this and the other educational attainments, we allow the wage
to vary over time to incorporate returns to experience (which accrue after age 35, that is for
t > 17). Similarly, the value of working as a college dropout who has completed n years of
college is

V drop(n+ 1) =
L∑

t=n+1

βt−n−1u(wdropt ), (24)
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where wdropt is the wage an individual who dropped out of college receives in year t. Finally,
the value of working as a college graduate who took n years to graduate is:

V grad(n+ 1) =
L∑

t=n+1

βt−n−1u(wgradt ), (25)

Solving for the policy and value functions Since the state, (t, ht−1, θ, y), has four di-
mensions, we build two-four dimensional grids - one for the policy function, e∗(t, ht−1, θ, y),
which contains the optimal effort choice for each state, and another for the optimal payoffs,
V coll(t, ht−1, θ, y) associated with e∗(t, ht−1, θ, y). The grid includes 8 points (years) for t, 101
points for h (to represent 0, 1, 2, . . . , 100 credits completed), ten points (ability deciles) for θ,
and five points for y for a total of 40,400 points. Each ability decile is represented by its median.
In other words, θ takes on values corresponding to the 5th, 15th, .... 95th percentile of the
ability distribution.

We use backward induction to solve the Bellman equation for each period. Starting from
the last year of college, t = 8, when students must either graduate or drop out, the Bellman
equation is:

V coll(8, h7, θ, y) = U(c8, e8, θ) +βEz

[
Pr
(
h8 ≥ hgrad

)
V grad(9) + Pr

(
h8 < hgrad

)
V drop(9)

]
. (26)

By choosing e8 to maximize V coll for every state, (8, h7, θ, y), we find both the policy function
and the value function, e∗(8, h7, θ, y) and V coll(8, h7, θ, y).

Moving backwards to t = 7, we proceed analogously

V coll(7, h6, θ, y) = U(c7, e7, θ) + βEz

[
Pr
(
h7 ≥ hgrad

)
V grad(8)+

Pr
(
h7 < hgrad

) (
p̃d(7, h7, θ, y)V drop(8)+

(
1− p̃d(7, h7, θ, y)

)
V coll(8, h7, θ, y)

)]
,

(27)

where all outcomes V grad(8), V drop(8) and V grad(8, ·) are already known. We continue this proce-
dure for t = 6, . . . , 1 in order to complete the calculation of e∗(t, ht−1, θ, y) and V coll(t, ht−1, θ, y)
for all possible states.

We use the resulting policy function, e∗(t, ht−1, θ, y), whenever we need to compute a stu-
dent’s optimal effort during estimation or counterfactuals. In addition, we use the resulting
value function at t = 1, that is, V coll(1, 0, θ, y), to calculate the value of enrolling in college,
which is to be compared with the value of joining the workforce as a high school graduate, V hs,
following equation (8).

Simulating college students We simulate N = 100,000 high school graduates. We make
draws from the joint distribution of ability of parental transfers of high school graduates in 2005,
Φ (θj, yj) . Recall that a student type j is given by a (θj, yj) combination. We have J = 50 types.
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For each type, let P coll(θj, yj), equal to the actual, observed share of individuals of that type
that enrolls in college. Note that P coll(θj, yj) varies across types, as illustrated by Table 1.
Consider individual i who belongs to type j. For each simulated individual, we draw a binary
variable, denri , to determine whether the student goes to college or not. More specifically,

denri =

{
1, i goes to college, with probability P coll(θj, yj)

0, i does not goes to college, with probability 1− P coll(θj, yj)
(28)

Simulated students who receive denri = 1 are those who enroll in college. In other words, the
proportion of simulated students of a given type who receive denri = 1 is the same as the
proportion of actual students of that type who enroll in college.48 For students who do not
enroll in college, the value function is V hs. For those who enroll in college, we simulate classes
completed and dropout shocks as described below.

For t = 1, we use the policy function e∗(1, 0, θj, yj) corresponding to every student type j.
Since all students start at t = 1 with zero accumulated credits, h0 = 0, the policy function
assigns the same effort to all students of a given type, j. Then, we draw the iid shock νi1 for
each student; this, in turn, yields a value for the zi1 shock. The combination of the student’s
ability, effort, and zi1 shock yields the number of completed credits, hi1. Because of the z shock,
individuals of a given type attain different values of h by the end of the first period.

For student i, we use the realized hit to establish whether the student drops out before the
second period. The student receives a draw of the binary variable ddropit ; if the draw is equal to
1, she drops out. The probability of ddropit = 1 is a function of student type, year, and average
performance up to (and including) the corresponding year:

ddropit =

{
1, i drops out of college, with probability p̃d(t, hit, θj, yj)

0, i continues in college, with probability 1− p̃d(t, hit, θj, yj)
(29)

where p̃d is defined as in (14). The binary variable dgradit indicates whether a student graduates;
the graduation requirement is hgrad = 98.Whenever t ≥ 5 and hit ≥ hgrad, we set dgradit = 1 and
ddropit = 0. In other words, a student in year 5 or beyond who has completed at least 98 credits
is no longer subject to the risk of dropping out, and automatically graduates. In addition,
a student who reaches t = 8 without having completed at least 98 classes cannot graduate
(dgradit = 0) and must drop out (ddropit = 1).

The final outcome of the simulation is a “dataset” with N = 100,000 simulated high school
graduates, some of whom enroll in college. For those who enroll, we obtain their number
of classes completed by year, final outcome (graduation or drop out), along with the period
in which they either drop out or graduate. This dataset mimics our observed student-level
administrative data.

48For a large number of simulations such as ours, this is asymptotically equivalent to simply assigning denri = 1
to a fraction of simulated students from a given type equal to the type’s observed enrollment rate.
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A.4.3 Estimation of fixed effects in the dropout probability

We now describe the estimation of the time- and type-specific fixed effects that enter in the
dropout probability, δ(t, θ, y). This estimation is nested within the estimation Θ,as it must take
place for every possible value of Θ.

From the simulation of college students described above, we compute the predicted dropout
rates by year, ability quintile, and income. This is the predicted fraction of students of type j
who drop out in every t, or p̂dropjt = fd(δ(t, θ, y); Θ). We compare these predicted rates with the

observed ones, denoted by pdropjt , and compute a measure of distance between them.

For each pair of predicted and observed dropout rates, we calculate the fixed effects δ(t, θ, y)
that minimize this distance. We do so through an iterative contraction mapping, in the spirit of
Berry et al (1995). While Berry et al (1995) uses a contraction mapping to find the unobserved
product characteristics that make predicted market shares for each product equal to their
observed counterparts, we search for the time- and type-fixed effects that make observed dropout
rates as close as possible to their observed counterparts for each period and student type.

Formally, we use a contraction mapping algorithm to find the vector δ = [δ(t, θ, y)]J(8)×1

that fulfills the following condition:

‖fd(δ; Θ)− pdrop‖ ≤ εd, (30)

where εd is our chosen tolerance level. Below are the algorithm steps; recall that they are
conditional on a given parameter point, Θ:

1. Define an initial guess for the fixed effects vector, δ(0).

2. Solve the dynamic optimization problem (see Appendix A.4.)

3. With the resultant panel data of simulated outcomes, compute the predicted vector of
drop out rates fd(δ(0); Θ) = p̂drop.

4. Using the observed drop out rates, compute the components of the updated fixed effects
vector, δ(1), as follows:

δ(1)(t, θj, yj) = ln

(
pdropjt

fd(δ(0)(t, θj, yj); Θ)

)
. (31)

5. Using δ(1) as the new initial guess, repeat steps 1 through 4 until condition (30) is satisfied
or a predetermined maximum number iterations is reached.

The algorithm may not be able to meet (30) due to non-convexities in the model. For
instance, in t = 8, dropping out in the model is a deterministic function of the number of
credits completed, whereas in the data we observe some individuals graduate without having
completed all credits (due, perhaps, to measurement errors in number of classes completed.)
Another non-convexity arises because, in the Berymodel, the student must meet a minimum
number of cumulative credits per period, hdropt . If she does not complete them, she must drop
out. In the data, in contrast, some students remain enrolled even though they do not meet that
requirement.
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A.4.4 Recovering type-specific preferences for college enrollment

Recall that ξj = ξ̃(θj, yj) is the type-specific unobserved preference shock for enrolling in college.
For a given value of Θ, we recover it as follows. From the computation of equilibrium algorithm
described in Section A.4 we compute the value function, V coll(·), for every state (t, ht, θ, y),
which allows us to compare the value of going to college, V coll(1, 0, θj, yj), with the value of
working as a high school graduate, V hs. Thus, the value of ξj is such that the predicted
probability of enrolling to college is equal to the observed one. Under the assumption that
σε = 1 (see Section 5.1), we solve for ξj in equation (9):

ξj = ln

(
P coll(θj, yj)

1− P coll(θj, yj)

)
− (V coll(1, 0, θj, yj)− V hs). (32)

During counterfactuals, we hold these shocks at their baseline values, since they are prefer-
ence parameters.

A.5 Goodness of fit: additional evidence

In this section we provide additional evidence regarding the model’s fit of the data.

Table A.3: Goodness of Fit: Cumulative Classes Completed by Year 1.

Classification Observed values Predicted values

Ability quintile
1 13.9 15.7
2 14.5 16.3
3 15.3 16.5
4 15.6 16.0
5 16.6 17.4

On-time graduate 20.5 20.7
Late graduate 18.0 19.4
Dropout later 15.8 14.9
Dropout this year 10.9 13.2

Total 15.8 16.7

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).
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Table A.4: Goodness of Fit: Cumulative Classes Completed by Year 2.

Classification Observed values Predicted values

Ability quintile
1 31.7 32.7
2 32.3 33.3
3 33 33.6
4 33.6 33.1
5 34.5 35.5

On-time graduate 41.2 41.5
Late graduate 35.4 37.8
Dropout later 30.4 29.0
Dropout this year 23.8 21.7

Total 33.8 34.2

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

Table A.5: Goodness of Fit: Cumulative Classes Completed by Year 3.

Classification Observed values Predicted values

Ability quintile
1 49.3 51.4
2 49.8 52.0
3 51.2 52.8
4 52.0 52.3
5 52.9 54.3

On-time graduate 62.0 62.0
Late graduate 52.5 55.4
Dropout later 44.5 42.9
Dropout this year 36.4 37.5

Total 52.1 53.2

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).
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Table A.6: Goodness of Fit: Cumulative Classes Completed by Year 4.

Classification Observed values Predicted values

Ability quintile
1 67.2 68.3
2 68.2 69.9
3 69.2 70.6
4 70.3 70.6
5 71.8 72.0

On-time graduate 82.8 82.1
Late graduate 70.1 72.0
Dropout later 59.3 53.9
Dropout this year 46.4 55.6

Total 70.6 71.0

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

Table A.7: Goodness of Fit: Cumulative Classes Completed by Year 5.

Classification Observed values Predicted values

Ability quintile
1 83.9 83.1
2 85.7 85.7
3 85.9 86.6
4 87.1 86.9
5 88.6 87.6

On-time graduate 99.0 99.5
Late graduate 86.6 87.1
Dropout later 72.4 64.4
Dropout this year 69.7 64.5

Total 87.5 86.9

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).
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Table A.8: Goodness of Fit: Cumulative Classes Completed by Year 6.

Classification Observed values Predicted values

Ability quintile
1 88.8 90.4
2 91.3 92.0
3 91.5 92.9
4 92.7 92.6
5 94.0 93.3

Late graduate 95.6 96.8
Dropout later 78.5 68.8
Dropout this year 84.5 77.3

Total 93.0 92.8

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

Table A.9: Goodness of Fit: Cumulative Classes Completed by Year 7.

Classification Observed values Predicted values

Ability quintile
1 93.6 91.3
2 95.3 92.3
3 95.8 93.1
4 96.6 92.3
5 97.6 93.5

Late graduate 98.3 98.4
Dropout later 82.7 75.7
Dropout this year 86.2 76.7

Total 96.8 92.9

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

Table A.10: Goodness of Fit: Cumulative Classes Completed by Year 8.

Classification Observed values Predicted values

Ability quintile
1 96.0 92.2
2 97.2 91.6
3 98.0 94.3
4 98.4 90.5
5 99.0 91.4

Late graduate 98.9 99.3
Dropout this year 88.2 81.5

Total 98.5 91.6

Source: SPADIES for observed data; model simulations for predicted data.
Notes: Values are expressed in percentages (%).

65



Figure A.2: Goodness of Fit: Cumulative Classes Completed by Ability Decile and Year.
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Source: SPADIES for observed data; model simulations for predicted data.
Note: For each year, the panels depict observed and predicted cumulative number of classes completed by ability
decile. Figures correspond to students who begin each year.

Figure A.3: Goodness of Fit: Target Number of Classes by Ability Decile and Year
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Source: SPADIES for observed values; model’s own simulations for predicted values.
Note: Observed values correspond to the average number of classes for which students register; predicted values
correspond to target number of classes as defined in the model.
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A.6 Anticipated Risk

Table A.11: Determinants of Effort.

Dependent variable
ln(Optimal Effort)

ln(average classes completed) −0.060∗∗∗

(0.013)
Income 1-2 MW −0.001

(0.003)
Income 2-3 MW −0.008∗∗

(0.003)
Income 3-5 MW 0.001

(0.003)
Income 5+ MW −0.031∗∗∗

(0.003)
Year=2 0.090∗∗

(0.039)
Year=3 0.099∗∗∗

(0.037)
Year=4 0.036

(0.038)
Year=5 −0.014

(0.037)
Year=6 −0.256∗∗∗

(0.037)
Year=7 −0.289∗∗∗

(0.034)
Year=8 −0.321∗∗∗

(0.039)
Ability Q2 0.007

(0.006)
Ability Q3 0.035∗∗∗

(0.005)
Ability Q4 0.055∗∗∗

(0.005)
Ability Q5 0.107∗∗∗

(0.005)
Constant 0.707∗∗∗

(0.005)

R2 0.226
Num. obs. 116,761

Source: First-stage of 2SLS estimation based on model’s predicted baseline values.
Notes: The dependent variable is ln(optimal effort), or ln(e∗t ). An observation is a student-year. Included
students are “existing” in universal and performance-based free-college counterfactuals. Upper 5% tail of
risk has been trimmed. Independent variables are state variables at t. Ability is θ; income is y; year is t;
average classes completed is h̄t−1. The regression includes year fixed effects (not shown). Standard errors
(in parentheses) are clustered by student. * p < 0.10, ** p < 0.05, *** p < 0.01.
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