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Abstract of the Dissertation 

 

 The Nevada Geodetic Laboratory’s (NGL) Global Positioning Systems (GPS) 

worldwide data holdings number nearly 21,000 GPS stations that comprise the GPS 

Mega-Network today.  Advances in data processing software, final orbit and clock 

products, atmospheric modeling, and reference frames have improved the precision and 

accuracy of GPS positioning solutions to the sub-millimeter level.  The rates of change in 

these GPS position time series can be calculated by the MIDAS robust trend estimator to 

identify the patterns and styles of crustal deformation.  Additionally, the large number of 

global stations improves the spatial resolution of observable geophysical signals.  

Together, these improvements helped motivate the GPS Imaging technique, an analysis 

method that interpolates spatiotemporal GPS trends between stations to construct a 

crustal velocity field representative of coherent movement of the solid Earth.  The 

research presented in this dissertation uses the GPS Imaging technique to identify and 

analyze a number of geophysical signals related to vertical land motion and earthquake 

deformation. 

 Two studies examine vertical land motion trends in regions of the United States 

and try to pinpoint the underlying geological sources for their signals.  In the first study, 

GPS Imaging is used to identify the scope and extent of a subsidence signal observed in 

the Pacific Northwest.  This signal is subsiding at approximately –2 mm/year, a rate 

higher than surrounding subsidence, and is located at latitudes corresponding to the 

Cascadia subduction zone and approximate longitude of the Cascadia arc.  Several 
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methods tested the resolution of GPS Imaging and changes to the regional signal over 

time.  GPS data was then compared to predictions of various hypothesized loading 

sources that might contribute to the subsidence feature.  GPS Imaging and realistic 

regional geological properties constrained volcanic loading and end loading models.  This 

revealed that both styles of loading matched the width of the subsidence feature.  A 

postseismic relaxation model from the 1700 M9.1 Cascadia Earthquake was compared to 

the GPS Imaging result, and accounted for approximately half of the subsidence signal 

concentrated around the Cascadia arc.  Glacial isostatic adjustment modeling of the 

region determined that lithospheric flexure contributes about –1 mm/year of subsidence 

to the region.  By combining the postseismic relaxation and glacial isostatic adjustment 

models, the subsidence feature was removed, suggesting that these two processes are 

likely the dominant sources of the subsidence signal.  However, climatic and hydrological 

data compared to vertical land motion trends indicate possible contributions from 

hydrological loading.  This work demonstrates a way to analyze subsidence signals in 

geologically complex regions, and laid important groundwork for other vertical land 

motion research. 

 The second vertical land motion study was located in the Great Plains, United 

States.  Vertical velocity data indicated there was an enigmatic source of regional uplift 

of approximately ~2 mm/year centered around the Texas Panhandle, with uplift 

extending through to the surrounding ~670 km x 280 km area.  This region is home to the 

High Plains aquifer, the largest aquifer in the country and a major source of groundwater 

for agriculture.  Water levels for the southern part of the aquifer have declined over 45 m, 

with greatest declines centered near the Texas Panhandle.  Hydrological unloading was 
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investigated as the principal source of the uplift signal.  Climatic and hydrological data 

indicate a correlation between periods of drought and an increased rate of uplift observed 

by GPS data in the region.  A hydrological unloading model was constrained by GPS 

Imaging by locating the greatest water mass loss where the uplift signal was ≥1 mm/year.  

Results indicated that a water volume loss of –5.1 km3/ year was sufficient to create the 

uplift signal observed by GPS Imaging, and this unloading rate is substantiated by other 

estimated rates of High Plains aquifer depletion.  Our results indicated that hydrological 

unloading from aquifer deletion from climatic and anthropogenic influences is causing 

vertical land motion in the southern High Plains aquifer.  This challenges the common 

conception that aquifer depletion equates to a subsidence signal, and also proves that GPS 

Imaging can be used as a tool to monitor groundwater changes remotely. 

 The last study shifts away from regional vertical land motion investigations to 

apply GPS Imaging to global earthquake research.  Some of the ~21,000 GPS stations in 

GPS Mega-Network are situated in earthquake prone regions experiencing tectonic 

deformation from plate interactions and/or induced seismicity.  Earthquakes captured by 

the GPS Mega-Network are recorded in GPS time series as immediate discontinuities that 

represent coseismic displacement.  Several different strategies are first tested to estimate 

coseismic displacements for the NGL.  Analysis of coseismic displacements, aided by 

GPS Imaging, suggests that estimations are improved by a hierarchical strategy and 

radius of influence used to approximate which stations may be potentially affected by an 

earthquake.  Next, the coverage, completeness, and resolution of coseismic displacements 

in the GPS Mega-Network is examined using the GPS Global Earthquake Catalog built 

from the coseismic displacement data.  Comparisons of the GPS Global Earthquake 
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Catalog to the USGS National Earthquake Information Center Earthquake Catalog for 

events occurring between 1 Jan. 1994–20 Apr. 2022 reveal that the GPS Mega-Network’s 

ability to capture global earthquake activity has increased over time and that the 

availability of estimated GPS coseismic displacements is greatest for earthquakes M≥7.  

Of the 427 earthquakes M≥7 recorded by the USGS, 93% of earthquakes 7≤M<7.5 have 

estimated GPS displacements, and 100% of earthquakes 7.5≤M≤9.1 have coseismic 

displacement data available. 
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1.1 Identifying Spatiotemporal Signals of Active Earth Processes with GPS 

Imaging 

 

 Global Positioning Systems (GPS) record the position of the station in east, north, 

and up directions.  Trends in positioning data over time uncover motion of the Earth’s 

crust and, when combined with data from other nearby GPS stations, can reveal regional 

spatiotemporal patterns of crustal deformation.  The Nevada Geodetic Laboratory (NGL) 

processes data for ~21,000 GPS stations worldwide that comprise the GPS Mega-

Network (Blewitt et al., 2018).  The distribution of GPS stations in the global network 

enhances the spatial resolution of observable geophysical signals.  This improved 

resolution helps identify underlying geologic processes at the source of crustal 

deformation.  Aiding these crustal motion investigations are advances in data processing 

(Bertiger et al., 2020; Kreemer et al., 2020) and revisions to global reference frames 

(Altamimi et al., 2016) that improve the precision and accuracy of GPS positioning 

solutions to the sub-millimeter level.  The MIDAS robust trend estimator further 

improves accuracy and reduces uncertainties by estimating crustal velocities that are 

insensitive to the effects of outliers, seasonality, and undocumented displacements caused 

by earthquakes or equipment changes (Blewitt et al., 2016).   

Together, these improvements are incorporated into the GPS Imaging technique, 

an analysis method that interpolates spatiotemporal GPS trends between stations to 

construct a velocity field of crustal motions representative of coherent movement of the 

solid Earth.  In recent studies, NGL applied the vast GPS Mega-Network and the GPS 

Imaging technique to locate and reveal geodynamic processes such as drought 
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accelerated tectonic uplift (e.g., Hammond et al., 2016), strain rates and velocities from 

glacial isostatic adjustment (e.g., Kreemer et al., 2018), and contributions of vertical land 

motion to global sea-level rise (e.g., Hammond et al., 2021).  The potential applications 

for the GPS Imaging technique are as expansive as the GPS Mega-Network itself. 

In this dissertation, I explore different applications of the GPS Imaging technique 

using stations within the GPS Mega-Network.  Two vertical land motion studies 

investigate enigmatic geophysical signals in active and in relatively stable geologic 

provinces in the United States.  The third study uses global earthquake data collected by 

the GPS Mega-Network to design a database of coseismic displacements, testing 

displacement estimation strategies with GPS Imaging.  These studies are summarized in 

the following section.  

 

 

1.2 Summary of Dissertation Chapters 

 

1.2.1 Cascade Arc Subsidence in the Pacific Northwest United States 

 

In Chapter 2, I describe the capabilities of GPS Imaging by applying it to 

understand the source of a downward vertical signal centralized in the Pacific Northwest 

United States interior.  The subsidence signal of interest is approximately double the rate 

of surrounding regional subsidence at around –2 mm/year, and the pattern, though diffuse 

near the state border of Washington and Oregon, is approximately located along the 

Cascade Arc.  The Pacific Northwest is at the convergence of the Juan de Fuca and North 
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American plates, and as such experiences tectonism and volcanism related to the motion 

and melt of the subducting oceanic plate that can cause crustal deformation (Orr and Orr, 

2002).  Additionally, Cascadia experienced a M9.1 megathrust earthquake in 1700 that 

may still be affecting crustal motions today (Pollitz et al., 2008).  Though the Cascadia 

subduction zone geologic processes might seem like the obvious sources of the 

subsidence signal, this active and complex region not only undergoes crustal deformation 

from plate tectonics.  In the Late Pleistocene, the Laurentide and Western Cordilleran ice 

sheets melted rapidly (Orr and Orr, 2002), causing present day glacial isostatic 

adjustment (GIA).  The northern part of the study area in Canada flexes the lithosphere 

approximately south of the Canadian border downward (Peltier et al. 2015; Peltier et al., 

2018; Argus et al. 2014) by a process called forebulge collapse (Watts, 2001).  

Additionally, proximity to the ocean and high topographic relief creates a cool, wet 

climate which can cause vertical land motions from cyclical loading from orographic 

precipitation and snowpack (Fu et al., 2015).  I examine each of these possible loading 

signals in an attempt to distinguish how they might contribute to the spatiotemporal 

patterns of the subsidence feature. 

To understand the vertical land motion of the Pacific Northwest, I first create a 

regional vertical velocity field with GPS Imaging.  I examine the extent of the feature and 

compare velocity profiles with latitude transects of topographic features.  I also test the 

resolution of the GPS Imaging result to ensure the subsidence feature is not adversely 

affected by GPS station spacing.  Models of GIA are also compared to the GPS Imaging 

result to determine if and how GIA contributes to the subsidence signal.  GIA models 

contribute a widespread signal of subsidence in the Pacific Northwest area, but its fastest 
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subsidence is not geographically concentrated along the Cascade Arc.  Climate data for 

districts approximately overlapping the subsidence feature and hydrological time series 

help define wet and dry patterns to investigate how the subsidence feature changes during 

early, middle, and late time periods.  Results show that the swath of subsidence is 

shrinking and the rate is decreasing over time.  Plate flexure models for volcanic loading 

and end loading from a subducting plate are tested against the width of the subsidence 

feature identified by GPS Imaging.  These results indicate that the volcanic and end 

loading models create signals that are predicted to be within the range required to create 

the subsidence signal.  Lastly, a postseismic relaxation model for the 1700 Cascadia 

megathrust earthquake was compared to GPS observations.  The geographic extent of the 

subsidence signal is concentrated along the Cascade Arc, and residual rates of subsidence 

were approximately of the same rate as the GIA model.  Combining the postseismic and 

GIA models solved for nearly the entirety of the subsidence signal of interest, though the 

other possible sources tested could minorly contribute to the subsidence feature as well. 

Portions of this material or previous iterations of this project were presented at the 

2017 EarthScope National Workshop (Overacker et al., 2017a), 2017 American 

Geophysical Union (AGU) Annual Meeting (Overacker et al., 2017b), 2018 UNAVCO 

Science Workshop (Overacker et al., 2018), and 2019 International Union of Geodetic 

Geophysicists Conference (Overacker et. al, 2019).  I performed analysis, authored the 

main text, and produced all the figures herein.  Bill Hammond supervised this research 

and assisted with programming by providing me with vital GPS Imaging scripts 

(Hammond et al., 2016), access to and the scripts for MIDAS time series analysis 

(Blewitt et al., 2016), checkerboard test script, GIA modeling scripts (Peltier et al. 2015; 
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Peltier et al., 2018; Argus, Peltier, et al. 2014), GRACE mass concentration script 

(Loomis et al., 2019), GMT scripts and files for topography and plate boundaries (Bird, 

2003), and direction for loading models (Turcotte and Schubert, 2002).  Additionally, he 

contributed substantial editorial advice.  Zachary Young provided the 1700 M9.1 

Cascadia postseismic positioning time series model from Pollitz et al. (2008) and 

provided advice on the model results.  Geoff Blewitt and Corné Kreemer also reviewed 

presented materials and provided comments and edits that this research benefited from.  

Program troubleshooting was made possible throughout much of the earlier iterations of 

this research by the generosity and patience of Meredith Kraner and Eduard Nastase. 

 

1.2.2 Vertical Land Motion of the High Plains Aquifer Region of the United 

States: Effect of Aquifer Confinement Style, Climate Variability, and 

Anthropogenic Activity 

 

In Chapter 3, I build upon lessons learned in Chapter 2 to investigate an enigmatic 

signal of vertical uplift located in the southern Great Plains of the United States.  The 

pattern and extent of the vertical land motion observed by GPS Imaging correlates with 

the southern extent of the High Plains aquifer.  This region of the aquifer has witnessed 

significant declines in aquifer levels in the past century, over 45 m in areas located near 

the highest rate of uplift (McGuire, 2017), and an estimated 330 km3 of water volume 

was removed between 1950 and 2007 (Scanlon et al., 2012).  Commonly, vertical land 

motion signals related to aquifer depletion are associated with subsidence owing to 

poroelastic contraction and/or compaction.  Here, we investigate whether this uplift could 
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be associated with a different mechanism: elastic unloading caused by the loss of mass 

associated with aquifer depletion.   

To understand the possible relation between the uplift and the aquifer, I use GPS, 

geologic, satellite gravity, hydrologic, and climate data to understand what drives the 

spatial and temporal patterns of the observed GPS signals.  The High Plains aquifer is 

divided into northern and southern regions because the signals of vertical land motion are 

very different.  GPS Imaging is used to create uplift maps from GPS data for the regional 

vertical land motion trend, seasonality, and early and late period testing which uses 

Palmer Drought Severity Index (PDSI) climate data as an analog for wet and dry seasons.  

These maps are compared to the equivalent water height spatiotemporal data from 

Gravity Recovery and Climate Experiment (GRACE), which measures gravity 

perturbations from the changing distribution of water mass, to determine whether the 

uplift signal can be attributed to seasonal and/or long-term hydrological unloading.  GPS 

time series are compared to GRACE time series and PDSI time series intersecting with 

and within the High Plains aquifer boundary to examine vertical land motion trends and 

compare them to water mass and climate trends.  Well data serve as an indicator of the 

impact of human activities on the aquifer.  Finally, we use GPS Imaging to create a 

simplified model to estimate how much water mass would be required to cause the uplift 

signal.  The findings indicate that a water volume loss of –5.1 km3/year is sufficient to 

cause the observed uplift. 

This material was published by: Overacker, J., Hammond, W. C., Blewitt, G., & 

Kreemer, C. (2022). Vertical Land Motion of the High Plains Aquifer Region of the 

United States: Effect of Aquifer Confinement Style, Climate Variability, and 
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Anthropogenic Activity. Water Resources Research, 58(6), e2021WR031635, 

https://doi.org/10.1029/2021WR031635.  For this project, I identified the uplift signal, 

performed analysis and interpretation of signals using GPS, GRACE, hydrological, and 

climatic data, and designed the unloading model for the uplift signal.  I authored the main 

text and made all figures except for Figure 3.15 (McGuire, 2017) which beautifully 

demonstrates how groundwater levels have changed in the High Plains aquifer.   

Throughout the project, Bill Hammond provided invaluable guidance and 

revisions that helped craft the initial vision of this project into its final published product.  

Additionally, he shared template GPS Imaging scripts (Hammond et al., 2016) for 

vertical trends, seasonality, checkerboard tests, and the glacial isostatic adjustment model 

(Peltier et al. 2015; Peltier et al., 2018; Argus, Peltier, et al. 2014), as well as the GRACE 

mascons (Loomis et al., 2019) and the LoadDef (Martens et al., 2019) unloading models.  

Geoff Blewitt and Corné Kreemer assisted greatly by brainstorming with me during the 

early stages of the project and contributing edits to the manuscript.  Additionally, reviews 

by Donald Argus, Manoo Shirzaei, an anonymous reviewer, and the Associate Editor 

Kamini Singha helped improve the manuscript.  Special thanks to Scott McCoy for 

sharing the Google Earth file with the High Plains aquifer boundaries from research by 

Willett et al., 2018, Rina Schumer for discussions on aquifer mechanics, and to Zachary 

Young for helping me build the initial loading model.  

  

https://doi.org/10.1029/2021WR031635
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1.2.3 Coverage, Completeness, and Resolution of Coseismic Displacements in 

the GPS Mega-Network Global Earthquake Catalog 

 

In Chapter 4, I diverge from the previous track of using GPS Imaging to examine 

vertical land motion signals and instead apply the algorithm directly towards earthquake 

science.  The Nevada Geodetic Laboratory (NGL) collects GPS data from many networks 

globally. I refer to all the stations collectively as the GPS Mega-Network.  When a station 

within the network experiences an earthquake, coseismic displacement presents on the 

GPS time series as an immediate discontinuity in the position time series.  These 

coseismic displacements can provide information on the scope, style, and direction of 

crustal deformation which can help refine the properties of the earthquake.  Coseismic 

displacements can also be used as a correction factor when studying subtle signals of 

crustal deformation, and/or as an indicator of GPS station stability when defining 

accurate reference frames.  The NGL estimates coseismic displacements for the GPS 

Mega-Network after each earthquake event.  Here, I design a method to calculate the 

displacements in part using GPS Imaging.  I evaluate how the completeness of the GPS 

Mega-Network Global Earthquake Catalog, comprised of the coseismic displacement 

estimates, compares to that of the USGS National Earthquake and Information Center 

(NEIC) Earthquake Catalog. I consider all earthquakes with M≥5.5 that occurred between 

1 Jan. 1994 and 20 Apr. 2022.  This provides insight into spatiotemporal patterns of 

coverage, completeness, and resolution for the ability of the GPS Mega-Network to 

capture earthquake deformation over time.  
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I first define two basic methods for estimating coseismic displacements, the Data 

Near Event (DNE) and the Time Series Model (TSM).  I develop a model hierarchy that 

applies displacement estimation strategy according to the data content of each station 

affected by a given earthquake event.  Then I define the radius of influence equation 

which is used to flag GPS stations near the earthquake epicenter for displacement 

estimation.  I use GPS Imaging to interpolate horizontal displacement magnitudes 

surrounding the event to characterize the fall off of displacement with distance from the 

epicenter.  Finally, I compare the USGS NEIC Earthquake Catalog with the database 

constructed from 20,224 stations worldwide, 7,486 of which are affected by the 14,059 

earthquakes worldwide and account for 63,122 displacement estimates flagged for 

potential coseismic deformation that comprise the GPS Mega-Network Global 

Earthquake Catalog.  These findings improve displacement estimates for GPS stations 

affected by earthquakes worldwide and illuminate how far the GPS Mega-Network has 

come at capturing earthquake information as well as paths for improvement going 

forward. 

For this project, I designed and tested the DNE estimation strategy and the radius 

of influence.  I also built the GPS Mega-Network Global Earthquake Catalog and 

performed comparative analysis.  I authored the main text and made all figures except for 

Figure 4.2, which was contributed by Bill Hammond, and Figure 4.4 which was 

generated by the NGL (Blewitt et al., 2018).   

This chapter would not have been possible without the joint efforts of the NGL.  

This research builds on ideas that were put into place as an operational requirement of the 

GPS Mega-Network.  The Time Series model and the original radius of influence which 
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keeps track of potential coseismic displacements on the NGL website 

(http://geodesy.unr.edu/NGLStationPages/steps.txt) using USGS NEIC data were 

originally proposed by Bill Hammond, who recognized a need for a refined estimation 

strategy so the NGL can develop a publicly accessible data product.  The incredible 

amount of data is largely due to the efforts of Corné Kreemer who, in part, amasses the 

database from networks in the GPS Mega-Network and keeps them up to date.  The data 

processing and development of algorithms is done by Geoff Blewitt.  This research brings 

systematic coseismic displacement data products close to being available to the broader 

community. 

 I was able to devise and refine the strategies described in Chapter 4 with Bill 

Hammond’s continual advice and support.  He provided me with an early version of a 

script that I developed to deploy the DNE model, the GMT scripts used to plot the GPS 

Mega-Network, and the GPS Imaging script that was adapted from vertical land motion 

into the horizontal displacement magnitude maps.  He also made copious comments and 

edits on the chapter manuscript for submission to a peer-reviewed journal in the near 

future.  Some of this research and figures were previously presented at the 2020 and 2021 

AGU Annual Meetings (Overacker et al., 2020; Overacker et al., 2021) and GAGE-

SAGE Community Workshop meetings (Overacker et al., 2021); many thanks for the 

reviews and edits by Bill Hammond, Corné Kreemer, and Geoff Blewitt during that time 

that helped contribute to this project.  Finally, much gratitude to David Phillips for hiring 

me to develop much of this work in partnership with the NGL during my 2018 UNAVCO 

USIP summer internship. 

  

http://geodesy.unr.edu/NGLStationPages/steps.txt
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2 Cascade Arc Subsidence in the Pacific Northwest United States 

Cascade Arc Subsidence in the Pacific Northwest United States  

  



 

 

16 

2.1 Abstract 
 

I construct a vertical land motion velocity field of the Pacific Northwest United 

States using data from 648 GPS stations.  The result shows a 50–250 km wide swath of 

nearly –2 mm/year subsidence that approximately spans Cascade Arc longitudes and the 

length of the Cascadia subduction zone.  I model several possible sources for the 

subsidence feature.  Climatic and hydrological data indicate limited contribution to the 

subsidence.  Glacial isostatic adjustment models identify a probable source of subsidence, 

though they do not fully explain the signal rate or pattern.  I use the vertical velocity field 

as a constraint for plate scale modeling.  Numerical modeling of volcanic loading and end 

loading from Juan de Fuca plate subduction suggest that both possibly contribute to 

downward motion.  Lastly, I model postseismic relaxation from the 1700 M9.1 Cascadia 

Earthquake.  The result shows a north-south extent of subsidence concentrated along the 

Cascade Arc and, when this model was combined with the glacial isostatic adjustment 

model, the subsidence feature was completely removed.  The combination of these 

postseismic relaxation and glacial isostatic adjustment geophysical processes best 

explains the observed subsidence signal. 

 

 

2.2 Introduction 

 

Seismicity and interseismic strain related to the Cascadia subduction zone (Fig. 

2.1) actively deforms the surrounding crust (Burgette et al., 2009; Mazzotti et al., 2002).  
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Further inland, volcanism born from the subducting Juan de Fuca plate causes magmatic 

inflation (Dzurisin et al., 2009) and creates new topography from eruptive events in the 

Cascade Arc (Lisowski et al., 2008) (Fig. 2.1).  The Global Positioning System (GPS) is 

used to track active strain rates and locking of the plate interface to characterize seismic 

(McCaffrey et al., 2007; Schmalzle et al., 2014; Pollitz & Evans, 2017; Savage, 1983; 

Wang et al., 2003) and volcanic (Chang et al., 2010; De Martino et al., 2021; Dixon et al., 

1997) hazards, as well as understand how geologic processes contribute to vertical crustal 

deformation signals today (Mazzotti et al., 2007; Mazzotti et al., 2008; Montillet et al., 

2018).  More generally, geodetic data can reveal spatiotemporal patterns in vertical land 

motion that can elucidate underlying sources of the movement occurring at different 

geologic time scales (Pfeffer et al., 2017).  GPS time series can track loading and 

unloading cycles of overlapping crustal deformation signals on time scales from seasonal 

(e.g., Fu et al., 2015), to hundreds of years for the seismic cycle (e.g., Burgette et al., 

2009), thousands of years for glacial isostatic adjustment (GIA) (e.g., Peltier et al., 2015), 

and millions of years for tectonic processes (e.g., Zhao et al., 2023). 

Here, I attempt to document the existence and characteristics of a subsidence 

signal with a maximum rate of approximately –2 mm/year detected with GPS data from 

648 Pacific Northwest GPS stations (Fig. 2.1) primarily from the EarthScope Network of 

the Americas (NOTA) and Pacific Northwest Geodetic Array (PANGA).  I construct an 

image of vertical velocity trends in the region using the Nevada Geodetic Laboratory’s 

(NGL) MIDAS trend estimator that locates this subsidence feature with an increased rate 

roughly corresponding to the longitude of the Cascade Arc and in latitudes along the 

entire Cascadia subduction zone.   
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I evaluate potential loading sources that may cause this subsidence by comparing 

the predictions of various models to the characteristics of the subsidence feature 

identified by GPS.  I investigate whether plate flexure from subduction zone loading or 

volcanic loading are viable sources by comparing the observed subsidence signal to 

modeled predictions based on a range of values for flexural rigidity and other realistic 

mechanical properties of the lithosphere.   

I also investigate the effect that postseismic relaxation from the 1700 Cascadia 

megathrust earthquake has on the observed vertical land motion rates and patterns.  

Vertical positions of postseismic motion were obtained from the Pollitz et al. (2008) 

model following methods by Young et al. (2023) for the estimated M9.1 earthquake.  The 

model of postseismic vertical land motion is then interpolated into a velocity field for 

direct comparison with the GPS vertical velocities. 

There are other contributors to the observed subsidence signal that must also be 

considered, however.  Specifically, I examine whether climate trends from hydrological 

loading in the Cascade Arc and back-arc basins might explain the downward vertical 

motion of interest.  I identify wet and dry periods with Palmer Drought Severity Index 

(PDSI) data and compare signals during these periods to Gravity Recovery and Climate 

Experiment (GRACE) and GPS spatiotemporal patterns to understand how the 

subsidence signal might fluctuate in different climate conditions. 

Additionally, I consider possible subsidence effects from forebulge collapse 

associated with glacial isostatic adjustment (GIA).  This occurs because of mantle flow 

returning the lithosphere to glacio-isostatic balance in affected areas in northern latitudes 

of North America after Late Pleistocene deglaciation.  The process flexes the lithosphere 
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downward in southern latitudes to compensate for uplift near the ice depocenter (Watts, 

2001; Sella et al., 2007).  The ICE-6G D (VM5a) GIA model (Peltier et al. 2015; Peltier 

et al., 2018; Argus, Peltier et al. 2014) is compared with the GPS vertical velocity field to 

assess whether the subsidence pattern can be explained from postglacial rebound to the 

north. 
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Figure 2.1.  Map view of the Pacific Northwest study area.  GPS stations (black circles) 

are displayed along with geologic and topographic features of interest, including the 

Cascadia subduction zone (gray triangles offshore) (Bird, 2003) and Cascade Arc 

volcanoes (black triangles).  Constant-latitude transects used for topographic and velocity 
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profiles (see Analysis 2.4.3) are denoted by dashed, colored rectangles and identified by 

roman numerals I–IV. 

 

 

2.3 Data 

 

2.3.1 GPS Data 

 

GPS vertical component time series with a minimum 3-year time series duration 

located in the Pacific Northwest United States between –126º to –115º longitude and 41º 

to 50º latitudes were obtained for 648 GPS stations from the NGL open access archive 

(Sup. Table S2.1) (Blewitt et al., 2018).  The archive contains data from an amalgamation 

of several networks, though most GPS time series in this study were collected from the 

Pacific Northwest Geodetic Array (PANGA), Network of the America’s (NOTA), and 

the United States Geological Survey (USGS) Cascades Volcano Observatory (CVO) 

networks.  RINEX data were processed from the earliest data available from each 

individual station through 3 Jun. 2023.  The longest running station ALBH near Victoria, 

British Columbia was active 9 Mar. 1994. 

This study used the IGS14 reference frame, and the calculated rates are referenced 

to the IGS14 origin which is approximately the center of Earth mass (Altamimi et al., 

2016).  The processing used the Jet Propulsion Laboratory’s (JPL) GipsyX 1.0 software 

and JPL’s final orbit and clock products when calculating positioning solutions (Bertiger 

et al., 2020).  Atmospherically-induced signal delays, which can impact estimates of 
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vertical positions, were modeled and estimated using the Vienna Mapping Function 

(VMF1) with gridded a priori data taken from European Center for Medium-Range 

Weather Forecasts (ECMWF) models (Boehm et al., 2006).  For further GPS processing 

details, see Kreemer et al. (2018, 2020). 

 

2.3.2 Gravity Recovery And Climate Experiment Data 

 

 Gravity Recovery and Climate Experiment (GRACE) data measure gravity 

variations caused by the changing distribution of surface mass on the Earth, primarily 

related to the redistribution of water (Dunbar, 2013).  To determine how changes in 

surface hydrological mass loading might affect the subsidence signal, Goddard Space 

Flight Center (GSFC) GRACE solutions were used to extract finer geographic resolution 

from gravity results.  Hydrological trends illustrative of the hydrological loading 

component to the vertical signal were calculated from GRACE and GRACE Follow-On 

satellite gravity data (Loomis et al., 2019) which began 17 Apr. 2002 through 15 Nov. 

2022 (Sup. Table S2.2).  Best-fit trends for 76 mass concentrations (mascons) located in 

the Pacific Northwest study area were estimated using simple linear regression to fit a 

first-degree polynomial within a 95 percent confidence interval (Fig. 2.2). 

Gravity trend results are subject to anisotropic spatial filtering (Han et al, 2005; 

Chen et al., 2005; Swenson and Wahr, 2006) and as such are only sensitive to 

wavelengths on par with the mascon size.  Variations in spatial resolution between 

gravity solutions could potentially obscure details of regional gravity trends.  The mascon 

size for the GSFC solutions is 1 x 1 arc-degrees, approximately 111 km x 79 km, but they 



 

 

23 

are derived from 3 x 3 arc-degrees JPL mascons and as such are highly spatially 

correlated (Luthcke et al., 2013). 

Hydrological loading predictions from the JPL GRACE mascon-based model 

(Argus et al., 2022) available through NGL station pages (e.g., the masc columns for 

GOBS: http://geodesy.unr.edu/gps_timeseries/tenv3_loadpredictions/GOBS.tenv3) are 

subtracted from the vertical positioning data.  For further details on the hydrological 

loading models, see Argus et al. (2022).  Additionally, the effects of non-tidal 

atmospheric and ocean loading in the GPS positioning data are corrected by subtracting 

the predictions of their displacement signal from the ECMWF 24-hour terrestrial water 

storage global hydrological model available from http://rz-vm115.gfz-

potsdam.de:8080/repository (Dill and Dobslaw, 2013; Dill, 2008). 

 

http://geodesy.unr.edu/gps_timeseries/tenv3_loadpredictions/GOBS.tenv3
http://rz-vm115.gfz-potsdam.de:8080/repository
http://rz-vm115.gfz-potsdam.de:8080/repository
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Figure 2.2.  GSFC GRACE (Luthcke et al., 2013) gravity trends displaying change in 

equivalent water height in cm/year in 1 arc-degree mascon size, an area ~111 km x 79 

km.  These results are sensitive to wavelengths on par with the mascon size.  Solutions 

show overall decreasing gravity trend for the Pacific Northwest.  
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2.3.3 Climatic Water Data  

 

Vertical land motions can be impacted by groundwater extraction (Faunt et al., 

2016; Larochelle et al., 2021; Overacker et al., 2022) and hydrological loading from 

orographic precipitation (Argus, Fu et al., 2014; Argus et al., 2017).  To determine 

whether hydrological loading from climatic water was related to the vertical land motion 

trends shown by GPS data, I obtained Palmer Drought Severity Index (PDSI) data to 

examine them for climate patterns.  PDSI time series were used to identify drought and 

wetness patterns (Dai et al., 2004); negative PDSI values indicate dry years and positive 

PDSI values indicate wet years (Dai, 2017).  Extended periods of negative PDSI values 

indicate multi-annual drought, and extended periods of positive PDSI values indicate a 

trend of wetness. 

Monthly PDSI data were obtained from the National Oceanographic and 

Atmospheric Administration (NOAA) Gridded Climate Divisional Dataset (CLIMDIV) 

(Vose et al. 2014) for 12 combined Washington and Oregon climate divisions (Fig. 2.3).  

Six climate divisions from each state were chosen because they approximately intersect 

or contain the subsidence signal of interest.  These average monthly PDSI time series run 

from 17 Apr. 2002 through 15 Nov. 2022 to match the GRACE data timespan (see Data 

2.3.2).   
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Figure 2.3.  Map-view of 6 Washington and 6 Oregon NOAA Climatological Divisions 

used to understand whether the subsidence signal is related to hydrological loading, with 

locations approximately based on Cascade Arc and associated drainage basins. 
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2.4 Analysis 

 

2.4.1 GPS Imaging 

 

GPS Imaging is a robust interpolation technique that highlights spatially coherent 

signals that are present in multiple stations of a geodetic network.  It can be used to 

discover and characterize the pattern of signals as well as investigate the cause of motion.  

In this study, I use GPS Imaging to construct a gridded vertical velocity field that reveals 

rates and patterns of vertical motions that would otherwise be difficult to detect.  Trends 

in position times series are calculated using the MIDAS robust trend estimator which 

calculates unbiased vertical rates that are insensitive to the effects of outliers, seasonality, 

and undocumented discontinuities in the data (Fig. 2.4A) (Blewitt et al., 2016).   

The GPS Imaging algorithm incorporates weighted median spatial filtering of 

vertical rates on a Delaunay triangulation of the network to obtain a vertical velocity field 

with speckle noise removed for improved resolution of geographically coherent signals 

(Fig. 2.4B) (Hammond et al., 2016).  GPS Imaging interpolates values at randomly 

distributed stations to points on a regular grid to create a vertical velocity field (Fig. 

2.4C).  Signals that are similar between stations are enhanced by GPS Imaging and may 

be ascribed to the spatially coherent movement of the solid Earth while outliers, i.e., 

station velocities that differ substantially from their neighbors, are suppressed. 
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Figure 2.4.  GPS Imaging of vertical motions in the Pacific Northwest.  (A) MIDAS 

estimates at GPS station locations (circles with face color indicating rate of vertical land 

motion).  (B) Median spatial filtered velocities.  Speckle noise is removed for improved 

resolution of geographically coherent signals and removal of outlier rates.  (C) GPS 

Imaging before artifact reduction.  Small scale artifacts that appear as erratic domain 

boundaries, wiggles, shards, or fingers of different rates in the vertical rate field are 

attributable to non-homogeneous GPS station distribution. 

 

To address small scale artifacts attributable to noise and/or short spatial 

wavelength structure in the GPS vertical rate field and non-homogeneous GPS station 

distribution, I use a bootstrapping statistical analysis of the GPS Imaging result.  GPS 

Imaging is rerun for multiple iterations, removing a subset of the data each time.  The 

median value of vertical rate for each gridded pixel was used to produce the resulting 

velocity fields.  Values of percent retention were tested (Fig. 2.5), as well as the number 

of iterations (Fig. 2.6).  The goal of this iteration was to reduce artifacts and to refine the 

interpolation of the vertical velocities.  Results of several runs with varied parameters 
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were compared to the initial GPS Imaging result (Fig. 2.4C), and preference was given to 

the test results that retained the pattern and rate of the subsidence feature of interest 

where station density is higher.  Percent retention values were tested where a randomly 

selected 50, 65, and 80 percent of the stations were retained in each iteration.  For low 

percent retention in each iteration, the contours around the signals became smoother, but 

vertical rates were also noticeably decreased, such as an increased rate of subsidence 

located near the Boise, Idaho metropolitan area.  When percent retention was higher, the 

results were closer to the original GPS Imaging result to the point where the domain 

boundaries, wiggles, shards, or fingers were not substantially reduced.  The moderate 

value of percent retention was therefore chosen because it balanced artifact reduction 

while retaining the signals of interest. 

 

 

Figure 2.5.  GPS Imaging bootstrap analysis tests using (A) 50, (B) 65, and (C) 80 

percent retention of stations in each iteration. 
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Next, I tested 10, 20, and 40 for the number of iterations (Fig. 2.6).  The results of 

10 iterations showed rougher domain boundaries, and the wiggles, shards, or fingers were 

hardly affected.  40 iterations feature similar crescent shaped artifacts, but 20 iterations 

seemed to provide a balance of artifact reduction, faster processing time, and good 

adherence to the overall pattern calculated in the initial interpolated velocity field (Fig. 

2.4C).  I chose values of 65 percent retention and 20 iterations as the final bootstrapping 

statistical analysis parameters.   

 

 

Figure 2.6.  GPS Imaging bootstrap analysis tests using (A) 10, (B) 20, and (C) 40 

iterations. 

 

2.4.2 Resolution Tests 

 

To check the GPS Imaging resolution, I performed a reconstruction test using a 

synthetic checkerboard vertical velocity field.  Synthetic velocity values between 3 

mm/year and –3 mm/year, with pixel borders between the checkerboards of 0 mm/year, 
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were applied to the 648 stations used in this study.  Velocities were based on station 

location within the checkerboard and were assigned uncertainties based on real station 

vertical uncertainty values.  The synthetic velocities then underwent all steps of the GPS 

Imaging process previously described in the last section.   

The synthetic velocity field interpolated from GPS station locations show 

adequate spatial resolution down to 2 x 2 arc-degree squares with 0.05 degrees of 

resolution, i.e., zero values at the boundaries of each square (Fig. 2.7).  Squares with a 

greater number of stations were better reconstructed into their checkerboard appearance, 

and squares with a high amount of station density and a greater number of stations were 

best reconstructed to the point that the squares had visible white space defined between 

blocks (e.g., the blue block southeast of Vancouver Island).  Squares that had a 

concentration of stations but low station distribution (e.g., southwest Idaho) had poorer 

resolution and limited reconstruction.  Longitudes of, and west of, the Cascade Range 

where the GPS station density is greatest had greater spatial resolution than the 

easternmost edge of the study area where there are fewer stations and lower station 

density.  The tests showed that spatial resolution in the Cascade Arc is sufficient for 

identifying signals of interest, and verifies that the resolution of the feature of interest is 

not biased by station spacing. 
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Figure 2.7.  Resolution reconstruction test of GPS Imaging performed to check the 

quality of the reconstruction of the checkerboard pattern by the GPS network.  (A) 

Synthetic velocity checkerboard applied to Pacific Northwest region to test for spatial 

resolution.  Checkerboard is designed with 2 x 2 arc-degree intervals (blue and white 

rectangles) and 0.05 degree of resolution (white space between rectangles).  (B) Station 

distribution with synthetic vertical velocities applied.  (C) Reconstructed checkerboard 

after GPS Imaging. 

 

2.4.3 Topographic Profiles 

 

I investigated any possible correlation between signals and specific geographic or 

tectonic sources for vertical land motion revealed by the topography (Serpelloni et al., 

2013; Pfeffer et al., 2017).  Four topographic profiles were compared to vertical profiles 

that transect the subsidence feature of interest.  These profiles, located along latitudes 

42.5º, 44.5º, 46.5º, and 48.5º were chosen to determine whether there are any topographic 



 

 

33 

commonalities from north to south that might be related to the subsidence signal (Fig. 

2.1).  Though each transect includes the Cascade Arc, there are latitude dependent 

variations in geographical features that might help indicate the potential source of 

subsidence as well. 

I compare constant-latitude topographic profiles with GPS Imaging velocity 

trends and MIDAS velocities from stations located within the transect (Fig. 2.8).  To 

illustrate a wide range of topographic and vertical velocity trends, 20 km of padding was 

included on both sides of the main transect latitudes, with five profile lines of topography 

and velocities located at 4 km intervals to the north of each main transect line, and five 

profile lines in 4 km intervals to the south respectively.  The mean of each velocity and 

topographic profile was plotted with MIDAS GPS velocities and uncertainties to get the 

average trends per transect.  Prominent geographic features like basins and mountain 

ranges were denoted for each transect.   

These profiles indicate that there is a subsidence feature consistently focused 

around the approximate longitude of the Cascade Arc.  Though the width of subsidence is 

not tightly concentrated around the topographic peaks for the Cascade Arc, it does 

generally include features of the arc which may include drainage basins. 
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Figure 2.8.  Transect velocity profiles with topography and colored boxes corresponding 

to colored, dashed boxes in Figure 2.1.  Mean (black) of topographic (blue) and GPS 

Imaging vertical velocities (orange) accompany MIDAS GPS velocities with error bars 

(red) for each transect. The 40 km padding around the center latitude illustrates the cross-

profile variability of topography and vertical velocity.  Irregular coastline changes length 

of transect, and prominent geographic features are denoted for each transect below the 

longitude. 
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2.4.4 Examining Possible Climatological Influence in Hydrological Loading 

 

Since the Cascade Arc and back-arc basins are regions where hydrological 

vertical land motion signals could occur both from orographic precipitation and water 

storage (Borsa et al., 2014; Fu et al., 2015), I investigated climate patterns for a 

connection with the subsidence signal.  PDSI time series for each climate division 

represent changes in climate conditions, with negative PDSI values indicating dry years 

and positive PDSI values indicating wet years (Dai, 2017).  PDSI time series were plotted 

against GRACE time series to better distinguish between wet and dry climate patterns 

and understand their relation to hydrological loading (Fig. 2.9).  GPS positions for station 

GOBS, representative of vertical land motion in the subsidence feature of interest, is also 

plotted with and without atmospheric non-tidal loading, non-tidal ocean loading, and 

GRACE-based mascon hydrological loading corrections for comparison. 

For hydrological loading from climate variations to be the principal source of the 

subsidence shown in the GPS Imaging result, one would expect to see a gravity trend of 

increasing water mass occurring during extended periods of positive PDSI values 

indicating multi-annual increase in wetness.  This would correspond with an increase in 

the subsidence rate shown by GPS time series. 
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Figure 2.9.  (A) 12 Climatological Division Palmer Drought Severity Index time series 

(locations noted on Fig. 2.3). Negative PDSI values indicate dry years; positive PDSI 

values indicate wet years (Dai, 2017), and dry periods are marked by gray boxes. 

Extended periods of PDSI values ≤–3 indicate severe drought.   (B) 76 GRACE gravity 
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solutions (mascons indicated on Fig. 2.2 and Sup. Table S2.2).  (C) GPS time series trend 

for station GOBS (see Fig. 2.3 for location).  Median values for PDSI and GRACE 

shown by black lines.  GPS time series has original positions (gray) and positions 

corrected for non-tidal atmospheric loading, non-tidal ocean loading, and mascon-based 

GRACE hydrological loading predictions (Argus et al., 2022).  GOBS times series is 

representative of GPS trends in the Pacific Northwest interior near location of greatest 

subsidence, with early, middle, and late periods denoted (Fig. 2.10). 

 

PDSI data collected from NOAA (Fig. 2.9A) were compared to GSFC GRACE 

time series data (Fig. 2.9B), and GPS time series from representative station GOBS (Fig. 

2.9C).  All climate division data followed similar PDSI trends, with moderate drought of 

median PDSI of –1 for the majority of the 2002–2009 time frame, but only would be 

considered severe (≤–3 PDSI) in 2003 and 2005.  Conversely, a period of increasing 

wetness with a median value of +1.7 began in 2010 with extreme wetness (≥+3 PDSI) 

affecting all climate divisions in 2011.  Heightened PDSI values gradually tapered off, 

oscillating between ±2 until mid-2015 for a short severe drought of –3.6 median for all 

climate divisions.  This climate trend shown in median PDSI rebounded to an extreme 

wetness peak in winter 2017 with a value of +3.5 before another, less extreme drought 

period dominated from 2018 through the end of 2021 with a –2 average PDSI.  The data 

indicate a short spike of wetness in early 2022 with an average of +2 briefly before 

decreasing to drought values of –1.5 by the end of the time series. 

GRACE time series from GSFC (Fig. 29B) indicate a seasonal signal that is 

slightly shifted off peak phase with PDSI, indicating that the increase in equivalent water 
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height is related to hydrological loading from weather over the rainy season.  GSFC 

solution amplitudes oscillate around zero until 2015, with a very marginal decreasing 

trend in equivalent water height that slightly recovers in 2017 before it declines 2018 

through the end of 2022.  

The representative vertical-component GPS time series from GOBS (Fig. 2.9C 

shows a relatively consistent subsidence trend for positions corrected for the effects of 

non-tidal atmospheric loading, non-tidal ocean loading, and hydrological loading from 

GRACE-based mascon solutions.  Though the variations in the hydrological load by 

GRACE suggest a seasonal loading signal correlated with precipitation and water mass 

loading from climate and GRACE time series, these trends are minimized with the 

application of the loading corrections.  Furthermore, the GPS data after 2018 does not 

suggest a severe change in rate of subsidence from the drying trend shown by PDSI, 

indicating that there is no noticeable mismatch in the hydrological unloading model 

corrections from climate effects.  However, a single GPS station, even a representative 

one that runs the entirety of the comparative time series timespan, cannot fully express 

how the regional vertical land motion changes over the course of the expanding network, 

or during wet and dry periods.  Subsequently, I will use the PDSI time series to divide the 

GPS time series into early, middle, and late periods defined by wet and dry patterns to 

broadly assess how rates of motion in the study area change over time and climate. 
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2.4.5 Early, Middle, and Late Period Testing 

 

To determine whether vertical land motion rates are consistent over time, how the 

patterns changed as the network expanded, and how they were impacted by wet vs. dry 

climate patterns, the GPS time series were divided into early, middle, and late periods 

based on climate trends (see Analysis 2.4.4).  The early period spans from 1 Jan. 2002 

through 31 Dec. 2009 but contains the fewest number of GPS stations at 368.  Though 

there are some stations available before 2002, I chose a timeframe that included data post 

GPS network expansion that also had a more stable PDSI pattern, a moderately dry 

average of –1.  The middle and late periods occur after the majority of GPS network 

expansion was completed.  The middle period runs from 1 Jan. 2010 through 31 Dec. 

2017, and contains 2011 and 2017, particularly wet years for all climate divisions in the 

Pacific Northwest, but it also contains 2015, a severe drought year.  Though the median 

PDSI during this time is only +0.15, I define it as the comparatively wet period.  There 

are 575 GPS stations used to calculate rates of motion for this timeframe.  The late period 

consists of 563 GPS stations and contains data from 1 Jan. 2018 through 3 Jun. 2023.  

This time is dominated by drought in the Pacific Northwest, characterized by a median 

PDSI of –1.7, and is considered another dry period. 

MIDAS velocities (Sup. Table. S2.3) were computed for the truncated time series 

according to the time frame for each period, and GPS Imaging was performed for each 

time interval using the same processing strategy as previously discussed (see Analysis 

2.4.1).  The early period (Fig. 2.10A) has limited spatial resolution because there were 

fewer GPS stations before the PANGA and NOTA networks expanded.  Middle and late 
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period GPS Imaging results have better spatial resolution owing to a more complete 

coverage of stations.  

 

 

Figure 2.10.  Subsidence is present in the interior Pacific Northwest throughout (A) 

early, (B) middle, and (C) late period GPS Imaging results despite different spatial 

resolution from station (black dots) spacing.  Early period (2002–2009) has greatest 

swath and highest rate of subsidence.  Middle period (2010–2017) rate of subsidence is 

decreased slightly but better concentrated around Cascade Arc.  Late period (2018–2023) 

results show a continued decrease of subsidence rate and weaker concentration around 

Cascade Arc.   

 

 Early, middle, and late period results (Fig. 2.10) generally show that there is a 

consistent subsidence feature of greater rate than surrounding subsidence located in the 

interior Pacific Northwest throughout the record of GPS time series.  In the early period 

(Fig. 2.10A) there is a broad subsidence signal in the interior with a maximum subsidence 

rate of –3.5 mm/year located in south-central Washington.  The middle period (Fig. 
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2.10B) subsidence signal is slightly decreased with a maximum rate of –2.3 mm/year, but 

the subsidence seems more strongly concentrated around Cascade Arc longitudes.  Late 

period (Fig. 2.10C) results show reduced concentration and decreasing rate (now a 

maximum of –2 mm/year) of interior subsidence as uplift is observed in previously 

subsiding regions of south-central Oregon.  Both middle and late periods indicate there is 

a time variable uplift signal of 3+ mm/year in central Oregon from inflation of the Three 

Sisters Volcanic complex (Wicks et al., 2003; Dzurisin et al., 2009; Riddick and Schmidt, 

2011).  Though the early and late period timespans are defined by negative PDSI values, 

the dry periods are not that different from the wet middle period.  The width of the 

subsidence is greatest in the earlier period, longest in the middle period, and is not 

considerably different from surrounding subsidence signals by the late period.  Some of 

this change is attributable to station spacing, but the rate of the subsidence also decreases 

with time.  This suggests that, though the presence of increased subsidence has been more 

or less consistent in this region since the beginning of the early period, it appears to be 

gradually dissipating both in rate and extent over time. 
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2.5 Results 

 

2.5.1 Vertical Land Motion of the Pacific Northwest 

 

 GPS Imaging reveals subsidence that spans most of the study area except for the 

coast where there is uplift of approximately 2 mm/year (Fig. 2.11).  Standing out from the 

surrounding areas of subsidence is a 50–250 km wide swath of approximately  

–2 mm/year of concentrated subsidence (Fig. 2.11).  This feature extends throughout the 

Cascadia subduction zone latitudes and is located approximately between –123º and  

–120º longitudes, though it becomes more diffuse between 44º and 47º latitudes.  

Maximum subsidence velocity over –2.3 mm/year is observed in the interior Pacific 

Northwest located near the Washington-Oregon border.  This is the approximate location 

of the Siletzia microplate accretion, and geologic contrasts could possibly be contributing 

to the wedge-shaped appearance as well as the greater rate of subsidence (Schmandt and 

Humphreys, 2011).  Along the coastal regions, uplift is attributable to interseismic uplift 

from Cascadia locking (Mazzotti et al., 2007; Mazotti et al., 2008; Burgette et al., 2009; 

Montillet et al., 2018).  

I compare topographic relief to vertical motions to see if there is a correlation 

between geographic features and vertical velocity signals.  These show that the 

subsidence occurs along the Cascade Arc which includes drainage basins (e.g., the 

Columbia River Basin) along the Washington-Oregon border.  This suggests the 

possibility that hydrological loading from orographic precipitation and storage might play 

a role in the subsidence.  However, I correct for the effects of hydrological loading using 
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the prediction of loading models based on GRACE data (section 2.3.2).  Moreover, early, 

middle, and late period GPS Imaging test results suggest that the rate of the subsidence 

feature is not increasing during wetter periods and decreasing over dry periods.  Rather, 

the middle period velocity field which included relatively wet years, and the early and 

late period velocity field that consisted of persistent droughts verified that, in general, 

subsidence rates in the Pacific Northwest are not strongly influenced by climatic 

hydrological loading. 
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Figure 2.11.  GPS Imaging results of vertical velocity field for the Pacific Northwest 

with topographic relief.  A swath of subsidence –2 mm/year 50–250 km wide correlates 

with the latitudinal extent of the Cascadia subduction zone (gray triangles offshore) 

(Bird, 2003) and the approximate longitude of the Cascade Arc (volcanoes marked as 

black triangles).  Maximum subsidence of over –2.3 mm/year is observed near the 

Washington-Oregon border between Mt. Adams and Mt. Hood. 
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2.6 Discussion 

 

2.6.1 Interpretation of Subsidence 

 

PDSI data collected from NOAA compared to GRACE data from GSFC time 

series and early, middle, and late period GPS Imaging results do not indicate a connection 

between wet and dry climate patterns and vertical land motion.  Comparisons with the 

GPS velocity fields show a geographically centralized and consistent trend of subsidence, 

though the rates and spatial distribution may vary.  This implies that most of the 

subsidence is not driven by hydrological loading related to climatological effects.  

GRACE gravity trends from GSFC show a very slight increasing gravity trend in the 

Pacific Northwest interior along the western Washington-Oregon border where there is 

consistent subsidence, but the majority of the Pacific Northwest is dominated by a trend 

of water mass loss.  Furthermore, the spatial pattern away from the state line shown by 

GSFC trends, at least at the current resolution of approximately one hundred kilometers, 

did not show a geographic distribution similar to that of the GPS Imaging results further 

south into Oregon.  This suggests the changing mass distribution of water might play a 

minor role in vertical land motions around the Pacific Northwest but it is probably not the 

main cause of the subsidence signal that is focused along the Cascade volcanic arc. 

Thus, climatically driven hydrologic loading effects do not adequately explain the 

pattern of vertical motion.  As previously stated, however, this region has a history of 

glaciation.  Furthermore, the subsidence signal is strongly correlated with topography of 

the Cascade volcanic arc and extent of the subduction zone.  Since these features are 
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formed by dynamic and active geological processes related to plate tectonics, subduction, 

magma genesis, and volcanism in the Cascadia subduction zone, I consider large-scale 

plate boundary interactions, volcanic loading, and postseismic relaxation that could also 

potentially contribute to the subsidence feature by applying a force on the lithosphere, as 

well as the potential contribution from GIA.   

 

2.6.2 Possible Effects of Glacial Isostatic Adjustment  

 

The Pacific Northwest’s history of Late Pleistocene deglaciation prompted an 

investigation of the possible influence that post-glacial rebound might have on the 

subsidence pattern shown in GPS Imaging.  Glacial isostatic adjustment (GIA) unloading 

models were taken from the ICE-6G D (VM5a) GIA model (Peltier et al. 2015; Peltier et 

al., 2018; Argus, Peltier et al. 2014) and tested as a potential source for the subsidence 

signal.  The idea is that Laurentide ice sheet loss in the North American continental 

interior (Sella et al., 2007) and subsequent Western Cordilleran glacial unloading in 

northern Washington and the west coast of Canada has caused mantle flow to return to 

northern latitudes and an accommodating isostatic adjustment to the south, creating a 

hinge effect of widespread subsidence in the area from forebulge collapse (Fig. 2.12B). 

I compare the subsidence pattern in the Pacific Northwest predicted by the ICE-

6G D (VM5a) GIA model to the GPS Imaging result.  To do this, I downsample the GIA 

0.2 x 0.2 arc-degrees latitude and longitude intervals into the same grid used by GPS 

Imaging (Fig. 2.12A).  The GIA model contains a subsidence signal of approximately  
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–1 mm/year that dominates the Pacific Northwest south of the Canadian border, a lesser 

rate than the subsidence feature of interest at approximately –2 mm/year.  Although the 

GIA model is also subsiding, the pattern of subsidence is not spatially concentrated along 

the Cascade Arc like the GPS Imaging result. 

Subtracting the predictions of the GIA model from the GPS-observed vertical rate 

field (Fig. 2.12C) results in greater focusing of subsidence near the arc rather than less, 

suggesting that the subsidence feature cannot be fully explained by GIA.  Furthermore, 

though subtracting the GIA model from the GPS Imaging result (Fig. 2.12C) reduces the 

rate of the subsidence feature to approximately –1 mm/year, it also extends the latitudes 

of subsidence north into Canada.  Also, the corrections increase the homogeneity of 

vertical rates to the east of the Cascade Arc, and makes the uplift consistent along the 

entire coastline, suggesting that the gap in coastal uplift in Oregon may partly be a feature 

of GIA rather than only the location, depth, and distribution of locking of the subduction 

zone interface (Burgette et al., 2009; Schmalzle et al., 2014). 
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Figure 2.12.  (A) GPS Imaging vertical velocity compared to the (B) the predictions of 

the ICE-6G D (VM5a) model.  (C) Observed GPS Imaging result with the ICE-6G D 

(VM5a) model vertical velocity predictions subtracted.  Both (A) and (B) show a 

downward signal along the Cascade Arc, but the pattern in the GIA model does not show 

a concentrated subsidence near the Arc, and (C) extends the subsidence feature further 

north into Canada. 

 
GIA models predict downward vertical motions in the Pacific Northwest region, 

but their spatial pattern of subsidence does not match the subsidence in the GPS Imaging 

result.  Though there may by uncertainties in the ICE-6G D (VM5a) model, e.g., it does 

not include the effects of lateral variations in upper mantle viscosity that likely exist, 

correcting for GIA in the GPS Imaging result only further focuses the subsidence signal 

throughout the Cascadia subduction zone latitudes and near the Cascade Arc (Fig. 2.12).  

It is likely that there is a GIA contribution to the widespread subsidence signal shown in 

the Pacific Northwest, but GIA is probably not the principal cause of the 50–250 km wide 

swath of subsidence. 
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2.6.3 Lithospheric Flexure of the North American Plate  

 

If one considers that the subsidence is associated with ongoing crustal 

deformation related to plate-scale geodynamic forces, the observed subsidence can be 

used as a constraint for theoretical deflection models that describe elastic lithospheric 

flexure (Turcotte and Schubert, 2002).  Lithospheric flexure can be estimated using 

flexural rigidity parameter D, which is a function of the elastic plate’s Youngs modulus 

E, Poisson’s ratio ν, and thickness h: 

 

Eq. 2.1)  	𝐷 = !"!

#$(#&'")
 

 

In turn, the flexural parameter α is determined by the flexural rigidity parameter, density 

of the mantle 𝜌) and crust  𝜌*, and acceleration from gravity g: 

 

Eq. 2.2)  	𝛼 = ( +,
(-#&-$).

)# +/ , 

 

Here, I use realistic mechanical properties of the Earth’s crust in this region to 

estimate flexural rigidity, and the flexural parameter to estimate an approximate range of 

plate deflection half widths for comparison with the theoretical models.  The value of D 

was calculated using Eq. 2.1, assuming Young’s modulus E = 60 GPa (Johnson and 

DeGraff, 1988), and a value of 0.25 is used for Poisson’s ratio ν (Turcotte and Schubert, 
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2002).  Thickness of the plate h is tested in 2.5 km intervals from 5–50 km for the 

volcanic loading model on the continental plate and for the Juan de Fuca plate end 

loading model (Lowry and Smith, 1995).  The flexural rigidities calculated in Eq. 2.1 

were then used in Eq. 2.2 for an array of flexural parameter α values to give an 

approximate range of permissible plate deflection half widths.  In Eq. 2.2, the densities of 

the mantle and crust are taken to be 𝜌) = 	3300	kg/m0 (Turcotte and Schubert, 2002) 

and 𝜌* = 	2750	kg/m0 from the average Cascadia crustal density (Vanyan et al., 2002). 

 

2.6.4 Plate Deflection from Volcanic Loading 

 

Volcanic loading occurs when magma is transported from depth and deposited on 

the Earth’s crust by volcanic eruption, and it can cause subsidence and associated 

lithospheric flexural response (Moore, 1970; Watts and Cochran, 1974; McNutt and 

Menard, 1978; Wessel et al., 1993).  To understand whether volcanic loading might be 

influencing the subsidence signal observed by GPS Imaging, I model a simple theoretical 

plate deflection profile with a line load.  If the subsidence signal is caused by loading of 

the lithosphere with the mass of the Cascade Arc, the 50–250 km range width of the 

subsidence signal should be comparable with wavelengths predicted by theoretical 

deflection models with realistic Earth properties.   

The relationship describing the bending of the elastic lithosphere under a line load 

is modeled using the following equation for an elastic plate floating on an inviscid 

asthenosphere (Turcotte and Schubert, 2002): 
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Eq. 2.3)   	𝜔 = 𝜔1𝑒&
2 3⁄ (cos 2

3
+ sin 2

3
	) 

 

where ω is the deflection of the plate, maximum amplitude of the deflection ω0= –1, x is 

distance from the load, and α is the flexural parameter.  

I calculate the deflection using a range of values for α calculated using h values 

from 5–50 km in 2.5 km intervals (Sup. Table S2.4).  The zone in red gives permissible 

half width distances constrained by the subsidence feature, defined by where the model 

results cross zero (Fig. 2.13).  Theoretical distances for volcanic load deflection give a 

minimum permissible half width of 62–124 km, within the range of what is observed by 

GPS Imaging.  This suggests that volcanic loading is possibly a contributing factor to the 

subsidence feature of interest. 
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Figure 2.13.  Half theoretical deflection profile (blue) calculated using Eq. 2.3 assuming 

a volcanic load.  A range of flexural parameters 𝛼 allowed by realistic geologic 

parameters (h from 5 to 12.5 km) are used to calculate the profiles.  Curves that cross 

zero within the red zone (blue dashed lines) indicate half widths of the loading signal that 

are consistent with the observed range shown by the GPS Imaging.  Model results give 

permissible half width distances of 62–124 km. 
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2.6.5 Plate Deflection from Subduction 

 

Stresses imposed by the contraction across the contact between the North 

American plate and subducting Juan de Fuca plate could be another potential source of 

the observed subsidence (Turcotte and Schubert, 2002).  Here, I model deflection profiles 

for the elastic lithosphere using the subducting Juan de Fuca plate as an end load on the 

North American lithosphere.  If model results are within the 50–250 km width range of 

observed subsidence shown by the vertical velocity field, that subsidence could be 

directly related to the subducting plate. 

The following equation for a floating elastic plate from Turcotte and Schubert 

(2002) is used to construct a model for deflection from an end load: 

 

Eq. 2.4)   	𝜔 = 𝜔1𝑒&
2 3⁄ (cos 2

3
	) 

 

where ω is the deflection of the plate, maximum amplitude of the deflection ω0 = –1, x is 

distance from the load, and α is the flexural parameter.   

Theoretical deflection is tested with subducting plate thickness values of h =5–50 

km with 2.5 km intervals to calculate D and 𝛼 (Sup. Table S2.4).  Values of 𝛼 that cross 

zero within the red zone are permitted by the width of the observed subsidence and 

realistic geologic parameters (Fig. 2.14).  The subducting plate end load model indicates 

that all end loading models produced with h values between 5–20 km can cause the 

observed GPS signals with theoretical lithospheric flexure half width distances of 42–117 
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km.  This modeling adds another possible loading signal that can either contribute to, or 

be the primary source of the subsidence feature of interest. 

 

 

Figure 2.14.  Half theoretical deflection profile (blue) calculated using Eq. 2.4 assuming 

a side load caused by subduction of the Juan de Fuca plate.  A range of flexural 

parameters 𝛼 (consistent with h=5 to 20 km) allowed by realistic geologic parameters that 

cross zero within the red zone (blue dashed lines) indicate half widths of the loading 

signal that are consistent with the observed range shown by the GPS Imaging.  Model 

results give permissible half width distances of 42–117 km. 
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2.6.6 Postseismic Relaxation from the 1700 M9.1 Cascadia Earthquake 

 

To disentangle vertical land motions caused by plate tectonic interactions between 

the Juan de Fuca plate subducting beneath the North American plate, I model postseismic 

relaxation from the 1700 M9.1 Cascadia megathrust earthquake.  Cascadia postseismic 

models were taken from Pollitz et al. (2008) following methods by Young et al. (2023).  

Vertical position time series for postseismic relaxation were obtained for GPS stations 

used in the GPS Imaging during the study time period, and vertical velocities were 

estimated using least squares linear regression.  Velocities were then input into the GPS 

Imaging analysis flow according to previous methods (see Analysis 2.4.1) to construct a 

vertical velocity field (Fig. 2.15A).  The postseismic relaxation model from the Cascadia 

megathrust earthquake shows coastal uplift of 2+ mm/year and subsidence in the interior 

Pacific Northwest at a rate of –0.5 to –1 mm/year. 

 

 

Figure 2.15.  (A) GPS Imaging of vertical rate predicted from postseismic relaxation 

model.  (B) The predicted signal from postseismic relaxation is removed from the GPS 
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Imaging result (Fig. 2.12A), and the residual field shows less subsidence in the interior 

Pacific Northwest.  (C) GPS Imaging result with postseismic relaxation and GIA (Fig. 

2.12) removed eliminates most of the observed Cascade Arc subsidence, indicating that 

this combination of processes is likely the main source contributing to subsidence signal. 

 

 To correct the vertical velocity field for postseismic effects, modeled postseismic  

relaxation predictions were subtracted from the GPS Imaging results (Fig. 2.15B).  Along 

the coast, the sign of vertical motion switches from positive to negative, and the interior 

Pacific Northwest subsidence decreases from –2 mm/year to –1 mm/year.  The decrease 

in subsidence rate is approximately equivalent to rates of forebulge collapse signal 

subsidence (Fig. 2.12B), so I next subtract GIA from the velocity field to analyze its 

contribution directly.  Combined postseismic and GIA-corrected velocities produced by 

GPS Imaging show an expanse of uplift of 1–2 mm/year in the Pacific Northwest, and 

removes all the subsidence feature of interest, including subsidence along the central 

Washington-Oregon border where the rate of subsidence was consistently greatest.  

Remaining subsidence features appear to be related to volcanism in the Medicine Lake 

Volcano region, and possibly anthropogenic use of groundwater resources in the Greater 

Seattle and Greater Boise metropolitan areas.  Regional hydrological models could focus 

efforts to determine the cause of remaining subsidence. 

These results indicate that the dominant source of the interior Pacific Northwest 

subsidence feature is postseismic relaxation from the 1700 M9.1 Cascadia Earthquake.  

Contributions from forebulge collapse also play a key role in explaining the subsidence 

signal.  That the subsidence feature is a combination of postseismic relaxation and GIA 
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leads to a host of other questions however, as the corrected GPS Imaging results are now 

dominated by an uplift signal.  Uncertainties could be introduced in the postseismic 

relaxation model following Young et al. (2023) from using geologic parameters designed 

for the Great Basin, not for Cascadia which has a higher viscosity and thicker crust.  This 

uplift could also be a consequence of poorly resolved lateral variations in the GIA model 

that lead to an overestimation of the forebulge collapse signal.  Additionally, the elastic 

and density differences of the Siletzia province, located approximately where observed 

subsidence is greatest, could be contributing to further uncertainties in both geologic 

models.  It is similarly possible that the vertical velocity field uplift could be related to 

other loading and/or unloading sources expanded on in previous sections.  

 

 

2.7 Conclusions 

 

This study attempts to distinguish loading and other geodynamic forces that could 

potentially contribute to a 50–250 km wide swath of –2 mm/year subsidence shown with 

GPS Imaging located approximately along the Cascade Arc and spanning Cascadia 

subduction latitudes.  Because the Cascade Arc includes back arc basins that store 

regional water supply, I first analyzed GRACE data for a hydrological loading signal 

focused along the subsidence feature of interest.  Though there was a region of mass gain 

approximately located along the Washington-Oregon border, the majority of the study 

area experienced hydrological mass loss, even in areas of observed subsidence.  PDSI 

and GRACE time series were used to define relatively wet and dry timespans, and GPS 
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Imaging was performed for early, middle, and late periods.  The velocity results indicated 

that the subsidence feature was larger, subsiding at a greater rate earlier in the GPS data, 

and gradually diminishing in both rate and extent over time regardless of the climatic 

pattern of the period.  Hydrological loading from climate effects was discounted as the 

sole source of the subsidence signal. 

Next, I investigated the potential contribution of GIA to the subsidence signal 

caused by lithospheric flexure from Laurentide ice sheet removal and the deglaciated 

Western Cordilleran to the north.  The ICE-6G_C (VM5a) model contains predictions for 

vertical land motions owing to the forebulge collapse that is widely observed in the 

Pacific Northwest, but the pattern and rate of subsidence in that model do not fully 

explain the subsidence signal observed along the Cascade Arc.  Correcting the GPS 

Imaging result for GIA enhances the subsidence signal, extending it further north into 

Canada and narrowing the subsidence near the Cascades. 

Recognizing that the pattern of the subsidence roughly corresponds to Cascadia 

subduction latitudes and Cascade Arc longitude, a theoretical plate flexure model 

comprised of realistic mechanical geologic properties was used to find the limits of plate 

flexure for volcanic and subducting plate loads.  The GPS Imaging result constrained 

permissible plate flexure half width values at 25–125 km.  Plate thickness values of 5–50 

km were used to calculate flexural rigidity and the flexural parameter used in volcanic 

and end load models, respectively.  The volcanic loading model resulted in plate 

deflection values of permissible half width distance range of 62–124 km.  Extrapolating 

this full value gives a width of 124–248 km, within the greatest width range of the GPS 

Imaging result at 250 km.  The subducting plate end load model gave permissible half 
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width distances of 42–117 km.  The full distance of 84–234 km is also within the range of 

the GPS Imaging result of 50–250 km.  This suggests that lithospheric flexure from 

volcanic loading and end loading from the subducting Juan de Fuca plate could both 

possibly contribute to the observed subsidence feature. 

I also modeled postseismic relaxation from the 1700 M9.1 Cascadia megathrust 

earthquake as a potential source of the subsidence.  Modeled postseismic subsidence in 

the interior Pacific Northwest partially explained the signal of interest.  When used in 

conjunction with the GIA model, the resultant vertical velocity field most closely 

matched the subsidence signal, explaining most of the subsidence.  However, subtracting 

the predictions of these models introduced a widespread uplift signal to the area.  Other 

potential loading and unloading sources cannot be discounted when looking at vertical 

land motion of the Pacific Northwest. 
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2.10 Supplemental Tables 

 

Table S2.1.  Pacific Northwest GPS Stations and Vertical Velocity Data. 

Station Latitude 
(ºN) 

Longitude 
(º) 

Vertical 
Velocity 

(mm/year) 

Vertical 
Uncertainty 
(mm/year) 

Agency or 
Company Approximate Location 

ABBY 49.0721 -122.1978 -3.188 0.835 GeoBC Abbotsford, BC, Canada 

ABOT 49.0294 -122.2666 -1.710 1.119 GeoBC Abbotsford, BC, Canada 

ABRN 42.7607 -120.1003 -0.026 0.405 NGL Lakeview, OR 

ADLL 42.1964 -120.0067 -1.760 1.336 NGL Adel, OR 

AL2H 48.3898 -123.4875 1.161 0.925 GSC Metchosin, BC, Canada 

ALB4 48.3897 -123.4877 0.403 1.560 GeoBC Metchosin, BC, Canada 

ALBH 48.3898 -123.4875 0.287 0.378 PANGA Metchosin, BC, Canada 

ANAT 46.1329 -117.1354 0.629 0.926 PANGA Anatone, WA 

ARLI 48.1741 -122.1419 -1.033 0.469 PANGA Arlington, WA 

ARLN 45.7082 -120.1833 -1.937 0.531 PANGA Arlington, OR 

ASBU 43.8206 -121.3685 -0.994 0.792 USGS CVO 
Network Three Rivers, OR 

ASHL 42.1807 -122.6702 0.134 0.694 PANGA Ashland, OR 

BAMF 48.8353 -125.1351 1.618 0.628 PANGA Bamfield, BC, Canada 

BASQ 42.4116 -117.8630 -0.132 0.911 PANGA Basque, OR 

BBUT 41.4388 -118.2950 -0.848 2.616 NGL Happy Creek Station, NV 

BCAB 49.0522 -122.3295 -1.498 1.051 Leica 
SmartNet Abbotsford, BC, Canada 

BCBU 49.2514 -123.0002 0.755 0.839 Leica 
SmartNet Burnaby, BC, Canada 

BCCG 49.3119 -117.6530 0.854 0.532 PANGA Castlegar, BC, Canada 

BCCH 49.1466 -122.0026 -4.810 0.803 Leica 
SmartNet Chilliwack, BC, Canada 

BCCQ 49.2786 -122.7911 0.698 1.299 Leica 
SmartNet Coquitlam, BC, Canada 

BCCY 49.7001 -124.9837 3.954 0.962 Leica 
SmartNet Courtenay, BC, Canada 

BCDT 49.0322 -123.0693 0.125 0.837 GeoBC Delta, BC, Canada 

BCES 48.4293 -123.4287 -0.188 0.638 PANGA Esquimalt, BC, Canada 
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BCHO 49.3787 -121.4407 0.635 0.942 GeoBC Hope, BC, Canada 

BCKW 49.8848 -119.4954 -2.194 1.240 Leica 
SmartNet Kelowna, BC, Canada 

BCLC 49.1038 -122.6574 0.175 1.404 GeoBC Langley, BC, Canada 

BCLG 48.4429 -123.5226 0.650 1.545 TopNet Victoria, BC, Canada 

BCLI 49.1151 -123.1471 -2.275 0.609 PANGA Richmond, BC, Canada 

BCMR 49.2212 -122.5385 -1.571 0.696 PANGA Maple Ridge, BC, Canada 

BCNA 49.1839 -123.9532 2.674 2.686 Leica 
SmartNet Nanaimo, BC, Canada 

BCNS 48.6485 -123.4510 0.354 0.903 GeoBC North Saanich, BC, Canada 

BCPI 49.4993 -119.5922 -0.178 0.995 GeoBC Penticton, BC, Canada 

BCSC 49.4722 -123.7631 1.624 0.846 Leica 
SmartNet Sechelt, BC, Canada 

BCSF 49.1921 -122.8601 -0.609 0.592 PANGA Surrey, BC, Canada 

BCSL 49.5654 -119.6442 -0.436 0.552 PANGA Summerland, BC, Canada 

BCSM 48.5595 -123.7995 -0.080 0.848 GeoBC Capital, BC, Canada 

BCSQ 49.6992 -123.1540 1.724 1.198 Leica 
SmartNet Squamish, BC, Canada 

BCSU 49.6022 -119.6817 -0.702 1.235 Leica 
SmartNet Summerland, BC, Canada 

BCTS 49.0060 -123.0828 -0.307 2.082 Leica 
SmartNet Delta, BC, Canada 

BCVC 49.2758 -123.0893 -0.566 0.594 PANGA Vancouver, BC, Canada 

BCVI 48.4807 -123.3916 0.328 0.668 GeoBC Sannich, BC, Canada 

BDRY 48.9867 -117.3499 -0.054 0.686 PANGA Metaline Falls, WA 

BELI 48.7553 -122.4790 0.260 0.601 PANGA Bellingham, WA 

BEND 44.0572 -121.3152 -0.973 0.457 PANGA Bend, OR 

BFIR 47.6174 -122.1255 -3.934 0.560 PANGA Bellevue, WA 

BIGD 47.9333 -118.9888 -1.072 0.533 PANGA Grand Coulee, WA 

BILS 47.5393 -124.2525 -0.162 1.006 PANGA Quinault Reservation, WA 

BLDG 46.3170 -117.9753 -1.089 1.115 PANGA Dayton, WA 

BLNP 44.2458 -121.8498 -2.566 1.999 USGS CVO 
Network Three Sisters, OR 

BLVU 47.5992 -122.1832 -3.768 1.859 PANGA Bellevue, WA 

BLY1 42.4068 -121.0491 -0.840 0.544 PANGA Bly, OR 
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BLYN 48.0161 -122.9275 -3.934 2.559 PANGA Gardiner, WA 

BNDM 44.0894 -121.3075 -1.301 0.779 PANGA Bend, OR 

BPKT 46.8832 -120.3271 -2.365 1.121 PANGA Edgemont, WA 

BRBR 41.2303 -120.1091 1.722 1.071 NGL Surprise Valley, CA 

BREW 48.1315 -119.6826 -0.985 0.384 PANGA Brewster, WA 

BRN3 49.2699 -123.0156 -1.830 1.885 PANGA Burnaby, BC, Canada 

BRNB 49.2751 -123.0218 -1.258 0.950 PANGA Burnaby, BC, Canada 

BRNT 44.4402 -118.1913 -0.265 0.925 PANGA Unity, OR 

BSUM 47.5542 -122.1323 -1.868 0.926 PANGA Bellevue, WA 

BTON 45.4858 -122.7974 -1.612 1.050 PANGA Beaverton, OR 

BURN 42.7795 -117.8435 -1.136 0.395 PANGA Rome, OR 

BUTT 41.4789 -119.8407 -1.117 0.615 NGL Vya, NV 

CABL 42.8361 -124.5633 0.467 0.355 PANGA Sixes, OR 

CACC 41.7456 -124.1843 1.798 0.687 NOAA Crescent City, CA 

CAFM 41.0179 -121.4311 0.931 0.823 Leica 
SmartNet Fall River Mills, CA 

CAMS 41.3142 -122.3144 0.080 1.104 Leica 
SmartNet Mt. Shasta, CA 

CATH 46.1973 -123.3673 -0.828 0.634 PANGA East Cathlamet, WA 

CBLV 47.6142 -122.1915 -1.421 0.567 PANGA Bellevue, WA 

CCPW 46.3212 -117.9786 -0.977 0.897 PANGA Dayton, WA 

CHCM 48.0106 -122.7759 -0.177 0.650 PANGA Chimacum, WA 

CHEL 47.8316 -119.9899 -1.493 0.665 PANGA Chelan, WA 

CHEM 43.2244 -121.7858 -0.549 0.500 PANGA Chemult, OR 

CHLW 49.1435 -121.9952 1.653 1.454 PANGA Chilliwack, BC, Canada 

CHST 46.6122 -122.9096 0.031 1.639 PANGA Chehalis, WA 

CHW2 49.1529 -121.9538 0.120 1.104 GeoBC Chilliwack, BC, Canada 

CHWK 49.1566 -122.0084 0.247 0.548 PANGA Chilliwack, BC, Canada 

CHZZ 45.4865 -123.9781 0.119 0.548 PANGA Oceanside, OR 

CIHL 43.7509 -121.1487 -0.762 0.669 USGS CVO 
Network Bend, OR 
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CLCV 42.9760 -122.0894 -0.770 0.914 USGS CVO 
Network Crater Lake, OR 

CLHQ 42.8959 -122.1360 -1.054 1.686 USGS CVO 
Network Crater Lake, OR 

CLMS 42.9229 -122.0163 0.213 0.977 USGS CVO 
Network Crater Lake, OR 

CLRS 48.8203 -124.1309 1.572 0.525 PANGA Cowichan Valley, BC, Canada 

CLWZ 42.9343 -122.1492 -1.520 1.180 USGS CVO 
Network Crater Lake, OR 

CNCR 48.5387 -121.7493 -1.817 0.587 PANGA Concrete, WA 

COLV 48.5448 -117.9033 -0.891 0.534 PANGA Colville, WA 

COND 45.2379 -120.1814 -1.437 0.489 PANGA Condon, OR 

CORV 44.5855 -123.3046 0.306 0.455 PANGA Corvallis, OR 

COTT 41.5907 -119.3418 -1.404 0.772 NGL Cottonwood Creek, NV 

COU2 49.6895 -124.9956 2.778 1.332 GeoBC Courtenay, BC, Canada 

COUG 46.0592 -122.2608 -2.028 1.557 PANGA Yale Lake, Washington 

COUP 48.2173 -122.6856 -0.026 0.531 PANGA Coupeville, WA 

COUR 49.6896 -124.9956 3.680 0.967 GeoBC Courtenay, BC, Canada 

CPCO 43.7221 -121.2332 0.582 1.767 USGS CVO 
Network La Pine, OR 

CPUD 47.4302 -120.3142 -2.728 1.003 PANGA Wenatchee, WA 

CPXF 46.8401 -122.2565 -1.322 0.610 PANGA Eatonville, WA 

CPXX 46.8401 -122.2565 -1.457 0.475 PANGA Eatonville, WA 

CRA4 49.5221 -115.7689 0.211 0.669 GeoBC Cranbrook, BC, Canada 

CRA5 43.4158 -118.5749 -1.454 1.047 GeoBC Crane, OR 

CRNB 49.6002 -115.6695 1.277 4.252 GSC East Kootenay, BC, Canada 

CROK 46.2746 -122.9125 -2.436 0.576 PANGA Castle Rock, WA 

CSHQ 46.8707 -121.7324 -0.271 0.900 PANGA Ashford, WA 

CSHR 46.8707 -121.7324 -0.504 1.153 USGS CVO 
Network Mt. Rainier, WA 

CSKI 47.3806 -122.2358 -1.795 0.702 PANGA Kent, WA 

CST1 49.2582 -117.6575 -0.139 0.689 GeoBC Castlegar, BC, Canada 

CTPT 42.3767 -122.8940 -0.401 0.525 PANGA Central Point, OR 

CULM 47.9754 -121.6869 -0.335 1.543 PANGA Sultan, WA 
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CUSH 47.4233 -123.2199 -0.293 0.702 PANGA Lake Cushman, WA 

CVO1 45.6109 -122.4961 -2.020 0.587 USGS CVO 
Network Vancouver, WA 

DANP 46.2800 -119.2763 -0.886 1.066 PANGA Richland, WA 

DBLO 42.7905 -120.4193 -0.148 0.789 NGL Paisley, OR 

DCSO 43.2110 -123.3415 -0.589 0.522 PANGA Roseburg, OR 

DDSN 43.1188 -123.2442 -0.570 0.425 PANGA Roseburg, OR 

DEA2 48.7527 -122.4800 -1.050 1.100 PANGA Bellingham, WA 

DEEJ 47.4688 -123.9261 2.368 0.785 PANGA Amanda Park, WA 

DLTA 49.1335 -123.0153 -1.081 0.793 GeoBC Delta, BC, Canada 

DMND 48.1368 -117.1637 -0.777 0.749 PANGA Diamond Lake, WA 

DR2O 49.3226 -119.6250 0.011 0.722 GeoBC Okanagan-Similkameen, BC, 
Canada 

DRA3 49.3224 -119.6248 0.542 0.866 GeoBC Okanagan-Similkameen, BC, 
Canada 

DRA4 49.3227 -119.6245 -0.294 0.729 GeoBC Okanagan-Similkameen, BC, 
Canada 

DRAO 49.3226 -119.6250 -0.200 0.360 PANGA Okanagan-Similkameen, BC, 
Canada 

DVPT 47.6561 -118.1478 -1.243 0.558 PANGA Davenport, WA 

DWH1 47.7741 -122.0802 -2.339 1.423 PANGA Woodinville, WA 

EGLI 43.0309 -120.7868 -0.747 2.105 NGL Summerl Lake, OR 

ELGN 45.5649 -117.9284 1.009 0.800 PANGA Elgin, OR 

ELSR 47.4976 -122.7606 -1.960 0.515 PANGA Boise, ID 

EM01 43.5591 -116.2283 -0.980 0.802 GeoBC Boise, ID 

ENTR 45.4313 -117.2881 -0.643 0.528 PANGA Enterprise, OR 

ENUM 47.2062 -121.9556 -1.399 0.637 PANGA Enumclaw, WA 

EPHR 47.3293 -119.5447 -1.214 0.514 PANGA Ephrata, WA 

EVER 41.8646 -120.5827 -0.859 2.405 NGL Mulkey Place, CA 

FAND 43.1470 -120.5804 0.435 3.560 NGL Christmas Valley, OR 

FITZ 42.0221 -120.5892 -1.945 1.238 PANGA Lakeview, OR 

FOST 41.1089 -120.7920 0.477 0.989 NGL Big Valley, CA 

FOUR 43.3643 -120.6881 -0.054 1.172 NGL Christmas Valley, OR 
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FRFX 47.0077 -121.9599 -2.546 0.892 PANGA Fairfax, WA 

FRID 48.5352 -123.0181 -0.387 0.892 PANGA Friday Harbor, WA 

FSRH 49.1380 -122.2877 -0.458 1.497 GSC Mission, BC, Canada 

FTS5 46.2049 -123.9561 0.849 0.453 USCG Fort Stevens, OR 

FTS6 46.2052 -123.9560 0.625 0.492 USCG Fort Stevens, OR 

FWBD 44.2919 -117.2216 -0.276 0.519 PANGA Huntington, OR 

GBN1 44.5646 -121.4393 -2.414 1.306 USGS CVO 
Network Grandview, OR 

GBN2 44.5592 -121.5653 -1.116 2.053 USGS CVO 
Network Grandview, OR 

GBN3 44.5484 -121.7126 -2.076 1.740 USGS CVO 
Network Marion Forks, OR 

GBN4 44.5680 -122.1021 -0.984 1.503 USGS CVO 
Network Marion Forks, OR 

GBN5 44.6021 -122.2360 -1.259 1.061 USGS CVO 
Network Detroit, OR 

GBN6 44.4249 -121.4229 0.220 1.601 USGS CVO 
Network Geneva, OR 

GHCL 46.9525 -123.8019 1.147 1.185 PANGA Aberdeen, WA 

GLNW 46.0199 -121.2887 -2.065 1.516 PANGA Glenwood, WA 

GLWD 46.0198 -121.2886 -2.062 1.160 PANGA Glenwood, WA 

GOBS 45.8388 -120.8147 -1.589 0.364 PANGA Goldendale, WA 

GOLY 45.8287 -120.8025 -2.184 0.558 PANGA Goldendale, WA 

GRAV 41.3499 -120.6052 -0.266 1.165 PANGA Bormister, CA 

GRCK 48.1436 -117.6646 -0.901 0.588 PANGA Valley, WA 

GRMD 46.7955 -123.0226 -1.879 0.756 PANGA Grand Mound, WA 

GRP4 48.1947 -122.1273 -1.107 0.728 PANGA Arlington, WA 

GRSV 45.3644 -120.7874 -1.696 0.516 PANGA Grass Valley, OR 

GTPS 42.4345 -123.2974 -0.168 0.559 PANGA Grants Pass, OR 

GUAN 42.0157 -119.4830 -0.892 1.519 NGL Adel, OR 

GWN5 45.7826 -121.3276 -2.062 0.559 USCG Lyle, WA 

GWN6 45.7826 -121.3273 -2.811 0.646 USCG Lyle, WA 

HAHD 47.2908 -121.7881 -2.470 0.688 PANGA Page, WA 

HALF 44.8724 -117.0998 -0.638 0.566 PANGA Pine, OR 
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HGP1 47.0193 -122.9211 -2.098 2.941 PANGA Tumwater, WA 

HLSY 44.3776 -123.1091 0.423 1.311 PANGA Halsey, OR 

HOTS 41.1544 -117.4742 -3.122 2.205 NGL Golconda, NV 

HRPR 43.8659 -117.6079 -0.809 0.759 PANGA Harper, OR 

HRTM 42.2470 -119.5642 -1.825 2.979 NGL Adel, OR 

HTCH 47.1917 -120.9659 0.253 2.581 PANGA South Cle Elum, WA 

HUSB 44.1195 -121.8494 7.104 0.844 PANGA Three Sisters, OR 

HWKV 42.1182 -119.1484 0.854 1.120 NGL Hawk Valley, OR 

IDBO 43.6117 -116.3186 -1.937 0.645 TURN Boise, ID 

IDCA 47.7416 -116.7965 -0.266 0.769 TURN Coeur d'Alene, ID 

IDFL 44.0092 -116.9161 -1.660 0.670 TURN Fruitland, ID 

IDHD 43.9086 -116.2020 -0.606 0.825 TURN Horseshoe Bend, ID 

IDLW 46.4089 -117.0262 -0.609 0.741 TURN Lewiston, ID 

IDM1 43.6060 -116.3865 -0.424 1.266 TURN Meridian, ID 

IDMH 43.1376 -115.6697 -2.814 0.659 TURN Mountain Home, ID 

IDMN 43.7057 -116.7012 -2.330 0.952 TURN Caldwell, ID 

IDNA 43.5823 -116.5700 -1.604 0.692 TURN Nampa, ID 

IDNP 45.9397 -116.1213 -0.517 0.424 PANGA Grangeville, ID 

IDNR 43.2054 -116.7501 -0.923 0.915 TURN Reynolds, ID 

IDTD 43.6529 -116.2834 -1.788 0.486 PANGA Boise, ID 

INW1 47.7144 -116.9298 -0.390 0.852 PANGA Post Falls, ID 

IWAC 46.3059 -124.0394 0.152 0.985 PANGA Ilwaco, WA 

JAKE 41.1520 -117.0634 1.294 1.408 NGL Jakes Creek, NV 

JIME 45.5231 -122.9905 -1.057 0.574 PANGA Hillsboro, OR 

JKPR 46.5350 -122.8379 -5.562 1.526 PANGA Chehalis, WA 

JOBO 48.5624 -122.4373 -0.862 0.784 PANGA Edison, WA 

JORD 48.4331 -124.0539 4.112 2.338 PANGA River Jordan, BC, Canada 

JRO1 46.2751 -122.2176 -0.984 0.522 PANGA Mt. St. Helens, WA 
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JUN1 43.7438 -118.0785 -0.910 0.826 OR DOT Juntura, OR 

KAHL 46.6411 -118.5573 2.787 34.464 PANGA Kahlotus, WA 

KEL1 49.8762 -119.4572 -1.333 1.133 GeoBC Kelowna, BC, Canada 

KELS 46.1182 -122.8961 -1.502 0.829 PANGA Kelso, WA 

KENI 46.1979 -119.1586 -1.231 0.639 PANGA Kennewick, WA 

KFRC 42.2242 -121.7839 -1.100 0.767 PANGA Klamath Falls, OR 

KLO3 49.8774 -119.4576 1.532 1.200 GeoBC Kelowna, BC, Canada 

KLTS 46.6432 -118.5582 -0.998 0.725 PANGA Kahlotus, WA 

KLWN 49.8696 -119.5811 0.289 1.117 GeoBC West Kelowna, BC, Canada 

KOOT 47.7707 -116.8096 -0.755 0.506 PANGA Coeur d'Alene, ID 

KRMT 47.8029 -122.3210 -0.992 1.031 PANGA Mountlake Terrace, WA 

KTBW 47.5473 -122.7954 -0.939 0.396 PANGA Bremerton, WA 

KWBU 43.7524 -121.3120 -2.189 0.919 USGS CVO 
Network La Pine, OR 

LAPN 43.6646 -121.5060 -0.923 0.661 PANGA La Pine, OR 

LCR1 46.8196 -117.8786 -0.765 0.777 PANGA LaCrosse, WA 

LCSO 44.6344 -123.1067 -0.315 1.631 PANGA Albany, OR 

LFLO 43.9836 -124.1077 -1.166 0.557 PANGA Florence, OR 

LIKE 41.2278 -120.4432 -2.201 1.435 NGL Likely, CA 

LINH 47.0003 -120.5385 -2.102 0.540 PANGA Ellensburg, WA 

LINL 44.1786 -121.9027 -2.750 1.834 USGS CVO 
Network Belknap Springs, OR 

LKCP 47.9444 -121.8309 -2.115 0.500 PANGA Everett, WA 

LKVW 42.1721 -120.3467 -2.149 0.646 PANGA Lakeview, OR 

LMID 46.3694 -120.2847 -2.313 0.613 PANGA Toppenish, WA 

LNG2 49.0581 -122.7033 -1.824 0.639 GeoBC Surrey, BC, Canada 

LNGB 47.2188 -122.7583 -0.624 0.454 PANGA Longbranch, WA 

LNGV 41.7852 -119.7524 -1.211 0.504 NGL Long Valley, NV 

LNRD 41.4766 -118.7101 -0.551 1.310 NGL Quinn River Crossing, NV 

LOST 41.0739 -119.7738 -1.074 0.448 NGL Gerlach, NV 
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LPSB 44.0512 -123.0901 -0.251 0.442 PANGA Eugene, OR 

LSIG 47.6952 -121.6896 -2.262 0.514 PANGA South Fork Tolt Reservoir, WA 

LTAH 47.2824 -117.1639 -0.805 0.470 PANGA Latah, WA 

LVIL 41.0704 -119.3776 -1.201 1.249 NGL Gerlach, NV 

LWCK 46.2781 -124.0538 0.022 1.087 PANGA Ilwaco, WA 

LWST 46.3732 -117.0023 -0.356 0.481 PANGA Lewiston, ID 

MADE 41.0352 -120.4356 -2.969 2.646 NGL Madeline, CA 

MASC 41.6051 -119.5480 -1.236 0.422 NGL Massacre Range, NV 

MCSO 44.9738 -122.9557 0.041 0.457 PANGA Salem, OR 

MDMT 42.4183 -121.2216 -1.965 0.605 PANGA Beatty, OR 

MDRS 44.6640 -121.1304 -1.818 0.550 PANGA Madras, OR 

MECR 44.0853 -121.8252 6.414 1.657 USGS CVO 
Network Three Sisters, OR 

MGRB 48.9997 -124.6971 3.234 3.141 PANGA Alberni-Clayoquot, BC, Canada 

MHTL 45.3287 -121.7112 -0.986 0.912 PANGA Mt. Hood, OR 

MIS1 49.1592 -122.2876 -0.597 0.720 GeoBC Mission, BC, Canada 

MKAH 48.3707 -124.5892 1.857 0.765 PANGA Sekiu, WA 

MLKE 47.1309 -119.2741 -0.992 0.725 PANGA Moses Lake, WA 

MODB 41.9023 -120.3028 -0.607 0.576 PANGA Willow Ranch, CA 

MON3 46.9829 -123.6036 0.153 0.701 PANGA Montesano, WA 

MRIB 49.4670 -123.9141 2.549 0.798 PANGA Merry Island, BC, Canada 

MRSD 46.7853 -121.7420 -0.496 0.848 PANGA Mt. Rainier, WA 

MSLK 47.1306 -119.2738 -1.834 0.936 PANGA Moses Lake, WA 

MTCL 44.5652 -120.1466 -0.962 0.799 PANGA Mitchell, OR 

MUIR 46.8356 -121.7332 -2.946 0.693 PANGA Mt. Rainier, WA 

MYRA 49.5510 -125.5707 4.365 1.273 PANGA Strathcona, BC, Canada 

NANA 49.1638 -123.9381 1.022 0.599 GeoBC Nanaimo, BC, Canada 

NANI 49.1072 -123.8968 0.346 0.744 GeoBC Nanaimo, BC, Canada 

NANO 49.2948 -124.0865 1.176 0.372 PANGA Winchelsea Islands, BC, Canada 
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NCOW 48.8239 -123.7199 0.787 0.701 GeoBC Duncan, BC, Canada 

NEAH 48.2979 -124.6249 2.679 0.625 PANGA Sekiu, WA 

NEWP 44.5850 -124.0619 1.528 0.791 PANGA Newport, OR 

NGWN 42.3063 -119.4047 -1.967 1.998 NGL Lone Grave Butte, OR 

NINT 47.4951 -121.7971 -1.529 0.947 PANGA North Bend, WA 

NORM 43.7389 -121.2527 -0.613 0.766 USGS CVO 
Network La Pine, OR 

NVAN 49.3223 -123.1069 -0.067 0.855 GeoBC North Vancouver, BC, Canada 

NWBG 45.3001 -122.9755 -1.014 0.636 PANGA Newberg, OR 

NWE3 49.2002 -122.9417 -0.922 0.601 GeoBC New Westminster, BC, Canada 

NWPT 48.1777 -117.0481 0.408 0.778 PANGA Newport, WA 

OAKR 43.7383 -122.4446 -1.810 0.539 PANGA Oakridge, OR 

OBEC 44.0660 -123.0981 -0.767 0.623 PANGA Eugene, OR 

OBSR 46.8998 -121.8154 -0.562 0.546 PANGA Mt. Rainier, WA 

OCEN 46.9524 -124.1597 0.689 0.571 PANGA Ocean Shores, WA 

ODOT 44.8967 -123.0008 -0.362 0.547 PANGA Salem, OR 

ODSA 47.3290 -118.7126 -1.385 0.826 PANGA Odessa, WA 

OKNG 48.3734 -119.5515 -1.747 0.622 PANGA Okanogan, WA 

OLAR 46.9612 -122.9085 -1.279 0.582 PANGA Tumwater, WA 

OLI1 49.1795 -119.5454 -0.869 0.587 GeoBC Oliver, BC, Canada 

OLMP 47.0448 -122.8952 -3.021 0.621 PANGA Olympia, WA 

ONAB 44.5145 -124.0745 -1.559 0.555 PANGA Seal Rock, OR 

ONT1 44.0232 -116.9380 -0.854 0.671 OR DOT Ontario, OR 

ORAL 45.7186 -120.2025 -1.303 0.687 Leica 
SmartNet Arlington, OR 

ORBN 44.0943 -121.3019 -1.275 1.184 Leica 
SmartNet Bend, OR 

ORCD 45.2270 -120.1806 -1.668 0.699 Leica 
SmartNet Condon, OR 

ORDO 45.2341 -122.8159 -1.036 0.753 Leica 
SmartNet Aurora, OR 

OREU 44.0450 -123.1619 0.016 0.680 Leica 
SmartNet Eugene, OR 

ORFL 43.9864 -124.1113 -0.224 0.748 Leica 
SmartNet Florence, OR 
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ORGR 45.4976 -122.4159 -1.280 0.731 Leica 
SmartNet Gresham, OR 

ORHA 44.2898 -123.1544 0.088 0.766 Leica 
SmartNet Harrisburg, OR 

ORHI 45.5191 -123.0253 -0.915 0.736 Leica 
SmartNet Cornelius, OR 

ORHM 45.8052 -119.3211 -2.213 0.834 Leica 
SmartNet Hermiston, OR 

ORHP 45.3607 -119.5652 -1.209 0.752 Leica 
SmartNet Heppner, OR 

ORK5 42.2888 -121.6693 -2.699 0.750 USCG Klamath Falls, OR 

ORK6 42.2888 -121.6697 -3.376 0.756 USCG Klamath Falls, OR 

ORKF 42.1434 -121.8086 -2.547 0.838 Leica 
SmartNet Klamath Falls, OR 

ORM1 44.6016 -121.1410 -1.510 0.842 Leica 
SmartNet Madras, OR 

ORMF 42.3799 -122.8845 0.464 0.707 Leica 
SmartNet Central Point, OR 

ORMO 45.1545 -122.6020 -1.100 0.760 Leica 
SmartNet Molalla, OR 

ORMV 45.1879 -123.2091 -0.798 0.729 Leica 
SmartNet McMinnville, OR 

ORNW 44.6748 -124.0612 0.726 0.873 Leica 
SmartNet Newport, OR 

OROR 43.7464 -122.4853 -0.859 0.810 Leica 
SmartNet Oakridge, OR 

ORPE 45.6709 -118.8502 -0.710 0.762 Leica 
SmartNet Pendleton, OR 

ORPO 45.5070 -122.6728 -1.222 0.569 Leica 
SmartNet Portland, OR 

ORRB 43.2984 -123.3492 -0.110 0.718 Leica 
SmartNet Roseburg, OR 

ORS1 44.1642 -119.0588 -0.416 0.605 PANGA Seneca, OR 

ORS2 44.1641 -119.0584 -0.388 0.673 USCG Seneca, OR 

ORSB 44.6253 -124.0488 -3.992 0.620 PANGA Newport, OR 

ORSH 44.3977 -122.7276 -0.639 0.699 Leica 
SmartNet Sweet Home, OR 

ORSL 44.9730 -122.9553 -0.373 0.762 Leica 
SmartNet Salem, OR 

ORTA 44.5583 -123.1111 -0.210 0.904 Leica 
SmartNet Tangent, OR 

ORTI 45.4856 -123.8462 -0.309 0.753 Leica 
SmartNet Tillamook, OR 

ORWA 45.5864 -120.6866 -1.357 0.724 Leica 
SmartNet Wasco, OR 

OTHL 46.8226 -119.1679 -1.093 0.986 PANGA Othello, WA 

OTIS 48.4178 -122.3366 -1.295 21.530 PANGA Mount Vernon, WA 

OYLR 47.4746 -122.2048 -2.983 1.034 PANGA Renton, WA 
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P013 41.4287 -117.3300 0.315 0.402 NOTA Paradise Valley, NV 

P017 41.2759 -119.9355 -0.471 0.448 NOTA Hays Canyon Peak, NV 

P018 42.9817 -117.0646 -1.049 0.375 NOTA Jordan Valley, OR 

P019 43.3002 -115.3117 -1.396 0.395 NOTA Castle Rocks, ID 

P020 47.0022 -118.5658 -0.833 0.348 NOTA Lind, WA 

P021 48.6747 -118.7303 -0.105 0.405 NOTA Republic, WA 

P022 45.2318 -118.0138 -0.197 0.458 NOTA La Grande, OR 

P023 44.8984 -116.1030 -0.165 0.441 NOTA McCall, ID 

P024 47.5622 -115.8424 -0.365 0.447 NOTA Wallace, ID 

P025 48.7310 -116.2875 0.515 0.445 NOTA Bonners Ferry, ID 

P061 42.9674 -124.0140 -0.224 0.605 NOTA Myrtle Point, OR 

P062 43.1124 -121.0907 -0.311 0.445 NOTA Silver Lake, OR 

P063 44.9227 -120.9462 -1.605 0.410 NOTA Shaniko, OR 

P064 47.9698 -123.4877 0.559 0.673 NOTA Port Angeles, WA 

P065 46.8440 -120.9331 -1.427 0.464 NOTA Nile, WA 

P145 41.3577 -119.6243 -0.680 0.403 NOTA Vya, NV 

P154 41.8071 -123.3601 0.205 0.507 NOTA Happy Camp, CA 

P155 41.2724 -123.1888 -0.343 0.491 NOTA Sawyers Bar, CA 

P179 42.0990 -123.6856 0.046 0.527 NOTA O'Brien, OR 

P191 42.2754 -123.6323 -0.062 0.495 NOTA Selma, OR 

P316 41.5591 -124.0861 -1.242 0.660 NOTA Requa, CA 

P325 41.1517 -123.8826 2.144 0.398 NOTA Martins Ferry, CA 

P347 41.1833 -120.9485 -1.026 0.446 NOTA Adin, CA 

P362 42.2091 -124.2258 1.688 0.436 NOTA Carpenterville, OR 

P363 42.8601 -124.0540 0.280 0.573 NOTA Powers, OR 

P364 43.0903 -124.4093 1.755 0.419 NOTA Bandon, OR 

P365 43.3955 -124.2535 0.418 0.411 NOTA Coos Bay, OR 

P366 43.6143 -123.9796 -0.252 0.506 NOTA Reedsport, OR 
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P367 44.5852 -124.0616 -0.558 0.405 NOTA Newport, OR 

P368 42.5035 -123.3834 -0.123 0.426 NOTA Merlin, OR 

P369 43.1401 -123.4295 -0.641 0.467 NOTA Winston, OR 

P370 42.1910 -122.6564 -0.485 0.455 NOTA Ashland, OR 

P371 43.3633 -123.0579 -0.517 0.387 NOTA Glide, OR 

P372 45.4281 -117.2517 -0.408 0.407 NOTA Enterprise, OR 

P373 43.6225 -123.3333 -0.484 0.405 NOTA Drain, OR 

P374 44.3819 -123.5906 -0.308 0.448 NOTA Alsea, OR 

P375 44.6893 -123.4270 0.234 0.452 NOTA Kings Valley, OR 

P376 44.9412 -123.1023 -0.106 0.394 NOTA Salem, OR 

P377 44.0521 -122.8871 -0.612 0.410 NOTA Springfield, OR 

P378 44.5350 -122.9309 -0.248 0.395 NOTA Lebanon, OR 

P379 44.4965 -122.5770 -0.823 0.645 NOTA Sweet Home, OR 

P380 42.2597 -121.7797 -0.855 0.375 NOTA Klamath Falls, OR 

P381 43.0018 -119.9518 -0.311 0.400 NOTA Wagontire, OR 

P382 43.1771 -121.7696 -0.613 0.609 NOTA Chemult, OR 

P383 44.3422 -122.2172 -0.928 0.403 NOTA Cascadia, OR 

P384 44.8411 -122.4828 -0.650 0.484 NOTA Mill City, OR 

P385 44.4348 -121.9458 -1.733 0.639 NOTA Santiam Junction, OR 

P386 44.4028 -118.9678 -0.156 0.424 NOTA John Day, OR 

P387 44.2968 -121.5745 -1.882 0.550 NOTA Sisters, OR 

P388 42.4688 -120.3776 -0.407 0.459 NOTA Valley Falls, OR 

P389 43.8120 -120.6034 -0.331 0.384 NOTA Brothers, OR 

P390 43.0340 -118.9285 -0.124 0.387 NOTA Narrows, OR 

P391 42.2546 -118.4125 -0.557 0.401 NOTA Fields, OR 

P392 43.4468 -119.0010 -1.309 0.366 NOTA Burns, OR 

P393 43.2345 -117.8920 -0.629 0.384 NOTA Crowley, OR 

P394 44.8349 -117.7996 -0.273 0.405 NOTA Baker City, OR 
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P395 45.0223 -123.8575 0.027 0.502 NOTA Otis, OR 

P396 45.3095 -123.8229 -0.381 0.600 NOTA Cloverdale, OR 

P397 46.4216 -123.7992 0.402 0.437 NOTA Naselle, WA 

P398 46.9258 -123.9161 0.709 0.459 NOTA Aberdeen, WA 

P399 47.4339 -123.6130 0.575 0.563 NOTA Quinault, WA 

P400 47.5133 -123.8125 1.860 1.120 NOTA Quinault, WA 

P401 47.9372 -124.5570 0.491 0.389 NOTA Mora, WA 

P402 47.7662 -124.3059 1.661 0.415 NOTA Forks, WA 

P403 48.0623 -124.1409 1.916 0.557 NOTA Sappho, WA 

P404 45.1585 -123.3903 -0.683 0.419 NOTA Bellevue, OR 

P405 45.6293 -123.6438 -0.720 0.453 NOTA Jordan Creek, OR 

P406 45.1904 -123.1523 -0.606 0.397 NOTA McMinnville, OR 

P407 45.9546 -123.9310 0.352 0.562 NOTA Seaside, OR 

P408 46.2005 -123.3766 -0.750 0.464 NOTA Cathlamet, WA 

P409 45.8513 -123.2395 -0.558 0.418 NOTA Vernonia, OR 

P410 46.1111 -123.0786 -1.543 0.469 NOTA Ranier, OR 

P411 45.5380 -123.1574 -0.386 0.492 NOTA Forest Grove, OR 

P412 45.2211 -122.5891 -1.196 0.389 NOTA Mulino, OR 

P413 48.4265 -120.1496 -0.857 0.499 NOTA Winthrop, WA 

P414 45.8349 -122.6928 -1.317 0.406 NOTA Ridgefield, WA 

P415 46.6560 -123.7299 -0.108 0.468 NOTA Raymond, WA 

P416 47.0399 -121.5969 -1.191 0.475 NOTA Mt. Rainier, WA 

P417 46.5747 -123.2979 -1.047 0.483 NOTA Pe Ell, WA 

P418 47.2366 -123.4078 -0.580 0.441 NOTA Matlock, WA 

P419 47.4093 -123.3665 -0.343 0.555 NOTA Lake Cushman, WA 

P420 46.5886 -122.8663 -1.180 0.369 NOTA Forest, WA 

P421 46.5319 -122.4292 -1.385 0.490 NOTA Ajlune, WA 

P422 46.7979 -116.9797 -0.610 0.394 NOTA Viola, ID 
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P423 47.2879 -122.9412 -0.804 0.454 NOTA Grant, WA 

P424 47.8232 -122.8747 -0.096 0.554 NOTA Quilcene, WA 

P425 46.4527 -122.8454 -1.729 0.461 NOTA Toledo, WA 

P426 47.8027 -122.5146 -1.757 0.552 NOTA Kingston, WA 

P427 45.4302 -122.3406 -1.841 0.397 NOTA Boring, OR 

P429 45.6761 -121.8774 -1.915 0.478 NOTA Cascade Locks, OR 

P430 47.0038 -123.4362 -0.528 0.604 NOTA Elma, WA 

P431 46.5721 -121.9885 -1.536 0.418 NOTA Randle, WA 

P432 46.6229 -121.6832 -1.110 0.457 NOTA Packwood, WA 

P433 44.5325 -119.8720 -1.125 0.584 NOTA Antone, OR 

P434 47.7402 -121.0756 -0.958 0.424 NOTA Wellington, WA 

P435 48.0595 -123.5033 -0.255 0.606 NOTA Elwha, WA 

P436 48.0453 -123.1343 0.058 0.515 NOTA Sequim, WA 

P437 48.0018 -122.4592 -1.408 0.449 NOTA South Whidbey, WA 

P438 48.4191 -122.6703 -0.729 0.410 NOTA Northwest Island, Washington 

P439 48.7082 -122.9093 -0.566 0.405 NOTA Eastsound, WA 

P440 48.8562 -122.4933 -0.966 0.425 NOTA Bellingham, WA 

P441 48.9160 -122.1396 -0.453 0.537 NOTA Kendall, WA 

P442 48.2605 -121.6155 -1.321 0.611 PANGA Darrington, WA 

P443 48.5096 -121.2856 0.084 0.547 NOTA Concrete, WA 

P444 48.7302 -121.0675 -0.888 0.714 PANGA Ruby Mountain, WA 

P445 45.5901 -120.6722 -1.525 0.419 NOTA Wasco, OR 

P446 46.1157 -122.8928 -1.307 0.458 NOTA Kelso, WA 

P447 45.4528 -119.6901 -1.377 0.393 NOTA Lexington, OR 

P448 45.9106 -120.0052 -2.764 0.410 NOTA Alderdale, WA 

P449 46.2598 -119.6310 -1.697 0.402 NOTA Chaffee, WA 

P450 45.9533 -119.5442 -1.683 0.369 NOTA Paterson, WA 

P451 46.7928 -119.0414 -1.016 0.374 NOTA Bruce, WA 
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P452 47.4035 -119.4873 -1.111 0.454 NOTA Soap Lake, WA 

P453 47.7591 -118.7455 -0.930 0.414 NOTA Wilbur, WA 

P454 47.9538 -118.9926 -0.791 0.380 NOTA Grand Coulee, WA 

P655 41.2945 -122.2063 -0.485 0.861 NOTA Mt. Shasta, CA 

P656 41.3448 -122.1958 0.155 7.537 NOTA Mt. Shasta, CA 

P657 41.3812 -122.2938 -0.376 0.652 NOTA Mt. Shasta, CA 

P658 41.4792 -122.1909 -0.363 0.658 NOTA Mt. Shasta, CA 

P659 41.4537 -122.0927 -0.138 1.139 NOTA Mt. Shasta, CA 

P660 41.4096 -122.0677 -1.052 1.269 NOTA Mt. Shasta, CA 

P661 41.4636 -122.3127 -0.423 0.545 NOTA Mt. Shasta, CA 

P663 41.5319 -122.1529 -0.285 0.719 NOTA Mt. Shasta, CA 

P672 41.7116 -121.5069 -0.988 0.457 NOTA Lava Beds NM, CA 

P673 41.5858 -121.6130 -4.141 0.804 NOTA Mt. Hoffman, CA 

P674 41.6163 -121.4900 -1.852 0.584 NOTA Mt. Hoffman, CA 

P687 46.1096 -122.3546 -1.456 0.713 NOTA Cougar, WA 

P688 46.0301 -122.1642 -0.887 0.802 NOTA Cougar, WA 

P689 46.1896 -122.3606 -1.138 0.398 NOTA Mt. St. Helens, WA 

P690 46.1800 -122.1899 -2.426 0.888 NOTA Mt. St. Helens, WA 

P691 46.2315 -122.2270 -0.382 0.484 NOTA Mt. St. Helens, WA 

P692 46.2245 -122.1842 -0.706 0.556 NOTA Mt. St. Helens, WA 

P693 46.2103 -122.2023 -2.604 0.870 NOTA Mt. St. Helens, WA 

P694 46.2996 -122.1819 -0.280 0.524 NOTA Mt. St. Helens, WA 

P695 46.1990 -122.1642 -1.966 0.658 NOTA Mt. St. Helens, WA 

P696 46.1969 -122.1516 -1.644 0.545 NOTA Mt. St. Helens, WA 

P697 46.1876 -122.1766 -4.019 1.073 NOTA Mt. St. Helens, WA 

P698 46.1735 -122.1606 -1.515 0.526 NOTA Mt. St. Helens, WA 

P699 46.1898 -122.2032 -3.995 1.953 NOTA Mt. St. Helens, WA 

P700 46.1781 -122.2174 -0.823 0.514 NOTA Mt. St. Helens, WA 
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P701 46.1946 -122.1334 -0.514 0.585 NOTA Mt. St. Helens, WA 

P702 46.3002 -122.3456 -1.286 0.417 NOTA Mt. St. Helens, WA 

P703 46.1453 -122.1962 -1.021 0.872 NOTA Mt. St. Helens, WA 

P705 46.1730 -122.3106 -1.085 0.728 NOTA Mt. St. Helens, WA 

P730 41.3592 -120.8282 -0.767 0.526 NOTA Canby, CA 

P731 41.3325 -120.4728 -0.917 0.469 NOTA McArthur, CA 

P732 43.3925 -123.8914 -0.216 0.481 NOTA Allegany, OR 

P733 42.4420 -124.4133 1.596 0.463 NOTA Wedderburn, OR 

P734 42.0766 -124.2933 2.080 0.472 NOTA Brookings, OR 

P735 42.6916 -123.2310 0.063 0.489 NOTA Golden, OR 

P736 42.5798 -121.8801 -0.759 0.488 NOTA Chiloquin, OR 

P737 42.7271 -122.6096 -1.122 0.561 NOTA Prospect, OR 

P738 42.5461 -119.6587 -0.285 0.510 NOTA Plush, OR 

P739 42.0202 -117.7254 -0.289 0.443 NOTA McDermitt, NV 

P784 41.8308 -122.4205 -0.316 0.491 NOTA Ager, CA 

P786 41.8455 -123.9808 0.886 0.591 NOTA Gasquet, CA 

P791 45.3445 -121.6727 -1.214 0.834 NOTA Mt. Hood, OR 

P792 46.2446 -122.1369 -1.078 2.178 NOTA Mt. St. Helens, WA 

P813 47.7592 -118.7455 -1.657 0.739 NOTA Wilbur, WA 

P814 47.7592 -118.7454 -1.689 0.704 NOTA Wilbur, WA 

P815 47.9372 -124.5572 0.782 0.554 NOTA Quillayute, WA 

P816 47.9371 -124.5571 0.658 0.577 NOTA Quillayute, WA 

P820 42.8619 -124.0539 0.912 0.852 NOTA Powers, OR 

P821 43.1446 -123.4290 1.520 1.006 NOTA Winston, OR 

PABH 47.2128 -124.2046 -0.227 0.338 PANGA Pacific Beach, WA 

PARP 41.3242 -117.6980 -0.621 1.929 NGL Paradise Valley, NV 

PCOL 47.1721 -122.5708 -1.204 0.479 PANGA Lakewood, WA 

PCS2 44.9191 -123.3278 -1.702 0.852 PANGA Dallas, OR 
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PDTN 45.6659 -118.7569 -1.034 0.735 PANGA Pendleton, OR 

PDXA 45.5969 -122.6092 -1.503 0.668 PANGA Portland, OR 

PER1 47.9817 -122.2081 -4.227 1.497 PANGA Everett, WA 

PFLD 47.8985 -122.2822 -1.472 0.445 PANGA Everett, WA 

PGC5 48.6485 -123.4511 0.104 0.424 PANGA North Saanich, BC, Canada 

PKDL 45.5183 -121.5637 -1.902 0.780 PANGA Mt. Hood, OR 

PKWD 46.5998 -121.6770 -2.779 1.008 PANGA Randle, WA 

PLMN 46.7339 -117.1931 -1.024 0.469 PANGA Pullman, WA 

PLNA 44.1321 -119.9668 -0.856 0.558 PANGA Paulina, OR 

PMAR 43.9907 -121.6867 -1.296 0.710 PANGA Mt. Bachelor, OR 

PNCL 48.1015 -123.4153 -1.940 4.139 PANGA Port Angeles, WA 

PNDL 45.6696 -118.7915 -1.441 1.035 PANGA Pendleton, OR 

PNHG 46.8591 -121.6426 -8.309 5.086 PANGA Mt. Rainier, WA 

PNHR 46.8590 -121.6426 -17.103 6.196 PANGA Mt. Rainier, WA 

PNTC 49.5008 -119.5939 -0.077 0.602 GeoBC Penticton, BC, Canada 

PNVL 44.3121 -120.8446 -1.851 0.500 PANGA Prineville, OR 

POME 46.4799 -117.6317 0.823 0.939 PANGA Pomeroy, WA 

PORC 41.5995 -120.7432 -2.038 0.641 NGL Porcupine Rim, CA 

POTH 44.0969 -122.0398 -3.663 1.749 USGS CVO 
Network Belknap Springs, OR 

POUL 47.7547 -122.6672 -4.813 2.586 PANGA Poulsbo, WA 

PRDY 47.3914 -122.6095 -0.995 0.462 PANGA Purdy, WA 

PRSR 46.2157 -119.7908 -1.385 0.697 PANGA Prosser, WA 

PSEA 47.4514 -122.3202 -2.253 0.732 PANGA SeaTac, WA 

PSPT 42.7548 -122.4895 -0.986 0.588 PANGA Prospect, OR 

PTAA 48.1168 -123.4944 0.398 0.661 PANGA Port Angeles, WA 

PTAL 49.2563 -124.8610 2.932 0.384 PANGA Alberni-Clayoquot, BC, Canada 

PTRF 48.5443 -124.4131 2.154 0.586 PANGA Port Renfrew, BC, Canada 

PTSG 41.7827 -124.2552 2.124 0.381 PANGA Crescent City, CA 
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PTSN 45.9392 -119.6098 -0.044 0.866 PANGA Paterson, WA 

PUPU 47.4996 -122.0081 -0.996 1.052 PANGA Issaquah, WA 

QMAR 47.7751 -120.9656 0.341 1.127 PANGA Berne, WA 

QUL2 49.3459 -124.4430 1.079 0.689 GeoBC Qualicum Beach, BV, Canada 

RDL2 42.9545 -123.3622 -0.206 1.449 PANGA Riddle, OR 

REDM 44.2598 -121.1479 -1.323 0.367 PANGA Redmond, OR 

REED 43.7010 -124.1078 -1.982 0.600 PANGA Reedsport, OR 

RIC2 46.2774 -119.2777 -0.978 0.671 PANGA Richland, WA 

RKD1 48.9644 -119.4130 0.033 0.577 PANGA Oroville, WA 

RMDB 44.2598 -121.1479 -1.889 0.465 PANGA Redmond, OR 

RMRK 46.7495 -120.7923 -1.518 0.721 PANGA Naches, WA 

ROKY 47.0196 -122.3462 -1.347 1.423 PANGA Elk Plain, WA 

RPT5 47.3875 -122.3748 -2.327 0.515 USCG Vashon, WA 

RPT6 47.3872 -122.3750 -2.666 0.498 USCG Puget Sound, Washington 

RPUB 48.6494 -118.7341 -0.299 0.658 PANGA Republic, WA 

RSBG 43.2350 -123.3594 -0.487 0.721 PANGA Roseburg, OR 

RYA1 48.2175 -116.2620 -1.083 0.924 PANGA Hope, ID 

RYMD 46.6841 -123.7304 -1.258 0.533 PANGA Raymond, WA 

SAC4 48.5667 -123.4207 -1.941 53.096 GeoBC Saanichton, BC, Canada 

SAMM 47.5399 -122.0332 -1.920 0.798 PANGA Issaquah, WA 

SATS 46.9657 -123.5412 -1.676 2.725 PANGA Montesano, WA 

SC00 46.9509 -120.7246 -1.519 0.469 PANGA Ellensburg, WA 

SC02 48.5462 -123.0076 -0.280 0.365 PANGA Friday Harbor, WA 

SC03 47.8166 -123.7057 1.984 1.227 PANGA Olympic National Park, WA 

SC04 48.9232 -123.7041 0.666 0.424 PANGA Chemainus, BC, Canada 

SCHO 41.1297 -118.3554 -1.790 1.371 NGL Winnemucca, NV 

SCMV 48.4179 -122.3372 -1.624 0.636 PANGA Mount Vernon, WA 

SEAI 47.6870 -122.2563 -1.852 0.612 NOAA Seattle, WA 
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SEAS 45.9842 -123.9224 0.635 0.567 PANGA Seaside, OR 

SEAT 47.6540 -122.3095 -1.817 0.365 PANGA Seattle, WA 

SEDK 48.5042 -122.2389 -0.510 0.930 PANGA Sedro-Woolley, WA 

SEDR 48.5216 -122.2238 -1.358 0.449 PANGA Sedro-Woolley, WA 

SEPR 46.2003 -122.1910 -20.172 1.939 PANGA Mt. St. Helens, WA 

SEQM 48.0914 -123.1135 0.354 0.734 PANGA Sequim, WA 

SHLD 41.8684 -119.0157 -0.430 0.372 PANGA Denio, NV 

SHRK 45.4643 -121.5288 -1.884 0.934 PANGA Mt. Hood, OR 

SKCO 45.6942 -121.8840 -3.470 1.281 PANGA Stevenson, WA 

SKGT 48.4334 -122.3425 -1.693 0.881 PANGA Mt. Vernon, WA 

SKMA 45.6942 -121.8840 -1.259 1.123 PANGA Stevenson, WA 

SKND 41.0316 -118.7082 0.014 3.486 NGL Sulphur, NV 

SLUM 41.1602 -117.9314 -1.844 2.034 NGL Winnemucca, NV 

SMAI 47.5236 -122.3451 -1.957 0.436 PANGA Seattle, WA 

SNDR 43.0033 -120.2510 -0.268 0.535 NGL Saunders Rim, OR 

SNOQ 47.3913 -121.3883 -0.895 0.752 PANGA Snoqualmie Pass, WA 

SNRS 46.9146 -121.6436 -0.839 2.089 PANGA Ashford, WA 

SPKN 47.6277 -117.5026 -0.683 0.567 PANGA Spokane, WA 

SPKV 47.6774 -117.2715 -0.025 1.440 PANGA Spokane, WA 

SPN5 47.5184 -117.4237 -0.966 0.515 USCG Spokane, WA 

SPN6 47.5184 -117.4234 -1.518 0.531 USCG Spokane, WA 

SPRA 44.8267 -119.7763 -1.185 0.534 PANGA Spray, OR 

SPRG 47.3099 -117.9753 -0.504 0.443 PANGA Sprague, WA 

SQAW 44.1924 -121.6505 -0.952 1.487 USGS CVO 
Network Three Sisters, OR 

SQIM 48.0824 -123.1020 -0.957 0.914 PANGA Sequim, WA 

SQMS 49.7252 -123.1417 0.640 0.864 GeoBC Squamish, BC, Canada 

SSHO 47.6823 -122.3152 -2.256 0.537 PANGA Seattle, WA 

STAY 44.8307 -122.8209 -0.156 0.466 PANGA Sublimity, OR 
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STHM 44.3962 -122.7342 -0.893 2.036 PANGA Sweet Home, OR 

SUHS 42.9869 -123.3288 -0.342 0.779 PANGA Tri-City, OR 

SUPR 41.6618 -120.0690 -2.198 0.628 NGL Surprise Valley, CA 

SUR6 49.0742 -122.6919 -1.331 3.737 GSC Surrey, BC, Canada 

SURR 49.1746 -122.6951 -3.636 0.595 GeoBC Surrey, BC, Canada 

SVI2 43.6431 -121.2533 -0.538 0.673 USGS CVO 
Network La Pine, OR 

SWNB 43.6727 -121.3554 -0.765 0.566 USGS CVO 
Network La Pine, OR 

SWRN 42.0489 -120.0458 -2.692 1.680 NGL Adel, OR 

SYNC 44.0239 -121.7767 0.992 3.121 USGS CVO 
Network Three Sisters, OR 

TACO 47.2289 -122.4715 -2.410 0.511 PANGA Tacoma, WA 

TAY1 46.7146 -117.1762 -0.901 1.159 PANGA Pullman, WA 

TDLS 45.6077 -121.1295 -2.032 0.695 PANGA The Dalles, OR 

TFNO 49.1541 -125.9078 1.989 0.571 PANGA Tofino, BC, Canada 

TGAU 46.2192 -122.1923 -1.172 2.137 USGS CVO 
Network Mt. St. Helens, WA 

TGUA 46.2192 -122.1923 -2.488 0.738 PANGA Mt. St. Helens, WA 

THAR 46.2753 -122.1740 -0.936 0.655 PANGA Mt. St. Helens, WA 

THRM 44.0898 -121.6196 0.597 2.167 USGS CVO 
Network Three Sisters, OR 

THUN 47.1058 -122.2885 -1.276 0.406 PANGA Puyallup, WA 

TILL 45.4551 -123.8308 -0.431 0.571 PANGA Tillamook, OR 

TMBU 43.6018 -121.1446 -0.535 0.780 USGS CVO 
Network Sunriver, OR 

TPW2 46.2074 -123.7684 -0.229 0.407 PANGA Navy Heights, OR 

TRAI 49.0981 -117.7100 -1.441 0.894 PANGA Trail, BC, Canada 

TRND 41.0539 -124.1509 -1.179 0.432 PANGA Trinidad, CA 

TSEP 46.2000 -122.1907 -35.245 42.398 USGS CVO 
Network Mt. St. Helens, WA 

TSTU 46.2369 -122.2241 -3.848 0.625 PANGA Mt. St. Helens, WA 

TULE 41.0178 -120.0230 1.087 1.169 NGL Tuledad Canyon, CA 

TUMW 46.9843 -122.9122 -1.315 0.836 PANGA Tumwater, WA 

TWHL 47.0159 -122.9229 -1.005 0.416 PANGA Tumwater, WA 
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TWIW 46.2129 -122.1587 -0.721 0.665 PANGA Mt. St. Helens, WA 

TWRI 46.1979 -122.2119 -2.499 1.377 PANGA Mt. St. Helens, WA 

TWSP 48.3655 -120.1217 -1.004 1.040 PANGA Twisp, WA 

UCLU 48.9256 -125.5416 1.216 0.422 PANGA Ucluelet, BC, Canada 

UFDA 47.7550 -122.6674 -0.458 0.557 PANGA Poulsbo, WA 

UKIA 45.1328 -118.9366 -0.699 0.494 PANGA Ukiah, OR 

VCWA 45.6176 -122.5161 -1.783 0.652 PANGA Vancouver, WA 

VNCR 49.2660 -123.0985 -3.957 3.001 PANGA Mattawa, WA 

VRNT 46.6369 -119.7320 -1.032 0.725 PANGA Brewster, WA 

WABR 48.1004 -119.7803 -0.868 0.806 PANGA Brewster, WA 

WACC 47.6115 -119.2934 -0.700 0.655 PANGA Coulee City, WA 

WACS 46.6754 -122.9700 -1.143 0.556 PANGA Chehalis, WA 

WACX 46.9545 -117.3324 -0.817 0.766 Leica 
SmartNet Colfax, WA 

WACY 47.5637 -117.5947 0.162 0.670 Leica 
SmartNet Cheney, WA 

WAEL 46.9835 -120.5470 -1.777 0.693 Leica 
SmartNet Ellensburg, WA 

WAEN 47.2033 -121.9854 -1.502 0.691 Leica 
SmartNet Enumclaw, WA 

WAEV 47.9815 -122.2081 -1.641 0.553 PANGA Everett, WA 

WAFD 48.8284 -122.5551 -1.013 0.632 Leica 
SmartNet Ferndale, WA 

WAFH 48.5327 -123.0186 -0.247 0.787 Leica 
SmartNet Friday Harbor, WA 

WAFR 48.5306 -123.0272 -2.548 1.647 Leica 
SmartNet Friday Harbor, WA 

WAGO 41.2916 -119.5140 -1.621 0.436 NGL Wagontire Spring, NV 

WAKI 47.7088 -122.1875 -1.667 0.572 Leica 
SmartNet Kirkland, WA 

WAKL 46.1135 -122.8895 -1.709 0.786 Leica 
SmartNet Kelso, WA 

WALA 46.0915 -118.2581 0.460 0.845 PANGA Walla Walla, WA 

WALL 41.2485 -119.7188 -3.191 1.201 NGL Wall Canyon, NV 

WAMC 45.2238 -121.2736 -1.649 0.607 PANGA Wamic, OR 

WAMO 46.5547 -122.2737 -1.491 0.815 Leica 
SmartNet Morton, WA 

WAMS 46.9776 -123.6024 -0.087 0.732 Leica 
SmartNet Montesano, WA 
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WAMV 48.3845 -122.3331 -1.108 0.868 Leica 
SmartNet Mt. Vernon, WA 

WAMW 46.7618 -119.9324 -1.377 0.901 Leica 
SmartNet Mattawa, WA 

WAOL 47.0465 -122.8438 -0.815 0.773 Leica 
SmartNet Olympia, WA 

WAOT 46.8104 -119.1737 -1.213 0.653 Leica 
SmartNet Othello, WA 

WAOY 47.0479 -122.8389 -4.064 1.065 Leica 
SmartNet Olympia, WA 

WAPA 46.2491 -119.0803 -0.926 0.718 Leica 
SmartNet Pasco, WA 

WAPO 47.8035 -122.5692 -1.138 0.498 Leica 
SmartNet Poulsbo, WA 

WAPS 47.4512 -122.3208 -1.870 0.520 PANGA SeaTac, WA 

WAQU 47.2351 -119.8379 -1.196 0.684 Leica 
SmartNet Quincy, WA 

WARM 47.6807 -122.1367 -2.045 0.716 Leica 
SmartNet Redmond, WA 

WARZ 47.1211 -118.3832 -1.247 0.724 Leica 
SmartNet Ritzville, WA 

WASK 47.6657 -117.4206 -0.412 0.473 Leica 
SmartNet Spokane, WA 

WASN 46.3038 -120.0214 -1.472 0.731 Leica 
SmartNet Sunnyside, WA 

WASQ 47.5266 -121.8262 -2.685 0.583 PANGA Snoqualmie, WA 

WATK 47.2279 -117.0676 0.943 0.755 Leica 
SmartNet Tekoa, WA 

WAWE 47.4044 -120.2850 -1.716 0.615 Leica 
SmartNet East Wenatchee, WA 

WAWL 46.0818 -118.2822 -0.754 0.682 Leica 
SmartNet Walla Walla, WA 

WAYA 46.6167 -120.5511 -1.348 0.781 Leica 
SmartNet Yakima, WA 

WDBN 45.1709 -122.8701 -4.010 0.547 PANGA Woodburn, OR 

WEBG 45.7796 -122.5628 0.723 0.938 PANGA Battle Ground, WA 

WHBR 44.1632 -121.9786 -2.116 1.729 USGS CVO 
Network Belknap Springs, OR 

WHD5 48.3127 -122.6961 -1.559 0.566 USCG Oak Harbor, WA 

WHD6 48.3124 -122.6961 -2.562 0.627 USCG Oak Harbor, WA 

WIF3 44.0596 -121.8176 4.612 2.548 USGS CVO 
Network Three Sisters, OR 

WIFC 44.0596 -121.8176 -3.374 4.098 PANGA Three Sisters, OR 

WIFR 44.0597 -121.8176 3.592 1.610 PANGA Three Sisters, OR 

WMSG 45.1313 -121.5973 -1.191 0.628 PANGA Maupin, OR 

WNTH 48.4632 -120.1730 -0.054 1.701 PANGA Winthrop, WA 
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WRNR 41.5571 -120.4047 -0.461 0.827 NGL Surprise Station, CA 

WVN3 49.3517 -123.2511 0.348 3.374 GSC West Vancouver, BC, Canada 

XANE 47.4449 -120.3662 -0.642 0.932 PANGA West Wenatchee, WA 

YAKI 46.6050 -120.5051 -2.461 0.482 PANGA Yakima, WA 

YAKS 46.5845 -120.5299 -1.976 1.715 PANGA Yakima, WA 

YBHB 41.7317 -122.7107 -0.449 0.550 PANGA Yreka, CA 

YELM 46.9487 -122.6057 -0.978 0.462 PANGA Yelm, WA 

YONC 43.6341 -123.2983 -0.534 0.568 PANGA Yoncalla, OR 

ZSE1 47.2870 -122.1884 -1.655 0.507 FAA Auburn, WA 

FAA: Federal Aviation Administration 
GSC: Geological Survey of Canada 
NGL: Nevada Geodetic Laboratory 
NOAA: National Oceanic and Atmospheric Administration 
NOTA: Network Of The Americas  
PANGA: Pacific Northwest Geodetic Array 
TURN: The Utah Reference Network 
USCG: United States Coast Guard 
USGS CVO: United States Geological Survey Cascades Volcano Observatory 
 
 
Table S2.2.  GSFC GRACE mascon IDs for the Pacific Northwest. 

Mascon ID Equivalent Water Height 
Trend (cm/year) 

1826 -0.7184 
1827 -0.7895 
1828 -0.8837 
1829 -0.8894 
1830 -0.6757 
1831 -0.8684 
1832 -0.9448 
1833 -0.9083 
1866 -0.7122 
1869 -0.7898 
1870 -0.6595 
1871 -0.5380 
1872 -0.4474 
1946 -1.3535 
1947 -0.9750 
1948 -0.5951 
1949 -0.7951 
1950 -0.6393 
1951 -0.4409 
1952 -0.1993 
1954 -0.0654 
1955 -0.1074 
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1956 -0.1281 
1957 -0.0465 
1958 0.1202 
1960 0.3790 
1961 0.1820 
1962 0.0194 
1963 -0.0294 
1964 0.0471 
1967 0.5325 
1968 0.4552 
1969 0.2436 
1970 0.0066 
1971 -0.1451 
1972 -0.1430 
1973 -0.0185 
1975 0.2123 
1976 0.1468 
1977 -0.0221 
1978 -0.2304 
1979 -0.3526 
1980 -0.3502 
1981 -0.2319 
1983 -0.2420 
1984 -0.3476 
1985 -0.4755 
1986 -0.5669 
1987 -0.5763 
1988 -0.4858 
1989 -0.3349 
1993 -0.5199 
1994 -0.6380 
1995 -0.7542 
1996 -0.7410 
1997 -0.6650 
1998 -0.5364 
1999 -0.3956 
2003 -0.6095 
2004 -0.8229 
2005 -0.5959 
2006 -0.4750 
2024 -2.0273 
2025 -1.7196 
2026 -0.9637 
2180 -2.1348 
2181 -2.1789 
2182 -1.1780 
2183 -1.1750 
2184 -1.0875 
2185 -0.1303 
2186 -0.0585 
2187 0.4326 
2188 0.4719 
2247 -0.2284 

15093 0.5216 
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Table S2.3. Early, Middle, and Late Period Velocity Data. 

Station 

Early Middle Late 
Vertical 
Velocity 

(mm/year) 

Vertical 
Uncertainty 
(mm/year) 

Vertical 
Velocity 

(mm/year) 

Vertical 
Uncertainty 
(mm/year) 

Vertical 
Velocity 

(mm/year) 

Vertical 
Uncertainty 
(mm/year) 

ABBY     -2.809 0.978 
ABOT     -2.012 1.111 
ADLL   -3.448 2.723 0.669 1.898 
AL2H     1.571 0.888 
ALB4     0.215 1.540 
ALBH -0.922 0.817 1.182 0.792 1.237 0.869 
ANAT 2.604 3.051 0.066 1.398 -1.788 10.077 
ARLI -1.628 1.054 -1.804 0.773 -0.475 0.913 
ARLN -5.264 1.688 -2.036 0.799 -1.176 1.070 
ASBU   -2.231 1.127 -0.291 1.209 
ASHL 0.973 1.511 0.038 1.183 -0.234 1.331 
BAMF 1.533 1.389 0.554 1.114 2.312 1.234 
BASQ     -0.252 0.908 
BBUT   -0.790 2.619   
BCAB   2.029 4.653 -0.452 0.823 
BCBU   -10.258 4.838 1.257 0.911 
BCCG   0.723 0.679 0.920 0.994 
BCCH   -4.767 4.036 -2.849 1.037 
BCCQ   -4.514 4.039 -0.018 1.179 
BCCY     3.802 0.956 
BCDT     -0.003 0.833 
BCES   -1.047 0.880 1.091 1.017 
BCHO   -4.442 6.819 0.852 1.029 
BCKW   -3.869 3.194 -2.441 1.561 
BCLC   1.672 2.102 -4.102 3.289 
BCLG     0.650 1.543 
BCLI   -2.903 0.843 -1.246 0.936 

BCMR   -1.989 0.920 -1.018 1.205 
BCNA   -0.710 3.256 3.253 4.404 
BCNS   -0.176 0.850 1.175 0.914 
BCPI     -0.313 0.989 
BCSC   -2.519 4.530 1.034 0.903 
BCSF   -0.965 0.791 0.326 0.968 
BCSL   -0.496 0.761 0.080 0.889 
BCSM   -0.177 1.144 0.265 1.365 
BCSQ     1.783 1.174 
BCSU   -0.380 3.384 -0.240 1.723 
BCTS   0.693 3.126    
BCVC   -0.932 0.833 -0.065 0.914 
BCVI   -3.125 3.826 0.624 0.740 
BDRY 0.859 2.747 -0.054 1.043 -1.214 1.416 
BELI 2.506 2.780 -0.560 0.829 2.036 1.183 

BEND -0.835 1.064 -1.706 0.686 0.262 0.911 
BFIR -3.994 2.084 -3.731 0.861 -5.314 1.033 
BIGD -0.888 1.252 -1.057 0.806 -2.166 1.143 
BILS   -1.181 1.333 0.705 1.796 

BLDG     -1.394 1.084 
BLNP   -3.222 2.435 2.830 3.411 
BLVU -3.768 1.859      
BLY1   -1.454 0.789 -0.281 0.824 
BLYN -1.858 1.629 -3.207 8.722 41.946 19.525 
BNDM   -3.262 2.410 -0.965 0.899 
BPKT   -2.431 0.953 -5.677 2.007 
BRBR         
BREW -0.955 0.738 -1.489 0.687 -0.623 0.827 
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BRN3   -2.356 2.872 2.833 2.656 
BRNB -1.677 1.545 0.361 1.179     
BRNT     -0.338 0.919 
BSUM -3.578 2.049 -0.774 1.358 -4.746 1.188 
BTON -1.576 1.311 -5.089 1.807 2.831 2.470 
BURN -1.550 0.983 -1.743 0.752 -0.864 0.778 
BUTT   -2.355 1.771 -0.928 0.822 
CABL -0.238 0.829 1.237 0.638 0.748 0.703 
CACC   1.803 0.926 2.413 1.220 
CAFM     0.374 0.918 
CAMS     -0.116 1.110 
CATH -3.381 1.730 0.610 1.042 -2.597 1.070 
CBLV -3.536 5.647 -1.775 0.940 -0.896 0.835 
CCPW   -0.898 1.266 -0.372 1.561 
CHCM -3.951 2.688 -1.716 0.931 2.747 1.258 
CHEL -3.035 1.194 -1.848 1.302 0.016 1.065 
CHEM   -1.439 0.684 0.581 0.866 
CHLW     2.244 1.527 
CHST   1.219 4.056 2.329 2.861 
CHW2   0.137 1.104   
CHWK 0.470 1.075 0.400 0.933 -0.143 1.376 
CHZZ -0.564 1.054 -0.755 0.915 -1.096 1.271 
CIHL   -1.521 0.878 0.338 1.004 
CLCV   -1.195 1.311 -0.516 1.540 
CLHQ   -1.748 2.206 0.073 2.561 
CLMS   0.047 1.395 0.005 1.108 
CLRS 4.408 2.236 1.535 0.793 1.617 0.872 
CLWZ   -2.988 1.709 -1.433 1.518 
CNCR -2.533 1.893 -1.928 0.805 -1.654 1.168 
COLV -0.811 1.787 -0.579 0.771 -1.854 0.936 
COND   -1.808 0.714 -0.871 0.710 
CORV -1.063 0.846 0.470 0.752 -0.840 1.922 
COTT   0.105 0.824 -7.379 1.499 
COU2     3.229 1.311 
COUG -1.640 2.655 1.370 2.751 -3.343 1.830 
COUP -0.773 1.095 0.595 0.876 -0.330 0.896 
COUR   2.149 0.802 10.299 3.331 
CPCO   -1.932 2.495 2.470 2.314 
CPUD -1.371 1.369 -5.004 1.817 -0.675 3.837 
CPXF -0.153 1.289 -1.777 1.020 -1.387 1.387 
CPXX -0.820 1.075 -1.369 0.653 -3.728 6.252 
CRA4   -0.166 1.098 0.786 1.210 
CRA5     -1.591 1.055 
CRNB -5.015 6.229     
CROK -2.921 1.271 -1.060 0.809 -4.337 1.113 
CSHQ   -0.957 1.552 0.272 1.255 
CSHR -0.375 1.802 -0.021 1.756   
CSKI -6.003 1.745 -1.886 1.235 -0.842 1.286 
CST1   -0.574 1.126 0.751 1.168 
CTPT -0.483 1.652 -0.645 0.685 -0.940 1.139 
CULM     -0.310 1.570 
CUSH -2.103 3.892 0.506 0.933 0.016 1.227 
CVO1 -2.333 0.843 -0.293 0.894 -0.576 1.279 
DANP     -1.081 1.057 
DBLO     2.283 5.032 
DCSO -0.886 0.878 -0.336 0.714   
DDSN -0.693 0.741 -0.054 0.610 -1.227 1.178 
DEA2 -1.007 1.169       
DEEJ   1.807 1.060 3.688 0.993 
DLTA     -0.263 0.953 
DMND   -0.268 0.761 -1.867 2.196 
DR2O   0.516 2.991 0.299 0.781 
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DRA3   3.149 1.916 0.066 0.949 
DRA4   -0.725 1.225 0.400 0.974 
DRAO -0.006 0.669 -0.532 0.738 0.088 0.786 
DVPT 0.750 1.508 -1.196 0.817 -1.675 0.879 
DWH1 -1.120 1.478       
EGLI     9.093 4.176 
ELGN   2.062 1.324 0.269 1.119 
ELSR -2.183 1.052 -1.352 0.883 -1.547 0.869 
EM01   -1.639 1.174 -0.777 1.518 
ENTR   -0.581 0.689 -0.931 1.063 
ENUM -1.987 1.131 -1.691 1.082 1.152 2.013 
EPHR -0.260 1.379 -1.291 0.789 -1.638 0.813 
EVER   -7.608 1.329 0.445 1.391 
FAND     7.292 4.821 
FITZ   -4.283 1.531 -0.481 1.233 

FOST   3.514 1.051 1.164 0.659 
FOUR     -6.724 5.794 
FRFX   -2.546 0.890   
FRID -0.498 1.399 1.220 14.029   
FSRH 0.050 2.155     
FTS5 1.420 0.872 0.396 0.623 1.529 1.616 
FTS6 -0.499 0.910 0.520 0.621 1.401 1.920 

FWBD   -0.551 0.761 -0.326 0.760 
GBN1   -1.789 1.521 -4.613 3.495 
GBN2   -0.511 2.442 -6.901 6.360 
GBN3   -0.638 2.099 -4.001 3.682 
GBN4   0.388 1.834 -1.801 3.178 
GBN5   -0.593 1.326 -4.715 2.812 
GBN6   0.504 2.008 1.001 8.269 
GHCL     1.077 1.142 
GLNW -3.831 2.522 -0.880 2.647   
GLWD   1.317 1.320 -6.036 1.413 
GOBS -1.811 0.640 -1.598 0.609 -1.541 0.875 
GOLY -3.748 1.895 -1.832 0.790 -1.870 0.919 
GRAV   -0.929 1.220 2.601 1.067 
GRCK 1.908 1.936 -0.097 0.817 -2.491 0.867 
GRMD -4.198 1.535 -2.035 0.953 2.983 1.665 
GRP4 -1.375 1.046 -0.533 1.293     
GRSV   -2.098 0.678 -0.682 0.874 
GTPS 0.420 1.866 0.023 0.745 -1.001 1.283 
GUAN   -3.493 2.090 3.082 1.210 
GWN5 -2.981 1.109 -2.510 0.719 -0.840 2.261 
GWN6 -5.420 1.241 -2.239 0.764 -1.242 2.408 
HAHD   -1.278 0.960 -3.185 1.082 
HALF   -0.768 0.820 -0.425 0.835 
HGP1 -2.098 1.454 -268.879 17.659     
HLSY -3.355 1.875 -0.353 2.401 3.262 2.535 
HOTS   -3.136 2.188     
HRPR     -0.397 0.962 
HRTM   -3.093 3.398 -7.264 1.623 
HTCH 7.503 9.214 -2.379 3.177   
HUSB 7.765 1.571 4.926 1.214 7.918 1.702 
HWKV   -0.700 2.526 1.126 1.591 
IDBO   -1.597 1.727 -1.770 0.761 
IDCA   1.040 2.633 -0.334 0.909 
IDFL   0.217 1.597 -2.085 0.818 
IDHD   465.554 118.339 -0.779 0.756 
IDLW   0.332 2.364 -0.402 0.838 
IDM1     -0.804 1.267 
IDMH   -2.182 1.504 -3.337 0.811 
IDMN     -2.907 1.049 
IDNA   0.056 1.642 -1.699 0.808 
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IDNP -0.365 0.857 -0.620 0.601 0.110 1.166 
IDNR   -1.372 2.472 -1.681 1.072 
IDTD -1.375 0.845 -3.006 0.905 -0.959 1.004 
INW1 -0.648 1.152 -1.117 1.570     
IWAC -2.034 1.483 2.005 1.669     
JAKE   3.189 1.521   
JIME -1.240 0.813 -0.569 0.960 -1.580 1.179 
JKPR     -5.648 1.470 
JOBO   -1.869 1.243 -0.076 1.070 
JORD     1.548 2.618 
JRO1 -4.433 1.034 1.029 0.848 0.085 0.773 
JUN1   -1.472 2.532 -0.808 0.982 
KAHL 0.320 42.732 -2.132 240.550   
KEL1   -1.318 1.135   
KELS -1.699 0.956     
KENI 13.108 1.694 -1.265 0.788 -1.566 1.009 
KFRC   -2.355 0.942 1.209 1.570 
KLO3     0.498 1.025 
KLTS   -0.027 1.096 -1.277 1.081 
KLWN     0.287 1.117 
KOOT -1.733 1.278 -0.248 0.835 -1.226 0.894 
KRMT -0.811 1.724 -2.978 1.417     
KTBW -1.151 0.669 -1.057 0.658 -0.724 0.889 
KWBU   -2.838 1.323 -1.242 1.390 
LAPN 2.405 1.369 -0.217 1.029 -5.322 1.120 
LCR1     -0.938 0.773 
LCSO -1.280 6.105 0.283 3.127 -0.040 1.379 
LFLO -1.211 1.147 -0.619 0.851 -2.129 1.148 
LIKE   -4.813 2.271 -11.798 9.008 
LINH -2.871 0.848 -2.162 0.897 -0.967 1.035 
LINL   -2.271 2.481 -2.077 3.954 
LKCP -2.587 0.794 -1.725 0.810 -2.199 1.161 
LKVW   -1.845 1.103 -1.712 0.855 
LMID   -2.417 0.889 -2.737 0.943 
LNG2   -2.281 1.075 -0.917 0.784 
LNGB -0.288 1.119 -1.165 0.663 0.009 0.878 
LNGV   -0.221 0.708 -3.719 1.496 
LNRD   -0.566 1.314   
LOST   1.145 1.926     
LPSB -0.526 0.828 -0.278 0.647 -0.284 1.105 
LSIG -1.730 1.160 -2.050 0.887 -2.730 0.888 
LTAH 0.602 1.108 -1.291 0.753 -1.657 0.853 
LVIL   -1.721 1.357     

LWCK   0.819 1.024 0.306 9.205 
LWST -4.005 2.139 -0.651 0.659 0.242 0.872 
MADE -0.442 1.960 2.471 3.109 -8.069 3.530 
MASC   -2.062 0.624 -0.878 1.379 
MCSO -0.013 0.880 -0.098 0.699 0.914 1.081 
MDMT -2.321 1.158 -2.525 0.941 0.299 1.452 
MDRS   -2.297 0.747 -1.041 0.909 
MECR   5.767 1.702     
MGRB     3.224 3.042 
MHTL -1.535 2.086 -2.956 1.357 1.196 1.737 
MIS1   -0.855 0.808 -1.591 0.989 

MKAH 2.102 4.220 3.525 1.227 1.323 1.153 
MLKE   -3.862 1.345 0.131 0.867 
MODB -0.114 0.990 -1.390 1.060 -0.033 1.230 
MON3   -0.105 0.830 0.164 3.844 
MRIB     2.456 0.788 
MRSD -7.035 5.033 0.206 1.285 -0.022 1.242 
MSLK -3.730 1.660 -1.660 1.270     
MTCL   -4.414 4.409 -0.638 0.880 
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MUIR -3.445 2.088 -3.228 0.964 -1.491 1.403 
MYRA   7.835 3.546 2.699 1.394 
NANA   0.235 0.780 2.709 0.984 
NANI   0.268 1.215 1.291 1.257 
NANO 0.211 0.690 1.463 0.603 2.157 0.702 
NCOW   -0.345 0.913 0.930 0.988 
NEAH 2.214 0.976 3.473 1.406 1.738 1.816 
NEWP 0.530 1.092       
NGWN   -2.909 3.365 2.974 1.475 
NINT -5.799 1.621 0.479 1.825 -0.457 1.285 

NORM   -1.599 1.123 -0.836 1.123 
NVAN     0.776 1.041 
NWBG -0.719 0.872 -0.178 0.940 5.243 2.546 
NWE3   -1.672 0.986 -0.566 0.826 
NWPT -0.103 1.251 0.098 1.229   
OAKR   -1.790 0.725 -2.161 0.885 
OBEC -1.809 1.161 -1.015 1.335 0.315 1.322 
OBSR -1.229 2.933 -0.604 0.734 0.228 1.025 
OCEN   -0.182 0.761 2.495 0.998 
ODOT   -0.362 0.731 0.010 0.943 
ODSA     -1.180 0.835 
OKNG   -1.763 0.813 -1.607 0.995 
OLAR   -1.261 0.936 -1.373 0.826 
OLI1   -0.883 0.849 -0.533 0.894 

OLMP   -2.335 0.829 -4.059 0.990 
ONAB -0.750 3.221 -1.084 0.698 -4.784 1.021 
ONT1     -0.845 0.693 
ORAL   -2.254 3.967 -1.135 0.754 
ORBN   -1.071 2.493 -2.603 2.084 
ORCD   -3.694 2.987 -1.455 0.782 
ORDO   1.321 3.273 -0.933 0.834 
OREU   1.739 3.121 -0.088 0.754 
ORFL   -0.745 3.093 0.214 0.860 
ORGR   -0.150 2.531 -1.146 0.836 
ORHA   0.639 3.084 0.124 0.863 
ORHI   2.031 2.620 -1.607 0.845 

ORHM   0.072 2.849 -2.178 0.950 
ORHP     -1.419 0.815 
ORK5 3.277 15.847 -3.167 0.888   
ORK6 2.445 16.441 -3.910 0.887     
ORKF     -2.699 0.921 
ORM1     -1.401 0.931 
ORMF     0.708 0.770 
ORMO     -0.684 0.790 
ORMV   0.555 2.835 -0.756 0.803 
ORNW   3.581 3.291 0.324 0.980 
OROR   -1.570 3.289 -1.092 0.911 
ORPE   0.164 3.471 -0.642 0.825 
ORPO -2.314 1.409 -0.122 1.022 -1.313 0.867 
ORRB     -0.229 0.766 
ORS1 -0.627 0.843 -0.318 0.967   
ORS2 -0.564 0.975 -0.467 1.030     
ORSB   -4.100 1.032 -4.228 1.377 
ORSH   -2.651 3.671 -0.550 0.768 
ORSL   0.975 2.892 -0.117 0.800 
ORTA   2.064 3.135 -0.124 1.029 
ORTI   -4.651 3.007 -0.373 0.815 

ORWA   -2.635 3.120 -1.148 0.802 
OTHL -2.840 1.329 -1.141 1.687 0.818 1.280 
OTIS -1.322 22.726       
OYLR -3.376 1.739 -3.219 1.883 -1.756 1.594 
P013 -0.060 1.143 0.106 0.584 1.173 0.791 
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P017 -0.470 1.139 -0.439 0.695 -0.590 0.835 
P018 -2.296 1.582 -0.682 0.503 -1.612 0.738 
P019 -0.251 1.152 -1.701 0.571 -1.014 0.709 
P020 -1.126 0.764 -0.835 0.551 -0.410 0.653 
P021 -0.788 0.832 0.182 0.683 -0.160 0.825 
P022 -0.483 0.941 -0.223 0.716 -0.169 0.937 
P023 -0.395 1.207 -0.017 0.667 -0.467 0.812 
P024 0.353 3.048 -0.246 0.571 -0.029 0.761 
P025 0.260 1.356 0.668 0.677 0.640 0.764 
P061 -0.150 1.215 -0.505 0.770     
P062 -1.299 1.471 -0.824 0.652 0.272 0.802 
P063 -2.117 0.919 -1.454 0.640 -1.311 0.794 
P064 -0.081 3.160 0.824 0.805 1.679 6.642 
P065 -2.169 1.144 -1.607 0.713 -0.912 0.843 
P145 -0.395 0.994 -0.721 0.588 -0.538 0.853 
P154 0.630 1.411 -0.369 0.763 0.674 0.972 
P155 0.578 1.421 -0.344 0.700 -0.696 1.013 
P179 -0.838 1.609 -0.539 0.779 0.877 0.932 
P191 -0.619 1.516 -0.158 0.735 0.032 0.931 
P316 -2.093 1.085 -1.087 1.160 -1.192 1.370 
P325 2.007 0.975 1.795 0.633 2.748 0.736 
P347 -0.841 1.378 -1.013 0.648 -1.497 0.898 
P362 0.842 1.145 2.110 0.599 0.601 0.995 
P363 -0.578 1.377 0.417 0.682     
P364 0.687 1.363 1.764 0.619 2.142 0.737 
P365 -0.352 1.193 0.186 0.617 1.132 0.727 
P366 -2.515 2.051 -0.731 0.710 0.652 0.918 
P367 -1.488 1.038 -0.577 0.604 -0.353 0.799 
P368 -1.094 1.021 -0.354 0.675 0.708 0.757 
P369 -0.901 0.951 -0.752 0.645 -0.039 1.478 
P370 -0.828 0.972 -0.796 0.706 -0.369 0.891 
P371 -1.528 0.788 -0.254 0.576 -0.393 0.862 
P372 -1.009 1.173 -0.211 0.611 -0.363 0.717 
P373 -1.073 0.832 -0.115 0.637 -0.627 0.826 
P374 -0.826 1.022 -0.311 0.708 -0.076 0.828 
P375 -0.455 1.925 0.022 0.636 0.542 0.837 
P376 -1.377 0.775 0.017 0.633 1.120 0.759 
P377 -1.394 0.962 -0.268 0.605 -0.908 0.853 
P378 -1.338 1.186 -0.225 0.570 0.010 0.753 
P379 -1.810 0.969 -0.274 0.898     
P380 -1.594 0.745 -1.303 0.598 0.513 0.742 
P381 -2.398 1.266 -0.745 0.580 0.760 0.677 
P382 -1.333 3.712 -1.269 0.862 -0.030 1.092 
P383 -0.377 1.303 -1.129 0.594 -0.895 0.745 
P384 -2.295 3.359 -0.766 0.686 -0.433 0.793 
P385 -1.334 1.924 -1.839 0.800 -2.522 1.575 
P386 -0.813 1.195 0.041 0.647 -0.298 0.740 
P387 -4.146 1.434 -2.077 0.844 -1.344 0.972 
P388 -1.384 0.966 -0.435 0.742 0.193 0.842 
P389 -1.938 1.154 -0.554 0.574 0.534 0.684 
P390 -1.123 1.232 -0.259 0.551 0.475 0.723 
P391 -3.322 2.121 -0.610 0.565 -0.204 0.667 
P392 -1.659 1.117 -1.393 0.550 -1.157 0.669 
P393 -1.831 1.280 -0.361 0.560 -0.687 0.698 
P394 -0.561 1.135 -0.005 0.623 -0.347 0.722 
P395 -1.484 1.162 -0.156 0.748 0.736 0.965 
P396 -2.387 1.641 0.027 0.852 -0.727 1.184 
P397 -2.771 1.173 0.592 0.649 0.925 0.773 
P398 0.047 0.986 0.332 0.612 2.339 1.178 
P399 0.577 3.203 1.005 0.710 0.732 1.184 
P400 3.822 4.619 1.324 1.439 2.536 2.732 
P401 0.057 0.769 0.797 0.585 0.377 0.867 
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P402 1.535 1.109 1.708 0.621 1.787 0.772 
P403 0.168 1.054 2.633 0.838 2.965 1.202 
P404 -1.958 0.943 -0.344 0.644 -0.619 0.827 
P405 -0.130 1.750 -0.555 0.670 -1.613 0.736 
P406 -1.427 0.891 -0.489 0.609 -0.349 0.823 
P407 -0.385 1.317 0.771 0.859 -0.805 1.099 
P408 -2.131 0.956 -0.903 0.738 -0.570 0.895 
P409 -1.183 0.817 -0.765 0.653 0.081 0.885 
P410 0.219 2.005 -1.528 0.683 -1.651 0.839 
P411 -0.844 1.278 -0.164 0.745 -0.350 0.947 
P412 -1.670 0.993 -0.921 0.598 -1.007 0.701 
P413 -3.452 2.360 -0.470 0.716 -0.717 0.902 
P414 -2.011 1.000 -0.813 0.628 -0.983 0.728 
P415 -1.430 0.821 0.084 0.690 0.388 1.407 
P416 -3.122 2.236 -1.047 0.663 -0.965 0.860 
P417 -1.755 0.981 -1.402 0.716 -0.717 1.085 
P418 -0.610 1.083 0.116 0.645 -1.048 0.855 
P419 -1.346 2.586 0.349 0.798 -0.526 1.088 
P420 -1.600 0.748 -1.195 0.582 -0.880 0.695 
P421 0.636 1.688 -1.149 0.670 -2.299 0.939 
P422 -1.207 1.190 -0.436 0.591 -0.645 0.699 
P423 -1.300 0.912 -0.817 0.708 0.222 0.904 
P424 -2.763 3.659 0.040 0.803 0.069 0.908 
P425 -6.049 2.660 -1.299 0.610 -1.535 0.882 
P426 -2.854 0.991 -1.549 0.766 -1.047 1.557 
P427 -2.946 0.921 -1.633 0.600 -1.717 0.757 
P429 -2.487 1.205 -1.840 0.718 -1.840 0.889 
P430 -0.494 0.876 -0.464 0.990     
P431 -3.302 1.574 -1.418 0.585 -0.975 0.776 
P432 -2.334 0.843 -0.853 0.711 -0.500 1.061 
P433 -2.234 1.919 -1.066 0.696 -1.249 1.756 
P434 -2.405 1.944 -0.852 0.623 -0.441 0.731 
P435 1.263 1.266 -0.398 0.925 -0.586 1.212 
P436 -0.721 1.184 -0.332 0.769 1.060 1.042 
P437 -1.864 1.363 -1.229 0.660 -1.071 0.830 
P438 -1.226 0.949 -1.382 0.587 0.450 0.904 
P439 -0.784 0.870 -0.481 0.621 -0.468 0.825 
P440 -1.134 1.106 -1.475 0.611 0.045 0.718 
P441 -2.754 3.326 -0.008 0.791 -0.325 0.875 
P442 -2.245 1.234 -0.483 0.868 -2.508 1.870 
P443 -2.734 2.460 0.050 0.795 0.169 0.977 
P444 -2.889 1.474 0.420 0.995 -1.689 1.988 
P445 -2.329 0.909 -1.269 0.661 -1.193 0.769 
P446 -2.331 1.363 -0.782 0.675 -1.397 0.839 
P447 -2.610 1.323 -1.302 0.561 -1.188 0.717 
P448 -3.189 0.935 -2.525 0.637 -2.871 0.755 
P449 -2.823 0.924 -1.550 0.601 -0.989 0.821 
P450 -2.281 0.781 -1.476 0.586 -1.445 0.690 
P451 -0.932 0.853 -0.870 0.591 -0.886 0.705 
P452 -1.377 0.950 -1.236 0.721 -0.615 0.916 
P453 -1.227 0.793 -0.925 0.647 -0.425 0.974 
P454 -1.349 0.813 -0.681 0.601 -0.146 0.715 
P655 0.088 1.626 -1.320 1.065 3.439 2.839 
P656 1.890 1.611 -2.323 13.408 2.316 17.839 
P657 1.189 1.725 -1.461 0.984 0.651 1.271 
P658 0.378 1.600 -0.782 0.920 0.270 1.735 
P659 -1.263 2.733 -1.397 1.578 2.265 2.195 
P660 -4.434 3.514 -1.375 1.817 4.772 3.671 
P661 0.175 1.385 -0.924 0.832 0.051 1.143 
P663 1.908 2.047 -0.757 1.037 -0.340 1.431 
P672 -0.992 0.943 -1.932 0.754 -0.197 0.886 
P673 -3.992 1.578 -5.381 1.367 -1.941 1.422 
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P674 -0.871 1.251 -3.031 0.893 0.004 1.236 
P687 -2.166 1.481 -1.426 1.044 -1.415 1.649 
P688 -3.044 3.927 -1.173 1.236 -0.011 1.547 
P689 -1.753 0.860 -0.684 0.597 -1.104 0.860 
P690 -3.709 1.621 -1.200 1.413 -1.923 1.309 
P691 1.277 1.146 -0.773 0.696 -0.688 0.938 
P692 0.055 1.589 -0.172 0.792 -1.032 0.995 
P693 -3.569 1.339 -1.528 1.615 -2.914 1.677 
P694 -0.664 1.401 0.644 0.862 -0.733 0.793 
P695 -1.967 1.293 -1.824 1.064 -2.201 1.089 
P696 -2.722 1.096 -1.353 0.857 -0.727 1.212 
P697 -4.586 1.698 -2.804 1.770 -2.885 2.180 
P698 -2.789 1.119 -0.956 0.843 -1.377 1.006 
P699 -5.821 2.386 -2.164 3.845     
P700 0.289 1.395 -1.066 0.757 -0.971 1.010 
P701 0.261 1.497 -0.672 0.898 -0.841 1.079 
P702 -2.455 0.781 -0.843 0.662 -0.338 1.014 
P703 -1.343 2.413 -1.087 1.161 -2.116 1.975 
P705 -1.977 4.648 -0.955 0.910 -0.719 1.749 
P730 -0.962 1.500 -0.673 0.798 -1.293 0.999 
P731 0.422 1.344 -0.696 0.685 -2.396 0.904 
P732 -5.294 1.892 -0.217 0.658 0.348 0.896 
P733 3.047 4.470 1.266 0.637 2.185 0.837 
P734 1.180 1.350 2.101 0.744 1.987 0.838 
P735 -2.434 2.737 0.005 0.688 0.596 0.846 
P736 -3.315 1.904 -1.635 0.758 -0.080 0.784 
P737 -2.426 2.433 -0.819 0.751 -1.954 1.198 
P738 -1.047 2.059 -0.154 0.752 -0.030 0.891 
P739 -1.646 1.871 -0.183 0.650 -0.324 0.738 
P784 0.006 3.069 -0.520 0.715 -0.173 0.826 
P786 1.176 3.945 0.869 0.787 0.043 1.113 
P791   -2.694 1.445 -1.208 1.315 
P792 -2.226 4.400 -0.777 2.707 -0.951 7.945 
P813   -1.857 0.930 -1.150 1.080 
P814   -1.708 0.879 -3.679 12.651 
P815   0.085 0.865 1.414 0.733 
P816   0.556 0.885 1.037 0.870 
P820     0.607 0.876 
P821     1.610 0.988 
PABH -1.404 0.639 -0.031 0.590 0.787 0.691 
PARP   -0.621 1.912     
PCOL -1.310 0.860 -0.120 0.866 -1.731 0.992 
PCS2 -2.310 1.600 -0.358 1.743 -4.551 1.875 
PDTN   -1.111 0.777 -1.187 1.732 
PDXA 1.063 2.557 -1.233 0.944 -0.970 1.050 
PER1 -2.498 1.659 -5.715 3.562     
PFLD -2.020 0.856 -1.134 0.731 -0.546 0.889 
PGC5 -1.150 0.889 0.158 0.637 1.046 0.748 
PKDL 9.031 48.025 -1.697 1.006 -3.340 1.608 
PKWD -3.282 2.141 -3.688 1.770 -2.048 2.011 
PLMN -2.684 1.465 -0.032 0.742 -1.874 0.766 
PLNA   -0.642 0.881 -0.984 0.818 
PMAR -2.733 1.200 -0.292 1.077 -1.273 1.690 
PNCL -0.488 1.308 -69.465 4.234     
PNDL -1.938 1.209 -57.369 7.750     
PNHG 1.073 6.429 -17.180 16.634 -10.724 2.989 
PNHR   -17.196 6.209     
PNTC   -1.024 0.833 -0.002 0.886 
PNVL   -1.043 0.668 -3.059 0.821 
POME 3.470 3.590 0.797 1.762 -0.832 6.820 
PORC   -3.374 1.003 -2.139 0.815 
POTH   -3.316 2.042   
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POUL -4.809 2.570       
PRDY -0.002 1.021 -1.487 0.691 -0.549 0.975 
PRSR -2.071 1.645 -1.379 0.883 -1.854 1.843 
PSEA -3.134 1.136 -1.615 1.132     
PSPT -1.245 1.517 -0.868 0.822 -1.928 1.196 
PTAA   0.080 0.875 -0.469 1.111 
PTAL 2.979 0.710 2.693 0.648 3.486 0.728 
PTRF 1.547 1.907 2.911 0.931 1.793 0.944 
PTSG 1.261 0.849 1.669 0.584 2.303 0.730 
PTSN 2.104 2.734 -0.141 1.297 -1.295 1.094 
PUPU 0.333 1.690 -2.431 1.663 -1.662 3.400 
QMAR 1.090 2.806 -0.886 1.522 -0.142 2.099 
QUL2   1.368 1.178 2.437 0.921 
RDL2     -0.453 1.410 
REDM -2.104 0.681 -1.711 0.575 -1.283 1.128 
REED   -1.287 0.687 -4.794 1.385 
RIC2 -5.143 2.521 -0.788 0.842 0.163 2.158 
RKD1   -0.530 0.763 0.808 1.036 
RMDB -1.850 0.850 -1.619 0.584 -13.250 1.919 
RMRK -3.086 4.403 -1.734 0.996 -0.730 1.107 
ROKY     -1.671 1.392 
RPT5 -1.324 0.969 -2.036 0.606   
RPT6 -2.376 0.844 -2.672 0.659     
RPUB   -0.801 0.952 -0.103 0.984 
RSBG   -0.481 0.958 -0.396 1.340 
RYA1   0.388 1.286 -2.489 1.442 
RYMD -3.744 1.820 -0.458 0.687 -3.275 1.029 
SAC4   -1.225 2.330 -666.342 170.056 
SAMM 0.152 5.327 -2.186 1.043 -0.801 1.562 
SATS 2.899 7.424       
SC00 -0.707 0.781 -2.765 0.931 -1.610 0.848 
SC02 -0.671 0.666 -0.226 0.592 0.303 0.774 
SC03 1.967 1.227       
SC04 -0.073 0.772 0.805 0.727 1.210 0.821 
SCHO   0.830 2.170     
SCMV -2.461 1.669 -1.264 0.737     
SEAI -2.021 1.040 -1.806 0.967     
SEAS 2.760 2.759 0.399 0.643 -1.311 3.073 
SEAT -1.841 0.661 -1.946 0.616 -2.882 0.967 
SEDK -1.672 1.393 0.971 1.664     
SEDR -1.962 0.874 -0.935 0.780 -0.823 0.863 
SEPR     -20.690 1.998 
SEQM   -0.473 1.264 0.701 1.034 
SHLD -0.981 0.755 -0.312 0.603 -0.391 0.796 
SHRK   -1.226 2.180 -1.338 1.127 
SKCO     -3.693 1.239 
SKGT     -1.816 0.867 
SKMA 3.768 2.840 -1.998 1.161   
SKND   -0.158 3.492     
SLUM   -1.893 2.014     
SMAI -3.121 0.803 -1.231 0.750 -1.441 0.855 
SNDR     1.318 4.069 
SNOQ -2.390 2.185 0.033 3.181 -1.248 0.949 
SNRS -6.675 6.920 0.846 2.599 -1.621 4.099 
SPKN 0.179 1.193 -1.296 0.850 -0.153 1.062 
SPKV -1.394 1.883       
SPN5 -1.573 0.864 -0.576 0.645    
SPN6 -2.986 0.953 -0.725 0.656     
SPRA   -1.527 0.767 -0.682 0.784 
SPRG -2.025 1.598 -0.208 0.670 -0.225 0.757 
SQAW   -0.147 1.823 -2.730 3.449 
SQIM -3.546 1.590 0.301 1.274     
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SQMS   -0.578 1.153 0.196 1.152 
SSHO -0.512 0.984 -3.154 0.846 -1.660 0.948 
STAY 0.719 0.943 -0.282 0.727 -0.436 0.932 
STHM -1.517 1.785 -1.833 3.388 2.521 1.888 
SUHS   -0.503 0.796     
SUPR   0.790 1.619 -2.806 0.772 
SUR6 -3.931 2.360       
SURR   -3.727 0.888 -2.374 1.035 
SVI2   -1.755 0.988 1.520 0.827 

SWNB   -1.563 0.822 -0.133 0.846 
SWRN   -4.698 2.948     
SYNC   3.871 3.691 -9.434 7.028 
TACO -3.698 2.245 -2.269 0.748 -1.875 0.829 
TAY1 -2.709 1.408 4.352 2.606     
TDLS -2.878 1.581 -1.579 0.828 -3.049 20.583 
TFNO 4.110 4.666 0.818 0.822 2.953 0.928 
TGAU   5.425 6.316     
TGUA -4.738 1.231 -0.183 1.500 -0.946 1.249 
THAR -0.099 1.537 0.047 1.244 -1.197 1.185 
THRM   1.122 2.378     
THUN 0.168 1.139 -1.283 0.613 -1.095 0.692 
TILL 1.121 2.917 -0.788 0.732 -1.017 1.258 

TMBU   -0.821 1.137 -0.152 1.185 
TPW2 -0.812 0.770 0.062 0.682 -0.252 0.847 
TRAI   -3.133 1.424 -0.706 1.185 
TRND -1.357 0.787 -1.303 0.825 -1.176 0.850 
TSEP   -35.242 42.435     
TSTU -2.634 1.357 -3.921 1.227 -3.993 1.023 
TULE   -0.848 1.690     
TUMW -1.456 1.720 -1.543 1.317 -0.606 1.467 
TWHL -1.215 0.682 -0.436 0.691 -0.787 0.897 
TWIW -1.065 1.256 0.064 1.102 -1.373 1.289 
TWRI -4.300 2.392 -0.251 3.838 -1.714 1.807 
TWSP   -2.735 2.231 -0.207 1.198 
UCLU 1.178 0.837 1.242 0.746 1.508 0.785 
UFDA -0.815 1.818 -0.671 0.806 -0.983 0.986 
UKIA   -0.543 0.722 -0.884 0.731 

VCWA -1.107 1.868 -0.818 1.092 -1.689 0.950 
VNCR   -3.976 3.003     
VRNT -3.327 1.387 0.124 1.050 -2.306 1.382 
WABR   -0.536 1.312 -1.119 0.801 
WACC   -0.632 2.729 -0.623 0.739 
WACS   -1.493 0.889 -0.563 0.766 
WACX   -0.406 2.864 -0.546 0.875 
WACY   2.171 2.081 0.313 0.754 
WAEL   -0.652 2.806 -1.743 0.763 
WAEN   -3.001 3.027 -1.427 0.737 
WAEV   -2.044 0.874 -1.171 0.771 
WAFD   -1.070 1.832 -0.691 0.730 
WAFH     -0.362 0.788 
WAFR   -2.549 1.647    
WAGO   -1.802 1.018     
WAKI -1.257 1.047 -1.677 0.680   
WAKL   -0.719 2.747 -1.293 0.848 
WALA -1.743 1.284 0.231 1.074 0.524 1.558 
WALL   3.136 0.729     
WAMC   -2.128 0.938 -1.198 0.910 
WAMO     -1.360 0.860 
WAMS   -2.181 2.740 0.413 0.830 
WAMV   -0.651 2.460 -0.813 0.993 
WAMW   -5.371 4.420 -0.941 1.002 
WAOL   4.315 2.502 -0.839 0.820 
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WAOT   -1.907 2.877 -0.734 0.723 
WAOY   -4.064 1.066    
WAPA   -0.402 3.020 -0.642 0.806 
WAPO -2.462 1.285 -1.993 0.834 0.226 0.768 
WAPS   -2.514 0.904 -1.324 0.684 
WAQU   0.364 2.362 -1.164 0.764 
WARM   -0.730 2.846 -2.062 0.794 
WARZ   -2.734 2.929 -0.732 0.805 
WASK -0.645 0.963 -0.949 0.681 0.336 0.880 
WASN   -2.784 3.451 -1.203 0.807 
WASQ -5.068 1.597 -2.971 1.107 -1.266 0.915 
WATK   0.746 2.831 0.689 0.838 
WAWE 8.915 5.977 -1.340 1.914 -1.344 0.874 
WAWL   -0.370 2.284 -0.576 0.780 
WAYA   -1.271 2.798 -1.248 0.858 
WDBN -3.825 0.991 -3.505 0.817 -4.265 1.312 
WEBG   -0.613 1.844 2.389 1.018 
WHBR   -1.972 2.302 -2.952 4.391 
WHD5 -2.597 2.043 -1.194 0.688 -0.845 2.154 
WHD6 -4.844 1.508 -1.616 0.680 -0.750 2.157 
WIF3     4.618 2.560 
WIFC -3.380 4.103     
WIFR 6.375 7.857 3.175 1.383   

WMSG   -1.347 0.823 -0.835 1.111 
WNTH -2.570 2.567 2.007 2.764     
WRNR   -3.768 1.386 -1.074 0.921 
WVN3 0.715 3.294       
XANE   -1.174 1.033 1.531 2.241 
YAKI -3.727 0.838 -2.285 0.897 -2.017 0.888 
YAKS     -2.614 1.732 
YBHB -1.079 1.066 -1.017 0.966 0.301 1.373 
YELM -0.680 0.955 -1.436 0.645 0.818 1.022 
YONC   -0.645 0.659 -0.240 1.359 
ZSE1 -2.082 1.464 -1.830 0.726 -1.252 0.802 

*Station ABRN excluded due to insufficient data per period. 
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Table S2.4 Plate flexure modeling parameters. 

North American Elastic 
Plate Thickness, h  

(km) 

Flexural Rigidity, D 
 (GPa/m3) 

Flexural Parameter, a  
(km) 

5 6.67E+10 26.51 
7.5 2.25E+11 35.94 
10 5.33E+11 44.59 

12.5 1.04E+12 52.72 
15 1.80E+12 60.44 

17.5 2.86E+12 67.85 
20 4.27E+12 74.99 

22.5 6.08E+12 81.92 
25 8.33E+12 88.66 

27.5 1.11E+13 95.23 
30 1.44E+13 101.65 

32.5 1.83E+13 107.94 
35 2.29E+13 114.11 

37.5 2.81E+13 120.17 
40 3.41E+13 126.13 

42.5 4.09E+13 131.99 
45 4.86E+13 137.77 

47.5 5.72E+13 143.48 
50 6.67E+13 149.10 
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3 Vertical Land Motion of the High Plains Aquifer Region of the United States: Effect of Aquifer Confinement Style, Climate Variability, and Anthropogenic Activity 

Vertical Land Motion of the High Plains Aquifer Region of the 

United States: Effect of Aquifer Confinement Style, Climate 

Variability, and Anthropogenic Activity  
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3.1 Publication Status 

 

This section contains published material from: Overacker, J., Hammond, W. C., 

Blewitt, G., & Kreemer, C. (2022). Vertical Land Motion of the High Plains Aquifer 

Region of the United States: Effect of Aquifer Confinement Style, Climate Variability, 

and Anthropogenic Activity. Water Resources Research, 58(6), e2021WR031635, 

https://doi.org/10.1029/2021WR031635.   

 

 

3.2 Key Points 

 

• A GPS vertical velocity field with GIA removed reveals ~2 mm/year of uplift 

spatially correlated with the southern High Plains aquifer. 

• Uplift is consistent with seasonal and anthropogenic-driven hydrological 

unloading further aggravated by climate change. 

• The sign of vertical land motion from aquifer depletion depends on aquifer 

confinement style and land does not necessarily subside. 

 

 

3.3 Abstract 

 

We use GPS data to image vertical crustal velocities in the vicinity of the Great 

Plains physiographic province of the United States.  In the southern Great Plains, we find 

https://doi.org/10.1029/2021WR031635
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crustal uplift of up to 2 mm/year in an area ~670 km x 280 km.  This signal is spatially 

correlated with the area of greatest groundwater decline in the southern High Plains 

aquifer.  To determine the uplift mechanism and its possible relation to aquifer depletion, 

we investigate changes in aquifer water content.  Gravity data coupled with an elastic 

model show the uplift rate is consistent with hydrological unloading from anthropogenic 

aquifer depletion exacerbated by severe drought.  Our model that encompasses two 

regions of greatest groundwater decline indicates a water volume loss of −5.1 km3/year is 

sufficient to match the observed signal.  In other large aquifers, vertical crustal motions 

associated with groundwater depletion are often dominated by near-field subsidence.  Our 

results challenge the perception that vertical motions driven by aquifer depletion 

necessarily equate to near-field subsidence.  In the High Plains system, depletion causes 

near-field uplift because of the combination of mass removal and the style of geologic 

reservoir.  As current climate change models predict aggravated drought conditions in the 

southern Great Plains in the coming decades, we expect to see an increasing rate of uplift 

caused by groundwater depletion unless there is offsetting recharge or changes in water 

resource management. 

 

 

3.4 Plain Language Summary 

 

We use high-precision data from hundreds of GPS stations in the Great Plains 

region of the United States to create a map of vertical land motion in the area.  In the 

southern portion of the map, the land is moving up at a rate of almost 2 mm/year, which 
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contrasts the downward motion of the surrounding area.  The location of the uplift 

appears related to the southern portion of the High Plains aquifer.  We study climate, 

water, and GPS trends over time to understand if the upward movement is connected to 

dropping aquifer levels.  The data show that uplift is in response to water level declines 

caused by increased human reliance on groundwater from drought and drying climate 

patterns.  Though groundwater pumping over time typically suggests land subsidence, the 

water in the aquifer is at atmospheric pressure, and does not experience the pressure 

differential within an aquifer reservoir that causes the ground to go down.  Our results 

challenge the perception that vertical land motions driven by aquifer depletion 

necessarily equate to land subsidence.  

 

 

3.5 Introduction 

 

Vertical land motion is a response of the solid Earth to underlying geologic, 

tectonic, and geodynamic processes, as well as surface loading forces.  Relevant 

processes work on a range of spatial and temporal scales, with timing ranging from 

annual seasonality to millions of years, and spatial extent ranging from basin to 

continental scales.  Multiple processes may be simultaneously present in a region.  

Vertical crustal motion trends detected in Global Positioning System (GPS) time series 

can identify geologic processes such as tectonic uplift (e.g., Bürgmann et al., 2006; 

Beavan et al., 2010), magmatic injection (e.g., Dzurisin et al., 2009), mantle upwelling 

(e.g., Kreemer et al., 2020), interseismic buckling at plate interfaces (e.g., Burgette et al., 
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2009), glacial isostatic adjustment (e.g., Peltier et al., 2015), and aquifer depletion (e.g., 

Amos et al., 2014; Sneed et al., 2013; Young et al., 2021).  Each of these processes give 

different geodetic signatures (Pfeffer et al., 2017), and thus, measuring the timing and 

extent of vertical land motion patterns can illuminate which processes are at work. 

Previous geodetic studies have shown that hydrological effects in ground and 

surface water systems can impact the vertical crustal motions of a region, both seasonally 

(Amos et al., 2014; Argus, Fu, et al. 2014) and over decades (Hammond et al., 

2016).  These studies have shown aquifer depletion to cause subsidence through 

compaction of drained sediments (Faunt et al., 2016; Galloway et al., 1999) in addition to 

minor far-field uplift attributable to surface mass unloading (Amos et al., 2014; Argus, 

Fu, et al. 2014, 2017; Borsa et al., 2014; Martens et al., 2016; Chanard et al., 2018).  In 

this study, we use GPS Imaging, a technique that creates a vertical velocity field from 

GPS positioning time series, to detect and characterize an anomalous signal of crustal 

uplift in the southern Great Plains.  This signal contrasts with the forebulge collapse 

signal (i.e., subsidence) that dominates a large portion of the northern United States 

(Peltier et al., 2015; Kreemer et al., 2018; Argus et al., 2021; Sella et al., 2007; Karegar et 

al., 2016).  The distribution of uplift in the southern Great Plains approximately 

corresponds to the southern extent of the High Plains aquifer.    

The High Plains aquifer, also known as the Ogallala aquifer, is the largest 

groundwater system in the United States.  Predominantly located within the Ogallala 

Formation, water-bearing geologic units in this unconfined aquifer system consist of 

unconsolidated clays, silts, sands, and gravels from ancient interbraided streams and 

dunes (Weeks et al., 1988).  Though saturated sediments are not evenly distributed, 
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ranging from sparse to overlapping aqueous units, previous studies have concluded that 

there is sufficient hydraulic interconnection to consider the High Plains aquifer a 

continuous water table (Weeks et al., 1988).  The High Plains aquifer comprises an area 

of roughly 450,000 km2 beneath eight states; South Dakota (SD), Wyoming (WY), 

Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma (OK), New Mexico (NM), and 

Texas (TX) (Weeks et al., 1988).  These states rely on agriculture for a large component 

of their economy (Shafer et al., 2014), and the High Plains aquifer is a major source of 

groundwater for crop irrigation (Weeks et al., 1988; Whittemore et al., 2016).  Since the 

beginning of the 20th century, groundwater withdrawal rates indicate that aquifer water 

levels are in decline and, in some southern portions of the aquifer, water levels declined 

by over 45 m between 1900 and 2015 (Konikow, 2013; McGuire, 2017; Whittemore et 

al., 2016; Scanlon et al., 2012).   Between 1950 through 2007, an estimated 330 km3 of 

groundwater has been lost in the southern part of the High Plains aquifer (Scanlon et al. 

2012). 

We investigate the connection between the GPS uplift signal and hydrological 

conditions inside and intersecting with the High Plains aquifer boundaries, as identified 

by Willet et al. (2018), to determine the mechanism driving uplift and whether a 

relationship exists between uplift and anthropogenic groundwater withdrawal.  First, we 

examine the temporal and spatial pattern of vertical land motion in the Great Plains, 

which we consider to be within the longitude bounds of −96º to −106º and latitude 

bounds of 31ºN to 34.5ºN for the purposes of our study.  We use vertical component time 

series from 379 continuously operating GPS stations in the Great Plains region.  To 

prevent over sensitivity to seasonality or outlying data, velocity trends in the GPS time 
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series were solved using the Nevada Geodetic Laboratory’s (NGL) MIDAS robust trend 

estimator (Blewitt et al., 2016), which calculates vertical velocities for over 19,000 

stations globally (Blewitt et al., 2018).  These vertical velocities were then used in GPS 

Imaging to build an interpolated spatial pattern of vertical motion.  Resolution tests were 

performed to determine whether the velocity field was adversely affected by spatially 

inhomogeneous GPS station distribution.  Since continental-scale crustal flexure can also 

impact vertical motion in the mid-continent, the ICE-6G D (VM5a) glacial isostatic 

adjustment model (Peltier et al., 2015; Peltier et al., 2018; Argus, Peltier, et al. 2014) was 

used to correct for the regional uplift signal.  We incorporate climatic and groundwater 

data into our study to examine what roles surficial and subsurface hydrological signals 

might play in the regional uplift.  Spatiotemporal signals from the Palmer Drought 

Severity Index (PDSI), Gravity Recovery and Climate Experiment (GRACE), and 

groundwater well time series are compared with GPS time series within the High Plains 

aquifer bounds and GPS Imaging results.  Seasonal GPS time series signals were also 

examined for short-term hydrological impacts. 

The data when used in conjunction show that aquifer depletion is the underlying 

source of uplift in the High Plains aquifer.  These results have ramifications for studies of 

vertical land motion outside the Great Plains that are important to consider as GPS data 

usage for the purpose of constraining terrestrial water storage continues to grow.  In 

particular, vertical land motion signals will need to be clearly attributed to the correct 

mechanical sources before they can be used for interpretations or projections.  Changes in 

hydrological conditions in aquifers, especially those that are regionally extensive and 

heavily exploited, may be capable of causing regional vertical land motion whose sign 



 

 

110 

depends on the geologic properties of the reservoir, climate conditions, and cultural 

impact on the resource. 

 

 

3.6 Data 

 

3.6.1 GPS Data 

 

We use vertical component GPS data with a minimum 3-year time series duration 

from the NGL open access archive from 379 stations from various networks (Sup. Table 

S3.1) (Blewitt et al., 2018).  Positioning data used in this study span from the beginning 

of each respective GPS time series through 31 Dec. 2019.  The data were recently 

reprocessed to improve precision and accuracy using the Jet Propulsion Laboratory’s 

(JPL) GipsyX 1.0 software, and JPL’s final orbit and clock products (Bertiger et al., 

2020).  Signal delays attributable to the atmosphere were modeled and estimated using 

the Vienna Mapping Function (VMF1) with gridded a priori data taken from European 

Center for Medium-Range Weather Forecasts (ECMWF) models (Boehm et al., 2006).  

These models improve GPS estimates of crustal motion and, when used in conjunction 

with the updated IGS14 reference frame, provide more precise solutions in vertical-

component GPS time series (Martens et al., 2020).  All GPS vertical component time 

series and rates were calculated with IGS14-consistent models and standards, which 

aligns the IGS14 origin with the center of mass of the Earth system (Altamimi et al., 

2016).  Additional details about processing of the GPS observations into vertical 
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component time series including treatment of metadata, data editing, ambiguity 

resolution, antenna phase center calibrations, and estimation strategy are provided in 

Kreemer et al. (2018, 2020). 

 
 

3.6.2 GPS Time Series of the High Plains Aquifer 

 
We compare vertical component GPS time series directly with climate and 

hydrological data from the High Plains aquifer.  Using the locations of 379 GPS stations 

described in the previous section, we determined whether the station locations fell within 

the bounds of the High Plains aquifer as defined by Willett et al. (2018).  Of the 379 GPS 

stations in the survey area, 77 GPS sites are inside the High Plains aquifer (Fig. 3.1 and 

Sup. Table S3.2) while the rest are outside the aquifer and provide a reference against 

which to measure High Plains aquifer movement. The stations are divided into subsets 

belonging to the northern and southern High Plains aquifer which have very different 

vertical land motion patterns, as we will show.  Within the Willett et al. (2018) bounds, 

we define 38ºN latitude as the dividing line between north and south portions of the 

aquifer system; 28 and 49 stations are located north and south of 38ºN, respectively (Sup. 

Table S3.2).   
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Figure 3.1.  The High Plains aquifer (outlined in black) (Willett et al., 2018) 

encompasses parts of 28 climate districts (Vose et al., 2014), divided here by northern 
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(blue polygons) and southern (red polygons) portions of the aquifer system (Sup. Table 

S3.4).  GPS stations used by GPS Imaging are overlain (circles) (Sup. Table S3.1).  We 

classify 28 GPS stations as part of the northern part of the aquifer (blue circles) and 49 

GPS stations in the southern part of the aquifer system (red circles) (Sup. Table S3.2).  

121 groundwater wells sites are within our northern bounds (blue triangles), and 21 

groundwater wells are in the southern bounds (red triangles) (Sup. Table S3.5).   

 

The duration of these position time series range from the minimum 3 years to over 

two decades, and we consider 1 Jan. 2005 through 31 Dec. 2019 as the time period for 

our study.  In general, the time series are continuous, though a few gaps exist which can 

range from days to several months in duration but do not have a significant adverse effect 

on individual trend estimates.  Regional trends in vertical positions will be compared to 

GRACE, climate, and groundwater data discussed below. 

 
 

3.6.3 Gravity Recovery and Climate Experiment 

 

To investigate the spatial distribution of long-term hydrological trends in the High 

Plains aquifer region, we consider Gravity Recovery and Climate Experiment (GRACE) 

satellite data.  GRACE measures the changing distribution of mass, primarily water, on 

the Earth’s surface, including gravity perturbations caused by groundwater extraction 

(Tapley et al., 2004; Dunbar, 2013).  Because GRACE does not distinguish between 

different styles of containment within aqueous units, we consider GRACE data to be 

representative of mass variation in the High Plains aquifer water content as a whole 
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(Brookfield et al., 2018).  In this study, we use Goddard Space Flight Center (GSFC) 

GRACE time series solutions defined by 1 arc-degree (~100 km) mass concentrations 

(mascons) of gravitational pull to examine finer-scale regional gravity trends near the 

High Plains aquifer (Fig. 3.2) (Loomis et al., 2019).  The fundamental spatial resolution 

of GRACE is ~300 km, and therefore each GSFC mascon is strongly correlated to their 

nearest neighbor mascons (Luthcke et al., 2013).   

 GSFC GRACE trends, including data from the GRACE Follow-On mission, were 

calculated from the GSFC solutions (Loomis et al., 2019).  Continuous GRACE time 

series run from the start of the mission through present day, but mascon trends for the 

Great Plains were calculated through the last available data point in 2019, spanning 17 

Mar. 2002–16 Dec. 2019 (Fig. 3.3).  Fifty-eight mascons whose locations cover the 

geographical area of the High Plains aquifer system were divided into north and south 

parts of the aquifer based on their proximity to 38ºN latitude (Fig. 3.2 and Table S3.3).  

The northern High Plains aquifer has 28 GRACE time series, the southern High Plains 

aquifer has 30 (Sup. Table S3.3). 
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Figure 3.2.  GSFC GRACE trends shown for the High Plains aquifer (outlined in black) 

divided into north and south sections (heavy dashed line).  Gravity time series derived 

from 1º x 1º mascons (black squares) with GSFC mascon ID noted. 
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Figure 3.3.  GSFC GRACE trends shown for the Great Plains study area divided into 

north and south sections (heavy dashed line).  Gravity time series derived from 1º x 1º 

mascons (black squares) with GSFC mascon ID noted.  High Plains aquifer outlined in 

black. 
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3.6.4 Climatic Water 

 

To understand the role that climate change plays in the context of the High Plains 

aquifer and groundwater pumping, we gathered data from 28 climate divisions that 

overlap the aquifer region (Fig. 3.1) (Vose et al., 2014; Willett et al., 2018).  Periods of 

drought or wet periods are indicated by Palmer Drought Severity Index (PDSI) data, 

which uses precipitation, atmospheric moisture supply, and surficial moisture demand to 

represent hydrological variations in the climate (Dai et al., 2004).  Positive PDSI values 

indicate relatively wet periods and negative PDSI values indicate dry conditions.  We 

acquired monthly PDSI data from the National Oceanic and Atmospheric Administration 

(NOAA) National Climatic Data Center for 16 climate divisions in the northern and 12 

climate divisions in the southern part of the High Plains aquifer system.  The dataset is 

continuous over our study’s timespan (Sup. Table S3.4). 

 

3.6.5 Groundwater Well Monitoring 

 
 We use groundwater well data obtained for the High Plains aquifer system as an 

indicator for anthropogenic and climatic impacts on the aquifer.  We examine decadal 

trends in water levels and how they relate to GPS, GRACE, and PDSI trends.  The well 

data were retrieved from the United States Geologic Survey (USGS) Groundwater Daily 

database using the High Plains aquifer as search criteria for all data available between 

1900 through the end of 2019.  Multiple and interconnected well sites were culled so that 

only one wellhead per site was included in the study, since water level change was 
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essentially equivalent among sites on a single well.  Only groundwater wells within the 

High Plains aquifer bounds were included to be consistent with the GRACE, PDSI, and 

GPS data bounds, and sites were required to have a minimum of two data points.  The 

wells were then classified as northern or southern by their spatial relation to 38ºN 

latitude. 

Of the 142 wells that fit these criteria, 121 belonged in the northern High Plains 

aquifer and only 21 were in the southern High Plains aquifer due to the limited 

availability of public groundwater monitoring (Fig. 3.3 and Sup. Table S3.5).  In total, 

there is consistent regional well data in the northern High Plains aquifer ranging from 

1934–2019 and 1930–2019 in the southern High Plains aquifer.  The lengths of these 

time series range from days to many decades depending on the well.  Older time series 

generally have large gaps in data collection, sometimes spanning decades, while water 

levels in younger time series are typically measured more frequently, from days to 

months.  No individual well time series comprises the entirety of the historical timespan 

but, when used in conjunction, they demonstrate the overall trends of groundwater levels 

in the High Plains aquifer (Fig. 3.4). 
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Figure 3.4.  Historical water level trends from well data in (a) the northern High Plains 

aquifer and (b) the southern High Plains aquifer. 
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Water level changes were centered at zero for a given well’s first measurement 

for each of the 142 wells in the dataset.  The change relative to zero was then plotted 

against time.  Groundwater levels ≥5 m in the positive or negative direction between the 

first data point and the last measurement are considered to be significant increases or 

declines in the groundwater level.  Changes <5 m are not considered significant since 

groundwater measurements under 5 m typically returned back to the starting point over 

the lifespan of the well measurements.  This helped to identify long-term trends in 

groundwater use that might reveal a clearer picture of hydrological fluctuations in the 

High Plains aquifer, and potential anthropogenic contributions to the water levels. 

 

 

3.7 Analysis 

 

3.7.1 GPS Imaging Processing Flow 

 
Estimating vertical motions from GPS positioning data has traditionally been 

difficult owing to greater uncertainty in solutions for vertical positions and a diversity of 

processes contributing to the signals with low signal-to-noise ratios (Bennett and 

Hreinsdóttir, 2007; Mazzotti et al., 2007; Beavan et al., 2010).  While technical advances 

in GPS data reduction have improved accuracy of GPS positions (Argus, 2012; Schmidt 

et al., 2016; Sibthorpe et al., 2011), vertical velocities can still be sensitive to unmodeled 

effects (e.g., undocumented equipment changes, atmospheric loading, or other transient 
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motions) or bias introduced in imperfect modeling of refractivity of the atmosphere 

(Tregoning and Watson, 2009).  Our processing practice addresses some of these 

concerns by using the MIDAS trend estimator, which calculates trends in the GPS times 

series that are robust and insensitive to the effects of outliers, seasonality, and 

undocumented steps in the data (Blewitt et al., 2016).  We obtained 379 vertical MIDAS 

velocities from the GPS time series through 31 Dec. 2019 (Sup. Table S3.1) (Blewitt et 

al., 2018).   

To better constrain the spatial distribution of the uplift signal, we construct an 

interpolated GPS velocity field using the GPS Imaging technique modified from 

Hammond et al. (2016) to show vertical motions in the Great Plains region of the United 

States (Fig. 3.5a).  To obtain a vertical rate field of the Great Plains region, the GPS 

Imaging algorithm incorporates weighted median spatial filtering on a Delaunay 

triangulation of the 379 GPS station velocities (Fig. 3.5b) to diminish the influence of 

outlier vertical rates (Fig. 3.5c).  An outlier vertical rate is defined as one uncorroborated 

by the nearest stations, often caused by deficiencies in station or monument design, very 

local deformation effects, equipment problems, or geophysical signal impacting only a 

single station.  GPS Imaging thus enhances the signals that are similar between stations 

that may be ascribed to the spatially coherent movement of the solid Earth rather than 

individual outliers that could potentially bias the velocity field.  

As a part of our GPS Imaging vertical rate field estimation, we apply an artifact 

reduction technique.  Small scale artifacts in the vertical rate field can sometimes appear 

as domain boundaries that are attributable to inhomogeneous GPS station distribution.  

We iterate the GPS Imaging process for the Great Plains 20 times, each iteration 
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removing a random 35% of velocities to reduce the effects of these artifacts.  Testing of 

the number of iterations showed that fewer than 20 iterations only partially removed the 

artifacts, and removing more than 35% of velocities per iteration affected the rate and 

breadth of the vertical land motion field.  Similar to the statistical bootstrapping method, 

we identify the median model by taking the median value of the vertical rate at each pixel 

of the vertical field to create the new velocity field (Fig. 3.5d).   
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Figure 3.5.  High Plains aquifer is shown with black outline.  (a) MIDAS velocities 

before GIA corrections are applied.  (b) Median spatial filtered velocities with speckle 

noise removed before GIA corrections are applied.  (c) Vertical velocity field from GPS 

Imaging before artifact reduction and GIA corrections are applied.  (d) Vertical velocity 
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field from GPS Imaging after bootstrapping statistical analysis but before GIA 

corrections are applied. 

 

We next correct the vertical velocity field produced by GPS Imaging for the 

effects of glacial isostatic adjustment (GIA) which greatly influences vertical motions 

across North America following Late Pleistocene deglaciation (Peltier et al., 2015).  As 

the northern part of the continent experiences post-glacial uplift, the lithosphere flexes to 

accommodate unloading and drives subsidence in the far field via forebulge collapse 

(Watts, 2001).  We use the ICE-6G D (VM5a) glacial isostatic adjustment model (Fig. 

3.6) (Peltier et al. 2015; Peltier et al., 2018; Argus, Peltier, et al. 2014) which fits vertical 

GPS rates and GRACE measurements in the Canadian interior (Argus et al., 2021).  The 

glacial isostatic adjustment model was interpolated from 0.2º x 0.2º latitude and longitude 

intervals to match the GPS Imaging grid size of 0.0083º x 0.0083º latitude and longitude.  

We then remove the effect of the forebulge collapse estimated by subtracting glacial 

isostatic adjustment model predictions from the GPS Imaging results.  All GPS Imaging 

figures where vertical land motion is presented are corrected for the effects of glacial 

isostatic adjustment unless otherwise noted. 
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Figure 3.6.  Interpolated vertical velocity field of Great Plains forebulge collapse signal 

caused by North American Late Pleistocene deglaciation according to the ICE 6G D 

(VM5a) glacial isostatic adjustment model by Peltier et al. (2015; 2018) and Argus et al. 
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(2014).  Median value of post-glacial rebound is -0.50 mm/year.  High Plains aquifer 

outlined in black. 

 

3.7.2 Resolution Tests 

 

To verify that the location of the anomaly is not biased by station spacing, we 

performed resolution reconstruction tests using a synthetic checkerboard model.  The 

overall resolution of imaging of the Great Plains vertical land motion is adequate for a 

checkerboard model with 4º x 4º blocks of alternating positive and negative vertical land 

motion.  There are minor distortions occurring in areas with fewest GPS stations, such as 

eastern Colorado, but these are improved by applying the bootstrapping statistical 

technique (Fig. 3.7).  The Texas Panhandle and surrounding areas of greatest uplift had 

better resolution with adequate reconstruction of 2º x 2º alternating blocks due to greater 

GPS station density (Fig. 3.8).  Because of the reduction of artifacts, we are confident 

that the velocity field created by GPS Imaging reflects accurate spatial distribution of the 

uplift anomaly in the southern High Plains aquifer. 
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Figure 3.7.  Checkerboard resolution test with 4º intervals and 0.1º of resolution.  

Resolution testing using synthetic checkerboard velocity input of ±3 mm/year from 

station locations (dots).  (a) Synthetic velocity checkerboard applied to the Great Plains 

region to test for spatial resolution.  (b) Station distribution with synthetic vertical 

velocities applied.  (c) Resultant checkerboard after GPS Imaging with present current 

uncertainty added.  (d) Final resultant checkerboard of GPS Imaging result after 

bootstrapping technique applied.  Only stations inside the study area were used in the 

artifact reduction process. 
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Figure 3.8.  Checkerboard resolution test with 2º intervals and 0.1º of resolution.  

Resolution testing using synthetic checkerboard velocity input of mm/year from station 

locations (dots).  (a) Synthetic velocity checkerboard applied to the Great Plains region to 

test for spatial resolution.  (b) Station distribution with synthetic vertical velocities 

applied.  (c) Resultant checkerboard after GPS Imaging with present current uncertainty 

added.  (d) Final resultant checkerboard of GPS Imaging result after bootstrapping 

technique applied.  Only stations inside the study area were used in the artifact reduction 

process. 
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3.7.3 Topographic Profiles 

 
Vertical GPS signals can sometimes be attributable to topographic changes driven 

by underlying geodynamic processes (Serpelloni et al., 2013; Pfeffer et al., 2017).  

Though the lithosphere in the vicinity of the Great Plains is tectonically stable compared 

to tectonic plate boundaries, and our study area is located away from continental margins, 

we investigated whether the uplift might be related to topographical changes in the 

landscape of the region.  Specifically, we wanted to determine whether the uplift pattern 

is correlated with topography of the study area.   

Two main transects, one centered around 35.25ºN latitude and the other at −102º 

longitude, were taken with 0.5º padding on either side to illustrate the trend pattern (Fig. 

3.9a).  Eleven GPS Imaging velocities and elevation profiles, centered around each 

latitude and longitude and spaced ~1 km apart formed each corresponding transect to 

avoid redundancy.  The mean GPS Imaging velocity and mean topography were 

calculated along each profile and plotted for comparison (Fig. 3.9b and 3.9c).  The 

MIDAS GPS velocities for stations that fell within the transect bounds were also plotted 

(Fig. 3.9b and 3.9c), but GPS Imaging results within those bounds were constrained by 

velocities both inside and outside the bounds.  The result shows that the GPS vertical land 

motion signal is not correlated with topography, and therefore the signal is likely not 

associated with the processes that built the topography. 
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Figure 3.9.  (a) Map view of GPS vertical land motion with model for GIA removed (see 

Fig. 3.10 for uncertainties).  Gray dashed lines indicate the location of transects centered 

on the region of greatest uplift.  GPS station locations shown with black circles.  High 

Plains aquifer outlined with bold black.  Profiles with (b) constant longitude and (c) 

constant latitude display the vertical velocity corrected for GIA, and topographic changes 

across the region of greatest uplift. Transects include 0.5º of padding around center line 

for GPS Imaging vertical velocities and topographic data.  The set of velocity transects 

(gray) was averaged and the mean (red) is plotted across the profiles.  Filtered GPS 

velocities for each transect are plotted (black dots) with accompanying 2𝜎 error bars. 

While we show velocities from stations within the profile bounds, GPS Imaging results 

are often constrained by velocities outside those bounds.  The interpolated velocity is 

constrained by the set of topographic transects (light blue) and its mean average (blue) is 
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plotted across the profiles.  Uplift at the KS-OK eastern edge is likely related to the 

Ozark Plateaus aquifer system (Larochelle et al., 2021). 

 

 

Figure 3.10.  Vertical velocity uncertainty for the GPS Imaging result.  (a) Formal 

uncertainties calculated from the weighted mean of contributing velocities.  (b) 

Uncertainties computed from root-mean-square of residual scatter from contributing 

velocities. 

 

3.7.4 Seasonality 

 

Most vertical GPS position time series in our dataset show seasonal oscillations 

caused primarily by the effects of hydrological loading.  We consider short-term 
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variations because they illustrate the link between short-term hydrological forcing and the 

spatiotemporal vertical land motion response, which is presumed to be elastic.  To infer 

the seasonality of hydrological loading, we calculated the amplitude and peak phase of 

the vertical time series used in our GPS Imaging. 

 Before solving for seasonality terms, however, we correct each time series for 

offsets.  Offsets, or steps, present as sharp, immediate discontinuities in position time 

series that can occur because of changes in GPS station equipment or site conditions, or 

from earthquakes that move the station.  NGL currently maintains a list of step events for 

all GPS stations in its holdings.  The records in this file are flagged as “potential steps” 

because the time series may not have significant offsets at these times, e.g., if a logged 

equipment change resulted in no discernible effect or the station is sufficiently distant 

from the earthquake hypocenter.  Potential equipment steps are derived from station IGS 

log files, and earthquake events are derived from earthquake source parameter 

information available from the USGS National Earthquake Information Center.  

Unfortunately, our set of station log files is incomplete and/or site logs are incomplete, 

and thus we also manually examined each individual time series for undocumented 

offsets.  Of the 379 stations in our dataset, 101 undocumented offsets were discovered, 

and the missing step times were tabulated and added to the master list of documented 

offsets for correction.  For time series with offsets from either earthquake events or 

equipment changes, we used position data from five days before the step and three days 

after each step to estimate the step size. The difference of the median positions before and 

after the offset time was subtracted from the subsequent positions.   
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With the offsets corrected, annual terms can be estimated using the following 

equation: 

 

Eq. 3.1) 𝑢(𝑡) = 𝑏 + 𝑆#sin	(w	𝑡) + 𝐶#𝑐𝑜𝑠	(w	𝑡) 

 

Where u are vertical GPS positions given at time t detrended with MIDAS velocities, b is 

the intercept, and w = 2𝜋 is angular frequency in radians per year.  S1 and C1 are sine and 

cosine annual terms.  We performed a weighted linear inversion for intercept and 

amplitudes of the cosine and sine annual terms and the position time series to calculate b, 

S1, and C1 terms in Eq. 3.1.  The annual sine and cosine terms were then converted into 

amplitude (A) and peak phase (𝜙): 

 

Eq. 3.2) 𝐴 = E𝐶#$ + 𝑆#$  Eq. 3.3) 𝜙 = atan2( 𝑆#, 𝐶#) 

 

Where atan2 is the 4-quadrant arctangent function.  The peak phase 𝜙 can be converted 

into day of the year (DOY) for a more intuitive way of representing the timing of the 

maximum in seasonal vertical component height. 

 

Eq. 3.4) Day	of	Year	 = 0567
$8

 

 

 We apply the GPS Imaging algorithm to the amplitude and phase values at each 

station to see the spatial variation in patterns of amplitude and timing of vertical seasonal 
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motion.  GPS Imaging was performed according to the previously described standard 

procedure (see Analysis 3.7.1) except corrections for GIA which are not applied.  The 

resultant images show the spatial variability of vertical land motion seasonality for the 

Great Plains region (Fig. 3.11).  Phase resolution is typically not well resolved in areas of 

very low amplitude, e.g., in northern Texas the distinction between winter and spring 

peak time is not well resolved, but the peak in winter in Nebraska is well resolved. 

 

 

Figure 3.11.  Outline of the High Plains aquifer bounds is in black.  (a) GPS Imaging of 

seasonal amplitudes (see Fig. 3.12 for uncertainties).  (b) GPS Imaging results for day of 

year vertical height is a maximum (see Fig. 3.13 for uncertainties).  Color scheme 

indicates the day of the year the vertical positions are at their highest. 
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Figure 3.12.  Amplitude uncertainty for the GPS Imaging result of seasonality.  (a) 

Formal uncertainties calculated from the weighted mean of contributing amplitudes.  (b) 

Uncertainties computed from root-mean-square of residual scatter from contributing 

amplitudes. 
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Figure 3.13.  Phase uncertainty for the GPS Imaging result of seasonality.  (a) Formal 

uncertainties calculated from the weighted mean of contributing phases.  (b) 

Uncertainties computed from root-mean-square of residual scatter from contributing 

phases. 

 

3.7.5 High Plains Aquifer Time Series 

 

  Times series of GPS, GRACE, and PDSI between 1 Jan. 2005 and 31 Dec. 2019 

exhibit correlations in time between these datasets that support the importance of 

hydrological influences on High Plains aquifer vertical motion.  To reduce scatter, we 

combined the daily positions for each time series to obtain monthly medians.  From the 

monthly data for each regional dataset, we then calculated median lines to compare and 

discern overarching regional trends (Fig. 3.14g).  The standard deviation (s) for each 
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month was computed and a zone of ±2s is plotted with the median (Fig. 3.14g).  The 

time series trends were adjusted to remove the effects of GIA. 
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Figure 3.14.  Time series comparisons for the Northern (a–c) and Southern (d–f) High 

Plains aquifer, and Great Plains (g).  Time series comparison of PDSI (a & d), GRACE 
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(b & e), and GPS time series (c, f, & g).  The median (solid color line) was calculated 

from the overlapping time series range (light gray).  Light background colors show ±2𝜎, 

the standard deviation of the GPS time series vertical positioning data. 

 

  The PDSI time series were used to define early and late periods to distinguish 

these intervals from the long-term climatic trends in the High Plains aquifer.  Drying 

patterns between the northern and southern parts of the High Plains aquifer differ within 

these time frames, so the overall PDSI was used to define the periods.  Extended duration 

positive (>2) or negative (<−2) PDSI values indicate long-term wet or drought periods 

respectively (Dai, 2019).  We define the early/dry period range from 1 Jan. 2005 through 

31 Dec. 2013.  The early/dry period includes the three-year period of severe drought from 

2011–2013, with 2011 notably the most intense one-year drought in the history of Texas 

centralized in the Texas Panhandle (Nielsen-Gammon, 2011).  The entire High Plains 

aquifer has a mean PDSI of −0.13 during this time.  We define the late/wet period as 1 

Jan. 2014 through 31 Dec. 2019, and this timespan has an overall High Plains aquifer 

PDSI mean value of 1.18.  The early/dry and late/wet periods are not divided evenly in 

time due to the relatively short duration of drought events, and partly based on 

considerations regarding the number of GPS time series available in each period.  Though 

the climate trends are not consistent over the entire time frame, and though there are 

climatic differences between the northern and southern High Plains aquifer, we are 

confident that the designated early and late periods of observation show a general trend of 

drying or moisture that is representative of the High Plains aquifer climate. 
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  GRACE trends for individual mascon time series were also calculated to plot the 

spatial distribution of gravity signals in the High Plains aquifer (Fig. 3.2) to compare with 

the GPS Imaging results.  To further illustrate the difference in water input between the 

southern and northern parts of the aquifer, best-fit trends for each mascon were calculated 

using a simple linear regression to fit a first-degree polynomial within a 95 percent 

confidence interval (Sup. Table S3.3). 

 

 

3.8 Results 

 

 The monthly median of all vertical GPS time series within the study area shows 

an overall uplift trend in the Great Plains region (Fig. 3.14g).  This time series is used as 

a baseline against which to compare signals from the northern and southern regions, and 

early and late periods.  The overall trend for the entirety of the Great Plains study area 

indicates a near zero velocity (after adjusting for GIA) of approximately −0.13 mm/year 

between 2005 and the end of 2019.  Between 2005–2007, the trend for the Great Plains 

shows a moderate rise in vertical land motion to +6 mm, then subsidence through the 

latter half of 2010 down to +2 mm.  Through the 2011–2013 drought, the time series 

shows sharp uplift gains from approximately +8.5 mm to as high as +14 mm for the 

entirety of the Great Plains.  This finding is consistent with Borsa et al.’s (2014) 

California vertical land motion study that showed a very long wavelength response to 

drought which stands as a background to the more local drought signals.  Post-drought 
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subsidence shows the time series trend declining from +14 mm to +2 mm from 2013 

through the end of 2019. 

 

3.8.1 Uplift of the High Plains Aquifer 

 

The GPS Imaging result shows an uplift trend in the southern portion of the High 

Plains aquifer with the greatest rate of uplift centered around the Texas Panhandle (Fig. 

3.9a).  The uplift rate is ~1.5–1.7 mm/year and extends throughout the southern High 

Plains aquifer region.  The area with positive uplift is approximately 670 km long from 

north to south and 280 km wide from east to west, though this is latitude dependent (for 

GPS Imaging uncertainties, see Fig. 3.10).  The area of greatest uplift extends from the 

southwest corner of Kansas into the Texas Panhandle.  Topographic profiles demonstrate 

no correlation between the anomalous uplift pattern and topography in either latitude or 

longitude.  Instead, uplift is spatially correlated to areas of greatest groundwater 

withdrawal in the High Plains aquifer system since 1900 (McGuire, 2017: Fig. 3.15).   
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Figure 3.15.  From McGuire (2017).  Water level changes from pre-development era 

(circa 1950) through 2015.  High Plains aquifer shows prominent water-level declines 

throughout the Texas panhandle region north into Kansas.  Areas of greatest water level 

decline are shown in warm colors, with red representing >46 m of decline, pink from 30–

46 m, orange from 15–30 m, and brown and yellow between 1.5–15 m.  Cool colors 

represent areas of water-level increase, generally less than 15 m with most increases 

occurring in the northernmost section of the aquifer. 
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According to trends monitored by the USGS, High Plains aquifer groundwater 

levels have changed by as much as −53 m between 1956 and 2002 (Sup. Table S3.5) 

within the area of greatest uplift, and most of the southern portion of the aquifer shows 

declines of at least 7 m (Fig. 3.15).  Total volume of water removed in the High Plains 

aquifer is estimated at 330 km3 as of 2007 (Scanlon et al., 2012).  By comparison, 

cumulative oil production in the nearby Anadarko Basin is estimated at more than 0.8 

km3 (Davis et al., 1988) while the Permian Basin to the south has produced over 5.25 km3 

(US Energy Information Administration, 2018), meaning widespread uplift due to oil 

production and associated byproducts is highly unlikely.  There are no geologic 

indicators of recent large magnitude (>M6) tectonic activity or magmatic activity 

(Gutentag et al., 1984) near the center of uplift that can impact vertical motions (e.g., 

post-seismic relaxation (Gourmelen and Amelung, 2005; Hammond et al., 2012)) or 

mantle upwelling (Kreemer et al., 2020).  Spatial distribution of the uplift encompasses 

nearly the entirety of the southern High Plains aquifer, so we investigate the possibility 

that long-term hydrological unloading is the primary source of uplift. 

 

3.8.2 Connecting Vertical Land Motion to Climate 

 

To illustrate the effect that climate variability has on the Great Plains vertical 

velocity field, we examine how vertical uplift rates respond to climatic trends spanning 

multiple water seasons.  Increasing uplift during periods of drought is expected when 

hydrological loading effects (as opposed to poroelastic effects) drive vertical motions on 
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a regional scale.  During the drought years, groundwater withdrawal from the High Plains 

aquifer was more intense as precipitation and surface water resources became 

exacerbated.  During the span of our time series comparison, the Great Plains underwent 

several periods of drought, including continuous drought from 2011–2013, with 2011 

being the most intense one-year drought in Texas history (Nielsen-Gammon, 2011).  

Employing the definition of early/dry versus late/wet periods using PDSI data (see 

Analysis 3.7.5) we divided all GPS time series into their early and late periods and 

calculated MIDAS rates.  GPS Imaging was performed for each period (Fig. 3.16).   

 

 

Figure 3.16.  High Plains aquifer outlined in black. Circles represent GPS station 

locations.  (a) Vertical velocity during early/dry period from 2005–2013.  (b) Vertical 

velocity during late/wet period ranging from 2014–2019.   
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The early/dry period (2005–2013) is dominated by uplift across the entire High 

Plains aquifer region, with a rate of nearly 4 mm/year centered around the Texas 

Panhandle (over double the maximum rate for the entire period of observation).  In the 

late/wet period (2014–2019), most of the study region is dominated by subsidence, 

although the southwestern Texas Panhandle experiences a more subdued uplift of 0.5 

mm/year (less than one third the rate for the entire period).  In general, the southern 

portion of the aquifer appears to be subsiding at a lesser rate than the surrounding areas.  

That the GPS stations move upward during drying and downward during wet periods 

corroborates their source, and the primary anomaly in the southern High Plains aquifer 

over the entire period is a response to hydrological unloading. 

The monthly median GPS time series data from the southern and northern regions 

show a similar story (Fig. 3.14).  Preceding the drought years, the vertical position data 

largely oscillated around +0.5 mm in the northern High Plains aquifer until 2009, when 

there was a short subsiding trend from 2009–2011 of about −1 mm.  In the southern High 

Plains aquifer, the position time series increased slightly but oscillated around +8 mm 

before the drought.  During the drought years of 2011–2013, both northern and southern 

regions moved upwards rapidly.  The northern region moved from −1 mm up to +7 mm, 

and the southern region moved further upwards from +8 mm to +22 mm.  Post-drought, 

both time series shift to downward trends again, with the southern High Plains aquifer 

position time series higher than its pre-drought position at approximately +12 mm, and 

the northern High Plains aquifer further subsiding to as low as −14 mm, but generally 

oscillating around −3 mm. 
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The difference between the northern and southern High Plains aquifer vertical 

land motion responses is likely tied to geographical differences in climate.  PDSI time 

series indicate that the northern High Plains aquifer has greater amounts of time spent 

with positive PDSI values, which indicates it experienced more times with wetter than 

average climate during the observation period (Fig. 3.14a and 3.14d).  The exception of 

the time series is during the 2011–2013 drought, which exhibits negative PDSI values, 

with the median PDSI being greater than −5 in 2012.  Unlike to the north, the southern 

High Plains aquifer PDSI time series median crosses into negative PDSI range outside of 

the severe drought timespan, generally hovering between ±3.  This indicates the southern 

High Plains aquifer has spent more time in a state of drier than average conditions and 

experiences greater climate variability than the northern High Plains aquifer. 

 

3.8.3 Effect of Seasonality on Vertical Land Motion 

 

Previous studies have illustrated that seasonal changes in precipitation, snowpack, 

lake loading, and surface water can be similar to climate variations, detected using GPS 

on regional (Fu and Freymueller, 2012; Argus, Fu, et al. 2014) to global (Blewitt et al., 

2001) scales.  While our study is most interested in vertical land motion trends spanning 

more than one calendar year, seasonality can provide insight into spatial variations in 

seasonal amplitude and peak phase that affect long term loading patterns. 

The GPS Imaging of seasonal vertical oscillation shows three regions with 

amplitude of more than 2 mm (Fig. 3.11a).  The first region is located along the western 

boundary of the study area in the Rocky Mountains.  The second region is located in the 
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southeastern portion of the study area and is centered around the Dallas/Ft. Worth 

metropolitan area with an amplitude of ~3 mm.  The final region is within the 

northeastern portion of the High Plains aquifer in central Nebraska.  There, seasonal 

amplitudes fluctuate the most, up to 3.5 mm.  It is notable that the zone of greatest 

seasonality is within the northern High Plains aquifer, rather than in the south which 

experiences the fastest uplift.  We speculate that the source of high amplitude vertical 

land motion seasonality is related to higher rates of precipitation accounting for greater 

water mass changes in the northern High Plains aquifer groundwater system.  

The phase of the GPS vertical position time series shows which time of year the 

vertical land motion reaches its highest point in its annual cycle, and hence can reveal 

when hydrological loading is at a minimum.  The results from GPS Imaging of annual 

phase indicate that the High Plains aquifer lies in a point of intersection between three 

different domains of seasonal motion (Fig. 3.11b).  To the southwest of the High Plains 

aquifer the peak phase is in the late winter to early spring; to the east the peak is at the 

end of summer to early fall; to the northwest the motion peaks in late autumn.  These 

three areas respond to loads applied at different times, with their peak position up to 60 

days out of phase.   

That the High Plains aquifer lies at the exact intersection of these distinct domains 

of seasonal hydrological load timing is consistent with its being located between the 

American Southwest, eastern United States, and the Rocky Mountains.  The southwest 

Great Plains has a more arid climate and is driest during early springtime, before it 

experiences monsoonal rain patterns in summer.  Alternating reds and greens are adjacent 

in time and are likely due to poorly resolved phase occurring when amplitude is very low.  
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The eastern Great Plains, though also receiving precipitation during the summer months, 

is more greatly influenced by its proximity between the Gulf of Mexico and the mid-

continent, meaning the effects of winter polar vortices could be enough to postpone peak 

unloading until late in the summer.  The minimum hydrological load in the northwestern 

region of the Great Plains is in autumn, when the previous winter’s snowpack in the 

Rocky Mountains is depleted but the new snowy season has yet to begin in force.  These 

patterns fit with the broader timing of hydrological loading domains across the 

continental United States (Hammond et al., 2021) and further support the seasonal 

deformation being explained with hydrological loading. 

 

3.8.4 Water Mass Loss in the High Plains Aquifer 

 

Previous studies that used GRACE to study groundwater depletion in the Texas 

Panhandle found that GRACE is a valuable tool to monitor terrestrial water storage 

changes through drought periods (Long et al., 2013) and throughout the High Plains 

aquifer over longer monitoring periods (Rateb et al., 2020).  Here we show GRACE 

trends for a broader area and compare them to trends in PDSI and GPS-measured vertical 

land motion.  The GRACE data indicate trends in surface mass change are also consistent 

with hydrological loading driving the observed High Plains aquifer uplift.  

According to GSFC solutions, the northern portion of the aquifer has a gravity 

trend associated with an increasing mass load at an average rate of 0.7 cm/year equivalent 

water height, and the southern portion shows a trend of decreasing mass with a mean rate 

of −1.5 cm/year equivalent water height (Fig. 3.2).  The region with greatest mass loss in 
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the High Plains aquifer is located in the Texas Panhandle, where equivalent water height 

decreased at a rate of approximately −2.6 cm/year.  This spatial pattern corroborates the 

groundwater decline map (Fig. 3.15) (Konikow, 2013; McGuire, 2017), and the area of 

greatest uplift shown in the GPS Imaging result (Fig. 3.9a).  GSFC solutions for the 

northern Great Plains do not vary significantly, also giving an equivalent water height 

average of 0.7 cm/year, but the southern Great Plains have a mean equivalent water 

height of −0.8 cm/year (Fig. 3.3; Sup. Table S3.3). 

GRACE median monthly solution time series (Fig. 3.14) corroborate these overall 

trends (Fig. 3.9a).  The northern portion of the High Plains aquifer shows an overall 

equivalent water height increase of approximately 20 cm until the 2011–2013 severe 

drought began.  With the drought fully underway, nearly 15 cm of equivalent water 

height is lost, and only begins to recover starting in 2013 through the end of the time 

series.  Data from the southern region of the High Plains aquifer give the opposite trend.  

Pre-drought, there was an overall decline of approximately 15 cm equivalent water 

height.  With the drought, further losses of 15 cm equivalent water height occurred with 

only modest recovery after the severe drought ended.  By the end of the time series, 

GRACE trends show total losses between 2005 through 2019 of approximately 25 cm 

equivalent water height in the southern High Plains aquifer, consistent with unloading-

driven uplift. 

We can also calculate approximate water volume changes in the High Plains 

aquifer (Fig. 3.2) and for the entirety of the Great Plains (Fig. 3.3) during the study 

interval.  Using the pre-defined dividing line between north and south to sum volume 

trends according to 1º x 1º area mascon blocks, the northern High Plains aquifer has an 
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increasing water volume trend of 2.0 km3/year and the southern High Plains aquifer 

decreases at a rate of 4.7 km3/year, giving a net change of −2.7 km3/year for the entire 

High Plains aquifer.  Because GRACE mascons are dependent on their nearest neighbor 

mascons, however, we also expand our estimations to include mascons in the entire Great 

Plains study area, keeping the north/south dividing line.  For the northern Great Plains, 

3.5 km3/year of water volume is added, and the southern Great Plains sees a decline of 

6.7 km3/year.  The Great Plains has a total net water volume trend of −3.2 km3/year 

according to our GRACE mascon estimations. 

 

3.8.5 Groundwater Fluctuations in the High Plains Aquifer 

 

Previous studies have shown that groundwater levels since 1900 have been 

holding consistent in the northern High Plains aquifer but are on the decline in the 

southern High Plains aquifer, which has been especially aggravated in the Texas 

Panhandle because of historic drought (McGuire, 2017).  Our results, focused within the 

Willett et al. (2018) defined boundary of the High Plains aquifer, confirm these spatial 

patterns and overall trends.  Of the 21 wells located in the southern High Plains aquifer, 

11 show significant groundwater declines since the first data point collected in 1930, with 

the remaining 10 indicating a net zero effect over the duration of the water level data 

(Sup. Table S3.5).  The greatest water level change in the entire dataset was well ID 

342356102572501, where the water level dropped over 53 m since its first measurement 

in 1956 through its last measurement in 2002.  Seasonal fluctuations in water levels are 
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minimal throughout the well time series, indicating little precipitation effect on the 

groundwater usage, and consistent anthropogenic reliance on groundwater resources.   

The 121 groundwater wells in the northern High Plains aquifer show a different 

pattern of usage and recharge than the southern High Plains aquifer.  A total of 18 wells 

show declines of over 5 m, 7 wells show significant increases over 5 m, and the 

remaining wells show water levels experiencing cyclical recharge and loss of about the 

same rate, indicating an approximately net zero effect (Sup. Table S3.5).  The greatest 

water level change was a decline of 25.3 m, but the second greatest change was an 

increase of 24.7 m.  Unlike the southern High Plains aquifer, the northern High Plains 

aquifer also shows clear seasonal swings in water level changes, indicating the effect of 

precipitation on water usage and recharge.  We suggest that these seasonal swings are due 

to two factors: the northern aquifer has a greater frequency of groundwater 

measurements, and the northern wells are, in general, far shallower in depth to water 

level than they are in the south.  The median depth to water level in the northern aquifer 

is approximately 14 m compared to the median depth of 43 m in the south (Sup. Table 

S3.5).  This would mean recharge from the wetter climate in the northern portion of the 

High Plains aquifer would occur at a faster rate compared to the southern High Plains 

aquifer. 
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3.9 Discussion 

 

3.9.1 Interpretation of Uplift 

 

To summarize the observations, the northern High Plains aquifer has greater 

periods of extreme moisture, cyclic water mass loss and recovery, and GPS time series 

show an overall trend of subsidence and the greatest amplitudes of seasonality.  In the 

southern High Plains aquifer, there are more periods of extreme drought, greater water 

mass lost with little to no recovery, and GPS time series show an uplift trend through 

2014 before gradually leveling.  Uplift correlates with periods of drought, including 

increased GPS uplift and GRACE mass lost during extreme droughts.  The GPS Imaging, 

GRACE, PDSI, GPS time series, and groundwater well data trends agree: the uplift signal 

is consistent with seasonal and climate-driven hydrological unloading. 

Annual seasonality calculated from GPS time series provides spatiotemporal 

patterns of seasonal amplitude and timing of peak height that indicates seasonal uplift is 

largely dominated by hydrological loading (Fig. 3.11).  The results show the intersection 

of three different weather domains in our Great Plains study area that hydrologically 

impact the High Plains aquifer and help explain the differences between northern and 

southern High Plains aquifer climates.  We postulate that most of the High Plains aquifer 

bounds are dominated by the arid southwestern style of climate, with the annual peak 

phase preceding the wet season that occurs from monsoonal rain patterns in summer.  

The northernmost part of the aquifer experiences a mix of annual peak phase times of 
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year, generally between autumn and spring, likely because it is the junction of the three 

weather domains. 

This seasonal response is consistent with the evidence of multi-annual 

hydrological unloading.  The timing of the peak in annual motion throughout the High 

Plains aquifer points to hydrological loading of the seasonal vertical land motion, 

suggesting that the system will have similar responses to trends and trend changes in 

multi-annual changes in hydrological loads.  Climatological trends from PDSI and 

gravity trends from GRACE each have an inverse relation with the vertical land motion, 

providing further evidence for control by hydrological loading.  

Our results indicate that the velocity of crustal uplift accelerates in regions 

experiencing multi-year periods of severe drought where there is increased reliance on 

groundwater resources.  In wetter periods, when groundwater is abundant, the uplift 

velocity slows or even reverts to subsidence.  The southern High Plains aquifer, which 

has experienced greater duration and severity of drought and less recharge, has sustained 

an uplift trend in the Texas Panhandle and surrounding region.  Furthermore, there is 

evidence of greatest aquifer declines in this area as shown by historical groundwater well 

data.  The velocity trends in the southern portion of the High Plains aquifer are consistent 

with hydrological unloading from aquifer depletion, perhaps driving uplift for several 

decades before high-precision continuous GPS measurements were available. 

Aquifer-controlled uplift suggests an anthropogenic source, and previous studies 

have demonstrated that anthropogenic depletion of a groundwater reservoir can accelerate 

uplift (Argus, Fu, et al. 2014; Argus et al., 2017; Hammond et al., 2016; Young et al., 

2021).  In some previous studies, aquifer depletion in unconsolidated sediments is 
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associated with regional subsidence around areas of greatest drawdown (e.g., Carbognin 

et al., 2005; Sneed et al., 2013), and uplift, if observed, is spatially associated with the 

flanks of the unloading (Amos et al., 2014).  Our results indicate that areas of the High 

Plains aquifer that experienced the greatest amount of groundwater decline experience 

broad uplift only, suggesting that unloading is the dominant driving mechanism of 

vertical land motion.  This challenges the common perception that vertical motions in 

unconsolidated sediments driven by aquifer depletion cause subsidence.  

The difference between subsidence shown in previous aquifer-based vertical land 

motion studies and the uplift response in the High Plains aquifer is likely attributable to 

distinctions in aquifer mechanics.  In confined systems comprised of unconsolidated 

sediments, where impermeable layers bound the aquifer above and below (e.g., 

California’s Great Valley, Las Vegas Basin, etc.), groundwater pumping causes a 

pressure differential within the reservoir that leads to sediment compaction (Alley et al., 

1999).  Although the High Plains aquifer is similarly located in unconsolidated sediments 

and alluvium, it is an unconfined system, meaning that groundwater is at atmospheric 

pressure (Weeks and Gutentag, 1981).  In this case there is no pressure differential to 

trigger a regional-scale poroelastic response, so the effects of hydrological mass 

unloading from groundwater withdrawal cause only uplift.  The hydrologically induced 

fluctuations we are observing with GPS Imaging in the High Plains aquifer behave more 

similarly to unconfined karstic aquifer systems, where recharge shows crustal subsidence 

and depletion shows uplift (Silverii et al., 2019), despite the High Plains aquifer reservoir 

being composed of unconsolidated material.  Thus, regional vertical motions caused by 

hydrological unloading within an aquifer are dependent not only on where observations 
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are made with respect to the loading mass, but also on the type of aquifer system.  This 

understanding could have wider implications when investigating anomalous vertical land 

motion.  In addition to interpretations of other potential vertical land motion sources like 

post-seismic rebound, deglaciation, erosion, or magmatic intrusion, hydrological 

unloading could also potentially influence vertical land motion in a region experiencing 

uplift and would need to be considered as a possibility. 

 

3.9.2 Modeling the Load 

 

 To understand the hydrological changes required to drive the observed uplift, we 

estimate the rate of groundwater mass unloading needed to recreate the uplift signal seen 

with GPS.  We build a simple unloading model using the LoadDef software (Martens et 

al., 2019) and based on the preliminary reference Earth model (PREM) (Dziewonski and 

Anderson, 1981) to predict a vertical velocity field of the southern High Plains aquifer for 

comparison with the observed vertical velocity field.  We located the center of mass 

unloading in the Texas Panhandle since that is where the GPS Imaging uplift is greatest.  

This is also the approximate location of two of the largest drawdowns of groundwater 

since the early 1900’s (Scanlon et al., 2012; McGuire, 2017: Fig. 3.15).  There is no 

indication of an anomalous horizontal signal near the uplift, therefore the size of the 

freshwater load was constrained only by the region of greatest uplift shown by GPS 

Imaging.  The unloading model shape was approximated by contouring uplift values 1 

mm/year or greater from the GPS Imaging result to define a perimeter of a mass change.  

The perimeter was then simplified by culling points of the polygon to lessen minor 
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effects from the bootstrapping statistical analysis, and the geometry of the unloading 

mass was congruent with the polygon based on uplift response (Fig. 3.17).  We solved for 

the water load thickness that minimizes the misfit between the observed uplift rate and 

that predicted by the model. 

 

 

Figure 3.17.  Comparison between polygons (gray dots) of uplift perimeter and 

simplified unloading in the southern High Plains aquifer (outlined in black).  (a) A 

zoomed-in view of the southern High Plains aquifer from Figure 3.9 centered around the 

anomalous uplift feature located near the Texas Panhandle with perimeter of uplift ≥1 

mm/year.  (b)  Observed vertical land motion with simplified unloading polygon 

overlain.  (c) Predictions from our hydrological unloading model centered around the 

Texas Panhandle with simplified unloading polygon.  The location, dimension and yearly 

rate of water mass loss were optimized to best predict the uplift observed using GPS 

Imaging.   
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Our vertical displacement results indicate that an equivalent water height loss of 

−11.36 cm/year is needed to generate the observed vertical land motion shown by our 

GPS Imaging result (Fig. 3.18).  According to our simple unloading model, this is 

equivalent to a water volume of approximately −5.1 km3/year removed from an area 

centered approximately on the Texas Panhandle since the first GPS measurements.  

Sources of uncertainty in this estimate include GPS spatial resolution, simplistic 

dimensions of the load, assumption of geographic uniformity across the mass change 

area, and time variability not included in the model.  Uncertainty for the elastic constants 

(e.g., Poisson’s ratio and Young’s modulus in PREM) also contributes to the uncertainty 

in the inferred water mass load.  Considering that some studies find seismic velocities in 

the upper 0.5 km that are much lower (e.g., 0.3−2.1 km/s, Paine, 1994) than are found in 

the shallowest layer of PREM (6.2 km/s), less water may be needed to cause the observed 

deformation, suggesting that our equivalent water height loss estimate is an upper bound 

on the unloading center of mass. 

The unloading model maximum equivalent water height result of −11.36 cm/year 

is more than quadruple the rate of the maximum estimated GRACE trend of −2.6 cm/year 

and over seven times the mean rate in the entire southern High Plains aquifer of −1.5 

cm/year (Fig. 3.2 and Table S3.3).  Our model rate may be higher than the GRACE rates 

because GPS Imaging is detecting crustal unloading for changes in groundwater storage 

levels that occurred before the GRACE timeframe (2002–2020).  Also, remembering that 

spatial resolution differs between GRACE and GPS, and that the real mass changes are 

likely more concentrated than is resolvable by the GRACE data, we compare our 

unloading results to changes in groundwater loss estimates.  Our GRACE water volume 
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loss estimates are 4.7 km3/year for the southern High Plains aquifer and 6.7 km3/year for 

the southern Great Plains (Fig. 3.3).  Considering that our simplistic unloading model 

assumes total water loss for the High Plains aquifer is centered over the Texas Panhandle 

region, our inferred water volume loss of 5.1 km3/year is on the lower end of reasonable 

estimates.  Furthermore, estimates for groundwater depletion in the High Plains aquifer 

by Scanlon et al. (2012) give a depletion rate of 5.7 km3/year for the entirety of the High 

Plains aquifer system to total approximately 330 km3 of total volume loss from the 1950s 

through 2007 (Scanlon et al., 2012).  This rate is nearly double our net GRACE volume 

estimate for the Great Plains of −2.6. km3/year.  Thus our GRACE-estimated volume loss 

likely underestimates the water mass removed.  Scanlon et al. (2012) additionally state 

that the depletion rate increased to approximately 7 km3/year from 1987–2007, which 

overlaps with the early period of our study.  We therefore consider our GPS-modeled rate 

of −5.1 km3/year an adequate lower bound of average water loss in the region, and 

consistent with GRACE and groundwater estimates. 
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Figure 3.18.  Comparison between observed vertical land motion and prediction of a 

simple hydrological unloading model of the southern High Plains aquifer outlined in 

black.  (a) A zoomed-in view of the southern High Plains aquifer from Figure 3.9 

centered around the anomalous uplift feature located near the Texas Panhandle.  (b) 

Predictions from our hydrological unloading model centered around the Texas 

Panhandle. The location, dimension and yearly rate of water mass loss were optimized to 

best predict the uplift observed using GPS Imaging.  (c) Difference between observed 

uplift and unloading model. 

 

This model illustrates the relationship between crustal uplift, climate variability, 

and anthropogenic groundwater withdrawal in the High Plains aquifer region in the area 

where there is likely to be multi-annual vertical land motion impacts.  Current climate 

change models predict increasingly aggravated drought conditions in the coming decades 

that would further reduce groundwater recharge (Crosbie et al., 2013; Cook et al., 2015).  

This could accelerate uplift velocities resulting from a feedback cycle of reduced surface 
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water and recharge that causes further anthropogenic reliance on groundwater resources 

which increases the rate of hydrological unloading.  Understanding future effects of 

climate change on the High Plains aquifer will ultimately depend on the development of 

an effective long-term water management policy that combines monitoring of water 

withdrawal rates, climatic trends, groundwater recharge, and vertical land motion 

(Whittemore et al., 2016). 

 

 

3.10 Conclusions 

 

Our study suggests that there is a relationship between crustal uplift and mass 

unloading from groundwater depletion in the southern High Plains aquifer.  Climatic, 

GPS, and hydrological data indicate that uplift correlates with periods of drought, 

including an increased rate of uplift during extreme droughts, likely exacerbated by 

increased anthropogenic depletion of aquifer resources caused by climate variability.  

Historical water level declines and climate drying trends in the southern High Plains 

aquifer intimate that aquifer related vertical land motion was perhaps active for decades 

before GPS instrumentation was in place.  Our simple elastic unloading model 

constrained by results from GPS Imaging suggests that groundwater depleted 

approximately 5.1 km3/year in the Texas Panhandle portion of the High Plains aquifer is 

sufficient to create the observed uplift signal.  As climate change continues to increase 

reliance on groundwater extraction in the southern High Plains aquifer, GPS can monitor 
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the rate of aquifer depletion induced vertical crustal deformation and estimate the volume 

of mass unloaded from the region. 

In contrast to other vertical land motion studies involving aquifer depletion, our 

results show that aquifer depletion is not universally tied to subsidence but that its sign 

depends on whether groundwater is in a confined or unconfined aquifer system.  

Hydrological unloading from an aquifer can have signals dominated by subsidence or 

uplift depending on the regional subsurface geology, which should be considered as a 

potential control on anomalous uplift. 

This case study of the Great Plains presents a methodology to synthesize 

geophysical, geodetic, and hydrological datasets to resolve the dynamic, and potentially 

anthropogenically-influenced nature of uplift.  These techniques can be applied in other 

regions experiencing anomalous vertical land motion.   

 

 

3.11 Acknowledgements 

 

NASA supported this research with grant NNX16AK89G under project entitled 

“GPS Imaging of Solid Earth’s Flex and Flow,” and grant 80NSSC19K1044 under 

project entitled “GPS Imaging of time-variable Earth deformation for multi-disciplinary 

science” as part of its Earth Surface and Interior program. We thank UNAVCO and 

National Geodetic Survey CORS networks for the operation of the GPS archive from 

which we obtained most GPS data used in this project.  We also thank the operators of 

numerous GPS networks, including Leica Smartnet, TopNET, the Bureau of Land 



 

 

162 

Management, University Corporation for Atmospheric Research, University of Colorado, 

University of Wyoming, University of Texas, University of Oklahoma, King Surveyors, 

Inc., Colorado Department of Transportation, Iowa Department of Transportation, 

Minnesota Department of Transportation, New Mexico Department of Transportation, 

Oklahoma Department of Transportation, Texas Department of Transportation, NOAA, 

Sedgwick County, US Coast Guard, NASA, Seiler Instruments, City of Grand Island 

Utility Department, Central Nebraska Public Power and Irrigation District, and the 

National Institute of Standards and Technology.  We used GPS time series data from 

these networks to estimate MIDAS trends, with current rates available through the NGL 

(http://geodesy.unr.edu/velocities/midas.IGS14.vel). GSFC GRACE trends, including 

data from the GRACE Follow-On mission, were obtained from: 

(https://earth.gsfc.nasa.gov/geo/data/grace-mascons). Monthly PDSI data from 28 climate 

districts were obtained from the NOAA National Climatic Data Center 

(https://www.ncdc.noaa.gov/cdo-web/). Well water level depth data was obtained from 

the USGS Groundwater Daily database (https://waterdata.usgs.gov/nwis/dv/).  The list of 

step events for all GPS stations used in this study is provided by the Nevada Geodetic 

Laboratory (http://geodesy.unr.edu/NGLStationPages/steps.txt).  This manuscript was 

improved by considering the careful and thorough comments from Manoo Shirzaei, Don 

Argus, an anonymous reviewer, and the Associate Editor.    

http://geodesy.unr.edu/velocities/midas.IGS14.vel
https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://www.ncdc.noaa.gov/cdo-web/
https://waterdata.usgs.gov/nwis/dv/
http://geodesy.unr.edu/NGLStationPages/steps.txt


 

 

163 

3.12 References 

 

Alley, W. M., Reilly, T. E., & Franke, O. L. (1999). Sustainability of Ground-Water 
Resources: U.S. Geological Survey Circular 1186, p. 12-14, 
https://pubs.usgs.gov/circ/circ1186/pdf/circ1186.pdf. 

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016).  ITRF2014: A new 
release of the International Terrestrial Reference Frame modeling nonlinear 
station motions. J. Geophys. Res. - Solid Earth, 121(8), 6109-6131. 

Amos, C. B., Audet, P., Hammond, W. C., Bürgmann, R., Johanson, I. A., & Blewitt, G. 
(2014). Uplift and seismicity driven by groundwater depletion in central 
California. Nature, 509(7501), 483–486, https://doi.org/10.1038/nature13275.  

Argus, D. F. (2012). Uncertainty in the velocity between the mass center and surface of 
Earth. J. of Geophys. Res. - Solid Earth, 117(B10). 

Argus, D. F., Fu, Y., & Landerer, F. W. (2014). Seasonal variation in total water storage 
in California inferred from GPS observations of vertical land motion. Geophys. 
Res. Lett., 41, 1971–1980, https://doi.org/10.1002/2014GL059570.  

Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., & 
Watkins, M. M. (2017). Sustained water loss in California’s mountain ranges 
during severe drought from 2012 to 2015 inferred from GPS. J. Geophys. Res. - 
Solid Earth, 122, 10,559–10,585, https://doi.org/10.1002/ 2017JB014424.  

Argus, D. F., Peltier, W. R., Blewitt, G., & Kreemer, C. (2021). The Viscosity of the Top 
Third of the Lower Mantle Estimated Using GPS, GRACE, and Relative Sea 
Level Measurements of Glacial Isostatic Adjustment. J. Geophys. Res. - Solid 
Earth, 126(5), e2020JB021537. 

Argus, D. F., Peltier, W. R., Drummond, R., & Moore, A. W. (2014). The Antarctica 
component of postglacial rebound model ICE-6G_C (VM5a) based on GPS 
positioning, exposure age dating of ice thicknesses, and relative sea level 
histories. Geophysical Journal International, 198(1), 537-563. 

Beavan, J., Denys, P., Denham, M., Hager, B., Herring, T., & Molnar, P. (2010). 
Distribution of present‐day vertical deformation across the Southern Alps, New 
Zealand, from 10 years of GPS data. Geophys. Res. Lett., 37, L16305, 
https://doi.org/10.1029/2010GL044165. 

Bennett, R., & Hreinsdóttir, S. (2007). Constraints on vertical crustal motion for long 
baselines in the central Mediterranean region using continuous GPS. Earth 
Planet. Sci. Lett., 257, 419–434. 

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., et al. 
(2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. 
Advances in Space Research, 66(3), 469–489, 
https://doi.org/10.1016/j.asr.2020.04.015. 

Blewitt, G., Kreemer, C., Hammond, W.C., & Gazeaux, J. (2016). MIDAS Robust Trend 
Estimator for Accurate GPS Station Velocities Without Step Detection. J. 
Geophys. Res. - Solid Earth, 121(30), 2054-2068, 
https://doi.org/10.1002/2015JB012552.  

https://pubs.usgs.gov/circ/circ1186/pdf/circ1186.pdf
https://doi.org/10.1038/nature13275
https://doi.org/10.1002/2014GL059570
https://doi.org/10.1029/2010GL044165
https://doi.org/10.1016/j.asr.2020.04.015
https://doi.org/10.1002/2015JB012552


 

 

164 

Blewitt, G., Lavallée, D., Clarke, P., & Nurudinov, K. (2001). A new global model of 
Earth deformation: Seasonal cycle detected. Science, 294, 2342–2345, 
https://doi.org/10.1126/science.1065328. 

Blewitt, G., Hammond, W.C., & Kreemer, C. (2018). Harnessing the GPS data explosion 
for interdisciplinary science. Eos, 99, https://doi.org/10.1029/2018EO104623.  

Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and 
very long baseline interferometry from European Centre for Medium-Range 
Weather Forecasts operational analysis data. J. of Geophys. Res. - Solid Earth, 
111, B02406, https://doi.org/10.1029/2005JB003629. 

Borsa, A. A., Agnew, D. C., & Cayan, D. R. (2014). Ongoing drought-induced uplift in 
the western United States. Science, 345(6204), 1587-1590. 

Brookfield, A. E., Hill, M. C., Rodell, M., Loomis, B. D., Stotler, R. L., Porter, M. E., & 
Bohling, G. C. (2018). In situ and GRACE‐based groundwater observations: 
Similarities, discrepancies, and evaluation in the High Plains aquifer in 
Kansas. Water Resources Research, 54(10), 8034-8044, 
https://doi.org/10.1029/2018WR023836. 

Burgette, R. J., Weldon II, R. J., & Schmidt, D. A. (2009). Interseismic uplift rates for 
western Oregon and along-strike variation in locking on the Cascadia subduction 
zone. J. of Geophys. Res. - Solid Earth, 114, B01408, 
https://doi.org/10.1029/2008JB005679. 

Bürgmann, R., Hilly, G., Ferretti, A., & Novali, F. (2006). Resolving vertical tectonics in 
the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. 
Geology, 34(3), 221–224, https://doi.org/10.1130/G22064.1. 

Carbognin, L., Pietro, T., & Luigi, T. (2005). Land Subsidence in the Venetian area: 
Known and recent aspects. Giornale di Geologia Applicata, 1, 5 –11, 
https://doi.org/10.1474/GGA.2005-01.0-01.0001. 

Chanard, K., Fleitout, L., Calais, E., Rebischung, P., & Avouac, J. P. (2018). Toward a 
global horizontal and vertical elastic load deformation model derived from 
GRACE and GNSS station position time series. J. of Geophys. Res. - Solid Earth, 
123(4), 3225-3237. 

Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecedented 21st century drought 
risk in the American Southwest and Central Plains. Science Advances, 1(1). 
e1400082. 

Crosbie, R. S., Scanlon, B. R., Mpelasoka, F. S., Reedy, R. C., Gates, J. B., & Zhang, L. 
(2013). Potential climate change effects on groundwater recharge in the High 
Plains aquifer, USA. Water Resources Research, 49, 3936–3951. 
https://doi.org/10.1002/wrcr.20292. 

Dai, A., & National Center for Atmospheric Research Staff (Eds.). (2019). The Climate 
Data Guide: Palmer Drought Severity Index (PDSI), 
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-
pdsi. 

Dai, A., Trenberth, K. E., & Qian, T. (2004). A Global Dataset of Palmer Drought 
Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of 
Surface Warming. J. Hydrometeorology, 5(6), 1117-1130.  

https://doi.org/10.1126/science.1065328
https://doi.org/10.1029/2018EO104623
https://doi.org/10.1029/2005JB003629
https://doi.org/10.1029/2018WR023836
https://doi.org/10.1029/2008JB005679
https://doi.org/10.1130/G22064.1
https://doi.org/10.1474/GGA.2005-01.0-01.0001
https://doi.org/10.1002/wrcr.20292
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi
https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi


 

 

165 

Davis, H. G., Northcutt, R. A., & Johnson, K. S. (1988). The greater Anadarko basin: an 
overview of petroleum exploration and development. In Anadarko basin 
symposium (p. 13-24). 

Dunbar, B. (2013). Mission Overview, retrieved November 29, 2017 from 
https://www.nasa.gov/mission_pages/Grace/overview/index.html. 

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. 
Physics of the earth and planetary interiors, 25(4), 297-356. 

Dzurisin, D., Lisowski, M., & Wicks, C. W. (2009). Continuing inflation at Three Sisters 
volcanic center, central Oregon Cascade range, USA, from GPS, leveling, and 
InSAR observations. Bulletin of Volcanology, 71(10), 1091-1110. 
https://doi.org/10.1007/s00445-009-0296-4. 

Faunt, C. C., Sneed, M., Traum, J., & Brandt, J. (2016). Water availability and land 
subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 
675, https://doi.org/10.1007/s10040-015-1339-x. 

Fu, Y., & Freymueller, J. T. (2012). Seasonal and long-term vertical deformation in the 
Nepal Himalaya constrained by GPS and GRACE measurements. J. of Geophys. 
Res. - Solid Earth, 117, B03407, https://doi.org/10.1029/2011JB008925.  

Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (Eds.). (1999). Land subsidence in the 
United States (Vol. 1182). US Geological Survey. 

Gourmelen, N., & Amelung, F. (2005). Postseismic mantle relaxation in the central 
Nevada seismic belt. Science, 310(5753), 1473-1476. 

Gutentag, E. D., Heimes, F. J., Krother, N. C., Luckey, R. R., & Weeks, J. B. (1984). 
Geohydrology of the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, 
New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological 
Survey Professional Paper 1400–B, p. 7–17.  

Hammond, W. C., Blewitt, G., & Kreemer, C. (2016). GPS Imaging of vertical land 
motion in California and Nevada: Implications for Sierra Nevada uplift. J. 
Geophys. Res. - Solid Earth, 121, 7681–7703, 
https://doi.org/10.1002/2016JB013458. 

Hammond, W. C., Blewitt, G., Li, Z., Plag, H. P., & Kreemer, C. (2012). Contemporary 
uplift of the Sierra Nevada, western United States, from GPS and InSAR 
measurements. Geology, 40(7), 667-670. 

Hammond, W. C., Blewitt, G., Kreemer, C., & Nerem, R. S. (2021). GPS imaging of 
global vertical land motion for studies of sea level rise. J. Geophys. Res. - Solid 
Earth, 126(7), e2021JB022355, https://doi.org/10.1029/2021JB022355. 

Karegar, M. A., Dixon, T. H., & Engelhart, S. E. (2016). Subsidence along the Atlantic 
Coast of North America: Insights from GPS and late Holocene relative sea level 
data. Geophys. Res. Lett., 43, 3126–3133, https://doi.org/10.1002/2016GL068015. 

Kreemer, C., Blewitt, G., & Davis, P. M. (2020). Geodetic Evidence for a Buoyant 
Mantle Plume Beneath the Eifel Volcanic Area, NW Europe. Geophysical 
Journal International, 222(2), 1316-1332, https://doi.org/10.1093/gji/ggaa227.  

Kreemer, C., Hammond, W.C., Blewitt, G. (2018). A robust estimation of the 3D 
intraplate deformation of the North American plate from GPS, J. Geophys. Res. - 
Solid Earth, 123, 4388-4412, https://doi.org/10.1029/2017JB015257. 

https://www.nasa.gov/mission_pages/Grace/overview/index.html
https://doi.org/10.1007/s00445-009-0296-4
https://doi.org/10.1007/s10040-015-1339-x
https://doi.org/10.1029/2011JB008925
https://doi.org/10.1002/2016JB013458
https://doi.org/10.1029/2021JB022355
https://doi.org/10.1002/2016GL068015
https://doi.org/10.1093/gji/ggaa227
https://doi.org/10.1029/2017JB015257


 

 

166 

Konikow, L. F. (2013). Groundwater Depletion in the United States (1900-2008). U.S. 
Geological Survey Scientific Investigations Report, 53(1). 63. 
https://doi.org/10.1111/gwat.12306. 

Larochelle, S., Chanard, K., Fleitout, L., Fortin, J., Gualandi, A., Longuevergne, L., ... & 
Avouac, J. P. (2022). Understanding the geodetic signature of large aquifer 
systems: Example of the Ozark Plateaus in central United States. J. Geophys. Res. 
- Solid Earth, 127(3), e2021JB023097, 
https://doi.org/10.1002/essoar.10507870.1. 

Loomis, B. D., Luthcke, S. B., & Sabaka, T. J. (2019). Regularization and error 
characterization of GRACE mascons. Journal of Geodesy, 93, 1381–1398, 
https://doi.org/10.1007/s00190-019-01252-y. 

Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., & Save, H. 
(2013). GRACE satellite monitoring of large depletion in water storage in 
response to the 2011 drought in Texas. Geophys. Res. Lett., 40(13). 3395-3401. 
https://doi.org/10.1002/grl.50655. 

Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., & Camp, J. 
(2013). Antarctica, Greenland and Gulf of Alaska land ice evolution from an 
iterated GRACE global mascon solution. J. Glac., 59(216), 613-631, 
https://doi.org/10.3189/2013JoG12J147. 

Martens, H. R., Argus, D. F., Norberg, C., Blewitt, G., Herring, T. A., Moore, A. W… & 
Kreemer, C. (2020). Atmospheric pressure loading in GPS positions: dependency 
on GPS processing methods and effect on assessment of seasonal deformation in 
the contiguous USA and Alaska. Journal of Geodesy, 94(12), 1-22. 

Martens, H. R., Rivera, L., & Simons, M. (2019). LoadDef: A Python‐based toolkit to 
model elastic deformation caused by surface mass loading on spherically 
symmetric bodies. Earth and Space Science, 6(2), 311-323. 

Martens, H. R., Rivera, L., Simons, M., & Ito, T. (2016). The sensitivity of surface mass 
loading displacement response to perturbations in the elastic structure of the crust 
and mantle. J. Geophys. Res. - Solid Earth, 121, 3911–3938, 
https://doi.org/10.1002/2015JB012456.  

Mazzotti, S., Lambert, A., Courtier, N., Nykolaishen, L., & Dragert, H. (2007). Crustal 
uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide 
gauge data. Geophys. Res. Lett., 34, L15306, 
https://doi.org/10.1029/2007GL030283. 

McGuire, V. L. (2017). Water-level and recoverable water in storage changes, High 
Plains aquifer, predevelopment to 2015 and 2013–15. Scientific Investigations 
Report, https://doi.org/10.3133/sir20175040. 

Nielsen-Gammon, J. W. (2011). The 2011 Texas drought: a briefing packet for the Texas 
Legislature. College Station, TX: Office of the State Climatologist, College of 
Geosciences, Texas A and M University. Retrieved February 24, 2019, from 
http://www.senate.state.tx.us/cmtes/82/c510/0110BI-JohnNielsen-Gammon.pdf. 

Paine, J. G., (1994). Subsidence beneath a playa basin on the Southern High Plains, 
U.S.A.: Evidence from shallow seismic data. GSA Bulletin, 106(2), 233-242. 

https://doi.org/10.1111/gwat.12306
https://doi.org/10.1002/essoar.10507870.1
https://doi.org/10.1007/s00190-019-01252-y
https://doi.org/10.1002/grl.50655
https://doi.org/10.3189/2013JoG12J147
https://doi.org/10.1002/2015JB012456
https://doi.org/10.1029/2007GL030283
https://doi.org/10.3133/sir20175040
http://www.senate.state.tx.us/cmtes/82/c510/0110BI-JohnNielsen-Gammon.pdf


 

 

167 

Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age 
terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. - 
Solid Earth, 120, 450–487, https://doi.org/10.1002/2014JB011176. 

Peltier, W.R., Argus, D. F., & Drummond, R. (2018). Comment on “An assessment of 
the ICE‐6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. 
Geophys. Res. - Solid Earth, 123(2), 2019-2028. 

Pfeffer, J., Spada, G., Mémin, A., Boy, J.P., & Allemand, P. (2017). Decoding the origins 
of vertical land motions observed today at coasts. Geophysical Journal 
International, 210(1), 148–165, https://doi.org/10.1093/gji/ggx142. 

Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., et al. (2020). 
Comparison of groundwater storage changes from GRACE satellites with 
monitoring and modeling of major U.S. aquifers. Water Resources Research, 56, 
e2020WR027556, https://doi.org/10.1029/2020WR027556. 

Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. 
L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of 
irrigation in the US High Plains and Central Valley. Proceedings of the national 
academy of sciences, 109(24), 9320-9325. 

Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M., & Dilssner, F. (2016). 
Absolute IGS antenna phase center model igs08. atx: status and potential 
improvements. Journal of Geodesy, 90(4), 343-364. 

Sella, G. F., S. Stein, T. H. Dixon, M. Craymer, T. S. James, S. Mazzotti, and R. K. 
Dokka (2007). Observation of glacial isostatic adjustment in “stable” North 
America with GPS. Geophys. Res. Lett., 34, L02306, 
https://doi.org/10.1029/2006GL027081.  

Serpelloni, E., Faccenna, C., Spada, G., Dong, D. & Williams, S. D. (2013). Vertical GPS 
ground motion rates in the Euro‐Mediterranean region: New evidence of velocity 
gradients at different spatial scales along the Nubia‐Eurasia plate boundary J. 
Geophys. Res. - Solid Earth, 118(11), 6003-6024. 

Shafer, M., Ojima, D., Antle, J. M., Melillo, J., Richmond, T., & Yohe, G. (2014). 
Climate change impacts in the United States: the third national climate 
assessment. Washington, DC: U.S. Global Change Research Program, 441–461. 
Chapter 19, http://nca2014.globalchange.gov/report/regions/great-plains. 

Sibthorpe, A., Bertiger, W., Desai, S. D., Haines, B., Harvey, N., & Weiss, J. P. (2011). 
An evaluation of solar radiation pressure strategies for the GPS constellation. 
Journal of Geodesy, 85(8), 505-517. 

Silverii, F., D’Agostino, N., Borsa, A. A., Calcaterra, S., Gambino, P., Giuliani, R., & 
Mattone, M. (2019). Transient crustal deformation from karst aquifers hydrology 
in the Apennines (Italy). Earth Planet. Sci. Lett., 506, 23-37. 

Sneed, M., Brandt, J., & Solt, M. (2013). Land subsidence along the Delta-Mendota 
Canal in the northern part of the San Joaquin Valley, California, 2003–10: U.S. 
Geological Survey Scientific Investigations Report 2013–5142, 87 p., 
https://doi.org/10.3133/sir20135142. 

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. (2004). 
GRACE measurements of mass variability in the Earth system. Science, 
305(5683), 503–505, https://doi.org/10.1126/science.1099192. 

https://doi.org/10.1002/2014JB011176
https://doi.org/10.1093/gji/ggx142
https://doi.org/10.1029/2020WR027556
https://doi.org/10.1029/2006GL027081
http://nca2014.globalchange.gov/report/regions/great-plains
https://doi.org/10.3133/sir20135142
https://doi.org/10.1126/science.1099192


 

 

168 

Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurious signals in GPS 
analyses. J. of Geophys. Res. - Solid Earth, 114, B09403, 
https://doi.org/10.1029/2009JB006344. 

US Energy Information Administration. (2018). Permian Basin Wolfcamp Shale Play 
Geology review. 

Vose, R.S., Applequist, S., Durre, I., Menne, M. J., Williams, C. N., Fenimore, C., Gleason, 
K, Arndt, D. (2014). Improved historical temperature and precipitation time series 
for U.S. climate divisions. Journal of Applied Meteorology and Climatology, 53(5), 
1232-1251, https://doi.org/10.1175/JAMC-D-13-0248.1. 

Watts, A. B. (2001). Isostasy and Flexure of the Lithosphere, p. 114-121.  Cambridge, 
United Kingdom: Cambridge University Press. 

Weeks, J. B., Gutentag, E. D., Heimes, F. J., & Luckey, R. R. (1988). Summary of the 
High Plains regional aquifer-system analysis in parts of Colorado, Kansas, 
Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. 
Geological Survey Professional Paper 1400–A, p. 30.  

Weeks, J. B., & Gutentag, E. D. (1981). Bedrock geology, altitude of base, and 1980 
saturated thickness of the High Plains aquifer in parts of Colorado, Kansas, 
Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. 
Geological Survey Hydrologic Investigations Atlas HA–648, 2 sheets, scale 
1:2,500,000, http://pubs.er.usgs.gov/publication/ha648. 

Whittemore, D. O., Butler, Jr., J. J., & Wilson, B. B. (2016). Assessing the major drivers 
of water-level declines: New insights into the future of heavily stressed aquifers. 
Hydrological Sciences Journal, 61(1), 134–145, 
https://doi.org/10.1080/02626667.2014.959958. 

Willett, S. D., McCoy, S. W., & Beeson, H. W. (2018). Transience of the North 
American High Plains landscape and its impact on surface water. Nature, 
561(7724), 528-532. 

Young, Z. M., Kreemer, C., & Blewitt, G. (2021). GPS Constraints on Drought‐Induced 
Groundwater Loss Around Great Salt Lake, Utah, With Implications for 
Seismicity Modulation. J. Geophys. Res. - Solid Earth, 126(10), e2021JB022020. 

  

https://doi.org/10.1029/2009JB006344
https://doi.org/10.1175/JAMC-D-13-0248.1
http://pubs.er.usgs.gov/publication/ha648
https://doi.org/10.1080/02626667.2014.959958


 

 

169 

3.13 Supplemental Tables 

 

Table S3.1. Great Plains GPS Station and Vertical Velocity Data 

Station Latitude 
(ºN) 

Longitude 
(º) 

Vertical 
Velocity 

(mm/year) 

Vertical 
Uncertainty 
(mm/year) 

GIA-
Corrected 

Vertical 
Velocity 

(mm/year) 

Agency or 
Company 

Approximate 
Location 

ABL1 32.4537 -99.7305 -0.690 0.859 -0.084 Leica SmartNet Abilene, TX 

AMC2 38.8031 -104.5246 -0.947 0.449 -0.196 USNO Schriever 
AFB, CO 

ARVA 39.8032 -105.0878 -3.918 0.903 -1.403 Leica SmartNet Arvada, CO 

BONH 33.5514 -96.2109 -2.128 0.304 -1.356 TopNET Bonham, TX 

BOSQ 31.9233 -97.6574 -2.158 1.052 -1.426 Leica SmartNet Meridian, TX 

BUR5 41.1880 -104.3532 -1.268 0.759 -0.074 Leica SmartNet Burns, WY 

CCTY 38.4383 -105.2448 -0.607 0.768 0.385 Leica SmartNet Cañon City, 
CO 

CHEY 41.1176 -104.8101 -2.607 0.898 -1.457 Leica SmartNet Cheyenne, 
WY 

CHLL 40.4466 -104.6379 -0.393 0.806 0.270 UCAR Greeley, CO 

CHUG 41.7622 -104.8209 -3.293 0.756 -0.406 Leica SmartNet Chugwater, 
WY 

COBD 40.0639 -105.2032 -3.257 1.069 0.130 Leica SmartNet Boulder, CO 

COCA 39.0384 -104.2977 -1.438 0.743 -0.398 Leica SmartNet Calhan, CO 

CODN 39.8251 -104.6681 -2.423 0.649 -1.164 Leica SmartNet Denver, CO 

CODV 38.9411 -105.1615 -3.970 1.112 -0.844 Leica SmartNet Divide, CO 

COFC 40.5934 -105.1604 -0.943 0.619 0.133 King Surveyors, 
Inc. 

Fort Collins, 
CO 

COFG 40.2678 -103.8254 -0.826 0.800 0.311 Leica SmartNet Log Lane 
Village, CO 

COGR 40.3780 -104.7043 -2.608 0.877 -0.426 Leica SmartNet Evans, CO 

COGW 39.6101 -104.8869 -5.930 0.887 -2.947 Leica SmartNet Greenwood 
Village, CO 

COPU 38.2717 -104.6142 -1.364 0.712 -0.359 Leica SmartNet Pueblo, CO 

COSG 38.9601 -104.7809 -1.845 1.056 -0.831 Leica SmartNet Colorado 
Springs, CO 

COWI 39.9172 -105.7861 -0.686 0.911 0.054 Leica SmartNet Winter Park, 
CO 

CTMC 39.7215 -105.1929 -1.811 0.712 -0.977 CO DOT Golden, CO 
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DEAC 39.7401 -105.2212 -1.987 1.111 -0.799 Leica SmartNet Golden, CO 

DSRC 39.9914 -105.2610 -1.408 0.561 0.198 NOAA Boulder, CO 

ECSD 43.7337 -96.6140 -2.677 0.553 -2.209 NOTA Edison 
Township, SD 

FBYN 40.0769 -97.3128 0.881 0.744 -1.012 NOAA Buckley, NE 

FLA2 40.1654 -105.1033 -0.898 0.804 0.142 Leica SmartNet Longmont, 
CO 

FNT1 38.6825 -104.7001 -1.220 0.718 -0.351 Leica SmartNet Fountain, CO 

GDAC 37.7755 -102.1800 0.509 0.656 0.886 NOAA Holly, CO 

GEOS 40.0827 -104.8108 -2.215 1.110 -1.160 Leica SmartNet Fort Lupton, 
CO 

GILC 41.1585 -105.0763 -1.164 0.739 -0.030 Leica SmartNet Cheyenne, 
WY 

GPRY 32.7451 -97.0054 -4.318 0.406 -1.971 TopNET Grand Prairie, 
TX 

HBRK 38.3046 -97.2935 -0.587 0.568 0.323 NOAA Menno, KS 

HIX1 40.5751 -105.0042 -1.513 0.760 -0.428 Leica SmartNet Fort Collins, 
CO 

HVLK 37.6515 -99.1068 -0.324 0.690 -0.365 NOAA Haviland, KS 

IAAK 42.8227 -96.5635 -3.329 1.010 -2.639 Leica SmartNet Akron, IA 

IAD2 43.2855 -96.1816 -3.837 1.038 -2.625 Leica SmartNet Garfield 
Township, IA 

IALM 42.7981 -96.1487 -3.180 0.839 -2.491 Iowa DOT Le Mars, IA 

IALW 42.4771 -96.2425 -3.835 1.154 -2.385 Leica SmartNet Lawton, IA 

IAOA 42.0276 -96.1080 -3.019 0.821 -1.969 Iowa DOT Onawa, IA 

IAON 42.0287 -96.0953 -2.918 1.112 -1.969 Leica SmartNet Onawa, IA 

IARR 43.4335 -96.1488 -3.016 0.874 -2.483 Iowa DOT Rock Rapids, 
IA 

IARV 43.1978 -96.3141 -2.323 0.927 -2.443 Iowa DOT Rock Valley, 
IA 

IASN 42.2390 -96.2311 -2.803 0.771 -1.919 Iowa DOT Sloan, IA 

IASX 42.5500 -96.3485 -3.668 0.784 -2.550 Iowa DOT Sioux City, IA 

ICT1 37.5877 -97.3089 -0.719 0.710 0.422 Sedgwick 
County Wichita, KS 

ICT2 37.7518 -97.3681 -0.122 0.824 0.435 Sedgwick 
County Wichita, KS 

ICT3 37.7526 -97.2162 -0.524 0.665 0.568 Sedgwick 
County Payne, KS 

ICT4 37.6190 -97.6325 -1.050 0.835 -0.728 Sedgwick 
County Afton, KS 

ICT5 37.7867 -97.6258 -0.554 0.630 0.105 Sedgwick 
County Andale, KS 
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JTNT 33.0172 -100.9771 -0.754 0.658 -0.211 NOAA Justiceburg, 
TX 

KSAY 37.1445 -98.0304 -3.526 1.438 -1.041 Leica SmartNet Anthony, KS 

KSBK 37.5511 -99.6351 -2.050 1.267 -0.725 Leica SmartNet Bucklin, KS 

KSCM 37.8601 -100.3547 -2.075 1.421 -0.962 Leica SmartNet Foote, KS 

KSCO 39.6105 -97.6623 -2.312 1.389 -1.020 Leica SmartNet Concordia, 
KS 

KSCP 38.9713 -97.0200 -1.654 1.334 -0.396 Leica SmartNet Chapman, KS 

KSCW 37.2736 -99.3276 -1.805 1.342 -0.720 Leica SmartNet Coldwater, 
KS 

KSEM 38.4041 -96.1784 0.522 1.084 0.312 Leica SmartNet Emporia, KS 

KSEU 37.8517 -96.2899 -1.669 1.433 -0.499 Leica SmartNet Eureka, KS 

KSGB 38.3547 -98.7648 -2.595 1.283 -1.216 Leica SmartNet Great Bend, 
KS 

KSGC 37.9691 -100.8964 -2.440 1.254 -0.968 Leica SmartNet Garden City, 
KS 

KSHA 37.5586 -97.3449 -3.128 1.460 -0.798 Leica SmartNet Haysville, KS 

KSHU 38.0313 -97.9024 -1.865 1.287 -0.691 Leica SmartNet Hutchinson, 
KS 

KSKY 37.9112 -99.4061 -2.779 1.363 -0.937 Leica SmartNet Kinsley, KS 

KSLC 38.5320 -99.3055 -2.641 1.374 -1.444 Leica SmartNet La Crosse, 
KS 

KSMA 38.3599 -97.0119 -1.930 1.362 -0.459 Leica SmartNet Marion, KS 

KSMD 37.2851 -100.3586 -1.828 1.305 -0.758 Leica SmartNet Meade, KS 

KSMH 39.1790 -96.5737 -2.326 1.580 -0.736 Leica SmartNet Manhattan, 
KS 

KSMP 38.3464 -97.6699 -2.101 1.389 -0.897 Leica SmartNet King City, KS 

KSNC 38.4533 -99.8947 -2.908 1.305 -1.466 Leica SmartNet Ness City, KS 

KSPR 37.6907 -98.7410 -2.405 1.523 -1.273 Leica SmartNet Pratt, KS 

KSSN 39.8419 -96.0554 -2.011 1.320 -0.736 Leica SmartNet Richmond, 
KS 

KST5 39.0446 -96.0391 -1.204 0.684 -0.715 USCG Maple Hill, KS 

KST6 39.0444 -96.0391 -0.906 0.693 0.362 USCG Maple Hill, KS 

KSTB 38.4681 -101.7522 -1.918 1.139 -0.800 Leica SmartNet Tribune, KS 

KSU1 39.1008 -96.6095 -1.113 0.594 0.156 NOTA Manhattan, 
KS 

KSWF 37.2407 -97.0244 -1.934 1.549 -0.822 Leica SmartNet Winfield, KS 

KSWN 37.2656 -97.3971 -2.135 1.359 -1.026 Leica SmartNet Wellington, 
KS 
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LMNO 36.6854 -97.4807 -0.378 0.643 0.629 NOAA Lamont, KS 

MFLE 39.9476 -105.1944 -0.713 1.275 0.309 UCAR Boulder, CO 

MFP0 39.9496 -105.1944 2.555 0.900 0.309 NASA Boulder, CO 

MFTC 39.9493 -105.1943 -0.035 0.769 -0.125 NASA Boulder, CO 

MFTN 39.9493 -105.1943 -1.147 0.688 -0.125 NASA Boulder, CO 

MFTS 39.9493 -105.1943 -1.034 0.606 -0.012 NASA Boulder, CO 

MFTW 39.9493 -105.1943 -1.242 0.663 -0.125 NASA Boulder, CO 

MNBV 43.6083 -96.3782 -2.160 0.662 -1.826 Minnesota DOT 
Beaver Creek 

Township, 
MN 

MRRN 42.9043 -101.6964 -0.641 0.648 -1.955 NOAA Merriman, NE 

NEA2 41.6751 -97.9806 -3.306 0.915 -1.338 Seiler 
Instruments Albion, NE 

NEAL 41.6985 -98.0117 -2.495 0.753 -1.338 Leica SmartNet Albion, NE 

NEAN 42.5503 -99.8526 -3.710 0.839 -2.426 Seiler 
Instruments 

Ainsworth, 
NE 

NEAP 40.3059 -99.9054 -1.126 0.688 -0.450 Seiler 
Instruments 

Arapahoe, 
NE 

NEB2 41.2637 -96.1442 -2.514 0.930 -1.347 Leica SmartNet Omaha, NE 

NEBA 42.0164 -96.5731 -3.536 0.983 -2.542 Leica SmartNet Bancroft, NE 

NEBB 41.4023 -99.6260 -3.342 0.778 -2.134 Leica SmartNet Broken Bow, 
NE 

NEBE 40.2661 -96.7449 -2.032 0.847 -0.791 Leica SmartNet Beatrice, NE 

NEBK 40.0614 -101.5310 -3.275 0.963 0.153 Leica SmartNet Benkelman, 
NE 

NEBU 40.3354 -97.5750 -3.200 0.764 -1.203 Leica SmartNet Bruning, NE 

NEC1 41.4298 -97.3638 -3.021 0.836 -1.855 Leica SmartNet Columbus, 
NE 

NECL 41.7131 -97.0617 -3.537 1.410 -2.074 Leica SmartNet Clarkson, NE 

NECO 41.4280 -97.3695 -2.018 0.681 -1.855 Leica SmartNet Columbus, 
NE 

NEDR 40.7726 -96.7003 -2.082 0.547 -1.117 Seiler 
Instruments Lincoln, NE 

NEF1 41.4192 -96.4917 -2.473 1.195 -1.331 Leica SmartNet Platte, NE 

NEFM 41.4509 -96.5376 -4.040 1.426 -1.446 Leica SmartNet Platte, NE 

NEFR 40.1482 -97.1707 -2.501 0.810 -1.204 Seiler 
Instruments Fairbury, NE 

NEGI 40.9223 -98.3282 -2.289 0.766 -1.206 
City of Grand 
Island Utility 
Department 

Grand Island, 
NE 

NEGN 40.9103 -98.3810 -2.509 0.816 -1.218 Leica SmartNet Grand Island, 
NE 
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NEGO 40.9201 -100.1659 -3.899 1.102 -2.561 Seiler 
Instruments 

Gothenburg, 
NE 

NEHA 42.6122 -97.2774 -4.364 0.867 -2.727 Leica SmartNet Hartington, 
NE 

NEHD 40.4392 -99.3696 -2.567 1.091 -1.247 Seiler 
Instruments Holdrege, NE 

NEHO 40.4383 -99.3620 -1.763 0.671 -0.443 CNPPID Holdrege, NE 

NEIM 40.5085 -101.6439 -1.092 0.897 0.187 Seiler 
Instruments Imperial, NE 

NEJ1 40.6951 -99.8174 -4.744 1.070 -2.570 CNPPID Bethel, NE 

NEJM 40.9591 -100.3992 -1.695 1.821 -0.568 CNPPID Brady, NE 

NEKO 41.2099 -101.6704 -3.500 1.182 -1.611 CNPPID Ogallala, NE 

NELI 40.7763 -96.7122 -2.371 0.836 -1.122 Leica SmartNet Lincoln, NE 

NELX 40.7445 -99.7395 -3.458 0.745 -2.128 Seiler 
Instruments 

Lexington, 
NE 

NELY 41.9383 -96.4593 -1.786 0.700 -1.482 Seiler 
Instruments Logan, NE 

NEMC 40.1994 -100.5782 -1.509 0.664 -0.214 Seiler 
Instruments 

Willow Grove, 
NE 

NEMI 40.5024 -98.9570 -1.516 0.692 -1.192 Seiler 
Instruments Minden, NE 

NENB 41.4621 -96.7798 -2.578 0.770 -1.438 Seiler 
Instruments 

North Bend, 
NE 

NENF 42.0370 -97.4109 -3.040 0.687 -2.156 Seiler 
Instruments Norfolk, NE 

NENO 42.0218 -97.4259 -3.165 0.792 -2.011 Leica SmartNet Norfolk, NE 

NENP 41.1361 -100.7654 -1.910 0.609 -0.556 Seiler 
Instruments 

North Platte, 
NE 

NEOG 41.1226 -101.7133 -2.959 0.868 -1.621 Seiler 
Instruments Ogallala, NE 

NEOM 41.2156 -96.0804 -1.983 0.646 -0.835 Seiler 
Instruments Ralston, NE 

NEON 42.4583 -98.6584 -3.687 0.897 -2.641 Seiler 
Instruments O’Neill, NE 

NEOR 41.5952 -98.9169 -3.623 0.774 -2.371 Seiler 
Instruments Ord, NE 

NEPC 40.1116 -96.1592 -2.660 0.947 -1.366 Seiler 
Instruments 

Pawnee City, 
NE 

NEPR 42.1072 -96.7064 -3.520 1.269 -2.568 Leica SmartNet Pender, NE 

NERC 40.0756 -98.5181 -3.998 0.728 -1.892 Seiler 
Instruments 

Red Cloud, 
NE 

NESC 41.8272 -103.6610 -0.718 0.611 0.205 Scotts Bluff 
County Gering, NE 

NESE 40.6782 -96.1819 -3.173 1.310 -1.260 Leica SmartNet Syracuse, NE 

NEST 41.4800 -100.5015 -2.914 1.102 -1.549 Seiler 
Instruments Gandy, NE 

NESY 40.6685 -96.1733 -2.869 1.493 -1.401 Leica SmartNet Syracuse, NE 
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NETH 41.9844 -100.5360 -4.262 0.929 -2.132 Seiler 
Instruments Thedford, NE 

NEVN 42.8725 -100.5437 -3.514 0.867 -2.297 Seiler 
Instruments Valentine, NE 

NEY1 40.8702 -97.5915 -2.944 0.948 -1.677 Leica SmartNet York, NE 

NEYK 40.8432 -97.5940 -1.668 0.671 -1.104 Seiler 
Instruments York, NE 

NISA 39.9948 -105.2629 -0.518 1.086 0.229 NIST Boulder, CO 

NIST 39.9951 -105.2626 -0.824 0.647 0.198 NIST Boulder, CO 

NISU 39.9954 -105.2623 -0.836 1.024 0.198 NIST Boulder, CO 

NLGN 42.2067 -97.7953 -0.975 1.117 -1.561 NOAA Willow Creek, 
NE 

NMAL 32.9011 -105.9531 -2.055 0.903 0.022 Leica SmartNet Alamogordo, 
NM 

NMCA 32.3759 -104.2280 -0.938 1.322 0.215 Leica SmartNet Carlsbad, NM 

NMHB 32.7048 -103.1269 -0.115 0.678 0.646 Leica SmartNet Hobbs, NM 

NMRO 33.3950 -104.5891 -0.068 0.487 0.667 NM DOT Roswell, NM 

NMSF 35.6738 -105.9586 -1.738 0.500 -0.208 NM DOT Santa Fe, NM 

NWOT 40.0554 -105.5905 -0.021 0.961 0.326 University of CO Ward, CO 

OASS 42.4735 -96.4143 -2.748 0.766 -2.704 Seiler 
Instruments 

South Sioux 
City, NE 

OKAD 34.8003 -96.7383 -0.614 0.715 0.315 OK DOT Ada, OK 

OKAL 34.6323 -99.3294 -0.243 0.601 0.425 OK DOT Altus, OK 

OKAO 35.0764 -98.2459 0.748 0.658 0.479 OK DOT Anadarko, OK 

OKAR 34.1685 -97.1692 -1.256 0.734 -0.371 OK DOT Ardmore, OK 

OKBF 36.8280 -99.6414 -0.732 0.608 0.317 OK DOT Morrison, OK 

OKCL 35.4832 -98.9715 -0.898 0.595 0.480 OK DOT Clinton, OK 

OKDN 34.4793 -97.9666 -0.702 0.663 0.203 OK DOT Duncan, OK 

OKDT 35.4901 -97.5077 -1.707 0.610 -0.733 OK DOT Oklahoma 
City, OK 

OKGM 36.6746 -101.4794 -0.174 0.531 0.831 OK DOT Guymon, OK 

OKLW 34.5728 -98.4099 -0.322 0.712 0.204 OK DOT Bishop, OK 

OKPR 36.2762 -97.3217 -1.005 0.606 0.028 OK DOT Perry, OK 

OKSY 35.3150 -99.6377 -0.482 0.746 0.463 OK DOT Sayre, OK 

OKTE 35.2602 -96.8978 -1.332 0.758 -0.373 OK DOT Tecumseh, 
OK 
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P027 32.8019 -105.8042 -0.343 0.518 0.211 NOTA Sunspot, NM 

P035 34.6014 -105.1836 -0.652 0.433 0.195 NOTA Vaughn, NM 

P036 36.4203 -105.2937 -1.092 0.479 -0.077 NOTA Angel Fire, 
NM 

P037 38.4218 -105.1047 -0.884 0.489 -0.068 NOTA Penrose, CO 

P038 34.1473 -103.4073 0.704 0.479 0.773 NOTA Portales, NM 

P039 36.4481 -103.1540 0.442 0.503 1.407 NOTA Clayton, NM 

P040 38.0715 -102.6870 -0.433 0.494 0.627 NOTA Lamar, CO 

P041 39.9495 -105.1943 -0.869 0.550 0.124 NOTA Boulder, CO 

P042 42.0515 -104.9106 -1.401 0.492 -0.150 NOTA Chugcreek, 
WY 

P043 43.8811 -104.1857 -1.757 0.512 -0.082 NOTA Newcastle, 
WY 

P044 40.1718 -103.2225 -1.099 0.492 0.074 NOTA Akron, CO 

P070 36.0448 -104.6980 -0.524 0.530 0.269 NOTA Wagon 
Mound, NM 

P120 35.0075 -105.6261 -0.803 0.445 0.152 NOTA Clines 
Corners, NM 

P123 36.6352 -105.9108 -0.947 0.457 -0.020 NOTA Tres Piedras, 
NM 

PLTC 40.1816 -104.7259 -0.697 0.493 0.169 NOAA Platteville, 
CO 

PRCO 34.9799 -97.5192 -0.462 0.614 0.369 NOAA Washington, 
OK 

PRX5 39.9495 -105.1943 0.487 1.274 0.153 NOTA Boulder, CO 

PSRS 38.4345 -104.2849 -1.563 0.756 -0.343 Leica SmartNet Pueblo, CO 

PUB5 38.2868 -104.3455 -1.224 0.537 -0.209 USCG Pueblo, CO 

PUB6 38.2871 -104.3455 -1.096 0.529 -0.209 USCG Pueblo, CO 

RG03 33.6547 -105.1542 -0.646 0.558 0.141 University of CO Arabela, NM 

RG04 34.8244 -105.6442 -0.704 0.532 0.042 University of CO Clines 
Corners, NM 

RG08 32.7284 -104.9941 -0.512 0.475 0.224 University of CO Hope, NM 

RG11 36.5232 -105.7791 -1.004 0.459 -0.081 University of CO Arroyo 
Hondo, NM 

RG12 36.4586 -104.9683 -0.974 0.556 -0.040 University of CO Cimarron, NM 

RG13 36.4913 -104.2115 -1.300 0.471 -0.025 University of CO Springer, NM 

RG17 39.7618 -105.6696 -1.261 0.842 -0.263 University of CO Empire, CO 

RG19 39.1901 -105.5520 -0.451 0.791 0.214 University of CO Tarryall, CO 
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RG23 37.7439 -105.4985 -0.777 0.611 0.023 University of CO 
Great Sand 
Dunes NP, 

CO 

RG24 37.9635 -104.9668 -1.062 0.570 -0.075 University of CO Rye, CO 

RICE 32.2436 -96.4998 -3.777 0.966 -2.222 Leica SmartNet Rice, TX 

RWDN 40.0867 -100.6535 -0.416 0.967 0.161 NOAA McCook, NE 

SA00 40.0352 -105.2433 -0.793 0.838 0.232 UCAR Boulder, CO 

SA11 41.3204 -105.6678 -1.108 0.587 0.003 University of WY Laramie, WY 

SA17 31.7160 -98.9867 -0.498 0.783 0.086 University of TX Brownwood, 
TX 

SA19 33.8738 -98.5199 0.474 0.855 0.799 University of TX-
Austin 

Wichita Falls, 
TX 

SA60 39.9782 -105.2754 0.566 1.325 1.586 UCAR Boulder, CO 

SA62 40.5878 -105.1476 -1.256 0.765 -0.180 UCAR Fort Collins, 
CO 

SDCL 43.7851 -99.3119 -5.264 1.344 -3.448 Leica SmartNet Chamberlain, 
SD 

SDFR 43.3592 -97.4216 -3.930 1.276 -3.417 Leica SmartNet Freeman, SD 

SDGA 43.7193 -96.5137 -4.185 1.359 -2.812 Leica SmartNet Garretson, 
SD 

SDMA 43.9880 -97.0926 -4.477 1.191 -3.755 Leica SmartNet Madison, SD 

SDP1 43.3853 -98.8439 -4.514 1.261 -3.069 Leica SmartNet Platte, SD 

SDSF 43.7338 -96.6218 -2.439 0.827 -2.823 USGS Edison 
Township, SD 

SDWG 43.0823 -98.2559 -2.556 1.321 -2.957 Leica SmartNet Wagner, SD 

SFSD 43.5721 -96.7285 -3.291 0.713 -2.812 Minnesota DOT Sioux Falls, 
SD 

SG01 36.6041 -97.4848 -0.925 0.633 0.048 University of OK Lamont, OK 

SG04 37.1319 -97.2661 -0.433 0.600 0.669 University of OK Greene, KS 

SG08 36.8413 -96.4280 -0.871 0.618 0.210 University of OK Pawhuska, 
OK 

SG09 36.4308 -98.2844 -0.649 0.626 0.172 University of OK Ringwood, 
OK 

SG10 36.8814 -98.2864 -0.863 0.640 0.207 University of OK Burlington, 
OK 

SG11 37.3316 -99.3089 -1.277 0.846 -0.711 University of OK Coldwater 
Township, KS 

SG12 38.2020 -99.3169 -1.487 0.920 -1.429 University of OK Morton, KS 

SG13 38.1146 -97.5152 -1.672 0.897 0.596 University of OK Alta Mills, KS 

SG14 37.8430 -97.0206 -0.880 1.001 0.285 University of OK Towanda, KS 

SG16 37.3842 -96.1807 -0.442 0.733 0.259 University of OK Elk Falls, KS 
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SG18 34.8835 -98.2039 -1.142 0.958 0.227 University of OK Cyril, OK 

SG19 35.3555 -98.9779 -0.430 0.882 0.522 University of OK Bessie, OK 

SG20 35.5568 -98.0158 -0.333 0.777 0.404 University of CO El Reno, OK 

SG24 40.0542 -105.5889 -1.990 0.938 0.219 University of CO Ward, CO 

SG34 35.2691 -96.7402 -0.864 0.906 0.089 University of OK Pleasant 
Grove, OK 

SG41 37.1510 -98.3621 -2.045 1.120 -0.955 UCAR Hazelton, KS 

SG42 36.8193 -97.8199 -1.399 1.257 -0.331 UCAR Medford, OK 

SG43 36.9255 -97.0818 3.544 1.507 0.652 UCAR Newkirk, OK 

SG44 37.0697 -96.7606 -1.974 1.188 -0.838 UCAR Spring Creek, 
KS 

SG45 35.8617 -97.0697 -2.654 2.917 -0.197 UCAR Tryon, OK 

SG46 36.1171 -97.5110 -1.197 1.179 -0.181 UCAR Douglas, OK 

SG47 36.3106 -97.9275 -1.584 1.575 -0.170 UCAR Waukomis, 
OK 

SG48 35.8800 -98.1731 -0.884 1.317 0.112 UCAR Lomega, OK 

SG72 35.2365 -97.4652 -0.570 0.847 0.386 University of OK Norman, OK 

SGPO 36.6042 -97.4848 -1.821 0.402 0.128 GFZ Lamont, OK 

SMSW 32.4746 -100.3994 -1.008 0.747 -0.243 Leica SmartNet Sweetwater, 
TX 

SUM5 34.8251 -102.5118 0.226 0.575 1.116 USCG Westway, TX 

SUM6 34.8251 -102.5121 1.059 0.568 1.598 USCG Westway, TX 

TCUN 35.0850 -103.6091 0.708 0.725 1.598 NOAA Tucumcari, 
NM 

TMGO 40.1309 -105.2327 0.022 0.496 0.134 NOAA Altona, CO 

TMS3 40.1300 -105.2328 -3.122 2.567 -0.958 GFZ Altona, CO 

TWG1 32.7947 -96.8241 -3.446 1.177 -1.968 Leica SmartNet Dallas, TX 

TX90 32.9114 -97.0595 -2.852 0.906 -1.962 Leica SmartNet Dallas, TX 

TXAB 32.5033 -99.7568 -0.683 0.562 0.081 TX DOT Abilene, TX 

TXAD 32.3080 -102.5436 0.761 0.629 0.326 TX DOT Andrews, TX 

TXAM 35.1536 -101.8785 0.540 0.463 1.453 TX DOT Amarillo, TX 

TXAR 32.7590 -97.0603 -2.477 0.696 -1.687 TX DOT Arlington, TX 

TXB3 31.1495 -99.3361 -1.160 0.907 -0.481 TX DOT Brady, TX 
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TXB4 34.5088 -102.8935 -0.117 0.883 1.094 TX DOT Bovina, TX 

TXB5 31.4722 -96.0461 -3.352 1.144 -2.256 TX DOT Buffalo, TX 

TXB8 32.2854 -101.4982 -1.334 1.145 -0.337 TX DOT Big Spring, 
TX 

TXBD 31.7375 -98.9667 -1.085 0.897 -0.365 TX DOT Brownwood, 
TX 

TXBF 33.1653 -102.2828 -1.037 0.842 -0.241 TX DOT Brownfield, 
TX 

TXBG 32.2676 -101.4758 -0.586 0.757 0.162 TX DOT Big Spring, 
TX 

TXBI 31.7607 -99.9681 -0.851 0.685 -0.288 TX DOT Ballinger, TX 

TXBL 31.1927 -101.4737 0.127 0.695 0.292 TX DOT Reagan, TX 

TXBN 33.6067 -96.1753 -2.202 0.711 -1.279 TX DOT Bonham, TX 

TXBR 35.6403 -101.3979 0.812 0.613 1.487 TX DOT Borger, TX 

TXBT 31.0326 -97.4790 -2.243 0.717 -1.132 TX DOT Belton, TX 

TXBW 31.7376 -98.9668 -0.631 1.045 -0.365 TX DOT Brownwood, 
TX 

TXC0 32.3983 -98.9829 -2.859 1.297 -2.081 Leica SmartNet Cisco, TX 

TXC3 31.8098 -99.4221 -2.341 0.844 -0.437 TX DOT Coleman, TX 

TXC4 31.9104 -98.5972 -3.744 1.108 -2.528 TX DOT Comanche, 
TX 

TXCB 32.2882 -97.4121 -5.203 1.030 -2.715 Leica SmartNet Cleburne, TX 

TXCD 35.1016 -101.3626 0.996 0.662 1.486 TX DOT Claude, TX 

TXCE 31.4228 -102.3576 -1.348 0.655 -0.237 TX DOT Crane, TX 

TXCG 35.6881 -102.3291 0.399 0.607 1.337 TX DOT Channing, TX 

TXCH 34.4596 -100.2783 -0.304 0.560 0.584 TX DOT Childress, TX 

TXCI 35.9203 -100.3783 -0.699 0.756 0.328 TX DOT Canadian, TX 

TXCL 34.9512 -100.9134 0.250 0.665 1.162 TX DOT Clarendon, 
TX 

TXCO 33.1653 -96.6279 -2.302 0.563 -1.290 TX DOT McKinney, TX 

TXCW 33.9972 -99.7239 -2.163 0.793 -0.532 TX DOT Crowell, TX 

TXD2 33.2815 -96.9867 97.893 0.866 -1.261 TopNET Krugerville, 
TX 

TXDA 32.8000 -96.6729 -2.260 0.678 -1.465 TX DOT Mesquite, TX 

TXDC 33.2362 -97.6087 -1.508 0.595 -0.684 TX DOT Decatur, TX 

TXDE 33.2105 -97.1628 -2.712 0.563 -1.891 TX DOT Denton, TX 
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TXDF 32.8786 -97.0422 -2.762 0.990 -1.962 Leica SmartNet Euless, TX 

TXDK 33.6237 -100.8302 -1.514 0.798 -0.105 TX DOT Dickens, TX 

TXDL 36.0778 -102.5387 1.159 0.781 1.664 TX DOT Dalhart, TX 

TXDM 34.5301 -102.3031 -0.013 0.770 0.862 TX DOT Dimmitt, TX 

TXDN 33.2150 -97.1255 -4.143 0.950 -1.891 Leica SmartNet Denton, TX 

TXDT 33.2349 -97.5879 -2.794 0.880 -1.870 Leica SmartNet Decatur, TX 

TXDU 35.8937 -101.9639 0.293 0.693 1.247 TX DOT Dumas, TX 

TXEA 32.4028 -98.8089 -2.845 0.888 -2.080 TX DOT Eastland, TX 

TXEN 31.2175 -99.8600 -1.874 0.709 -1.191 TX DOT Eden, TX 

TXES 32.3697 -96.8628 -3.373 0.618 -2.610 TX DOT Waxahachie, 
TX 

TXEY 31.7432 -98.9451 -3.258 1.173 -2.139 Leica SmartNet Early, TX 

TXFA 31.2959 -105.8496 -0.127 0.665 0.114 TX DOT Fort Hancock 

TXFD 31.7231 -96.1709 -2.981 0.877 -2.250 TX DOT Fairfield, TX 

TXFN 32.7213 -96.4433 -2.793 0.381 -1.793 TopNET Forney, TX 

TXFT 32.7199 -97.4510 -8.090 0.593 -3.515 TopNET Fort Worth, 
TX 

TXFW 32.7431 -97.3285 -4.301 0.883 -3.512 Leica SmartNet Fort Worth, 
TX 

TXFY 32.7484 -96.4719 -2.405 0.992 -1.614 Leica SmartNet Forney, TX 

TXG3 33.1385 -96.1077 -2.107 0.477 -1.483 TopNET Greenville, 
TX 

TXGE 33.1320 -96.0555 -2.454 0.694 -1.635 TX DOT Greenville, 
TX 

TXGH 33.6169 -100.3231 -3.273 0.867 -0.677 TX DOT Guthrie, TX 

TXGI 33.6419 -97.1765 -1.724 0.706 -0.874 TX DOT Gainesville, 
TX 

TXGL 31.4722 -98.5680 -2.904 0.877 -2.203 TX DOT Goldthwaite, 
TX 

TXGR 32.2404 -97.7544 -1.426 0.728 -0.726 TX DOT Glen Rose, 
TX 

TXGT 31.4326 -97.7080 -0.638 0.808 -0.920 TX DOT Gatesville, TX 

TXGU 36.2699 -101.4057 -1.680 0.782 0.421 TX DOT Gruver, TX 

TXHB 32.0114 -97.1297 -3.475 0.815 -2.734 Leica SmartNet Hillsboro, TX 

TXHI 31.9892 -97.1298 -3.783 0.780 -2.734 TX DOT Hillsboro, TX 

TXHM 31.6995 -98.1067 -1.968 0.812 -1.249 TX DOT Hamilton, TX 
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TXHR 34.8457 -102.4066 -1.806 0.654 1.117 TX DOT Hereford, TX 

TXJA 33.1948 -98.1456 0.121 0.680 -0.473 TX DOT Jacksboro, 
TX 

TXKA 32.5718 -96.3143 -2.581 0.747 -1.804 TX DOT Kaufman, TX 

TXKE 32.4097 -97.3232 -2.387 0.705 -1.767 TX DOT Cleburne, TX 

TXKL 31.1208 -97.7322 -1.675 0.838 -0.988 Leica SmartNet Killeen, TX 

TXKM 31.8426 -103.1087 0.037 0.656 0.595 TX DOT Kermit, TX 

TXL1 33.9384 -102.3495 -0.731 0.724 0.752 TX DOT Littlefield, TX 

TXL2 32.7408 -101.9530 -1.088 0.834 -0.313 Leica SmartNet Lamesa, TX 

TXLA 32.7614 -101.9439 -1.703 0.688 -0.438 TX DOT Lamesa, TX 

TXLB 33.5204 -101.8784 1.508 0.814 0.748 Leica SmartNet Lubbock, TX 

TXLD 33.5943 -102.3458 -0.072 0.747 0.732 TX DOT Levelland, TX 

TXLS 31.0651 -98.1788 -1.625 0.922 -0.947 Leica SmartNet Lampasas, 
TX 

TXLU 33.5354 -101.8428 -0.358 0.496 0.465 TX DOT Lubbock, TX 

TXM1 33.7378 -102.7597 -0.089 0.835 0.737 TX DOT Morton, TX 

TXM5 31.9521 -102.1413 -2.010 1.214 0.137 Leica SmartNet Midland, TX 

TXMC 31.1321 -102.2325 -0.927 0.551 -0.252 TX DOT McCamey, 
TX 

TXME 34.7239 -100.5294 -1.316 0.736 0.782 TX DOT Memphis, TX 

TXMH 31.5577 -102.8940 -0.574 0.585 0.120 TX DOT Monahans, 
TX 

TXML 34.2398 -102.7536 0.228 0.908 0.841 TX DOT Muleshoe, TX 

TXMN 31.9101 -97.6619 -1.986 0.723 -1.254 TX DOT Meridan, TX 

TXMR 31.3059 -96.8640 -0.250 0.844 -0.499 TX DOT Marlin, TX 

TXMU 33.4493 -99.6452 -1.397 1.579 -0.565 TX DOT Munday, TX 

TXMW 32.8042 -98.1429 -3.554 0.863 -0.279 TX DOT Mineral Wells, 
TX 

TXMX 31.5951 -96.5244 -0.552 0.852 -0.302 TX DOT Forest Glade, 
TX 

TXMY 33.2235 -96.6233 -2.090 0.963 -1.287 Leica SmartNet McKinney, TX 

TXNA 32.0418 -96.5387 -1.026 0.620 -2.233 TX DOT Corsicana, 
TX 

TXNO 33.7757 -97.7260 -1.428 0.736 -0.567 TX DOT Nocona, TX 

TXOD 31.8739 -102.3152 -0.588 0.813 0.130 TX DOT Odessa, TX 
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TXOE 31.8735 -102.3140 -0.113 0.574 0.130 TX DOT Odessa, TX 

TXOL 33.3560 -98.7497 -0.062 0.673 0.507 TX DOT Olney, TX 

TXP2 33.1822 -102.8182 -1.908 0.975 0.679 TX DOT Plains, TX 

TXPC 31.4175 -103.5157 -1.354 0.678 -0.250 TX DOT Pecos, TX 

TXPD 34.0123 -100.2896 -0.118 0.653 -0.323 TX DOT Paducah, TX 

TXPM 35.5341 -100.9287 -0.646 0.792 0.785 TX DOT Pampa, TX 

TXPW 34.1500 -101.7232 -0.832 0.836 0.128 TX DOT Plainview, TX 

TXPY 36.3934 -100.8155 -0.161 0.643 0.302 TX DOT Perryton, TX 

TXQU 34.2994 -99.7550 -1.185 0.636 0.579 TX DOT Quanah, TX 

TXR2 32.9548 -96.7175 -1.916 0.551 -1.112 TX DOT Richardson, 
TX 

TXRA 33.6722 -101.3873 -0.939 0.868 -0.107 TX DOT Ralls, TX 

TXRL 31.9004 -100.4694 -1.568 0.791 -0.279 TX DOT Robert Lee, 
TX 

TXS3 32.7118 -102.6298 -0.626 0.875 0.140 TX DOT Seminole, TX 

TXS7 31.8367 -100.9876 0.065 1.092 0.790 Leica SmartNet Sterling City, 
TX 

TXS8 31.4651 -100.4400 -1.353 1.001 -0.653 Leica SmartNet San Angelo, 
TX 

TXSA 31.4143 -100.4729 -0.390 0.576 0.306 TX DOT San Angelo, 
TX 

TXSB 31.1981 -98.7457 -2.240 0.908 -0.940 TX DOT San Saba, TX 

TXSC 31.8416 -101.0106 1.096 0.710 0.852 TX DOT Sterling City, 
TX 

TXSD 32.7097 -100.9113 -0.865 0.949 -0.087 Leica SmartNet Snyder, TX 

TXSF 36.3382 -102.0617 -0.561 0.693 0.804 TX DOT Stratford, TX 

TXSG 32.8557 -97.3442 -1.691 0.618 -1.916 TX DOT Saginaw, TX 

TXSH 35.2259 -100.2186 0.035 0.698 0.454 TX DOT Shamrock, 
TX 

TXSL 34.4741 -101.3141 0.356 0.801 1.130 TX DOT Silverton, TX 

TXSO 32.1412 -101.8076 -0.417 0.660 0.323 TX DOT Stanton, TX 

TXSR 33.5916 -96.6070 -2.315 0.852 -1.353 TX DOT Sherman, TX 

TXST 32.2326 -98.1822 -1.482 0.594 -1.214 TX DOT Stephenville, 
TX 

TXSY 33.6024 -99.2584 -0.529 0.680 0.313 TX DOT Seymour, TX 

TXTC 31.0739 -97.3519 -1.205 0.999 -1.131 Leica SmartNet Temple, TX 
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TXTH 33.1790 -99.1679 -0.322 0.689 0.134 TX DOT Throckmorton
, TX 

TXTO 33.1805 -101.7951 -1.213 0.810 -0.234 TX DOT Tahoka, TX 

TXTU 34.5337 -101.7394 0.570 0.640 1.451 TX DOT Tulia, TX 

TXVE 34.1329 -99.2832 -0.500 0.746 0.377 TX DOT Vernon, TX 

TXVG 35.2439 -102.4244 2.366 0.693 1.972 TX DOT Vega, TX 

TXWA 31.5777 -97.1105 -2.153 0.608 -0.765 TX DOT Waco, TX 

TXWC 31.6427 -97.0873 -1.484 0.897 -0.762 Leica SmartNet Waco, TX 

TXWD 32.7393 -97.7801 -2.694 0.940 -1.905 Leica SmartNet Weatherford, 
TX 

TXWE 32.7589 -97.8235 -1.072 0.644 -0.637 TX DOT Weatherford, 
TX 

TXWF 33.8539 -98.5056 -1.292 0.570 -0.431 TX DOT Wichita Falls, 
TX 

TXWL 34.8497 -100.2021 0.213 0.682 0.608 TX DOT Wellington, 
TX 

TXWX 32.4266 -96.8383 -2.534 0.840 -1.764 Leica SmartNet Waxahachie, 
TX 

UNAC 40.0612 -105.2056 -0.784 0.807 0.244 JPL Boulder, CO 

VANM 31.4393 -97.4063 -1.819 0.949 -1.110 Leica SmartNet McGregor, TX 

VCIO 36.0717 -99.2173 0.273 0.614 0.515 NOAA Leedey, OK 

WHN5 42.7393 -103.3288 -1.122 0.574 0.092 USCG Whitney, NE 

WHN6 42.7395 -103.3286 -1.939 0.621 -0.264 USCG Whitney, NE 

WMOK 34.7379 -98.7805 -0.781 0.576 0.486 NOTA Indiahoma, 
OK 

WYLC 41.1045 -104.7754 -1.628 0.504 -0.478 BLM Cheyenne, 
WY 

ZDV1 40.1873 -105.1272 -0.871 0.548 0.143 FAA Longmont, 
CO 

ZFW1 32.8306 -97.0665 -0.650 0.675 -1.965 FAA Fort Worth, 
TX 

BLM: Bureau of Land Management 
CNPPID: Central Nebraska Public Power and Irrigation District 
DOT: Department of Transportation (by state) 
FAA: Federal Aviation Administration 
GFZ: German Research Centre for Geosciences 
JPL: Jet Propulsion Laboratory 
NASA: National Aeronautics and Space Administration 
NIST: National Institute of Standards and Technology 
NOAA: National Oceanic and Atmospheric Administration 
NOTA: Network Of The Americas  
UCAR: University Corporation for Atmospheric Research 
USCG: United States Coast Guard 
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USNO: United States Naval Observatory 
 

Table S3.2.  GPS Station time series classifications for the High Plains aquifer region 

North South 
BUR5 GDAC 
CHEY HVLK 
GILC KSGC 
KSTB NMHB 
MRRN OKGM 
NEA2 P038 
NEAL P039 
NEAN RG13 
NEBB SUM5 
NEGO SUM6 
NEHD TXAD 
NEHO TXAM 
NEIM TXB4 
NEJ1 TXB8 
NEJM TXBF 
NEKO TXBG 
NELX TXCD 
NENP TXCG 
NEOG TXCI 
NEON TXCL 
NEOR TXDL 
NEST TXDM 
NETH TXDU 
NEVN TXGU 
NLGN TXHR 
P044 TXL1 

RWDN TXL2 
WYLC TXLA 

 TXLB 
 TXLD 
 TXLU 
 TXM1 
 TXM5 
 TXML 
 TXOD 
 TXOE 
 TXP2 
 TXPM 
 TXPW 
 TXPY 
 TXRA 
 TXS3 
 TXSD 
 TXSL 
 TXSO 
 TXTO 
 TXTU 
 TXVG 
 TXWL 
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Table S3.3.  GSFC GRACE mascon IDs for the High Plains aquifer region 

Northern High Plains Aquifer Southern High Plains Aquifer Surrounding Great Plains 

Mascon ID 

Equivalent 
Water Height 

Trend 
(cm/year) 

Mascon ID 

Equivalent 
Water Height 

Trend 
(cm/year) 

Mascon ID 

Equivalent 
Water Height 

Trend 
(cm/year) 

1592 0.8731 1684 -1.3663 1575 0.5260 
1593 1.1049 1685 -1.5149 1576 0.7561 
1594 1.1940 1686 -1.3650 1577 0.9963 
1595 1.1082 1687 -0.9419 1578 1.1526 
1596 0.8964 1702 -1.2428 1579 1.1630 
1606 0.7567 1703 -1.8563 1580 0.9967 
1607 1.0441 1704 -2.2723 1581 0.7170 
1608 1.2325 1705 -2.3438 1582 0.4125 
1609 1.2784 1706 -2.0217 1583 0.2018 
1610 1.1840 1707 -1.3864 1590 0.3031 
1611 1.0044 1722 -1.6743 1591 0.5787 
1621 0.5888 1723 -2.2814 1597 0.6346 
1622 0.8378 1724 -2.6116 1598 0.4297 
1623 1.0326 1725 -2.5365 1604 0.1851 
1624 1.1359 1726 -2.0648 1605 0.4442 
1625 1.1452 1741 -2.0426 1612 0.8066 
1626 1.0836 1742 -2.2839 1620 0.3303 
1627 1.0020 1743 -2.1682 1628 0.9262 
1641 0.6129 1744 -1.7191 1640 0.5366 
1642 0.6251 1758 -1.3557 1646 0.7060 
1643 0.6011 1785 -1.5549 1647 0.8277 
1644 0.5864 1786 -1.5823 1661 0.2250 
1645 0.6117 1787 -0.9418 1662 0.1330 
1663 -0.0503 1788 -0.8755 1668 0.1706 
1664 -0.2539 1789 -0.6822 1669 0.5424 
1665 -0.3815 1794 -0.3644 1682 -0.5464 
1666 -0.3561 1795 -0.2598 1683 -0.9928 
1667 -0.1616 3119 -1.5386 1688 -0.3513 

  3122 -1.3032 1689 0.2612 
  3129 -0.4695 1708 -0.6034 
    1709 0.1471 
    1727 -1.3283 
    1728 -0.4990 
    1729 0.2298 
    1745 -1.0517 
    1746 -0.3307 
    1747 0.2844 
    1759 -0.9432 
    1760 -0.4361 
    1761 0.0599 
    1762 0.4363 
    1790 -0.4172 
    1791 -0.1408 
    1792 0.1225 
    1793 0.1225 
    1794 -0.3644 
    1795 -0.2103 
    1796 -0.1816 
    1797 -0.1221 
    1798 -0.0518 
    1799 0.0181 
    1802 -0.2103 
    1803 -0.3193 
    1804 -0.4393 
    1805 -0.4867 
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    1806 -0.4323 
    1903 0.3912 
    1910 0.0938 
    1917 -0.1146 
    3113 -0.1582 
    3114 -0.6099 
    3115 -0.3272 
    3116 -0.9590 
    3117 -0.3418 
    3118 -0.9121 
    3120 -0.4977 
    3121 -0.9118 
    3123 -0.5723 
    3126 -0.7044 
    3127 -0.6721 
    3128 -0.5778 
    3130 -0.6328 
    3131 -0.4230 
    3132 -0.2493 
    3133 -0.1784 
    3166 -0.7780 
    3214 -0.7562 
    3215 -0.8913 

 

Table S3.4.  Climate divisions defined for the High Plains aquifer region 

North South 
Kansas Drainage Basin, CO Arkansas Drainage Basin, CO 
Platte Drainage Basin, CO South Central, KS 

Central, KS Southwest, KS 
North Central, KS Northeastern Plains, NM 

Northwest, KS Northern Mountains, NM 
West Central, KS Southeastern Plains, NM 

Central, NE North Central, OK 
East Central, NE Panhandle, OK 
North Central, NE West Central, OK 

Northeast, NE High Plains, TX 
Panhandle, NE Low Rolling Plains, TX 

South Central, NE Trans Pecos, TX 
Southwest, NE  

South Central, SD  
Southwest, SD  

Lower Platte, WY  

 

Table S3.5. High Plains aquifer region groundwater well locations and IDs.  

 
North 

 
USGS Well ID Latitude 

(ºN) 
Longitude 

(º) 
Starting Depth 

Below Surface (m) 
Water Level 
Change (m) 

391730102422000 39.2917 -102.6997 -37.9049 1.1156 
393908102384100 39.6522 -102.6444 -29.1389 -10.4059 
400155101521302 40.0287 -101.8712 -6.3947 0.8352 
400852101352701 40.1483 -101.5958 -26.0695 -17.1328 
400920099215501 40.1556 -99.3653 -26.0634 -2.6792 
401401101510701 40.2336 -101.8519 -14.6487 -13.3624 
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401416099270601 40.2378 -99.4517 -42.2758 -3.6881 
401518102295701 40.2550 -102.4992 -36.5760 -2.9230 
401703101394801 40.2858 -101.6628 -14.5359 -11.2593 
401735098522701 40.2931 -98.8742 -51.8952 -1.8166 
401857099195201 40.3158 -99.3311 -53.9191 -0.9449 
402101099595001 40.3503 -99.9972 -44.2874 4.4928 
402625098594501 40.4403 -98.9958 -25.5300 1.8867 
402757101591201 40.4658 -101.9867 -9.7536 -15.9288 
403132099381001 40.5256 -99.6361 -68.8604 21.6835 
403217099235801 40.5381 -99.3994 -5.4864 -1.6429 
403235101395501 40.5447 -101.6664 -17.0688 -16.7518 
403516101560601 40.5878 -101.9350 -18.8184 -16.9438 
403543101443201 40.5953 -101.7422 -20.7264 -4.6543 
403954099152101 40.6649 -99.2559 -2.5481 -0.3444 
404343099272901 40.7284 -99.4579 -4.6025 1.3228 
404516102264400 40.7544 -102.4456 -62.0359 -0.4694 
404519101170301 40.7408 -101.2844 -50.0786 -7.2451 
404618098504401 40.7717 -98.8456 -6.1112 1.9812 
404620101433401 40.7722 -101.7261 -33.4975 -25.2588 
404706101282201 40.7850 -101.4728 -42.1904 13.1704 
404717099460501 40.7876 -99.7680 -1.8867 0.0914 
404949099445701 40.8301 -99.7499 -4.1178 1.0211 
405014099591001 40.8373 -99.9862 -2.2189 -0.4054 
405040098384503 40.8444 -98.6456 -11.9024 0.9174 
405118099514901 40.8551 -99.8636 -1.3137 -0.5151 
405129099090201 40.8580 -99.1528 -37.6550 -1.9995 
405137099085201 40.8583 -99.1530 -33.6194 -6.0899 
405315098304302 40.8880 -98.5119 -7.0805 3.4168 
405435098432601 40.9097 -98.7240 -21.1745 -0.2103 
405445100074001 40.9122 -100.1284 -1.8136 0.3688 
405503098441801 40.9174 -98.7384 -39.3771 -0.4999 
405632098373501 40.9420 -98.6268 -11.8567 4.2306 
405737101423201 40.9600 -101.7081 -52.1208 -5.8613 
405738099504501 40.9606 -99.8458 -14.2311 4.1178 
405855098383001 40.9821 -98.6417 -29.1724 -4.4196 
405855100073901 40.9819 -100.1274 -17.6936 1.2162 
410059104072401 41.0163 -104.1241 -4.8829 -5.8644 
410102098374201 41.0172 -98.6283 -21.8328 0.9357 
410111104223102 41.0164 -104.4093 -6.1570 -1.3777 
410154099394701 41.0317 -99.6631 -14.2037 1.9538 
410156098442601 41.0323 -98.7405 -2.0208 -0.5791 
410233104093203 41.0426 -104.1589 -18.3093 1.9660 
410324104481701 41.0554 -104.8066 -13.9751 1.9202 
410507105003802 41.0854 -105.0106 -17.0566 5.1511 
410508105003801 41.0854 -105.0105 -26.6700 2.1153 
410530104574001 41.0901 -104.9609 -12.4511 -17.7820 
410616104462401 41.1546 -104.7729 -12.0487 -0.4542 
410703104071201 41.1175 -104.1206 -12.1920 -6.0960 
410757104582302 41.1324 -104.9743 -32.5435 -4.6116 
410827104501601 41.1416 -104.8390 -2.3744 -0.1433 
410838104530401 41.1420 -104.8860 -2.5786 -0.4846 
410900104110701 41.1500 -104.1853 -7.2116 -0.5486 
410912104103801 41.1535 -104.1779 -5.7394 -3.0175 
410930104524701 41.1576 -104.8806 -6.5136 -0.5669 
410940104435701 41.1604 -104.7319 -43.2267 16.9774 
411005104355001 41.1679 -104.5980 -48.7314 0.6248 
411022104141201 41.1726 -104.2366 -6.1265 -1.6002 
411034104554001 41.1754 -104.9289 -3.9624 -6.4313 
411114104242501 41.1866 -104.4073 -13.9111 -2.0879 
411126099422501 41.1904 -99.7070 -0.4816 -0.0671 
411136104125301 41.3600 -104.2149 -60.2010 -0.2316 
411210104452001 41.2030 -104.7561 -38.5237 -4.2946 
411213104501401 41.2037 -104.8375 -30.0258 -3.3985 
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411214104293301 41.2039 -104.4925 -31.5163 -0.4389 
411238104070801 41.2106 -104.1195 -9.6865 -2.7950 
411531104194701 41.2587 -104.3301 -28.8219 -2.2342 
411725104454601 41.2861 -104.7645 -44.1960 24.6827 
412227104081401 41.3743 -104.1372 -44.2631 -1.2283 
412227104081402 41.3742 -104.1372 -46.2077 -0.7894 
412336104022801 41.3933 -104.0403 -74.5175 -8.1839 
412343104053101 41.3951 -104.0921 -54.4068 -12.4054 
412400104533901 41.4069 -104.8993 -45.6529 -0.1768 
412507104133701 41.4186 -104.2269 -33.7810 1.4874 
412522100121201 41.4228 -100.2034 -0.8870 0.1341 
412604104203701 41.4344 -104.3435 -68.6989 -0.2042 
412605104203001 41.4344 -104.3431 -68.1380 -0.2134 
412944103452701 41.4953 -103.7576 -52.9346 1.4539 
413038099482701 41.5106 -99.8075 -21.3970 -0.2408 
413130100531201 41.5250 -100.8867 -32.3393 0.5395 
413130100531202 41.5251 -100.8884 -31.7937 0.6218 
413156098591201 41.5322 -98.9867 -21.1684 12.6583 
413216102520201 41.5378 -102.8672 -22.7167 -0.5486 
413455102370701 41.5831 -102.6174 -94.6404 -6.0655 
414031101305601 41.6536 -101.5031 -4.5964 0.5974 
414031101305602 41.6525 -101.5042 -5.6632 2.7219 
414031101305603 41.6525 -101.5042 -4.7976 0.8809 
414607102263301 41.7692 -102.4447 -1.0455 0.6797 
414607102263302 41.7693 -102.4447 -0.6157 0.5060 
414637099224701 41.7769 -99.3797 -2.2068 -0.1219 
414643100313101 41.7786 -100.5252 -4.5324 -0.0945 
414952100060301 41.8311 -100.1009 -1.0820 -0.1006 
415108099493401 41.8525 -99.8269 -32.6258 0.4968 
415118103020903 41.8550 -103.0358 -9.9334 8.0772 
415559098005201 41.9331 -98.0144 -31.7967 2.4140 
420006102561201 42.0019 -102.9561 -17.5626 -0.1768 
420204101200502 42.0344 -101.3347 -1.8288 0.9083 
420204101200503 42.0344 -101.3347 -0.8077 -0.2225 
421210098402001 42.2028 -98.6722 -2.1641 -0.4389 
422150097402401 42.3652 -97.6716 -9.4488 2.4567 
422156097314301 42.3656 -97.5286 -10.1072 1.8898 
422849099521503 42.4803 -99.8708 -2.0208 0.3322 
423148098300601 42.5300 -98.5017 -10.8052 -0.5669 
423307099494501 42.5519 -99.8292 -11.6708 1.7892 
423730098560001 42.6250 -98.9333 -9.4214 1.2162 
424837099425201 42.8103 -99.7144 -26.5816 1.9873 
430027102311801 43.0075 -102.5217 -13.3411 0.7681 
430027102311806 43.0075 -102.5217 -12.0457 -4.6878 
430153100531002 43.0314 -100.8861 -6.3612 0.6066 
430154100411801 43.0322 -100.6883 -3.6576 2.0361 
430314100372001 43.0539 -100.6222 -14.2067 0.9449 
430337100243201 43.0603 -100.4089 -10.4364 2.6396 
430415100451501 43.0708 -100.7542 -6.1844 0.6675 
430712100421301 43.1183 -100.7022 -14.4597 -0.0945 
430726101033501 43.1239 -101.0597 -9.0830 0.4389 
431158100461002 43.1994 -100.7694 -25.1917 -0.4724 

 
South 

 
USGS Well ID Latitude 

(ºN) 
Longitude 

(º) 
Starting Depth 

Below Surface (m) 
Water Level 
Change (m) 

332115103403301 33.3567 -103.6778 -18.8031 0.4602 
333856102332401 33.6489 -102.5567 -35.0520 -11.6921 
334404102414301 33.7344 -102.6953 -43.2511 -3.6210 
340848102392801 34.1467 -102.6578 -39.3192 -5.5626 
341010102240801 34.1695 -102.4041 -11.5824 -34.4637 
341146101555701 34.1961 -101.9325 -77.4497 -7.1933 
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341544102251001 34.2622 -102.4194 -54.2544 -2.6182 
342059102280701 34.3497 -102.4686 -47.5488 -36.8351 
342116101452901 34.3544 -101.7581 -52.4256 -5.2212 
342356102572501 34.3989 -102.9569 -53.3674 -53.1785 
345342102313801 34.8950 -102.5272 -59.7469 -9.7048 
354325100560301 35.7236 -100.9342 -98.0389 -2.8316 
354527099470501 35.7575 -99.7847 -17.1298 0.3505 
361209102142601 36.2025 -102.2406 -89.6112 -6.0107 
361536099464601 36.2597 -99.7831 -25.5849 2.1153 
361714099315101 36.2903 -99.5328 -9.0007 1.1704 
361739099323301 36.2943 -99.5426 -38.2372 0.5639 
361750102140501 36.2972 -102.2347 -81.3816 -9.5280 
363033101440701 36.5092 -101.7353 -57.5920 -15.6698 
363224099584601 36.5400 -99.9794 -12.3535 0.3871 
363235099592801 36.5431 -99.9911 -9.9487 0.9571 
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Coverage, Completeness, and Resolution of Coseismic 

Displacements in the GPS Mega-Network Global Earthquake 

Catalog  
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4.1 Key Points 

 
• Coverage and completeness of the GPS Mega-Network Global Earthquake 

Catalog increases with magnitude of event and network growth over time. 
 

• Coseismic displacement estimates for each GPS station are improved by 
optimizing the duration of the time window within ±30 days around the 
earthquake origin time. 

 
• Radius of influence within which coseismic displacements are potentially 

significant is empirically defined as 𝑟1 = P10
1.6:–1.<=, 5.5 ≤ 𝑀 ≤ 8.6
3235.94, 𝑀 > 8.6  

 

 

4.2  Abstract 

 

Earthquakes deform the Earth surface and move nearby GPS stations, causing 

discontinuities in their position time series.  These displacements give key information 

about earthquake distribution, style and process.  Along with InSAR, seismic, and 

geologic data, coseismic displacements can constrain the rupture dynamics, ambiguities 

in the source plane, elastic structure of Earth’s interior, and stress change on nearby 

faults.  Moreover, knowledge of coseismic displacement is needed to correct GPS 

position time series when focusing on other processes such as tectonics, volcanism, 

aquifer changes, geophysical loading, etc. that are constrained by the time series trend. 

The Nevada Geodetic Laboratory produces time series for 20,000+ GPS stations 

which comprise the GPS Mega-Network, plus a list of times when earthquakes 

potentially move stations based on station locations, epicenter, and magnitude.  I 

developed new, robust methods to estimate coseismic displacement amplitudes at all 
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potentially earthquake-affected times for all events M≥5.5 since 1994.  Here, I evaluate 

the spatial and temporal degree of GPS Global Earthquake Catalog completeness with 

respect to the USGS NEIC Earthquake Catalog (U.S. Geological Survey, 2017).  

Between 1994.0 and 2022.3, 14,059 earthquakes M≥5.5 occurred of which 24.5% had 

coseismic displacement estimates available for 7,486 GPS stations, accounting for 63,122 

estimations total.  This relatively low percentage of estimated GPS coseismic 

displacements available per earthquake is attributable to the many earthquakes M<7 that 

occur along mid-oceanic ridges away from GPS instrumentation.  The average percent of 

estimated GPS coseismic displacements available in the GPS Global Earthquake Catalog 

improves for earthquakes M≥7, and increased from 31% in 1994 to 89% in 2021, 

suggesting that the GPS Mega-Network is evolving to capture most of Earth’s large 

seismic events. 

 

 

4.3  Introduction 

 

When an earthquake occurs the Earth’s surface is rapidly and permanently 

deformed.  Global Positioning System (GPS) stations precisely measure position and 

record the movement as a sharp, immediate discontinuity in ground displacement 

(Williams, 2003; Gazeaux et al., 2013; Metivier et al., 2014).  Following earthquakes, 

GPS displacements provide critical information used to refine properties of the source, 

ambiguities in the source plane, and rapidly provide an overview for the scope, style, and 

direction of surface deformation.  These data are complementary to other geodetic 
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methods such as InSAR, and to seismic and geologic data which also constrain the 

source.  They constrain the static stress changes which can encourage or suppress slip on 

nearby faults (Harris and Simpson, 1998; Gomberg et al., 1998; Stein, 1999; Freed, 

2005).  Likewise, coseismic deformation describes the starting conditions for postseismic 

processes such as viscous relaxation (Pollitz, 1997), afterslip (Perfettini and Avouac, 

2004; Churchill et al., 2022), and poroelastic changes (Fialko, 2004), that can elucidate 

geodynamic and rheological properties of Earth’s lithosphere and asthenosphere 

(Bürgmann and Dresen, 2008; Freed et al., 2007).  Thus, coseismic displacements 

provide fundamental constraints on processes at work in the solid Earth system that drive 

earthquake hazards.   

In addition to their direct value in earthquake research, GPS position time series 

are often used to study other aspects of active Earth deformation, such as mantle flow 

(Becker et al., 2015), glacial isostatic adjustment (Kreemer et al., 2020; Peltier et al. 

2015), seasonal hydrological loading (Fu and Freymueller, 2012; Amos et al., 2014; 

Argus et al., 2014; Borsa et al., 2014), ocean tidal loading (Martens et al. 2016), aquifer 

depletion (Larochelle et al., 2021; Overacker et al., 2022), plate boundary deformation 

(Flesch et al., 2000; Kreemer et al., 2000), and magmatic injection (Dzurisin et al., 2009; 

Montgomery-Brown et al., 2015).  Results from these studies can be negatively impacted 

if earthquake displacements in GPS position time series are not accounted for.  

Additionally, defining accurate reference frames requires GPS stations to be as stable as 

possible, which means coseismic displacements must be corrected for, or at least 

identified to exclude stations (Williams, 2003; Blewitt et al., 2013; Tregoning et al., 
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2013; Altamimi et al., 2016).  Whatever the application, it is important to estimate the 

size of earthquake displacements objectively and accurately in GPS time series. 

Since the beginning of the Nevada Geodetic Laboratory’s (NGL) GPS holdings 

starting 1 Jan. 1994 through 20 Apr. 2022, there have been 14,059 earthquakes M5.5 or 

greater recorded worldwide by the United States Geological Survey National Earthquake 

Information Center (U.S. Geological Survey, 20177).  Most, but not all, of these 

earthquakes occurred along tectonic plate boundary zones (Fig. 4.1A).  Not 

coincidentally, the majority of the 20,224 GPS stations processed as part of the GPS 

Mega-Network by NGL are also located in these tectonically active areas (Fig. 4.1B). 
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Figure 4.1.  (A) Global map of all earthquakes occurring between 1 Jan. 1994 and 20 

Apr. 2022.  Earthquakes with estimated GPS coseismic displacements available (red) and 
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all other earthquakes recorded in the USGS NEIC catalog (blue) (U.S. Geological 

Survey, 2017) have magnitudes distinguished by circle size.  Mid-ocean ridge 

earthquakes seldom have coseismic displacement availability for the GPS Mega-Network 

because of a paucity of geodetic instrumentation on the seafloor.  (B) GPS stations 

flagged for earthquake displacements (yellow) contrasted against the remaining GPS 

stations in the GPS Mega-Network (purple). 

 

To provide objective and timely earthquake displacement information derived 

from the NGL time series holdings, I have developed a new strategy to provide 

automated displacement estimation for all earthquake displacements affecting the GPS 

Mega-Network.  The system relies on a first step of flagging all GPS stations that are 

potentially affected by each earthquake event.  Next, I estimate 3-component 

displacements at each affected station and time using the GPS position time series data.  

Below I describe the methods employed for each step.  I evaluate several different 

methodologies for estimating displacements using 24-hour and 5-minute GPS positioning 

time series to calculate coseismic displacements with the lowest uncertainties and misfit 

and find that different methodologies are needed depending on the completeness of the 

time series.  I then construct a database of earthquake events M≥5.5 with associated GPS 

data: magnitude and epicenter of the earthquake event, GPS stations with potential 

displacements and their locations, estimated GPS displacements in east, north, and up 

components.  This database allows us to evaluate the spatiotemporal completeness of the 

GPS Mega-Network Global Earthquake Catalog, which has implications for future 

reference frames, and comparisons with data from seismic networks.   
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4.4 Data 

 

4.4.1 GPS Data 

 

East, north, and up component GPS position time series from the 20,224 stations 

that comprise the GPS Mega-Network as of 20 Apr. 2022 were obtained from NGL’s 

open access archive (all dots shown in Fig. 4.1B) (Blewitt et al., 2018).  Position time 

series for 24-hour and 5-minute sample rate final solutions span between 1 Jan. 1994 and 

20 Apr. 2022.  Positioning data was processed using the GipsyX 1.0 software made 

available by the Jet Propulsion Laboratory (JPL), and JPL final orbit and clock products 

(Bertiger et al., 2020).  All GPS time series solutions were aligned to the IGS14 global 

reference frame, which has the center of mass of the Earth system as its origin (Altamimi 

et al., 2016).  GPS estimates of crustal motion are further improved by modeling 

atmospheric signal delays with the Vienna Mapping Function (VMF1) using gridded a 

priori data modeled by the European Center for Medium-Range Weather Forecasts 

(ECMWF) (Boehm et al., 2006).  Further GPS processing details, e.g., regarding the 

treatment of metadata, data editing, ambiguity resolution, antenna phase center 

calibrations, and estimation strategy can be found in Blewitt et al. (2013) and Kreemer et 

al. (2020) and are documented at http://geodesy.unr.edu/gps/ngl.acn.txt. 

To track the effect of geodetic station equipment changes on the position time 

series, I tabulate metadata from IGS log files so that apparent displacements not 

attributable to solid Earth movement may be recognized and accounted for.  By gathering 

files from the GPS data archives, I have obtained 11,378 unique IGS log files, omitting 

http://geodesy.unr.edu/gps/ngl.acn.txt
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those other than the most recent available for each station.  From each log file I deduced 

times for changes in receiver and antenna makes and models, radomes, and receiver 

elevation cutoff angle setting.  When a change event occurs, a record is generated that 

includes site name, date, and the type of equipment change event that occurred.  These 

records mark the times of potential apparent equipment related discontinuities on the 

position time series.  Equipment change displacements are generally less than a few 

millimeters, but can be much larger in cases where, e.g., the antenna was physically 

moved.  Importantly, the equipment change times must be accounted for when selecting 

the interval of time used to compute earthquake displacements.  In what follows, I use the 

equipment change times to truncate the time series so that displacement estimates are not 

biased by the equipment change. 

 

4.4.2 National Earthquake Information Center Data 

 

Earthquake time, magnitude, and epicentral location in latitude, longitude, and 

depth for the 14,059 earthquakes M≥5.5 that occurred between 1 Jan. 1994 and 20 Apr. 

2022 were obtained from the NEIC data archive (all dots shown in Fig. 4.1A) (U.S. 

Geological Survey, 2017).  Magnitude ranges from the minimum M5.5 to the largest 

recorded magnitude in the date range, M9.1 for the 2004 Great Sumatra–Andaman and 

the 2011 Great Tohoku-oki earthquakes.  I include earthquakes with minimum 

magnitudes as low as M5.5 because, though the largest earthquakes contribute the 

greatest deformation in a single event (Tregoning et al., 2013), lower magnitude events 

measurably deform the crust and occur in far greater numbers, and hence contribute to 
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surface movement that present as position time series displacements.  Smaller magnitude 

earthquakes have a greater number of occurrences than larger magnitudes; 9,740 for 

5.5≤M<6, 3,892 for 6≤M<7, 394 for 7≤M<8, 31 for 8≤M<9, and two M≥9. 

The global geographic distribution of the earthquake epicenters is largely focused 

along tectonic plate boundaries, with a majority of the smallest magnitude earthquakes 

occurring along mid-oceanic ridges.  Offshore earthquakes constitute 81% of the 

5.5≤M<6, 80% of the 6≤M<7, 79% of the 7≤M<8, 87% of the 8≤M<9, and 100% of the 

M≥9 (Fig. 4.1A).  Because there is a paucity of GPS instrumentation located on the 

seafloor, measurements of displacements for earthquakes with offshore epicenters are 

performed by GPS sites on-shore potentially far from the epicenters.  However, the 

global distribution of earthquakes includes continental seismic sources as well.  I define 

on-shore earthquakes in this study as earthquakes that occurred within the bounds of the 

continents and island land masses as defined by Matlab Mapping Toolbox’s 

coastlines.mat database comprised of data from Wessel and Smith (1996).  Using these 

criteria, on-shore earthquakes comprise 19% for 5.5≤M<6, 20% for 6≤M<7, 21% for 

7≤M<8, and 13% occurrences for 8≤M<9 (Fig. 4.1A).  Both M9.1 earthquakes occurred 

offshore (Fig. 4.1A). 

 

 
4.5 Analysis 

 

Coseismic displacement is the difference in position before and after an 

earthquake, but which part and how much of the GPS time series data is used in that 
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estimation can influence the displacement amplitude.  Differences in analysis strategy can 

play a significant role (e.g., Gazeaux et al., 2013).  In this study, I focus on estimating the 

amplitudes of displacement discontinuities for earthquakes with known earthquake times.   

Here, I explore the utility of two different coseismic displacement estimation strategies 

that adapt to the degree of completeness of the data resources available.  Which method is 

best to use depends on the content of the time series, particularly the presence of gaps in 

data at the time of the event which can make one class of estimation strategy impossible.   

 

4.5.1 Estimating Coseismic Displacement – Data Near Event 

 

The first method is the Data Near Event (DNE) model (Fig. 4.2B) which uses data 

immediately before and after an earthquake to estimate displacements.  This method is 

designed for permanent stations in the GPS Mega-Network which are operating 

continuously and ideally have GPS data available for each 24-hour period following their 

installation.  For this style estimation, I use the date of the earthquake provided by the 

USGS NEIC Earthquake Catalog (U.S. Geological Survey, 2017) to estimate the 

displacement from the data.  First, the position time series is detrended using a Theil-Sen 

estimator which excludes pairs crossing the time of the displacement (Thiel, 1950; Sen, 

1968).  I then detrend the whole time series and estimate the difference between median 

positions before and after the event to obtain a robust estimate of the displacement 

amplitude using: 

  

Eq. 4.1) 𝐷>?,A = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥(𝑡A,BCD>E)) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥a𝑡A,F>CGE>b) 
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Where Deq,i are the displacements amplitudes for event i and ti, before and ti, after are the sets 

of discrete times before and after the earthquake used in the estimation.  Because it is 

based on medians, this method has the strength of being insensitive to outlier positions 

within the time windows defined by ti, before and ti, after, and is insensitive to movements of 

the station outside the time window that may be difficult to model explicitly.  Formal 

uncertainties for the DNE method are calculated as if the problem were a least squares 

linear inversion of the times series for the displacement using the position uncertainties at 

times ti, before and ti, after.  The residual scatter is calculated from the median absolute 

deviation of the observed positions minus the positions predicted from the trend and 

coseismic displacement amplitude. 
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Figure 4.2.  Example time series data (blue dots) with Time Series Models (red lines) 

that estimate coseismic displacements for the 2019 M7.1 Ridgecrest earthquake which 

occurred on day 2019.51.  Vertical dotted lines are times of earthquakes (gray) and 

equipment changes (magenta).  (A) Continuous station P498, where cyan box indicates 

time interval shown in (B).  The red line in (B) matches the red line in (A) and shows 
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how the TSM method poorly solves for the coseismic displacement. The green line is the 

result of the DNE method which makes a superior estimate for the displacement.  (D) 

Semi-permanent MAGNET station BEER, where cyan box indicates time interval shown 

in (C).  The DNE method is not feasible for the Ridgecrest earthquake using data from 

station BEER because there is no data immediately before the event.  See text for 

discussion.    

 

4.5.2 Data Near Event Time Window Testing 

 

 Determining the size of the time window, i.e., how much time before and time 

after the earthquake to use when estimating coseismic displacement, is complicated by 

the potential presence of signals other than the coseismic displacement.  The quantity of 

data centered in time around the earthquake, presence of foreshocks, aftershocks, or 

postseismic signals in the position data surrounding the event can affect the precision and 

accuracy of the displacement estimate.  Using data from a fixed number of days before 

and after an earthquake event may not be the most appropriate depending on these 

factors.  Longer time windows can reduce formal uncertainty by introducing a greater 

number of station data, but may increase residual scatter if the window contains other 

signals besides the coseismic displacement.  For example, postseismic deformation can 

introduce bias in the estimation if it causes a change in station movement rate after the 

earthquake.  Similarly, time series with non-linear signals may not be well-fit by linear 

trends for long durations that are adequate for a short duration window.  To further 

improve the estimation, I seek a method that optimizes the duration of the time windows 
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before and after the earthquake.  Finding an optimum requires balancing the need for a 

low formal uncertainty and a low residual scatter.  The time interval should be 

sufficiently long enough to reduce uncertainty, but short enough to minimize bias from 

non-linear signals.  

The DNE method uses data within 30 days before and 30 days after an event 

when estimating displacements to reduce the influence of longer duration signals 

unrelated to the coseismic displacement possibly occurring concurrently at a given site.  

If no data is available within that time frame, it is impossible to estimate a DNE 

displacement and I use a different method discussed in the next section.  If there is data 

within 30 days both before and after the event, however, a 30 x 30 array is built where 

each element represents a displacement estimate from data durations 1≤ti days, before≤30 and 

1≤ti days, after≤30 the earthquake.  The position data within each interval duration is used to 

calculate displacements for every combination.  If there are earthquake events or 

equipment changes within either the pre- or post-event intervals, then the intervals are 

truncated so only data between the last event before, or first event after the target 

earthquake are used. 

To decide which of the estimated displacements in the resulting array is the best, I 

use the formal uncertainty and median absolute deviation of the residual.  This evaluation 

is based only on the horizontal magnitude of displacement rather than vertical because 

vertical position solutions have greater uncertainties and greater influence from other 

signals, e.g., bias introduced in imperfect modeling of refractivity of the atmosphere 

(Tregoning and Watson, 2009).  The formal uncertainty is smaller when more data (long 

duration intervals) are used.  The median absolute deviation of the residual increases 
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when the misfit increases, which can occur, e.g., when postseismic deformation or other 

processes drive continuing change in station position.  I normalize the formal uncertainty 

(Fig. 4.3A) and median absolute deviation (Fig. 4.3B) before summing them to make an 

objective parameter that represents a single integrated measure of displacement quality.  I 

find the minimum value of this parameter for the horizontal magnitude that represents the 

best position window time interval combination ti, before and ti, after (Fig. 4.3C).  Taking that 

optimal time window, I apply it to the time series to estimate DNE method displacement 

for east, north, and up components.   
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Figure 4.3.  Example duration window optimization for the magnitude of horizontal 

components at GPS station ALAM for the 2020 M6.5 Monte Cristo Range mainshock.  

Lowest normalized value per ti, before and ti, after combination (red star) shown for (A) 

formal uncertainty, (B) median absolute deviation of residual, and (C) their normalized 

sum defines the optimal duration windows used to estimate coseismic displacement using 

the DNE model.  
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4.5.3 Accounting for Multiple Displacements in a 24-Hour Period 

 

The DNE method can also be readily applied to 5-minute time series which are 

available for all stations for which there are 24-hour solutions in the NGL database.  

Using 5-minute time series is desirable in cases where multiple significant earthquakes 

occur in the same 24-hour period.  This typically occurs during sequences with very large 

earthquakes, where foreshocks, the mainshock, or aftershocks occur very close in time to 

each other, affecting the GPS station at multiple times on the same day.  In these cases, 

the DNE displacements based on 24-hour solutions are indeterminable since the 

displacements from different events cannot be distributed into the separate earthquakes.  

For these cases, I apply the DNE method to the 5-minute time series since I can divide 

the solutions into times before and after the events.  The maximum amount of data, which 

depends on the time between events, is used to calculate the displacements for the 

multiple events in the 24-hour period since I am more concerned by data availability than 

potential short-term bias.  If there are multiple days on either side of the day of the 

events, the 24-hour medians of the 5-minute data are used and the roving window 

strategy is employed as though it were regular 24-hour data to optimize the trade-off 

between low misfit and low formal uncertainty.   

For example, if a large earthquake with no foreshocks in the 30 days preceding an 

event has one aftershock that occurs two hours after the main event, with no further 

aftershocks in the following 30 days, the mainshock displacement estimation uses 5-

minute time series data grouped into 30 24-hour periods before the event to search for the 

ti, before with the lowest combined formal uncertainty and median absolute deviation.  The 
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ti, after uses 5-minute time series only for the two hours after the mainshock and preceding 

the aftershock.  Similarly, the aftershock displacement estimation uses the full two hours 

of 5-minute time series data before the event for the ti, before and 5-minute solutions 

grouped into 30 days of 24-hour periods after the event to find the ideal ti, after.  

Essentially, instead of the 30 x 30 day array, the mainshock would appear as a 30 day 

search x 2 hour fixed array, and the aftershock would work as a 2 hour fixed x 30 day 

search array to estimate the time interval used in the displacement estimation. 

 

4.5.4 Estimating Coseismic Displacement – Time Series Model 

 

 Some stations do not have continuous observations, and may have periods where 

they do not function, or are operated as semi-permanent stations where observations are 

clustered in time when the receiver occupies the station.  One example is the semi-

permanent Mobile Array of GPS for Nevada Transtension (MAGNET), a subset of the 

GPS Mega-Network where permanently installed GPS monuments are surveyed with 

mobile GPS receivers for one to several months at a time and usually have time gaps of 

months to years in the time series (Blewitt et al., 2009).  Semi-permanent stations are 

more likely to have gaps during an earthquake event that make the DNE model 

unfeasible.  In this case, a model is fit to the time series that includes a parameter for the 

amplitude of a Heaviside step function at the time of the earthquake.  I call this style of 

time series displacement estimation strategy the Time Series Model (TSM) method, and 

an example of its use is shown in Figure 4.2C.  
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The TSM style of estimation solves for parameters representing the time series by 

using a model that includes terms for a trend, seasonality, displacements for known 

earthquake and equipment changes, and exponential terms for postseismic relaxation 

from large earthquakes (M≥6.5).  The resolvability of the model parameters depends on 

the total length of the time series and how well the time series is modeled by: 

 

Eq. 4.2)

𝑥(𝑡) = 𝑏 + 𝑣(𝑡) + 𝐶#𝑐𝑜𝑠(𝜔𝑡) + 𝑆#𝑠𝑖𝑛(𝜔𝑡) + 𝐶$𝑐𝑜𝑠(2𝜔𝑡) + 𝑆$𝑠𝑖𝑛(2𝜔𝑡) +

+∑
A
𝐷Aℋ(𝑡 − 𝑡A) + ∑

H
𝐴H(1 − 𝑒

(
%('%'()

*(
)
)ℋ(𝑡 − 𝑡H)  

  

where x is the position as a function of time t, b is the intercept, v is the slope (or 

velocity), and coefficients C1, S1, C2, S2 are the amplitudes of the sine and cosine terms 

for annual and semiannual constituents, respectively.  I solve for the velocity term first 

using the MIDAS algorithm (Blewitt et al., 2016), then the remaining terms are found 

from the residual time series via least squares inversion.  For a subset of the earthquake 

displacement terms when the earthquake is M≥6.5 and is within half the radius of 

influence (0.5r0, a concept I will explain in greater detail in Analysis 4.5.6), I include the 

last term of Eq. 4.2 to solve for postseismic relaxation terms: Aj for the magnitude of the 

relaxation and τj for the relaxation time.  The j are a subset of the i which meet the 

magnitude and distance criteria.  A solution for Aj and τj is obtained, if needed, with a 

non-linear algorithm that converges within a few iterations.  The predictions of the 

resulting TSM displacement model found for each time series are presented as the red 
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line on the NGL station page time series plots, e.g., as shown by time series in Figure 4.2 

and for station CCCC in Figure 4.4.  This method has the strength of being constrained 

by all data in the entire time series, but some components may be sensitive to outliers or 

other unmodeled movements of the station that are not well fit by the parameterization in 

Eq. 4.2 (Fig. 4.2B).  The uncertainties for the magnitude of the coseismic displacement 

are obtained from the formal uncertainty in the least squares estimate of the displacement 

amplitude. 
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Figure 4.4.  GPS time series for station CCCC near Ridgecrest, California.  Potential 

coseismic displacements (gray dash) and equipment changes (cyan dash) are marked 

along the time axis.  Time Series Model (red line) is plotted for each component. 
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4.5.5 Data Near Event Model Compared to Time Series Model 

 

I compare TSM and DNE horizontal displacements and uncertainties for the 2019 

M7.1 Ridgecrest and the 2020 M6.5 Monte Cristo Range mainshocks.  The horizontal 

displacements were the primary consideration when determining displacement estimation 

improvement because vertical position solutions have greater uncertainties due to several 

processes that contribute to lower signal-to-noise ratios (Bennett and Hreinsdóttir, 2007; 

Mazzotti et al., 2007; Beavan et al., 2010).  The expectation when evaluating these 

methods was that the largest displacements are located closest to the epicenter and that 

displacement decreases with distance from the epicenter.  Vector plots of horizontal 

displacement indicate whether DNE displacements are in line with TSM solutions. 

To decide which coseismic displacement estimation method is most appropriate 

for a given GPS station, I adopt a tiered strategy using 24-hour DNE when possible, 

resorting to 5-minute DNE when multiple events occur in the same day, and ultimately 

TSM should either of the DNE methods be unfeasible. This can happen when there are 

gaps in the time series >30 days surrounding the earthquake event, or when multiple 

earthquakes happen within a 5-minute period.  In such cases, TSM becomes a more 

viable displacement estimation method.  Usually at least one of the strategies, whether 

24-hour DNE, 5-minute DNE, or TSM can provide valuable information on coseismic 

deformation at a given site.  However, in some cases estimates are clearly outliers and not 

representative of the coseismic displacement field (Fig. 4.2). 

DNE estimates appear to be slightly shifted compared to their TSM counterparts 

that benefit, in this case, from utilizing the full time series in their estimations that act as 
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a stable reference frame (Fig. 4.5 and Fig. 4.7).  I therefore apply a shift step to 24-hour 

DNE and 5-minute DNE far-field estimations to align these estimates to those made 

using TSM which have a more stable reference frame owing to their being constrained by 

the entire time series.  In this instance, I take the difference in median east and north 

displacements for all positions as the alignment shift, and apply it to the DNE estimates, 

ensuring coseismic displacements have equivalent median displacements between 

strategies. 

Outlier displacement estimates located far away from the epicenter can distort the 

pattern of coseismic deformation by appearing to be much greater than surrounding 

stations.  These are likely owing to station defects or very localized site effects (Fig. 4.5D 

and Fig. 4.6D).  I reduce the effect of these outlier displacement estimates uncorroborated 

by the displacement values at its nearest neighbors by applying median spatial filtering to 

displacements located in the far-field (>0.33r0, see Analysis 4.5.6 for details) (Fig. 4.7F 

and Fig. 4.7F).  Once an alignment vector is applied to DNE coseismic displacements, 

median spatial filtering is applied to the east and north components before calculating the 

horizontal displacement magnitudes and uncertainties to minimize the effects of noise 

and outliers in the far-field.  These displacements located furthest from the epicenter are 

unlikely to experience significant movement, and outlying large magnitude displacements 

are probably caused by localized site effects unrelated to coseismic movement. 

Comparisons of TSM and DNE combined 24-hour and 5-minute estimated 

displacements were performed for the two earthquake case studies for evaluation.  First, I 

compared DNE and TSM displacement estimates for the 2019 M7.1 Ridgecrest 

earthquake using 1,271 GPS time series in the region (Fig. 4.5).  An alignment shift of 
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0.51 mm is applied to the east and 1.18 mm is applied to the north components for the 

event, shifting displacements for 1,036 stations.  For the 2020 Monte Cristo Range, 

Nevada M6.5 mainshock, I estimated displacements for 372 GPS time series (Fig. 4.7).  

Here I apply alignment scalars of 0.34 mm to the east and –0.11 mm to the north for 238 

time series to shift the DNE estimates.   

For both estimation strategies, horizontal displacement plots for the Ridgecrest 

and Monte Cristo Range earthquakes show largest displacement magnitudes are located 

nearest to the epicenter then grow smaller as distance from the epicenter increases.  For 

the TSM strategy (Fig. 4.5A–4.5B and Fig. 4.7A–4.7B), Ridgecrest and Monte Cristo 

Range earthquakes plot higher uncertainty values in the horizontal displacement 

magnitudes north of the epicenters.  These GPS stations include part of the MAGNET 

network which can have months to years-long gaps in their time series, possibly during 

the time of the earthquake, that increase the uncertainty in the displacement estimates.  

Because DNE cannot estimate displacements without data within ±30 days on either side 

of the earthquake origin time, these stations are not included on the DNE plots (Fig. 

4.5C–4.5F and Fig. 4.7C–4.7F).  In general, however, the DNE uncertainties are lower 

than the TSM uncertainties and have comparable magnitudes.  Horizontal magnitude 

estimates in the far-field also have fewer large magnitude outliers for the DNE strategy 

compared to TSM.  Once an alignment vector and median spatial filtering is applied to 

DNE displacement estimates (Fig. 4.5E–4.5F and Fig. 4.7E–4.7F), far-field outliers are 

further reduced.  One noisy outlier on the outer boundary of 0.33r0 remains southwest of 

the epicenter and pointing north for the Ridgecrest event (Fig. 4.5E).   
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Figure 4.5.  Horizontal displacements, corresponding uncertainties, and vector plots for 

the 2019 M7.1 Ridgecrest Earthquake. TSM displacement estimation strategy (A & B) 
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has higher uncertainties and higher scatter compared to the DNE displacement estimates 

(C & D).  An alignment vector is applied to the DNE displacements (E & F) to correct 

for a systematic difference between TSM and DNE and outliers visible in the far-field.  A 

comparison plot shows a detailed examination of the three strategies (Fig. 4.6). 

 

 

Figure 4.6.  Comparison of the horizontal magnitudes produced by the Time Series 

Model (blue), Data Near Event (red) and median spatial filtered and aligned (yellow) 

displacement estimation strategies for the 2019 M7.1 Ridgecrest Earthquake.  TSM 

horizontal magnitudes exhibit greater scatter likely caused by bias from unmodeled 

signals.  The alignment correction factor is applied to all GPS time series for the median 

spatial filtered and reference frame shift corrected displacement estimates, but stations 

>0.33r0 distance from the epicenter are median spatial filtered. 
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Figure 4.7.  Horizontal displacements and corresponding uncertainties for the 2020 

Monte Cristo Range, Nevada M6.5 mainshock. TSM displacement estimation strategy (A 
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& B) has higher uncertainties and higher scatter compared to the DNE estimates (C & D).  

Aligned DNE displacements (E & F) corrected for a slight systematic shift in the 

displacements, noise, and/or outliers in the far-field.  A comparison plot shows a detailed 

examination of the three strategies (Fig. 4.8). 

 

 

Figure 4.8.  Comparison of the horizontal magnitudes produced by the Time Series 

Model (blue), Data Near Event (red) and median spatial filtered and aligned (yellow) 

displacement estimates for the 2020 M6.5 Monte Cristo Range mainshock.  TSM 

horizontal magnitudes exhibit greater scatter likely caused by its bias from unmodeled 

signals.   
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4.5.6 Defining an Earthquake’s Radius of Influence 

 

When designing a strategy for estimating coseismic displacement, I assume that 

stations in the GPS Mega-Network nearest to the epicenter are more likely to have 

measurable deformation.  Rather than estimating displacements after every M≥5.5 

earthquake for all stations worldwide, which can degrade the quality of the position time 

series unaffected by the earthquake (Williams et al., 2003; Gazeaux et al., 2013), I need a 

method to identify GPS time series potentially affected by earthquake deformation before 

displacement estimation occurs.  In general, the extent of coseismic displacement 

regionally depends on the source parameters, slip complexity, and Earth structure and 

response.  However, I here define a simple method that can be easily and uniformly 

applied to all event station pairs, which uses only the magnitude (M) to approximate the 

extent of the area affected by an earthquake. 

To define a radius of influence (r0) for a given magnitude, I must first understand 

how the size of displacements decrease as distance from the epicenter increases.  I 

empirically design the mathematical expression between magnitude and distance by 

relating horizontal displacement magnitudes for earthquakes 5.5≤M≤9.1 to an 

experimentally large radius that ideally encompasses many GPS stations.  Horizontal 

displacement magnitudes were estimated per GPS station for each earthquake cataloged 

by the USGS NEIC (U.S. Geological Survey, 2017) between 1 Jan. 1994 and 20 Apr. 

2022.   

To estimate r0, I begin with the observation that horizontal displacement 

magnitudes decrease with distance from the epicenter until reaching a distance beyond 
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which the displacement magnitude levels taper off.  I call this distance from the epicenter 

the empirical r0 for the earthquake.  To characterize the fall of displacement with 

distance, each event used to define r0 is required to have at least one data point near the 

epicenter and a minimum of three displacements total.  I use the combined model of DNE 

24-hour, DNE 5-minute, and TSM displacements from a provisionally large radius 

surrounding each event (Fig. 4.9A).  East and north components outside the near-field are 

median spatial filtered to reduce the effect of outliers and noise before computing 

horizontal displacement magnitudes and plotting them against distance from the epicenter 

(Fig. 4.9B and Fig. 4.10).  Because each station has its own site effects and GPS station 

spacing is non-homogenous throughout the earthquake regions, stations are binned into 

10 km distance intervals from the epicenter.  The goal is to locate the distance where 90% 

of displacement magnitudes in each bin stabilize to the level of displacements magnitudes 

in the far-field.  Beyond this distance, displacement magnitudes were considered unlikely 

to be affected by coseismic deformation.  The threshold magnitude value is specific to 

each event’s characteristics.  For example, the Ridgecrest earthquake magnitudes 

stabilized below a threshold of 2.2 mm, which corresponded to an r0 distance of 571 km 

(Fig. 4.9B).  This process was repeated for the other earthquakes (e.g., Fig. 4.10) to 

establish their empirical r0 values.  Details about the earthquakes, threshold magnitudes, 

and their radii can be found in Sup. Table S4.1. 
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Figure 4.9.  Horizonal displacement magnitudes within an experimentally large radius 

plotted for the M7.1 Ridgecrest earthquake.  (A) GPS Imaging of displacements 



 

 

221 

compared to the empirical r0 (gray circle).  (B) Displacements (blue dots) and filtered 

displacements (red dots) as a function of distance from epicenter.  Approximate threshold 

magnitude (horizontal gray dashed line) is used to find the empirical r0 (vertical black 

dashed line) for each respective earthquake magnitude. 
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Figure 4.10.  Median spatial filtered horizontal displacement magnitudes (red) are 

compared to their raw counterparts (blue) and plotted against distance from epicenter for 
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the (A) M9.1 Great Tohoku-oki, (B) M8.6 Sumatra, and (C) M6.0 South Napa 

earthquakes.  Threshold magnitude (horizontal gray dashed line) is used to find the 

empirical r0 (vertical black dashed line) for each earthquake. 

 

Of the 14,059 earthquakes in the NEIC dataset, only 337 fulfilled the criteria 

required to define the empirical r0 distances.  I design the radius of influence equation 

with these 337 earthquakes to describe the relationship between significant coseismic 

displacement, distance from the epicenter, and the magnitude of the earthquake observed 

in the data.  I chose an exponential function of the form r0 = 10(A*M + B) inspired by the 

form of moment magnitude in Hanks and Kanamori (1979).  The empirical r0 for each 

earthquake was plotted against magnitude, and a function was fit to the data within a 95% 

confidence interval to estimate A and B (Fig. 4.11).  The influence of earthquake depth on 

the curve fit was analyzed and 294 earthquakes were considered to be at shallow depths 

(0 km≤z≤70 km), 40 earthquakes at moderate depths (70 km<z≤300 km), and only 3 

were deep earthquakes (300 km<z<750 km).  I also examined the effect that the largest 

magnitude events had on the curve fit and determined that events M>8.6 had empirical 

radii that were considerably lower compared to the rest of the dataset.  Taken as a whole, 

I decided the best fit equation would require a function below which all empirical r0 

values in the dataset were encompassed.  That equation is described as a piecewise 

function:  

 

Eq. 4.3  𝑟1 = P10
1.6:–1.<=, 5.5 ≤ 𝑀 ≤ 8.6
3235.94, 𝑀 > 8.6  
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Where M is magnitude.  Some stations within the radius may have displacements not 

significantly different than zero.  The displacement size may be effectively zero, e.g., if 

the station is a large enough distance from the earthquake epicenter or in a direction 

along the azimuth of rupture, but this still places strong constraints on where most of the 

coseismic displacement occurs.  Using a simple circular domain defined by r0, with a 

piecewise ceiling placed on earthquakes M>8.6, is practical because for most applications 

displacements need not be estimated beyond this distance, saving computing time and 

resources. 
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Figure 4.11.  Empirical r0 values for 337 earthquakes (dots).  An exponential function of 

the form r0 = 10(A*M + B) was fit to earthquake radii for all (black), shallow depth (blue), 

moderate depth (red), deep (green) earthquakes, and the maximum r0 per magnitude with 

M>8.6 excluded (cyan).  The best fit curve (gray dash) was defined by fitting the cyan 

curve to coefficients so that all r0 values below the curve are contained (see Eq. 4.3). 
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4.5.7 Evaluating the Radius of Influence  

 

To test the relation described in Eq. 4.3, I applied r0 to the 2020 M6.5 Monte 

Cristo Range mainshock.  I tested the ability of r0 for M=6.5 to encompass displacements 

by interpolating the horizontal magnitude of the combined DNE 24-hour, DNE 5-minute, 

and TSM displacement estimates to a grid using the GPS Imaging technique (Fig. 4.9A 

and Fig. 4.12).  The GPS Imaging technique reduces speckle noise from displacements 

during interpolation and enhances the signal of small displacements in the far-field by 

applying weighted median spatial filtering (Hammond et al., 2016).  In this instance, I 

apply it to the horizontal magnitudes of displacement for each earthquake to build the 

interpolated grid of coseismic displacement.   
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Figure 4.12.  Testing the empirical radius of influence (r0) using interpolated horizontal 

displacement magnitudes for the 2020 M6.5 Monte Cristo Range mainshock and radius 

of influence r0=288 km.  Dots represent station locations, and magnitudes less than the 

threshold value of 1.45 mm (Sup. Table S4.1) are shown with a saturated color bar (red). 

 

The results (Fig. 4.12) show significant displacements in the near and medium 

field tapering to lower values in the far-field until no convincing signal exists near the 

boundary of the interpolated image.  Here, I delineate where displacements are above a 

1.45 mm horizontal displacement magnitude threshold, i.e., where horizontal magnitudes 

stabilized (Sup. Table S4.1).  Slightly elevated magnitude values ≥1.45 mm at the 
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northeast boundary of the radius are believed to be a border artifact from station density 

sparsity when constraining the interpolation in this region.  Elevated values outside r0 are 

attributable to localized site effects/station design that are unlikely to be related to 

coseismic movement.  Based on this result, I consider that radius r0 successfully 

encompassed all displacements affected by coseismic deformation without extending so 

far out that it degraded time series unaffected by the event. 

 

  

4.6 Results 

 

4.6.1 Improved Estimates Using the Data Near Event Model 

 

The TSM strategy can estimate coseismic displacements for all position time 

series in the GPS Mega-Network, but when data are available within the 60-day time 

window surrounding an earthquake event, I prefer the DNE model.  The DNE estimates 

match expected patterns of rupture described by the focal mechanisms for both the 

Ridgecrest and Monte Cristo Range earthquakes while providing data with fewer outliers 

and lower uncertainties than the TSM model (Fig. 4.5 and Fig. 4.7).  When aligned to the 

more stable TSM reference frame and after applying median spatial filtering, the DNE 

strategy provides offsets with reduced noise and fewer outliers in the far-field.  This 

makes for a cleaner displacement pattern that is more representative of coseismic Earth 

deformation.  When the DNE model is used in conjunction with TSM to maximize 
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available data, GPS displacements and their associated uncertainties improve knowledge 

of the scope, distribution, and style of coseismic Earth deformation. 

 
 

4.6.2 Applying the Radius of Influence to Earthquake Events Worldwide 

 

Of the 14,059 earthquakes cataloged by the USGS NEIC (U.S. Geological 

Survey, 2017) between 1 Jan. 1994 and 20 Apr. 2022, 3,451 earthquakes (24.5%) had at 

least one GPS station with displacements estimated, and hence were considered to have 

available displacement estimates in the GPS Mega-Network.  To identify which GPS 

stations may be affected by a given earthquake, and thus have earthquake displacements 

marked in the GPS position time series, I apply Eq. 4.3 to each event M≥5.5 to determine 

their r0.  Times when the station possibly experienced coseismic deformation are flagged 

for displacement estimation if the station-to-epicenter distance is less than r0.  The radius 

of influence flagged 7,486 unique GPS stations (Fig. 4.1B) as being possibly affected by 

at least one of the 14,059 earthquakes (Fig. 4.1A), with these sites requiring 63,122 total 

coseismic displacement estimates.   

This information comprises part of NGL’s database that identifies two types of 

displacement events; those associated with GPS station equipment changes, as previously 

mentioned, and those from earthquakes derived from the radius of influences for each 

earthquake for its worldwide GPS data holdings.  The earthquake records in the database 

include site name, date, estimated radius of earthquake zone of influence, distance from 

epicenter to station, magnitude, and the unique USGS event ID for each earthquake.  As 

of 20 Apr. 2022, there were a total of 77,488 potential equipment-related and earthquake 
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displacements in the time series (http://geodesy.unr.edu/NGLStationPages/steps.txt).  The 

records in this file are called “potential displacements” because it is not necessarily the 

case that the time series are observed to have a significant displacement at these times.   

 

 

4.7 Discussion 

 

4.7.1 Fundamental Properties of the GPS Global Earthquake Catalog 

 

To be considered to have available displacement estimates, an earthquake is 

required to have at least one GPS station located within its radius of influence at a point 

in time when data are available both before and after the event, allowing for successful 

estimation by one of the three strategies.  Even if a displacement was estimated to be zero 

within uncertainty, it was still considered to have available displacement estimates 

because that data places a constraint on the physical source.  Earthquakes M≥7 have the 

greatest likelihood of available displacement estimates over time with 302 of 394 

(76.6%) 7≤M<8 earthquakes with available estimations by GPS since 1994, and all 

earthquakes (100%) M≥8 with available displacements estimates (Fig. 4.15).  

Earthquakes M<7 were less likely to have available displacement estimates in the GPS 

Mega-Network.  This is in part because their radius of influence is smaller, but also 

because many of the lower magnitude earthquakes originated at mid-oceanic ridges 

where there is a lack of GPS instrumentation.  However, the number of lower magnitude 

earthquakes with estimated displacement availability is much greater for on-shore 

http://geodesy.unr.edu/NGLStationPages/steps.txt
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earthquakes (shown in maroon in Fig. 4.14 and Fig. 4.15, and Fig. 4.16B).  The number 

of earthquakes with available displacement estimates exceed the number that occur on 

land (18%) for all earthquakes M≥6. 

The number of earthquakes with displacement estimates available increased over 

time for all magnitudes as the GPS Mega-Network grew (Fig. 4.15 and Fig. 4.16).  The 

percentage of total earthquakes with available displacement estimates in the GPS Mega-

Network compared to the NEIC catalog exceeded single-digits four years after the 

inception of NGL’s data holdings (Fig. 4.15).  Available displacement estimate 

percentage has not dropped below 20% since 2005, approximately the beginning of the 

great GPS expansion (Fig. 4.13), and has an average estimated displacement availability 

percentage of 34% since 2004 (Fig. 4.15).  The best year on record so far for available 

displacement estimates is 2015 at 46%, however, it’s noteworthy that the availability 

percentage depends on the magnitude of the events that occurred.  Years with a greater 

number of M≥7 earthquakes are more likely to have a greater total number of events with 

available displacement estimates in the GPS Mega-Network.  Looking closer at the 

catalog comparison by magnitude per year, there is a noticeable increase in earthquakes 

M≤6.5 with available displacement estimates in the GPS Mega-Network starting in 2004, 

with events 5.5≤M<6.5 improving from single digits in the first five years of the data 

holdings to averaging over 28% in the years following 2004 (Fig. 4.16).  Earthquakes 

6.5≤M<7.5 follow a similar pattern of improvement as the GPS Mega-Network grows 

(Fig. 4.16).  All earthquakes M≥8 have available displacement estimates in the GPS 

Mega-Network since the inception of NGL’s data holdings. 
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Figure 4.13.  Cumulative number of GPS stations in the GPS Mega-Network as a 

function of time.  The great GPS network expansion ramped up especially from 2004–

2009 with the addition of UNAVCO’s Network of the Americas. 

 

The number of on-shore earthquakes cataloged by the USGS NEIC (U.S. 

Geological Survey, 2017) has remained fairly consistent since 1994, with an average of 

92 on-shore earthquakes M≥5.5 occurring per year.  Up until 2004, the number of 

earthquakes with available displacement estimates did not exceed the number of 

earthquakes that occurred on-shore.  After the great GPS network expansion (Fig. 4.13), 

the number of earthquakes with estimated displacements expanded past the number of 
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earthquakes that occurred on-shore and captured a greater number of offshore events for 

all magnitudes (Fig. 4.15).  

 

 

Figure 4.14.  Catalog comparison by magnitude.  Magnitude range is listed on horizontal 

axis label by minimum bound, e.g., 5.5 contains magnitudes 5.5≤M<6, etc.  (A) Bar 
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charts of global earthquakes by magnitude having at least one displacement calculated for 

GPS time series in total (red), and on-shore (maroon), and all earthquakes occurring 

between 1 Jan. 1994 and 20 Apr. 2022 identified by the USGS NEIC (light blue) (U.S. 

Geological Survey, 2017) and those that occurred on-shore (dark blue).  (B) Percentage 

of earthquakes with estimated displacement availability by the GPS Global Earthquake 

Catalog vs. the USGS NEIC Earthquake Catalog (U.S. Geological Survey, 2017) as a 

function of magnitude and subdivided by total earthquakes (black) compared to only 

earthquakes with epicenters located on-shore (gray). 
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Figure 4.15.  Catalog comparison by year.  (A) Number of earthquakes having at least 

one displacement calculated from GPS time series in total (red) and on-shore (maroon) as 

a function of time vs. all earthquakes occurring between 1 Jan. 1994 and 20 Apr. 2022 

identified by the USGS NEIC (light blue) (U.S. Geological Survey, 2017) and those that 
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occurred on-shore (dark blue).  The peak in 2011 is attributable to the Great Tohoku-oki 

earthquake sequence.  (B) Percentage of earthquakes with estimated displacement 

availability by the GPS Global Earthquake Catalog vs. the USGS NEIC Earthquake 

Catalog (U.S. Geological Survey, 2017) as a function of year and subdivided by total 

earthquakes (black) compared to only earthquakes with epicenters located on-shore 

(gray). 
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Figure 4.16.  Percentage of earthquakes with estimated displacement availability by the 

GPS Global Earthquake Catalog vs. the USGS NEIC Earthquake Catalog (U.S. 

Geological Survey, 2017) occurring between 1 Jan. 1994 and 20 Apr. 2022 as a function 

of magnitude.  The GPS Global Earthquake Catalog is comprised of stations having at 
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least one displacement calculated from GPS time series.  Overall trend shows 

improvement in available displacement estimates over time for all earthquakes (A) and 

on-shore earthquakes (B).  Smaller magnitude earthquakes (5.5≤M<6.5 in blue, 

6.5≤M<7.5 in orange) occur at a higher rate, but their epicenters are often offshore, 

explaining their comparably lower estimated displacement availability percentage.  

Larger magnitude earthquakes (7.5≤M<8.5 in yellow, 8.5≤M<9.5 purple) occur less 

frequently, leading to breaks in the time series, and typically originate offshore. 

 

Because GPS stations must be within the radius of influence for an earthquake to 

be considered to have estimated displacement availability, there is still a sizable deficit 

between the GPS Global Earthquake Catalog and the USGS NEIC Earthquake Catalog 

(U.S. Geological Survey, 2017).  If the earthquake has a small magnitude and/or is 

located offshore, it is less likely to have displacement estimates for a GPS station.  The 

largest magnitude events nearly always have available displacement estimates in the GPS 

Mega-Network, however, especially later in the global expansion of GPS networks which 

ramped up after 2004 (Fig. 4.13).  For every M≥8 modern event, there are hundreds to 

thousands of GPS time series with available displacement estimates for the earthquake.  

The larger the magnitude of the earthquake, the greater number of displacements 

estimated per event (Fig. 4.17).  Though M<6 has the greatest number of earthquakes 

with available displacement estimates in the GPS Mega-Network Global Earthquake 

Catalog, there are on average only 8 GPS stations with estimated displacements per 

event.  Compare that to the number for the average M≥9 which is 952.  The 2011 M9.1 

Great Tohoku-oki earthquake alone had 1,701 stations with displacements estimated, 
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indicating that the date and station distribution in Japan around the event also contributes 

to the total number of GPS stations affected. 

 

 

Figure 4.17.  Displacements estimated per earthquake available in the GPS Global 

Earthquake Catalog according to magnitude.  Magnitude range is listed on horizontal axis 
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label by minimum bound, e.g., 5.5 contains magnitudes 5.5≤M<6, etc.  (A) Number of 

GPS stations with displacements estimated (yellow) by magnitude and number of 

earthquakes with available displacement estimates in the GPS Mega-Network Global 

Earthquake Catalog (red) occurring between 1 Jan. 1994 and 20 Apr. 2022.  (B) The 

black curve represents the mean number of displacements estimated per event as a 

function of magnitude. 

 

In addition to the GPS Global Earthquake Catalog, I identified stations in the GPS 

Mega-Network flagged for earthquake displacements from statistics collected during 

displacement estimation.  Of the 20,224 GPS stations in the GPS Mega-Network as of 20 

Apr. 2022, 7,486 stations account for the 63,122 potential displacements flagged for 

earthquake displacement estimation (Fig. 4.1B).  Since GPS stations are often installed 

near plate boundaries and in tectonically active regions, this is a reasonable result, but 

this information could also serve other interests beyond earthquake applications.  

Knowing which GPS time series are serially affected by earthquake displacements is 

important to geodesists designing regional and global reference frames.  By having a 

database of stations impacted by earthquake displacements, and the size of the 

displacements, geodesists have a source for which stations to correct for or potentially 

avoid when defining tectonic plate stable interiors. 
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4.7.2 Future Prospects for the Growth and Utility of the GPS Global 

Earthquake Catalog 

 
 

Coseismic displacements provide fundamental constraints on processes that drive 

earthquakes in the solid Earth system.  By refining coseismic displacement analysis, I can 

improve the accuracy and utility of data that reveals properties of the earthquake source, 

physical process, scope, style and direction of surface deformation.  However, future 

improvements are predicated on the availability of data.  Currently, these strategies are 

limited to continuous or semi-continuous GPS networks processed by the NGL as part of 

the GPS Mega-Network, and do not include stations in campaign GPS networks, seafloor 

geodetic stations, or stations in networks for which the data are not openly available.  

Furthermore, these estimation strategies will only be viable with the continued sharing of 

data and operation of stations within the GPS Mega-Network. 

Though earthquake estimated displacement availability by stations within the 

GPS Mega-Network has improved over time, there is still a sizeable deficit between 

earthquakes detected by the USGS NEIC Earthquake Catalog (U.S. Geological Survey, 

2017) and estimated displacement availability by the GPS Global Earthquake Catalog.  

As previously discussed, this is especially true for lower magnitude earthquakes.  The 

continued growth and maintenance of the GPS Mega-Network can help close this gap.  

Though there were large strides in network growth, especially in the mid-2000s, the rate 

of station growth has decreased in recent years (Fig. 4.13).  Increasing the number of 

operational GPS stations in the network will help improve the resolvability of 

earthquakes by increasing the number of available coseismic displacement estimates.   
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Similarly, when discussing the limitations on the GPS Mega-Network, the 

distinction between on-shore and offshore events is the single most important factor.  

Though many offshore earthquakes are powerful enough to have on-shore GPS 

instrumentation located within the radius of influence, the difference in average available 

displacements estimates for offshore earthquakes is huge.  To address this, I see sea-floor 

geodesy (Bürgmann and Chadwell, 2014; Newman et al., 2021) as having special 

potential to eventually place a greater number of sensors near those sources.  Potentially 

fiber optic cables that cross the seafloor could allow distributed acoustic sensing of strain 

(Zumberge et al., 2018; Jousset et al., 2018) near spreading centers where available 

displacement estimates are currently very low, and in the future could illuminate more of 

the seafloor.  Additionally, on-shore GPS instrumentation and data communications 

infrastructure will become less expensive and continue to fill the gaps in remote locations 

where station coverage is currently sparse.  Access to low-latency telemetry capabilities 

have been identified as a near-frontier priority by NSF geophysical facility 

instrumentation portfolio review (Arrowsmith et al., 2021). 

Finally, I hope future earthquake research will continue to collaborate with other 

complementary data sources from this and other catalogs including, for example, seismic 

data from moment tensor catalogs (Ekstrom et al., 2012), InSAR products from the 

Geodetic Centroid (gCent) Catalog (Shea and Barnhart, 2022), catalogs of afterslip 

(Churchill et al., 2022), and geologic data (e.g., USGS, 2023).  At minimum, cross-

referencing global earthquake data from the seismology, geology, and geodesy 

disciplines can help solve big science questions about these dynamic Earth processes. 
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4.8 Conclusions 

 

 This analysis quantifies the sensitivity and scope of coverage that continuous GPS 

networks have for capturing coseismic displacements.  I present an analysis method for 

estimating coseismic displacements that uses an adaptable time window to optimize the 

balance between uncertainty and data misfit, and a hierarchical strategy to account for 

gaps and non-linear signals in GPS time series data before and after earthquakes.  These 

methods improve coseismic displacement estimates and support objective application of 

the algorithm to the entirety of the GPS Mega-Network affected by earthquake events 

M≥5.5.   

I define an empirical earthquake radius of influence that is a function of 

magnitude and ensures most all stations potentially having coseismic displacements are 

considered for displacement estimation.  The adaptable time window customizes the 

interval of data used to estimate each displacement potentially affected by an event to 

account for missing data, other earthquake events within the time window, and reduces 

the possible influence of postseismic relaxation during larger magnitude events.  

Additionally, the hierarchical strategy that prioritizes the DNE 24-hour and DNE 5-

minute solutions over the TSM solutions using the data closest to the earthquake allows 

for the estimation of multiple coseismic displacements within a 24-hour period. 

These strategies improve estimates of coseismic displacements for all GPS 

stations in the global GPS Mega-Network, which has implications for earthquake science, 

crustal deformation studies, and defining future geodetic reference frames.  GPS stations 
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that experience coseismic movement give details about the direction and style of 

deformation that can further describe the earthquake source.  Other researchers who 

might treat earthquakes as an unwanted disturbance while examining other crustal signals 

can also use the displacements to “correct” the GPS positions.  Knowing which stations 

are affected by earthquakes and having estimates of that deformation can pinpoint 

relatively stable stations for reference frames.  The GPS Global Earthquake Catalog 

identifies which earthquakes have available GPS displacement estimates, which GPS 

stations may be influenced by earthquakes, and allows for comparisons to or integrations 

with seismic catalogs. 
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4.11 Supplemental Tables 

 

Table S4.1. Earthquakes used in the empirical estimation of the radius of influence (r0). 

M Date USGS NEIC 
Earthquake ID 

Approximate 
Location 

Epicenter 
Latitude 

(º) 

Epicenter 
Longitude 

(º) 

Depth 
(km) 

r0 
(km) 

Horizontal 
Displacement 

Magnitude 
Threshold 

(mm) 

9.1 11-Mar-
2011 

official20110311 
054624120_30 

Great Tohoku 
Earthquake, 

Japan 
38.2970 142.3730 29.0 1921 11.02 

8.8 27-Feb-
2010 

official20100227 
063411530_30 

Quirihue, 
Chile -36.1220 -72.8980 22.9 1911 6.02 

8.6 11-Apr-
2012 

official20120411 
083836720_20 

Sumatra, 
Indonesia 2.3270 93.0630 20.0 3211* 4.69 

8.3 24-May-
2013 usb000h4jh Sea of 

Okhotsk 54.8920 153.2210 598.1 1901* 2.40 

8.3 16-Sep-
2015 us20003k7a Illapel, Chile -31.5729 -71.6744 22.4 1661 2.39 

8.2 1-Apr-
2014 usc000nzvd Iquique, Chile -19.6097 -70.7691 25.0 1551 4.24 

8.2 8-Sep-
2017 us2000ahv0 Chiapas, 

Mexico 15.0222 -93.8993 47.4 2031* 2.79 

8.2 29-Jul-
2021 ak0219neiszm 

Alaska 
Peninsula, 

USA 
55.3635 -157.8876 35.0 661 3.48 

8.1 4-Mar-
2021 us7000dflf 

Kermadec 
Islands, New 

Zealand 
-29.7228 -177.2794 28.9 1561* 7.06 

8.0 26-May-
2019 us60003sc0 Navarro, Peru -5.8119 -75.2697 122.6 1541* 5.48 

7.9 23-Jan-
2018 us2000cmy3 Chiniak, 

Alaska, USA 56.0039 -149.1658 14.1 1161* 2.19 

7.8 15-Jul-
2009 usp000gz8j Te Anau, 

New Zealand -45.7620 166.5620 12.0 1241 1.04 

7.8 28-Oct-
2012 usp000juhz 

Prince 
Rupert, 
Canada 

52.7880 -132.1010 14.0 1041 3.16 

7.8 25-Apr-
2015 us20002926 Bharatpur, 

Nepal 28.2305 84.7314 8.2 111 1.69 

7.8 16-Apr-
2016 us20005j32 Muisne, 

Ecuador 0.3819 -79.9218 20.6 1261* 2.87 

7.8 13-Nov-
2016 us1000778i Amberley, 

New Zealand -42.7373 173.0540 15.1 691 4.41 

7.8 22-Jul-
2020 us7000asvb Perryville, 

Alaska, USA 55.0715 -158.5960 28.0 1261* 1.78 

7.7 11-Mar-
2011 usp000hvpg Kamaishi, 

Japan 38.0580 144.5900 18.6 1141* 35.54 

7.7 14-Aug-
2012 usp000jq9h Poronaysk, 

Russia 49.8000 145.0640 583.2 741 2.65 

7.7 3-Apr-
2014 usc000p27i Iquique, Chile -20.5709 -70.4931 22.4 51 11.10 

7.6 5-Sep-
2012 usp000jrsw Hojancha, 

Costa Rica 10.0850 -85.3150 35.0 341 3.13 
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7.6 19-Oct-
2020 us6000c9hg Sand Point, 

Alaska, USA 54.6020 -159.6258 28.4 781* 1.76 

7.5 5-Jan-
2013 ak0138esnzr Edna Bay, 

Alaska, USA 55.2280 -134.8591 8.7 501 3.53 

7.5 10-Jan-
2018 us1000c2zy Barra Patuca, 

Honduras 17.4825 -83.5200 19.0 881* 2.41 

7.5 5-Dec-
2018 us1000i2gt Tadine, New 

Caledonia -21.9496 169.4266 10.0 321 3.37 

7.5 22-Feb-
2019 us2000jlfv Palora, 

Ecuador -2.1862 -77.0505 145.0 811 1.70 

7.4 23-Jun-
2020 us6000ah9t 

Santa María 
Xadani, 
Mexico 

15.8861 -96.0077 20.0 781* 3.25 

7.3 9-Mar-
2011 usp000hvhj Ōfunato, 

Japan 38.4350 142.8420 32.0 661* 2.15 

7.3 27-Aug-
2012 usp000jqvm El Triunfo, El 

Salvador 12.1390 -88.5900 28.0 431 4.12 

7.3 7-Dec-
2012 usp000jwjn Ōfunato, 

Japan 37.8900 143.9490 31.0 641 2.76 

7.3 16-Mar-
2022 us6000h519 Namie, Japan 37.7302 141.5951 59.9 421 3.54 

7.2 15-Jun-
2005 usp000dt25 

Big Lagoon, 
California, 

USA 
41.2920 -125.9530 16.0 511 3.34 

7.2 16-Aug-
2005 usp000dxe2 Ishinomaki, 

Japan 38.2760 142.0390 36.0 531 2.95 

7.2 4-Apr-
2010 ci14607652 

Delta, Baja 
California, 

Mexico 
32.2862 -115.2953 10.0 581* 2.55 

7.2 18-Apr-
2014 usb000pq41 Coyuquilla 

Norte, Mexico 17.3970 -100.9723 24.0 561 2.12 

7.1 9-Aug-
2009 usp000h04j Ōyama, 

Japan 33.1670 137.9440 292.0 531 2.90 

7.1 7-Apr-
2011 usp000hzf6 Ishinomaki, 

Japan 38.2760 141.5880 42.0 321 2.53 

7.1 23-Oct-
2011 usp000j9rr Van, Turkey 38.7210 43.5080 18.0 381 1.73 

7.1 25-Mar-
2012 usp000jgsw Constitución, 

Chile -35.2000 -72.2170 40.7 541 1.24 

7.1 24-Jan-
2016 ak01613v15nv Pedro Bay, 

Alaska, USA 59.6204 -153.3392 125.6 541 3.05 

7.1 19-Sep-
2017 us2000ar20 Matzaco, 

Mexico 18.5499 -98.4887 48.0 341 3.51 

7.1 30-Nov-
2018 ak018fcnsk91 

Point 
MacKenzie, 
Alaska, USA 

61.3464 -149.9552 46.7 451 4.67 

7.1 6-Jul-
2019 ci38457511 

Ridgecrest, 
California, 

USA 
35.7695 -117.5993 8.0 571* 2.19 

7.1 13-Feb-
2021 us6000dher Namie, Japan 37.7265 141.7751 44.0 441 2.61 

7.0 19-Jul-
2008 usp000gcjg Namie, Japan 37.5520 142.2140 22.0 471* 3.17 

7.0 26-Feb-
2010 usp000h7qu 

Katsuren-
haebaru, 

Japan 
25.9300 128.4250 25.0 121 2.35 

7.0 3-Sep-
2010 usp000hk46 Methven, 

New Zealand -43.5220 171.8300 12.0 171 2.40 
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7.0 10-Jul-
2011 usp000j4gp Ishinomaki, 

Japan 38.0340 143.2640 23.0 461 3.74 

7.0 16-Sep-
2015 us20003k7w Illapel, Chile -31.5622 -71.4262 28.4 511 10.13 

7.0 15-Apr-
2016 us20005iis Kumamoto, 

Japan 32.7906 130.7543 10.0 401 3.38 

7.0 1-Sep-
2016 us10006jbi Gisborne, 

New Zealand -37.3586 179.1461 19.0 331 2.38 

7.0 30-Oct-
2020 us7000c7y0 

Néon 
Karlovásion, 

Greece 
37.8973 26.7838 21.0 471* 2.33 

7.0 20-Mar-
2021 us7000dl6y Ishinomaki, 

Japan 38.4515 141.6477 43.0 401 2.37 

6.9 14-Feb-
2008 usp000fyw4 Methóni, 

Greece 36.5010 21.6700 29.0 271 2.09 

6.9 7-May-
2008 usp000g5rx Hasaki, 

Japan 36.1640 141.5260 27.0 391 2.73 

6.9 13-Jun-
2008 usp000g9h6 Mizusawa, 

Japan 39.0300 140.8810 7.8 161 2.15 

6.9 2-Feb-
2013 usc000f03a Obihiro, 

Japan 42.7700 143.0920 107.0 451* 3.07 

6.9 9-Feb-
2013 usc000f4ij Yacuanquer, 

Colombia 1.1350 -77.3930 145.0 321 1.49 

6.9 1-Apr-
2014 usc000nzwm Iquique, Chile -19.8927 -70.9455 28.4 391 3.42 

6.9 24-May-
2014 usb000r2hc Kamariótissa, 

Greece 40.2893 25.3889 6.4 231 2.97 

6.9 11-Nov-
2015 us10003x8t Coquimbo, 

Chile -29.5067 -72.0068 12.0 151 12.20 

6.9 21-Nov-
2016 us10007b88 Namie, Japan 37.3931 141.3870 9.0 281 1.75 

6.9 24-Apr-
2017 us10008kce Valparaíso, 

Chile -33.0375 -72.0617 28.0 321 3.46 

6.9 1-May-
2021 us7000dz5t Onagawa 

Chō, Japan 38.1997 141.5973 43.0 281 1.96 

6.9 11-Oct-
2021 ak021d1u1nos Chignik, 

Alaska, USA 56.2954 -156.5810 51.6 241 3.04 

6.8 15-Oct-
2007 usp000fqks Te Anau, 

New Zealand -44.7960 167.5530 18.0 241 4.10 

6.8 23-Jul-
2008 usp000gczp Morioka, 

Japan 39.8020 141.4640 108.0 151 3.13 

6.8 11-Sep-
2008 usp000ggu8 Obihiro, 

Japan 41.8920 143.7540 25.0 271 1.09 

6.8 10-Mar-
2014 nc72182046 

Indianola, 
California, 

USA 
40.8287 -125.1338 16.4 401* 3.57 

6.8 12-May-
2015 us20002et4 Ōfunato, 

Japan 38.9056 142.0317 35.0 171 2.21 

6.8 29-May-
2015 ak0156uj8rk3 Ugashik, 

Alaska, USA 56.5940 -156.4301 72.6 291 3.14 

6.8 7-Nov-
2015 us10003vgt Ovalle, Chile -30.8796 -71.4519 46.0 301 4.30 

6.8 25-Oct-
2018 us1000hhb1 Lithakiá, 

Greece 37.5203 20.5565 14.0 291 3.49 

6.8 1-Aug-
2019 us60004yps San Antonio, 

Chile -34.2364 -72.3102 25.0 371 1.90 
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6.8 3-Jun-
2020 us6000a4yi 

San Pedro de 
Atacama, 

Chile 
-23.2740 -68.4677 112.0 391 2.11 

6.8 1-Sep-
2020 us7000bfjr Vallenar, 

Chile -27.9686 -71.3062 21.0 121 4.44 

6.8 11-Jan-
2022 us7000gavu Nikolski, 

Alaska, USA 52.3415 -167.7554 20.0 321 6.42 

6.7 8-Jan-
2006 usp000e7u3 Kýthira, 

Greece 36.3110 23.2120 66.0 131 1.88 

6.7 25-Mar-
2007 usp000f7b5 Nanao, Japan 37.3360 136.5880 8.0 361* 19.82 

6.7 14-Feb-
2011 usp000hugg Constitución, 

Chile -35.3800 -72.8340 21.0 341 5.06 

6.7 22-Jun-
2011 usp000j3k6 Miyako, 

Japan 39.9550 142.2050 33.0 351 3.58 

6.7 16-Sep-
2011 usp000j84y Miyako, 

Japan 40.2730 142.7790 30.0 171 4.70 

6.7 17-Apr-
2012 usp000jj3u Hacienda La 

Calera, Chile -32.6250 -71.3650 29.0 351 1.58 

6.7 16-Mar-
2014 usc000ndnj Iquique, Chile -19.9807 -70.7022 20.0 341 3.44 

6.7 16-Feb-
2015 usb000tpvj Miyako, 

Japan 39.8558 142.8808 23.0 361* 2.53 

6.7 17-Sep-
2015 us20003kfv Illapel, Chile -31.5173 -71.8040 23.0 311 7.70 

6.7 14-Jan-
2016 us10004ebx 

Shizunai-
furukawachō, 

Japan 
41.9723 142.7810 46.0 351 1.98 

6.7 20-Jan-
2019 us2000j6hy Coquimbo, 

Chile -30.0404 -71.3815 63.0 291 2.68 

6.6 16-Jul-
2007 usp000fg9t Kashiwazaki, 

Japan 37.5350 138.4460 12.0 281 12.16 

6.6 20-Dec-
2007 usp000fuvt Gisborne, 

New Zealand -39.0110 178.2910 20.0 301 2.24 

6.6 12-Aug-
2009 usp000h093 Tateyama, 

Japan 32.8210 140.3950 53.0 231 4.66 

6.6 14-Jul-
2010 usp000hf8z Cañete, Chile -38.0670 -73.3100 22.0 121 3.18 

6.6 11-Mar-
2011 usp000hvuu Ōtsuchi, 

Japan 39.2410 142.4630 25.7 321* 157.05 

6.6 11-Apr-
2011 usp000hzq8 Ishikawa, 

Japan 37.0010 140.4010 11.0 111 4.83 

6.6 12-Oct-
2013 usb000kbn7 Kíssamos, 

Greece 35.5142 23.2523 40.0 311 2.01 

6.6 11-Apr-
2014 usc000pgsi Belén, 

Nicaragua 11.6420 -85.8779 135.0 241 3.01 

6.6 21-Sep-
2015 us20003mi0 Illapel, Chile -31.7275 -71.3792 35.0 191 5.84 

6.6 1-Jun-
2016 us20005zt1 

Sungai 
Penuh, 

Indonesia 
-2.0967 100.6654 50.0 231 1.48 

6.6 30-Oct-
2016 us1000731j Preci, Italy 42.8621 13.0961 8.0 291 7.61 

6.6 20-Jul-
2017 us20009ynd Kos, Greece 36.9293 27.4139 7.0 291 1.73 

6.6 5-Sep-
2018 us2000h8ty Chitose, 

Japan 42.6861 141.9294 35.0 161 3.14 
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6.6 11-Jan-
2022 us7000gaqu Pólis, Cyprus 35.2267 31.9435 21.0 311 2.86 

6.5 22-Dec-
2003 nc21323712 

San Simeon, 
California, 

USA 
35.7005 -121.1005 8.4 281* 2.36 

6.5 14-Feb-
2008 usp000fywh Koróni, 

Greece 36.3450 21.8630 28.0 271 3.46 

6.5 13-Oct-
2009 usp000h2u7 Nikolski, 

Alaska 52.7540 -166.9970 24.0 191 2.26 

6.5 10-Jan-
2010 nc71338066 

Ferndale, 
California, 

USA 
40.6520 -124.6925 28.7 261 2.90 

6.5 14-Mar-
2010 usp000h9cg Namie, Japan 37.7450 141.5900 32.0 251 2.33 

6.5 24-Oct-
2012 usp000jucg Nandayure, 

Costa Rica 10.0860 -85.2980 17.0 61 3.61 

6.5 15-Jun-
2013 usc000hrnr Masachapa, 

Nicaragua 11.7630 -86.9260 30.0 261 3.44 

6.5 21-Jul-
2013 usb000iivv Blenheim, 

New Zealand -41.7040 174.3370 17.0 281* 4.26 

6.5 16-Aug-
2013 usb000j4iz Blenheim, 

New Zealand -41.7340 174.1520 8.2 281* 2.89 

6.5 3-Apr-
2014 usc000p26f Iquique, Chile -20.3113 -70.5756 24.1 271 4.34 

6.5 24-Apr-
2014 usb000px6r Vernon, 

Canada 49.6388 -127.7316 10.0 191 1.62 

6.5 17-Nov-
2015 us10003ywp Lefkáda, 

Greece 38.6700 20.6000 11.0 121 4.48 

6.5 13-Nov-
2016 us10007795 Blenheim, 

New Zealand -42.3205 173.6694 10.0 281* 14.65 

6.5 14-Nov-
2016 us100077hw Amberley, 

New Zealand -42.6058 173.2543 9.0 221 11.94 

6.5 31-Mar-
2020 us70008jr5 Stanley, 

Idaho, USA 44.4646 -115.1175 12.1 211 2.37 

6.5 15-May-
2020 nn00725272 

Monte Cristo 
Range, 

Nevada, USA 
38.1689 -117.8497 2.7 261 1.45 

6.4 8-Jun-
2008 usp000g8vs Várda, 

Greece 37.9630 21.5250 16.0 101 2.64 

6.4 5-Jun-
2009 usp000gxvt 

Shizunai-
furukawachō, 

Japan 
41.8240 143.4450 29.0 111 1.44 

6.4 9-Sep-
2011 usp000j7ur Vernon, 

Canada 49.5350 -126.8930 22.0 131 2.36 

6.4 23-Aug-
2014 usb000s5rc Hacienda La 

Calera, Chile -32.6953 -71.4416 32.0 251* 2.18 

6.4 20-Jun-
2015 us10002ke8 Talcahuano, 

Chile -36.3601 -73.8120 11.0 231 2.79 

6.4 29-Jul-
2015 ak0159nc9dk8 Pedro Bay, 

Alaska, USA 59.8935 -153.1962 119.3 211 1.68 

6.4 16-Sep-
2015 us20003k8b Illapel, Chile -31.6180 -71.7450 26.7 141 58.18 

6.4 17-Sep-
2015 us20003kcn Ovalle, Chile -31.1043 -71.6504 42.3 81 50.32 

6.4 18-Jun-
2019 us600042fx Tsuruoka, 

Japan 38.6391 139.4769 12.0 151 2.07 
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6.4 4-Jul-
2019 ci38443183 

Ridgecrest, 
California, 

USA 
35.7053 -117.5038 10.5 191 4.67 

6.4 26-Nov-
2019 us70006d0m Mamurras, 

Albania 41.5138 19.5256 22.0 191 2.10 

6.4 7-Jan-
2020 us70006vll 

Maria 
Antonia, 

Puerto Rico 
17.8686 -66.8266 8.9 111 5.69 

6.4 19-Jan-
2021 us7000d18q Pocito, 

Argentina -31.8334 -68.7992 20.8 221 2.16 

6.4 21-Sep-
2021 us7000fd4k Talcahuano, 

Chile -36.7771 -73.9329 18.8 241 1.54 

6.3 6-Apr-
2009 usp000gvtu Sassa, Italy 42.3340 13.3340 8.8 161 2.67 

6.3 11-Apr-
2010 usp000hb7n Nigüelas, 

Spain 36.9650 -3.5420 609.8 191 1.82 

6.3 4-Jul-
2010 usp000heww Miyako, 

Japan 39.6970 142.3690 27.0 71 2.13 

6.3 11-Mar-
2011 usp000hvnv Namie, Japan 37.7120 141.1840 32.3 201 950.30 

6.3 23-Jul-
2011 usp000j5by Ōfunato, 

Japan 38.8980 141.8150 41.0 61 10.24 

6.3 24-Jul-
2011 usp000j5ed Namie, Japan 37.7300 141.3900 40.0 171 4.04 

6.3 30-Jul-
2011 usp000j5rk Iwaki, Japan 36.9420 140.9550 38.0 31 4.32 

6.3 17-Jun-
2012 usp000jmwc Ōfunato, 

Japan 38.9190 141.8310 36.0 91 2.52 

6.3 13-Mar-
2014 usc000nabv Hikari, Japan 33.6842 131.8249 79.0 71 2.42 

6.3 26-Sep-
2015 us20003p9y Ovalle, Chile -30.8148 -71.3217 46.0 51 5.08 

6.3 10-Feb-
2016 us20004z5b Ovalle, Chile -30.5723 -71.5838 29.0 221* 1.64 

6.3 11-Jul-
2016 us100062hg Rosa Zarate, 

Ecuador 0.5812 -79.6380 21.0 201 6.73 

6.3 4-Nov-
2016 us1000744u Curicó, Chile -35.0945 -71.0457 90.0 121 3.35 

6.3 12-Jun-
2017 us20009ly0 Plomári, 

Greece 38.9296 26.3650 12.0 221 2.61 

6.3 10-Oct-
2017 us2000b3dm Arica, Chile -18.5715 -69.7526 85.0 201 1.20 

6.3 21-Jan-
2018 us2000cm0f Arica, Chile -18.8806 -69.4445 116.0 181 1.79 

6.3 8-Jan-
2019 us2000j1d4 Nishinoomote

, Japan 30.5872 131.0441 35.0 191 1.69 

6.3 4-Aug-
2019 us600050if Namie, Japan 37.7594 141.6031 38.0 201 3.23 

6.3 19-Apr-
2020 us7000903m Ōfunato, 

Japan 38.8953 142.0049 38.0 211 2.91 

6.3 3-Mar-
2021 us7000df40 Týrnavos, 

Greece 39.7546 22.1757 8.0 221* 1.49 

6.3 21-Jan-
2022 us7000gdwz Saiki, Japan 32.7282 132.0386 39.0 221* 2.57 

6.2 6-Jan-
2008 usp000fw2w Leonídio, 

Greece 37.2160 22.6930 75.0 151 2.26 
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6.2 10-Aug-
2009 usp000h05y Sagara, 

Japan 34.7430 138.2640 40.4 201* 7.04 

6.2 3-Sep-
2009 usp000h16f Makurazaki, 

Japan 31.1400 130.0140 163.0 51 2.69 

6.2 9-Sep-
2010 usp000hkg9 Lota, Chile -37.0340 -73.4120 16.0 41 2.03 

6.2 17-Mar-
2011 usp000hxmc Miyako, 

Japan 40.1360 142.1680 29.0 131 168.35 

6.2 25-Mar-
2011 usp000hyjm Ōfunato, 

Japan 38.7720 141.8800 39.0 111 5.40 

6.2 27-Mar-
2011 usp000hyrs Ishinomaki, 

Japan 38.4150 142.0110 19.0 201* 7.56 

6.2 11-Apr-
2011 usp000hzsk Tōgane, 

Japan 35.4170 140.5750 15.0 131 4.85 

6.2 21-Apr-
2011 usp000j0c3 Tōgane, 

Japan 35.5790 140.3050 43.0 201* 4.08 

6.2 19-Aug-
2011 usp000j6nx Namie, Japan 37.6710 141.6520 47.0 181 4.78 

6.2 11-Apr-
2014 usc000pfgr Iquique, Chile -20.6590 -70.6472 13.8 81 3.35 

6.2 25-Sep-
2014 ak014cbigci8 Skwentna, 

Alaska, USA 61.9449 -151.8160 108.9 91 3.25 

6.2 22-Nov-
2014 usb000syza Hakuba, 

Japan 36.6408 137.8875 9.0 61 5.31 

6.2 18-Mar-
2015 us10001nj1 Tomé, Chile -36.1167 -73.5219 13.0 111 1.25 

6.2 19-Sep-
2015 us20003luw La Ligua, 

Chile -32.3335 -72.0629 18.0 201* 3.88 

6.2 11-Jan-
2016 us10004djn Rumoi, Japan 44.4761 141.0867 238.8 201* 2.01 

6.2 14-Apr-
2016 us20005hzn Kumamoto, 

Japan 32.7880 130.7042 9.0 61 6.49 

6.2 24-Aug-
2016 us10006g7d Accumoli, 

Italy 42.7230 13.1877 4.4 201* 2.60 

6.2 21-Oct-
2016 us20007fta Kurayoshi, 

Japan 35.3743 133.8092 5.6 191 1.63 

6.2 13-Nov-
2016 us100077aj Blenheim, 

New Zealand -42.3093 173.6961 2.1 201* 32.02 

6.2 10-Apr-
2018 us2000dxfc Ovalle, Chile -31.0258 -71.5292 66.0 71 2.73 

6.2 9-May-
2019 us70003j46 Miyazaki, 

Japan 31.7772 131.8483 22.0 201* 1.76 

6.2 11-Sep-
2020 us7000blm2 Tocopilla, 

Chile -21.3968 -69.9096 51.0 141 2.28 

6.2 20-Dec-
2021 nc73666231 

Petrolia, 
California, 

USA 
40.3902 -124.2980 27.0 191 3.91 

6.1 8-Mar-
2010 usp000h8x1 Karakoçan, 

Turkey 38.8640 39.9860 12.0 151 4.01 

6.1 12-Feb-
2011 usp000hucz Chiguayante, 

Chile -37.0270 -72.9540 16.0 91 3.02 

6.1 12-Mar-
2011 usp000hwfv Namie, Japan 37.2490 141.1590 38.0 181* 22.17 

6.1 12-Mar-
2011 usp000hwnq Ishinomaki, 

Japan 38.0470 141.7200 15.0 181* 14.25 

6.1 13-May-
2011 usp000j1jk Namie, Japan 37.3960 141.3410 35.0 51 5.86 



 

 

259 

6.1 21-Oct-
2011 usp000j9mz Asahikawa, 

Japan 43.8920 142.4790 187.0 61 1.48 

6.1 23-Nov-
2011 usp000jbaf Namie, Japan 37.3650 141.3680 34.0 61 3.03 

6.1 23-Jan-
2012 usp000jdvv Tomé, Chile -36.4090 -73.0300 20.0 51 2.32 

6.1 27-Mar-
2012 usp000jgv9 Miyako, 

Japan 39.8590 142.0170 15.0 61 2.77 

6.1 20-Jan-
2014 usb000m4i4 Masterton, 

New Zealand -40.6595 175.8144 28.0 81 2.44 

6.1 26-Jan-
2014 usb000m8ch Lixoúri, 

Greece 38.2082 20.4528 8.0 171 2.60 

6.1 16-Sep-
2015 us20003k7m Illapel, Chile -31.7502 -71.7425 19.1 181* 196.98 

6.1 10-Jun-
2016 us200063cy 

Puerto 
Morazán, 
Nicaragua 

12.8318 -86.9633 10.0 61 2.58 

6.1 26-Oct-
2016 us1000725y Visso, Italy 42.9564 13.0666 10.0 141 2.77 

6.1 11-Nov-
2016 us1000770m Ishinomaki, 

Japan 38.4973 141.5658 42.4 141 1.42 

6.1 13-Nov-
2016 us1000779b Blenheim, 

New Zealand -42.1762 173.6227 14.0 181* 27.77 

6.1 30-Oct-
2018 us1000hiup Waitara, New 

Zealand -39.0570 174.9584 225.5 41 2.42 

6.1 12-Sep-
2020 us7000bm9m Ōfunato, 

Japan 38.7482 142.2446 34.0 71 2.66 

6.1 6-Jan-
2022 us7000g9nb Corinto, 

Nicaragua 11.9367 -87.1371 17.0 91 1.63 

6.0 13-Feb-
2011 usp000huey Talcahuano, 

Chile -36.6490 -73.1760 17.0 161* 3.01 

6.0 15-Mar-
2011 usp000hxc7 Fujinomiya, 

Japan 35.2720 138.5820 9.0 61 6.88 

6.0 31-Mar-
2011 usp000hyzj Ōfunato, 

Japan 38.9220 141.8210 42.0 131 8.48 

6.0 16-Jul-
2011 usp000j4zz San Antonio, 

Chile -33.8190 -71.8320 20.0 151 3.52 

6.0 14-Mar-
2012 usp000jg80 Asahi, Japan 35.6870 140.6950 10.0 161* 4.45 

6.0 20-May-
2012 usp000jkn8 Massa 

Finalese, Italy 44.8900 11.2300 6.3 141 1.56 

6.0 7-Jun-
2012 usp000jmf2 Namie, Japan -36.0740 -70.5700 8.0 151 4.06 

6.0 18-May-
2013 usb000gy67 Namie, Japan 37.7390 141.4710 39.0 121 1.70 

6.0 3-Feb-
2014 usc000mfuh Lixoúri, 

Greece 38.2637 20.3897 5.0 81 2.20 

6.0 4-May-
2014 usb000q9sv Itō, Japan 34.9118 139.4186 153.0 151 2.15 

6.0 24-Aug-
2014 nc72282711 

South Napa, 
California, 

USA 
38.2152 -122.3123 11.1 121 2.89 

6.0 14-Apr-
2016 us20005i1a Uto, Japan 32.6973 130.7204 8.0 51 5.22 

6.0 8-Jul-
2021 nc73584926 

Antelope 
Valley, 

California, 
USA 

38.5075 -119.4998 7.5 111 1.99 
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5.9 24-Jan-
2009 ak00913zo63t Southern 

Alaska, USA 59.4302 -152.8875 97.9 51 4.71 

5.9 5-Aug-
2010 usp000hhjy Curanilahue, 

Chile -37.4430 -73.2810 18.0 61 2.07 

5.9 11-Feb-
2011 usp000hucn Arauco, Chile -37.1960 -73.1980 15.0 61 4.70 

5.9 1-Apr-
2011 usp000hz2b Ōtsuchi, 

Japan 39.3230 141.9500 41.0 111 5.37 

5.9 12-Apr-
2011 usp000hzt4 Ishikawa, 

Japan 37.1070 140.3680 11.0 41 6.87 

5.9 1-Aug-
2011 usp000j5ua Ōyama, 

Japan 34.6310 138.4330 13.0 41 3.50 

5.9 23-Dec-
2011 usp000jch9 Christchurch, 

New Zealand -43.5300 172.7430 6.9 21 3.69 

5.9 25-Aug-
2012 usp000jqqj 

Shizunai-
furukawachō, 

Japan 
42.4190 142.9130 54.5 61 1.94 

5.9 17-Apr-
2013 usb000g940 Ishinomaki, 

Japan 38.4750 141.6300 50.5 121 2.33 

5.9 16-Aug-
2013 usb000j4kk Blenheim, 

New Zealand -41.7420 174.0500 8.5 131 5.82 

5.9 16-Aug-
2013 usb000j4n4 Blenheim, 

New Zealand -41.6688 174.2623 14.3 141* 7.37 

5.9 1-Apr-
2016 us20005du0 Shingū, 

Japan 33.3807 136.3901 14.0 81 1.51 

5.9 23-Nov-
2016 us10007bwb Namie, Japan 37.2143 141.3209 9.0 111 3.02 

5.9 28-Dec-
2016 us10007naf Daigo, Japan 36.8604 140.4421 7.0 61 1.77 

5.9 28-Apr-
2017 us10008llg Valparaíso, 

Chile -33.2190 -71.9694 22.0 141* 5.16 

5.9 24-Jun-
2020 us7000aabt Hasaki, 

Japan 35.4711 141.0738 29.1 91 1.91 

5.9 17-Jul-
2020 us7000aq5p Iquique, Chile -20.2355 -70.1328 73.6 21 2.11 

5.9 21-Sep-
2021 us7000fd9v Mount Buller, 

Australia -37.4920 146.3534 12.0 91 2.58 

5.9 7-Oct-
2021 us6000fsl6 Chiba, Japan 35.5736 140.0705 62.0 31 1.92 

5.9 21-Dec-
2021 ak021gbh4rso Port Alsworth, 

Alaska, USA 60.1237 -153.2742 151.2 61 3.18 

5.8 23-Oct-
2007 usp000fr4d Padang, 

Indonesia -1.9960 99.8960 30.0 121* 4.70 

5.8 5-Apr-
2009 usp000gvsp Miyazaki, 

Japan 32.0070 131.4170 26.0 111 1.32 

5.8 6-Jun-
2009 usp000gxx2 Hasaki, 

Japan 35.4830 140.9140 34.0 121* 2.24 

5.8 13-Feb-
2011 usp000huet Talcahuano, 

Chile -36.5650 -73.1780 20.7 111 4.33 

5.8 11-Mar-
2011 usp000hvpr Tōno, Japan 39.5990 141.5760 35.0 121* 719.21 

5.8 12-Mar-
2011 usp000hwgq Yamada, 

Japan 39.4650 142.4050 35.0 91 2779.84 

5.8 17-Mar-
2011 usp000hxny Kitaibaraki, 

Japan 36.7570 141.2020 29.0 81 10.72 

5.8 20-Mar-
2011 usp000hy1v Ōtsuchi, 

Japan 39.3500 141.8240 42.0 61 2.81 
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5.8 24-Mar-
2011 usp000hyfh Kamaishi, 

Japan 39.0790 142.0840 27.0 101 5.15 

5.8 11-Apr-
2011 usp000hzq9 Marumori, 

Japan 37.7910 140.8120 10.0 121* 8.94 

5.8 20-May-
2011 usp000j1v8 Hasaki, 

Japan 35.7610 140.8430 29.0 41 7.29 

5.8 23-Dec-
2011 usp000jch0 Christchurch, 

New Zealand -43.4900 172.8000 9.7 21 3.27 

5.8 29-Apr-
2012 usp000jjs6 Tōgane, 

Japan 35.5960 140.3490 44.0 51 1.94 

5.8 29-May-
2012 usp000jm2n Medolla, Italy 44.8510 11.0860 10.2 111 5.00 

5.8 25-Feb-
2013 usc000fd56 Numata, 

Japan 36.8440 139.2450 10.0 41 4.65 

5.8 12-Apr-
2013 usb000g5yg Sumoto, 

Japan 34.3690 134.8280 14.0 21 2.70 

5.8 4-Aug-
2013 usb000iv4w Ishinomaki, 

Japan 38.2133 141.8621 56.0 121* 1.89 

5.8 1-Apr-
2014 usb000pmkl Iquique, Chile -19.4928 -70.1660 21.6 121* 104.08 

5.8 10-May-
2014 ak0145z8amwh Happy Valley, 

Alaska, USA 60.0101 -152.1260 89.1 71 2.45 

5.8 14-Feb-
2016 us20005019 Christchurch, 

New Zealand -43.4798 172.7715 7.6 21 3.92 

5.8 30-Nov-
2018 ak018fcntv5m Anchorage, 

Alaska, USA 61.2822 -149.9571 40.8 61 6.50 

5.8 23-Nov-
2019 us70006c81 Whakatane, 

New Zealand -37.3696 177.2566 120.5 71 2.77 

5.8 24-Jun-
2020 ci39493944 

Lone Pine, 
California, 

USA 
36.4468 -117.9752 4.7 111 2.19 

5.8 28-Oct-
2020 us7000c6u9 La Serena, 

Chile -29.3186 -71.2397 50.0 121* 3.52 

5.8 4-Mar-
2021 us7000dfku Verdikoússa, 

Greece 39.7865 22.1157 10.0 121* 5.39 

5.8 2-May-
2021 us7000dzfk Coquimbo, 

Chile -30.1366 -71.5825 33.0 61 0.79 

5.7 31-Jan-
2009 usp000gtaz Kitaibaraki, 

Japan 36.7190 141.1480 34.0 111* 2.92 

5.7 15-Jun-
2010 ci14745580 

Ocotillo, 
California, 

USA 
32.7050 -115.9113 8.8 71 1.32 

5.7 11-Mar-
2011 usp000hvug Hasaki, 

Japan 35.6840 140.9330 35.0 111* 34.74 

5.7 11-Mar-
2011 usp000hw1n Honshu, 

Japan 36.9430 138.3000 12.4 111* 249.45 

5.7 16-Mar-
2011 usp000hxfe Miyako, 

Japan 39.8870 142.0190 36.0 111* 97.92 

5.7 1-Aug-
2011 usp000j5u4 Miyako, 

Japan 39.8370 142.0830 40.0 31 2.31 

5.7 1-Apr-
2012 usp000jh3k Iwaki, Japan 37.1160 140.9570 48.0 111* 4.36 

5.7 13-Apr-
2012 usp000jhus Iwaki, Japan 36.9880 141.1520 11.0 111* 3.32 

5.7 24-May-
2013 nc71996906 

Canyondam, 
California, 

USA 
40.1918 -121.0595 8.0 111* 2.45 
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5.7 4-Jul-
2014 usc000rqix Miyako, 

Japan 39.6480 142.0802 50.3 71 4.15 

5.7 28-Jan-
2015 nc72387946 

Ferndale, 
California, 

USA 
40.3178 -124.6067 16.9 101 1.99 

5.7 15-Apr-
2016 us20005ija Kikuchi, 

Japan 32.9241 130.8091 10.0 111* 15.71 

5.7 13-Nov-
2016 us10007798 Blenheim, 

New Zealand -42.4063 173.6606 9.9 91 168.24 

5.7 13-Nov-
2016 us10007797 Blenheim, 

New Zealand -41.6877 174.2061 14.6 51 269.64 

5.7 18-Jan-
2017 us10007twj Cittareale, 

Italy 42.6012 13.2268 7.0 111* 6.27 

5.7 28-Feb-
2017 us20008mw4 Namie, Japan 37.5666 141.3347 47.0 81 1.33 

5.7 8-Apr-
2018 us2000dwh6 Ōdachō-ōda, 

Japan 35.2588 132.5528 10.3 61 1.53 

5.7 25-Oct-
2018 us1000hh6r Ishinomaki, 

Japan 38.3158 141.7850 40.0 51 1.96 

5.7 18-Mar-
2020 uu60363602 Magna, Utah, 

USA 40.7510 -112.0783 11.9 51 2.31 

5.7 5-Oct-
2021 us6000frzg Miyako, 

Japan 40.0529 142.1410 55.0 61 2.44 

5.7 20-Dec-
2021 nc71127029 

Petrolia, 
California, 

USA 
40.2978 -124.6260 16.5 41 5.84 

5.6 16-Oct-
1999 ci10180015 

Running 
Springs, 

California, 
USA 

34.2400 -117.0400 6.0 101* 8.23 

5.6 13-Mar-
2010 usp000h9ap Namie, Japan 37.5940 141.2990 76.7 101* 3.33 

5.6 14-Oct-
2010 usp000hn3m 

Shizunai-
furukawachō, 

Japan 
42.3110 142.8710 59.0 31 1.74 

5.6 13-Mar-
2011 usp000hwup Ōfunato, 

Japan 38.8490 141.8580 33.0 91 1540.04 

5.6 21-May-
2011 usp000j1zc Narutō, Japan 35.5970 140.4920 37.0 21 6.06 

5.6 10-Oct-
2011 usp000j95h Namie, Japan 37.5470 141.2570 46.0 101* 3.66 

5.6 29-Apr-
2012 usp000jjsh Miyako, 

Japan 39.7450 142.0370 10.0 101* 1.34 

5.6 16-Oct-
2012 usp000ju2g Taupo, New 

Zealand -38.6390 176.1670 110.5 31 2.54 

5.6 17-Apr-
2013 usb000g9yi Shimoda, 

Japan 33.9580 139.3520 8.8 91 2.14 

5.6 9-Nov-
2013 usb000kvca Moriya, Japan 35.9187 139.9684 64.3 101* 3.35 

5.6 15-Jun-
2014 usc000rfv0 Iwaki, Japan 37.0961 141.1141 45.0 71 7.93 

5.6 23-Aug-
2014 usb000s5lt Iquique, Chile -20.1745 -69.0385 100.0 101* 2.21 

5.6 22-Nov-
2014 usb000sz38 Panciu, 

Romania 45.8977 27.1505 32.0 91 2.10 

5.6 19-Dec-
2014 usc000t8gv Pointe-Noire, 

Guadeloupe 16.1951 -61.8091 118.1 41 3.39 
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5.6 12-Oct-
2015 us10003mxv Castlepoint, 

New Zealand -40.5837 176.2884 22.0 31 1.69 

5.6 28-Dec-
2015 us10004a1v Saint-Pierre, 

Martinique 14.6571 -61.3454 150.0 31 4.55 

5.6 24-Aug-
2016 us10006g7w 

Castelsantan
gelo sul Nera, 

Italy 
42.8413 13.1533 3.2 101* 5.25 

5.6 23-Sep-
2016 us10006s5c Nereju Mic, 

Romania 45.7275 26.6097 92.0 91 1.29 

5.6 18-Oct-
2016 us20007f6l Pointe Michel, 

Dominica 15.2230 -61.5065 146.0 71 3.65 

5.6 28-Dec-
2016 nn00570709 Hawthorne, 

Nevada, USA 38.3755 -118.8989 11.3 101* 3.81 

5.6 28-Dec-
2016 nn00570710 Hawthorne, 

Nevada, USA 38.3904 -118.8972 12.2 101* 3.27 

5.6 18-Jan-
2017 us10007twn Cittareale, 

Italy 42.5855 13.1904 10.0 41 7.57 

5.6 6-Oct-
2017 us2000b20f Iwaki, Japan 37.0959 141.0771 44.0 41 3.77 

5.6 23-Jun-
2019 nc73201181 

Petrolia, 
California, 

USA 
40.2735 -124.3003 9.4 61 2.25 

5.6 21-Sep-
2019 us60005lrf Shijak, 

Albania 41.3375 19.5303 20.0 91 1.14 

5.5 28-Feb-
2009 usp000gufa 

Shizunai-
furukawachō, 

Japan 
42.6100 142.1040 105.0 71 2.24 

5.5 7-Apr-
2009 usp000gvvw San Panfilo 

d'Ocre, Italy 42.2750 13.4640 15.1 31 3.19 

5.5 18-Jan-
2010 usp000h6a0 Náfpaktos, 

Greece 38.4040 21.9610 0.8 21 2.80 

5.5 29-Sep-
2010 usp000hmb0 Kuroiso, 

Japan 37.2570 139.8830 33.3 71 1.90 

5.5 11-Mar-
2011 usp000hw1j Honshu, 

Japan 35.6850 140.6580 2.2 21 21.02 

5.5 14-Mar-
2011 usp000hx1e Ōarai, Japan 36.4080 140.8940 11.0 71 8.13 

5.5 22-Mar-
2011 usp000hyb1 Ishikawa, 

Japan 37.0650 140.6380 18.0 41 4.92 

5.5 22-Mar-
2011 usp000hyb2 Iwaki, Japan 37.0140 140.6790 40.7 41 4.92 

5.5 22-Mar-
2011 usp000hyb4 Ishikawa, 

Japan 37.1110 140.5800 37.5 91* 2.99 

5.5 11-Apr-
2011 usp000hzsf Iiyama, Japan 36.8090 138.2840 17.1 41 4.23 

5.5 3-Jun-
2011 usp000j2nd Iwaki, Japan 37.0670 140.9120 17.0 91 4.65 

5.5 24-Jun-
2011 usp000j3pk 

Shizunai-
furukawachō, 

Japan 
42.0490 142.5530 58.1 41 8.05 

5.5 7-Jul-
2011 usp000j4b1 Iwaki, Japan 37.1250 140.8690 35.0 21 4.52 

5.5 15-Mar-
2012 usp000jgaf Ōme, Japan 35.8020 139.2790 103.8 81 3.89 

5.5 24-Apr-
2012 usp000jjhz Narutō, Japan 35.6220 140.4720 54.3 41 2.79 
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5.5 29-May-
2012 usp000jm2z 

San 
Possidonio, 

Italy 
44.8880 11.0080 6.8 51 4.63 

5.5 16-Aug-
2013 usb000j4j6 Blenheim, 

New Zealand -41.7640 174.1170 5.8 81 7.46 

5.5 16-Nov-
2013 usb000kzuj Chiba, Japan 35.6039 140.1529 59.4 91* 2.50 

5.5 21-Dec-
2013 usc000lpah Asahi, Japan 35.6065 140.6497 35.4 61 2.75 

5.5 2-Apr-
2014 usc000p20r Ōfunato, 

Japan 39.1648 141.8049 58.1 91* 1.70 

5.5 14-Jun-
2014 usc000rfj5 Hanamaki, 

Japan 39.4384 140.9876 92.0 91* 7.15 

5.5 9-Jul-
2015 us20002wd2 Hachinohe, 

Japan 40.3631 141.4646 81.0 21 1.58 

5.5 12-Jul-
2015 us20002wz9 Usuki, Japan 33.0229 131.7493 53.0 81 2.27 

5.5 15-Apr-
2016 us20005inz Aso, Japan 33.0051 131.1569 13.2 91* 49.53 

5.5 18-Apr-
2016 us20005jgz Aso, Japan 33.0143 131.0991 10.5 41 9.39 

5.5 26-Oct-
2016 us20007guy Preci, Italy 42.8580 13.0528 6.0 71 4.18 

5.5 13-Nov-
2016 us10007db8 Blenheim, 

New Zealand -42.2132 173.4319 10.0 91* 121.78 

5.5 14-Nov-
2016 us100077l5 Blenheim, 

New Zealand -41.7598 174.2992 17.2 91* 12.67 

5.5 15-Nov-
2016 us1000780y Blenheim, 

New Zealand -41.7875 174.3064 10.0 91* 14.84 

5.5 28-Dec-
2016 nn00570744 Hawthorne, 

Nevada, USA 38.3777 -118.8957 8.8 31 8.88 

5.5 24-Apr-
2018 us1000dr71 Nemuro, 

Japan 43.3482 145.7259 83.0 71 1.46 

5.5 17-Jun-
2018 us1000eu1c Honshu, 

Japan 34.8246 135.6389 10.3 31 1.90 

5.5 20-Nov-
2018 us1000hujf Nagata, 

Japan 30.4200 130.0667 123.0 91* 1.34 

5.5 6-Jul-
2019 ci38457687 

Ridgecrest, 
California, 

USA 
35.9012 -117.7495 5.0 91* 28.17 

5.5 4-Jun-
2020 ci39462536 

Ridgecrest, 
California, 

USA 
35.6148 -117.4282 8.4 41 1.80 

5.5 17-Feb-
2021 us6000diae Kamárai, 

Greece 38.4057 22.0190 5.3 21 2.53 

* Maximum empirical radius of influence per earthquake magnitude interval (shown as 
cyan stars in Fig. 4.11), e.g., M5.5=91 km   
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5 Conclusions 

Conclusions 
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The research presented in this dissertation demonstrates applications of the GPS 

Imaging technique that increases understanding of geophysical signals detected by the 

GPS Mega-Network in the United States and globally.  Distinguishing common 

geophysical signals in complex geologic regions can reveal underlying geodynamic 

processes occurring at different time scales.  Each of the chapters present strategies to 

visualize and identify sources of crustal motion.  The major conclusions for each chapter 

are summarized in the following paragraphs.              

 Two chapters particularly focus on using GPS Imaging in unison with 

interdisciplinary methods to analyze loading and unloading signals.  The first chapter 

used GPS Imaging to identify a –2 mm/year signal of subsidence in the interior Pacific 

Northwest United States that spanned the approximate length of the Cascadia subduction 

zone latitudes.  Velocity profiles from GPS Imaging and MIDAS compared to 

topographic profiles suggested that the subsidence feature was centralized approximately 

around the Cascade Arc longitudes.  I investigated plate tectonic iterations, postseismic 

relaxation, volcanic processes, climatological tends related to orographic precipitation, 

and GIA due to the region’s proximity to the former Laurentide ice sheet and Western 

Cordilleran deglaciation as possible sources for the subsidence feature.  Models of 

lithospheric flexure with realistic geologic parameters for the region and GPS Imaging of 

the subsidence feature were used as constraints.  Both Juan de Fuca plate subduction end 

loading and volcanic loading model results were capable of producing the subsidence 

feature.  Climatological and GRACE data imply a potential, though relatively minor, 

contribution from hydrological loading.  Postseismic relaxation models from the 1700 

M9.1 Cascadia Earthquake removed approximately half of the subsidence feature rate.  
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By combining it with the GIA postglacial rebound corrections, the majority of the 

subsidence signal was accounted for north into Canada.  This suggests lithospheric 

flexure from postseismic relaxation and GIA are likely the primary sources for the 

subsidence feature.         

 The second chapter studies an enigmatic uplift signal of ~2 mm/year revealed by 

GPS Imaging in the Great Plains region of the United States after GIA corrections for 

forebulge collapse.  This area is in the relatively stable interior, and there was no 

topographic correlation with velocity profiles from GPS Imaging or MIDAS velocities.   

However, uplift extends throughout the southern High Plains aquifer and the greatest 

uplift rate is centralized where groundwater levels have experienced the greatest declines, 

so we therefore investigated a possible hydrological source for the uplift.  GRACE data 

corroborate the spatial extent of hydrologic mass loss observed by GPS Imaging.  

Climatic, hydrologic, and GPS time series comparisons reveal a connection between 

vertical land motion and anthropogenic hydrological mass unloading exacerbated by 

drought.  The simple hydrological unloading model constrained by GPS Imaging 

indicates that a water volume loss of –5.1 km3/year is sufficient to cause the uplift, 

similar to GRACE estimates and previous studies.  Generally, geophysical signals from 

anthropogenic aquifer depletion are associated with subsidence, but the High Plains 

aquifer is unconfined, meaning the reservoir will not compress with groundwater removal 

as it is at atmospheric pressure, and crustal response for hydrological mass unloading 

might therefore appear as uplift.         

 The final project details new strategies to estimate earthquake displacements in 

the GPS Mega-Network, and examines the scope and sensitivity of the network through 
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time by building the GPS Global Earthquake Catalog from the coseismic displacement 

estimates.  I tested coseismic displacements using two strategies: the DNE model 

comprised of GPS time series data in a 30 day adaptable time window before and after an 

earthquake event, and the TSM method that estimates displacements with the entire GPS 

time series.  The DNE model was preferred, and a hierarchy of methodologies to estimate 

coseismic displacements was established: 24-hour DNE, 5-minute DNE, and then TSM 

estimations.  Four earthquakes M≥6 helped define the empirical radius of influence 

equation which is used to flag GPS stations potentially affected by coseismic 

deformation.  The new equation was vetted with the aid of GPS Imaging which created a 

field of coseismic displacements for the 2019 M7.1 Ridgecrest earthquake and the 2020 

M6.5 Monte Cristo range mainshock events.  Global coseismic displacements were 

estimated for 14,059 earthquakes M≥5.5 between 1. Jan. 1994 and 20 Apr. 2022 which 

comprise the GPS Global Earthquake Catalog.  Comparisons with the USGS NEIC 

Earthquake Catalog confirm that the ability of the GPS Mega-Network to estimate 

displacements for earthquake events increases with magnitude and improves over time. 


