Supplemental Table 1. Primers utilized to introduce sequence variations in Tg, AChE and secretory ChEL domain. a. Amino acid positions are numbered in the precursor protein including the signal peptide of bTg or mouse Tg, reference sequences 7N4Y_1 and NP_033401.2 respectively. Bovine Tg substitution variants were generated in recombinant bTg expression plasmid (8). Equivalent amino acid positions to bTg C2444 and C2455 were manipulated in recombinant mouse ChEL (6) and in recombinant myc-tagged human AChE (9) to generate the indicated mutations. Mouse Tg variants at an amino acid equivalent to bTg K2225 were generated in recombinant mouse ChEL (6). FP, forward primer; RP, reverse primer.

Primer name	DNA sequence of the primers $(5'-3')$	Mutation
FP-Tg-C408A	CAGATTTACCGCATCCGCCCCACCCTCCATCAAG	Bovine Tg-C408A
RP-Tg-C408A	CTTGATGGAGGGTGGGGGGGGGATGCGGTAAATCTG	-
FP-Tg-C608A	CAGCTCTCAGGGCGCCGGGCAGGCACCT	Bovine Tg-C608A
RP-Tg-C608A	AGGTGCCTGCCCGGCGCCCTGAGAGCTG	
FP-ChEL-C2444A	CCTTGGCAAAGGAGGTTGGAGCCCCTACTTCATCCATC	Mouse ChEL- C2444A
RP-ChEL-C2444A	GATGGATGAAGTAGGGGCTCCAACCTCCTTTGCCAAGG	
FP-ChEL-C2455S	CAGGAAGTGGTATCAAGTCTCCGCCAGAAGC	Mouse ChEL- C2455S
RP-ChEL-C2455S	GCTTCTGGCGGAGACTTGATACCACTTCCTG	
FP-Tg-K2225E	TGGGCACTGCCTGGGAGCAAGTATACCGG	Mouse ChEL- K2225E and mouse
RP-Tg-K2225E	CCGGTATACTTGCTCCCAGGCAGTGCCCA	Тg-К2225Е
FP-AChE-C2444A	CCACCTTGTGGGCGCTCCTCCAGGCGGC	Human AChE- C2444A-Myc
RP-AChE-C2444A	GCCGCCTGGAGGAGCGCCCACAAGGTGG	
FP-AChE-C2455S	CAGAGCTGGTAGCCTCCCTTCGGACACG	Human AChE- C2455S-Myc
RP-AChE-C2455S	CGTGTCCGAAGGGAGGCTACCAGCTCTG	
FP-Tg-C2444A	CAAAGGAGGTTGGCGCCCCAGCTCGTCTG	Bovine Tg-C2444A
RP-Tg-C2444A	CAGACGAGCTGGGGGGCGCCAACCTCCTTTG	-
FP-Tg-C2455S	CAAGAAATGGTGTCCTCCCTCCGCCAGGAG	Bovine Tg-C2455S
RP-Tg-C2455S	CTCCTGGCGGAGGAGGACACCATTTCTTG	

Supplemental Table 2: Species-specific amino acid numbering of Tg, and secretory ChEL. Residues equivalent to those in bovine Tg were identified using MegAlign (DNASTAR) to align the corresponding primary protein sequences. For simplicity, throughout the main text and the remaining portion of the supplemental text, all residues are referred to using numbering of bovine Tg, including signal peptide (UniProtA0A4W2CHS8). N/A: Not Applicable.

*Note: recombinant human Tg was not used in this study.

Protein :	bovine Tg	mouse Tg	human Tg*	mouse ChEL domain
Amino acid	C408	C408	C408	N/A
numbering:	C608	C608	C608	N/A
species-	K2225	K2222	K2223	K68
equivalent	C2444	C2441	C2442	C287
positions	C2455	C2452	C2453	C298

Supplemental Figure Legends

Supplemental Figure S1. Primary structure of Tg.

Tg regions I, II, III and ChEL are indicated at the bottom of the representation. Tg domains are described above the regions, with amino acid numbering above derived from hTg.

Supplemental Figure S2. WT and mutant Tg protein export from transfected thyrocytes.

A. PCCL3 *TG* knockout (*TG*-KO) cells were either untransfected or stably transfected to express the indicated bTg constructs. Serum-free media (M) was collected for 48 h, the cells (C) were lysed, and both were analyzed by reducing SDS-PAGE, electrotransfer to nitrocellulose, and immunoblotting with polyclonal anti-Tg.

B. From 3 independent experiments like that shown in panel A, the relative secretion of Tg was calculated for each construct; mean \pm S.D; *, p < 0.05.

Supplemental Figure S3. Sites of contact between ChEL and Tg region I.

Local structural representation of bovine Tg [PDB 7n4y (5)] prepared using UCSF ChimeraX (4). The contact interfaces between ChEL (in gold) and Tg region I from the same Tg monomer (in green). K2225 within ChEL is located at the contact interface #1. C2444 and C2455 (in pink) are at a distance from the contact interfaces.

Supplemental Figure S4. Physical proximity between Tg-K2225 and Tg-W1090.

A. Local structural representation from bovine Tg [PDB 7n4y (5)] was prepared using UCSF ChimeraX (4). The distance (in Å) between the closest atoms of K2225 (ChEL, in gold) and W1090 (region I, in green) is shown.

B. Structure from human Tg [PDB 6SCJ (2)].

C. Bioinformatic analyses of K2225 in ChEL (gold) and bTg region I (green) using Coot (3) and UCSF ChimeraX (4).

Supplemental Figure S5. Absence of detectable disulfide bond between bTg-C2444 and bTg-C2455 by cryoEM.

Electron density map and structural model with local resolution scale shown, highlighting C2444 and C2455, in which the two Cys side chains are pointing in opposite directions. Based on primary data in (5).

Supplemental Figure S6. Role of the C2444-C2455 disulfide bond in the trafficking of AChE.

A. Schematic of WT AChE from (7) highlights three intramolecular disulfide bonds with one disulfide loop (circled in red) that is equivalent to bTg C2444-C2455.

B. 293T were either nontransfected (NT) or transfected to express the indicated AChE-Myc constructs. After a 13 h period, the media (M) were collected and cells were lysed (C) and analyzed by SDS-PAGE under nonreducing (*left*) and reducing (*right*) conditions, electrotransfer to nitrocellulose, and immunoblotting with anti-Myc antibody. β -actin is a loading control.

C. From 3 independent experiments like that shown in panel B, the relative secretion of AChE-Myc was calculated for each construct; mean \pm S.D; *, p < 0.05.

References Cited in Supplement

- 1. Citterio CE, Morishita Y, Dakka N, Veluswamy B, Arvan P (2018) Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine. J Biol Chem 293:4860-4869.
- 2. Coscia F, Taler-Vercic A, Chang VT, Sinn L, O'Reilly FJ, Izore T, Renko M, Berger I, Rappsilber J, Turk D, Lowe J (2020) The structure of human thyroglobulin. Nature 578(7796):627-630.
- 3. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132.
- Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27:14-25.
- 5. Kim K, Kopylov M, Bobe D, Kelley K, Eng ET, Arvan P, Clarke OB (2021) The structure of natively iodinated bovine thyroglobulin. Acta Crystallogr D Struct Biol 77:1451-1459.
- 6. Lee J, Di Jeso B, Arvan P (2008) The cholinesterase-like domain of thyrogobulin functions as an intramolecular chaperone. J Clin Invest 118:2950-2958.
- 7. MacPhee-Quigley K, Vedvick TS, Taylor P, Taylor SS (1986) Profile of the disulfide bonds in acetylcholinesterase. J Biol Chem 261:13565-13570.
- Park YN, Arvan P (2004) The acetylcholinesterase-homology region is essential for normal conformational maturation and secretion of thyroglobulin. J Biol Chem 279:17085-17089.
- 9. Wang X, Lee J, Di Jeso B, Treglia AS, Comoletti D, Dubi N, Taylor P, Arvan P (2010) Cis and trans actions of the cholinesterase-like domain within the thyroglobulin dimer. J Biol Chem 285:17564-17573.

Primary Structure of Thyroglobulin

Citterio et al., Supplemental Figure S1

Citterio et al., Supplemental Figure S2

Citterio et al., Supplemental Figure S5

