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ABSTRACT 

I investigated avian-habitat relationships in three related study systems. In my 

first chapter I characterize the nonbreeding habitat of the western subspecies of Willow 

Flycatchers (Empidonax traillii subspp.), including the federally endangered 

Southwestern Willow Flycatcher (Empidonax traillii extimus), with a range-wide species 

distribution model. The three western subspecies of Willow Flycatchers migrate between 

the riparian landscapes in the western and southwestern United States to the riparian 

areas in tropical dry forests along the Pacific coast of Central America. The predictive 

model of potential habitat suitability will be corroborated on the ground by conservation 

collaborators and used to locate new long-term monitoring sites, and acquire new 

protected areas. Unlike the migratory western Willow Flycatchers, The Nicaraguan 

Grackle is a residential (non-migratory) bird that occupies more open wetlands and 

riparian areas around the Nicaraguan great lakes and the Caño Negro wetland complex of 

Costa Rica. In my second chapter, I create urgently-needed baseline maps of habitat 

suitability with varied levels of freshwater recurrence for the Nicaraguan Grackle 

(Quiscalus nicaraguensis). This map of predicted habitat suitability will be used as 

evidence to garner elevated protection status for this understudied, declining species. 

Finally, in my third chapter, I use unmanned aerial systems (UAS or drones) to explore 

methods to improve habitat variables used in nest-site selection modeling for Mojave 

Desert riparian songbirds, including the endangered Least Bell’s Vireo (Vireo bellii 

pusillus). I compared UAS and satellite image products of vegetation structure within 

first and second order resource selection functions for breeding and nesting habitat in 

Amargosa Canyon. The ultimate goal with this research was to determine key features of 
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vegetation structure that influence nest-site selection to inform habitat restoration 

upstream on the Amargosa River.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

 

DEDICATION 

 

to my family, Dennis, Susan, and Nicole Phillips, whose encouragement  

and unwavering support drove me to truly achieve my dreams. 

 

to my loving husband and best friend Sean, words cannot express my gratitude 

for you and your constant support throughout this challenging journey.  

Without you, I never would have finished.  

 

and to my daughter, who enabled the positive pregnancy hormones  

that kept my spirits high and my focus on the bright future ahead.  

I am so excited to meet you. 

 

 

 

 

  



iv 

ACKNOWLEDGEMENTS 

Something that was very important to me in choosing a PhD program was to find 

one in which I could have a direct impact or influence on conservation management of 

threatened species. My transition from Zoology to Fisheries and Wildlife for my masters 

made me realize that the science I was most passionate about had these direct 

applications to management or conservation practice. Once I became captivated by the 

distributions of wildlife, Geography became the obvious option for advancing my 

knowledge, skills, and practice. Over the past five years, I have learned innumerable 

lessons from the field of Geography that drove the direction of my research. My research 

has been guided by a group of academic and community members that grew every year 

as I advanced in my program. None of the studies featured in these three chapters were 

completed without the guidance and input of collaborators, mentors, and peers.  

I want to specifically acknowledge my advisor, Tom Albright, for his support, 

guidance, and patience throughout this degree program. Whether I was coming up against 

a tight grant deadline or working through self-doubt, I could always count on him for 

judgement-free conversation and advise. Tom never had unreasonable expectations for 

me and allowed me to find my own ways of accomplishing tasks, which I really grew to 

appreciate. I also learned a lot from Tom as an instructor, in particular, how to engage 

higher levels of learning from more junior students. I also want to thank Tom’s wife, 

Katia Albright, who I shared so many fun lunchtime conversations with. Katia not only 

became an instant friend, but was an amazing resource for opportunities at the university. 

She always made me feel seen, heard, and valued. I will genuinely miss being a part of 

their lives in Reno, but hope that we will always stay connected. 



v 

I also need to thank Ken Nussear, who taught some of the most transformative 

courses I completed in graduate school and was involved in almost every aspect of my 

research. Ken served as a constant source of research and analytical inspiration and I feel 

very fortunate to have been able to learn so much from him.  

Throughout this journey, and especially during my comprehensive exams, I 

received tremendous support from my other committee members: Scott Bassett, Kevin 

Shoemaker, and Elizabeth Leger. My committee gave me the direction and resources I 

needed to learn deeply and apply theory critically. I am so grateful for the time they put 

in to helping me achieve this milestone.  

Finally, I would be remiss if I didn’t take the time to acknowledge my cohort and 

peers. Graduate school is a challenging time and I’m convinced that the only way to get 

through it is to find people who inspire your personal growth and progress. I was so 

fortunate to go through this journey with Jon DeBoer, Anjana Parandhaman, Steve 

Hromada, Ranae Sullivan, Ally Xiong, Cory Mitchell, and Danielle Miles (among 

others). Between all of the lab meetings, practice talks, late night coding sessions, epic 

dinners and weeknight hangouts—we made memories I will cherish for the rest of my 

life.  

  



vi 

 CONTENTS 

Introduction………………………………………………………………………..……………...1  

Chapter 1.……………………………………………………………….…………………..…..…8  

Introduction.…………………………………...………………………………………....9 

Methods………………………………….………..…………….……………………….12  

Results.…………………………………………………………………………………..16 

Discussion..…….….……………………………………………...…………………….. 21  

Conclusions…………………………………………………………………….………..24 

Chapter 2…………………………………………………………………………………………29  

Introduction.………………………………………………………………...…………..30 

Methods.…………………………………………………………………..……………..32 

Results.…………………………………………………………………………………..39  

Discussion.…………………………………………………………………..………….. 47  

Conclusions………………………………………………………………………….…..51 

Chapter 3……………….…………………….…………………………………………………..55  

Introduction.………………………………………………………………………...…..56  

Methods.…………………………………………………………………………..……..61  

Results.…………………………………………………………………………………..66  

Discussion.………………………………………………………………………..…….. 71  

Conclusions………………………………………………………….…………………..73 

Conclusion.………………..………………………………………………….……………….… 78  

  

  



vii 

LIST OF TABLES 

Table 1.1: Environmental Variables.…………………………………………………………...15  

Table 1.2: Model Performance.…………………………………………………………………19  

Table 1.3: Variable Importance Values.………………………………………………………..20  

Table 2.1: Candidate Environmental Variables……………………………………………….36  

Table 2.2: Revised Models………………………………………………………………………37  

Table 2.3: Performance Metrics.………………………………………………………………..40  

Table 2.4: Relative Variable Importance……………….…………………….………………..41  

Table 3.1: Model Section.…………………………………………..……………………………68  

Table 3.2: Coefficient Estimates.………………..………………………………………………68  

  



viii 

LIST OF FIGURES 

Figure 1.1: Willow Flycatcher Occurrences…………………………………………………....14  

Figure 1.2: Predicted Habitat Suitability for Non-breeding…………………………………..18  

Figure 1.3: Predicted Habitat Suitability with Observations………………………………....19  

Figure 1.4: Response Plots for the Random Forest Model……………………………………20 

Figure 1.5: Predicted Suitable Habitat within Protected Areas……………………………....21  

Figure 2.1: NICGRA Occurrences, Range and Wetlands……………………………………..38  

Figure 2.2: Predicted Habitat Suitability of the Nicaraguan Grackle………………………..42  

Figure 2.3: Predicted Habitat Suitability of NICGRA in Focal Areas……………………….43  

Figure 2.4: Response Plots for Moderate Recurrence Model………………………………....44  

Figure 2.5: Response Plots for Herbaceous Wetland Model………………………………….45  

Figure 2.6: Predicted vs. BLI-IUCN Range Area Comparison……………………………….46  

Figure 3.1: Map of Study Area and Restoration Target Sites…………………………………62  

Figure 3.2: Satellite-derived Image Texture Metrics……………………………………….…69  

Figure 3.3: UAS-derived Digital Vegetation Model…………………………………...……….70  

Figure 3.4: Image Classification………………………………………………………………...70  

Figure 3.5: Nest Locations and Model Predictions…………………………………………….71  

 



1 

INTRODUCTION 

Birds have fascinated humankind long before Darwin mused the bills of finches. 

Beyond their iconic status in culture, lore, and symbology, birds have adapted to make 

use of nearly every ecosystem and provide globally important ecosystem services. Birds 

are important to agriculture, economies, and ecosystem health (Wenny et al. 2011; 

Whelan et al. 2015). Birds regulate agricultural and urban pests, pollinate crops and 

native plants, disperse seeds, regulate carrion and carrion-vectored diseases, and have 

inspired countless technological advances in human civilization (Whelan et al. 2008). 

Despite birds’ importance to humanity, anthropogenic environmental changes are the 

primary drivers of global avian decline. Habitat loss and degradation, climate change, 

chemical and plastic pollution, overharvesting, and other anthropogenic mortalities have 

contributed substantially to global declines in avifauna (Grenyer et al. 2006). A recent 

study published in Science estimated that nearly 3 billion birds have disappeared from 

North America alone in the last 50 years (Rosenberg et al. 2019). This monumental 

decline in avian abundance impacts both rare and common species, and impacts birds in 

nearly all biomes (Gaston and Fuller 2008, Lee et al. 2022). And while birds are indeed 

among the most studied taxa (Bonnet et al. 2002, Donaldson et al. 2016, Troudet et al. 

2017), not all species are represented equally in the literature. With an estimated 10,000-

18,000 bird species on Earth (Barrowclough et al. 2016), there are many that remain 

undescribed, data deficient, or understudied. A migratory species may be well-studied in 

its breeding range but not in its migratory or non-breeding range. Even species that are 

readily accessible with a very limited range may be virtually unrepresented in the 

scientific literature.  
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In the last 100 or so years that people have noticed birds declining, our 

investigative focus has shifted more heavily to where we can find these birds and how 

can we help them persist in our rapidly changing world. While quantifying the 

populations of declining birds is an essential piece of conservation management, it is only 

half of the puzzle. The leading threat to most declining birds is habitat loss (Lee et al. 

2022), and thus, studies that focus on the quality and distribution of bird habitat play a 

critical, complementary role in conservation planning and management (Johnson and 

Gillingham 2005, Cayuela et al. 2009, Lawler et al. 2010). Habitat has been defined in a 

variety of ways, but at its core it is species-specific term used to describe the sum of 

needs required by an organism to survive, reproduce, and/or persist in the abiotic and 

biotic environment (Hall et al. 1997; Krausman 1999). Characterizing the suitability and 

availability of habitat is essential to understand the basic needs of a target species 

(Franklin 2010a). The creation of habitat suitability maps is especially important for 

species that lack a strong presence in the scientific literature (Guisan and Thuiller 2005, 

Elith et al. 2006), effectively establishing a baseline for contextualizing the species in 

space.  

Modern ecology boasts a substantial collection of statistical analyses and global 

databases that enable wildlife investigation at continental or global scales. In this 

dissertation, I will use species distribution models, resource selection functions, and 

drone-based habitat characterization to map distributions and determine key 

environmental variables for several species of migratory and resident riparian songbirds.  

Species distribution modeling (or habitat suitability modeling) is a widely applied 

methodology that ascended during the period of rapid spatial science advancement. 
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Specifically, species distribution modeling developed from ecological gradient analysis in 

in the early 1970s as biogeography and landscape ecology became more established 

(Franklin 2010a; Cox et al., 2016). These modeling approaches are similar in that they 

both attempt to define correlations between target species and features of their 

environment by modeling presences and absences (or random pseudo-absences). Both 

methods have evolved significantly alongside the expansion of open-source programming 

platforms and can now be customized to answer deeper questions relating to where, how, 

and why a species selects or uses a given habitat (Porfirio et al. 2014, Marcer et al. 2013). 

The habitat suitability maps and habitat usage information that result from these 

modeling approaches can be used to define range limits, select new survey or 

translocation sties, and identify key environmental features that define high-quality, 

marginal, or sink habitat (Franklin 2010b, Lawler et al. 2010, Marcer et al. 2013). 

Beyond these fundamental methods for characterizing habitat usage and species 

distributions, it is also important to build upon these processes with new sources of 

information. A recurring challenge in conservation biogeography is our ability to obtain 

environmental data at a broad enough extent or fine enough scale to draw biologically 

relevant conclusions for our target species (Richardson and Whitaker 2010, Franklin 

2013). Since the 1970s, biogeographers have relied on satellite-derived imagery products 

to represent environmental and climate variables in these models (Goodchild 2010, 

Franklin 2013). Satellite-derived imagery products continue to improve, often offering 

global extents and finer grains. Grains of 1 km are nearly standard for global imagery 

products, and it is not uncommon to see products offered at grains of 100 m or less 

(Guisan et al. 2007). Environmental habitat variables at finer grains can be used for more 
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precise targeting of future survey sites or range limit estimates. However, some 

investigations seek answers to study questions for areas that don’t exceed a 1-km plot. 

The advancement of drone technology has enabled scientists to create ultra-fine grain 

(sub 10-cm) maps of habitat imagery. Ultra-fine habitat imagery products may offer an 

opportunity to produce models that provide more nuanced answers to questions about 

nest-site selection and breeding habitat use.  

In my dissertation, I investigate avian-habitat relationships in three separate but 

related study systems. Each chapter of my dissertation is set within a unique geography 

of space, place, and even time. I characterize nonbreeding, residential, or breeding habitat 

in riparian areas of the Pacific tropical dry forests of Central America, the Pacific tropical 

wetlands of Nicaragua, and the Mojave Desert in the southwestern United States. The 

scale of investigation also tightens with each chapter, from the broad extent of Central 

America to 1-km study sites in the Mojave Desert.  
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Chapter 1: Where Western WIFL Winter: A species distribution model for non-breeding 

Willow Flycatchers (Empidonax traillii sp.)  

 

ABSTRACT 

Full life-cycle wildlife management has become the gold standard for the 

conservation of migratory birds, but many species still lack sufficient study in their non-

breeding, wintering grounds. The Willow Flycatcher (Empidonax traillii, WIFL) is a 

small tyrant flycatcher that consists of four subspecies; three of which breed in wetlands 

of the western US and Canada. Like many neotropical migrants, WIFL migrate from 

nations with well-funded conservation initiatives and protected areas to regions where 

formal protections or enforcement may be lacking. While breeding populations of WIFL 

have been the focus of many scientific investigations and conservation efforts, less has 

been published about their non-breeding habitat in the neotropics. Conservation 

practitioners now recognize the importance of studying birds across their full life cycle to 

better inform management and prevent population declines. I model winter habitat 

suitability for western subspecies of WIFL from Nayarit, Mexico to northwestern 

Columbia. Wintering areas are human-dominated landscapes that continue to undergo 

rampant deforestation and destruction of wetlands, representing a major threat to 

migratory birds. For this investigation, I ask: what habitat characteristics are best suited 

to support wintering WIFL and where are they concentrated?  I hypothesize that willow 

flycatchers are associated with riparian shrub cover, flooded vegetation, and freshwater. I 

used WIFL survey data collected from 1999 to 2019 and characterized the region with 

publicly available climate and remote sensing data from CHELSA, Copernicus, and 
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Global Surface Water Explorer. I modeled relative habitat suitability using general 

additive models, and random forest algorithms. Results indicate that WIFL are positively 

associated with complex vegetation cover, warmer climate conditions, and proximity to 

freshwater. These models identify key suitable wintering habitat, which will be used by 

our collaborators for the acquisition of new protected areas and land management 

partnerships for wintering populations of WIFL. 

 

INTRODUCTION 

Migratory birds transcend political boundaries, creating the need for collaboration 

between countries with sometimes vast differences in management practices. Full life-

cycle wildlife management has become the gold standard for the conservation of 

migratory birds, but many species still lack sufficient study in their non-breeding 

wintering grounds. The full life-cycle conservation framework highlights the importance 

of conservation across breeding, migratory, and wintering habitat. The breeding habits 

and habitat of many threatened and endangered neotropical migrants in the United States 

are generally well-studied and many are protected. Migratory birds that overwinter in the 

neotropics face rampant habitat loss and degradation in a landscape that changes with 

every migration (Hansen et al. 2013), representing a significant potential population sink 

in their life cycles. In addition, wide-spread poverty and a lack of access to water 

infrastructure makes riparian areas a prime target for invasion by cattle ranching and 

subsequent degradation (Betts et al. 2022), with serious effects for species inhabiting 

them. 
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The Willow Flycatcher (Empidonax traillii) is a small, tyrant flycatcher that 

breeds in the United States and migrates to the neotropics during the winter months of the 

northern hemisphere (Finch et al. 2002). Like many neotropical migrants, WIFL migrate 

from nations with established protections and conservation initiatives to those with 

limited protections and a rapidly changing landscape. While breeding populations of 

WIFL have been the focus of many scientific investigations and conservation efforts (see 

Finch et al. 2000, Hatten 2016, Paxton et aal. 2007, Sogge et al. 2010, Stumpf et al. 2012 

and others), less has been published about their non-breeding habitat (though see Paxton 

et al. 2011), and this study represents the first to attempt to predict habitat suitability 

across the entire non-breeding range of the western subspecies.  

Willow flycatchers have been divided into four subspecies that breed across the 

United States. The Eastern Willow Flycatcher (Empidonax traillii traillii), Little Willow 

Flycatcher (E. t. brewsteri), Great Basin Willow Flycatcher (E. t. adastus), and 

Southwestern Willow Flycatcher (E. t. extimus). This study combines non-breeding 

observation data for the three western subspecies of Willow Flycatcher due to their 

striking visual similarity and overlapping wintering ranges. The western subspecies of 

Willow Flycatchers winter from the state of Nayarit, Mexico through Panama, while the 

more common Eastern Willow Flycatcher overwinters in South America (Paxton et al 

2011).  

WIFL are a generally riparian-dependent species that use perches like trees and 

shrubs to watch for insects to hunt (Finch et al. 2002, Stumpf et al. 2012). Willow 

Flycatchers are important regulators of insects that emerge from riparian ecosystems 

(Finch et al. 2002). Insect population regulation is an ecosystem service that benefits both 
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people and riparian communities. While preferences for certain plant species have been 

documented in both breeding and wintering habitats (Sedgwick 2020), this species is not 

considered a host-plant specialist (Paxton et al. 2007). The Southwestern subspecies of 

the WIFL is federally listed as endangered in the United States affording it significant 

breeding habitat protection. Organizations like Paso Pacifico, a non-government 

organization that does conservation work in Central America have put considerable effort 

into establishing long-term monitoring sites for SWFL and other threatened neotropical 

migrants throughout their non-breeding range. Unlike the Least Bell’s Vireo (Vireo bellii 

pusillis), another migrant riparian insectivore that breeds in the western united states, the 

SWFL has not rebounded in response management actions throughout its breeding range 

(Pottinger and Kus 2019), suggesting a need to focus management actions more heavily 

in its migratory or nonbreeding range.  

I answer important questions about western WIFL subspecies and their non-

breeding habitat. For this investigation, I ask: what habitat characteristics are best suited 

to support wintering WIFL and where are they concentrated? I hypothesized that WIFL 

were highly associated with riparian shrub cover and proximity to freshwater and 

expected habitat to be similar to that in their breeding range. My primary objective was to 

create a species distribution model to direct targeted conservation initiatives for survey 

design and potential land acquisition of critical habitat areas for wintering WIFL. By 

modeling wintering habitat suitability, I also aimed to determine which protected areas, 

territories and areas conserved by indigenous peoples and local communities, and other 

effective area-based conservation measures may play a key role in promoting non-

breeding habitat for this species.  
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Study Area: 

The Central American neotropics support an incredible diversity of ecosystems 

and species. The tropical wet and dry forests are a part of a largely human-dominated 

landscape that is rapidly changing. Central America is experiencing rampant 

deforestation in response to lack of economic opportunity and pressure to produce 

inexpensive protein for export (López-Carr et al. 2022). Poor farmers try to make a living 

by clearing forest for subsistence farming and cattle ranching further and further from the 

cities (Casillas et al., 2010, López-Carr and Burgdorfer 2013), relying heavily on riparian 

areas to provide water to cattle. A weak land tenure system and lack of enforcement mean 

that almost all natural areas are at risk of deforestation (Broegaard, 2005; Finley-Brook & 

Offen, 2009).  

METHODS 

Species distribution models are used to explore and predict the associations 

between species occurrences and environmental conditions. Open-source programming 

platforms like R have greatly expanded the applications of species distribution models in 

conservation, moving beyond the limitations of presence-only modeling with “black box” 

software. In this study, I primarily use open-source software and publicly available 

datasets to maintain an open-access modeling framework that can be adapted and 

expanded upon by future collaborators.   

WIFL occurrence data were provided by collaborator Mary J. Whitfield (Southern 

Sierra Research Station) and Cornell Lab of Ornithology eBird records (Levatich and 

Ligocki 2019). Field research by MJW took place from 1999 to 2018 and eBird records 

were retrieved in mid-2019.  To characterize the region, I retrieved publicly available 
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gridded climate and remote sensing products from CHELSA, EarthEnv, and the Global 

Surface Water Explorer (Table 1.1). Previous research indicated that WIFL are positively 

associated with fresh water, complex vegetation structure, and emergent vegetation 

(Hatten 2016, Paxton et al. 2011), leading me to consider a wide variety of candidate land 

cover variables (Table 1.1). All environmental variable rasters were resampled using 

bilinear interpolation to a common 100-m grain and cropped to the extent of the study 

area using the terra package. Each model included eight candidate variables: two 

climatic, one proximity to water, and five fractional land cover variables (Table 1.1).  

To augment the dataset and achieve a more uniform sampling of the study area, I 

requested data from the eBird observation database. This dataset did not separate 

observations by subspecies, and required substantial filtering based on the country, date, 

and verification status of the observation. The combined dataset numbering 3,722 records 

exhibited significant spatial autocorrelation and required spatial thinning (Fig. 1.1). Both 

the field records and eBird records are spatially-biased. The field records rely on a survey 

regime that prioritized recapture of color banded birds, necessitating multiple trips to 

known habitat rather than systematic sampling of potential habitat. EBird allows 

community scientists to report an observation anywhere, but it is common for eBird 

“hotspots” to attract higher numbers of observers wishing to increase their chances of 

seeing a wide variety of species. For the eBird records, there appears to be a significant 

sampling bias towards Costa Rica, no doubt due to its status as a global birding hotspot 

(Fig. 1.1). Thus, spatial thinning was carried out in Costa Rica prior to modeling. I 

spatially thinned records from eBird using a per-pixel approach by creating a 100-m grid 

and reducing the number of observations per grid cell to 3. I determined grid size and the 
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final number of observations per cell by examining the range of spatial autocorrelation in 

semivariograms of the observation data. 3,190 records remained after thinning. 

Because the WIFL records were not evenly distributed across Central America, I 

buffered the occurrence data to restrict the spatial extent of future background points and 

suitability predictions. I chose a 500-km buffer because the occurrences on the Atlantic 

coasts were approximately 500 km from the Pacific coast. I masked all candidate 

environmental variables with the 500-km buffer shape file in R to prepare them for 

modeling.  

 
Figure 1.1: Willow Flycatcher Occurrences –  Occurrence data consist of 532 field records and 

3,722 eBird records across nine countries. Note the disproportionately high number of 

observations in Costa Rica. 
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Table 1.1: Environmental Variables – The initial model included eight candidate environmental 

variables (two climate variables and eight land cover variables.  

 

Variable Name  Source Resolution  Description 

Average 

precipitation  

CHELSA Bioclimatology 

Dataset1 
1-km  

Average of monthly 

precipitation Nov – March 

Average maximum 

temperature  

CHELSA Bioclimatology 

Dataset1 
1-km  

Average of monthly max 

temperatures; Nov – March 

Distance to 

Freshwater  

JRC Global Surface 

Water Dataset2 
30-m 

Percent of the year a pixel 

is water 

Herbaceous cover 
Copernicus Global 

Landcover3  
100-m 

Fractional land cover 

prevalence per pixel (%) 

Tree cover  
Copernicus Global 

Landcover3  
100-m 

Fractional land cover 

prevalence per pixel (%) 

Crop cover  
Copernicus Global 

Landcover3  
100-m 

Fractional land cover 

prevalence per pixel (%) 

Shrub Cover 
Copernicus Global 

Landcover3  
100-m 

Fractional land cover 

prevalence per pixel (%) 

Seasonal water 

cover  

Copernicus Global 

Landcover3  
100-m 

Fractional land cover 

prevalence per pixel (%) 

1. Karger et al. 2017, 2. Pekel et al. 2016, 3. Buchhorn et al. 2020 

 

Analysis:  

I used the biomod2 package in the R programming platform to build and fit the 

species distribution models (R Core Team 2023, version 4.2.3). Each candidate model 

was fit with either a generalized additive model (GAM) or random forest (RF) algorithm. 

I used the biomod2 package to produce pseudo-absences equal in number to the 

occurrences using the ‘random’ strategy. Once I combined the occurrences, absences, and 

pseudo-absences into a common dataset. I ran 20 iterations of each candidate model (RF 

or GAM) with an 80% data split for model calibration and cross validation and 10 

permutations for variable importance estimation. I selected the true skill statistic (TSS), 

receiver operating characteristic (ROC), and accuracy (ACCURACY) methods to 

evaluate each model and compare their performance. Each of these performance metrics 



16 

represents a threshold-dependent, threshold-independent, and basic strategy for 

evaluating model performance. I plotted the averaged response curves with confidence 

intervals for each environmental variable. Finally, I used a ‘TSS’ binary transformation 

method to forecast the prediction surfaces for the 20 iterations of the reduced model, and 

created an averaged surface for each algorithm.  

 

RESULTS 

The random forest model produced a map of predicted WIFL habitat suitability 

for their nonbreeding range across Central America (Figs. 1.2 and 1.3). Predicted habitat 

suitability index values ranged from 0 to 1, with 1 indicating higher suitability. The 

random forest model scored higher than the GAM model in all performance metrics 

(TSS, ROC, ACC), and thus, only results from the random forest model are presented 

(Table 1.2). Estimates of variable importance indicated that the variables contributing the 

most to suitability predictions were distance to freshwater, mean precipitation, mean 

temperature, and percent shrub cover (Table 1.3). A subset of the prediction surface is 

included as an additional figure to improve interpretation of the prediction surface and 

compare it to the occurrence data (Fig. 1.3). The subset map focuses on Nicaragua, which 

is one location where the endangered SWFL subspecies is believed to be concentrated 

(Fig. 1.3). The mean suitability index for WIFL occurrences based on the predicted 

habitat suitability is 0.87 (median =0.97).  

The variable response plots highlight the effects of each environmental variable 

on predicted habitat suitability (Fig. 1.4). Each environmental variable was plotted 

against predicted habitat suitability (0-1) across its full range of values within the study 
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area while all other variables were fixed at their median value. The fractional land cover 

values range from 0–100%, with 0 representing no presence in the pixel and 100 

representing complete coverage of the pixel. Therefore, a single 100x100-m pixel may 

have a mixture of land cover types. Predicted habitat suitability (PHS) was most heavily 

influenced by distance to freshwater (Fig. 1.4h), with PHS dropping from 0.70 to 0.45 as 

distance to freshwater increases. Mean temperature was the second most influential 

environmental variable, with PHS increasing from 0.20 to as high as 0.87 as mean 

temperature increases (Fig. 1.4f). The effects of mean precipitation on PHS are more 

variable, with PHS dropping slightly at lower levels precipitation. Other than percent 

seasonal water (described subsequently), the four remaining fractional land cover 

variables all had a negative effect on PHS. PHS dropped steeply (0.60 to 0.10) as the 

percent shrub cover per pixel exceeded 20%. Percent herbaceous cover per pixel showed 

a more gradual drop in PHS (0.60 to 0.35) over 20-50% cover. PHS peaked slightly 

between 25 and 60% tree cover per pixel, dropping slightly after 60% cover. PHS was 

highest for percent crop cover between 25 and 40% per pixel, dropping gradually to 0.50 

as % cover increased. Percent seasonal water only had a slight effect on PHS, increasing 

quickly and leveling out at low percentages of cover.  

In order to draw more concrete conclusions about the concentration of suitable 

habitat for non-breeding western WIFL, predicted habitat suitability was thresholded at 

the averaged optimized cutoff value for the model based on all three performance 

metrics. This value minimizes the absolute difference between sensitivity (correctly 

predicted percentage of presences) and specificity (correctly predicted the percentage of 

absences). The predicted habitat suitability surface was thresholded at 0.38, with all 
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values at or above considered “suitable”. This cutoff value is appropriate given the range 

of riparian habitat preferences exhibited by non-breeding WIFL.   

 
Figure 1.2: Predicted Habitat Suitability for Non-breeding WIFL – The random forest model 

included eight environmental variables. High predicted habitat suitability values are red, and low 

predicted habitat suitability values are blue. The final prediction surface above is an average of 20 

iterations of the random forest model. Suitability hotspots are indicated by black dashed circles.  

\ 

\ 

\ 

\ 
\ 
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Figure 1.3: Predicted Habitat Suitability with Observations – A closer look at the final 

random forest model predictions with an observation overlay. The prediction surface produced 

suitable habitat apart from the occurrences, demonstrating the model’s ability to predict habitat in 

places that have not been surveyed.  

 

 

Table 1.2: Model Performance – True Skill Statistic (TSS), Receiver Operating Characteristic 

(ROC), and accuracy results for both the GAM and random forest models. Results are broken 

down further by the divisions in data: calibration data (used to train models), and validation data 

(used to cross-validate models), The values below have been averaged across 20 iterations.  

 

Model Metric Sensitivity Specificity Calibration Validation 

 TSS 98.94 98.65 0.98 0.82 

RF ROC 98.96 98.67 0.99 0.96 

 Accuracy 98.86 98.70 0.99 0.90 
      

 TSS 78.90     86.50      0.65     0.64 

GAM ROC 79.10 86.49 0.90 0.89 

 Accuracy 78.70 86.72 0.83 0.82 
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Table 1.3: Variable Importance Values – Importance values range from 0 to 1, with a higher 

value indicating a greater contribution to model predictions. Importance values may not sum to 

100 due to averaging across model runs.   

Variable Importance 

Distance to Freshwater 26.1 

Mean Temperature 18.0 

Mean Precipitation 15.0 

Shrub cover 9.4 

Tree cover 4.3 

Herbaceous cover 3.4 

Crop cover 3.4 

Seasonal water cover 1.0 

 

 
Figure 1.4: Response Plots for the Random Forest Model – Response plots were generated 

with the biomod2 package in R. Teal lines represent each of 20 individual model runs. Black lines 

represent the average response curve across all 20 model runs. Tick marks along the x-axis 

represent the frequency of pixels with that value within the study area.  

a. b. 

d. e. 

c. 

f. 

g. h. 
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Figure 1.5: Predicted Suitable Habitat within Protected Areas – Suitable habitat thresholded 

at a 0.38 suitability index made up less than 11% of conservation areas. Conservation areas cover 

264,197 km2 of the study area. Suitable habitat outside of conservation areas is not shown on the 

map.  

 

DISCUSSION  

Predicted habitat suitability for western subspecies of Willow Flycatcher was 

mapped at a 100-m across the entirely of their non-breeding range to target future survey 

efforts and prioritize land partnerships or acquisition. Areas with higher predicted habitat 

suitability remain largely outside of protected areas and indigenous conservation areas 

(Fig. 1.5). Higher habitat suitability is driven by proximity to freshwater, the warmer 

temperatures on the pacific dry slope, and complex vegetation structure (Fig. 1.4). The 

results of our model confirm that western subspecies of Willow Flycatcher are associated 

with similar habitat features between their breeding and non-breeding range. The positive 
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influence of proximity to freshwater is expected as WIFL are a well-known inhabitant of 

riparian ecosystems in their breeding range (Finch et al. 2002, Paxton et al. 2007, Sogge 

2010, Hatten 2016). While some sources suggested that WIFL may venture further from 

riparian areas in their non-breeding range (Sedgwick 2020), our observations place WIFL 

within 1 km of freshwater on average, with most observations occurring within 350 m of 

water. It is also possible however that this may be due to survey strategies that prioritize 

sampling of WIFL at riparian sites to maximize recaptures, or just that birders aren’t 

looking for them beyond the willows. Articles focusing on non-breeding territoriality and 

fecundity though, suggest that riparian areas may still be the prime target for non-

breeding WIFL (Koronkiewicz et al. 2006, Sogge et al. 2006). Areas with a higher 

maximum temperature were also a strong driver of high habitat suitability, perhaps 

suggesting that the western subspecies of WIFL prefer non-breeding habitat with 

semiarid climates similar to those in their breeding range (Howell and Webb 1995). 

Predicted habitat suitability had a parabolic or negative relationship with the four 

fractional land cover variables of vegetation types (herbaceous, shrub, tree, and crop), 

indicating a distinct preference for 100 x 100 m areas with complex or varied vegetation 

types or structure. When any one variable exceeded 25-50% cover, predicted habitat 

suitability decreased. As expected, fractional shrub cover had the strongest influence on 

PHS of any vegetation cover variable, but the strong association with fractional shrub 

cover below 25% was unexpected. While WIFL are well-documented in highly 

“shrubby” riparian areas in their breeding range, this may be due to an increased need to 

provide cover for nesting during the breeding season (Finch et al. 2000, Hatten and 

Paradzick 2003). A preference for more open, edge, or mixed-height areas may be 
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indicated for improved arthropod foraging via hawking or hover-gleaning during the non-

breeding period (Sedgwick et al. 2020). It may also be possible that larger shrubs have 

been grouped within the fractional tree cover variable, or that WIFL have a preference 

towards smaller trees in their non-breeding range. The variable effects of precipitation 

observed in the response curves may be explained by the lack of consistent precipitation 

on the Pacific dry slope during the months that WIFL reside there. WIFL overwinter in 

Central America during the dry season (Yong and Finch 1997, Finch and Kelly 1999), 

and WIFL have likely evolved to select non-breeding habitat with similar climatic 

conditions to that of their breeding habitat. This could also explain why predicted habitat 

suitability was higher for areas with higher average maximum temperature during the 

winter months.  

The largest concentration of suitable areas is along the Pacific Coast, but those 

areas are characterized by a low fraction of protected areas. Areas that may be especially 

important for migratory and non-breeding habitat in Mexico include the wetlands 

between the Grande de Santiago and Acaponeta Rivers in Nyarit, the riparian forest east 

of Colima where Rio Salado intersects Rio Naranjo, and the coastal riparian habitat 

between Laguna de le Joya and Laguna Chontuto west of Pijijiapan (Fig. 1.4). Most of 

the pacific coast between Rio Achiguate and Rio Paz in Guatemala is also a suitability 

hotspot. El Salvador’s hotspots include the area surrounding Bahia de Jiquilisco, 

continuing north around the Rio Lempa. The coastal wetlands surrounding Golfa Fonseca 

in Hondurus and Nicaragua represent an expansive suitability hotspot. Laguna de Tisma 

in Nicaragua, and the area between Los Guatuzos wetlands and Cano Negro Reserve in 

Costa Rica also represent potential hotpots. This reclassified surface was then used to 
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calculate the area covered by suitable habitat within protected areas (Fig. 1.5). Suitable 

habitat makes up less than 11% of conservation areas, despite covering 203,566 km2 of 

the study area.  

Potential limitations of this study are primarily related to issues of sampling bias 

that have been discussed at length with regards to eBird data (see Steen et al. 2019, Steen 

et al. 2021, Tang et al. 2021). Prioritizing repeated observations at the same locations or 

non-random survey sites to increase detection probability may have biased this dataset to 

have a stronger correlation with distance to freshwater. To determine whether or not 

WIFL truly occupy areas further than 1 km from freshwater, a follow-up study with 

stratified or random sampling at greater distances from freshwater would be required. 

The predictive capacity of the habitat suitability map is also limited by pooling 

observations for the three western subspecies of WIFL. If these subspecies were able to 

be more reliably differentiated, I could focus modeling efforts on the endangered 

Southwestern subspecies. However, combining the prediction surface with the gene-

based geographic sorting in Paxton et al (2011), we can further prioritize survey efforts 

and land-based conservation initiatives.  

 

CONCLUSIONS 

Overall, I found that the environmental variables that drive WIFL habitat 

suitability in their non-breeding range resembles that of their breeding range, with a 

strong correlation for riparian areas, more arid climate, and complex vegetation structure. 

This 100-m SDM can be used to improve survey site selection and to prioritize areas for 

land acquisition or conservation partnerships. Areas with high predicted habitat 
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suitability are more concentrated along the Pacific coast of Central America, with hot 

spots of suitability present in most countries. There is a significant gap in protected area 

coverage where predicted habitat suitability is highest on the west coast, suggesting a 

need to prioritize conservation initiatives in that area. My hope is that others will take this 

information and continue to improve upon it for a more focused approach to the 

conservation of this species in its non-breeding range.  
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Chapter 2: Evidence Indicates a Critical Need to Reassess Conservation Status of the 

Nicaraguan Grackle (Quiscalus nicaraguensis)  

 

ABSTRACT 

The Nicaraguan Grackle (Quiscalus nicaraguensis) is a passerine bird endemic to 

the great lakes of Nicaragua and neighboring wetlands in Nicaragua and Costa Rica. 

Nicaraguan ornithologists and birders have noticed a stark decline in this species 

throughout its range over the past decade. Major threats to the persistence of their habitat 

include cattle grazing, agricultural encroachment, and prolonged drought. In this research 

I estimated the current and potential distribution of this understudied species. Intensive 

field surveys were combined with recent data from eBird to determine the presence of the 

Nicaraguan Grackle throughout its range. I estimated the current distribution for the 

Nicaraguan Grackle via species distribution modeling (SDM) with varied levels of inter-

annual freshwater. Results from the SDM suggest a very limited inhabited distribution 

within the current BirdLife International range map (<15%; 0.55 probability threshold). 

Few records document the presence of this species at distances beyond 250 m from 

permanent or recurrent fresh water. The importance of proximity to freshwater was 

confirmed in the random forest SDM analysis with additional strong association to 

wetland vegetation. Based on these findings and reports of continued declines, I suggest a 

revised distribution map and an update to their current IUCN status. This will allow more 

accurate evaluation of their protection status and generate urgency for more directed 

surveys of this species. 
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INTRODUCTION 

The Nicaraguan Grackle (hereafter “NICGRA”; Quiscalus nicaraguensis), is an 

icterid (Family Icteridae: “Blackbirds and Allies”) considered endemic to the Pacific arid 

slope of Nicaragua and Costa Rica. Nicaragua encompasses 75% of the species’ global 

distribution, most of which is around Lakes Nicaragua and Managua (L. Xolotlán and L. 

Cocibolca respectively; BLI 2016). NICGRA also inhabit the adjacent wetlands southeast 

of the lakes and the north central lowlands of Costa Rica (BirdLife International & 

Handbook of the Birds of the World, 2016; Jaramillo & Burke, 1999; Stattersfield et al., 

1998; Stotz, Fitzpatrick, Parker, & Moskovits, 1996). 

Despite its near-endemic and emblematic status to Nicaragua, this species is 

virtually unrepresented in the scientific literature. Publicly available knowledge of this 

species is limited to field guides, a book on new world blackbirds (Jaramillo and Burke 

1999), and unpublished bird surveys. Surveys and observations by local birders suggest 

an unstable population requiring immediate conservation action. Articles in the 

Nicaraguan press also warn that the species is rapidly declining due to human-induced 

habitat loss and climate change (Gonzalez, El Nuevo Diario 2019). Historical and 

contemporary data suggest that the species’ research priority is low (Stotz et al., 1996), 

possibly owing to the erroneous perception that flooded pasture for cattle-raising would 

favor a range expansion (Jaramillo & Burke, 1999; Martínez-Sánchez & Will, 2010). 

Unpublished manuscripts and recently published field guides provide some insight on 

their life history. One of the earliest descriptions of their distribution stated the species 

was historically abundant on the shores of Lakes Managua in Nicaragua, occurring 

wherever shorelines were shallow or marshy with dense growth of cattails and bushes in 
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which the species nested (Miller and Griscom 1922, unpub.). They added that NICGRA 

associated with the larger Great-tailed Grackle; however, it was never seen to leave the 

vicinity of the water or enter towns like its synanthropic relative. This last statement was 

corroborated by Howell (1964) and highlights the species’ specialization on freshwater 

wetland habitat and their tendency to avoid human settlements. More recent descriptions 

of their habitat align with the historic documentation of a freshwater wetland specialist 

(Chavarría-Duriaux et al. 2018). Freshwater occurrence in the Pacific dry region of 

Nicaragua varies seasonally and between years. Water may recur (ebb and return) across 

years due to prolonged dry periods or consistently abundant water years. The recurrence 

of freshwater on the landscape directly impacts the presence of seasonal wetlands which 

in turn alters the availability of habitat for freshwater wetland specialists like the 

Nicaraguan Grackle. Global satellite-based freshwater recurrence products provide 

opportunities to analyze habitat relationships as they relate to different levels of 

freshwater recurrence in the recent past (Pekel et al. 2016).  

The Nicaraguan Grackle is currently designated as “Least Concern” by the IUCN 

(IUCN, 2012). The justification is made primarily upon their estimated area of 

occupancy, which is stated to be near 20,000 km2, a sufficiently large area to avoid 

designation as ‘Vulnerable’. Given that this species appears to be a freshwater wetland 

specialist its range is likely considerably smaller than what was estimated by the IUCN. 

In addition to the range criterion, the IUCN has categorized the population as “stable, 

unfragmented, and not experiencing extreme fluctuations” (Birdlife International, 2016). 

However, no formal study has been published to document a stable, unfragmented 
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population. I believe the designation of “Least Concern” is not appropriate or well 

justified. 

In this research, I sought to study a species that is virtually unrepresented in the 

scientific literature, provide empirical and quantifiable data to support future 

management decisions, and update knowledge on the distribution of NICGRA. I 

documented the species’ contemporary distribution within Nicaragua and Costa Rica 

using a combination of existing unpublished field surveys and more recently collected 

eBird data. I mapped the likely distribution and identified important environmental 

habitat variables using species distribution modeling (SDM) approaches with varied 

levels of     freshwater recurrence on the landscape. I believe this work provides support 

for reclassification of the global conservation status of NICGRA from that of “Least 

Concern” to one of higher conservation concern, contingent upon the results of an 

additional population study following the IUCN Red List classification criteria (IUCN 

Red List, 2018). 

METHODS 

Data Collection: 

Data from audio-visual surveys and online repositories were collected and 

combined across five sources from 2007 to 2022 (Fig. 2.1). Collecting accurate data on 

the Nicaraguan Grackle is challenging because it is similar in appearance to the 

ubiquitous Great-tailed Grackle (Quiscalus mexicanus). The Nicaraguan Grackle and 

Great-tailed Grackle differ in size, song, and plumage, but not -visual surveys were 

conducted from the shoreline to the interior for up to 3 kmenough to rely on observations 

reported by inexperienced persons. Audio-visual survey detections performed by authors 
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LC, WA, MT, OJ, and TA were recorded from 2016 to 2018 at several sites in the 

Southern Dry Pacific ecoregion of Nicaragua and the eastern portion of Lake Nicaragua. 

Audio. Records from surveys conducted by MT and OJ during the proposed Gran Canal 

Environmental Impact Assessment were completed during November–December 2013 

and April–May 2014 (Environmental Resources Management, 2015). WA, MT, and OJ, 

conducted bird surveys with local partner NGO Paso Pacifico at “Sierra Serena” and “Isla 

Vista” within the range of NICGRA for the Conservation and Sustainable Tourism in 

Critical Watersheds project (Bauer & Arendt 2007). Finally, LC recorded additional 

observations of NICGRA while conducting intensive bird surveys across Nicaragua to 

increase the knowledge of local birds and fill in gaps of information related to rare bird 

distributions for the 2018 Nicaragua Bird Guide. 

Many of the audio-visual surveys were point counts in which abundance data was 

collected at a single georeferenced location. The focus of this investigation was spatial 

habitat prediction, which relies solely on the georeferenced locations of each survey. 

Thus, to increase the number of georeferenced records for the analysis I obtained 

observations from the eBird Data Repository (Sullivan et al., 2009; ebird, 2012). 

Observations by novice birders were not considered research grade and records were 

heavily filtered by the authors prior to inclusion in the dataset. To maintain the accuracy 

of the species’ identity, I only included observations accompanied by audio recordings, 

photos, or detailed and extensive descriptions. 

Modeling Distribution: 

In this study, I created SDMs to determine the overall distribution of the NICGRA 

as it relates to fractional land cover classes and distance to freshwater at various levels of 
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historical recurrence. SDMs work by determining the correlational relationship between 

habitat-relevant environmental variables and species presence/absence (Guisan and 

Thuiller 2005, Elith et al. 2006). Given that NICGRA has a documented dependence on a 

specific habitat type (freshwater wetlands), I felt that this method was well suited for this 

task. The extent of the study area was determined by creating a 50-km buffer around the 

current BLI-IUCN range map. This buffer captures the narrow historical range of the 

species, as well as more recent observations that marginally extend their range (Fig 2.1). 

Prior to modeling, I spatially thinned records from eBird using a per-pixel approach 

because of the disproportionate observational effort caused by birding tourism in Costa 

Rica (Echeverri et al. 2022). Thinning was carried out by creating a 1-km grid and 

reducing the number of observations per grid cell to 3. I determined grid size and the 

final number of observations per cell by examining the range of spatial autocorrelation in 

semivariograms of the observation data. The initial data aggregation of 304 records were 

spatially thinned to 217 records, with all thinning occurring in Costa Rica at the southern 

edge of NICGRA’s range.   

     I prepared seven candidate environmental variables at a 100-m resolution for 

use in the SDM (Table 2.1): four distance to fresh water or distance to herbaceous 

wetland variables, and six land cover variables. The distance to recurrent fresh water 

variables were derived from the Joint Resource Commission's global surface water 

“Recurrence” data product (Pekel et al. 2016), which captures the percentage of time over 

the past 38 years that a given pixel has recurred as surface water. The distance to 

herbaceous wetland variable was derived from the Copernicus discrete land cover 

classification product (Buckhorn et al. 2020). Land cover classes based on spatial fraction 
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of pixels were obtained from the 2019 Copernicus fractional land cover dataset and 

included: permanent water, seasonal water, built-up, shrub, herbaceous, and tree 

(Buckhorn et al. 2019; Table 2.1). The four distance to fresh water layers were 

resampled to the 100-m resolution of the fractional land cover classes using a bilinear 

interpolation approach. All environmental variables were masked to the study area extent 

with uninhabitable large open bodies of permanent freshwater removed.   

To build and fit the models, I used the biomod2 package in the R programming 

environment (Thuiller et al. 2023; R Core Team 2023, version 4.2.3). Because I did not 

have “absence” data, I used the biomod2 to randomly generate pseudoabsences equal to 

the number of occurrences. With support from the randomForest and mgcv packages in 

R, I selected the Random Forest and General Additive Model (GAM) algorithms to fit the 

candidate models (Brieman 2001, Liaw and Weiner 2002, and Wood 2011). I cross-

validated the model by dividing the data into 80% calibration sets (used for model 

training) and 20% validation sets (used for testing) in a 20-fold manner. The model was 

evaluated using three metrics: the true skill statistic (TSS; Allouche et al. 2006), receiver 

operating characteristic (ROC; Elith et al. 2006), and accuracy (ACC). Each of these 

performance metrics represents a threshold-dependent, threshold-independent, and basic 

strategy for evaluating model performance. Variable importance measures were derived 

using 10 permutations for each environmental variable.  

After reviewing the response plots, evaluation metrics, and variable importance 

results for the initial models with all seven variables, I removed the only variable below a 

1% model contribution based on the variable importance measures and repeated the 

modeling process with the reduced set of environmental variables (Table 2.2). 
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Furthermore, all SDMs fitted with the GAM algorithm were dropped from the analysis 

due to poor model performance. Finally, I used biomod2 to forecast the prediction 

surfaces for each of 20 iterations of the reduced random forest models, and created an 

averaged habitat suitability map for each of the final four models. 

 

Table 2.1: Candidate Environmental Variables – The four initial models included seven 

candidate environmental variables. Each model contained one of the four “proximity to fresh 

water or wetland” variables and all six fractional land cover variables). Variables removed from 

the four revised models are listed in italics. All JRC water variables were resampled to 100-m 

resolution prior to calculating the distance rasters used in the analysis.  

Name  Source layer Initial Grain  Description 

Distance to ≥ 25% 

recurring fresh water  

JRC Global Surface 

Water Dataset1 
30-m  

Distance to pixels that recurred 

as water in at least 25% of the 

past 38 years 

Distance to ≥ 50% 

recurring fresh water 

JRC Global Surface 

Water Dataset1 
30-m 

Distance to pixels that recurred 

as water in at least 50% of the 

past 38 years 

Distance to ≥ 75% 

recurring fresh water 

JRC Global Surface 

Water Dataset1 
30-m 

Distance to pixels that recurred 

as water in at least 75% of the 

past 38 years 

Distance to 

Herbaceous wetland 

Copernicus Global 

Dataset2 
100-m 

Distance to discrete 

herbaceous wetland pixels 

Shrub  
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

Tree  
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

Herbaceous   
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

Built-up  
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

Seasonal water  
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

Permanent water  
Copernicus Global 

Dataset2 
100-m 

Fractional land cover 

prevalence in percentage 

1. Pekel et al. 2016, 2. Buchhorn et al. 2020 
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Table 2.2: Revised Models – The four revised models were fitted with the random forest 

algorithm and six environmental variables. Each model differed by the inclusion of a unique 

“proximity to freshwater or wetland” variable.  

Model Name  Environmental Variables 

Low Recurrence 
Distance to freshwater recurring at least 25% of the last 38 years, 

Shrub, Tree, Herbaceous, Built-Up, Seasonal Water 

Moderate Recurrence 
Distance to freshwater recurring at least 50% of the last 38 years, 

Shrub, Tree, Herbaceous, Built-Up, Seasonal Water 

High Recurrence 
Distance to freshwater recurring at least 75% of the last 38 years, 

Shrub, Tree, Herbaceous, Built-Up, Seasonal Water,  

Herbaceous Wetland 
Distance to discretely classified herbaceous wetland cover, Shrub, 

Tree, Herbaceous, Built-Up, Seasonal Water 
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Figure 2.1: NICGRA Occurrences, Range and Wetlands – The majority of occurrences fell 

within the BLI-defined range (orange). The study area for the species distribution model (black) 

was made with a 50-km buffer around the BLI-IUCN range to account for potential range 

expansion and unreported occurrences. Referenced wetlands are indicated by blue place markers. 

Tisma Lagoon, San Miguelito wetlands, Caño Negro Wildlife Refuge, and Los Guatuzos wetland 

complex are RAMSAR-designated important wetland sites.  
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RESULTS 

This analysis used 217 locations and a suite of environmental variables to predict 

habitat suitability within and around the BLI-IUCN range of NICGRA. Performance 

metrics and cross-validation indicated good predictive power for all four models (Table 

2.3). Results for relative model importance for all models suggested that the most critical 

predictor of NICGRA distribution is distance to recurring fresh water or herbaceous 

wetland (Table 2.4). The relative importance for these variables on a scale from 0 to 1 

ranged from 0.61–0.67. The remaining relative importance values of all other variables in 

each model were lower (≤0.06) but still had a noticeable impact on habitat predictions.   

I examined the response plots from the top two models to highlight the effects of 

individual variables (Figs. 2.4 and 2.5). Each environmental variable was plotted against 

predicted habitat suitability (0-1) across their full range of values within the study area 

while all other variables were fixed at their median value. Each of the five fractional land 

cover values range from 0–100%, with 0 representing no presence in the pixel and 100 

representing complete coverage of the pixel. Thus, a single 100x100-m pixel may have a 

mixture of land cover types. For both models, percent seasonal water per pixel (Figs. 2.4a 

and 2.5a) and percent built-up per pixel (Figs. 2.4b and 2.5b) had only slight effects on 

predicted habitat suitability (hereby referred to as PHS or suitability), with suitability 

remaining relatively high across the range of values for both variables. The effects of 

percent herbaceous per pixel (Figs. 2.4c and 2.5c) were notable but varied between 

models. The Moderate Recurrence model showed a gradual, very significant increase 

between 0 and 30% herbaceous cover with PHS remaining high beyond 30%. In contrast, 

the Herbaceous Wetland model indicates higher PHS from 10–50% with PHS dropping 
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somewhat after 50%. The effects of percent tree (Figs. 2.4d and 2.5d) and percent shrub 

per pixel (Figs. 2.4e and 2.5e) were more pronounced in the Moderate Recurrence 

Model. PHS significantly decreased and remained low as shrub and tree cover reached 

just 10% and 30% respectively. Percent tree and shrub cover showed less significant, 

gradual decreases across their full range of values in the Herbaceous Wetland Model. By 

far the most significant effect on PHS for both models were their respective proximity to 

freshwater variables (Figs. 2.4f and 2.5f). PHS decreased precipitously from 0.90 to 0 

within 5 km of moderately recurring freshwater (fresh water pixels with a 50% inter-

annual recurrence period or higher). PHS decreased even more steeply from 0.95 to 0 

within just 2.5 km of discretely classified herbaceous wetland cover.  

Table 2.3: Performance Metrics – True Skill Statistic (TSS), Receiver Operating Characteristic 

(ROC), and accuracy results (ACC) for each model fitted with the Random Forest Algorithm. 

Results are broken down further by the divisions in data: calibration data (used to train models) 

and validation data (used to test models). All four models performed similarly across metrics, so 

variable importance values were used to determine the top models.  

Model Metric Sensitivity Specificity Calibration Validation 

Low FW  TSS 97.37    98.67      0.96     0.80 

Recurrence ROC 97.41     98.67      0.997     0.93 

 ACC 97.30 98.74 0.98 0.90 
      

Moderate FW  TSS 97.70 99.53 0.97 0.88 

Recurrence ROC 97.70 99.57 0.998 0.96 

 ACC 97.44 99.75 0.99 0.94 
      

High FW TSS 97.59     97.66     0.95      0.86     

Recurrence ROC 97.78     97.59      0.998          0.96     

 ACC 96.93         98.27      0.98     0.93 
      

Herbaceous  TSS 97.67      98.42 0.96 0.83 

Wetland ROC 97.85      98.24 0.998 0.96 

 ACC 97.11     98.92 0.98 0.91 
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Table 2.4: Relative Variable Importance – Variable Importance ranging from 0–1 for each of 

the four models. The final variable listed in the table is a different distance to freshwater or 

distance to herbaceous wetland variable for each model. Proportions do not sum to one due to 

averaging across permutations and model runs.  

Variable 

Herbaceous 

Wetland 

25% 

Recurrence 

50% 

Recurrence 

75% 

Recurrence 

Seasonal Water 4.3 3.3 3.2 4.6 

Built-up 2.4 3.9 1.8 4.1 

Herb 1.2 1.6 1.9 1.1 

Tree 2.1 1.7 1.5 1.0 

Shrub 1.8 3.7 2.3 0.9 

Distance to FW/HW 66.7 70.2 72.0 75.6 
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Figure 2.2: Predicted Habitat Suitability of the Nicaraguan Grackle – 2.2a: Herbaceous 

wetland model prediction surface - This model predicted the greatest area of suitable habitat 

while also delineating vegetation contributions within highly suitable habitat. 2.2b: 25% 

Recurrence model prediction surface - This model predicted the least suitable habitat and did 

not well delineate vegetation contributions within suitable habitat. 2.2c: 50% Recurrence model 

prediction surface - This model predicted a balanced degree of suitable habitat while also 

delineating vegetation contributions within highly suitable habitat very well. 2.2d: 75% 

Recurrence model prediction surface - This model predicted suitable habitat that was overly 

constrained to highly recurrent fresh water and did not well delineate vegetation contributions 

within suitable habitat.  

a. b. 

d. c. 
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Figure 2.3: Predicted Habitat Suitability of NICGRA in Focal Areas – 2.3a: Herbaceous 

wetland model prediction surface - Habitat suitability is highest in close proximity to wetlands 

with moderate herbaceous cover, and sparse tree and shrub cover. 2.3b: 25% Recurrence model 

prediction surface - Habitat suitability is lower overall, but highest in close proximity to low 

recurrent fresh water, moderate herbaceous cover, and sparse tree and shrub cover. 2.3c: 50% 

Recurrence model prediction surface - Habitat suitability is highest in close proximity to 

moderately recurrent fresh water, high herbaceous cover, and very sparse tree and shrub cover. 

2.3d: 75% Recurrence model prediction surface - Habitat suitability is highest in close 

proximity to highly recurrent fresh water, very high herbaceous cover, and very sparse tree and 

shrub cover. Probability of occurrence is highest when distance to freshwater is within 250 m. 

 

a. b. 

d. c. 
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Figure 2.4: Response Plots for Moderate Recurrence Model – Response plots were generated 

with the biomod2 package in R. Tick marks along the x axis represent the frequency of pixels 

with that value within the study area. 2.4a. % Seasonal Water - PHS rises rapidly from 0.35 to 

0.70 as the percent seasonal water per pixel increases from 0 to 5%. 2.4b. % Built-up - PHS rises 

rapidly from 0.35 to 0.60 as the percent built-up per pixel increases from 0 to 10%. 2.4c. % 

Herbaceous - PHS rises gradually from 0.30 to 0.65 as the percent herbaceous per pixel increases 

from 0 to 35%, dropping slightly after 50%. 2.4d. % Tree - PHS decreases gradually from 0.65 

to 0.30 as the percent tree per pixel increases from 0 to 30%. 2.4e. % Shrub - PHS decreases 

gradually from 0.70 to 0.35 as the percent shrub per pixel increases from 0 to 10%. 2.4f. Distance 

from 50% recurrent freshwater - PHS decreases rapidly from 0.90 to 0.0 as Distance from 50% 

recurrent freshwater increases from 0 to 5-km. 

 

 

a. b. 

d. 

c. 

e. f. 
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Figure 2.5: Response Plots for Herbaceous Wetland Model – Response plots were generated 

with the biomod2 package in R. Tick marks along the x axis represent the frequency of pixels 

with that value within the study area. 2.5a. % Seasonal Water - PHS rises from 0.75 to 0.88 as 

the % seasonal water per pixel increases from 0 to 10%. 2.5b. % Built-up - PHS rises slightly 

from 0.70 to 0.75 as the percent built-up per pixel increases from 0 to 10%. 2.5c. % Herbaceous 

- PHS rises gradually from 0.60 to 0.75 as the percent herbaceous per pixel increases from 0 to 

35%, dropping gradually back to 0.65 as herbaceous cover reaches 63%. 2.5d. % Tree - PHS 

decreases gradually from 0.75 to 0.50 as the percent tree per pixel increases from 0 to 90%. 2.5e. 

% Shrub - PHS decreases gradually from 0.70 to 0.50 as the percent shrub per pixel increases 

from 0 to 30%. 2.5f. Distance from herbaceous wetland - PHS decreases rapidly from 0.95 to 

0.0 as distance from herbaceous wetland increases from 0 to 2.5 km. 

 

The averaged prediction surfaces indicated a restricted, fragmented distribution 

within the larger range delimited by the IUCN and BirdLife International. To determine 

the realistic range area of the NICGRA I calculated the area of the prediction surfaces 

from the top two models by thresholding habitat suitability at the optimized cutoff value 

for each model (Fig. 2.6). This cutoff value reflects the threshold that minimizes the 

absolute difference between sensitivity (percentage of presence correctly predicted) and 

specificity percentage of absence correctly predicted) within each model. I used the 

a. b. 

d. 

c. 

e. f. 
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model with the greatest area covered by potential suitable habitat (Herbaceous Wetland 

Model) and the best model based on freshwater recurrence (Moderate Recurrence Model) 

to estimate the total distributional area within the BLI-IUCN Range. Based on this cutoff 

criterion, habitat suitability was thresholded at 0.55 for the Herbaceous Wetland Model 

and 0.59 for the Moderate Recurrence Model. Before estimating the area, I extended the 

BLI-IUCN range polygon to areas with multiple sightings of NICGRA that were not 

previously included in the range map (see dashed “Extended Range” in Fig. 2.6). The 

Herbaceous Wetland Model estimated the total area of suitable habitat at 38% of the BLI-

IUCN range (3,237.89 km2 vs. 8,466.27 km2). The Moderate Recurrence Model 

estimated the total area of suitable habitat at 29% of the BLI-IUCN range (2,484.64 km2 

vs. 8,466.27 km2). The minimum bounding polygon, an estimate of “extent of 

occurrence”, was approximately 14,900 km2 for both models.  

 

Figure 2.6: Predicted vs. BLI-IUCN Range Area Comparison – 2.6a: Herbaceous wetland 

model - Suitable habitat was thresholded at 0.55 and above with a total area of 3,237.89 km2. 

2.6b: 50% Recurrence model - Suitable habitat was thresholded at 0.59 and above with a total 

area of 2,484.64 km2.  

 

 

a. b. 
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DISCUSSION 

Our observations and the results of the analyses suggest an urgent need to reassess 

the conservation status of the Nicaraguan Grackle. Our proposal for reclassification is 

based on strong evidence that the NICGRA seldom occur further than 250 m from the 

shores of Lakes Managua and Nicaragua and their adjacent rivers and wetlands (e.g. 

Tisma, El Guayabo, and Los Guatuzos, Mateare, Momotombo, Caño Negro). This 

confirms their strict dependency on a single, specific habitat type—one that is 

significantly restricted and fragmented within the BLI-IUCN range boundary. It is 

important to note that while distance to recurring fresh water appears to be a powerful 

predictor of NICGRA habitat suitability, it is a proxy for the more complex combination 

of environmental variables associated with fresh water (such as specific types or species 

of vegetation) that are selected for by NICGRA.    

The IUCN criteria for listing a species include five main categories that focus on 

various aspects of reduction or limitations in population size and geographic range, and 

3) probability of extinction in the wild. These five criteria are further broken down into 

sub-criteria requirements that are unique to each listing status (i.e. “Vulnerable”, 

“Endangered”). A species need only meet one of the five main criteria to qualify for 

listing (see IUCN 2012 for complete listing criteria). I suggest that NICGRA meets 

Category B1 under the “Vulnerable” listing criteria on geographic range. I estimated an 

“extent of occurrence” of 14,900 km2, which is less than the 20,000 km2, set for the 

Vulnerable category. Category B1 also requires indication of at least two of subcategories 

a-c, which NICGRA meets by exhibiting: a) Severely fragmented distribution (Fig. 2.1) 

and b) Continuing decline, observed in the number of locations or subpopulations.  
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The IUCN states that the area of occupancy of NICGRA is 19,300 km2, but our 

area estimates of their range polygon (with uninhabitable open water removed) was under 

8,500 km2. This is a significant discrepancy that warrants immediate re-evaluation of the 

range area criterion. Furthermore, using an ‘inhabited polygon” to determine the range of 

a habitat specialist with limited, fragmented habitat may not be appropriate for risk 

assessment. The use of a habitat suitability map can better delineate areas where 

fragmentation occurs, while also establishing an understanding of baseline associations 

between the species and features of their environment.  

It is also noteworthy that the Nicaraguan population of the NICGRA does not 

appear to be stable, since the species is no longer found in historical areas. My coauthors 

have documented declines and disappearances at multiple sites within NICGRA range. 

Since 2007, authors MT and WA have conducted long term research in and around Rivas. 

In areas where the bird was historically present, not a single report has been recorded in 

almost 10 years. The recovery of water levels in wetlands such as Tisma Lagoon in 

abundant water years has not coincided with the recovery of NICGRA sightings. MT and 

WA revisited the site after wetland recovery following years of drought and, 

unfortunately, few NICGRA were detected. A plausible cause-effect mechanism behind 

the disappearance of the NICGRA at historical sites is linked to anthropization (crops, 

fires, cattle), and extreme climatic oscillations resulting in severe weather events that 

severely affect surface water levels and incumbent vegetation. Loss of NICGRA at these 

major wetland sites with repeated observations suggest that declines and extirpations may 

be occurring (though not yet detected) throughout their known distribution. 



49 

Approximately half of NICGRA observations used in this study were located in 

and around Caño Negro reserve in Costa Rica. While this is likely due to higher sampling 

effort associated with birding tourism, it will be important for any population-focused 

study in the future to investigate this location as a potential reservoir for the species.  

There are a number of anthropogenic activities that impact NICGRA or its habitat 

directly and indirectly. Perhaps one of the biggest potential threats to NICGRA habitat is 

the proposed interoceanic canal that would potentially alter the salinity of Lake 

Nicaragua and the surrounding wetlands. Some of the coauthors of this article have 

participated in previous surveys (November 2013, April 2014) along the proposed route 

of the Nicaraguan transmarine canal. The proposed route goes through the NICGRA’s 

distribution in San Miguelito wetlands and cuts through Lake Nicaragua.  

The increasing occurrence of droughts is associated with decreases in 

precipitation that have occurred in the last 30 years. The precipitation in Granada, where 

wetlands such as El Guayabo, and a portion of Lake Nicaragua are located, has decreased 

6% the last 30 years from historical records (Milán, 2012). Continued trends of declining 

or erratic precipitation and lengthening dry periods are expected under climate change 

(Kent et al. 2015, Chadwick et al. 2016). Climate change will create precipitation 

fluctuations (ECLAC, 2010; MARENA, 2012), which may cause both droughts and 

floods that would threaten NICGRA populations. Even without further reductions in 

precipitation on the Pacific dry coast, the current levels of precipitation may be 

insufficient to sustain current water levels if temperatures continue to increase and if rain 

occurs more in high intensity events separated by dry spells (Naumann et al. 2018). 
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The modeled importance of herbaceous vegetation in wetlands supports the 

observed affinity of NICGRA with tall grasses and grass-like plants such as cattails. 

However, coauthors have observed three main threats to cattail and emergent vegetation 

distribution and abundance in Nicaragua. The first threats are frequent droughts that 

desiccate emergent herbaceous vegetation, making them susceptible to fires, and 

diminishing suitable habitat. The second threat is the expansion of cultivated areas. It is 

common during dry and first part of the rainy season (April to June), to use of both lakes 

and wetlands shores to cultivate rice, melons, and squash. These activities are typically 

preceded by the habitat destruction using fire. The third threat to emergent vegetation like 

cattails is cattle ranching. Ranchers move cattle to lakes and wetlands shores for grazing, 

and the ruminants usually venture into the cattail clusters, fragmenting the natural 

association of this plant. 

The results do not support the statement that cattle grazing provides additional 

habitat that benefits the species’ distribution (Jaramillo & Burke, 1999; Martínez-

Sánchez & Will, 2010). Although NICGRA does forage in the grassy areas of cattle 

ranches, the species only forages close to recurrent or permanent fresh water (as 

mentioned by Miller and Griscom, 1922). Cattle grazing is a major driver behind 

deforestation in Central America (Wassenaar et al. 2007), and it is prominent in 

Nicaragua’s Dry Pacific ecoregion (Tobar-López et al. 2019). In the municipalities of 

Tisma, El Guayabo, Mateare, and San Miguelito, cattle ranching is one of the main 

economic activities, and ranches are generally close to wetlands and lakes. Ranchers from 

afar also move their cattle seasonally to water sources within the wetlands, which may 
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coincide with times the birds are nesting and raising young. Cattle ranching represents a 

threat to NICGRA habitat, not a boon for new foraging opportunities.  

 

CONCLUSIONS 

It is time to reconsider the current “extent of occurrence” listed for the “range area 

criterion” for this species. This criterion listed by Birdlife International (2023), which is 

based on globally established criteria by the International Union on the Conservation of 

Nature (IUCN 2012), has been used in part to justify the current conservation status of 

“Least Concern”. Based on the results, I produced a new “extent of occurrence” of 

14,900 km2, which is under the threshold of 20,000 km2 to be listed as “Vulnerable”. I 

also propose a new “area of occupancy” for the Nicaraguan Grackle of 2,500-3,300 km2 

instead of the 19,300 km2 area of occupancy listed by the BirdLife International (BLI and 

Handbook of the Birds of the World, 2023). This updated area estimate is less than 1/5th 

the original area. Combined with the fragmented distribution of the grackle, the number 

of sites where they are no longer found, and an extent of occurrence under 15,000 km2, 

this suggests an IUCN Red List classification of “Vulnerable” rather than one of “Least 

Concern.” 
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Chapter 3:  Characterizing vegetation structure to support habitat selection modeling for 

desert riparian songbirds: comparing and combining UAS and satellite image products. 

 

ABSTRACT 

Vertical and horizontal vegetation structure are key variables for ecological 

patterns and processes. Limited spatial resolution and vertical structure information from 

publicly available satellite systems may hinder vegetation mapping. Unmanned aerial 

systems can produce fine-resolution (< 10-cm) 3D vegetation height models, which may 

complement remotely sensed vegetation texture. I aimed to 1) create 3D digital 

vegetation models using standard cameras on commercially available UAS, 2) compare 

the contributions of satellite image texture analysis and vegetation height models created 

with UAS in resource selection functions, and 3) characterize relationships between 

vegetation structure and nest site selection of the endangered Least Bell’s Vireo and 

several other desert riparian songbirds. The highest ranking model included both satellite-

derived image texture products and UAS-derived vegetation height. Predictors of the 

relative probability of nest site selection in the top model included: vegetation height (P = 

0.018), distance to river (P < 0.0001), entropy (P < 0.001), and biomass of perennial 

grasses and forbs (P = 0.15). Distance to river and vegetation height had a positive 

influence on the relative probability of selection, while entropy had negative influence on 

the relative probability of selection. The relationships between the modeled covariates 

and relative probability of nest site selection must be interpreted and applied with 

caution, as all models require further revision. Nonetheless, satellite and UAS-derived 

imagery products complemented one another in resource selection functions, adding 
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information on both the vertical and horizontal dimensions of vegetation structure that 

may be useful in future investigations.  

 

INTRODUCTION 

Remote sensing products are a cornerstone of ecological modeling and 

biodiversity conservation (Kasische et al. 1997; Wang et al. 2010). Satellites allow for 

image capture over a large, contiguous extent, which is useful for predictive mapping 

applications, including habitat selection modeling. Many of the image products used by 

ecologists are proxies for a variable of interest that cannot be directly measured at the 

desired scale of inference or that requires summarization over broad spatial extents. 

Image texture metrics are one group of remotely sensed measurements used to 

characterize variation in surface and vegetation structure from satellite imagery. 

However, publicly available remote sensing products are often offered at resolutions that 

are too coarse for corresponding image texture to align well with the species’ behavior or 

the goals of the study (Guisan and Thuiller, 2005; Austin 2007; Franklin 2012). Recent 

advances in unmanned aerial systems (UAS) or “drone” technology have opened up ways 

to characterize habitat at significantly finer (< 1 m), biologically relevant scales. UAS 

methods that use frequent image capture with high degrees of overlap can also produce 

three dimensional models of landscapes (Singh and Frazier, 2018). Detailed image 

products are important for species that occupy small (< 15–30 m), but critical habitat 

patches throughout their larger breeding range. Additionally, some biomes are naturally 

spatially constrained, like desert riparian ecosystems. 
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The Amargosa River, flowing through the Mojave Desert of southern Nevada and 

California, supports a fantastic diversity of both migratory and residential desert 

songbirds. However, limited availability of fresh water in this region makes the few 

riparian areas highly desirable for residential development, agriculture, cattle grazing, 

and feral ungulate foraging (Krueper 1996). Competition between desert riparian 

songbirds and human land use over riparian areas has increased in recent years as 

droughts have made the availability of above-ground fresh water even more scarce 

(Sogge 2010). These challenges are further compounded by the spread of invasive 

riparian vegetation like Tamarisk in the desert southwest (Di Tomaso 1998), which may 

limit suitable nesting structure for native desert riparian songbirds (DRS; Dudley and 

DeLoach 2004; York et al. 2011). Trends in land conversion and development in dry 

areas with depleted groundwater sources suggest an urgent need to identify key habitat 

selection features and restore degraded habitat for DRS. Efficient conservation 

management for DRS will require an investigation of habitat features that are highly 

associated with nest site selection for multiple species. Vegetation height and 

arrangement (structure) across a breeding patch could have a significant influence on 

habitat selection for DRS (Fish and Wildlife Service 1998). While some bird species 

specialize in nesting in one or few species of plants, the focal birds of this investigation 

have been documented as nesting in several plant species that provide suitable structure 

(Allen et al. 2018). Information about nest site section preferences can be used to inform 

restoration practices along reaches of the Amargosa that have undergone Tamarisk 

removal and require re-vegetation.  
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Five desert songbird species are at the heart of this study. The endangered Least 

Bell’s Vireo (Vireo bellii pusillus; LBVI) is one of the most notable species that breeds 

along the Amargosa. The LBVI currently breeds in the riparian vegetation that buffers 

select streams in southern California and extreme western Arizona (Fish and Wildlife 

Service 1998). The LBVI is a foliage-gleaning insectivore that relies on dense vegetation 

within 2 m of the ground for nesting and foraging (Fish and Wildlife Service 1998). 

LBVI tend to nest in dense riparian shrub, growing on moist sandy soils, and under 

sheltering tree species such as cottonwood (Populus fremontii). Although LBVI breed in 

several types of riparian habitat, the amount of riparian forest across the southwest is 

highly constrained by the desert climate. The Black-tailed Gnatcatcher (Polioptila 

melanura; BTGC) is a small desert resident songbird found throughout the Sonoran, 

Mojave, and Chihuahuan deserts. Unlike the LBVI, the BTGC is not an obligate riparian 

species. The BTGC can be found in desert riparian willow-scrub, desert thorn scrub, and 

other arid habitats where it energetically gleans for insects (Farquhar et al. 2002). In the 

same genus, the Blue-gray Gnatcatcher (Polioptila caerulea; BGGC) is the most 

widespread bird included in the study. BGGC have a complex seasonal distribution. 

Many populations breed throughout the eastern and the southwestern United States, and 

winter along a narrow strip from the Amargosa basin along the entire Pacific Coast of 

Mexico. BGGC can also be found year-round in central Mexico and along the coastal 

USA from central California to Virginia. In the Southwest, Blue-grey Gnatcatchers breed 

and forage in willow-cottonwood woodlands near fresh water (Kershner et al. 2012). The 

Crissal Thrasher (Toxostoma crissale; CRTH) is a desert resident occupying a similar, 

but more constrained distribution than the Black-tailed Gnatcatcher. The CRTH forages 
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for insects on the ground in dense, low vegetation by using its long, curved bill to explore 

leaf litter (Cody 1999). This species breeds and resides in desert scrub and riparian 

thickets (Cody 1999). The Verdin (Auriparus flaviceps; VERD) is the 5th and final desert 

songbird included in this study. This small desert resident can usually be found gleaning 

insects from the distal branches of thorny riparian trees, desert scrub, and chaparral 

(Webster 1999). These five species of desert songbirds share the desert riparian habitat of 

Amargosa Canyon but have a wide variety of within-habitat vegetation structure 

preferences. The inclusion of species with potentially diverse nest site selection 

preferences was deliberate, with the goal of informing vegetation restoration at degraded 

sites upstream that applies to as many species as possible.  

Vegetation height and heterogeneity (key elements of vertical and horizontal 

structure, respectively), are often important variables for habitat mapping (Wood et al. 

2012). While LIDAR surveys can provide direct measures of vertical and horizontal 

structure, availability and cost of data at biologically relevant scales limit its application. 

Many of the publicly available LIDAR data products also have a minimum vegetation 

height of 2 m (Farwell et al. 2021), which can further limit its application in studies 

focused on understory or ground-nesting birds. In recent years, affordable drones have 

been used to create digital surface models (DSM) and digital terrain models (DTM) using 

photogrammetry and structure-from-motion technology (Rosnell et al. 2013; Change et 

al.  2017). Digital surface models are a three-dimensional map of all features in a study 

area, including rocks, vegetation, and terrain. Digital terrain models are a subset of DSMs 

that only contain the base elevation or “ground layer” under all other surface features. 

Recently, researchers have begun experimenting with the idea that a digital vegetation 
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model (DVM) may be produced by subtracting the DTM from the DSM, leaving only 

above-ground features on the landscape. Furthermore, corrections for slope can be 

applied to the initial DVM to allow for height measurement of individual vegetation 

features, providing a precise representation of vegetation height structure that mirrors 

canopy height models produced LIDAR. These products do not require a 2-m minimum 

vegetation height, and can accurately estimate ground vegetation when the canopy is not 

closed. In additional to height, the horizontal dimension of vegetation structure is also an 

important predictor of bird species richness and habitat preferences (Culbert et al. 2012; 

Farwel et al. 2020). Remotely sensed image texture is a direct measurement of horizontal 

structure and heterogeneity. It has also been used as a proxy for estimating vegetation 

density and vertical structure (Hoppus et al. 2002). This is often based on moderate-

resolution satellite imagery, like Landsat (15-m to 30-m pixels). However, fine resolution 

(< 1 m) vegetation structure may be a more powerful predictor of habitat selection 

preferences in our study system because riparian forest is highly constrained in the 

southwest and multiple vegetation features fit within a single 15-m pixel of the Landsat 8 

panchromatic band.  

Objectives and Research Questions:  

The main objectives of this research are to 1) identify ways to improve variables 

used in habitat-selection modeling by using free or low-cost UAS and remote sensing 

technologies to characterize horizontal and vertical vegetation structure, and 2) to 

pinpoint nest site resource selection for five species of desert riparian songbirds. 

Supporting this, I will pursue the following research questions: 
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1) How do UAS-derived vegetation height (vertical structure) and Landsat-derived 

image texture (horizontal vegetation structure) variables compare and 

complement each other in resource selection functions?   

2) What are the key associations between horizontal and vertical vegetation structure 

variables and desert songbird nest site selection?  

 

METHODS 

Study Area and Overview:  

In this study I used Landsat 8-derived image texture and UAS-derived digital 

surface models to characterize vegetation and potential nesting habitat of five desert 

riparian songbirds. This study took place along the Amargosa River, which flows for 297 

km from its headwaters north of Beatty, NV, through Shoshone and Tecopa, CA, to 

Death Valley where it drains into a belowground aquifer (Bureau of Land Management, 

2019; Fig. 3.1). Often referred to as the “jewel of the desert”, the Amargosa provides 

critical riparian habitat to desert fauna. The Amargosa River flows underground for all 

but ≈ 35 miles of its length (Bureau of Land Management, 2019) and I selected one of its 

largest riparian areas as my study site. I conducted vegetation mapping and nest site 

selection modeling at Amargosa Canyon, which is relatively small at less than 1-km2 

(Fig. 3.1). The nest site data for all five study species were collected by expert field 

naturalist Len Warren with Point Blue Conservation Sciences from 2005 to 2019. Nest 

survey effort was exhaustive, covering the full study area for the entirety of the nesting 

season. All nests within the study site were recorded and monitored throughout the 

breeding season from April through August.  
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Figure 3.1: Map of Study Area and Restoration Target Sites - I selected the largest riparian 

site along the Amargosa River where it flows aboveground to conduct the habitat selection 

analyses (AC = Amargosa Canyon). Results from nest site selection modeling at AC will be used 

to inform restoration practices at two sites in Nevada owned by The Nature Conservancy (TR = 

Torrance Ranch, BN = Beatty Narrows) and one site in Shoshone, CA (SW = Shoshone 

Wetlands).  

 

Vegetation Texture Analysis:  

I acquired imagery from the Landsat 8 15-m panchromatic band to generate 

texture products. Landsat scenes were captured within two weeks of the UAS flights for 

compatible vegetation phenology and cropped to the extent of the study area. Once 

imagery was acquired, I calculated the grey level co-occurrence matrix (GLCM) and 

derived a suite of 1st and 2nd order texture measures (Marceau et al. 1990). Using the 
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glcm package in the R programming environment (Zvoleff 2016; v. 4.3.0 R Core Tea, 

2023), I calculated two 1st order and six 2nd order texture measures: mean, variance, 

dissimilarity, entropy, angular second moment, homogeneity, correlation, and contrast. I 

used a 3x3 moving window approach to calculate the 2nd order textures measures. All 

eight texture measures were then evaluated for collinearity using pair-wise Pearson’s 

correlation tests. Based on previous findings relating bird richness to texture measures 

(Farwell et al 2020; 2021) and elimination of texture variables correlated at 0.7 or above, 

I selected the homogeneity, dissimilarity, entropy, and correlation texture products for 

modeling (Fig. 3.2). Homogeneity measures the similarity of values between neighboring 

pixels, with higher values indicating greater smoothness or uniformity in an image. 

Dissimilarity measures the difference in values between neighboring pixels, with higher 

values indicating greater differences between pixels in an image. Correlation measures 

the linear dependency of neighboring pixel values. Entropy captures how disorderly 

pixels are relative to their neighbors, with higher values indicating greater differences 

between them. See Table one in Farwell et al. (2021) for excellent definitions of the 

remaining, unused texture measures. 

UAS image capture and Ground control points:  

I acquired high-resolution (< 5 cm) imagery with a DJI Phantom 4 Pro quad-

copter drone equipped with the stock RGB camera. This drone model cost less than 

$2,000, which is affordable relative to the cost of UAS LIDAR sensors or aerial LIDAR 

services that often start around $8,000. Thus, this model is an attainable option for most 

small research grants. I used the Pix4D Capture mobile software on a Samsung Galaxy 

S9 plus mobile phone to plan and operate flights. I flew a double-gridded flight plan to 
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capture images with a high degree (>80%) of overlap at 45˚ and 90˚ viewing angles to 

facilitate creating three-dimensional maps. All flights were flown at 300 feet (91 m) to 

minimize flight time and potential disturbance to wildlife at the study site. Before flights 

began, I placed 10 high-contrast ground targets for ground control points throughout the 

study area. All ground control points were georeferenced using a Trimble Geo7X GPS 

unit connected to a Zephyr 2 Antenna. Ground control points were processed with the 

GPS Pathfinder software (v.5.90) for differential correction to a NOAA Continuously 

Operating Reference Station in Baker, CA.  

 

UAS Data Processing:  

All imagery acquired by the drones was processed in the Pix4D Mapper computer 

software (Pix4D S.A., Prilly, Switzerland). Once a basic true-color image overlay was 

produced, I manually corrected ground control points by matching the digital waypoints 

to the ground targets captured in the imagery. The digital surface model, orthomosaic, 

and digital terrain model resulting from the point cloud densification were scaled up from 

5 cm per pixel to 10 cm per pixel to reduce processing time during the modeling phase 

(Fig. 3.3). I calculated the digital vegetation model by subtracting the digital terrain 

model from the digital surface model in R. The resulting digital vegetation model then 

had the base elevation values zeroed to allow for accurate vegetation height 

measurements. As all features on the landscape were captured by the surface model, non-

vegetation features such as rocks needed to be eliminated from the digital vegetation 

model. This was achieved through supervised random forest image classification, 

described below.  
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Nest Site Selection Analysis and Image Classification:  

I used the R programming environment to build resource selection functions \to 

determine what habitat characteristics are associated with nest site selection (R Core 

Team 2023, version 4.2.3). I included the following publicly available environmental 

variables in addition to vegetation texture and height variables to round-out the nest site 

selection models: above ground annual biomass, above ground perennial biomass, and 

distance to the Amargosa river (Robinson et al. 2019, Allred et al. 2021, Jones et al. 

2021). Variables were arranged into competing models that were ranked with AIC 

(Akaike 1973). Any two variables with a high correlation coefficient (e.g. r ≥ 0.7) were 

not used in the same model. I used logistic regressions (generalized linear models) to fit 

the nest site selection model with nest site data pooled across species and years. The 

definition of available habitat is a critical component of resource selection functions 

(McClean et al. 1998, Cooper and Millspaugh 2001). 

 Habitat or “resource” availability for the nest site selection model was defined by 

using image classification to determine the presence or absence of vegetation across the 

whole study area. Supervised image classification was performed on the true-color 

orthomosaic produced with the drone (Fig. 3.4). I created training polygons with nine 

classes of vegetation, rock, and bare ground using ArcGIS Pro (v 3.1). Training polygons 

were sampled with 1000 random points that were stratified by polygon size. Sampled 

points were used to train the random forest classification, which generated nine unique 

feature classes. Feature classes were manually grouped by category (vegetation or non-

vegetation), with the combined vegetation class representing available habitat.  
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The random forest image classification was used to produce a binary raster of 

vegetation and non-vegetation for the study area (Fig. 3.4). Background points for the 

resource selection function were randomly generated within the vegetation boundaries of 

the raster as it was used to define available habitat. The binary habitat availability layer 

was also used to mask the initial vegetation model to remove all non-vegetation features 

(Fig. 3.3). I used band 8 of a scene captured by Landsat 8 on 10-19-2019 (the 15-m 

panchromatic band) to produce the texture metrics. Based on the high degree of 

correlation between texture variables, four of the eight texture metrics were selected for 

modeling: homogeneity, dissimilarity, entropy, and correlation (Fig. 3.2). 

 

 

RESULTS 

I compared 44 competing resource selection functions with Akaike’s Information 

Criterion (AIC) (Table 3.1). Competing models were created with all combinations of 

predictor variables, except where correlation between two variables met or exceeded 

0.70. The highest ranking model was a “combination” model which included both 

satellite-derived image texture products and UAS-derived vegetation height. Significant 

covariates (predictors) of the relative probability of nest site selection in the top model 

included: vegetation height (P = 0.018), distance to river (P < 0.0001), and entropy (P < 

0.001). The biomass of perennial grasses and forbs covariate was not significant at (P = 

0.15). Distance to river and vegetation height had a positive influence on the relative 

probability of selection, while entropy had negative influence on the relative probability 

of selection (Table 3.2). I scaled all covariate data when fitting each model to improve 

the interpretation of the coefficient estimates (β). The “effect size” of scaled coefficient 



67 

estimates should be interpreted as every increase or decrease in one standard deviation of 

the covariate resulting in an increase or decrease of β in the relative probability of 

selection. Positive coefficient estimates indicate a higher relative probability of use and 

negative values indicate a lower relative probability of use. It is important to note that 

resource selection functions using a logit link for a binomial response (e.g. selected, not 

selected) do not result in an absolute probability of use or selection. Instead, the result is a 

relative probability of use or selection based on the log of the odds ratio.  

I used the highest ranking model to produce two prediction surfaces representing 

the relative probability of nest site selection at our study site (Fig. 3.5). For each 

prediction surface, rasters were either scaled up to the common 15 m grain of the satellite 

image texture variables (Fig. 3.5c) or scaled down to the 10 cm grain of the UAS 

vegetation height variable (Fig. 3.5b) to allow for the comparison of results at the native 

scale of the remote sensing and UAS products. I resampled all rasters in R using a 

bilinear interpolation method in the terra package. The relative probability of nest site 

selection was highest at the Northern portion of our study site, where most nests have 

been found over the survey period.  
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Table 3.1: Model Section – The top model with the lowest AIC score included UAS-derived 

vegetation height, satellite-derived image texture (entropy), biomass of perennial grasses and 

forbs, and distance to the Amargosa river. To limit the size of the table, only the top 15 models 

(cumulative AICwt = 0.9) and the null model were included. Covariates with significant 

coefficient estimates are highlighted in bold.  

Model Variables AIC Δ AIC AICwt 

combo5p dvm + biom.Peren + dist.Riv + entropy 440.70 0 0.22 

combo5a dvm + biom.Ann + dist.Riv + entropy 441.50 0.80 0.15 

combo1a dvm + biom.Ann + dist.Riv + homog + correl 442.45 1.75 0.09 

combo1p dvm + biom.Peren + dist.Riv + homog + correl 443.13 2.43 0.06 

sat13 dist.Riv + entropy 443.38 2.68 0.06 

sat7p biom.Peren + dist.Riv + entropy  443.68 2.98 0.05 

sat5p biom.Peren + dist.Riv + entropy + correl 443.78 3.08 0.05 

sat5a biom.Ann + dist.Riv + entropy + correl 443.79 3.09 0.05 

sat7a biom.Ann + dist.Riv + entropy  444.02 3.32 0.04 

combo3p dvm + biom.Peren + dist.Riv + homog 444.79 4.09 0.03 

sat4a biom.Ann + dist.Riv + homog + correl 444.95 4.25 0.03 

sat2a biom.Ann + dist.Riv + dissim + entropy + correl 444.99 4.29 0.03 

sat1a biom.Ann + dist.Riv + homog + entropy + correl 445.08 4.38 0.02 

combo3a dvm + biom.Ann + dist.Riv + homog 445.13 4.43 0.02 

sat1p biom.Peren + dist.Riv + homog + entropy + correl 445.75 5.05 0.02 

null ~1 481.11 40.42 0.00 

 

 

Table 3.2: Coefficient Estimates – Coefficient estimates (β) of the scaled covariates for the 

highest ranked model according to AIC. The “effect size” of scaled coefficient estimates should 

be interpreted as follows: with every increase or decrease in one standard deviation of the 

covariate, there is an increase or decrease of β in the relative probability of selection. Positive 

coefficient estimates indicate a higher relative probability of use and negative values indicate a 

lower relative probability of use.  

Variable Code β  Std. Error P value 

Vegetation height (m) dvm  0.26 0.12 0.018 

Biomass of perennial grasses and forbs (lbs/acre) biom.Peren  0.23 0.16 0.15 

Distance to Amargosa river (m) dist.Riv  0.50 0.12 < 0.0001 

Entropy (image texture) entropy -0.46 0.14 0.001 

Intercept intercept -2.72 0.16 < 0.0001 
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Figure 3.2: Satellite-derived Image Texture Metrics – 3.2a. The Landsat 8 15-m 

panchromatic band used to generate all texture metrics with a gray level co-occurrence matrix. 

3.2b: Homogeneity – The similarity of values between neighboring pixels. Higher values 

indicate greater smoothness or uniformity in an image. 3.2c: Dissimilarity - The difference of 

values between neighboring pixels. Higher values indicate greater differences between pixels in 

an image. 3.2d: Correlation – the linear dependency of neighboring pixel values. 3.2e: Entropy 

–captures how disorderly pixels are relative to their neighbors, with higher values indicating 

greater differences between them. 
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Figure 3.3: UAS-derived Digital Vegetation Model – 3.3a: The true-color orthomosaic 

produced by Pix4D. 3.3b: The digital surface model (DSM) created from the image point cloud 

in Pix4D. 3.3c: The underlying digital terrain model (DTM) created from the DSM by Pix4D. 

3.3d: The digital vegetation model masked with the binary vegetation cover raster (see Fig. 3.4d).  

 
Figure 3.4: Image Classification – 3.4a: Image classification was carried out using the 10-cm 

orthomosaic created from the drone imagery in Pix4D. 3.4b: Training polygons of nine feature 

classes used for the supervised image classification. 3.4c: The classified image generated by the 

random forest classification. 3.4d: The binary raster of vegetation and non-vegetation used to 

define available habitat in the RSFs. 
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Figure 3.5: Nest Locations and Model Predictions – 3.5a: Nest locations in Amargosa Canyon 

(AC) for comparison with prediction surface. 10-cm (3.5b) and 15-m (3.5c) predictions for the 

relative probability of selection at AC are based on the highest ranking model according to AIC 

(see Table 3.1).  Note that the relative probability of use is predicted at different ranges, with 

higher maximum values in the 10-cm prediction. 

 

 

DISCUSSION 

Through this investigation, I created digital vegetation models from low-cost 

drone imagery data and built predictive models of relative nest site selection for a 

community of desert songbirds. In doing so, I used open-source image classification to 

create an ultra-fine definition of available habitat for the resource selection function. The 

top-ranked nest site selection model included both satellite-derived image texture 

variables and the UAS-derived vegetation height variable, suggesting that they offer 

complementary information for relative probability of nest site selection. Therefore, I 

expected that nest site selection models including both the UAS-derived vegetation 
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height covariate and vegetation texture covariates to have higher explanatory power. 

While the top-ranked model contained both satellite and UAS-derived variables, AIC did 

not improve markedly across our competing models (Table 3.1).  

Greater vegetation height increased the relative probability of nest site selection, 

but not as strongly as expected. This may be due to limitations in the nest site dataset, 

which did not record a height for each nest location. Thus, the maximum height of 

vegetation at the nest location was used to fit the selection models. Higher levels of 

entropy, one of four image texture covariates used in the resource selection functions, had 

a negative influence on the relative probability of selection. Image texture metrics capture 

heterogeneity in horizontal vegetation structure (Wood et al. 2012). Entropy captures 

how disorderly pixels are relative to their neighboring pixels, with higher values 

indicating greater differences between them (Baraldi and Panniggiani 1995). Within 

Amargosa Canyon, higher levels of entropy are likely associated with areas where 

patches of vegetation types transition. It is possible that species nesting in this community 

nest within patches of consistent vegetation types, rather than at the edge of transition 

areas. Annual aboveground biomass of perennial and annual forbs and grasses were not 

strong predictors of relative probability of nest site selection in any of the models. This is 

likely due to the fact that few of the birds in this community are grass-nesters. While 

grasses and forbs are a staple in their broader riparian habitat, nests are typically located 

in shrubs or trees. These variables were included in the models because they may be good 

indicators of soil moisture, which is difficult to accurately measure via remote sensing 

and relevant to the growth and health of other plants in the riparian zone. Within 

Amargosa Canyon, grasses make up the majority of vegetation closest to the river and 
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along the southern portion of the study site. This can be seen as the homogenous light-

green band along the river in the UAS-derived orthomosaic (Fig. 3.5a). This vegetation 

primarily consists of annual and/or invasive grasses like Reed Canary Grass or Cattails, 

which may explain the lack of nest sites in this area and the low relative probability of 

selection predicted by the top model. This could also explain why the relative probability 

of selection increased as distance from the Amargosa river increased. The relationship 

between nest site selection and the river is also influenced by the constrained extent of 

the study site, as a study area covering multiple kilometers would have revealed higher 

relative probabilities of use with proximity to the river.  

 

CONCLUSIONS 

 I explored an innovative, low-cost way to use recent advances in drone 

technology and remote sensing to improve vegetation height models and definitions of 

available habitat for resource selection functions. The satellite and UAS-derived imagery 

products complemented one another in the models, adding information on both the 

vertical and horizontal dimensions of vegetation structure. One of the aims of this 

investigation was to create predictive models of nest site selection to inform restoration 

practices for revegetation at target sites upstream. The preliminary status of our top 

models suggest that the relationships between the modeled covariates and relative 

probability of nest site selection must be interpreted and applied with caution. More-so, 

the resource selection functions presented in this study should serve as a baseline for 

further investigation.  
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CONCLUSION 

Global declines in avifauna and Wallacean shortfall necessitate continued 

biogeographic research with clear aims to inform monitoring and management practices. 

In my dissertation, I explored avian-habitat relationships in three unique study systems. I 

created 100-m habitat suitability maps, innovative 10-cm UAS-derived vegetation height 

products, and predictive surfaces of nest site selection for threatened and endangered 

songbirds using open source programming platforms and publicly available imagery data. 

These maps and methods can be used to continue and bolster research on our target 

species, and other songbirds that live in similar study systems.  

In my first chapter, I wanted to know which habitat characteristics were best 

suited to support wintering WIFL and where these areas were concentrated across their 

expansive non-breeding range. I hypothesized that WIFL were highly associated with 

riparian shrub cover and proximity to freshwater and expected habitat to be similar to that 

in their breeding range. Using publicly available land cover data, long term WIFL survey 

data, and filtered eBird records, I characterized the habitat of the three western subspecies 

of Willow Flycatchers (Empidonax traillii subspp.) with a range-wide species distribution 

model. I found that proximity to riparian areas, arid climate, and complex vegetation 

structure drove WIFL habitat suitability in their non-breeding range. Areas with higher 

predicted habitat suitability were more concentrated along the pacific coast of Central 

America. However, there is a significant gap in protected area coverage where predicted 

habitat suitability is highest on the west coast. Suitable habitat made up less than 11% of 

land within conservation areas, suggesting a need to prioritize conservation where 

suitable habitat is concentrated. An early version of the predicted habitat suitability map 
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has already been used to select new survey sites for WIFL on the ground in El Salvador. 

The most recent versions of the habitat suitability map are 10x finer, offering an even 

more detailed view of the landscape for conservation planning. This 100-m SDM will be 

used by conservation collaborators to refine survey site selection and to prioritize areas 

for land acquisition and/or conservation partnerships. 

In chapter two I took a similar approach to modeling habitat for the declining 

Nicaraguan Grackle (Quiscalus nicaraguensis), but with a different end goal and at a 

much smaller spatial extent. Publications on this species were limited to field guides and 

its IUCN status of “Least Concern” did not sit well with local ornithologists and birders 

who had noticed sharp declines in recent years. I aimed to determine key habitat 

characteristics to get an accurate extent of occurrence and area of occupancy. The current 

area estimates were based on a loosely defined range polygon that does not adequately 

reflect the limited distribution of their required habitat type or take into account the 

coverage of uninhabitable large bodies of freshwater. Using 100-m fractional land cover 

data and derived variables for freshwater recurrence, I created baseline maps of habitat 

suitability and refined area estimates. The maps of predicted habitat suitability will be 

used as evidence to request a timely reassessment of the protection status for this 

understudied, habitat specialist. My results suggest that the current area listed under the 

species’ range by the IUCN and BirdLife International of 19,300 km2 is over-estimated. 

My area of occupancy estimate is less than 1/5th the original area (2,500–3,500 km2). 

Combined with the fragmented distribution of the grackles required habitat and the 

number of sites where they are no longer found, this suggests an IUCN Red List 

classification of “Vulnerable” rather than one of “Least Concern.” 
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In my third chapter, I wanted to know how UAS-derived vegetation height 

models and Landsat-derived image texture variables contributed to- and complemented 

each other in resource selection functions for a desert riparian songbird community in 

Amargosa Canyon, CA. I aimed to explore a low-cost way to use off-the-shelf drone 

technology and remote sensing to create ultra-fine resolution vegetation height models 

and improved definitions of available habitat for nest site selection models. Imagery 

products from both satellite and UAS complemented one another in the models, adding 

information on both the vertical and horizontal dimensions of vegetation structure. 

Another aim of this investigation was to create predictive models of nest site selection to 

inform restoration practices for revegetation at target sites upstream. The limited 

predictive capacity of our top models suggest that the relationships between the modeled 

covariates and relative probability of nest site selection must be interpreted and applied 

with caution. The model results presented in this chapter should serve as a reference point 

for further investigation rather than concrete recommendations for restoration of nesting 

habitat at the target sites upstream.  

 Each of the studies were not without their weaknesses. Both the WIFL study in 

chapter one and Mojave Songbird study in chapter three required data pooling prior to 

analysis. While the WIFL study did not have a low sample size, the records from the long 

term surveys were limited in their spatial extent. I included eBird records to enhance the 

spatial coverage of our dataset. However, visual similarities between WIFL subspecies 

meant that I could not isolate SWFL records. It’s possible that pooling across the three 

western subspecies limited the specificity of the habitat suitability estimations, painting a 

picture of broader habitat tolerance than may be exhibited by SWFL. Directly tracking 
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the migration of SWFL with Motus technology would be an excellent way to ground-

truth our habitat suitability maps. Due to a limited sample size, the Mojave nest data in 

chapter 3 were pooled across species and years. While these surveys were incredible in 

that they recorded every nest within Amargosa Canyon over the study period, the limited 

extent of our study area resulted in fewer than 100 nests overall. Pooling nest data over 

species and year could have had significant impacts on the predictive ability of our 

resource selection functions. Vegetation growth and health can vary significantly 

between years, and different species may have a wider range of nest site preferences than 

anticipated. A lack of satellite-derived vegetation type data at grains below 100 m also 

limited the predictive ability of these models. For chapter two, a lack of consistent survey 

effort split our data into either location-poor and abundance-rich (field surveys or 

location-rich and abundance-poor (eBird data). With my expertise, I chose to develop 

habitat models with the location data without making use of the abundance data available 

at some sites. The abundance data, while limited in sample size and scope, may have 

been useful in determining baseline estimates of population size for this species.  

 Thus, my first recommendation for future research is for the creation of a 

historical and contemporary population estimate for the Nicaraguan Grackle. This species 

occupies a freshwater riparian habitat type that is heavily restricted within their range, 

and exhaustive surveys of this species could easily be completed within a year. The 

habitat suitability maps I created can be used to plan a stratified survey effort across the 

entire range of the species. Without baseline population estimates, this species may 

remain in the “Least Concern” category of conservation status until it approaches the 

edge of the extinction vortex. Another area of future research I see stemming from my 
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work would be to investigate and identify areas of overlap between suitable habitat for 

multiple target species in countries like Nicaragua where conservation partnerships are 

less common. While it is not conceptually appropriate for all species, species distribution 

models can be created with readily available occurrence and environmental data. The 

limited availability of conservation funding, limited ability to acquire land, and limited 

reach in maintaining long term conservation partnerships makes the prioritization of 

critical habitat designation of the utmost importance. Lastly, based on the limited 

predictive power of our resource selection functions, I would like to explore additional 

UAS-derived vegetation products in species-specific nest site selection models. The 

pixel-based approach to image classification may not have been appropriate for 10-cm 

imagery. Vegetation types were broken up into a wider array of spectral profiles than 

may have been needed for vegetation type classification. With additional supervised 

training inputs and upscaling to quarter, half, or one-meter grains, it may be possible to 

create both categorical vegetation type and fractional vegetation type cover products. 

Furthermore, combining the UAS-imagery with even a small sample of on-the-ground 

vegetation identification would greatly improve the final image product. In the same vein, 

the use of a multispectral sensor in place of the RGB camera would allow for sensing in 

the near-infrared band, which can be used to generate NDVI and EVI imagery products.  

This conclusion of these three chapters’ marks a milestone, but not an end, in a 

tremendous learning experience that I will be privileged to continue for the rest of my 

life. I sincerely hope you have learned something about the habitat and needs of some 

truly fantastic birds, and where, with help from conservation-minded people, you may 

continue to find them.  


