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Resumen

En este documento investigamos los efectos de un cambio en la regulación del mercado spot de electricidad
en Colombia, que tuvo lugar en 2009. Espećıficamente, la regulación cambió de un esquema de subastas
simples a uno de subastas complejas para permitir a los generadores hacer ofertas separadas de los
componentes fijos y variables de sus costos. El aumento en la flexibilidad tuvo como objeto la reducción
de las ineficiencias que resultan de las no-convexidades en las estructuras de costos de los generadores
térmicos. Estimamos y computamos un modelos estructural que cuantifica los efectos de este cambio en
la eficiencia del despacho de enerǵıa y en los precios mayoristas. De forma consistente con resultados
descriptivos previos, encontramos que bajo el nuevo mecanismo de despacho se incrementó la eficiencia,
pero los precios se incrementaron.
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Abstract

We investigate the effects of a change in the regulation of the spot market for electricity in Colombia that
took place in 2009. Specifically, the regulation switched from an auction mechanism with simple bids to
one with complex bids to allow generators to separately bid on variable and quasi-fixed components. This
greater flexibility was introduced to reduce production inefficiencies that arise from non-convexities in
the cost structures of thermal generators. In this paper, we estimate and compute a structural model to
quantify the effects of this change on allocation efficiency along with the effects on the wholesale price of
electricity in Colombia. Consistently with previous reduced form evidence, we show that the production
efficiency increased under the new dispatch mechanism, but prices increased.
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1 Introduction

Markets for electricity are complex due to the interactions between the economic incentives and
technical constraints the different parties face at both the production and distribution levels.
As a result, regulation can have unintended effects on market outcomes. In this paper, we
investigate a major change in the regulation of the Colombian electricity market, introduced in
2009, that switched from simple to complex bids in the spot market electricity auctions.

Colombia became the first Latin American country, in 1994, to structure its electricity market
following the English model of production allocation and price determination through auctions.
The wholesale electricity market in Colombia, known as Mercado de Enerǵıa Mayorista (MEM,
henceforth), was established in 1994 when generation and trade were deregulated. The MEM
is a centralized market encompassing a national network of interconnected electricity genera-
tors. As is common in other countries, the MEM consists of two separate markets: forward
and spot markets.1 While most of the electricity is traded in the forward market through bi-
lateral contracts between generators and distributors, all production decisions are centralized
and determined in the spot market. Since its inception, two key regulatory interventions have
affected the Colombian spot market. In the period from 1994 to 2001, generators were required
to submit 24 bids corresponding to the hourly prices at which they would be willing to produce
electricity in the following day and to report their production capacity. The production alloca-
tion to satisfy the (expected) demand and the wholesale electricity price were determined on an
hour-by-hour basis through uniform-price auctions. In 2001, the Colombian energy regulatory
agency, or Comisión de Regulación de Enerǵıa y Gas (CREG, henceforth), changed the way
firms bid in the spot market: generators were only allowed to submit a single bid for the entire
upcoming 24-hour period.2

Subsequently, the CREG recognized that the market design may have generated productive
inefficiencies due to the heterogeneity in production technologies across the different generators
and the lack of flexibility in their bidding to account for them.3 In particular, such inefficiencies
may arise from non-convexities in the cost structures of thermal generating units due to start-up
and shut-down costs. These costs were not explicitly accounted for in the dispatch optimization
algorithm.4 Thus, from the suppliers’ perspective, thermal units faced an unnecessary risk when
restricted to submit a single bid, since if a unit was dispatched, the market clearing price would
have needed to be sufficiently high to compensate for the start-up costs.

Following recommended international best practices and the academic literature, the CREG
undertook an overhaul of the spot market in 2009. From then on, generators were allowed to
separately bid on a variable and a quasi-fixed component through (day-ahead) complex bids.
Along with their bids, generators were still required to report their production capacity. With
this information at hand, the system operator determines the cost-minimizing production alloca-
tion needed to satisfy (expected) demand on an hour-to-hour basis, setting the market clearing
price equal to the variable component of the bid from the marginal plant. In addition to their
energy sales revenues, firms receive compensation for their start-up and shut-down costs.

1In Colombia, the spot market is, in fact, a day-ahead market since, as we describe in following sections, the
spot price is determined using bids placed the day before. Nevertheless, we follow de Castro, Oren, Riascos, and
Bernal (2014) and refer to this market and its price as “spot market” and “spot price”, respectively.

2See Resolution CREG-026 (2001).
3See Document CREG–011 (2009), Resolution 051 (2009) and subsequent modifications.
4The economic and engineering literature has extensively discussed the fact that, in the presence of non-

convexities, uniform-price auctions (with simple bids) can lead to productive inefficiencies. See, for example,
Sioshansi, Oren, and O’Neill (2008); Sioshansi et al. (2008); Sioshansi, Oren, and O’Neill (2010).
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Under the new system, the operator could, in principle, determine the efficient production
allocation if firms bid their true fixed and marginal costs. However, in reality, due to the
strategic interaction between the firms in the spot market auctions, firms have incentives to bid
above their true costs. Therefore, in a setting in which bidders are asymmetric, which is the
case in the Colombian market, it is not clear whether the new system could achieve a more
efficient allocation. In fact, the theoretical results regarding the performance ranking of one
design relative the other are ambiguous. Similarly, the effect of the change in the regulation
on the electricity spot prices are ambiguous and depend on how each firm’s markup is affected.
Therefore, the question of how the switch to complex bids that took place in 2009 affected both
the allocative efficiency and market prices remains an empirical one and in this paper we attempt
to answer it.

The contributions of this paper are twofold. First, to carry out our analysis, we set up and
estimate a structural model of bidding behavior in the spot market. The model has three key
features. First, we allow for complex bids and control for the dynamic incentives of thermal
generators following Reguant (2014). The dynamic problem of thermal units arises due to the
existence of ramp-up and start-up costs. These costs introduce an inflexibility in a thermal unit
to rapidly change its production level. Second, following Balat, Carranza, and Martin (2015),
the model also takes into account the dynamic incentives of hydro generators which arise due
to their ability to store energy through the use of water reservoirs. This feature is relevant
in a country like Colombia since hydro generators represent most of the installed capacity in
the electricity market. Third, the model allows for the complexity of the Colombian electricity
market dispatching algorithm following Camelo, de Castro, Papavasiliou, Riascos, and Oren
(2016). To the best of our knowledge, we are the first study to incorporate into a single model
these three important features of the market.

The model allows us to estimate marginal production costs for thermal units using the first
order conditions implied by profit-maximizing behavior. In a first stage, we use simple bids
(i.e., pre 2009) to estimate marginal costs, using the identification strategy suggested by Wolak
(2007). This strategy relies on the fact that variations in the observed contract sales position
in the forward market affect firms’ markups but not their costs. To approximate the firms’
expectations about the market outcomes we rely on the bootstrapping method suggested by
Hortacsu and McAdams (2010).

Having estimated the structural parameters of the model, we then evaluate the effects of
the 2009 market design overhaul. Specifically, we estimate counterfactual market outcomes for
the period August 2011 to December 2012 that result from restricting firms to simple bids (i.e.,
the pre 2009 market design) and compare them to the observed market outcomes under the
new design. The computation of the counterfactual equulibrium, however, presents us with
two challenges that we need to address. First, as is usual with dynamic games like the one in
our setting, there might exist multiple equilibria. But, even if we focus on a particular type
of equilibria, a second challenge still remains: we need to compute the distribution of firms’
expectations over a combination of market structure and state space that is not observed in the
data. To address these issues, we assume that, in each of the two market designs (i.e., simple and
complex bids), the firms play the same equilibrium as we observe in the data for each design. In
other words, we assume that the conditional distribution of firm expectations we observe in the
data can be extrapolated as a market-design- specific function of the observed state variables.
This is similar to the approach in Carranza, Houde, and Clark (2011) and, to the best of our
knowledge, we are the first to implement it in the context of electricity auctions.

Our second contribution is empirical. We present two results. First, the more flexible
market design that allows for complex bids results in a more efficient production allocation. In
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particular, it achieves a 6% reduction in the total cost of the electricity produced compared to
the previous market design. This result is despite the fact that the generators’ bids include a
markup above their true costs. The second main result is that the 2009 market design change
resulted in higher prices in the spot market for electricity. According to our results, Colombian
consumers could have saved about 786 billion COP in our analysis period had there not been
a change in the market design in 2009. These two results suggest that, although the current
mechanism reduces the total cost of the daily energy dispatch, the underlying incentives of the
firms to increase their markups are such that the current design benefits firms at the expense of
consumers.

Our paper is related to recent studies that estimate marginal costs and markups in electricity
markets, for example, Hortacsu and Puller (2008), Wolak (2000, 2003). Gans and Wolak (2008),
Ciarreta and Espinosa (2010). These studies, however, consider only the static bidding problem
ignoring the dynamic incentives that arise due to the presence of non-convexities in the costs
of thermal units or to the ability of water storage for large hydro units. On the other hand,
most of the research that completely characterize the dynamic incentives of hydro generators are
theoretical and often restrict their empirical analysis to testing the predictions of the underlying
models (see, for example, Stacchetti (1999), Garcia, Reitzes, and Stacchetti (2001), Garcia,
Campos, and Reitzes (2005), Vegard Hansen (2009)). At the same time, Riascos, Bernal, de
Castro, and Oren (2016) and Camelo et al. (2016) are successful in analyzing the dynamic
incentives of the thermal units in a setting with complementary bidding mechanisms. However,
they restrict their analysis to reduced-form estimates of the costs and bidding functions to
address their empirical questions. To our knowledge, only the work by Reguant (2014) estimates
the costs of thermal units allowing for the dynamic incentives that arise due to the presence of
start-up costs and Balat et al. (2015) and Martin (2015) are the only studies to fully characterize
the dynamic incentives of hydro generators and provide an empirical strategy to identify and
estimate the implied opportunity cost of the water based on observed bid data. Nevertheless,
these papers do not simultaneously account for the interactions between the dynamic incentives
associated with the two production technologies.

The remainder of the paper is structured as follows. In Section 2 we describe Colombian
electricity market. Section 3 presents the structural dynamic model of bidding behavior. In
Section 4 we outline our estimation methodology. Section 5 presents the estimation results,
introduces our counterfactual simulation exercise, and shows the main results of the paper.
Finally, Section 6 concludes.

2 The Colombian Electricity Market

In this section we present a brief description of the electricity market in Colombia and the
auction data used for our empirical analysis. We focus on the wholesale market, called the
Mercado de Enerǵıa Mayorista (MEM), where the price and quantity of produced electricity are
defined (see Carranza, Riascos, Morán, and Bermeo (in press) for a detailed description).

The wholesale electricity market in Colombia was established in 1994 when generation and
trade were deregulated. The MEM is a centralized market interconnected through the Sistema
Interconectado Nactional (SIN), a country-wide network. The main transactions in this market
involve four types of agents. Generators and retailers are the only active agents of the MEM.
Generators produce the electricity that is sold in the MEM. Retailers buy that electricity to sell
it to the final consumer. The other two agents, transmitters and distributors, are completely
owned by the State. Competition in transmission and distribution activities is possible only in
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projects for the expansion of the network.

Trade and operation in MEM are coordinated by the Centro Nacional de Despacho (CND),
the market operator. The CND is responsible for the planning, supervision and control of the
integrated operation of generation resources and the transmission connectivity of the SIN. A
subsidary of the CND, the Administrador del Sistema de Intercambios Comerciales (ASIC),
administrates all monetary transactions made by the active agents of the MEM. Since 2005,
both ASIC and CND are administrated by XM, a subsidiary of Interconexión Eléctrica S.A.
(ISA). Finally, all transactions are monitored by the Comisión de Regulación de Energia y Gas
(CREG), the regulatory agency.

The MEM consists of two separated markets: the forward market and the spot market.5

Most electricity is traded in the forward market through bilateral contracts between generators
and retailers. However, the role of the forward market is merely a financial one. All production
decisions are centralized by the CND and cleared in the spot market.

Procurement in the spot market settle using a mechanism similar to a multi-unit uniform-
price auction where generators submit supply schedules to satisfy load demand in an hourly-
period basis. The bidding structure and the definition of the market price (spot price) differ
across three different periods since 1995. For our empirical analysis we focus on the 2010–2015
period when the auction design incorporates complex bids.

2.1 Productive structure

The Colombian electricity generation technology is primarily hydroelectric (hydro) and themo-
electric (thermal). During the sample period, the dominant production technology was hydro
with more than 63% of the total installed capacity of the SIN (see Figure 2). More than 95%
of hydro capacity was operated by plants that use dams, while the reminder 5% belonged to
run-of-river plants. Thermal plants accounted for 32% of the total installed capacity, most of
which are fueled by natural gas.6 The rest of the capacity of the SIN belonged to producers
using eolic technology (0.14%) and cogeneration (0.18%), a technology that produces electricity
from the thermal energy generated from other productive activities.7

In terms of aggregate production, the share of hydro generation is even higher. Between 2000
and 2013, the yearly generation was between 41,278 and 62,197 GWh, with an average growth
rate close to 4% (see Figure 1a). Under normal hydrological conditions hydro plants can reach up
to 91% of this generation. This productive structure, however, makes the Colombian electricity
industry very vulnerable to water scarcity periods, as pointed out by Stacchetti (1999). We
illustrate this in Figure 2a. In periods of droughts as those caused by El Niño in 1992-1993 and
2009-2010, hydro generation share was close to 51% and 46%, respectively. Consequently, the
spot price can also be severely affected by these extreme weather conditions. Figure 2b shows
the evolution of the monthly average spot price. During the most severe events of El Niño in
Colombia, the monthly average spot price increased 3.5 times from June, 1997 to February, 1998
and 1.2 times from April, 2009 to April, 2010.

Producers in the MEM are registered as generators. A generator definition depends on
whether it uses hydro or thermal technology. In general, a generating firm may own more than

5As mentioned before, this is rather a day-ahead market but we will follow the usual practice in Colombia and
refer to this market and its price as “spot market” and “spot price”, respectively.

6We include combined cycle gas turbine power plants in the set of thermal technology.
7In Colombia the main source of cogeneration is the sugar industry.
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Figure 1: Evolution of the Productive Structure
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one plant. Within a given plant there may be more than one generation unit. Several hydro
plants operating with the same dam or river form a hydro chain. Thus a hydro generator is
defined as a plant or hydro chain (if that is the case) while a thermal generator is a generation
unit of a thermal plant.

Generators in the MEM are also classified by size. This classification determines whether a
generator is subject to central dispatch, that is, if the generator must participate in the electricity
auction. Large generation units with a net effective capacity (NEC) above 20 MW are classified
as major generators. Major generators are always centrally dispatched. Generators with a NEC
below 20 MW are called minor. Generally, minor generators are not subject to central dispatch;
however, when having a NEC between 10 an 20 MW, a minor generator may decide whether
to be centrally dispatched or not. During our period of study most generators in the SIN were
minor, accounting for 61% of the all generators and 4% of the installed capacity of the SIN, while
major generators accounted for about 34% of all the generators and almost 96% of total capacity
(see Figure 3). The third group consists of all generators that use cogeneration and those,
not connected to the SIN, that produce electricity for self-consumption called autogenerators.
Neither autogenerators nor cogenerators are centrally dispatched.

Table 1 presents the distribution of plants and installed capacity across the different types
of generation technologies at the end of 2015. The data shows that the majority of production
capacity is owned by less than 20% of the firms. Three large companies: Emgesa, Empresas
PÃºblicas de MedellÃn (EPM) and Isagen dominate the productive structure. These firms
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Figure 2: Evolution of Hydro and Thermal Generation Shares and The Spot Price
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owned more than 56% of the SIN’s installed net capacity and almost 70% of the total water
storage capacity. The rest of production capacity was operated by 3 medium-size and 32 small
firms. This structure has not changed much since then.
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Figure 3: Distribution of Installed Capacity
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Table 1: Distribution of the Installed Capacity, December 2015

Number Number Installed
Type of generation Firmsa Generators Capacity (MW) Share (%)

Hydro Dam 7 18 8,495 63.03
Run-of-river 22 84 502 3.72

Thermo Gas 14 17 3,551 26.34
Coal 3 3 700 5.19
Fuelb 1 1 187 1.39

Eolic 1 1 18 0.14

Cogeneration 5 7 25 0.18

Total 37 131 13,478 100

Source: Authors’ calculations based on data from XM. a The number of firms is defined as the num-
ber of agents that operate the plants in each category (row) as registered in the MEM.
b Includes plants that use diesel, fuel-oil or a mix of gas and fuel.

2.2 The Spot Market

From 2009 to the present, procurement in the spot market has been made through a daily
optimization process that resembles a uniform-price multi-unit auction. All centrally dispatched
generators (units) are required to participate by submitting day-ahead bids consisting of a
unique price and an estimate of the maximum available capacity they expect to have for each
hour of the next day. Additionally, at the beginning of every quarter of the year, firms are
also required to submit a monetary start-up cost bid for each thermal unit the operate.8 The
auction is conducted by the CND who defines a daily generation schedule that satisfies demand
at minimum generation costs.

The process is described as follows. Every day before 8:00 AM, firms submit a day-ahead bid

8Noncentrally dispatched generators, on the order hand, are not supposed to participate in the auction. Instead,
they are asked to submit an hourly power schedule they are willing to sell as price takers.
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schedule for each unit they owned.9 Using these bids, the CND calculates a generation sched-
ule that ensured energy supply at minimum production costs. This schedule, called economic
dispatch, consists of the amount of electricity every generator is required to produce in order
to satisfy the expected demand for each hour of the next day. The purpose of the economic
dispatch is to define a day-ahead operation plan that aims to satisfy the forecasted demand
based on the expected production availability and network performance. This dispatch does not
involve the definition of any monetary variable.

During the operation day, the CND is responsible for adjusting the economic dispatch for
available capacity changes, network restrictions and deviations of real demand from the forecast.
The schedule that accounted for these adjustments is called real dispatch. The objective of the
real dispatch is to coordinate supply and demand according to the technical constraints that
have to be met in a real time basis. The main difference in respect to the economic dispatch
is the realization of demand and unexpected technical flaws of generating units and network
congestion.

The day after, the CND computes the hourly spot price by solving the dispatch optimization
problem taking into account the realized demand and actual supply but assuming ideal network
conditions. The resulting schedule is called ideal dispatch. The last generation unit dispatched is
called the marginal generator and is only dispatched for the residual demand not covered by the
other dispatched units. The objective of the ideal dispatch is to define the monetary variables
of the market. In particular, the hourly spot price is set equal to the highest price among the
flexible dispatched units. Finally, similar to a uniform-price auction, all ideally dispatched units
are paid with the spot price for every kWh produced in the respective hour.

2.3 Description of the Database

For our empirical analysis, we use information of centrally dispatched generators on bid prices,
aggregate demand, available capacity, water storage and inflow levels, among other market
variables from 2010 to 2016. The data is provided by XM and is of public domain. The data
also includes information on fossil fuel prices from the Unidad de Planeación Minero Energetica
(UPME).10 We observe 1826 days, 27 firms and 63 generation units (20 hydro and 43 thermal).
The final database is an unbalanced panel of 146,542 observations.

3 A multi-unit auction model with complex bids

We now describe a model of multi-unit auctions that incorporates the features of the Colombian
wholesale electricity market, and that we can estimate with the available data. In the model,
there are i = {1, . . . , N} firms that operate j = {1, . . . , Ji} generation units, and compete in
a daily multi-unit auction for the right to produce electricity. There are two main generation
technologies, hydro and thermal. For every firm i, each thermal unit j’s hourly production is
represented by qijh ∈ [q

ij
, qij ].

9Units that did not submit their bids before 8:00 AM entered in the auction with the bid schedules they
submitted in the last auction.

10UPME is a special administrative unit attached to Ministerio de Minas y Enerǵıa (the Ministry of Mines and
Energy) responsible for planning energy mining development. See more at: http://www1.upme.gov.co
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3.1 The auction rules

The auction design follows the rules of the Colombian electricity spot market. Throughout the
paper we refer to simple bids as the collection of price and quantity bids, and to complex bids
as the quasi-fixed cost component, i.e. the start-up cost bid.

Every quarter of the year, τ , firms submit a set of complex bids consisting of a monetary
start-up and shut-down costs for each thermal unit the own. The complex bid for unit j owned
by firm i is denoted by Aij and the collection of all complex bids is represented by c. Then,
every day within a given quarter, firms submit for each unit a set of simple bids which consist
of a unique daily price and 24 available (declared) capacity values, one for each hour of the day.
The simple bid submitted by firm i for unit j is represented as {bij , gijh} and the collection of
all simple bids is denoted by the array b.

The market clearing algorithm searches all technically feasible combinations of units and
production schedules that satisfy demand at the minimum cost. Both simple and complex bids
are used by the market operator to define the daily dispatch (also known as ideal dispatch),
which is defined as the combination of generating units and production schedules that minimize
the daily cost of energy supply. Below we formally define this algorithm. To ease notation we
temporarily omit the day and quarter subscripts.

Define demand for electricity Dh at hour h, as the sum of a deterministic price-inelastic
component, Dh, and a stochastic component, εh, that is D̃h ≡ Dh + εh. While Dh is known by
all agents, firms are ex ante uncertain about the realization of εh. However, the process that
generates εh is common knowledge and is represented by Fε(εh).

Let k1
ijh and k2

ijh be a set of multiple nonlinear vector functions specific to firm i’s unit j
at hour h, and let rij be the collection of all technical parameters for unit j. The equilibrium
dispatch is defined as the feasible combination of generating units s and daily production schedule
{qijh} that solves the following optimization problem

min
{qijh}

23∑
h=0

N∑
i=1

Ji∑
j=1

bijqijh +Aij1
start
ijh (1a)

subject to 
N∑
i=1

Ji∑
j=1

qijh − D̃h

 ≥ 0 (1b)

{
k1
ijh(qijh, sijh, rijh)

}
= 0 (1c){

k2
ijh(qijh, sijh, rijh)

}
≥ 0 (1d)

Equation (1b) represents the market clearing condition, which is a usual restriction in most en-
ergy auctions. On the other hand, equations (1c) and (1d) are the most particular characteristic
of represent the set of technical restrictions that need to be satisfied in order for the dispatch to
be technically feasible.

In other words, the market operator solves the optimization problem (1) to find the lowest
cost feasible dispatch. The market clearing price ph is the price vector that corresponds to
the solution of the problem. Notice that this optimization problem is complicated, but we
observe the optimal dispatch given the bids, and the observed state variables. Therefore, we can
approximate the solution to the dispatch problem (1) from the observed data.
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3.2 Firms’ Profits

As discussed above, all dispatched units are paid ph for each kWh produced at the respective hour
of the day. Additionally, given the production schedule and submitted bids, the market operator
defines for each unit a daily minimum revenue requirement characterized by the submitted bid
price and start-up cost. According to the rules of the Colombian electricity market, every
thermal unit whose gross revenue, characterized by the hourly market clearing price, is below
its minimum revenue requirement is also paid with an uplift for each kWh produced during the
day.

Formally, let

Rij =

23∑
h=1

phqijh and Rij =

23∑
h=1

bijqijh +Aij1
{start}
ijh , (2)

be the daily gross and minimum revenue of unit j, respectively. Notice that the minimum
revenue incorporates the complex bids submitted by generators every quarter.

Then every thermal unit j for which Rij < Rij , is also paid with an uplift to the hourly
price, denoted by ∆I, which depends on the market outcomes and is defined as follows:

∆I(b, c) =

∑N
i=1

∑Ji
j=1

(
max

{
0, Rij −Rij

}
+
∑23

h=0 dijhqijh[max{ph, RPij} − ph]
)

∑23
h=0 D̃h

(3)

where RPij is the exogenous positive reconciliation price. 11

At the time of bidding, firms are still uncertain about other firms’ strategies as well as the
realization of εh. Therefore, firm i will choose a bidding strategy in order to maximize its
expected profits, conditional on a given distribution of other firms’ bids as well as on a set of
common public information and independent private shocks.

We assume that the set of public information common to all firms includes demand forecasts,
dams’ water storage levels and inflows, fossil fuel prices as well as the technical parameters of
all generating units. We denote the set of public information known to all firms at the time
of bidding by ω. On the other hand, a given firm’s private values may consist on information
such as maintenance strategy or unit unavailabilities and bilateral contracts. Given the available
information set, firm i’s expectations about the market outcomes of are taken over a taken over
its own beliefs about other firms’ strategies.

Denoting S as the set of all feasible combinations of units being dispatched,12 the expected
profits of firm i conditional on the state variables for a given day can be expressed as

E−i[Πi(b, c) | ω] =
∑
s∈S

Pr (s | bi, ci)E−i[Πi(bs, cs) | ω, s] , (4)

where Pr (s | bi, ci) defines the probability that a combination of units s is dispatched, condi-
tional on firm i’s own bids. Notice that, conditional on a given state{ω, s}, the market outcomes
are only determined by the set of bids that are dispatched, denoted by {bs, cs}. To simplify
notation for the rest of the document we state that expectations are always taken conditional
on ω.

11The reconciliation price is an exogenous price set by the regulator in order to make sure that all units
generating in the actual dispatch on t + 1 are paid according to their bids. For the objectives of this study, an
explicit definition of this price is not relevant.

12That is, those satisfying the market clearing conditions (1b), as well as technical restrictions (1c) and (1c).
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For any realization of the states s and bid strategies {bs, cs}, the firm i’s profit function is
given by:

Πi(bs, cs) =

[
23∑
h=0

(Qih(bs, cs)− vih) ph(bs, cs)−∆I(bs, cs)vih

+ ∆I(bs, cs)

Ji∑
j=1

Iij(bs, cs)qijh(bs, cs)

]

−
Ji∑
j=1

Cij(qij(bs, cs)),

(5)

where Qih(·) is the total quantity produced by firm i at hour h, vih is the firm’s aggregate net
sales position in the market of bilateral contracts, Iij is an indicator function defined as follows

Iij =

{
1, if j is thermal and Rij < Rij
0, otherwise

(6)

and Cij(·) represents the total daily costs function of unit j, which depends on the vector of
hourly equilibrium unit quantities. Note that firms’ dynamic incentives are summarized by their
cost structures.

The dynamic problem of the thermal units arises due to the existence of ramping and start-up
costs. These costs represent the inflexibility of a thermal unit to rapidly change its production
levels throughout the day. For thermal units we use the costs specification proposed by (Reguant,
2014):

Cij(qij) =
23∑
h=0

γij1qijh +
γij1
2
q̃2
ijh +

γij3
4

(qijh − qijh−1)2 + αij1
{start}
ijh , (7)

where γij1 and γij2 represent j’s marginal costs of production, γij3 represents the ramping costs,
q̃ijh = max{qijh − qij , 0} is the unit’s production over its minimum level, and αij is the total

cost incurred whenever j gets switched on.

On the other hand, the dynamic problem of hydro units arises because their capacity to
store energy in the form of water. This implies an intertemporal opportunity cost defined as
the value of future payoffs that the firm gives up in order to produce energy (by releasing the
water) in the current period. Under standard Markovian assumption of observed states, this
dyanamic problem of hydro units can be written as a function of all the current states that firms
use to condition their actions. Specifically, we follow the characterization proposed by Balat et
al. (2015) and define the cost function for hydro units using a reduced form as follows:

Cij(qij) = Ψij(qij ,ω), (8)

whereΨij(·) absorbs each firm i’s marginal generation cost plus the sum of its future expected
profits associated with unit j, which depend on the production output qij as well as on the
current state of water storage and inflows levels, ω. It is important to note that this value of the
dynamic problem of hydro units incorporates the strategic behavior of all the generators and is
therefore specific to the observed equilibrium.

Notice also that at the time of making their simple bids, the firms take the quarterly complex
bids and their contract positions as given. As we show below, our estimation strategy will focus
on this stage of the problem. We also take these variables as given in our counterfactual analysis,
which at this point is a limitation of our work.
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3.3 Equilibrium and optimality conditions

We characterize the equilibrium of this model as the solution to a generic two-stage game with
incomplete information. In the initial stage firms make irrevocable decisions about their complex
bids. Once firms have submitted their complex bid schedules, a competition stage begins. In
the second stage, all firms play in a sequence of 90 repeated sub-games. Each sub-game is
characterized as multi-unit auction in which profits are determined according to the rules of the
Colombian Spot Market. For any given day during the competition stage, we also assume that
firm i’s information set also includes information about the market outcomes of the previously
disputed competition sub-games.

Given the sequential nature of the game we use backward induction to characterize the
optimal strategies for both simple and complex bids. That is, for each firm i we start by
deriving the optimality conditions for simple bids conditional on a fixed complex bid strategy.
Then, the resulting simple bid strategy is incorporated in the firm’s decision problem during the
first stage to compute the respective optimality conditions for complex bids. As stated above,
our analysis is based on the simple bidding or competition stage of the problem, taking the
complex bids as given.

3.3.1 Optimality conditions for simple bids

The Markovian structure of the cost functions for both hydro and thermal units allows us to solve
each sub-game of the competition stage as a conditionally independent simultaneous auction.
This implies that, in each day within a given quarter of the year, firms will choose simple bid
strategies as to maximize their expected daily profits:13

max
bi

∑
s∈S

Pr (s | b, c)E−i[Πi((bi,b−i), c) | s, ci] . (9)

As usual in the literature for energy auctions we focus on the first-order conditions with
respect to the price offers (Hortacsu & Puller, 2008; Kastl, 2011; Reguant, 2014; Wolak, 2003).14

Then, the optimal strategy for simple bidding must satisfy the following first-order condition:∑
s∈S

Pr (s | b, c)
∂E−i[Π(b, c) | s, ci]

∂bij
+
∑
s∈S

∂ Pr (s | b, c)

∂bij
E−i[Π(b, c) | s, ci] = 0. (10)

This expression allows us to analyze separately the process that determines the combination
units that are going to be dispatched form the one that defines prices and quantities.

The first term can be interpreted in a similar fashion as in a usual multi-unit auction setup.
However, there is a important difference. In a standard uniform-price multi-unit auction, small
changes bij can only affect firm i’s expected profits, if bij is likely to be marginal and, therefore,
to determine the market clearing price. In the Colombian auction design, even after conditioning
on s, small changes bij can still affect i’s profits through the uplift component ∆I, even if bij
does not set the market price. For example, an optimal strategy for firm i could be to slightly
decrease bij in order to increase ∆I, which will be paid to all the units that are unlikely to meet
their minimum revenue requirement.

13Notice that we also need to assume that the dynamic problem of thermal units has an horizon of one day.
This is also the procedure followed by Reguant (2014).

14According to the Colombian regulation, firms are requested to submit an estimate of the hourly maximum
available capacity, which is supposed to change only due to technical failures or maintenance. Hence, firms would
not be able use it directly as a strategic variable without drawing attention form the market regulator.
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On the other hand, the second term in equation (10) arises due to the existence of complex
bids and the particularities of the Colombian dispatch optimization algorithm. This term is
similar to the one derived by Reguant (2014) for the Spanish market. It represents the effect of
bij on i’s expected profits through the probability that a particular set of units is dispatched.
That is, the extent to which small changes in bij affect the probability that any unit belonging
to firm i will sell a positive quantity of electricity during the day. Notice that, given a set of
technical parameters, this derivative is only non-zero when bij or Aij are high enough so that
j is the most costly unit in s, and there is unit l /∈ s, such that the alternative combination of
units ŝ ={s−j , l} is technically feasible and that the cost of the resulting dispatch is sufficiently
low. Since the probability that these events occur simultaneously is likely to be small, we follow
Reguant (2014) by assuming that∑

s∈S

∂ Pr (s | b, c)

∂bij
E−i[Π(b, c) | s, ci] ≈ 0. (11)

This assumption allows us to express the optimality conditions for simple bids focusing only on
the first term of equation (10).

Thus, based on assumption (11) and the fact that small changes in bij only affect the expected
market price if bij is likely to be the marginal bid, we rearrange terms from first-order condition
(10) and express firm i’s optimal simple bid for unit j, conditional on ci and s as follows:

bij = ζ̄ij −

∑23
h=0E−i

[
Qih − (1 + ∂∆I

∂bij
)vih

∣∣∣ s, ph = bij

]
∑23

h=0E−i

[
∂Qih
∂bij

∣∣∣ s, ph = bij

] +

∑Ji
l=1

∑23
h=0E−i

[
∂∆I
∂bij

qilh + ∂qilh
∂bij

∆I
∣∣∣ s, Iil = 1

]
φil∑23

h=0E−i

[
∂Qih
∂bij

∣∣∣ s, ph = bij

] +

∑Ji
l=1

∑23
h=0E−i[∆I × qilh | s, Iil = 1]∂φil∂bij∑23
h=0E−i

[
∂Qih
∂bij

∣∣∣ s, ph = bij

] ,

(12)

where ζ̄ij represents a weighted average of the daily marginal cost of unit j owned by firm i at
hour h:

ζ̄ij =

∑23
h=0E−i

[
∂Cij

∂qijh

(
∂qilh
∂bij

) ∣∣∣ s, ph = bij

]
∑23

h=0E−i

[
∂Qih
∂bij

∣∣∣ s, ph = bij

] , (13)

and φij(bi) ≡ Pr (Iij = 1 | bi) defines the probability for unit j of being paid the extra price-
uplift ∆I, conditional on the firm’s simple bid strategy and the state variables of the public
information set.

According to equation (12), i’s optimal simple bid for unit j is equal to the average marginal
cost plus a shading factor or markup. This markup consists of three separate terms. The first
term is standard in static models of uniform-price auctions (Gans & Wolak, 2008; Hortacsu
& Puller, 2008; Wolak, 2000, 2003). It is composed by the expected inframarginal quantity
produced by the firm when the unit is accepted, divided by its effect on equilibrium quantities,
which is equivalent to its effect on the residual demand. The other two terms arise due to the
presence of the minimum revenue requirement and the incremental price component ∆I, which
are particular to the Colombian electricity market.
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3.3.2 Optimality conditions for complex bids

For completion, we now proceed to derive the optimality conditions for complex bids, corre-
sponding to the first stage of the sequential game. In this stage of the game, firms are aware
that their complex bids decisions will be committed for each of the 90 sub-games of the second
stage. Firm i will choose a complex bid strategy, ci, so as to maximize the total sum of its
expected profits during the following 90 days.

It is worth mentioning that, because of the imposed backward induction characterization of
the equilibrium, ci will affect i’s profits not only directly, but through its own simple bid strategy
as well. We allow firm i to account for this feature at the time of submitting its complex bids
strategy. Formally, let B and C denote the space of simple and complex bids, respectively. Also,
let Ω be the state space. Define firm i’s optimal strategy for simple bids at auction t as the
vector function β : C × Ω → B such that, for any given ci ∈ C and ωt ∈ Ω, bit = βi(ci, ωt)
satisfies the conditions implied by equation (12).

Then, adding the day subscript, we can write firm i’s optimization problem at the first stage
of the game as follows:

max
ci

E−i

[
90∑
t=1

Πi(bt, c)

]
, s.t. bit = βit(ci) ≡ βi(ci, ωt). (14)

Consequently, the first-order necessary conditions for this optimization problem are given by,

90∑
t=1

∑
s∈S

Pr (s | βit(ci), c)
∂E−i[Πi(βit(ci), c) | s]

∂Aij
+

90∑
t=1

∑
s∈S

∂ Pr (s | βit(ci), c)

∂Aij
E−i[Πi(βit(ci), c) | s] = 0.

(15)

Notice that, complex bids affect firm i’s daily profits through both probability of having any of
its unit dispatched and through the definition of prices and quantities. Nevertheless, conditional
on the given complex bids, the subsequent competition game in which simple bids are chosen is
independent, as assumed.

4 Estimation Procedure

In this section we propose an estimation methodology to recover the structural parameters of
the costs functions for each centrally dispatched generator based on the observed bidding data
of the Colombian electricity market. In particular, we estimate the structural parameters of the
cost function defined in equation (7) for every firm i:

θi ={αi, γi, λi} . (16)

As is usual in the empirical literature for energy auctions, we use the empirical moments
implied by the optimality conditions of the bidding game defined by equations (10) and (47).
Below we discuss the methodology employed for the construction of these empirical moments as
well as the intuition behind identification.
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4.1 Estimation of firms’ expectations

To estimate the unit-specific costs parameters, we use the generalized method of moments pro-
cedure based on the first order conditions implied by equation (10). Specifically, we adapt the
procedure used in previous studies in the multi-unit auction literature to the particular auction
design of the Colombian electricity spot market. Intuitively, our estimation is based on finding
the parameters of the model that make the first order conditions of the bidding game as close
to zero as posible.

To construct the empirical analog of first order conditions for the simple bids, we first need
to estimate each firm’s expectations terms. We follow the bootstrapping procedure used by
Hortacsu and McAdams (2010) and Kastl (2011), which consists of simulating firm i’s beliefs
about other firms’ strategies based on the available data. For a particular day, firm i’s strategies
are held fixed. For other firms different form i, strategies are randomly drawn form the sample
data, approximating the uncertainty that the firm faces at the time of bidding. For a particular
draw, and given the dispatch algorithm defined in (1a), we compute simulated equilibrium
outcomes which determine the firm i’s profits. Repeating this procedure for a sufficiently large
number of times, it is possible to obtain consistent estimates of the firm’s expected profits.

The consistency of the estimators of the firm’s beliefs with this procedure depends on how
the sampling step is done. For example, when firm i’s beliefs are not generated by the same dis-
tribution between auctions, estimators of the expectation terms might be biased if the sampling
of other firms’ strategies does not condition on similar auctions. Therefore, we control for all
variables included in the information set available for the firm at the time of bidding as observed
in the data. In particular, we condition the sampling set of similar days on water inflows, fuel
prices, demand forecasts, average prices of bilateral contract sales, as well as on the day of the
week.15

Another feature of the data that can affect the precision of the estimators is the existence
of affiliated private values. Given the time series nature of the data, auctions are likely to
be serially correlated. Conditioning on observed state variables of the information set is also
useful when dealing with a potential bias driven by this feature. In fact, we assume that after
controlling for the observed variables that are potentially serially correlated, the distribution of
firm i’s beliefs at the time of bidding is stochastically independent between auctions.

The bootstrapping algorithm we employ for this study can be summarized as follows:

1. Fix bidder i’s strategies in auction t

2. Randomly draw strategies of other firms k 6= i from a sample of N similar days, condi-
tioning on a set of observed state variables

3. Compute the market equilibrium using the computational algorithm proposed by Camelo
et al. (2016)

4. Repeat steps 2-3 M times to obtain a distribution of market outcomes

There are two aspects that make our bootstrap simulation procedure similar to the one used
by Reguant (2014) and different from other applications. First, the market clearing is defined
as the solution to a complex optimization problem and cannot be necessarily replicated through
a standard uniform-price multi-unit auction. Second, as in the model introduced by Reguant

15This approach is based on the works by Gans and Wolak (2008) and Reguant (2014), who also pool similar
days to construct the sample analogues of moment conditions.
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(2014), firms also face uncertainty over their own equilibrium supply curve as the set of units
that will be dispatched is also random due to the presence of complex bids.

However, our model differs form the one of Reguant (2014) mainly in the fact that complex
bids are submitted on a quarterly basis. This would requires us to compute an estimate of the
firms’ expected sequence of their profits for the following 90 days. Because the available data
for complex bids is short, we cannot directly estimate the underlying joint distribution of this
sequence. Hence, in the current version of the study we do not estimate the implicit start-up
costs of thermal units. Moreover, although we are still able to estimate the expectation terms
for the first order condition of simple bids and the parameters of the marginal cost function
(23), we have to assume that firms submit truthful bids about their start-up costs in order to
compute a counterfacutal experiment.

For the second point of the bootstrap algorithm described above, we define a sample of
similar days to t, as follows. The similarity criteria between days is defined according to state
variables we assume firms use to condition their expectations; namely, the price of Fuel No. 6,
as well as to the aggregate water stock and river flow. Hence, we define a vector consisting of the
three variables previously mentioned for day t, denoted as xt. Then we define from the sample
the set of all days with the same day of the week as t as WDt and build the sequence of vectors
{xτ}τ∈WDt

. Given the sequence of approximately 74 days,16 we measure the euclidean distance
between xt and xτ for every τ ∈ WDt and select the vectors associated with the N smallest
computed distance. We set N = 30 which gives us samples for bootstrapping i’s competitors
strategies of size between 1200 and 1470. Notice that since we match similar days without
conditioning of firm-specific features, we can use the same sample of bidding strategies for every
firm i.

4.2 Approximation of derivatives

Once market outcomes are simulated, the challenge that remains is the computation of the
derivative terms involved in the optimality conditions for both simple and complex bids. To
address this problem, we follow an smoothing approach that has become frequent in the context
of electricity auctions (Gans & Wolak, 2008; Wolak, 2007).

The approximate versions of the derivative terms used to construct the empirical moments
are the following:

∂̂DR,bs
iht

∂bijt
=

1

ν

∑
k 6=i

∑
(k,j)∈sbs

gkjhtK
(
bljt − pbsht

ν

)
(17)

∂̂Qbsiht
∂bijt

=
1

ν

∑
(i,j)∈sbs

gijhtK
(
bijt − pbsht

ν

)
(18)

where K is a Kernel density weight and ν is a bandwith parameter. In particular, we set K as
the normal density function and ν following the rule of thumb for every different firm.

16That is, 53 weeks in 1.4 years.
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4.3 Identification and econometric specification

Following equation (7), the econometric specification of the daily weighted average marginal
costs for a thermal unit j is the following:

ζ̄therm
jt (γjt) = γjt1 + γjt2

∑
h

q̃ijh + γijt3
∑
h

(2qijh − qijh−1 − qijh+1) + εtherm
jt , (19)

where εtherm
jt represents the econometric specification error. As suggested by Reguant (2014),

this error term can also be interpreted as a shock on marginal costs known to the firm or as an
optimization error. Notice that the cost parameters are both unit and day-specific. We allow
the cost derivatives to vary over time in order to capture the effect of fuel prices on both variable
and ramping costs. In particular we specify each parameter as follows:

γjt1 = γcons
j1 + γPfuel

j1 ln Pfueljt + γFoil6
j1 ln Foil6t + γTRM

j1 ln TRMt + γCERE
j1 ln CEREt + γFAZN

j1 ln FAZNt, (20)

γjt2 = γcons
j2 + γPfuel

j2 ln Pfueljt + γFoil6
j2 ln Foil6t + γTRM

j2 ln TRMt, (21)

γjt3 = γcons
j3 + γPfuel

j3 ln Pfueljt + γFoil6
j3 ln Foil6t + γTRM

j3 ln TRMt, (22)

where Pfueljt is the current price in day t for the fuel used by unit j; Foil6 is the price of the Fuel
Oil No. 6, used by most thermal units as a substitute of their main fuel; TRM is the COP/USD
daily average exchange rate; CERE and FAZN denote the taxes firms must pay for each KWh
generated.

In this study we focus on estimating the marginal cost function for thermal units only.
However, in the estimation process we do control for river flows and water stock in order to
account for the dynamic incentives of hydroelectric units.

Marginal cost parameters, γjt, can be identified given the observed position of contract
sales. The intuition is that variations in the contract sales positions affect markups but not
costs. Therefore, since the quantity sold by the firm in bilateral contracts is not defined at the
same time as the price bids, marginal production costs can be identified with enough variation in
the contract sales position. This identification strategy has become standard in energy markets
(see Hortacsu and Puller (2008) and Wolak (2007)).

4.4 Estimation method

In the current version of the study we restrict to estimate only the parameters of the marginal
cost function (19). Consequently, we define the set of parameters to estimate for firm i as
θi ={γit}Tt=1.

The empirical moment conditions implied by equation (12) are given by

mijt(θi, ν,M) =
1

M

M∑
bs=1

23∑
h=0

1{j in}

[
∂̂pbsht
∂bijt

(bijt − ζ̄ijt(θi)) ̂∂DR,bs
iht

∂bijt
+Qbs

ih −

(
1 +

∂̂∆Ibst
∂bijt

)
vih

+

Ji∑
l=1

1
{
Ibsilt = 1

}∂̂∆Ibft
∂bijt

qbsilht +
∂̂qbsilht
∂bijt

∆Ibst

 φ̂bs
ilt +

(
∆Ibst × qbsilht

) ∂̂φbs
ilt

∂bijt

].
(23)

Then, the Generalized Method of Moments (GMM) estimator for the parameters is defined
as follows:

θ∗i = arg min
θi

[
Z ′tmijt(θi, ν,M)

]′
Φ
[
Z ′tmijt(θi, ν,M)

]
(24)
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where Z is a matrix of instruments assumed to be orthogonal to ε, and Φ is a weighting matrix.
Among the instruments we include fixed effects for days of the week, months of the year, observed
load demand, aggregate river flows, fuel prices, firms’ net contract position in the forward market,
the monthly average of contract prices as well as forecast probabilities for El Niño events. The
weighting matrix is computed according to the two-stage estimator where the initial guess is the
identity matrix.

It is worth mentioning that, even though we do not estimate the cost parameters for hydro
units, we do account for hydro units incentives when computing the moment conditions defined
above, since we control for water stocks and river flows when building the bootstrap sample in
the procedure of estimating firm i’s expectation terms. Therefore, if the assumptions we have
made so far hold, the solution to equation (24) should be a consistent estimator of a restricted
version of the full parametric model.

5 Estimation results

In this section we show the estimated parameters of the marginal costs function for thermal
units defined in (23) as well as the estimated series and the implied bid-cost mark-ups.17 The
results presented below are generated using the bootstrap algorithm described in subsection 4.1
and the GMM estimator defined by equation (24) on auction data at the generator level from
August 13th, 2011 to December 31st, 2012.

Table 2 presents weighted averages of the estimated values for γjt1, γjt2 and γjt3 across time
and units, by fuel type.18 The average constant marginal cost, γ̄1, is positive and higher for those
units using the most expensive fuels (i.e. diesel and fuel oil). For example, average constant
marginal cost for coal-fueled units is about 172 COP/KWh, while for those using diesel the cost
is about 258 COP/KWh. The variable part of the marginal cost, γ̄2, suggest a reduction on
the total marginal cost for every KWh generated over the unit’s minimum production level. In
other words, on average, thermal units face a higher cost when generating during their soak
or desynchronization phases. Moreover, this effect is higher in magnitude for coal units and
substantially lower for gas units. In particular, results suggest that coal units face, on average,
a marginal cost 18.54 COP/KWh lower for every KWh produced over their minimum level,
whereas for gas units the respective reduction is 3.02 COP/KWh. Finally, the average ramping
cost, denoted by γ̄3, are in most cases positive. This suggests that, except for fuel oil units, the
average marginal cost of a thermal unit increases whenever the unit has to change its output in
less than one hour. In particular, the extra cost of changing output is on average 0.14, 0.10 and
0.04 COP/KWh for coal, gas and diesel units, respectively.

17Although the other units were taken into account in the bootstrap algorithm the parameter estimates for
their marginal costs were not directly estimated.

18See tables 7-10 of Appendix C.1 where we show the coefficient estimates of the cost function for each thermal
generating unit.
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Table 2: Average estimate of the marginal costs coefficient by fuel type

Fuel γ̄1 γ̄2 γ̄3

Diesel 258.11 -10.05 0.04
Coal 171.86 -18.64 0.14
Fuel oil 250.37 -13.15 -0.12
Gas 177.09 -3.02 0.10

Source: Authors’ own calculations based on the parameter estimates, and information from XM.

Given the parameter estimates we are able to project an estimate of the average marginal
cost for each unit across the sample period and compute the implied bid-cost markup. First, we
compare our estimates of the average marginal costs with those computed by de Castro et al.
(2014) using the following engineering expression:

mcen
jt =

HRj

CPj
× Pfueljt + VOMt + CEREt + FAZNt, (25)

where HR and CP denote the unit’s heat rate and calorific power value, respectively, and VOM
represents the variable operating and maintenance costs.

Below, Table ?? compares the weighted means and standard deviations of our marginal costs
estimates with those implied by equation (25) for the same period, by fuel type. Notice that on
average the engineering approximation underestimates the firm’s valuation for each KWh to be
sold since it does not account for the non-convexities associated with each unit’s technological
restrictions, as well as unobserved opportunity costs associated with fuel prices and exchange
rates.19

Table 3: Sample averages of the marginal costs series implied by the model estimates and the
engineering formula (COP / KWh)

Fuel type Model estimate Engineering formula

Diesel 161.83 113.29
Coal 128.53 93.82
Fuel oil 386.12 165.68
Gas 127.20 116.13

Source: Authors’ own calculations based on the model estimates, the engineering formula (25), and information

from XM.

Then, we analyze the implied bid-cost markups implied by the difference between the ob-
served bids and the estimated daily average of the marginal costs. In Table 3, we show the
weighted mean, weighted standard deviation, minimum and maximum of the implied bid-cost
markups by fuel type. The results suggest that the highest markups are charged in average by
fuel oil units, while coal units charge the lowest. At the same time, we observe more dispersion
on other fuel type technologies than on those using fuel oil, as suggested by the standard devia-
tion. That is, coal units not only charge the highest markup on average, but they also exercise
such market power consistently along the sample period.20

19See figures 14-18 of Appendix C.2 for further detail on this comparison.
20For further detail, we also present the daily series of the estimated marginal costs and observed bids by

generator in figures 14-18 of Appendix C.2
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In Table 3 we compute the weighted mean, weighted standard deviation, minimum and
maximum of the implied bid-cost markups by fuel type. The results suggest that the highest
markups are charged in average by fuel oil units, while coal units charge the lowest. At the same
time, we observe more dispertion on other fuel type technologies than on those using fuel oil, as
suggested by the standard deviation. That is, coal units not only charge the highest markup on
average, but they also exercise such market power consistently along the sample period.

Table 4: Summary statistics of estimated mark ups by fuel tipe

Fuel Mean Std.Dev Min Max

Diesel 21.79 571.04 -11535.39 1248.20
Coal 2.97 33.04 -213.96 159.20
Fuel oil 386.64 154.73 -96.74 785.19
Gas 15.78 66.93 -89.78 1049.76

Source: Authors’ own calculations based on the parameter estimates, and information from XM.

6 Counterfactual experiment

The purpose of this study is to answer the question about whether the current dispatch mech-
anism for generation in the Colombian electricity market led to a reduction in the energy cost
for the consumers. In particular, we propose a counterfactual experiment that allows us to
compare the realized cost of the energy sold between August, 2011 and December, 2012 with
the cost that the system would have faced if the dispatch mechanism was the previous self
unit commitment mechanism used in Colombia before Resolution 051 was introduced, for the
same period. The results of such experiment allow us to conclude that the aggregate cost of
energy sold would was lower during the perior August, 2011 and December, 2012 with the cur-
rent centralized unit commitment mechanism in cpmparasson to the conuterfactual, self unit
commitment mechanism.

To perform such experiment we need to simulate an equilibrium, in which firms play their
optimal strategies according with an environment where state variables are the ones observed
during our period of study but the game corresponds to the previous auction format used in
the Colombian market. There are many reasons why the computation of such equilibrium is
complicated. First, we have to recognize the multiplicity of equilibria in the game described
by previous auction format, which makes it hard to pin down one particular counterfactual
equilibrium or even to put bounds on the set of plausible equilibria. Second, even if we focus
on a particular type of equilibria, we need to compute the counterfactual distribution of firms’
expectations over a combination of market structure and states that may not be observed in the
data.

These complexities are usually the reason why previous studies in electricity markets have
not been able to perform counterfactual experiments in which firms play a game other than
a Vickrey-equivalent mechanism. Among the few empirical works on energy markets that are
able to estimate parameters of the marginal costs, most limit their analyses to description of
costs statistics, measuring market power through price-cost markups and to verify theoretical
predictions. For example, Hortacsu and Puller (2008) use their estimations on contract positions
to verify how well the optimal bidding predicted by their model fits the observed bids. Martin
(2015) focus on the analysis of the water opportunity costs to identify if peaks in prices during
shortage periods where associated with strategic behavior or as a result of an increase in the
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dynamic incentives to store water. Even in the work by Reguant (2014), the estimates of
marginal and start-up costs parameters are only used to measure market power and identify
difference in productive efficiency across fuel types. To our knowledge, there are no studies that
are able to perform counterfactual experiments that are able to compare the equilibria between
different market structures.

In our analysis below we overcome these difficulties making two major assumptions. Specifi-
cally, we assume that firms always play the same symmetric equilibrium for the respective game
that we observe in the data for each of the two dispatch mechanisms (i.e. the previous auction
format and the current dispatch with complex bids used in Colombia). In other words, we as-
sume that, outside of the estimation sample, the conditional distribution of expectations can be
extrapolated as a game-specific function of the observed state variables.

Formally, let Ta and Tb be the set of auctions observed between January, 2007 and December,
2008 when the dispatch mechanism was similar to a uniform-price auction and between August,
2011 and December, 2012, when the dispatch mechanism was the one described by the model
presented in section 3, respectively. We define Sai : Sa−i × Ω → R+ be firm i’s optimal strategy
profile that describes the simple bids submitted by firm i for the set of equilibria observed in Ta,
and Sbi : Sb−i×Ω→ R+ as firm i’s optimal strategy profile describing the simple bids submitted
by firm i observed in Tb.

Thes strategy profiles generate dispatch distributions Pra(s | b, c, ωa) and Prb(s | b, c, ωb) for
each time window Ta and Tb, respectively. These distributions assign a probability to any possible
dispatch allocation s, given the observed states ω and complex bids c. These probabilities
incorporate both the technical restrictions of the system and the equilibrium behavior of all
generators. Moreover, these probabilities can be inferred directly from the data as follows:

P̂ra(s | c, ωa) = Ωa(s, ωa, c) (26)

P̂rb(s | b, c, ωb) = Ωb(s, ωb,b, c)

where Ω(.) describes the dispatch probability in the give equilibrium as a function of observed
states. Notice that Ωa does not contain the complex bids, since there were none during the time
Ta.

We are interested in computing the counterfactual performance of the market during the
time Tb, under the market rules in effect during Ta. Under our assumptions, one possible
counterfactual equilibrium is given by the strategy profile s̃i = Sai (s̃−i,ωTb). This strategy
profile would generate the following counterfactual dispatch probabilities:

P̃r(s | b, ωb) = Ωa(s, ωb, c). (27)

We can therefore use these probabilities (26) to compute the counterfactual behavior of firms
during the time frame Tb, but under the rules and equilibrium behavior that were in effect during
time Ta. In our application we sample the bids directly from the data, as we describe below21.

In our experiment we simulate an equilibrium in which firms play their optimal strategies
according with an environment where the game corresponds to the previous auction format with
simple bids between August, 2011 and December, 2012. Below we describe the procedure using
the available data. First we define firm i’s optimal strategy for simple bids, Sai (·), by the well
known first-order conditions of the uniform-price auction game:

24∑
h=1

bijt −MCijth +
E[Qith − vith | pith = bijt]

∂E[Qith − vith | pith = bijt] /∂bijt
= 0. (28)

21This approach is described by Carranza et al. (2011) and, to the best of our knowledge, has never been used
to compute counterfactual experiments in the field of energy markets.
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Then, to compute equation (28) for the period of study we need to simulate two unobserved
terms: marginal costs and the expectation terms.

For thermal units, we use our parameter estimates from section 5 to simulate the marginal
costs that firms would face under different generation schedules. As for the expectation terms, we
rely on our assumption that any firm’s expected payoffs at the time of bidding can be expressed
as a function of the state variables, the active units and the dispatch mechanism. In particular,
we apply the bootstrapping algorithm on observed data between January, 2007 and December,
2008, to estimate a function of expectations for each firm which is associated to the previous
auction format with simple bids and which can be conditioned on the state variables observed
during our period of study. Formally, the estimation of the expectation terms implied in (28) is
as follows:

1. For any day t in the original sample period (i.e. from August, 2011 to December, 2012),
define the vector of state variables, xt, including: price of fuel oil No. 6, aggregate water
stock and river flows.

2. In the outside sample (i.e. from January, 2007 to December, 2008) select a subsample of
the same days of the week as t and with same active units.

3. For each day τ in the subsample built in step 2, define the vector of state variables as
specified in step 1, xτ .

4. Compute the Euclidean distance between xt and xτ for every τ .

5. Select the days of the subsample built in step 2 associated with the lowest 30 distances
computed between the state variable vectors.

6. Use the bids of those 30 days to perform a bootstrapping algorithm to estimate firm i’s
expectations in the previous dispatch mechanism setting22.

A second challenge that remains, however, is the projection of hydro units’ optimal bids.
This occurs because we do not directly estimate the parameters of the cost function for hydro
units we need. Hence, for hydro units, we do not compute the optimal bidding strategy following
the the structural first-order condition defined in (28). Instead, we use the estimated reduced
form of their dynamic problem, which varies across observed states, but ignore the fact that it
may change across equilibria.

Given the optimal bidding functions, the expectations and marginal cost estimates, we are
able to compute the equilibrium for an hypothetical scenario in which generating firms in Colom-
bia play the previous auction setting with simple bids between August 1st, 2011 and December
31st, 2012. Hence, the underlying consumer cost difference between the observed equilibrium for
the current dispatch and the simulated one for the previous auction format will serve to answer
which mechanism was more efficient when accounting for strategic behavior during a period of
normal hydrologic conditions.

Below, we present the results of our counterfactual experiment. These results allows us to
conclude that the aggregate cost of energy sold between August, 2011 and December, 2012 would
have been lower if the dispatch mechanism was under the previous auction setting, instead of
the current dispatch with complex bids.

22Notice that under the proposed algorithm, bids are sampled directly from the data within bands of observed
states to compute expectation in (28). We can do this thanks to the richness of our dat. Alternatively, we could
have estimated the probabilities using more restrictive estimators.
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Figure 4 shows the comparison between the daily average of the observed and the simulated
spot price. Moreover, we present the percentage difference between the two series in Figure 4.
The results show that the current dispatch mechanism is associated with higher prices in average.
In other words, before taking into account start-up costs, we find that the aggregate cost of
energy sold is systematically higher under the current dispatch mechanism. Such conclusion is
expected a priori as the dispatch defined by (1a) does not only accounts for the variable cost
of energy but also the start up costs of thermal units but for the start-up costs as well. In
mathematical terms, this is equivalent to compare the minima between a constrained (current
dispatch) and an unconstrained (previous dispatch) optimization problem.

Figure 4: Evolution the daily average of observed and simulated spot price between August 1st,
2011 and December 31st, 2012.
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However, we also find that spot prices increase not only because the marginal bidder submits
a higher price. As we present in Table 4, submitted bids under the observed equilibrium are
systematically higher as well. In other words, the actual submitted bid prices are much higher
in average than those which firms would have bid in the previous auction environment. This
result is consistent with the economic intuition. Specifically, since firms’ expect higher spot
prices in the equilibrium of the current dispatch mechanism, they find optimal to increase their
bid prices.

Table 5: Summary statistics of actual vs. simulated bids between August 1st, 2011 and December
31st, 2012 (COP/KWh)

Mechanism Mean Std.Dev. Min Max

Current dispatch 270.01 295.48 30.62 2113.91
Previous dispatch 258.62 300.47 30.62 2550.14

Nevertheless, it is important to compare also the total costs and revenue, which include start
up costs. For both scenarios we compute, on every day:

Cost =
23∑
h=0

N∑
i=1

Ji∑
j=1

m̂cijqijh +Aij1
start
ijh , (29)

as the total cost of energy produced, and

Revenue =

23∑
h=0

N∑
i=1

Ji∑
j=1

bijqijh +Aij1
start
ijh , (30)

as the total revenue of energy sold on the respective day.

The aggregate cost and revenue for both regimes between August 1st, 2011 and December
31st, 2012 are presented in Table 5. The results show that the old auction format is associated
with the higher aggregate costs of generation but also with lower aggregate revenue of energy
sold for the firms. This suggests that, although the current dispatch mechanism is designed
to reduce the total cost of the daily energy dispatch, the underlying incentives of the firms to
increase bid markups is such that the efficiency gains of the new dispatch benefits firms over
consumers. In other words, if the assumptions of our model and counterfactual exercise hold,
Colombian consumers would have saved about 786 billions of COP between 2011 and 2012 if
the dispatch mechanism was the previous simple-bid auction as used to be before 2009.

Table 6: Aggregate cost measures of dispatch between August 1st, 2011 and December 31st,
2012 (billions of COP)

Current mechanism Previous dispatch

Cost of energy produced 8,671.95 9,214.84
Revenue of energy sold 13,760.84 12,974.52

7 Conclusions

In this study we estimate a structural model of bidding behavior that accounts for the presence of
complex bids and the dynamic incentives of both hydro and thermal generators in the Colombian
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electricity market. The purpose of this study was to evaluate the impacto on efficiency and prices
of the shift to the current dispatch mechanism for generation.

Using observed auction data and bilateral contract sales position, we are able to identify the
unobserved distribution of expectations and marginal production costs of thermal generators,
which are used in turn to perform a counterfactual experiment that allows us to compare the
realized cost of the energy sold between August, 2011 and December, 2012 with the cost the
system would have faced if the dispatch mechanism was the previous simple-bid auction format
as before Resolution 051 (2009), for the same period.

The estimation algorithm relies on a bootstrapping strategy, standard in the literature for
energy markets, by using a computational model introduced by Camelo et al. (2016) to com-
pute the bootstrapped moments. Average estimates of the marginal costs parameters are in
average consistent with the intuition about the differences in costs across fuel types and the
non-convexities of thermal generation technology. In other words, marginal costs are higher for
fuel oil units than for units that use natural gas. At the same time, coal units show a higher
scale efficiency. That is, marginal costs decrease faster as output increases over the minimum
output for coal units than for other fuel types.

We develop an approach to compute a counterfactual experiment, using observed auction
data under different dispatch mechanisms to compute the counterfactual decisions of firms. In
particular, we use the observed behavior of firms under the previous simple-bid auction systems,
to simulate their counterfactual behavior during a time window when the new mechanism was
already in place.

The results imply that the aggregate cost of energy sold during our period of study would
have been higher if the dispatch mechanism was under the previous auction setting, instead of
the current dispatch with complex bids. However, at the same time, we find that the aggregate
revenue for all the energy sold during the evaluation period is higher under the current dispatch
as firms have more incentives to increase their markups. In other words, after accounting for
strategic behavior, the current dispatch mechanism used in the Colombian electricity market
between August, 2011 and December, 2012 increased both efficiency and prices. This result is
consistent with descriptive evidence shown in Riascos et al. (2016).

Our study relies on two assumptions that facilitated the estimation and computation of the
model. First, we have assumed that contract positions are exogenous and fixed them across
counterfactual equilibria. Second, we have approximated the behavior of hydro units using
a reduced form that is not necessarily stable across counterfactual equilibria. Relaxing these
assumption requires the addition of structure to the model, and will be the focus of future
research.

References

Balat, J., Carranza, J. E., & Martin, J. D. (2015). Dynamic and strategic behavior in hydropower-
dominated electricity markets: Empirical evidence for colombia. (Working paper. Bor-
radores de Economı́a No. 886. Banco de La República.)

Camelo, S., de Castro, L., Papavasiliou, A., Riascos, A., & Oren, S. (2016). A structural model
to evaluate the transition from self-commitment to centralized unit commitment. (Working
paper. Borradores de Economı́a No. 992. Banco de La República.)

Carranza, J. E., Houde, J.-F., & Clark, R. (2011). Dynamic entry and firm reconfiguration in
the canadian gasoline markets. (Working paper.)

27



Carranza, J. E., Riascos, A. J., Morán, J. J., & Bermeo, L. (in press). Mecanismos de mercado
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Appendix

A The computational model for the dispatch

As mentioned in the previous sections, we use the dispatch model introduced by Camelo et al.
(2016) in order to estimate each firm’s expectations about its competitors’ strategies. In this
section we provide a detailed description of our model of ideal dispatch. The model is cast as a
mixed integer linear program. We also highlight the main differences with the ISO ideal dispatch
model.

A.1 Model setup

A.1.1 Additional Nomenclature

• qsoak
jh is the power provided by unit j during hour h and start-up phase.

• qdes
jh is the power provided by unit j during hour h and de-synchronization phase.

• UBjk is the k-th ramp up blocks of unit j.

• DBjk is the k-th ramp down blocks of unit j.

• ujh is a binary variable indicating if unit j is up in period h.

• zjh is a binary variable indicating if unit j is started in period h.

• djh is a binary variable indicating if unit j is stopped in period h.

• usoal
jh is a binary variable indicating if unit j is in the start-up phase.

• udis
jh is a binary variable indicating if unit j is in the dispatch phase.

• udes
jh is a binary variable indicating if unit j is in the shut-down phase.

• nsoak
jh represents the number of hours during the start-up phase (since start-up until output

is at the technical minimum).

• ndes
jh represents the number of hours during shut-down phase (from a technical minimum

to shut-down).

• njh is the minimum up-time of unit j.

• ljh is the minimum down-time of unit j.

A.1.2 Ramp model

The ramp model is similar to Simoglou et al (2010). We assume that thermal units follow three
consecutive phases of operation: (i) soak or start-up phase (from zero to technical minimum),
(ii) dispatchable (when output is between the technical minimum and maximum feasible power
output) and (iii) de-synchronization phase (when output is below the technical minimum and
just before shut-down). In the soak phase, the power output follows a block model.
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Figure 6: Ramp model of a thermal unit

23

and maximum feasible power output) and (3) de-synchronization phase (when output
is below the technical minimum and just before shut-down).

In the soak phase, the power output follows a block model. In the dispatchable phase
we assume an affine model for power. In the de-synchronization phase we assume a 
block model.

Figure A-1: Ramp model of a thermal plant

c) Optimization problem
The ideal dispatch is the solution to the following optimization problem. It is a mixed
integer linear program.
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In the dispatchable phase we assume an affine model for power. In the de-synchronization
phase we assume a block model. Figure 6 shows an example of the assumed ramp model for a
thermal unit with a ramp of K = 4 blocks.

A.1.3 Optimization problem

The ideal dispatch is the solution to the following optimization problem. It is a mixed integer
linear program.

Objective function

min
qjh,q

soak
jh ,qdispjh ,qdesjh ,zjh,djh,ujh,u

soak
jh ,udispjh ,udesjh

23∑
h=0

∑
j

bjqjh +Ajzjh (31)

Restrictions

Feasible output:

D̃h ≤
∑
j

qjh, ∀h ∈{0, . . . , 23} (32)
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Soak phase starts immediately following start-up:23

h∑
τ=h−nsoak

j +1

ziτ = usoak
jh (33)

Now let Qsoak
jr be the power provided by unit j during period r following start-up:

Qsoak
jr =

r∑
k=1

UBjk.

Then, during soak phase, the power output of the unit is constrained by:

h∑
τ=h−nsoak

j +1

ziτQ
soak
jh−τ+1 = qsoak

jh (34)

Dispatch phase: We simplify the current model by assuming linear up and down ramp
constraints.

qjh ≤
UR+ b× qjh−1

a
+N(usoak

jh + udes
jh ) (35)

qjh ≥
−DR+ c× qjh−1

d
−N(usoak

jh + udes
jh + djh), (36)

where N is a sufficiently large parameter.24

The de-synchronization phase starts before shut-down:

h+ndes
j∑

τ=h+1

djτ = udes
jh . (37)

Now let the power provided by plant j, for s periods after de-synchronization is started be
defined as:

Qdes
jHdes−r+1 =

r∑
k=1

DBjk

Then, during the de-synchronization phase the power output of a unit is constrained by:25

h+ndes
j∑

τ=h+1

djτQ
des
jh+1−τ+ndes

j
= qdes

jh (38)

Minimum up time. Units are constrained to be up for nupj periods after they are started up:

h∑
τ=h+nup

j +1

zjτ ≤ ujh (39)

23We make two simplifications with respect to the Colombian ISO ideal dispatch model. We only consider one
type of start-up (as opposed to a cold, warm, or hot, start-up) and we only consider one type of configuration per
plant (i.e., a fixed ramp per plant). Not sure what ramp has to do with configuration.

24We have approximated the ISO model for the dispatchable region. The ISO model is based on maximum
and minimum power variations depending on the level of outputs (segments model called Model number 2 by
ISO). Our model for the dispatchable region is a special case of ISO model number 3 used by some plants as an
alternative to model 2. This discussion is esoteric and should probably be removed.

25This is a simplification of the current Colombian dispatch model on two dimensions. We do not consider an
alternative shut down ramp whenever output is not at the technical minimum.
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Minimum down time. Units are constrained to be down for ndownj periods after they are shut
down:

h∑
τ=h+ndown

j +1

djτ ≤ 1− ujh (40)

Power Output Constraints:

qjh ≥ qsoak
jh + qdes

jh + qsoak
jh + q

j
udisp
jh (41)

qjh ≤ qsoak
jh + qdes

jh + qsoak
jh + qju

disp
jh (42)

qjh ≤ qsoak
jh + qdes

jh + qsoak
jh + qju

disp
jh + (q

j
− qj)zjh+ndes

j
(43)

Logical status of commitment. The following are restrictions required for the transition of
the binary variables:

ujh = usoak
jh + udisp

jh + udes
jh (44)

zjh − djh = ujh − ujh−1 (45)

zjh + djh ≤ 1 (46)

A.2 Simulation exercise

In this subsection we perform a small simulation exercise to illustrate the goodness of fit of this
dispatch model compared with the observed ideal dispatch computed by XM.

To test the validity of our model, we simulate the period from June 2010 to October 2012
using real start-up costs and bids. Then, we compare the simulated market price with the real
one, as reported by XM. Below, Figure 7 shows the actual versus the sumulated market prices
for three hourly periods, including the peak hour h = 19. On the other hand, Figure 8 shows
the same comparison but between the daily averages of the real versus the simulated market
price.
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Figure 7: Comparison between actual and simulated market prices by hourly periods
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Figure 8: Comparison between actual and simulated average daily market prices
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As the plots show, except for the highest peaks, the model has a good fit for the market
price. In Table 6 we present a comparison between some summary statistics between real and
simulated market prices.

Table 7: Summary statistics for actual and simulated hourly market prices

Actual Simulated

Min 26.97 27.54
Quantile 5 30.71 30.73

Quantile 10 33.32 32.72
Quantile 20 52.21 51.58
Quantile 50 87.73 79.17
Quantile 80 148.74 113.72
Quantile 90 181.76 123.85
Quantile 95 215.79 141.49

Max 1889.15 153.44

Notice that our computational model underestimates actual market prices, specially for peak
hours. One of the reasons for this discrepancy could be that in the actual dispatch performed by
the exchange there are a number of complex rules which exclude generators deemed inflexible
from participation in the price setting.

In hour theoretical model we assume that firms cannot fully anticipate the meeting of such
additional restrictions and that the implied differences in the market outcomes can be summa-
rized in the random component of the demand εht.

This computational model for the dispatch is used to generate the bootstrapped moments
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that allows us to approximate each firm’s expectation terms that are implied in the optimality
conditions of the model. In other words we use the optimization algorithm to simulate several
equilibrium to get a distribution of different market outcomes that will empirically approximate
firm i’s beliefs about the realization of its own profits, which will subsequently used to construct
the empirical moment conditions defined in (23).

B Indentification of marginal costs of hydro plants

B.1 Markup composition

To estimate the components of the hydro plants’ pricing equation, we follow the s identification
strategy proposed by Martin (2015), Hence, we begin with the first-order necessary conditions
when strategy, q∗ij(p), is optimal

pij = C ′(q∗ij(p)) + Θ
(
p, q∗ij(p); w

)
+ Ψ

(
q∗ij(p),ωij

)
, (47)

where Θ(·) and Ψ(·) are defined as the static and dynamic component of the markup, respectively.

Notice that Ψi ≡ Ψ
(
q∗ij(p),ωij

)
is nonngeative and can be interpreted as firm i’s intertem-

poral opportunity cost of water.

Assuming that Ψi is a nonincreasing function of firm i’s own current stock and own future
inflows, whenever i’s current stock is full and its expected future inflows are positive, the firm’s
opportunity cost will be equal to its minimum, that is, Ψi = 0.

Given the assumptions, we employ the following strategy for identifying both markup terms
using the available bidding data.

1. For every day t in the data, find the day t∗ such that wt∗ 6= wt and ωt∗ → ωt. Then, since
C ′(·) = λij is constant on q for hydro plants, (pit − pit∗)→ (Θit −Θit∗) 6= 0.

2. By construction, ∆Θt ≡ (Θit−Θit∗) can be expressed as the difference of two econometric
equations. Therefore, Θt can be inferred, up to a constant, by estimating the following
expression:

∆Θt = ft(xit)− ft∗(xit∗) + (µit − µit∗), (48)

where ft(·) and ft∗(·) are parametric or nonparametric functions to be estimated, xit is a
vector of covariates that includes wt and µit − µit∗ is a zero mean stochastic error.

3. Given the estimates of ft and ft∗ , the dynamic markup term can also be inferred, up to a
constant,

pijt = λ̂ij + (k + f̂t(·)) + Ψ̂it, (49)

where k is a constant and λ̂ij is estimated using the bootstrapping algorithm.

4. Finally, the constant can be identified from the observations when wit = max{wit}.
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C Estimation results

C.1 Parameter estimates by generator

In this section we present the parameter estimates associated to the marginal costs of all the
thermal units in our sample data. It is worth to mention that these coefficients by themselves
lack of economic interpretation since the constant and variable part of the marginal cost function,
as well as the ramping cost part depend on the fuel prices.
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Table 8: Coefficient estimates of the marginal cost function for units using diesel

Unit γcons
1 γPfuel

1 γFoil6
1 γTRM

1 γCERE
1 γFAZN

1 γcons
2 γPfuel

2 γFoil6
2 γTRM

2 γcons
3 γPfuel

3 γFoil6
3 γTRM

3

TERMOCANDELARIA 1 −16076.01∗ −766.00∗ −167.51∗ 3421.85∗ −310.90∗ 4233.60∗ 551.30 −36.82 14.38 −45.56 79.53 1.99 −9.06 −2.97
(2976.14) (163.41) (85.63) (289.02) (101.16) (1559.66) (5027.92) (505.18) (27.17) (190.94) (1666.43) (67.15) (17.63) (166.31)

TERMOCANDELARIA 2 −7781.39∗ −903.72∗ −10.87 2304.32∗ −158.11 1506.57∗ 33521.69∗ −1080.89∗ 538.97∗ −3778.37∗ 252.73 −3.02 −4.77 −24.84
(3459.67) (132.75) (79.11) (316.29) (87.59) (776.78) (58373.82) (6349.19) (139.01) (986.55) (182.81) (7.01) (3.40) (19.25)

TERMOEMCALI 1 −37948.75∗ 5045.31∗ −404.00∗ 176.44∗ −983.22∗ −7263.78∗ −385.99∗ 14.17∗ 15.43∗ 17.53∗ 119.61 −3.45 −7.03 −4.04
(838.75) (57.93) (21.74) (63.81) (43.10) (106.12) (72.58) (3.87) (1.84) (10.27) (172.02) (8.61) (4.60) (17.44)

FLORES 1 3998.19∗ −27.78 −239.22∗ −234.69∗ 28.38∗ 550.32∗ −12.50∗ −0.80∗ 3.49∗ −1.28∗ 0.41 0.69 −1.82∗ 1.17
(634.76) (74.16) (12.93) (21.72) (13.62) (115.07) (6.45) (0.33) (0.22) (0.43) (19.34) (0.69) (0.55) (1.55)

TERMOSIERRAB −17745.33∗ 1670.95∗ 55.00∗ 449.65∗ −163.43∗ −1268.96∗ 148.14∗ −10.40∗ −1.74∗ −5.53∗ −44.42 2.96 0.38 2.00
(973.39) (77.59) (14.54) (37.31) (23.12) (66.47) (12.44) (0.84) (0.20) (0.77) (40.84) (2.57) (0.49) (2.39)

TERMOVALLE 1 3623.00∗ 220.30∗ −67.04∗ −685.73∗ 63.46∗ 544.84∗ 1.57 −7.59∗ 2.31∗ 6.28 −9.40 1.30 −0.60 0.36
(290.72) (13.70) (3.48) (25.56) (10.86) (41.14) (40.04) (1.60) (0.47) (5.65) (34.45) (2.44) (0.54) (3.41)

Bootstraped standard errors are in parentheses. ∗ Significant at 5%.

Table 9: Coefficient estimates of the marginal cost function for units using fuel Oil

Unit γcons
1 γPfuel

1 γFoil6
1 γTRM

1 γCERE
1 γFAZN

1 γcons
2 γPfuel

2 γFoil6
2 γTRM

2 γcons
3 γPfuel

3 γFoil6
3 γTRM

3

CARTAGENA 1 9035.61∗ −1865.81∗ 965.93∗ −178.18 28.45 4905.86∗ −7036.72∗ 358.68∗ −23.62 543.47∗ 1983.32 −139.44 8.95 −110.76
(3940.56) (238.31) (62.55) (486.94) (109.11) (1024.69) (2011.41) (72.56) (34.12) (196.77) (1415.19) (82.69) (33.32) (76.01)

CARTAGENA 2 18859.23∗ −1921.51∗ 596.07∗ −511.19∗ −1110.88∗ 5656.78∗ −2890.88∗ 244.90∗ −38.67∗ 140.78 −231.99 15.25 32.89 −23.47
(2168.89) (205.01) (46.63) (254.83) (78.06) (520.28) (721.17) (55.91) (19.94) (83.24) (747.82) (37.93) (21.36) (55.21)

CARTAGENA 3 824.78 −1177.34∗ 613.22∗ 875.00∗ −831.64∗ 5542.06∗ −979.77 87.35∗ −24.55∗ 55.42 −11.28 −12.99 8.71 6.94
(2200.24) (222.40) (44.48) (253.99) (74.19) (545.86) (590.67) (29.41) (12.30) (51.07) (428.21) (20.07) (14.78) (37.29)

BARRANQUILLA 3 −43301.74∗ 5803.52∗ −416.86∗ 45.28 −966.46∗ −5433.90∗ 1998.20∗ −101.74∗ −79.26∗ −59.12∗ −231.18 13.23 9.28 5.01
(980.10) (92.73) (25.13) (85.33) (33.36) (205.06) (204.28) (10.94) (6.32) (12.93) (212.49) (11.35) (7.28) (13.71)

BARRANQUILLA 4 −44633.65∗ 5088.79∗ −290.12∗ 792.55∗ −797.75∗ −3238.51∗ 2824.83∗ −189.34∗ −41.52∗ −109.20∗ −698.38∗ 48.26∗ 9.82 25.81
(961.92) (113.28) (24.67) (103.21) (34.29) (268.60) (240.30) (13.97) (10.31) (14.55) (234.78) (14.15) (10.89) (14.02)

Bootstraped standard errors are in parentheses. ∗ Significant at 5%.
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Table 10: Coefficient estimates of the marginal cost function for units using coal

Unit γcons
1 γPfuel

1 γFoil6
1 γTRM

1 γCERE
1 γFAZN

1 γcons
2 γPfuel

2 γFoil6
2 γTRM

2 γcons
3 γPfuel

3 γFoil6
3 γTRM

3

PAIPA 1 2253.99∗ 90.25 88.40∗ −663.38∗ 347.02∗ 25.23 −720.49∗ 27.56∗ 10.16∗ 42.23∗ 147.17 −1.64 −6.62 −9.61
(765.32) (55.71) (10.49) (43.57) (22.83) (102.42) (53.40) (6.10) (2.25) (10.69) (91.41) (14.10) (5.04) (13.82)

PAIPA 2 −7446.12∗ −112.48∗ 244.58∗ 576.78∗ 749.71∗ −90.41 −39.79 15.95∗ −6.24∗ −12.27∗ 25.55 −3.85 1.25 1.09
(557.89) (40.05) (10.45) (31.52) (17.66) (71.25) (35.89) (3.32) (0.80) (4.73) (53.10) (6.09) (2.00) (6.34)

PAIPA 3 8778.63∗ −1235.31∗ 312.08∗ 195.60∗ 488.06∗ −2147.85∗ −209.51∗ 44.32∗ −6.22∗ −32.22∗ 63.94 −9.33∗ 0.45 5.10
(533.50) (40.49) (8.27) (35.51) (15.75) (73.03) (17.15) (1.65) (0.54) (2.83) (36.73) (4.10) (2.20) (5.35)

PAIPA 4 −801.38 −630.66∗ 343.08∗ 467.87∗ 502.61∗ 28.15 0.60 3.66∗ −1.80∗ −3.67∗ 24.11 −3.18 1.37 0.11
(522.47) (37.68) (9.93) (29.42) (10.59) (75.03) (7.29) (0.44) (0.16) (0.74) (24.59) (1.81) (1.13) (3.00)

GUAJIRA 1 1035.91∗ −70.75∗ 0.76 −0.37 −5.49 −264.51∗ −25.99∗ −2.99∗ 1.25∗ 6.57∗ 6.28 1.82∗ −0.58∗ −2.93∗

(140.83) (11.25) (2.50) (8.51) (5.16) (22.81) (3.10) (0.34) (0.14) (0.52) (4.18) (0.48) (0.22) (0.62)
GUAJIRA 2 −308.36∗ 86.93∗ −14.31∗ −32.48∗ −33.43∗ −106.96∗ −28.06∗ −4.16∗ 1.40∗ 8.44∗ 8.38∗ 2.34∗ −0.68∗ −3.87∗

(162.92) (13.51) (2.58) (10.18) (4.97) (24.20) (3.13) (0.46) (0.10) (0.59) (3.92) (0.58) (0.16) (0.71)
TASAJERO 1 1321.49∗ −53.61∗ 0.40 −90.74∗ 47.07∗ −218.27∗ −17.39∗ 1.99∗ −0.08∗ −0.61∗ 10.72∗ −1.24∗ 0.06 0.39

(68.67) (4.34) (1.11) (3.40) (1.69) (9.70) (0.47) (0.12) (0.04) (0.19) (1.09) (0.20) (0.08) (0.26)
ZIPAEMG 2 3581.06∗ −180.07∗ −21.26∗ −145.07∗ −54.77∗ 390.52∗ −278.30∗ −1.72 −5.87∗ 46.26∗ 185.94 3.00 2.65 −32.25

(222.62) (16.14) (3.47) (13.06) (8.91) (33.45) (58.32) (1.78) (1.77) (7.40) (367.27) (10.03) (10.07) (41.90)
ZIPAEMG 3 5352.35∗ −383.41∗ −112.76∗ −23.76 69.31∗ −94.56∗ −0.47 −4.11∗ 9.40∗ −4.15∗ −6.57 2.78 −3.56 0.63

(241.01) (18.63) (5.13) (14.89) (10.26) (36.68) (10.96) (0.83) (0.79) (1.86) (25.50) (2.81) (2.22) (4.27)
ZIPAEMG 4 3747.15∗ −308.08∗ −86.69∗ 92.17∗ −41.14∗ 151.65∗ 118.22∗ −5.28∗ −1.84∗ −5.68∗ −65.31∗ 2.13 2.24 2.98

(254.13) (18.69) (4.93) (15.65) (10.43) (38.12) (6.99) (0.60) (0.49) (0.99) (28.57) (3.11) (1.83) (4.00)
ZIPAEMG 5 6696.89∗ −324.36∗ −139.08∗ −256.85∗ 73.03∗ −453.92∗ 41.32∗ −11.61∗ 1.85∗ 9.96∗ −31.76 5.31 −0.56 −3.16

(236.29) (18.15) (5.17) (15.92) (10.85) (35.92) (8.32) (1.68) (0.66) (2.57) (36.05) (8.44) (2.34) (12.13)

Bootstraped standard errors are in parentheses. ∗ Significant at 5%.
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Table 11: Coefficient estimates of the marginal cost function for units using gas

Unit γcons
1 γPfuel

1 γFoil6
1 γTRM

1 γCERE
1 γFAZN

1 γcons
2 γPfuel

2 γFoil6
2 γTRM

2 γcons
3 γPfuel

3 γFoil6
3 γTRM

3

MERILECTRICA 1 −5616.88∗ 310.29∗ 268.05∗ −169.77∗ 521.16∗ 3009.55∗ 120.78∗ −4.66∗ −18.42∗ 9.72∗ 23.60 0.96∗ 0.75 −5.07∗

(345.45) (6.95) (15.39) (30.19) (21.90) (80.21) (24.14) (0.53) (2.39) (2.05) (17.49) (0.26) (1.25) (2.18)
PROELECTRICA 1 −724.61∗ 15.53∗ 10.28∗ 61.99∗ 63.64∗ 415.41∗ −117.31∗ −3.92∗ −5.42∗ 26.31∗ 1.51 0.00 −0.04 −0.16

(30.53) (0.36) (0.54) (4.21) (1.44) (5.13) (29.24) (0.51) (0.95) (4.33) (3.95) (0.06) (0.11) (0.54)
PROELECTRICA 2 −843.14∗ 20.16∗ 14.20∗ 68.11∗ 59.98∗ 485.22∗ −79.19 14.24∗ 20.91∗ −28.80∗ 2.99 −0.08 −0.15 −0.14

(31.40) (0.29) (0.54) (4.23) (1.42) (5.18) (40.54) (1.32) (2.20) (6.45) (2.47) (0.06) (0.11) (0.42)
TEBSAB −1129.40∗ 0.70 12.33∗ 164.30∗ −9.02∗ −37.31∗ 1.86∗ −0.02∗ 0.13∗ −0.37∗ −1.41∗ 0.03∗ −0.07∗ 0.23∗

(57.21) (1.19) (2.43) (7.62) (4.62) (11.65) (0.33) (0.01) (0.02) (0.04) (0.55) (0.01) (0.04) (0.07)
FLORES 4B −2402.80∗ 15.43∗ 210.39∗ 34.51 63.90∗ 1377.08∗ −5.29∗ 0.37∗ −0.89∗ 1.25∗ 3.44 −0.15∗ 0.40 −0.72

(336.81) (3.75) (18.99) (44.95) (8.25) (51.14) (1.26) (0.03) (0.13) (0.26) (2.37) (0.07) (0.27) (0.52)
TERMOCENTRO CC −6139.71∗ 205.01∗ 521.58∗ −232.72∗ 452.36∗ 2357.86∗ −57.51∗ −5.47∗ −9.35∗ 24.25∗ 23.65∗ 1.48∗ 3.18∗ −8.36∗

(618.47) (14.66) (37.47) (27.33) (19.00) (119.28) (4.38) (0.30) (0.58) (1.02) (8.33) (0.22) (0.50) (1.24)
TERMOYOPAL 2 6503.54∗ 23.40∗ 29.71∗ −988.54∗ 199.57∗ −810.41∗ −968.81∗ −6.96∗ −2.84∗ 139.84∗ 124.76∗ 2.21∗ 3.00∗ −22.36∗

(157.86) (2.74) (6.08) (20.27) (6.04) (33.71) (26.41) (0.45) (0.87) (3.38) (46.88) (0.57) (1.04) (6.99)

Bootstraped standard errors are in parentheses. ∗ Significant at 5%.
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C.2 Figures of estimated marginal costs

In this section we present the estimated series of daily average marginal costs implied by the
model specification (7).

In particular, figures 9-13 compare our estimated series with those implied by equation (25)
introduced by de Castro et al. (2014). Notice that the estimated series implied by specification
(7) have a pattern of steeper peaks which is directly associated with the technical inflexibilities
faced by the marginal thermal units within a day. This structure of the marginal costs allows
us to better identify whether peaks in the market spot price are caused by technological issues
or by the exercise of unilateral market power exercised by the generating firms.

Figure 9: Estimated vs. engeneering marginal costs of diesel units
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Figure 10: Estimated vs. engeneering marginal costs of coal units, 1 of 2
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Figure 11: Estimated vs. engeneering marginal costs of coal units, 2 of 2
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Figure 12: Estimated vs. engeneering marginal costs of fuel oil units
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Figure 13: Estimated vs. engeneering marginal costs of natural gas units
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At the same time, below figures .... compare the series of the daily average estimated marginal
costs with the corresponding daily series of the observed price bid made by each unit. Notice
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that for several days, the estimated markups are negative. Such events occur on days when the
firm’s supply function at the respective unit’s bid price is lower than its aggregate energy sold
in the bilateral contract market, Si(pij) < vi. This is consistent with literature regarding the
bilateral contracts in electricity markets (Hortacsu & Puller, 2008; Wolak, 2003).

Figure 14: Price bids and marginal costs of diesel units
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Figure 15: Price bids and marginal costs of coal units, 1 of 2
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Figure 16: Price bids and marginal costs of coal units, 2 of 2
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Figure 17: Price bids and marginal costs of fuel oil units
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Figure 18: Price bids and marginal costs of natural gas units
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