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Abstract

We use Long Short Term Memory (LSTM) neural networks, a deep learning technique,

to forecast Colombian headline inflation one year ahead through two approaches. The

first one uses only information from the target variable, while the second one incorporates

additional information from some relevant variables. We employ sample rolling to the

traditional neuronal network construction process, selecting the hyperparameters with

criteria for minimizing the forecast error. Our results show a better forecasting capacity of

the network with information from additional variables, surpassing both the other LSTM

application and ARIMA models optimized for forecasting (with and without explanatory

variables). This improvement in forecasting accuracy is most pronounced over longer time

horizons, specifically from the seventh month onwards.

Keywords: Deep learning, Long Short Term Memory neural networks, forecast, in-

flation.
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Pronóstico de la inflación en Colombia utilizando la
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Resumen

A través de dos enfoques utilizamos redes neuronales Long Short-Term Memory (LSTM),

una técnica de aprendizaje profundo, para pronosticar la inflación en Colombia con un

horizonte de doce meses. El primer enfoque emplea solo información de la variable obje-

tivo, la inflación, mientras que el segundo incorpora información adicional proveniente de

algunas variables relevantes. Utilizamos rolling sample dentro del proceso tradicional de

construcción de las redes neuronales, seleccionando los hiperparámetros con criterios de

minimización del error de pronóstico. Nuestros resultados muestran una mejor capacidad

de pronóstico de la red bajo el segundo enfoque, superando al primer enfoque y a modelos

ARIMA optimizados para pronóstico (con y sin variables explicativas). Esta mejora en

la capacidad de pronóstico es más pronunciada en horizontes más largos, espećıficamente

entre el séptimo y doceavo mes.

Palabras clave: Aprendizaje profundo, redes neuronales Long Short-Term Memory,

pronóstico, inflación.
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1 Introduction

The behavior of prices, which is measured through inflation, is a critical variable in any

economy. It determines the efficient allocation of resources, the purchasing power of the

population and influences the investment decisions of different agents, thus affecting a broad

set of macro and microeconomic variables, such as economic growth and the welfare of the

population. Due to its relevance, institutions such as central banks have the inflation among

their objectives. For example, in Colombia, Banco de la República (BR) is responsible for

the monetary policy, including actions to maintain a low and stable inflation and to achieve

sustainable levels of output and employment under an inflation targeting scheme. For these

reasons, it is crucial for this institution to have accurate projections of inflation because they

facilitate its correct reading and adequate monetary policy decisions.

In order to enhance its forecasting methodologies, the BR is always exploring new tech-

niques and tools. This work, in particular, focuses on the application of artificial intelligence

(AI) methods, which according to the literature, have demonstrated a high performance in

predicting variables with similar characteristics: Long Short-Term Memory neural networks

(LSTM). By incorporating AI methods, we aim to diversify the methods and further improve

the accuracy of inflation projections.

Recent advances in pattern recognition in sequential data have provided a great opportunity

to implement machine and deep learning methods for forecasting time series. Some of these

methods have great potential as they deal with patterns based on a chain structure, incor-

porating various characteristics of the historical behavior of the series. One of them is the

Recurrent Neural Network (RNN), which processes a time series step by step, summarizing

its information and obtaining predictions using the lags of the same series1. A particular case

is the LSTM, designed to also incorporate long-term dependency. In this case, the network

uses a greater amount of information, remembering relevant events throughout its sequence,

not just the most recently observed data. This has enabled better forecasting performance

compared to traditional methodologies in many applications.

However, the strength of its forecast contrasts with its low capacity to identify the forces

that define the projections, since these models extract the relevant information and use it

through complex and non-linear interactions, which provides more accurate predictions but

1In most applications, it only uses information from the series to be forecast, however, it can include

additional information from other sources.
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complicates its interpretability2. In this sense, the objective of our application is only based

on forecasting capabilities.

In the field of economic series forecasting, Siami-Namini et al. (2018) and Ülke et al. (2018)

experimentally compared machine learning techniques with traditional methods. The first

work shows a better performance of the LSTM algorithm than ARIMA models for a set of

economic variables. The second work compares the behavior of machine learning models

for the inflation forecast in the United States, taking different models for univariate and

multivariate data. They found that machine learning models work better in the presence of

volatility and irregular series when it comes to short-term forecasts.

For their part, in recent years international organizations and central banks have taken initia-

tives to incorporate machine learning techniques to evaluate and structure data (or text), find

significant patterns and predict values. Some examples are Doerr et al. (2021), Chakraborty

and Joseph (2017), and Rodŕıguez-Vargas (2020). The latest work is closely related to ours, it

provides an evaluation of five machine learning methods applied to forecast inflation in Costa

Rica, finding that LSTM shows the best results in all forecast horizons. Under our litera-

ture review, this is the first formal document to include deep learning techniques to forecast

Colombian inflation, especially using LSTM.

We conduct two applications of this methodology, one using only information on the variable

to be predicted, and another that incorporates information on relevant auxiliary variables

due to their economic relationship. Moreover, we adjust the hyperparameters of the LSTM

optimally, evaluating the root of the weighted mean square error (RWMSE) for rolling windows

samples. We also compare the relative performance of the selected neural networks, with that

obtained by ARIMA and ARIMAX models, also estimated under forecasting optimization

criteria. Finally, we present an analysis for the period 2020-2022, relevant and challenging

due to the strong shocks and uncertainty that accompanied this period and the need to

evaluate how some forecasting techniques work in periods with more instabilities.

Overall, LSTM models performed better than comparable ARIMA models in almost all hori-

zons. The LSTM with additional information outperformed the ARIMAX results in all fore-

cast horizons (12 months). For its part, the LSTM without additional information outper-

formed to the ARIMA except for the first horizon, with significantly better performance after

the fourth horizon. Finally, LSTM with additional information showed a clear improvement

over LSTM (and ARIMA) with only information on the objective variable.

2Masini et al. (2021) shows that nonlinear ML models can be extremely useful for economic forecasting.
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This document is organized into five sections, this introduction being the first. The sec-

ond presents the data set used and some of its characteristics. The third section shows a

description of the implemented methods, including the particular procedure used for the hy-

perparameterization of the LSTM models. The fourth section presents and compares the

results of the models in terms of their forecasting capacity. In the last section we discuss the

main conclusions.

2 Data set

The data revolve around headline inflation in Colombia, measured through the annual varia-

tion of the Consumer Price Index (CPI), which is calculated monthly by the National Admin-

istrative Department of Statistics (DANE). We have a monthly sample from January 2002 to

December 2019. The starting point lies in a reasonable time after BR adopted the inflation

targeting strategy and a flexible exchange rate system, characteristics that remain to this day.

To avoid the atypical behavior of inflation caused by the COVID-19 pandemic, the sample for

the construction of the LSTM ends before the pandemic began. We consider that once the

shocks caused by the pandemic and other highly relevant recent ones such as those associated

with the conflict between Russia and Ukraine are overcome, inflation will return to more tra-

ditional behavior, which we seek to capture in our LSTM forecasts. However, we conducted

a separate exercise to assess the models just for the period from January 2020 to December

2022.

In one of the two LSTM applications, we include additional variables that we consider rel-

evant to guide the short-term forecast (up to one year ahead): the Colombian Peso Market

Exchange Rate, COP-USD (TRM), monthly average, calculated by BR with information from

the Financial Superintendency of Colombia; the Real Gross Domestic Product of Colombia,

seasonally adjusted and corrected for calendar effects (GDP), calculated by DANE3; and the

precipitation gap in the country, calculated with data from the United States National Oceanic

and Atmospheric Administration (NOAA)4. Figure 1 shows the behavior of all the variables.

3To incorporate GDP into the model, we transformed the quarterly value into one with monthly frequency.

We did this based on the Economic Monitoring Indicator (ISE) behavior, also prepared by DANE. We do not

directly use the ISE to take advantage of the GDP forecasts that are frequently produced in the BR.
4We define the precipitation gap as the difference between the monthly average level of precipitation in the

country and the average precipitation for the same month during the previous ten years.
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Figure 1: Variables of the models.
Variables reported in levels and in annual variations to facilitate the analysis. The green line is located at Dec-19.

The selection of these three variables is based on their relevant impact on the behavior of

inflation in Colombia. The TRM can affect the CPI especially due to the transmission of

the prices of imported goods and inputs (costs), due to the effect of competition between

national and foreign goods (utility maximization) and because it is a condenser of various

external shocks which can also affect investment, consumer confidence, expectations, etc.

GDP, on the other hand, provides a picture of the state of demand in the economy. Finally,

the precipitation gap captures the most frequent and relevant supply shocks that affect the

headline inflation in Colombia5. While there are other variables that could be important

in predicting inflation, we have chosen to focus on these three variables for simplicity and

considering that these three variables may somehow reflect the effects of variables not taken

into account. Future studies may consider evaluating other variables.

Regarding the treatment of the data, we previously standardized the series for the construction

of the LSTM. On the other hand, we transform the variables by taking the logarithm and

5About it, Julio-Román et al. (2020), Bejarano-Salcedo et al. (2020), Abril-Salcedo et al. (2020) and Melo-

Velandia et al. (2022) study the incidence of El Niño and/or La Niña weather phenomena on inflation in

Colombia from different perspectives.
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first differences according to each case for the ARIMA-type contrast models.

3 Method

In this section, we describe the LSTM methodology, detailing its key features, procedure and

construction. We focus on the hyperparameter tuning process, which is complemented by the

Bayesian optimization method. Our optimization criterion is the root of the out-of-sample

weighted mean square error (RWMSE), since our objective is to improve forecast accuracy.

Furthermore, we discuss our two LSTM applications: one that only uses inflation information

data, and another that incorporates additional information from auxiliary variables. Finally,

we introduce the ARIMA and ARIMAX methodologies, which we employ to evaluate the

forecast quality of the LSTM models, using the root mean square error out of sample per

forecast horizon.

3.1 Long Short Term Memory

Artificial Neural Networks (ANN) models have gained a lot of attention due to the rapid

improvement of machine learning and deep learning algorithms, supported by the development

of computational capacity, leading to their application in various research areas. This type

of model tries to replicate the functioning of neuronal cells, simulating connections between

them to take decisions. In statistical terms, these models extract the relevant information

through correlations and interactions between the variables in a complex and non-linear way,

making these models a particular class of non-linear parametric models (see Kuan and White

(1994)). The general structure of ANNs has at least three layers of nodes (or layers of

neurons, units or cells) through which information is processed: input nodes (grouped in the

input layer), hidden nodes (hidden layer), and output nodes (output layer). The input layer

supplies the information to be modeled; the hidden one (which can be more than one layer,

each with multiple nodes) establishes the relevant relationships between the information in

order to optimize the response in the output layer (see Figure 2). The number of hidden layers

and nodes in each layer depends on the characteristics of the data and their relationships.

Hyperparameters such as the number of epochs, the learning rate, and the dropout also

contribute to this (we will address them in the section 3.2).
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Figure 2: ANN basic components example.
Taken from upGrad (2020).

In the application to time series, the use of Recurrent Neural Networks (RNN) is stood out, a

class of ANN that processes a sequence of inputs and retains part of its state while processing

the next sequence of inputs, creating connections forward and backward. Its architecture has

the form of a chain of repetitive neural network modules, where hidden nodes activate certain

functions for each point in the data flow and store past information to predict the future.

Again, in statistical terms, this model can be interpreted from the perspective of non-linear

models; in this case, RNN looks for an optimal approximation of a dynamic system based on

recursive patterns. In its architecture, lags are used as input to forecast future values, with

an internal state that summarizes the information they have seen so far. The feedback loops

of the recurrent cells inherently address the temporal order and the temporal dependencies

of the sequences.

However, one drawback of the RNNs in time series is that they do not store a large amount

of history, and they become highly dependent on the recent past. Given this, Hochreiter and

Schmidhuber (1997) proposed the Long Short-Term Memory neuronal networks (LSTM),

which explicitly address long-term dependency. Unlike normal RNNs, LSTMs have three

different gates that control the flow of information (input6, output and forget gates). They

interact in a way that incorporates some of the information from memory over time and

removes non-informative information to describe the behavior of the series. In this way,

LSTMs maintain the chain-like structure, but the repeating modulus (cell) has a different

form (Figure 3). The memorization of the data behavior is possible through the gates and

6Whose result interacts directly with additional information to update the state of the cell.
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a memory line. It allows us to persist long-term states in addition to short-term states (for

more details see Chollet and Allaire (2018)).

Figure 3: LSTM cell.
Adapted from Berhane (2019).

The equations 1 show the operation of the LSTM, following the formulation by Graves (2013).

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

C̃t = tanh (WCxt + UCht−1 + bC)

(1)

where xt represents the input variables (lags of the target variable or from additional vari-

ables), Wf ,Wi,Wo and WC are the weight matrices mapping the hidden layer input to the

gates and the input cell state, while the Uf , Ui, Uo and UC are the weight matrices connecting

the previous cell output state to the three gates and the input cell state. The bf , bi, bo, and

bC are four bias vectors. The σg is the activation function, which normally is the sigmoid

function, and the tanh is the hyperbolic tangent function. The role of these functions is to

filter some of the information (useful/not useful) towards the next step. Based on the results

of the four above equations, at each time iteration t, the cell output state, Ct, and the layer
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output, ht, can be calculated as follows:

Ct = ftCt−1 + itC̃t

ht = ot tanh (Ct)
(2)

The final output of a LSTM layer should be a vector of all the outputs, represented by

Y T = [hT−n, . . . , hT−1]. Here, when we are faced with the prediction problem, the last

element of the output vector, hT−1, is what we want to predict. Thus, the predicted value

(ŷ) for the next time iteration, T , is hT−1, namely ŷT = hT−1.

3.2 Tuning of hyperparameters

Under the previous structure, the next step is to outline the process by which the key values

for the operation of the model are determined, these values are the hyperparameter. They

include the number of hidden layers, nodes in each layer, among others. To achieve this, we

followed an iterative process (that include the Bayesian optimization) aimed to optimize a

function (in our case the RWMSE), and in which other values affect, such as the learning

rate, the number of epochs or the dropout.

In machine-learning and deep-learning algorithms, the hyperparameters need to be tuned to

achieve optimal performances of the models. Hyperparameters are determined by finding

its optimal values across multiple unknown values through an optimization procedure. We

focused on tuning the number of epochs, which refers to number of times that all training

data passes through the network to learn about it; the number of nodes and hidden layers

(our application considers 1 and 2 hidden layers due to the characteristics of the time series to

forecast); the learning rate which controls the speed at which the model adapts to the problem

by determining the amount that the weights are updated during training; and the dropout

which involves the probability of removing certain nodes or neurons from the network in order

to verify the performance of a simpler network, it is a tool for fighting against overfitting, see

Srivastava et al. (2014))7.

This section presents the description of our procedure for tuning the hyperparameters men-

tioned. We use the RWMSE as the value of reference to analyze the performance of the

models. We perform out-of-sample validation to find the set of hyperparameters that produce

the lowest RWMSE through a rolling analysis.

7These are some of the most relevant hyperparameters for LSTM. For the others, we took the default values.
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We follow the next procedure:

i. Take the (training) sample January 2002 to December 2015 and a set of possible values

for the hyperparameters.

ii. Train the model and compute the predictions twelve steps ahead. Calculate and store

the RMSE per horizon.

iii. Add one month to the (training) sample, repeat the procedure until taking December

2018 in the sample (with forecasts until December 2019).

iv. Average the RMSE between samples for each forecast horizon. Calculate and store the

associated RWMSE.

v. Repeat the procedure changing the values of the hyperparameters until complete the grid

defined in the following paragraphs.

vi. Choose the model with the hyperparameter values that generated the lowest RWMSE.

Looking for a trade-off between low RMSE and computational efficiency, a set of hyperpa-

rameters was established. We initially selected a range of values for these hyperparameters

based on their characteristics and empirical evidence. A neural network with 1 or 2 hidden

layers is typically adequate for less complex tasks, for example. In our case, since the length

of the data is not excessively large, we explored the behavior of the neural network using a

maximum of two hidden layers. Furthermore, as we expect that the consumer price index

stays under control over time, the dynamic could be explained by some characteristics of the

series with paths that do not require many combinations inside the optimization. Another

factor is related to the computational efficiency of the process; the literature suggests using

numbers of nodes in each layer ranging from 2 to 128 to improve this efficiency. To select the

possible values of the dropout, we follow the suggestions from the literature in this kind of

model. See Cheng et al. (2017) for details.

Taking into account the previous considerations, we evaluate the following values: one and

two hidden layers, with 4, 16, 32, 64, and 128 nodes in each layer; for the number of epochs8

we test with 20, 50, 100, 150 and 200, and for dropout percentage with 0.4, 0.3 and 0.2. We

take the learning rate9 as fixed (0.001) because the difference was slight when we made some

8The number of epochs vary depending on the complexity of the model and the appropriate number should

be determined by experimantation.
9Typically it is sufficient to search a value in the range 10−6 to 10−2, see Greff et al. (2015)
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preliminary comparisons and because we already have a sufficient amount of hyperparameter

combinations.

Once we have these first results, we analyze the patterns of hyperparameter combinations

which produced the lowest RWMSE and we select a new range around the optimal values

for each hyperparameter. We then run again the algorithm and evaluated the RWMSE. We

found that while the sensitivity to hyperparameter tuning differed between wide ranges, there

were no substantial disparities when we took a finer grid around specific values. It allowed us

to have a trade-off between precision and computational efficiency, and gave us confidence in

selecting the optimal hyperparameter values.

To complete the analysis, we took the Bayesian optimization approach, in which samples

are generated inside a range of values for each hyperparameter and, through an iterative

procedure, it provides the optimal combination to get the lowest RWMSE.

3.2.1 Bayesian optimization

We use the Bayesian optimization proposed by Snoek et al. (2012). This method has acquired

great importance, especially now when the tuning of machine learning models is sometimes a

difficult task to do. Then, we include this method because it is exhaustive evaluating all the

combinations in some intervals. This procedure focuses on finding the minimum of a certain

function f(x) under a bounded set, let in this case, the set A. The Bayesian methods boost

the finding of the optimal set of hyperparameters by creating a probabilistic model where

the value of the objective function f(x) is the metric of the model validation, in our case,

the RMSE. For that purpose, we must make two main choices: the prior and the acquisition

function.

First, to use the virtues of the Bayesian method, we must select a prior distribution. Snoek

et al. (2012) suggests the use of “Gaussian process prior” because of its “flexibility and

tractability”, which for any finite set of N points in A induces a multivariate Gaussian dis-

tribution on RN . On the other hand, the acquisition function guides the algorithm through

the hyperparameters space, determining what points to be evaluated in the next steps. There

are three different acquisition functions, Probability of Improvement (PI), Expected Improve-

ment (EI), and GP Upper Confidence Bound. We follow Snoek et al. (2012), who use the EI

criterion due to the fact it has shown better performance than the PI and does not require

tuning its parameters. To explain this function, suppose that f ′ is the minimal value of f(x)
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observed. The function used in EI maximizes the expected improvement (EI) over the f ′.

This corresponds to the following utility function:

EIf(x) = max(0, f ′ − f(x)) (3)

It means that the “improvement” is equal to f ′ − f(x). If f(x) turns out to be less than f ′;

then, there is no gain. Under a Gaussian prior, this function has a closed-form, and the EI

acquisition function is the most common.10 In this work, we use the rBayesianOptimization

library (see Yachen (2021)).

3.2.2 Optimization criteria

As our main purpose is prediction, we take the Root Mean Square Error (RMSE) out of

sample as the criterion of model performance. This criterion is defined as the Equation 4,

where N represents the sample size, yt the observed value at time t and ŷt the forecast of yt.

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)
2 (4)

We also compute a weighted RMSE giving more importance to the shortest horizons. With

this measure, we assess the behavior and predictability, taking into account the forecast

horizon (h = 1, ..., 12). Then, the Root Weighted Mean Square Error (RWMSE) for a model

j is defined as the Equation 5.

RWMSEj =

∑
h

1

h
RMSEjh∑
h

1
h

(5)

We use the RWMSE into the tuning process to select the best model for each methodology,

and the RMSE per forecast horizon to compare among the selected models.

3.3 Two LSTM applications models

Following the LSTM approach, in this document we propose a neural network trained to

predict twelve values ahead based on the diagnose of the patterns of the own lag of the time

series (LSTM FM) and another including some explanatory variables (LSTM EM).

10For details see Snoek et al. (2012), where authors explain widely how to use this theory.
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• LSTM FM The first model we propose is based only on the history of the variable to

be forecasted. In this case, the neural network inputs are the own lags of the time series

without considering the effect of other variables.

• LSTM EM In this second model, we also use information from additional variables.

The rationalization for this methodology is that the effect of other variables is relevant

to the future behavior of time series of interest. The algorithm works as described

previously, including also the lags of the explanatory variables as inputs.

3.4 ARIMA Model

The main model in the traditional approaches for forecasting univariate time series is the

autoregressive integrated moving average (ARIMA) model, so we took it as our baseline. The

model is written as

∆dyt = c+ φ1∆
dyt−1 + · · · + φp∆

dyt−p + θ1εt−1 + · · · + θqεt−q + εt (6)

where ∆dyt is the d order differenced series. The predictors on the right-hand side include both

lagged values of ∆dyt and lagged errors. We call this an ARIMA (p, d, q). A seasonal ARIMA

model is formed by including additional seasonal terms in the ARIMA models we have seen so

far. It is written as ARIMA(p, d, q)(P,D,Q)m, where (p, d, q) represent the non-seasonal part

of the model, (P,D,Q) is the seasonal part and m is the number of observations per year.

We use the uppercase notation for the seasonal features of the model and lowercase notation

for the non-seasonal parts of the model (for more details see Hyndman and Athanasopoulos

(2018)).

An ARIMAX model is the ARIMA model with a new term for the exogenous variables (equa-

tion 7), in this case xt is a vector that includes the three explanatory variables (exposed

previously) with l number of lags (these variables can also be differentiated, especially to

guarantee their stationarity).

∆dyt = β1xt + ...+ βlxl + φ1∆
dyt−1 + · · · + φp∆

dyt−p + θ1εt−1 + · · · + θqεt−q + εt (7)

To determine the best model in each case, we employ an algorithm that estimates the models

resulting from the possible combinations of parameters, explanatory variables, and number

of lags in the ARIMA (ARIMAX) model. Similar to selecting the best LSTM model, the

weighted root mean square error is used to identify the best combination of these aspects

to produce the more appropriate model in terms of forecasting ability in the ARIMA and

ARIMAX context.
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4 Empirical Results

We followed the aforementioned approach to train the models and evaluate their performance

based on the RWMSE. This section provides the key findings of our hyperparameters tuning

results and show the selected models. We compare through the RMSE per forecast horizon, the

LSTM FM, which includes only its own lags as inputs, with the ARIMA model. Similarly,

the LSTM EM, which incorporates the explanatory variables, with the ARIMAX model.

Additionally, we dedicate a subsection to evaluate the performance of the selected models

during the complex period 2020-2022.

4.1 LSTM models

Figure 4 shows the training and testing datasets, the black line represents the training set,

and the red line the testing set, both for the rolling approach. The graphs have a split based

on 7-month jumps to show the differences in the training and test data over different periods.

We take the last 12 observations as the testing set, with the same length as the number of

horizons to forecast (h=12). We split the data in this way due to the relevance of the ordering

into sequential data.

Figure 4: Illustration of the rolling sampling.
Notes: Each diagram (Slice#) represents, as an example, a step of the monthly rolling sampling. Each step is made

up of a training sample (black line) and its 12-month test sample (red line).
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We focus on selecting the number of layers, the number of nodes inside each layer, the number

of epochs and the dropout rate, but for practicality we do not report the iterations for this last

hyperparameter. Figure 5 reports LSTM FM performance based on a model with two hidden

layers and different numbers of epochs. Both hidden layers include different specifications for

the number of nodes. The colors in the visualization indicates the RWMSE metric, where the

lightest boxes correspond to the lowest RWMSE, and the darkest ones indicates the highest

RWMSE. Our results reveal that the most accurate forecasts are situated in the left panel (20

epochs), regardless the number of nodes within each layer. Concerning the number of nodes,

the best performance is obtained by models with few nodes in each layer (bottom boxes).

Figure 5: RWMSE for the LSTM FM with two hidden layers and different nodes and epochs.
Notes: The numbers and the colors represent the RWMSE values. Lighter green colors represent lower values, darker

blue colors higher values.

However, by emphasizing the number of hidden layers, we generally get similar or worse

results as this number increases (Figure 6). The LSTM EM that uses two hidden layers

requires a lot of computational power and in general its results are not good enough, while
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for the LSTM FM there seem to be not relevant differences. This is the first difference

between LSTM EM and LSTM FM; the performance of the former one deteriorates when a

more complex architecture is used. In detail, Figure 6 shows the RMSE for LSTM FM and

LSTM EM at different forecast horizons. The left panel shows the RMSE for all horizons

using one hidden layer, while the right panel shows performance with two hidden layers. In

general, the model with one layer and explanatory variables is better in several horizons.

The most notable differences appear at longer horizons, where the LSTM with explanatory

variables and a hidden layer seems to be the best. Specifically for long horizons, the results

suggest that the explanatory variables included in the network provide valuable information

to predict inflation in Colombia. Consequently, a not so complex model, with a low number

of epochs and nodes would be adequate to forecast our Colombian inflation time series. For

this reason, we select a single layer and continue with the selection of the number of nodes

and epochs (Figure 7).

Figure 6: RMSE for LSTM FM and LSTM EM by horizon of prediction.

The Figure 7 is constructed using different numbers of nodes for both LSTM models with one

hidden layer. It proves again that a low range of epochs is convenient for this data, as well
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as that only a small number of nodes is required for both models. Additionally, the number

of epochs plays a major role only in the LSTM FM; we see that the models with many nodes

get worse when they have more epochs. Unlike the LSTM with no explanatory variables, the

LSTM EM gets similar forecasting performance across the number of nodes and epochs (see

bottom panel of the plot).

Figure 7: RWMSE for the LSTM FM and the LSTM EM with one hidden layer and different

numbers of nodes and epochs.
Notes: The numbers and the colors within the graph represent the RWMSE values. Lighter green colors represent

lower values, darker blue colors higher values.

We evaluate our models on the continuous-valued hyperparameters around the values founds

more plausible according to the previous results. It was run following the Bayesian optimiza-

tion; Table 1 shows the best combination of values of those hyperparameter with the best

performance according to the lowest RWMSE. Thus, the algorithm converges to values close

to those found previously. With these values, we run the LSTM models and compare the

RWMSE for each model.

Hyperparameter LSTM FM LSTM EM

Hidden layers 1 1

Unit 13 6

Epoch 31 50

Dropout 0.2 0.1

Learning rate 0.001 0.001

Table 1: Results from Bayesian Optimization.
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4.2 Comparison between LSTM and ARIMA models

Our results indicate that LSTM performs better than ARIMA models, particularly for longer

horizons. Table 2 shows the RMSE for the two models, LSTM considering only lags of the

CPI (LSTM FM), and the LSTM taking information of explanatory variables (LSTM EM).

Between these two models, in general the LSTM EM presents better performance. We also

compare with the ARIMA models by calculating the percentage of reduction in the RSME

for each LSTM model (ARIMA vs. LSTM FM, ARIMAX vs. LSTM EM, last two columns

of the Table, respectively). We observe that when using LSTM-FM, there is a reduction

in the RSME of around 7% to 65% as compared to ARIMA model, except for the first

horizon. Moreover, the reduction in the RSME becomes progressively larger as the horizon

becomes longer. When exploratory variables are included, the RMSE percentage reduction

ranges from 7% to 68%, once again showing a greater reduction in longer horizons. Since the

baseline model is the ARIMA model in both cases, we can argue that for this time series, we

get a better performance in terms of low RMSE by using LSTM method, especially at longer

horizons.

(I) (II) (III) (IV) % Reduction

Horizon LSTM FM ARIMA LSTM EM ARIMAX (I) vs. (II) (III) vs. (IV)

1 0.24 0.21 0.15 0.17 14.29 -11.76

2 0.41 0.44 0.25 0.31 -6.82 -19.35

3 0.53 0.70 0.36 0.41 -24.29 -12.20

4 0.63 0.95 0.44 0.50 -33.68 -12.00

5 0.72 1.24 0.57 0.61 -41.94 -6.56

6 0.77 1.49 0.60 0.68 -48.32 -11.76

7 0.77 1.66 0.58 0.75 -53.61 -22.67

8 0.76 1.86 0.53 0.83 -59.14 -36.14

9 0.76 2.04 0.46 0.92 -62.75 -50.00

10 0.76 2.20 0.39 0.98 -65.45 -60.20

11 0.80 2.29 0.35 1.02 -65.07 -65.69

12 0.83 2.36 0.34 1.05 -64.83 -67.62

RWMSE 0.50 0.87 0.32 0.45 - -

Table 2: RMSE for each horizon of prediction by model.

These results are also displayed in the Figure 8, where we can see the trend of the RMSE for

each model graphically. First, we observe that in all models, the lowest RMSE is obtained at

the beginning of the prediction horizon; but it gradually increases as the horizon of prediction
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gets longer. This is explained by the rise of uncertainty in longer-term predictions. However,

the LSTM model with explanatory variables shows and exception to this trend. According to

the graph, after the sixth horizon, we observe a soft decline in RMSE until the tenth horizon.

This could indicate strong relations between the explanatory variables and the inflation rate

in different lags captured by the LSTM. Secondly, this LSTM works better in long-term

horizons, considering the RMSE. In horizon twelve it obtains a 68% improvement compared

to the ARIMAX and 59% compared to the LSTM without explanatory variables. It is also

important to note that despite differences at the beginning, the short-term dynamics are

nearly identical for all models. Where the ARIMA model outperforms the LSTM model,

both have RMSE very similar, which suggests that the performance of the LSTM is better or

at least similar to the ARIMA model. Therefore, the LSTM models seem to be a proper tool

to forecast the future behavior of the inflation rate, especially when including information

from explanatory variables in the neural network.

Figure 8: RMSE for horizon of prediction by model.

To further support these findings, we compared the forecasting results obtained by LSTM

algorithm and traditional models using the Diebold-Mariano test. Our objective was to de-
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termine the horizons in which the LSTM produces statistically more accurate forecasts than

the ARIMA models. The table presents the p-value for each horizon of prediction, we again

compare LSTM FM with ARIMA model, and LSTM EM with ARIMAX model. The results

of the test indicate that at 10% significance level, there is a significant difference in forecast

accuracy between LSTM FM and ARIMA model in horizons greater than 4, while there are

significant differences between LSTM EM and ARIMAX model after the horizon 7. This

validates our earlier discussion of larger notable differences at longer-term horizons.

p-value

Horizon LSTM FM LSTM EM

1 0.84 0.40

2 0.40 0.20

3 0.11 0.20

4 0.07 0.12

5 0.04 0.10

6 0.02 0.10

7 0.01 0.09

8 0.01 0.08

9 0.01 0.07

10 0.01 0.06

11 0.01 0.06

12 0.01 0.06

Table 3: Diebold-Mariano test for each horizon of prediction, LSTM FM compared to

ARIMA, and LSTM EM compared to ARIMAX model.

Finally, a rolling analysis is presented to complete the comparison of the forecasting perfor-

mance of the models exposed in this document. In this exercise, we evaluate the forecasting

from 2016 to 2020, always taking twelve steps ahead. Figure 9 shows the behavior of the

predictions by the model after adding one month of information in each step. Because LSTM

is learning in every step, we highlight the behavior of the first period, where the predictions

are far away from the observed values. However, including more and more information, the

forecast follows the closest path of the observed data. It illustrates the learning process and

shows that the forecast is aligned with the trend of the real data, specifically when more infor-

mation is included in the training step. The results of the whole sample discussed above are

validated. We highlight that the forecastings are around the observed inflation rate, especially

using the LSTM EM (bottom panel). This is important when we analyze the predictions of

the LSTM, since it helps to observe the potential bias introduced by its non-linearities in the
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LSTM. From the visualization, we observe that the target variable remained in the middle

of the forecasting range during the period of analysis, which indicates that the model did

not consistently over or under predict the inflation rate. The ARIMA models show a less

satisfactory performance, apparently with a high relevance of the short-term autoregressive

component, especially in its version without explanatory variables. This would cause them to

replicate the most recently observed behavior, making it difficult to identify changes in the

behavior of the series.

Figure 9: Rolling performance by model.

4.3 Performance in the 2020-2022 period

Finally, this section analyzes the forecasts for the period January 2020 to December 2022

obtained by the selected models. This is a period in which the world economy experienced

never-before-seen shocks, mainly caused by the Covid-19 pandemic and external conflicts.

These shocks generated atypical behaviors in a large part of the economic variables, including
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inflation. These conditions motivated the decision of this paper to exclude this period from

the previous rolling analysis, also hoping that once the shocks are overcome, inflation will

return to a behavior similar to that before the pandemic.

However, it is useful to know the performance of the models in this period. Since LSTM

models let the data decide what model works best for prediction, we want to see how fast

the model incorporates the shocks and approaches the data in the short-term forecastings.

The results of all the implemented models in terms of the RMSE metric are as shown in

Table 4. We observe that, in general, the range of the RMSE for each model increases, with

the RMSE for the long horizons quite high with respect to the previous results. Moreover,

LSTM FM once again gives better results after the second horizon with a small difference in

the first horizon. The improved reduction of the RMSE of the LSTM EM is given in the last

prediction horizons, as we mentioned in the analysis until 2020. Consequently, the forecasting

performances of the LSTM models are better or similar for the this period as well.

(I) (II) (III) (IV) % Reduction

Horizon LSTM FM ARIMA LSTM EM ARIMAX (I) vs. (II) (III) vs. (IV)

1 0.34 0.32 0.36 0.29 6.25 24.14

2 0.61 0.70 0.68 0.61 -12.86 11.48

3 0.94 1.06 1.00 0.91 -11.32 9.89

4 1.28 1.51 1.31 1.25 -15.23 4.80

5 1.59 1.98 1.62 1.60 -19.70 1.25

6 1.91 2.47 1.88 1.90 -22.67 -1.05

7 2.21 3.00 2.14 2.19 -26.33 -2.28

8 2.56 3.48 2.48 2.52 -26.44 -1.59

9 2.94 4.10 2.83 2.90 -28.29 -2.41

10 3.30 4.72 3.18 3.31 -30.08 -3.93

11 3.69 5.37 3.52 3.71 -31.28 -5.12

12 4.12 6.05 3.84 4.11 -31.90 -6.57

Table 4: Results for the 2020-2022 period.

5 Conclusions

This work uses deep learning algorithms, specifically the Long Short Term Memory neural

network, to forecast consumer inflation in Colombia. Their results are compared with those
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obtained by ARIMA models through RMSE, noting that LSTM models improve the forecast-

ing capacity of ARIMA specifications. Given this, it is reasonable to consider the application

of these novel techniques in other economic series for forecasting problems.

One of our findings is related to the modeling of inflation under these techniques. We find

that increasing the complexity of the model by adding hidden layers or increasing the number

of nodes or epochs does not necessarily lead to better results in terms of forecasting ability.

In fact, the model with the lowest RMSE had only one hidden layer and a small number of

nodes. This may be related to some characteristics of the series, such as its relatively short

length (216 observations) and its apparently not very complex behavior in the context of deep

learning. As a result, the neural network quickly learns the dynamics of the series.

The empirical results show that the LSTM models outperform the ARIMA models, being

particularly clear in the longer forecast horizons. In addition, the results show the importance

of including auxiliary or explanatory variables potentially related to the series to be forecast, in

this case, inflation. The model with explanatory variables as neural network inputs markedly

improves the prediction performances, and again is more noticeable at longer horizons.

In terms of the RMSE, we find a reduction of 7% for the second horizon (forecast month) and

65% for horizon 12 using the LSTM with its own lags compared to the ARIMA model. For

its part, the LSTM with explanatory variables shows reductions of up to 68% in the longest

horizon compared to the ARIMAX model (and 59% compared to the first LSTM).

Finally, a separate analysis was carried out for the period 2020-2022, characterized by strong

shocks to the world economy. As expected, all the models got worse in their forecasting ca-

pacity metrics, however, better results remain for the LSTM than for the ARIMA techniques,

and for the LSTM with explanatory variables than for the LSTM without them, particularly

on the longer horizons.
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