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A B S T R A C T   

With the emergence of large amounts of historical records on adverse impacts of hazardous events, empirical 
predictive modeling has been revived as a foundational paradigm for quantifying disaster vulnerability of so
cietal systems. This paradigm models societal vulnerability to hazardous events as a vulnerability curve indi
cating an expected loss rate of a societal system with respect to a possible spectrum of intensity measure (IM) of 
an event. Although the empirical predictive models (EPMs) of societal vulnerability are calibrated on historical 
data, they should not be experimentally tested with data derived from field experiments on any societal system. 
Alternatively, in this paper, we propose a Monte Carlo simulation-based approach to experimentally test EPMs of 
societal vulnerability. Our study applied an eigenvalue-based method to generate data on societal experiences of 
IM and pre-event vulnerability indicators. True models were designed to simulate event loss data. Supervised 
machine learning (ML) models were then trained on simulated data and were found to provide similar predictive 
performances as the true models. Our results suggested that the calibrated ML-EPMs could effectively quantify 
societal vulnerability given a normally experienced IM. To extrapolate a vulnerability curve for large IMs, 
however, simple models should be preferred.   

1. Introduction 

To reduce disaster losses to human societal systems due to hazardous 
events, it is essential to accurately identify vulnerable communities and 
measure their societal vulnerability to hazard losses. In this article, so
cietal vulnerability refers to the inability of a human community to 
withstand the intense forces of a hazardous event and the susceptibility 
of the community to losses due to the event. For measuring societal 
vulnerability, a commonly adopted method is to derive a vulnerability 
index, such as the social vulnerability index (SVI), as a function of pre- 
event indicators of societal characteristics (see, e.g., [1–8]). Without 
access to a sufficiently large number of historical records on intensity 
measures (IMs), such as peak ground acceleration (PGA) and peak sus
tained wind speed, and hazard losses, such as casualty and economic 
damage, modelers may select societal indicators based on knowledge 
generalized from previous case studies and expert opinions to create 
vulnerability indices as a convenient tool to swiftly map the spatial 
distribution of societal vulnerability to guide practices of hazard man
agement. However, because of its lack of direct association with his
torical data on event IMs and losses, this index-based approach to 

quantifying societal vulnerability can hardly be satisfactorily verified in 
terms of whether the developed indices can be used to measure what 
they are purported to indicate [9–11]. 

Unlike modelers using the index-based approach for social vulnera
bility, engineering scholars have proposed empirical models to quantify 
system vulnerability with historical records or experimental data on IMs 
of hazardous conditions and the corresponding system losses (see, e.g., 
[12–19]). These empirical vulnerability models can be used to estimate 
the probability of a system being in a damage state given IMs (see, e.g., 
[13,20]) or to predict the expected rate of loss with respect to a unit 
value of system exposed to the IMs (see, e.g., [12,16]). Such empirical 
methods have been widely and effectively applied to quantify vulnera
bility of structural and infrastructural systems, such as bridges [14,18, 
21,22], buildings [16,19], chemical processing facilities [23], concrete 
civil defense structures [24], dike systems [25], industrial horizontal 
vessels [26], industrial process pipelines [27], natural gas pipelines 
[28], nuclear containment structures [29], nuclear power plants [30, 
31], offshore wind turbine support structures [15], power transmission 
systems [32–34], railway networks [35], reinforced concrete columns 
[36], solar panels [37], and storage tanks [38,39]. Because the empirical 
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vulnerability models can provide predictions of expected probability or 
rate of loss of a considered system, they can be used to facilitate quan
titative risk assessment to stochastically compute the expected losses to 
the system or losses within a broader societal context given future or 
simulated hazardous events (see, e.g., [40,41]). In addition, with data on 
IMs and system damages produced from lab or field experiments, many 
of these empirical models can be tested such that their predictive per
formances can be compared with the ones of the true models. 

Given its advantages, the empirical predictive modeling approach 
has recently been applied to quantify societal vulnerability with 
consideration of societal characteristics of communities that are poten
tially exposed to future hazardous events (see, e.g., Wang et al. [11,42, 
43]). With this approach, societal vulnerability can be modeled as the 
relationship between the indicators of societal characteristics and the 
expected loss rate with respect to a unit value, such as casualty rate and 
economic loss rate per 1 US dollar of gross domestic product, given a 
spectrum of IM values. To estimate societal vulnerability in terms of the 
expected loss rate, quantitative modeling methods such as machine 
learning (ML) can be implemented based on model calibrations with 
historical data on IMs and event losses (see, e.g., [11,42–47]). Coupled 
with hazard maps showing the geographic distributions of locational 
probabilities of exceeding threshold IMs within a considered period, the 
predicted societal vulnerability in terms of the expectation of a loss rate 
can be applied to quantitatively assess and geographically map disaster 
risks in terms of the expected loss due to future hazardous events. As 
such a risk assessment can be conducted with regards to a specific type of 
loss, this computational application of the empirical predictive models 
(EPMs) of societal vulnerability is far beyond the utility of the 
index-based approach that merely produces an abstract index to quan
tify societal vulnerability. Despite the advantages of the EPMs, however, 
it is unethical to conduct a purely experimental study to verify the EPMs 
of societal vulnerability with real-world data, as it should be forbidden 
to generate data points on IMs and hazard losses with experiments on 
human communities. 

To experimentally verify the EPMs of societal vulnerability, in this 
paper, we propose a Monte Carlo (MC) approach to simulate IMs, in
dicators of societal vulnerability, and event losses based on historical 
records to train EPMs and compare the performances of the trained 
EPMs and predetermined true models. Given the usual large numbers of 
data points with zero losses in hazardous events, a 2-part model is ideal 
for prediction of loss rate (see, e.g., [42–44,48]). Accordingly, a true 
model in this study was comprised of 2 parts. The first part, or the true 
classification model, was a logistic regression (LR) model that simulated 
whether a data point, corresponding to a community that had experi
enced an IM of a hazardous event, involved positive loss. The second 
part, or the true regression model, was a multiple linear regression 
(MLR) model that simulated the loss rate of the community given pos
itive loss. Two true models were created for 2 scenarios. For testing 
model calibrations, the first scenario involved 1 IM and 1 vulnerability 
indicator (VI) for both classification and regression modeling. For 
testing variable selections, the second scenario involved 1 IM and 2 VIs 
in both parts of the model. The examined EPMs included 8 supervised 
ML models, 4 for classification and the other 4 for regression, corre
sponding to the first and second parts of the true model, respectively. For 
each scenario, 16 joint models were derived. The ML-EPMs were trained 
on 10,000 simulated data points and tested on another 10,000 simulated 
data points. Data simulation and model verification were achieved via 
open-source programming language Python 3.8.11 [49]. 

The academic significance of the present study is manifested in three 
aspects. First, the study is the first scholarly effort to develop an MC 
method to verify, stochastically and experimentally, EPMs of societal 
vulnerability to hazardous events. Second, for data simulation, we 
adopted a novel eigenvalue-based approach to empirically mimic the 
real-world correlational structure of variables of IM and VIs. Third, we 
propose a permutation importance-based algorithm to select pertinent 
input variables of EPMs, significantly improving the computational 

efficiency compared to the traditional approaches to selecting VIs to 
model vulnerability. 

The rest of the paper has 4 sections. Section 2 introduces the methods 
for data simulation, including a preliminary analysis of historical data 
on IMs and losses of hazardous events, simulation of input variables of 
EPMs, and simulation of event losses based on the true models. Section 3 
covers the process of model verification, including the formulation of 
the joint models for estimating societal vulnerability, calibration of ML- 
EPMs, selection of input variables of EPMs, and validation of the trained 
EPMs. Section 4 showcases, with appropriate discussions, the results of 
the study, including predictive performances of calibrated models, 
generation of vulnerability curves, and analysis of sensitivity of EPMs to 
different numbers of training data points (TDPs). Section 5 concludes the 
paper with summaries of the study and suggestions for future work. 

2. DATA simulation 

In this study, two sets of data on IM and VIs were generated for two 
scenarios for testing model calibrations and variable selections, 
respectively. The first scenario (1V) assumed that the input of the true 
model only included 1 IM and 1 VI. In Scenario 1V, the EPMs were 
trained accordingly on data with these two input variables only. The 
second scenario (nV) simulated 1 IM and 10 VIs but assumed that the 
loss rate was determined by the IM and 2 VIs only. In Scenario nV, the 
EPMs were trained on data with 10 VIs to identify the pertinent input 
variables. The adoption of 10 candidate and 2 pertinent VIs for scenario 
nV in the study was performed for a simple and straightforward 
demonstration. For each scenario, a true model was designed to produce 
a vulnerability curve that was consistent with expert intuition and 
similar to the ones empirically derived from previous studies. 

2.1. Preliminary data analysis 

To take into consideration the correlational structures of the input 
variables for data simulation, we first examined the correlations be
tween input variables of historical data collected from 4 previous 
studies, including WGMG19 [42], WGMG20 [43], WGMG21 [11], and 
WS21 [48]. Among these studies, models of WGMG19, WGMG20, and 
WGMG21 were for earthquakes in Taiwan, the world, and Nepal, 
respectively, using PGA as the sole IM. Meanwhile, WS21 was for floods 
due to hurricanes in North Carolina, with mean water depth as the only 
IM for its model. Apart from WGMG20 which only included the data of 
World Development Indicators (WDI) from the World Bank [50] for 
constructing VIs, all the other studies adopted the local census data as 
the main source for data on VIs. All the data on input variables from the 
previous studies were transformed, standardized, and normalized, when 
necessary, such that all input variables of IMs and VIs in this study had a 
mean of 0 and standard deviation of 1. Such a data processing was 
necessary for keeping the examined historical data consistent with the 
simulated data proper for training the ML-EPMs. 

With the standard-normalization of input data, we examined the 
correlations between the standard-normalized input variables. Our ex
amination suggested that there were correlations between IM and VIs 
(I–V correlations), as shown in Fig. 1(a)–(d). Such I–V correlations may 
be associated with the spatial autocorrelations of the data points. In 
particular, the absolute I–V correlations could even reach about 0.8 in 
WGMG21 (Fig. 1(c)). This may be because the data for WGMG21 were 
collected based on one single earthquake event for one country with a 
relatively small area. Regarding the correlations between VIs (V–V 
correlations), as shown in Fig. 1(e)–(h), the census-based data tended to 
have a bell-shaped distribution of V–V correlations (Fig. 1(e), (g), and 
(h)). However, many of the VIs had large absolute correlations with each 
other (Fig. 1(f)) in the case of WGMG20, which was based on the WDI 
data of the World Bank [50]. 
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2.2. Simulation of input variables 

As the distributions of IM and vulnerability variables were to a large 
extent similar across all 4 examined studies, we focused on using the 
WS21 data for demonstration of our approach in this study. To consider 
the correlational structures of input variables of true models and EPMs, 
we applied an eigenvalue-based MC simulation method. 

2.2.1. Scenario of one vulnerability indicator 
In Scenario 1V, there were only 1 IM and 1 VI. Accordingly, no V–V 

correlations were involved. In this scenario, the I–V correlation matrix 
was 2 by 2 and only had 1 free eigenvalue. As shown in Fig. 2(a), we 
modeled this free eigenvalue with a beta distribution: 

fBeta(xBeta, aBeta, bBeta) =
Γ(aBeta + bBeta)xaBeta−1

Beta (1 − xBeta)
bBeta−1

Γ(aBeta)Γ(bBeta)
, (1)  

where xBeta ∈ [0, 1] was the random variable of the free eigenvalue, Γ(⋅)
was the gamma function, and aBeta> 0 and bBeta> 0 were 2 model pa
rameters. With the empirical beta model, we simulated the free eigen
value. The correlation matrix was then simulated based on the simulated 
free eigenvalue. Next, the I–V correlation matrix was used to further 
simulate the values of the IM and VI for 20,000 data points, with the 

assumption that the IM and VI followed a bivariate normal distribution. 
This distribution could be written in a generalized form for multivariate 
normal distribution: 

fMN(xMN,μMN,ΣMN)=det(2πΣMN)
−1

2exp
[

−
1
2
(xMN −μMN)

TΣ−1
MN(xMN −μMN)

]

,

(2)  

where xMN was the column vector of random input variables, μMN was 
the column vector of locational parameters, ΣMN was the covariance 
matrix of xMN, and det(⋅) was the determinant function. Because the 
input data were standard-normalized, the locational parameters of μMN 
equaled 0 and ΣMN was the same as the correlation matrix of input 
variables. A repeat of this simulation process produced the distribution 
of I–V correlations as shown in Fig. 2(b). 

2.2.2. Scenario of multiple vulnerability indicators 
In Scenario nV, the input variables for EPMs included 1 IM and 10 

VIs. For this scenario, based on a set of eigenvalues of the correlation 
matrix of input variables, we chose to identify 1 simulated input variable 
as the IM and treat the other 10 as the VIs after the simulation of input 
variables. Accordingly, the correlation matrix of these input variables 
had the size of 11 by 11, corresponding to 11 eigenvalues including 10 

Fig. 1. Distributions of correlations between a sole intensity measure and vulnerability indicators (I–V) and between vulnerability indicators (V–V) based on 
empirical data collected in previous studies: (a) I–V from WGMG19, (b) I–V from WGMG20, (c) I–V from WGMG21, (d) I–V from WS21, (e) V–V from WGMG19, (f) 
V–V from WGMG20, (g) V–V from WGMG21, and (h) V–V from WS21. 

Fig. 2. Data simulation for Scenario 1V based on data of WS21: (a) empirically derived distribution of the free eigenvalue of correlation matrix between intensity 
measure and one vulnerability indicator; (b) empirical and simulated distributions of correlation between intensity measure and one vulnerability indicator; and (c) 
distribution of number of simulated data points of societal vulnerability by the true model. 
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free eigenvalues (E0–E9). We modeled these 10 free eigenvalues with a 
multivariate normal distribution (Eq. (2)) with the model parameters 
empirically derived from the historical data, as shown in Fig. 3(a). We 
then simulated these 10 free eigenvalues and used the simulated ei
genvalues to simulate a correlation matrix of 11 input variables. For 
each simulated input variable, we derived its correlations with the other 
simulated variables and conducted a Kolmogorov-Smirnov (KS) test 
[51] on the distribution of these correlations compared to the empirical 
I–V correlations of the historical data. A threshold of KS test p-value was 
set at 0.9 such that if none of the simulated correlations was greater than 
the threshold, we repeated the simulation process until the threshold 
was reached. A large threshold of 0.9 was used because the KS test had 
an inverse burden of proof for rejection of null hypothesis. Next, we 
selected the simulated variable with the largest KS test p-value as the IM 
and treated the other simulated variables as the VIs. Fig. 3(b) and (c) 
show the empirical cumulative distributions of the I–V and V–V corre
lations, respectively, with comparisons between the observations and 
simulations. 

2.3. Simulation of loss rates 

For either scenario, we performed 1 simulation of data on input 
variables to generate 20,000 data points. We then applied a true model 
to produce data on loss rates. A loss rate was derived with 2 steps. For an 
ith data point, the first step was to compute the expected probability of 
experiencing positive loss given IM and VIs with an LR model 

y1i =
exp(XiβLR)

exp(XiβLR) + 1
, (3)  

where y1i was the expected probability, Xi was the ith simulation of 
input data matrix X, and βLR was the column vector of model co
efficients. We then simulated whether the data point contained a zero or 
positive loss rate based on y1i. If the data point had a positive loss, the 

second step simulated the value of the positive loss rate with an inverse 
logistic transformation of prediction of an MLR model described by 

y2i =
exp(yRi)

exp(yRi) + 1
(4)  

and 

yRi = XiβMLR + σMLRεMLR, (5)  

where y2i was the simulated loss rate, yRi was the output of model pre
diction, βMLR was the column vector of model coefficients, σMLR was the 
dispersion parameter, and εMLR was an independent standard normal 
random variable. The distributions of simulated loss rates are displayed 
in Figs. 2(c) and 3(d) for Scenarios 1V and nV, respectively. 

For Scenario 1V, X had 3 columns, corresponding to the intercept, 
IM, and VI. Accordingly, βLR and βMLR were set with values shown in 
Table 1. For Scenario nV, X for the true model had 4 columns, corre
sponding to the intercept, IM, and 2 VIs. Among the 10 VIs (V0–V9) 
simulated for Scenario nV, only the first 2 VIs (V0 and V1) were used for 
prediction with the true model. Table 2 lists the values of βLR and βMLR 
for Scenario nV. For both scenarios, σMLR was set at 1.2 to add a desirable 
amount of uncertainty to the simulation of loss rate. Before training 
EPMs, we randomly split the dataset of either scenario into a training 
and testing datasets, each with 10,000 data points. 

Fig. 3. Data simulation for Scenario nV based on data of WS21: (a) empirically derived distribution of the free eigenvalues of correlation matrix between 11 variables 
including the IM and randomly selected 10 VIs; (b) observed and simulated distribution of correlations between IM and 1 VI; (c) observed and simulated distribution 
of correlations between VIs; and (d) distribution of number of simulated data points of societal vulnerability by the true model. 

Table 1 
Parameters of true models for Scenario 1V.  

Model coefficients Intercept IM VI 

βLR –1.2 1 0.5 
βMLR –4 1 0.5  
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3. Model verification 

Consistently with the historical data on hazard loss, a large number 
of data points were simulated to contain zero losses in this study. To 
accommodate the issue of inflation of zero data points, a 2-part 
modeling approach was used, as recommended by previous works on 
modeling loss rate (see, e.g., [42–44,48]). This adopted approach was 
also consistent with the 2-step simulation of loss rate with the true 
models. For either Scenario 1V or nV, the first part of the modeling 
process provided the expected probability of a data point containing 
positive loss. Given positive loss, the second part computed the condi
tional expected positive loss rate of the data point. A joint model then 
integrated the results of the 2 parts to predict the expected loss rate as 
the measure of societal vulnerability. For verification of this modeling 
process, we tested 8 supervised ML models, with 4 classification and 4 
regression models corresponding to the first and second parts, 
respectively. 

3.1. Joint model formulation 

For either scenario in this study, 16 joint calibrated models were 
tested against the joint true model. The joint calibrated models were the 
combination of 4 classification models and 4 regression models. A joint 
calibrated model predicted the societal vulnerability in terms of ex
pected loss rate of a data point 

ŷJMi = ŷ1(Xi, θ̂1)ŷ2(Xi, θ̂2), (6)  

where ̂yJMi was the ith estimated output of the joint model, ̂y1(⋅) and ̂y2(⋅ 
) were respectively the estimates of the classification model of the first 
part and the regression model of the second part, and ̂θ1 and ̂θ2 were the 
calibrated model parameters. 

3.2. Classification models 

In this study, we applied 4 supervised classification modeling 
methods to estimate the expected probability of a data point containing 
positive loss given the input of IM along with 1 VI for Scenario 1V or 
multiple VIs for Scenario nV. These classification modeling methods 
included LR, random forest classification (RFC), support vector classi
fication (SVC), and artificial neural network classification (ANNC). 

3.2.1. Logistic regression 
LR is the most basic ML modeling method for binary classification. It 

can also be categorized as a statistical approach. An LR model is a 
generalized linear model for a Bernoulli random variable with a logit 
link function for the ith data point 

XiβLR = ln
(

y1i

1 − y1i

)

, (7)  

which is the inverse of Eq. (3). In the study, the LR modeling was carried 
out with the LogisticRegression function of the linear_model package of 
the scikit-learn library [52]. The first part of the true model for either 
scenario was also designed as an LR model (Tables 1 and 2). 

3.2.2. Random forest classification 
RFC is the classification version of the random forest (RF) modeling 

approach. The RF approach randomly generates a number of decision 

trees based on sampling of TDPs and aggregates the individual outputs 
of the trees to provide an ensemble output for prediction. To achieve 
RFCs in this study, we used the RandomForestClassifier function of the 
ensemble package of the scikit-learn library [52]. Accordingly, the ex
pected probability of positive loss given by an RFC model was computed 
as the mean of the probabilities predicted by the trees of the RF. After 
trials on the training data, we adopted the entropy function 

Entropy = −
∑n

i=1
ŷ1iln(ŷ1i) (8)  

as the optimal criterion for measuring the quality of split in the trees for 
RFC, where ŷ1i was the predicted probability. 

3.2.3. Support vector classification 
SVC is a support vector machine (SVM) modeling approach for 

classification. An SVC model is a hyperplane in the original or trans
formed vector space of data points involving only the input variables. 
The SVC hyperplane lies at the center between 2 parallel hyperplanes 
sandwiching a maximized margin that separates the data points ac
cording to the 2 classes of the output variable. The data points on or near 
the maximum-margin hyperplanes are called the support vectors. For 
SVC, the TDPs can be denoted as (xSVM1,ySVC1), (xSVM2,ySVC2), …, (xSVMn,

ySVCn), where n is the number of TDPs, xSVMi ∈ X , X is the vector space 
of input data with m dimensions, and ySVCi is the output that is set to 
equal either 1 or –1. A hyperplane in X is 

wT
SVCxSVM + bSVC = 0, (9)  

where wSVC ∈ X is the column vector of weight parameters and bSVC ∈ R 

is the bias parameter. The SVC hyperplane can be found by minimizing 

LSVC =
1
2

‖wSVC‖2 + CSVC

∑n

i=1
ξSVCi, (10)  

subject to 
⎧
⎨

⎩

ySVCi
(
wT

SVCxSVMi − bSVC
)

≥ 1 − ξSVCi

ξSVCi ≥ 0
, (11)  

where ‖ ⋅ ‖ is the Euclidean norm operator, CSVC is a regularization 
hyperparameter determining the error tolerance, and ξSVCi is the ith 
value of a slack variable that allows the corresponding data point to exist 
inside the maximized margin. 

To solve the optimization problem of Eqs. (10)–(11), the Lagrange 
multiplier method can be applied based on dot products in the form of 
xT

SVMixSVMj. For a non-linear classification problem, a mathematical 
mapping ϕ(⋅) can be used to perform a kernel trick 

KSVM
(
xSVMi, xSVMj

)
= ϕ(xSVMi)

Tϕ
(
xSVMj

)
(12)  

to transform xSVM onto a new vector space. In this study, we applied the 
commonly used radial basis function (RBF) as the kernel 

KSVM−RBF
(
xSVMi, xSVMj

)
= exp

(
− γSVM‖xSVMi − xSVMj‖

2)
, (13)  

where 

γSVM =
n

∑n

i=1

∑m

j=1

(
xSVMij − xSVM

)2 (14)  

and m was the number of input variables. The SVCs were achieved via 
the svc function of the svm package of scikit-learn library [52]. 

3.2.4. Artificial neural network classification 
In this study, ANNC referred to the method of using an artificial 

neural network (ANN) for classification. ANN is a model consisting of 
layers of connected computational units that mimic the functioning of 

Table 2 
Parameters of true models for Scenario nV.  

Model coefficients Intercept IM V0 V1 

βLR –1.2 1 0.5 0.4 
βMLR –4 1 0.5 0.4  
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neurons of an animal brain. The generic architecture of ANN, called a 
multilayer perceptron (MLP), has an input layer, a set of hidden layers, 
and an output layer. An ANN is called a deep learning (DL) model when 
it has at least 2 hidden layers. For the study, we adopted a DL-MLP with 
2 hidden layers for ANNC. Each of the input and hidden layers had the 
same number of nodes as the input variables. The output layer had only 
1 node, corresponding to 1 output variable. At a hidden or output layer, 
each node computed 

xANNq,r = fANNq,r

(

βANNq,r,0 +
∑Nq−1

s=1
βANNq,r,sxANNq−1,s

)

, (15)  

where xANNq,r was the output of the rth node of the qth layer, fANNq,r(⋅)
was an activation function, βANNq,r,0 and βANNq,r,s were model parameters, 
and Nq−1 = m was the number of nodes of the layer before the qth layer. 
For ANNC, the activation functions for the hidden and output layers 
were respectively the rectified linear unit (ReLU) function [53,54] 

fANN−ReLU(x) = max(0, x) (16)  

and the logistic sigmoid function 

fANN−LS(x) =
exp(x)

exp(x) + 1
. (17) 

The ANNC models were trained with the adaptive moment estima
tion (Adam) algorithm and the binary cross entropy (BCE) loss function 

BCE = −
1
n

∑n

i=1

[
y′

1iln
(

ŷ′
1i

)
+

(
1 − y′

1i

)
ln

(
1 − ŷ′

1i

)]
, (18)  

where y′
1i was the simulated observation of binary output and ̂y′

1i was the 
binary estimate of the output given by the model with 0.5 as the 
threshold for classification. The TensorFlow [55] library was used for 
ANNC modeling. 

3.3. Regression models 

The regression models in this study were calibrated to estimate the 
expected loss rate of a data point, given observation of positive loss. The 
prediction of each regression model was logistically transformed with 
Eq. (4) to derive the estimate of expected loss. As a demonstration, 4 
regression modeling methods were used in the study. They included 
MLR, RF regression (RFR), support vector regression (SVR), and ANN 
regression (ANNR). 

3.3.1. Multiple linear regression 
MLR is the most basic ML, as well as statistical, regression approach 

that establishes the mathematical relationship between multiple input 
variables and 1 output variable. As shown in Eq. (5), the MLR method 
predicts the output as an affine function of the values of input variables. 
In the study, we applied the LinearRegression function of the line
ar_model package of the scikit-learn library to conduct MLRs [52]. The 
second part of the true model was also designed as an MLR model for 
both scenarios (Tables 1 and 2). 

3.3.2. Random forest regression 
RFR is an ML regression method that uses RF modeling to predict an 

output numerical value based on input variables. In this study, the 
RandomForestRegressor function of the ensemble package of the scikit- 
learn library was used for RFR [52]. The loss rate given positive loss 
of a data point was predicted by the RFR model as the mean of the 
predictions of the randomly generated RF trees. For RFR, the mean 
squared error (MSE) 

MSE =
1
n

∑n

i=1
(ŷRi − yRi)

2 (19)  

was used as the optimal split criterion for growing the trees, where ŷRi 
was the point estimate of the logit of y2i. 

3.3.3. Support vector regression 
SVR is an SVM-based method for solving regression problems. Unlike 

SVC, the SVR hyperplane is in a vector space of data points involving 
both input and output variables. The hyperplane is located at the center 
of a margin that contains most of the data points. The support vectors in 
this case refer to the data points on or near the 2 hyperplanes at the 
boundaries of the margin. Given data points 

{(xSVM1, ySVR1), (xSVM2, ySVR2), ⋯, (xSVMn, ySVRn)}⊂X × R, (20)  

the SVR hyperplane is 

ySVR = wT
SVRxSVM + bSVR (21)  

where wSVR ∈ X and bSVR ∈ R are model parameters. To derive ySVR, we 
can minimize 

LSVR =
1
2

‖wSVR‖2 + CSVR

∑n

i=1
(ξSVRi + ζSVRi), (22)  

subject to 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ySVRi − wT
SVRxSVMi − bSVR ≤ εSVR + ξSVRi

wT
SVRxSVMi + bSVR − ySVRi ≤ εSVR + ζSVRi

ξSVRi, ζSVRi ≥ 0
, (23)  

where εSVR is the precision parameter of the margin, CSVR is the regu
larization hyperparameter of SVR, and ξSVRi and ζSVRi correspond to 2 
slack variables that allow model calibration with data points being 
outside the margin. Like SVC, SVR can be conducted with the assistance 
of a kernel trick. In the study, we also used the RBF kernel for SVR, as 
described by Eqs. (12)–(14). The svr function of the svm package of 
scikit-learn library was used to perform SVRs [52]. 

3.3.4. Artificial neural network regression 
ANNR in this study refers to the method of ANN modeling for solving 

a regression problem. We adopted the same architecture of ANNC for 
ANNR except for the activation function of the output layer and the loss 
function for model training. The activation function of the output layer 
for ANNR was the identity function 

fANN−I(x) = x (24) 

The loss function for model training was the MSE as shown in Eq. 
(19). To perform ANNR modeling, we used the TensorFlow [55] library. 

3.4. Variable selection 

For Scenario nV, in this study, a variable selection process was 
needed to select pertinent VIs from candidate VIs as input variables of 
ML models, as the true model simulated the loss rates based on the input 
of 1 IM and 2 VIs (V0 and V1) only. The appropriate selection of perti
nent VIs is a key part of modeling vulnerability. In this study, however, 
as the VIs were randomly generated, they did not explicitly correspond 
to any real-world VIs. To select the true VIs among the simulated can
didates, a number of variable selection methods may be attempted. 

Variable selection methods are commonly categorized into 3 groups, 
i.e., the filter, embedded, and wrapper methods [56]. Firstly, a filter 
method selects variables based on the relationships between the candi
date variables without consideration of the output variable. Because the 
variable selection by a filter method is irrelevant to the mathematical 
mapping between input and output variables, such a method is inap
propriate for our purposes. Next, an embedded method refers to a model 
calibration process that simultaneously performs variable selection. An 
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example of embedded method for variable selection is Lasso (see, e.g., 
[11,57,58]). Because the embedded method can only be used for a 
limited number of specific ML approaches, it cannot be applied uni
versally for ML methods such as the ones adopted in this study. Lastly, a 
wrapper method selects the optimal combination of input variables by 
comparing the predictive performances of models calibrated with 
different combinations of input variables. For example, wrapper 
methods can be applied with an algorithm of brute force [42,48] or 
stepwise deletion [43]. Due to calibrations of the examined models with 
different combinations of input variables, the computational time for a 
wrapper method can be exceptionally large, especially when it is applied 
to a computationally expensive ML method, such as RF, RBF-SVM, and 
DL-ANN. 

To overcome the limitations of the existing variable selection 
methods, we proposed, in this study, a permutation importance algo
rithm (PIA) for identification of pertinent variables of VIs for the sug
gested ML-EPMs in Scenario nV. PIA is an algorithm that derives a score 
of relative importance for each input variable in a model based on the 
change in model performance on testing data when the testing values of 
the variable is randomly shuffled [58,59]. The PIA for the study had 12 
steps. First, the training dataset for an ML-EPM was randomly separated 
into a training-training dataset with 90% of the TDPs and a 
training-testing dataset with the remaining 10% of the TDPs. Second, the 
ML-EPM was calibrated on the training-training data. Third, a loss was 
computed on the training-testing data as a reference score (RS). For 
classification and regression, the RSs were respectively the BCE as in Eq. 
(18) and the root MSE (RMSE) 

RSRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷRi − yRi)

2

√

. (25) 

Fourth, the first input variable was selected if it had not been 
examined. Otherwise, the next input variable was selected for exami
nation. Fifth, the values of the selected variable were shuffled to 
generate a corrupted version of the training-testing data. Sixth, a vari
able shuffle score (VSS) was computed as equal to the loss measure of the 
model on the corrupted training-testing data. Seventh, an importance 
score (IS) was derived with 

IS = VSS − RS. (26) 

Eighth, steps 5–7 were repeated 32 times to produce 32 ISs. Ninth, 
steps 4–8 were repeated to cover all the input variables. Tenth, one- 
tailed one-sample t-tests were conducted on the ISs of input variables 
with the null hypotheses that the ISs were supposed to be no greater than 
0. Eleventh, an input variable was selected when the null hypothesis on 
it was rejected at the significance level of 10−17. This significance value 
was determined to be optimal for variable selection in this study based 
on trials and errors. Twelfth, the ML-EPM was recalibrated with the 
selected input variables on the entire training dataset. 

3.5. Model validation 

To compare the predictive performances of the calibrated ML-EPMs, 
we applied the models to the testing dataset for validation. For classi
fication models, we used the validation metrics of false positive rate 
(FPR), precision (Pr), recall (Re), and F1 score (F1): 

FPR =
FP

FP + TN
, (27)  

Pr =
TP

TP + FP
, (28)  

Re =
TP

TP + FN
, (29)  

F1 =
2PrRe

Pr + Re
, (30)  

where TP, FP, TN, and FN were respectively the numbers of true posi
tives, false positives, true negatives, and false negatives. For validating 
regression models, we applied the metrics of mean error (ME), mean 
absolute error (MAE), RMSE, and mean absolute percentage error 
(MAPE): 

ME =
1
n

∑n

i=1
(ŷ2i − y2i), (31)  

MAE =
1
n

∑n

i=1
|ŷ2i − y2i|, (32)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷ2i − y2i)

2

√

, (33)  

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
ŷ2i − y2i

y2i

⃒
⃒
⃒
⃒, (34)  

where ŷ2i was the point estimate of loss rate and |⋅| was the absolute 
value operator. 

4. Results and discussions 

With the implementation of the proposed MC experimental meth
odology, we may produce slightly different results with different runs of 
the codes for the study. Albeit slightly different, these results consis
tently pointed toward the same conclusions. In this paper, we present 
only one set of these results as a demonstration. The results included the 
validation of individual ML-EPMs, generation of vulnerability curves, 
and comparisons of model sensitivity to the variation of number of TDPs. 

4.1. Validation results 

The validation of the examined ML-EPMs involved both Scenarios 1V 
and nV. For Scenario 1V, the numbers of TDPs for the classification and 
regression models were 10,000 and 2809, corresponding to all TDPs and 
the TDPs containing positive loss rates, respectively. With these TDPs, 
all 8 individual ML-EPMs performed almost as well as their corre
sponding true models, as shown in Fig. 4. Regarding classification, the 
receiver operating characteristic (ROC) curves of the calibrated LR, RFC, 
SVC, and ANNC models were almost identical to the one produced by the 
true LR model (Fig. 4(a)–(d)). Some of the classification EPMs trained 
with all 10,000 TDPs performed even better than the true model in terms 
of some of the validation metrics, as shown in Table 3. For example, the 
ANNC model produced a better FPR (0.0671) than the true model 
(0.0711). The LR (0.6334) and ANNC (0.6401) models resulted in higher 
precisions than the true model (0.6333). Meanwhile, the LR (0.4343), 
RFC (0.4348), and SVC (0.4716), especially SVC, models yielded higher 
F1 scores than the true model (0.4320). These better performances in F1 
scores were achieved because the LR (0.3304), RFC (0.3370), and SVC 
(0.3917) models produced much higher recalls than the true model 
(0.3278). 

Noteworthily, as in Table 3, all classification models, including the 
true model, produced a much higher precision than recall. As a result, 
the F1 scores derived with such precisions and recalls would tend to be 
smaller than the one computed when a classification EPM was trained to 
produce a precision and recall that were almost equal to each other. This 
is the reason why the SVC model, among all models trained with all 
10,000 TDPs plus the true model, produced the highest F1 score, as its 
precision and recall were the closest to each other compared to the ones 
produced by the other models. The results of the unbalanced values of 
precisions and recalls leading to relatively low F1 scores in this study 
was largely because of the unbalanced distribution of TDPs with 0 losses 
(7191 TDPs) and positive losses (2809 TDPs). To overcome this issue of 
unbalanced numbers of TDPs with different labels, we may apply a 

Y.V. Wang et al.                                                                                                                                                                                                                                



Reliability Engineering and System Safety 240 (2023) 109593

8

Fig. 4. Results of validation of ML-EPMs for Scenario 1V, including comparisons of ROC curves of the (a) LR, (b) RFC, (c) SVC, and (d) ANNC models and distri
butions of data points predicted by the (e) MLR, (f) RFR, (g) SVR, and (h) ANNR models. 

Table 3 
Statistics of model validation and sensitivity analysis for classification on testing data for Scenario 1V.  

Model TDPs FPR Precision Recall F1 

True N/A 0.0711 0.6333 0.3278 0.4320 
LR 10,000 0.0716 0.6334 0.3304 0.4343 

1000 0.0744 0.6287 0.3363 0.4382 
500 0.0869 0.6070 0.3583 0.4506 

RFC 10,000 0.0799 0.6124 0.3370 0.4348 
1000 0.0745 0.6129 0.3150 0.4161 
500 0.0613 0.6359 0.2860 0.3945 

SVC 10,000 0.1009 0.5924 0.3917 0.4716 
1000 0.0241 0.7231 0.1678 0.2723 
500 0.1284 0.5660 0.4471 0.4996 

ANNC 10,000 0.0671 0.6401 0.3186 0.4255 
1000 0.0842 0.6149 0.3594 0.4537 
500 0.0818 0.6149 0.3488 0.4451 

Note: Italic indicates better performance than the true model; bold indicates best performance regarding a metric among models trained with all 10,000 TDPs plus the 
true model. 

Table 4 
Statistics of model validation and sensitivity analysis for regression on testing data for Scenario 1V.  

Model TDPs ME MAE RMSE MAPE 

True N/A –0.0260 0.0524 0.0979 1.4556 
MLR 2809 –0.0275 0.0525 0.0984 1.3950 

500 –0.0310 0.0529 0.0996 1.2506 
250 –0.0288 0.0530 0.0992 1.3506 

RFR 2809 –0.0291 0.0531 0.1003 1.4295 
500 –0.0389 0.0561 0.1098 1.3085 
250 –0.0388 0.0577 0.1132 1.4950 

SVR 2809 –0.0278 0.0531 0.1001 1.3858 
500 –0.0315 0.0546 0.1048 1.2889 
250 –0.0319 0.0572 0.1102 1.4042 

ANNR 2809 –0.0262 0.0525 0.0981 1.4191 
500 –0.0319 0.0533 0.1014 1.2709 
250 –0.0286 0.0534 0.0999 1.3590 

Note: Italic indicates better performance than the true model; bold indicates best performance regarding a metric among models trained with 2809 TDPs plus the true 
model. 
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subsampling technique to balance the numbers of TDPs, as suggested by 
previous studies (see, e.g., Wang and Sebastian, [60]). Interestingly, 
however, unlike the previous efforts that did not use a true model for 
comparison of predictive performances, we noticed in this study that, 
once introduced, the true model for classification also yielded unbal
anced values of precision and recall. This result indicated that it may not 

be necessary to balance the numbers of TDPs with different labels to 
train the EPMs for comparison of predictive performances of the trained 
models versus the performance of the true model. 

Regarding the calibrated regression EPMs, in particular the cali
brated MLR, SVR, and ANNR models, their predictions of loss rates on 
the testing data showed little difference from the ones by the true MLR 

Fig. 5. Distributions of predicted loss rates on testing data points with 0 simulated losses produced by the joint calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR- 
SVR, (d) LR-ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, 
(o) ANNC-SVR, and (p) ANNC-ANNR in Scenario 1V. 
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model (Fig. 4(e)–(h)). Despite the similar model performances, however, 
the calibrated regression EPMs did not outperform the true model in 
terms of the validation metrics except for MAPE, as listed in Table 4. 
Among the 4 regression EPMs trained with all 2809 TDPs, the ANNR 
model resulted in the smallest ME (–0.0262) and RMSE (0.0981). In 
terms of the MAE, the MLR and ANNR models produced almost identical 

performances (0.0525) that were slightly better than the ones of the RFR 
and SVR models (0.0531). Regarding MAPE, the SVR model yielded the 
best result (1.3858), while all trained regression EPMs produced MAPEs 
lower than the one of the true model (1.4556). 

For Scenario 1V, the joint calibrated EPMs made similar predictions 
of loss rates on the testing data as the joint true model (Figs. 5 and 6). 

Fig. 6. Simulated observations of positive loss rates versus the predictions produced by the joint calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR-SVR, (d) LR- 
ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, (o) ANNC- 
SVR, and (p) ANNC-ANNR in Scenario 1V. 
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Fig. 7. Importance measures of the input variables of the calibrated (a) LR, (b) RFC, (c) SVC, (d) ANNC, (e) MLR, (f) RFR, (g) SVR, and (h) ANNR models in 
Scenario nV. 

Fig. 8. Results of validation of ML-EPMs for Scenario nV, including comparisons of ROC curves of the (a) LR, (b) RFC, (c) SVC, and (d) ANNC models and distri
butions of data points predicted by the (e) MLR, (f) RFR, (g) SVR, and (h) ANNR models. 
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Although many simulated data points contained 0 losses, the model 
predictions of loss rates were always positive, as formulated in Eq. (6), 
even for the true model. This resulted in a slight overestimation of loss 
rates over the data points with 0 simulated losses. Despite such an 
overestimation of loss rates, the distributions of the overestimated loss 
rates on the 0 data points by the joint calibrated models, especially the 
calibrated LR-MLR, LR-ANNR, RFC-MLR, RFC-ANNR, ANNC-MLR, and 
ANNC-ANNR models, were highly similar to the one produced by the 
joint true model, as shown in Fig. 5. 

As also shown in Eq. (6), for a testing data point with a positive 
simulated loss, the prediction of loss rate by a regression model was 
multiplied by an expected probability with a range of (0, 1) to provide 
the joint-model prediction of loss rate. Thus, the joint models, including 
the joint true model, always tended to provide predictions that under
estimated the loss rates of data points with positive simulated losses, as 
shown in Fig. 6. This underestimation on the positive data points 
compensated for the effect of the overestimation on the 0 data points so 
that the joint models tended to be minimally biased in general (see the 
ME column in Table 4). With Figs. 5 and 6, we noticed that the joint 
calibrated models predicted the loss rates of data points in almost the 
same way as the joint true model. 

For Scenario nV, in addition to the predictive performances of the 
classification, regression, and joint models, the PIA for variable selection 
was also tested for the ML-EPMs. In this scenario, 10,000 and 2836 TDPs 
were used to train the classification and regression EPMs, respectively. 
Meanwhile, both the true models for classification and regression only 
included the variables of IM, V0, and V1 as their input variables. Like in 
most of the attempted runs of codes of the study, in this presented run, 
the PIA successfully selected the same 3 variables as the only input 
variables of all 8 ML-EPMs. As shown in Fig. 7, however, there seemed to 
be more uncertainties involved regarding the non-pertinent input vari
ables in the variable selection processes with the PIA for the ANNC 
(Fig. 7(d)), SVR (Fig. 7(g)), and ANNR (Fig. 7(h)) models than with the 
other models. In addition, the RFC (Fig. 7(b)) and RFR (Fig. 7(f)) models 
tended to result in smaller values of importance scores than the other 
models. Because the VIs used in this study were stochastically generated 
to mimic, but without explicit association with, real-world indicators, 
future study should further examine if the similar comparative results in 
PIA applications to different ML-EPMs for variable selection also hold 
true for real-world data. 

Like in Scenario 1V, the predictive performances of the examined 
ML-EPMs in Scenario nV were highly similar to the one of the true 
model, as indicated by Fig. 8 and Tables 5 and 6. As shown in Fig. 8(f), 
however, the RFR model seemed to overestimate the smaller observa
tions and underestimate the larger observations more significantly than 
the other regression EPMs and the true model. This discernible poor 
predictive performance of the RFR model was also indicated by the 
worst ME and RMSE of the RFR model as listed in Table 6. As indicated 
by Table 5, when the selection of input variables was involved, the 
calibrated classification EPMs tended to produce higher FPRs than the 
true model. Similar to Scenario 1V, in Scenario nV, when the precision 
and recall derived with an EPM were closer to each other than the ones 
yielded by the true model, the F1 score of the EPM tended to be larger 
than the one of the true model, even though the true model may result in 

a much better precision score (see Table 5). Regarding the regression 
predictive performances, the true model seemed to yield better ME 
(–0.0301), MAE (0.0580), and RMSE (0.1057) than the calibrated 
regression EPMs, except for the SVR model that resulted in a better ME 
(–0.0296) than the true model. In terms of MAPE, apart from SVR, all the 
other regression EPMs produced a better score than the true model 
(1.3646). In particular, the ANNR model resulted in the best MAPE 
(1.3354). 

In Scenario nV, the joint calibrated models also provided predictions 
of loss rates in a highly similar manner as the joint true model, as shown 
in Figs. 9 and 10. Among all the joint calibrated models, the ones with 
the RFR model, including the LR-RFR (Figs. 9(b) and 10(b)), RFC-RFR 
(Figs. 9(f) and 10(f)), SVC-RFR (Figs. 9(j) and 10(j)), and ANNC-RFR 
(Figs. 9(n) and 10(n)), seemed to result in the largest degrees of over
estimation and underestimation of the observed loss rates. This result 
was consistent with the relatively poor predictive performance of the 
RFR model discussed previously. Despite the slight individual differ
ences in predictive performances of the examined ML-EPMs, in general, 
the results of model validation of this study suggested that the empirical 
predictive modeling approach with applications of ML methods can be 
effectively and accurately used to compute societal vulnerability in the 
form of an expected loss rate given pre-event societal indicators and the 
IM of a hazardous event. 

4.2. Vulnerability curves 

With the calibrated ML-EPMs, we could create vulnerability curves 
for simulated societal systems for both Scenarios 1V and nV, as 
demonstrated in Figs. 11 and 12, respectively. Each vulnerability curve 
represented a function of pertinent VI or VIs given a spectrum of IM for a 
societal system corresponding to a data point. Here, the big circle 
referred to the simulated loss rate given IM for the associated testing 
data point of societal system with the true models. The small triangles 
corresponded to the TDPs. The wide solid curves were the vulnerability 
curves produced by the true models. The 99th (Fig. 11) and 117th 
(Fig. 12) simulated societal systems were chosen to provide a good vi
sual presentation such that the simulated loss rates were not located too 
close to the bottom-left corner. The IM on the horizontal axis referred to 
an abstract measure that was exponentially transformed from the 
simulated logit of IM. The IM in Figs. 11 and 12 was visualized in such a 
manner to mimic the range of a real-world IM. For example, the range of 
IM here was similar to that of PGA × 0.01 for earthquake or water depth 
for flood with the unit of m s–2 or dm, respectively. For IM with a small 
value such as within a range of [0, 5] in Figs. 11 and 12, the vulnerability 
curves generated with the joint calibrated models looked similar as the 
one of the true model. This range of IM was also the range of IMs of the 
majority of the TDPs. When looking at the larger IM values, however, we 
noticed that, apart from the calibrated LR-MLR model, all other joint 
calibrated models tended to produce somewhat poor extrapolations of 
vulnerability curves for at least one of the two considered scenarios. 
Given that the joint true model was also an LR-MLR model, this result 
favoring the calibrated LR-MLR model was not surprising. 

For both scenarios, the joint calibrated models presented specific 
patterns in generating vulnerability curves. For example, all the joint 

Table 5 
Statistics of model validation for classification on testing data for Scenario nV.  

Model FPR Precision Recall F1 

True 0.0779 0.6303 0.3535 0.4529 
LR 0.0845 0.6219 0.3700 0.4639 
RFC 0.0801 0.6276 0.3593 0.4570 
SVC 0.1206 0.5798 0.4432 0.5024 
ANNC 0.0840 0.6221 0.3685 0.4628 

Note: Italic indicates better performance than the true model; bold indicates best 
performance regarding a metric. 

Table 6 
Statistics of model validation for regression on testing data for Scenario nV.  

Model ME MAE RMSE MAPE 

True –0.0301 0.0580 0.1057 1.3646 
MLR –0.0306 0.0580 0.1059 1.3437 
RFR –0.0356 0.0588 0.1094 1.3619 
SVR –0.0296 0.0592 0.1072 1.3768 
ANNR –0.0305 0.0582 0.1060 1.3354 

Note: Italic indicates better performance than the true model; bold indicates best 
performance regarding a metric. 
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calibrated models using an RFR model for regression tended to produce 
vulnerability curves that began to flatten significantly after the IM 
reached beyond 10 (Figs. 11(b), (f), (j), (n), 12(b), (f), (j), and (n)). In 
addition, these vulnerability curves by RFR-based models showed zig
zags for small IM values, indicating overfitting with the RFR modeling. 
As another example, the extrapolations of vulnerability curves for large 

IM values by the SVR-based joint models were also not ideal (Figs. 11(c), 
(g), (k), (o), 12(c), (g), (k), and (o)). Although the vulnerability curves 
produced by these models tended to follow the vulnerability curves by 
the true model at small IM values, these curves tended to first over
estimate the expected loss rate and then to decline with the increase of 
IM. The unique shapes of the vulnerability curves derived with the RFR 

Fig. 9. Distributions of predicted loss rates on testing data points with 0 simulated losses produced by the joint calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR- 
SVR, (d) LR-ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, 
(o) ANNC-SVR, and (p) ANNC-ANNR in Scenario nV. 
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and SVR-based joint models were associated with the sophisticated 
mathematical assumptions of the RFR and SVR models, respectively. 

Meanwhile, the ANNR-based joint models produced better vulnera
bility curves than the ones by the RFR or SVR-based joint models in 
particular in Scenario nV (Fig. 12(d), (h), (l), and (p)), although these 
ANNR-based curves also tended to flatten at large IM values in Scenario 
1V (Fig. 11(d), (h), (l), and (p)). Despite the DL design, the MLP 

architectures of the ANNR models in this study were relatively simple 
and straightforward, given the small number of hidden layers and 
computational nodes. Such model simplicity may be the reason why the 
ANNR-based joint models produced better vulnerability curves than the 
ones by the more sophisticated models. 

Regarding the calibrated classification EPMs, they did not show 
significant differences in affecting the shapes of vulnerability curves, 

Fig. 10. Simulated observations of positive loss rates versus the predictions produced by the joint calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR-SVR, (d) LR- 
ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, (o) ANNC- 
SVR, and (p) ANNC-ANNR in Scenario nV. 
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especially in Scenario 1V (Fig. 11(a), (e), (i), and (m)). However, the 
RFC (Figs. 11(e)–(h) and 12(e)–(h)) and ANNC-based (Figs. 11(m)–(p) 
and 12(m)–(p)) joint models tended to produce vulnerability curves that 
slightly underestimated the expected loss rate of the true model, while 
the SVC-based (Figs. 11(i)–(l) and 12(i)–(l)) joint models tended to 
generate vulnerability curves with a slight overestimation. These results 
indicated that the ML methods may be better at solving the classification 

problems than the regression ones for empirically estimating societal 
vulnerability. For generating vulnerability curves, a simpler model, 
especially a simpler regression model, tended to perform better when 
extrapolation of expectation of loss rate was needed for an IM value 
beyond its normal range. 

Fig. 11. Vulnerability curve for the 99th simulated testing societal system for Scenario 1V produced by the calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR-SVR, 
(d) LR-ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, (o) 
ANNC-SVR, and (p) ANNC-ANNR. 
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4.3. Sensitivity analysis 

To examine how the number of TDPs affected the calibrations, var
iable selections, and predictive performances of the adopted ML-EPMs, 
we conducted a sensitivity analysis. For sensitivity analysis for classifi
cation in Scenario 1V, 1000 and 500 TDPs were randomly selected from 
the original 10,000 TDPs without replacement to form two datasets. 

Similarly, for regression in Scenario 1V, 500 and 250 TDPs were 
randomly selected from the original 2809 TDPs. For classification in 
Scenario nV, we selected 5000 and 2000 TDPs from the original 10,000 
TDPs to form training datasets for sensitivity analysis. For regression in 
Scenario nV, we selected 2000 and 1000 TDPs from the original 2836 
TDPs. 

With Scenario 1V, we first examined the effects of number of TDPs on 

Fig. 12. Vulnerability curve for the 117th simulated testing societal system for Scenario nV produced by the calibrated models of (a) LR-MLR, (b) LR-RFR, (c) LR- 
SVR, (d) LR-ANNR, (e) RFC-MLR, (f) RFC-RFR, (g) RFC-SVR, (h) RFC-ANNR, (i) SVC-MLR, (j) SVC-RFR, (k) SVC-SVR, (l) SVC-ANNR, (m) ANNC-MLR, (n) ANNC-RFR, 
(o) ANNC-SVR, and (p) ANNC-ANNR. 
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calibration of the LR and MLR models with respect to the parameters of 
the true models described in Section 3.4 and Table 1. In the presented 
run, as shown in Table 7, the LR model trained with all 10,000 TDPs had 
the best estimates of 2 model parameters, i.e., the intercept and the 
coefficient of VI, over the LR models trained with fewer TDPs. Mean
while, the LR model trained with 1000 TDPs only had one best estimate, 
i.e., the coefficient of IM. The LR model trained with the fewest TDPs 
(500) had the most deviated estimates of the model parameters. 
Regarding the regression models, the MLR model trained with all 2809 
TDPs had the best estimates of 3 model parameters, i.e., the intercept 
and the coefficients of IM and VI. Although the MLR model trained with 
500 TDPs had the most deviated estimates of these 3 model parameters 
than the ones of the MLR model trained with 250 TDPs, the 500-TDP 
MLR model had the best estimate of σMLR among all 3 calibrated 
models. In general, the number of TDPs seemed to have an impact on the 
model calibration. This result was consistent with the intuition that the 
fewer TDPs, the more likely and to a larger extent a trained LR or MLR 
model would have estimates deviating from the values of parameters of 
the true model. Despite this impact, as few as hundreds of TDPs could 
still result in good estimates of parameters of an LR or MLR model for 
estimating societal vulnerability, as all the parametric estimates derived 
in this sensitivity analysis listed in Table 7 were close to the values of 

parameters of the true models. 
The sensitivity analysis for Scenario 1V was also conducted to 

examine the effect of number of TDPs on the predictive performance of 
the individual ML-EPMs. As shown in Fig. 13(a)–(d), the classification 
ML-EPMs trained with 1000 and 500 TDPs produced ROC curves almost 
identical to the one of the true model in this run. As listed in Table 3, the 
classification ML-EPMs trained with fewer TDPs also resulted in vali
dation statistics comparable to the ones of the models trained with all 
10,000 TDPs and the true model. Despite the good performances of the 
classification ML-EPMs with fewer TDPs in this run, however, such good 
performances were not guaranteed. In some of the other attempted runs, 
the RFC and SVC models with the fewer TDPs could produce signifi
cantly worse ROC curves and validation statistics than the models with 
all 10,000 TDPs. In some runs, the optimization algorithm for calibrat
ing ANNC models even failed to converge with fewer TDPs. Although 
there were undesired issues with the calibrations of the RFC, SVC, and 
ANNC models with fewer TDPs during some runs, the LR model always 
produced good ROC curves and validation statistics with fewer TDPs. 

As per regression for Scenario 1V, the degree of negative effect of 
reducing number of TDPs on the predictive performance of an ML-EPM 
varies across the considered models. As shown in Fig. 13(e)–(h) and 
Table 4, the MLR model was the least affected by reduction of TDPs, 

Table 7 
Estimated parameters of calibrated LR and MLR models for Scenario 1V.  

Model TDPs Model coefficients σMLR 

Intercept IM VI 

LR 10,000 –1.1694 0.9773 0.4935 N/A 
1000 –1.2491 1.0202 0.5948 N/A 
500 –1.3269 1.1307 0.7041 N/A 

MLR 2809 –4.0566 1.0286 0.4845 1.2170 
500 –4.2305 1.1279 0.4373 1.1858 
250 –4.1288 1.1065 0.3874 1.1838 

Note: Bold indicates estimate closest to the value of the true model parameter. 

Fig. 13. Predictive performances as the result of sensitivity analysis in Scenario 1V in terms of the ROC curves produced by the (a) LR, (b) RFC, (c) SVC, and (d) 
ANNC models trained with 1000 and 500 TDPs and the distributions of data points predicted by the (e) MLR, (f) RFR, (g) SVR, and (h) ANNR models trained with 500 
and 250 TDPs. 
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Fig. 14. Result of sensitivity analysis in terms of estimated importance measures of input variables of (a) the LR model trained with 5000 TDPs, (b) the LR model 
trained with 2000 TDPs, (c) the RFC model trained with 5000 TDPs, (d) the RFC model trained with 2000 TDPs, (e) the SVC model trained with 5000 TDPs, (f) the 
SVC model trained with 2000 TDPs, (g) the ANNC model trained with 5000 TDPs, (h) the ANNC model trained with 2000 TDPs, (i) the MLR model trained with 2000 
TDPs, (j) the MLR model trained with 1000 TDPs, (k) the RFR model trained with 2000 TDPs, (l) the RFR model trained with 1000 TDPs, (m) the SVR model trained 
with 2000 TDPs, (n) the SVR model trained with 1000 TDPs, (o) the ANNR model trained with 2000 TDPs, and (p) the ANNR model trained with 1000 TDPs in 
Scenario nV. 
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while the RFR model was the most affected. Fig. 13(f) shows a signifi
cant drop in predictive performance of the RFR model when it was 
trained with 500 and 250 TDPs. Meanwhile, the SVR models trained 
with fewer TDPs also tended to produce poorer predictive performances 
than the SVR models trained with all 2809 TDPs as listed in Table 4 and 
shown in Fig. 13(g). Although the predictive performances of the ANNR 
model trained with fewer TDPs looked relatively good in this run, the 
ANNR model may not be trained properly with fewer TDPs in some 
attempted runs that resulted in exceptionally poor predictive perfor
mances. These results for Scenario 1V indicated that we needed at least 
hundreds of TDPs to properly train and calibrate ML-EPMs for quanti
fying societal vulnerability. 

With Scenario nV, we conducted a sensitivity analysis to examine the 
effect of reducing the number of TDPs of ML-EPMs on their variable 
selections. As shown in Fig. 14 and Table 8, the reduction of number of 
TDPs had a negative impact on variable selection of all examined ML- 
EPMs. With 2000 and 1000 TDPs for classification and regression 
respectively, all examined ML-EPMs missed at least V1 when performing 
variable selection (Table 8). Among the ML-EPMs, the ANNC and ANNR 
models seemed to be the most affected by the reduction of number of 
TDPs in variable selection, as the uncertainties of the importance mea
sures of input variables of the ANNC and ANNR models became more 
significant with fewer TDPs (Fig. 14(g), (h), (o), and (p)). This result 
indicated that, to guarantee a successful selection of pertinent input 
variables, at least thousands of TDPs were needed to train an ML-EPM. In 
particular, the ANN-based methods may need more TDPs than the other 
ML methods for variable selection. In real-world applications, however, 
it can be challenging to collect as many as thousands of TDPs with good 
distributions of values of IM and VIs to select pertinent variables to 
model societal vulnerability. This may require researchers to spend a 
long time waiting for many hazardous events to occur before obtaining a 
sufficient number of TDPs for modeling. In addition, real-world data on 
VIs are likely to face other inconsistency problems such as missing 
values and differing resolutions. Future work needs to develop methods 
to simulate data points with inconsistency issues to further examine the 
sensitivity of ML-EPMs, in terms of predictive performance, to the 
number and quality of TDPs for modeling societal vulnerability. 

5. Conclusion 

In this study, we proposed an MC approach to generate data to 
experimentally verify EPMs of societal vulnerability to losses associated 
with hazardous events. To model the correlational structure of data on 
IM and VIs, we adopted a novel eigenvalue-based method for data 
simulation. To examine EPMs, we designed true models based on LR and 
MLR modeling to simulate loss data of societal systems. As a demon
stration, 8 commonly used ML-EPMs were tested and shown to be 
capable of selecting pertinent input variables with the PIA and pro
ducing predictive performances that were comparable to the ones of the 
true models. Results of the study also suggested that simple models 
should be preferred for creating vulnerability curves, as the extrapola
tion of vulnerability curves for large IMs with the sophisticated ML 
models may not be reliable. To successfully select the pertinent input 
variables and calibrate ML-EPMs for quantifying societal vulnerability, 
at least hundreds of TDPs with information on event IM, pre-event VIs, 
and event losses should be collected for model training, especially for 
training nonlinear models. The proposed MC methodology can also be 
extended to examine the veracity and validity of other methods for 
quantifying societal vulnerability, including those for social vulnera
bility. Future work needs to explore more advanced methods to model 
the correlational structure of data on IM and VIs for simulations of input 
variables of models of societal vulnerability. More true models that are 
more sophisticated than the LR-MLR model should be properly designed 
for simulation of loss data and for comparisons of model performances. 
More methods for variable selection should also be tested with the 
proposed experimental methodology in future studies. 
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