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Abstract 
 

Determining what environmental and anthropogenic factors have the greatest influence 

on the distribution of the Mojave desert tortoise (Gopherus agassizii) is key to 

improving population estimates and better understanding how this species uses their 

habitat around them. The Mojave Desert tortoise is a federally listed threated species 

and a key component to their delisting is ensuring that they are well distributed 

throughout their range. Currently range wide surveys of desert tortoises are conducted 

over large regions of suitable habitat with little consideration of the patchy nature of 

their distribution. Models were constructed to evaluate influences on desert tortoise 

densities across their range and are capable of informing conservation managers on 

where to conduct surveys in the future as well as what habitat to allocate for protection 

based on desert tortoise habitat preferences. At the range wide scale satellite data is 

readily available for input into models; however, when evaluating tortoise densities at 

smaller scales satellite derived remote sensing imagery proves to be too coarse for 

analyses at these scales. Remote sensing imagery derived from unmanned aerial 

vehicles (UAV) has recently become a viable option for obtaining data at these scales for 

various types of analyses. With high resolution imagery obtained with UAVs density 

models were constructed to evaluate influences on tortoise densities at local scales and 

with this I was also able to evaluate if tortoise habitat preferences differ amongst scales 

and regions. Detailed plant and soil data are collected at these small scales through field 

methods such as the Assessment Inventory and Monitoring (AIM) protocol but do not 
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have the ability to capture the heterogeneity across the landscape; thus, UAV derived 

imagery has the potential to bridge the gap between satellite derived imagery and field 

collected data. Here I’ve shown that UAVs can capture a more accurate representation 

of shrub cover than field methods such as the AIM protocol. Shrub cover is important to 

Mojave desert tortoise habitat as it provides protection from high temperatures and 

predators. Though the UAV imagery proved useful for obtaining shrub cover, data 

collected through field methods will still be necessary for obtaining specific plant and 

soil data as well as for calibration with remotely sensed imagery. The density models 

constructed at both the range wide and local scales revealed that desert tortoises do 

show preferences in habitat selection and these preferences vary from region to region 

and amongst scales. On the other hand, more work is needed to improve the types of 

data available for collection with UAVs. These results demonstrate the importance of 

evaluating Mojave desert tortoise densities at different scales and with data collected 

through various different means.  
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Introduction 

Determining the components of an ecosystem that influence the distribution of a 

species is a complex task that requires an understanding of the species’ habitat 

requirements and selection of a suitable modeling approach that represents the 

leverage of these components on the species’ distribution. It is common to see spatial 

variation in animal abundance due to differences in habitat suitability (Mackenzie 2006). 

For instance, Williams and Middleton (2007) found that rainfall seasonality was the 

primary driver explaining spatial variation of bird abundance in an Australian tropical 

rainforest. These authors proposed that seasonal variation in rainfall, likely due to 

climate change, is causing declines in bird abundance, and is further exacerbated by 

habitat fragmentation. Understanding how environmental variation influences the 

densities of a species may aid in future estimates of abundance and distributions. Apps 

et al. (2016) applied a principal components analysis to derive factors influencing 

environmental variation of grizzly bear habitat in British Columbia, Canada at several 

spatial scales, with the best landscape model being a combination of all scales. Using      

a linear regression of estimated grizzly bear population density per survey area, while 

considering the mean landscape probability of grizzly bear detection, they found 

support for extrapolating grizzly bear density estimates among surveyed areas based on 

landscape variation in detection probability. Boer et al. (2013) performed a continent-

wide analysis of both present-day and historical distribution and densities of African 

elephants in relation to both ecological and human factors, and tested predictor 
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variables of elephant density in a generalized linear model (GLM). They found historic 

distributions to be significantly correlated with mean annual rainfall, while present-day 

densities of African elephants were primarily correlated with human factors. Each of 

these studies demonstrate a necessity for understanding the drivers of species densities 

for various conservation and management actions. It is not only important to 

understand what factors shape the distribution of species, but how variation in these 

factors correlate with the variation in densities across the landscape.  It’s important to 

note that higher densities of species may not always be associated with higher habitat 

quality (Van Horne 1983) and assumptions such as these may vary with scale. At range wide 

scales it can be assumed that some species exist in regions simply due to encroachment by 

humans; however, for the purpose of the analyses in this paper I do propose that higher 

Mojave desert tortoise densities are, in general, consistent with higher habitat quality. 

Due to reductions in population sizes and loss and degradation of habitat, the 

Mojave desert tortoise was listed as threatened under the United States Endangered 

Species Act in 1990 (U.S. Fish and Wildlife Service [USFWS]1990). Studies addressing the 

habitat preferences and life history characteristics of Mojave desert tortoises begin as 

early as the 1940’s (Woodbury and Hardy 1948), and much information is available in 

the pool of literature that exists today. The current recovery plan (USFWS 2011) 

designates five recovery units, within which there are seventeen tortoise conservation 

areas (Allison & McLuckie 2018). Threats to the desert tortoise include urbanization, 

large-scale renewable energy projects, drought, disease, and predation (USFWS 2011). 
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Range wide monitoring of the Mojave desert tortoise to assess their status and trends is 

often summarized over large conservation areas with little consideration of the patchy 

nature of their distribution (Allison & McLuckie 2018). Data from range wide monitoring 

indicates that tortoises are irregularly distributed across the landscape - even in areas 

considered to be suitable habitat. Understanding the nature of desert tortoise 

distributions may aid in the interpretation of monitoring outcomes as well as the 

allocation of protected habitat. A better understanding of the potential influences on 

what defines these patches could aid researchers and managers in predicting tortoise 

population numbers and the suitability of habitat in general. The realization of these 

patchy density distributions has given rise to questions such as whether these patches 

are the result of demographic stochasticity or of finer scale habitat preferences that 

have not yet been fully explored.  

There are several methods available for investigating the patchiness of a species. 

Some of these methods involve evaluating significant clusters of animals in regions using 

kernel density analyses (Hengl et al. 2009). Other methods include modeling the 

influence of environmental and anthropogenic variables on species distributions using 

generalized linear or non-linear models (Buzas 1971). In addition to the methods 

available for evaluating the patchiness of a species there are also various scales at which 

species distributions can be assessed. These spatial scales are species dependent, as the 

scale at which a species is distributed is often largely based on their responses to 

landscape characteristics, which also vary by scale. Factors influencing habitat suitability 
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at the scale of one kilometer (e.g. habitat attributes such as local topography or 

resource arrangement) may differ from factors that influence habitat suitability at the 

scale of several hundred kilometers (e.g. extreme temperatures), and different data 

might be important to aid in analyzing the pattern of patches at these different scales. 

At large scales, satellite derived imagery is often available and allows for spatial analysis 

with multiple environmental variables such as temperature, precipitation, vegetation, 

elevation, and soil composition (e.g., Nussear et al. 2009). However, the use of satellite 

imagery is limited as it is difficult in arid environments to corroborate field-based 

vegetation measurements, such as plant species composition, due to the low vegetative 

prevalence in even a 30 m pixel (Nagendra et al. 2008). At smaller scales there are many 

field-based methods to measure vegetation composition and abundance, and the BLM 

has implemented the Assessment Inventory and Monitoring (AIM) protocol, typically 

used in rangeland ecosystems, for this purpose. Data collected through programs such 

as AIM are limited, as they cannot accurately depict the heterogeneity of vegetation 

across the landscape with the same sampling intensity as remotely sensed data, because 

the data are obtained at only a few point locations (Gillan 2020). Additionally, because 

AIM data are obtained along points on 25-50 meter long transects, it also may be 

difficult to transform the data to be used in spatial analyses, as the “point” samples span 

larger areas than a single remotely sensed pixel. However – remotely sensed data 

cannot accurately capture the level of detail taken on transects and suffer from 

translating pixel-based data to practical field measurements without calibration. 

Recently, advances in near remote sensing using unmanned aerial vehicles (UAVs) have 
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become a viable option for obtaining environmental data at finer scales (Gillan 2020). 

Imagery obtained with UAVs has the potential to bridge the gap between on the ground 

field methods and large-scale satellite imagery (Gillan 2020).  

Expanding our understanding of the patterns in desert tortoise densities is key to 

determining influential factors on their distribution and future conservation decisions. In 

addition, exploring new technologies and their applications, such as UAVs and remotely 

sensed imagery, will aid in efforts to characterize suitable habitat at multiple spatial 

scales of species and distribution analyses. The aim of Chapter 1 of this thesis is to 

characterize the patchy distribution of tortoises through exploring the potential drivers 

of differential tortoise densities across their range, analyzed by exploring several 

environmental covariates hypothesized to influence their distribution. In Chapter 2 I use 

UAV remotely sensed imagery to characterize vegetation measures likely associated 

with finer scale desert tortoise habitat suitability, to evaluate tortoise densities, and 

corroborate AIM derived field data such as shrub cover. Finally, in Chapter 3, I compare 

the ability of models using UAV data and/or Satellite data to predict densities of 

tortoises at local scales and evaluate local tortoise habitat preferences.  

Study Area 

This study focused on the range of the Mojave desert tortoise including areas 

north and west of the Colorado River in California, Nevada, Arizona, and Utah (Figure 1). 

Mojave Desert tortoise habitat occurs in sandy flats to rocky foothills, and consists of 
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alluvial fans, washes and canyons (USFWS 2021). Part of the methods in this study 

focused on targeted locations of tortoise habitat located around the Las Vegas, Nevada 

region where AIM plots have been conducted. These locations have been studied for 

detailed habitat use, health evaluations, and population numbers of resident tortoise 

populations such as in the McCullough Range, Nevada and Sheep Mountain Summit, 

Nevada (Figure 2).  
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FIGURE 1: MOJAVE DESERT TORTOISE RANGE SHOWING TORTOISE LOCATIONS WITHIN DESERT WILDLIFE 

MANAGEMENT AREAS MONITORED BY THE USFWS DURING SPRING SURVEYS FROM 1999 TO 2018 
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FIGURE 2: MOJAVE DESERT BLM ASSESSMENT INVENTORY AND MONITORING LOCATIONS AT SILVER 

STATE, SHEEP MOUNTAIN, AND MCCULLOUGH PASS 
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Chapter 1: Factors influencing desert tortoise density and 

patchiness modeled at a landscape scale  

Species are rarely distributed uniformly in space, and often the factors 

influencing species density patterns vary both spatially and temporally (Anderson 1982). 

Desert tortoises are known to have several attributes that may be associated with their 

distribution that could be important toward understanding the differences in relative 

densities among habitat areas (Germano 1994). For example, desert tortoises spend 

most of their lives underground within burrows, therefore soil structure is likely a key 

factor in the species habitat preference, and soils vary widely across the Mojave Desert, 

and even within the confines of smaller survey areas, such as the 1 km capture 

recapture plots used to study tortoise density (Mitchell et al. 2021). Moreover, desert 

tortoises are highly incompatible with human presence and disturbance. In a study 

published in 1994 Corn found a decline of large tortoises in the western Mojave Desert 

in part due to human disturbance. This study also found a decline in juvenile tortoises 

due to a reduction in average precipitation of 4.93 cm in 1979 to 2.73 cm in 1985. Both 

of these findings along with similar studies (e.g. Carter et al. 2020) present the 

importance of both human disturbance and precipitation to the distribution and 

densities of tortoises. Understanding the associations of key habitat attributes with 

density distributions of desert tortoises will aid in future surveys and estimates of 

population numbers that can be used to inform conservation management decisions 

(Apps et al. 2016).  
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There have been many methods used to model tortoise densities on the 

landscape, and if I analyze the data differently these could be used to aid in our 

understanding of tortoise distributions. For example, as a part of the range-wide 

monitoring program conducted by the US Fish and Wildlife Service, transects are 

surveyed throughout Designated Critical Habitat Units. Encounter rates on these 

transects are on average 0.12 tortoises per linear kilometer surveyed but this varies by 

transect (Nussear and Tracy 2007). The nature of calculating densities using distance 

sampling requires a substantial number of encounters (Nussear and Tracy 2007) and 

these numbers are rarely achieved for areas smaller than a single critical habitat unit 

(approximately 1000 km2 in area). However, it is evident that some survey locations 

result in almost no tortoise sightings despite being conducted in what is considered 

suitable habitat (Allison & McLuckie 2018). Thus, this method may be missing important 

drivers of local tortoise densities. Similarly, tortoise densities have been monitored 

using capture-recapture methods on smaller plot areas. These plots comprise much 

smaller land area, and thus provide point estimates of density for a given location (Tracy 

et al. 2005), however even within a 1mi2 or 1km2 plot I can see differential densities on 

the plots that are not well accounted for using capture recapture methods. Thus, a 

method of estimating density that allows for the inclusion of covariates expressed at a 

scale like the survey unit could be helpful toward our understanding of tortoise’s use of 

habitat, and toward a more accurate assessment and prediction of tortoise densities at 

multiple scales. 
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Various methods exist for evaluating point densities generally (Table 1). For 

instance, clustering can reveal whether points are random, clustered, or over dispersed, 

and identify potentially important clusters; however, simply clustering points together 

will not explain the reasoning for their distribution. Kernels on the other hand create a 

continuous surface representing a model of the result of the point process; however, 

just as with clustering this method is not informed by covariates to describe why the 

points may be more or less dense in certain areas. From clusters or kernels I could 

obtain point samples of the density function and then run generalized linear models 

(GLM) or generalized additive models (GAM) to include covariates to model their 

potential influences. Density surface models are another potential method. These 

models use distance sampling data, and segment transects down to smaller units that 

can associate local encounter rates with covariates (e.g. see the prey model in Wiens et 

al. 2015). While these can produce finer scale spatially explicit estimates of density, they 

require substantial GIS processing, and still rely on detection estimates that are 

evaluated at the scale of the larger survey areas and are limited to data collected using 

distance transect methods. Another method, point process models (PPMs), model the 

intensity (or point density) across the landscape and thus allow for evaluation of 

covariates similar to GLM or GAM models. 

Generalized additive models can be manipulated to behave like a PPM to model 

the process by which a density distribution occurs and deal with complex situations by 

accounting for the effects of multiple variables on point densities (Baddeley 2016). 
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GAMs, not unlike the other modeling methods, depend on sufficient sampling 

throughout a given area such that the densities are well represented (both in high- and 

low-density areas). Given the extensive nature of the range wide tortoise surveys, there 

are sufficient data for this type of analysis, but these methods are also applicable 

toward plot-based data. This process is to a large degree survey method agnostic, 

opening the possibility to also be applied to much of the historical tortoise survey data 

that have been collected to date. 

In this analysis I use generalized additive models to analyze tortoise densities at 

several scales. Models were constructed using Mojave Desert tortoise presence points 

from previous sampling efforts, and associated environmental covariates derived from 

satellite remote sensing imagery to determine if variability in occupied habitat can 

explain differences in densities across the range of the desert tortoise. This analysis 

contributes insight as to why tortoises display a patchy distribution throughout their 

range and what variables influence this process. 

Previous studies on habitat suitability of the Mojave Desert tortoise have 

revealed some of the important habitat indicators for the species. In a study published 

in 2009, Nussear et al. found ten covariates to be significantly correlated with tortoise 

distributions and implemented them in a MAXENT species distribution model. The 

covariates chosen were perennial and annual plant cover, mean dry season 

precipitation, mean wet season precipitation, elevation, average surface roughness, 

percent smooth, average soil bulk density, depth to bedrock, and average percentage of 
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rocks (Nussear et al. 2009). From a study on Mojave Desert tortoise population trends 

published in 2018, Allison and McLuckie revealed adult tortoise declines from 2004 to 

2014 in 4 of 5 tortoise conservation areas. The change in tortoise densities found 

through distance surveys conducted throughout the tortoises’ range demonstrates the 

need to reevaluate how habitat suitability varies across the landscape and how this 

variation influences tortoise distributions. 

TABLE 1: METHODS OF QUANTIFYING ABUNDANCE AND DENSITIES OF MOJAVE DESERT TORTOISES AND 

THE LIMITATIONS OF THESE METHODS 

 Contributions Limitations 

Generalized Additive 
Models 

Models non-linear relationships 
between independent and 
dependent variables 

Computationally complex 
and has a tendency for 
overfitting 

Point Process Models Models the pattern of a point 
process in relation to a set of 
covariates 
Fixed effect model 

Assumes points are 
independent and uniformly 
distributed 

Cox and Cluster 
Processes 

Models point patterns influenced by 
unobserved random processes 
Random effect model 

Assumes points are not 
independent of one another 

Maximum Entropy Predicts probability of species 
presences under specific conditions 
distributed in space 

Similar to fitting a PPM with 
log linear intensity (specific 
intensity) 

Density Surface 
Models (DSM) 

Derives a likelihood function based 
on density of animals and probability 
of detection at a specific location 

Can only be used on line 
transect data 
Methods for fitting general 
models using likelihood 
derivations often met with 
convergence problems 
(Buckland 2004) 

Distance Sampling Obtains detection curves and density 
estimates through counts obtained 
by visual search along a transect 

Detectability of animals 
decreases with distance 
from line transect 
Must be conducted over 
large areas for accurate 
estimates 
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Although this analysis focuses on the entire range of the desert tortoise and uses 

satellite remote sensing imagery, with the introduction of finer scale environmental 

data it may be possible to apply similar methods at smaller scales. Evaluating patterns in 

tortoise densities at finer scales may reveal insights into processes not detectable in 

larger scale evaluations. Through the construction of localized density models not only 

will we have a better understanding of preferential (or more densely occupied) habitat, 

but perhaps most crucial to this analysis we will begin to understand drivers of local 

scale tortoise occurrence and thus be able to conduct management decisions 

accordingly. There are many factors that influence species densities and distributions 

including disease and demographic stochasticity; however, environmental variation 

plays a larger role at landscape scales, but its influence seems to be less well known in 

relation to these dynamics (Santini 2018).  

Research Questions 

➢ What environmental covariates have the greatest influence/are better able to 

predict patchiness of tortoise distributions on the landscape? 

Mark-Recapture Estimates total species abundance 
from only a subset of the population 
through a series of capturing, 
marking, and releasing animals 

Assumes: Equal chance of 
detection among all animals; 
Animals do not lose marks; 
Animals classified correctly 
(marked vs unmarked); 
Marks do not affect survival; 
Marking does not 
significantly affect 
subsequent behavior (Roff 
1973) 
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Methods 

Live tortoise point locations were obtained from a range wide analysis of 

population trends in Mojave desert tortoises (Allison & McLuckie 2018). In this study 

line-distance transects were walked throughout designated tortoise critical habitat 

between 2001 and 2019. I separated the range wide points into 4 groups - roughly 

based on critical habitat units - to enhance the ability of our models to predict densities 

based on our variables of interest while less influenced by the grouping of points caused 

by the location of survey transects (Figure 3). I created a kernel density raster for each 

region (Northeast Mojave, Central Mojave, South Mojave, and West Mojave) using the 

density.ppp function (spatstat.explore, version 3.0-5) in Rstudio (R core team 2022) and 

then masked each raster to only the area where line-distance transects were placed. I 

then placed 1000 random sample points in each region to obtain a gradient of densities 

values for input into the GAMs. 
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FIGURE 3: MOJAVE DESERT TORTOISE RANGE SHOWING TORTOISE LOCATIONS APPROXIMATELY 

SEPARATED BY CRITICAL HABITAT UNITS (CHU) MONITORED BY THE USFWS DURING SPRING SURVEYS 

FROM 1999 TO 2018 

Tortoises sustain a generalist diet and rely primarily on winter annuals and 

perennial grasses for foraging (Germano 1994). Introduced species such as Bromus 

rubens pose threats to the persistence of tortoise’s natural forage (Drake et al. 2016). 
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Precipitation is minimal and variable throughout the Mojave Desert, but in general most 

rain or snowfall occurs in the fall and winter (Germano 1994). Due to the limiting nature 

of precipitation in the Mojave Desert, determining the minimum amount of 

precipitation required to sustain tortoise numbers is crucial for understanding their 

densities across the landscape. Tortoises are mostly found at elevations between 200 m 

and 1570 m asl (Germano 1994; Berry and Murphy 2019), which is a pattern likely 

driven by environmental factors such as temperature and topography. Mojave desert 

tortoises spend a majority of their lives in burrows or naturally formed dens, thus soil 

composition and geology are unquestionably important factors influencing the density 

of tortoises throughout their habitat. Soils must be sturdy enough to construct burrows 

without the concern for collapsing easily, but also not too rocky otherwise penetration 

will be impossible (Bury 1982). Because burrows can be up to 3 m or more in depth, the 

depth to bedrock may also influence whether tortoises occupy certain sites.  

Generalized additive models were constructed to evaluate the effects of 

covariates on tortoise point densities and allowed for the analysis of non-linear effects. 

GAMs were assessed using multiple diagnostics metrics to examine the fit of each model 

and relative influence of the covariates. These include percent deviance explained, 

adjusted R-squared, and p-values for individual variable analysis. These modeled 

relationships are then predicted across tortoise habitat and compared to existing 

representations of tortoise densities.  
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With improvements in remote sensing imagery and data collection methods as 

well as changes in tortoise densities I re-evaluate the influence of previously suggested 

drivers as well as test for the influence of newly considered variables which are 

expected to be important. Based on evidence from the literature and inferences by 

experts I considered the following variables for analysis: Normalized difference 

vegetation index (NDVI) obtained from the USGS phenology website (USGS 2019), Soils 

(coarse fragments, sand on surface) obtained from soilgrids.org (ISRIC 2020), Depth to 

bedrock obtained from isric.org (ISRIC 2020),  Winter precipitation (30-year normal) and 

Maximum temperature (30-year normal) obtained from PRISM (PRISM 2012), and TDI 

(terrestrial disturbance index) (Carter et al. 2020). All imagery was scaled using the 

scale() function in R in order to place all variables on a level playing field and avoid 

potential effects from high leverage values. I masked all imagery to only the region 

where line-distance transects were placed. This is so when I evaluated range wide 

tortoise points in relation to our variables of interest no bias would arise due to density 

values of zero being generated in the non-surveyed regions. It is in the non-surveyed 

regions where I am uncertain whether tortoise densities are high or low and the models 

help to predict this. After scaling and masking the imagery to the appropriate regions I 

used the same 1000 sample points used to obtain the tortoise density values (from the 

kernel analyses) to extract values for each environmental variable for input into the 

GAMs.  With this I had 1000 density values for each region and 1000 corresponding 

values for each variable of interest for each region as well.  
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Results:  

The generalized additive models reveal that individual tortoises do appear to 

show preferences in habitat selection and some of these preferences vary from region 

to region, while other preferences appear consistent. The west Mojave displays an 

increase in densities with an increase in depth to bedrock (Figure 12). The other three 

regions, northeast, central, and south, have little to no relationship between densities 

and depth (Figures 6, 9, and 15). In general, densities appear to decrease with increasing 

percentage of coarse fragments on surface (Figures 6, 9, 12, and 15). In all regions 

except the northeast there is a steady increase in densities with a peak followed by a 

drop off with increasing sand on surface (Figures 9, 12, and 15). In the northeast there is 

a steady increase in densities with an increase in sand on surface with no drop off as 

seen in the other regions (Figure 6). Regarding climatic variables, in all regions there is a 

peak in densities as maximum temperature increases with drop offs in densities towards 

the extreme highs and lows of maximum temperature (Figures 6, 9, 12, and 15). In all 

regions except the northeast there is a general increase in tortoise densities with an 

increase in winter precipitation (Figures 9, 12, and 15). Surprisingly, in the northeast 

there is a very slight increase in densities with an increase in winter precipitation 

followed by a general downward trend as the precipitation continues upward (which 

may reflect precipitation seen in the higher elevation areas) (Figure 6). Not surprisingly, 

in the northeast and south Mojave I see decreases in density with increases in terrestrial 

disturbance where the data points are concentrated (Figures 6 and 15). In the central 
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and west regions there is little to no trend in relation to TDI (Figures 9 and 12). Finally, in 

the western and southern regions their densities decrease with an increase in NDVI or 

“greenness” on the landscape, possibly related to increasing elevation, and associated 

increased habitat quality on the upper bajadas (Figures 12 and 15). In the northeast 

region there is a peak in densities with increasing NDVI followed by a threshold 

response with a decline as greenness continues to increase (Figure 6). The central 

Mojave displays a slight upward trend in densities with increasing NDVI (Figure 9). It is 

important to note that the grey error regions on the figures represent uncertainty in the 

analyses where there were few data points to inform the trends.   

Discussion: 

These analyses give us insight into tortoise habitat use in relation to changing 

environmental and anthropogenic conditions and indicate how much variation can 

occur among regions. Each of the four generalized additive models across the range of 

the Mojave desert tortoise reveal that tortoises do show preferences in habitat 

selection. These models also reveal the ability of generalized additive density models to 

predict the potential densities of tortoises in regions not yet surveyed by producing 

prediction maps. The dark regions of each predicted density map that do not have 

tortoise localities may give insight into where we could conduct surveys for tortoises in 

the future to improve estimates of densities and population numbers (Figures 4, 7, 10, 

and 13). This is especially crucial given the low detection rates of tortoises due to their 
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cryptic behavior which skews estimates and makes conservation management decisions 

even more difficult (Nussear and Tracy 2007).  

Furthermore, understanding tortoises’ preferences for habitat selection in 

relation to anthropogenic impacts as well as vegetation, climactic, and soil variables will 

also aid in deciding where tortoise habitat protection should be prioritized across the 

landscape. For instance, in the northeast region there appears to be a decrease in 

densities with an increase in NDVI (Figure 6); however, in the central region there 

appears to be an increase in densities with an increase in NDVI (Figure 9). This 

discrepancy in density interactions on its own could be indicative of variation in 

vegetation types in each region. Further investigation could reveal that there may be 

higher densities of unfavorable invasive species in the northeast region where there are 

declines in densities with increasing NDVI. For example, invasive grasses fueled wide 

ranging wildfire in the northeast Mojave in 2005, causing further alterations to habitat 

(Van Linn et al. 2013, Drake et al. 2016). Although this is just one potential hypothesis 

for this pattern, further support could be provided for this and other ideas by evaluating 

plant data revealing specific species from on the ground field methods such as the 

BLM’s AIM protocol. 

While the relationship between tortoise densities and coarse soil fragments on 

the surface was consistent across regions there was once again variation in density 

patterns across regions in relation to depth to bedrock and sand on surface. Given the 

need for tortoises to construct burrows it is unsurprising to see an increase in tortoise 
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densities in the west Mojave with an increase in depth to bedrock. A greater depth to 

bedrock allows tortoises to burrow to their preferred burrow lengths of up to three 

meters or more (Bury 1982). Contrastingly, there appeared to be a slight decrease in 

densities with an increase in depth to bedrock in the northeast Mojave. This was only a 

marginal relationship and could potentially be explained by other interactions. Mojave 

desert tortoises tend not to occupy steep slopes or very high elevations, thus indicating 

that variation in topography could explain the discrepancy in densities between the 

west and northeast regions. 

The Mojave desert tortoise range spans over a wide range of habitats, 

elevations, and topographies. This explains why there are clear differences in the 

relationship between tortoise densities and some of our variables of interest. For 

example, all regions except the northeast revealed an increase in densities with 

increasing precipitation. Given the low prevalence of precipitation in the Mojave it is 

unsurprising the tortoises would seem to favor regions with higher precipitation. 

However, in the northeast there was a decrease in densities with increasing 

precipitation. This difference is possibly explained by the colder temperatures at higher 

elevations in the most northern region of the desert tortoise’s range. It is variations 

from region to region such as this that reveal why it is crucial to evaluate species 

densities at different scales. This is so that we do not apply “one size fits all” 

management solutions across the range of Mojave tortoises that may benefit the 
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animals in certain regions but could be potentially detrimental to the animals in other 

regions. 

 

FIGURE 4: NORTHEAST MOJAVE GENERALIZED ADDITIVE MODEL TORTOISE DENSITY MAP AND TRUE 

TORTOISE POINTS 
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FIGURE 5: TORTOISE TRUE SAMPLED DENSITY (Y-AXIS) VERSUS MODEL PREDICTED DENSITY (X-AXIS) 

 

TABLE 2: NORTHEAST MOJAVE GAM SUMMARY INCLUDING: ESTIMATED DEGREES OF FREEDOM (EDF), 
REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) AND P-VALUES. 
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FIGURE 6: NORTHEAST MOJAVE TORTOISE DENSITY INTERACTIONS WITH COVARIATES. GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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FIGURE 7: CENTRAL MOJAVE GENERALIZED ADDITIVE MODEL TORTOISE DENSITY MAP AND TRUE TORTOISE 

POINTS 

. 
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FIGURE 8: TORTOISE TRUE SAMPLED DENSITY (Y-AXIS) VERSUS MODEL PREDICTED DENSITY (X-AXIS) 

 

TABLE 3: CENTRAL MOJAVE GAM SUMMARY INCLUDING: ESTIMATED DEGREES OF FREEDOM (EDF), 
REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) AND P-VALUES. 
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FIGURE 9: CENTRAL MOJAVE TORTOISE DENSITY INTERACTIONS WITH COVARIATES. GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS
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FIGURE 10: WEST MOJAVE GENERALIZED ADDITIVE MODEL TORTOISE DENSITY MAP AND TRUE TORTOISE POINTS
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FIGURE 11: TORTOISE TRUE SAMPLED DENSITY (Y-AXIS) VERSUS MODEL PREDICTED DENSITY (X-AXIS) 

 

TABLE 4: WEST MOJAVE GAM SUMMARY INCLUDING: ESTIMATED DEGREES OF FREEDOM (EDF), 

REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) AND P-VALUES. 
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FIGURE 12: WEST MOJAVE TORTOISE DENSITY INTERACTIONS WITH COVARIATES. GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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FIGURE 13: SOUTH MOJAVE GENERALIZED ADDITIVE MODEL TORTOISE DENSITY MAP AND TRUE TORTOISE 

POINTS 
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FIGURE 14: TORTOISE TRUE SAMPLED DENSITY (Y-AXIS) VERSUS MODEL PREDICTED DENSITY (X-AXIS) 

 

TABLE 5: SOUTH MOJAVE GAM SUMMARY INCLUDING: ESTIMATED DEGREES OF FREEDOM (EDF), 
REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) AND P-VALUES. 
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FIGURE 15: SOUTH MOJAVE TORTOISE DENSITY INTERACTIONS WITH COVARIATES. GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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Chapter 2:  Using UAVs to obtain remotely sensed imagery for 

measuring habitat suitability indicators of the Mojave Desert 

Tortoise  

Due to the patchy nature of tortoises distributed throughout their habitat, I 

sought to examine influential factors on tortoise densities at multiple scales. At the 

landscape scale, remote sensing imagery derived from satellites allows for the analysis 

of explanatory environmental covariates in relation to range wide tortoise densities. At 

finer scales, detailed data have been collected that give insights into tortoise health and 

potentially smaller scale patterns in habitat preferences (Figure 16). The AIM strategy 

for vegetation monitoring was adopted by the Bureau of Land Management (BLM) to 

create a standardized monitoring protocol for assessing the conditions and trends of 

natural resources on public lands (Toevs 2011). Using UAVs, I can characterize finer scale 

data similar to AIM data on vegetation and soils that influence individual tortoises more 

directly. Some knowledge already exists regarding habitat requirements of desert 

tortoises. At low elevations, desert tortoise habitat is typically characterized by creosote 

bush (Larrea tridentata) and white bursage shrubs (Ambrosia dumosa), while at higher 

elevation ranges habitat consists of Joshua tree (Yucca brevifolial) and Mojave Yucca (Y. 

schidigera) woodlands, though at these sites tortoise densities begin to diminish as 

blackbrush (Coleogyne ramossisima) begins to dominate the landscape (Nussear and 

Tuberville 2014, Berry and Murphy 2019). Though imagery obtained with UAVs is 

typically not used to quantify densities of specific plant species, other habitat 
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characteristics such as percent perennial cover, annual growth, shrub cover, and soil 

moisture are readily derived from imagery obtained in this manner. A recent study used 

drone imagery combined with existing rangeland monitoring programs to estimate 

inter-canopy gaps, vegetation height and structure, and fractional cover. These flights 

were conducted 40m above the ground and consisted of one vertical mission and four 

missions to collect 30-degree oblique images (Gillan et al. 2020). 

One of the first steps toward bridging the gap between data collected using 

transect field methods and data collected using satellite imagery is to determine if the 

measurements of habitat characteristics obtained from UAV imagery correlate with the 

data obtained through measurements using the AIM protocol. For instance, if shrub 

cover percentage obtained through the AIM gap intercept method is equivalent to the 

shrub cover percentage derived from UAV imagery, then UAVs could be advantageous 

for obtaining fine scale data, as they can cover more of the landscape than field transect 

methods could feasibly cover. Field estimates remain important toward calibrating the 

data, but UAV acquired data may provide a more accurate means of assessing 

vegetation at broader scales. Numerous studies have attempted the extrapolation of 

field measurement data to a larger area. For instance, one study used the line-intercept 

method to measure perennial vegetation and multiplied maximum height by intercept 

distance (intercept start and end of each plant along the transect) to obtain a 2-

dimensional index of biomass in units/m2 (Webb 2003). Similar methods can be applied 
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to the BLM AIM data and derive measurements comparable with UAV imagery to 

determine suitability of such methods.  

The relationship between satellite imagery and UAV imagery is much easier to 

link as similar methods are used for collecting satellite imagery as are used when 

collecting imagery through UAVs. For instance, the normalized difference vegetation 

index (NDVI) is derived from a calculation using near-infrared and red imagery bands, 

both of which can be obtained from both satellite and UAV sensors. Differences do exist 

however between sensor bands, and the aggregation that occurs due to differential 

pixel sizes. One study used MODIS satellite enhanced vegetation index combined with 

field measurements to obtain estimates of perennial vegetation cover, however this was 

only able to produce results with a 250m resolution (Wallace et al. 2008). This 

resolution would be sufficient for range wide analyses, but to understand habitat 

characteristics within 1km by 1km plots we would benefit from finer resolution. With 

this, it is evident that all three methods (field measurements, UAV imagery, and satellite 

imagery) are equally important considerations in our analysis of the influences of 

environmental covariates on tortoise distributions.  

Data obtained through on the ground field methods have the potential to 

provide a greater understanding of tortoise population health indicators (such as 

densities across the landscape) in relation to environmental covariates. This is because 

field measurements reveal detailed data on plant species biomass and composition as 

well as soil structure and stability. If data obtained through field methods can be related 
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to UAV derived measurements, then there is potential to assess environmental variables 

in relation to tortoise densities and behaviors beyond the small scales that are possible 

using transect based methods.  

Research Questions: 

➢ Can remote sensing imagery obtained with UAVs supplement on the ground field 

data collection methods, and bridge the gap between fine scale data and 

satellite-based imagery? 

Methods:  

UAV flights were conducted where AIM plots occur in order to calibrate field-

measurements with image-derived indicators. There are 10 plots where I conducted 

UAV flight missions, 6 of these plots are 800 meters by 800 meters in size while 4 plots 

are 400 meters by 400 meters in size (Table 6). Each flight covered the same region of 

the AIM surveys as well as areas where tortoises have been monitored. Flights were 

conducted at the maximum legal height of approximately 400 feet. I used a DJI Matrice 

M200 and the Android application UgCS for DJI to create a connection between our 

drone and tablet to create and monitor flight missions. A Micasense Red Edge MX 

multispectral camera was used for capturing imagery which was then compiled and 

processed using Pix4D on a Windows Server based PC. Approximately 8,000 to 15,000 

images were collected for each individual plot for each month. 
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TABLE 6: STUDY PLOTS WHERE UAV IMAGERY WAS OBTAINED ALONGSIDE BLM AIM DATA 

COLLECTION. 

Study Plots Size 

McCullough Pass 800x800 meters 

Sheep Mountain 800x800 meters 

Silver State 800x800 meters 

Coyote Springs North 800x800 meters 

Coyote Springs Center 800x800 meters 

Coyote Springs South 800x800 meters 

Stump Springs Zone 1 400x400 meters 

Stump Springs Zone 2 400x400 meters 

Stump Springs Zone 3 400x400 meters 

Stump Springs Zone 4 400x400 meters 

 

The AIM protocol consists of 4 AIM points per each of six tortoise plots: Coyote 

Springs (3 plots), McCullough Pass, Sheep Mountain, and Silver State, and 1 AIM point 

for each of four tortoise plots at Stump Springs. At each randomly generated AIM point 

location three 25 meter long transects are placed at 0 °, 120 °, and 240 °. Along these 

transects field crews conduct gap intercept measurements for shrub cover, line point 

intercepts (LPI) for quantifying vegetation and soil cover, species Inventory, and forb 

diversity. Additionally, crews assess soil stability and infiltration through digging a soil pit 

and capture site photographs. 
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FIGURE 16: FIGURE 16: 1 KM2 AIM LOCATIONS FOR COYOTE SPRING NORTH, CENTRAL, AND SOUTH. 

To compare UAV imagery with field derived AIM data I focused on comparing the 

ability of UAV imagery to capture shrub cover, which could have implications for 

suitability of tortoise habitat, as this represents cover for thermal protection as well as 

from predators. Analyses at the individual plant species level were not the focus of this 

project but are possible with higher resolution imagery and additional field validated 

training data. Shrub cover was estimated using a supervised classification method. To 
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conduct this classification, I created approximately 4000 to 5000 training polygons for 

each plot representing shrub and soil classes in the program ArcGIS pro. Once I created 

training classes, I used an RGB (red, green, blue), an NDVI image, and a plant height 

layer (calculated by subtracting the digital surface model from the digital terrain model 

calculated in Pix4d) to run a random forest classification using the RandomForest 

package (4.7-1.1) in R. This was then projected onto the full study area to produce a 

surface representing shrub and soil.  

The AIM protocol measures gaps between shrubs along 25-meter transects. To 

obtain shrub cover for our comparison with the UAV derived data, I took the inverse of 

these gap values to convert gaps into shrub intersections and compared this to shrub 

cover from the random forest classifications. To obtain average shrub cover for AIM 

transects I took the total length of shrubs along a single transect in centimeters divided 

by 2500cm (the total length of the transect). Due to both human and GPS error, the 

location of the 25-meter transects that are used for each return visit to the same AIM 

plot for several months out of the year are not always in the exact same location. To 

calculate the potential for error in comparing the AIM and UAV derived shrub cover 

values I created a 5-meter buffer (representing the error possible using handheld 

consumer grade GPSs) around the start point of each transect and digitized 100 random 

points in this circle from which I created 100 random transect lines with the same 

direction and length as the AIM transects. This was used to obtain the frequency of 

potential shrub cover values that could be measured on the AIM transects for 
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comparison with the AIM data (Figures 17, 18, 19, and 20). For this part of the analysis, I 

set any values of the shrub cover raster layer representing soil to null. I then converted 

the raster into polygons to depict only shrubs across the plot. Finally, I used the 

intersect tool in ArcGIS pro to intersect the one hundred lines for each transect with the 

shrub cover polygon to obtain the estimates of shrub cover values in centimeters for 

each of the 100 simulated transects (Figure 21).  

Results:  

The analysis evaluating shrub cover captured with UAV imagery against shrub 

cover obtained from AIM data reveal that, although AIM data is capturing a portion of 

the picture, there is a great deal of heterogeneity across the landscape that is being 

missed when collecting data in this manner. Additionally, it is clear that there is often an 

over- or under-estimation of shrub cover when only taking into consideration shrub 

cover captured along several 25 meter transects (Figures 22, 24, and 26). In March of 

2022 at McCullough Pass the data reveal that the AIM shrub cover was overestimated 

along all three transects relative to the shrub cover captured from the UAV (Figure 21). 

At Sheep Mountain in March shrub cover was overestimated by the AIM data along 2 of 

9 transects while the rest revealed underestimates by the AIM data (Figure 22). On this 

plot transects 3, 7, 8, and 9 reveal a significant under estimation of shrub cover in 

relation to what was captured using the UAV. Transect 3 for the AIM data had a mean 

shrub cover of just 0.0188cm across the single 2500 centimeter transect while the UAV 

mean estimate from 100 transects (each 2500 centimeters in length) was 0.2252cm. At 
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Silver State in March of 2022 there was an even distribution of over and underestimates 

by the AIM data relative to the UAV data, with transects 7, 10, and 12 having nearly the 

exact same mean estimates between AIM and UAV data (Figure 23). At Coyote Springs 

north 4 of 6 transects depicted significant underestimations of shrub cover by the AIM 

data relative to the UAV data (Figure 24). Similarly, at Stump Springs in March of 2022 

most of the AIM data (7 out of 9 transects) appeared to underestimate shrub cover 

(Figure 25). Similar to the March results, in April of 2022 the AIM transect data at 

McCullough revealed mostly overestimates of shrub cover (9 of 12 transects) relative to 

the UAV shrub cover (Figure 26). However, for the rest of the plots in April of 2022 the 

AIM data most often underestimates shrub cover relative to the UAV data (Figures 27, 

28, 29, and 30). In May of 2022 exactly half of the transects at McCullough Pass display 

an underestimation of shrub cover by the AIM data relative to the UAV data (Figure 31). 

Moreover, 30 of the 51 transects across all plots in May reveal an underestimation of 

shrub cover by the AIM transect data, with some of the AIM values showing significant 

deviations from the UAV shrub cover estimates (Figures 31, 32, 33, 34, and 35). For 

instance, at Silver State in May of 2022 transect 3 had a mean shrub cover of 0.0944cm 

from the AIM data for a single 2500cm long transect while the UAV estimated mean 

from 100 transects was 0.3239cm (Figure 33). These trends continued in September of 

2022 with the AIM transect data having underestimated shrub cover along 44 of 51 

transects across all plots relative to the UAV shrub cover data (Figures 36, 37, 38, 39, 

and 40). T-tests evaluating mean UAV shrub cover values against mean AIM shrub cover 

values can be found in Index I. 
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Discussion: 

Field methods such as the AIM protocol are effective for collecting detailed plant 

data, however they come with limitations as demonstrated by the analyses here. To be 

able to rely on the extrapolation of AIM data to larger areas it is crucial that methods 

are consistent and that measurements are accurate. The shrub cover measurements 

obtained through UAV imagery reveal that there is great variability of shrub cover 

throughout Mojave desert tortoise habitat even amongst plots that are just several 

kilometers apart. Although the mean shrub cover values obtained from the AIM 

protocol often falls within these boundaries there is still a great deal of heterogeneity 

not being captured by this method. Additionally, the shrub cover measurements 

obtained through the AIM protocol most often underestimate the shrub cover relative 

to the measurements obtained with the UAV. This discrepancy in shrub cover 

measurements is likely due to the difficulty of placing tape measures in straight lines 

across shrubs and rough terrain. Though human error is always a factor in obtaining 

data through field methods this issue can be mitigated by using more sturdy 

measurement tools such as poles rather than the tape measures that are able to bend 

and move so easily. The data obtained using UAVs demonstrates an effective method of 

obtaining shrub cover across larger regions than could be obtained using the AIM 

protocol. Using UAVs to obtain habitat imagery at these scales can aid in evaluating how 

tortoise densities vary with differing shrub cover values as well as other habitat 

characteristics. 
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FIGURE 17: MCCULLOUGH PASS AIM 

TRANSECTS (RED) MARCH 2022 

 

 

FIGURE 18: SILVER STATE AIM TRANSECTS 

(RED) MAY 2022 

 

FIGURE 19: SHEEP MOUNTAIN AIM 

TRANSECTS (RED) APRIL 2022 

 

 

FIGURE 20: SHEEP MOUNTAIN AIM 

TRANSECTS (RED) SEPTEMBER 2022
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FIGURE 21: FIGURE 18 MCCULLOUGH PASS MARCH UAV SHRUB COVER % VERSUS AIM SHRUB COVER 

% (RED LINE) 

 

FIGURE 22: SHEEP MOUNTAIN MARCH UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 23: SILVER STATE MARCH UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 24: COYOTE SPRINGS MARCH UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 25: STUMP SPRINGS MARCH UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 26: MCCULLOUGH PASS APRIL UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 27: SHEEP MOUNTAIN APRIL UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 28: SILVER STATE APRIL UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 29: COYOTE SPRINGS APRIL UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 30: STUMP SPRINGS APRIL UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 31: MCCULLOUGH PASS MAY UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 32: SHEEP MOUNTAIN MAY UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 33: SILVER STATE MAY UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 34: COYOTE SPRINGS MAY UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 35: STUMP SPRINGS MAY UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 36: MCCULLOUGH PASS SEPTEMBER UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED 

LINE) 
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FIGURE 37: SHEEP MOUNTAIN SEPTEMBER UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED 

LINE) 
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FIGURE 38: SILVER STATE SEPTEMBER UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED LINE) 
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FIGURE 39: COYOTE SPRINGS SEPTEMBER UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED 

LINE) 
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FIGURE 40: STUMP SPRINGS SEPTEMBER UAV SHRUB COVER % VERSUS AIM SHRUB COVER % (RED 

LINE) 
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Chapter 3:  Localized Mojave desert tortoise density models 

constructed using UAV imagery and remotely sensed satellite 

imagery 

Given the variation in densities and associated habitat selection of tortoises at 

different spatial scales, modeling influences on tortoise densities at local scales will help 

us to understand individual level habitat selection that results in local patterns of 

occupancy. Though AIM data are available for analyses on this spatial scale, given its 

inconsistency and inability to capture the heterogeneity of the landscape (even at these 

small spatial scales - see Chapter 2) I created generalized additive models using UAV 

remotely sensed imagery to evaluate densities in relation to environmental and 

landscape characteristics. These models may be improved upon further by combining 

both UAV and satellite data to increase the predictive power of models and the ability to 

estimate densities in not yet surveyed regions. Though several studies exist comparing 

the applicability of UAV imagery and satellite imagery in habitat modeling, much fewer 

data are available regarding the modeling power of hybrid models using both sets of 

data.  

Previous studies on Mojave desert tortoises have revealed variation in the 

species densities in relation to multiple abiotic and biotic variables such as topography 

and temperature (Zylstra 2023). Accounting for these abiotic and biotic factors in 

relation to tortoise densities assists in better understanding why certain regions 
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occupied by tortoises display greater declines in population numbers than other regions 

of seemingly similar habitat suitability. Moreover, habitat selection by Mojave desert 

tortoises has been a key focus of their conservation for many decades and despite their 

cryptic behavior much data are available regarding these preferences. Germano et al. 

(1994) described habitat use and densities of Mojave desert tortoises throughout the 

range of the Mojave desert. These authors addressed the variation in habitat use of 

tortoises across their range from bajadas and valley bottoms in the north to rocky 

hillsides in the south. Despite the large pool of literature, there are still few data 

available regarding the localized habitat preferences of tortoises on scales such as that 

of the 1 kilometer by 1 kilometer mark-recapture survey plots measured in the Ivanpah 

Valley area of the Mojave (Mitchel et al. 2021).  

Research Questions: 

➢ Can remote sensing imagery obtained using UAVs improve upon models 

evaluating local tortoise densities relative to significant variables of interest? 

➢ What habitat indicators derived from UAV remote sensing imagery have the 

greatest influence/are better able to predict patchiness of tortoise distributions 

at local scales? 

Methods:  

To conduct this analysis of densities at the local scale, I obtained mark-recapture 

data from 2015, 2018, and 2021 for three of the plots that were imaged in Chapter 2: 

McCullough Pass, Sheep Mountain, and Silver State. These plots are south of Las Vegas 
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and east of Primm, NV (Figure 2). To avoid duplicating individuals with multiple locations 

I kept point data from the most recent time an individual tortoise was seen. For 

example, if a tortoise was seen every three years, then I only kept the GPS point location 

from 2021. Once each set of points were compiled I created a smoothed density raster 

for each plot using the density.ppp() (version 3.0-5, spatstat.explore) function in 

Rstudio. Next, I generated one thousand random sample points for each image and 

sampled the density raster to obtain a gradient of density values as described in Chapter 

1.  

UAV flights were conducted at the maximum legal height of approximately 400 

feet using a DJI Matrice M200. Creation and execution of flight plans were conducted 

using Android application UgCS for DJI and a laptop computer (also running UgCS on 

Apple OSX). I used a Micasense red edge MX multispectral camera for capturing images 

which were compiled and processed into orthophoto mosaics, and associated indices 

(shrub cover, plant height, elevation, and normalized difference vegetation index) using 

Pix4D on a Windows Server based PC. For each plot approximately 11,000 to 14,000 

images were collected for each monthly flight.  

Similar to the generalized additive models of Chapter 1, for this analysis I wanted 

to create models for these three plots where have both UAV and Satellite data area 

available. From the Pix4D computation I obtained elevation from the digital terrain 

model, normalized difference vegetation index (NDVI) was calculated using the red and 

near-infrared spectral bands (NDVI = (NIR-RED)/NIR+RED)), and plant heights were 
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calculated by subtracting the digital terrain model from the digital surface model. The 

fourth variable of interest was shrub cover which was generated using a supervised 

classification in order to be as close to the ground truth as possible (See Chapter 2). I 

aggregated each variable derived from the 7cm resolution UAV imagery up to 5 by 6-

meter cells for input into generalized additive models alongside mark-recapture tortoise 

point data that were summarized as the density of tortoises in a 900 m2 area. This 5 by 6 

meter grid came from a kernel density raster of mark-recapture points for each 

individual plot that was created by using mark-recapture points and the density.ppp() 

function from the spatstat.explore (version 3.0-5) package in Rstudio. Once I had this 

density raster for each plot, I created a gridded polygon by inputting the raster into the 

rasterToPolygons() function from the raster package (version 3.6-11) in Rstudio. For 

elevation I averaged the 7cm cells up to 5 by 6-meter cells by extracting the smaller cells 

into each larger grid cell and specifying the function as “mean”. Since NDVI represents 

the level of greenness across the landscape I kept values representing plants, so for each 

image I identified a threshold value above which everything was representative of 

vegetation. Following this I averaged the NDVI cells up to 5 by 6-meter cells just the 

same as elevation using the density grid. The plant height calculation created some 

negative values, and I thresholded these layers to only keep positive values, after which 

I conducted the same aggregation up to 5 by 6-meter cells as elevation and NDVI. 

Finally, I obtained shrub cover per 5 by 6-meter cell by taking the number of 7cm size 

cells representing shrubs and dividing by the total number of 7cm cells within the 5 by 

6-meter grid in order to obtain a shrub cover % per 5 by 6-meter grid cell. For the 
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satellite based generalized additive models I used the same variables used for the range 

wide models in Chapter 1 which were: terrestrial disturbance index, normalized 

difference vegetation index, depth to bedrock, sand on surface, coarse fragments on 

surface, winter precipitation (30 year average), and maximum temperature (30 year 

average) (Table 7). To compare the satellite GAM models with the UAV GAM models the 

imagery needed to have the exact same extent across all models. To ensure this, I 

averaged each set of satellite imagery across the same 5 by 6-meter grids that I used to 

aggregate the UAV imagery, but I did not smooth the large resolution of the imagery in 

order to maintain the coarse resolution for accurate comparison with the high-

resolution UAV imagery. However, for the hybrid models I did smooth the satellite data 

using the focal() function in R with method set to lanczos and weights set to 31.  

TABLE 7: ENVIRONMENTAL AND DISTURBANCE DATA USED TO MODEL MOJAVE DESERT TORTOISE 

DENSITIES 

 

Results:  

The best performing model based on AIC values for McCullough was the hybrid 

model using both satellite and UAV data while the best model for both Sheep Mountain 

and Silver State was the satellite model (Tables 10, 11, and 12). Similar to our landscape 
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level analyses, these localized models reveal that individual tortoises do show 

preferences in habitat selection and these preferences vary or stay consistent from 

region to region as we saw in Chapter 1. All models where elevation is included as a 

covariate reveal that tortoise densities decrease with an increase in elevation, as to be 

expected based on tortoises known life history and behavior (Figures 46, 49, 55, 58, 64, 

and 67). The relationship between tortoise densities and NDVI varied between models 

and amongst plots as well. At McCullough Pass and Silver State both the satellite and 

hybrid models indicate an increase in densities with an increase in NDVI (Figures 43, 49, 

61, and 67). All three models for Sheep Mountain revealed different relationships 

between densities and NDVI with the satellite model showing a decrease in densities 

with increasing NDVI, the UAV model showing an increase in densities with increasing 

NDVI, and the hybrid model having no clear relationship at all (Figures 52, 55 and 58). 

Only the UAV models for Sheep Mountain and Silver State displayed a trend relative to 

shrub cover with tortoise densities decreasing with an increase in shrub cover at these 

locations (Figures 55 and 64). Where depth to bedrock was included in the models there 

is a general increase in densities with increasing depth (Figures 43, 49, and 61). Among 

satellite models for all three plots tortoise densities showed little to no relationship with 

winter precipitation (Figures 43, 52, and 61). On the other hand, tortoise densities for 

each hybrid model showed a general increase with increasing winter precipitation with a 

falloff in densities at McCullough likely due to elevation (Figures 49, 58, and 67).  
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Discussion: 

 The AIC results for the McCullough models reveal the potential for improving 

models evaluating tortoise and other species densities relative to significant variables by 

including both satellite derived and UAV data. Despite the satellite models having a 

better AIC than the UAV models, the UAV models appear better from a landscape 

perspective as the predicted density maps from these models have a better resolution 

and more detail at these scales (Figures 41, 44, 50, 53, 59, and 62). The discrepancies in 

even the same variables from model to model on a single plot reveal the bias that can 

arise by only evaluating densities with a single set of data and/or imagery with differing 

resolutions. Moreover, from the UAV imagery I derived four variables of interest: 

elevation, NDVI, shrub cover, and plant heights. With the addition of equipment such as 

thermal cameras we can improve upon UAV models by including more variables at 

higher resolutions. These models present an introduction to our ability to improve our 

understanding of Mojave desert tortoise densities and distributions by the addition of 

UAV derived data.  
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FIGURE 41: MCCULLOUGH PASS SATELLITE GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 42: MCCULLOUGH PASS SATELLITE GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY  

 

TABLE 8: MCCULLOUGH PASS SATELLITE GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: 

ESTIMATED DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-
STATISTIC (F) AND P-VALUES. 
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FIGURE 43: MCCULLOUGH PASS SATELLITE MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES. GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 
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FIGURE 44: MCCULLOUGH PASS UAV GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 45: MCCULLOUGH PASS UAV GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY  

 

TABLE 9: MCCULLOUGH PASS UAV GENERALIZED ADDITIVE MODEL SUMMARY 
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FIGURE 46: MCCULLOUGH PASS UAV MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES. GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 
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FIGURE 47: MCCULLOUGH PASS HYBRID GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 48: MCCULLOUGH PASS HYBRID GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY  

 

TABLE 10: MCCULLOUGH PASS HYBRID GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 49: MCCULLOUGH PASS HYBRID MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES. GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 

 

 

 

TABLE 11: MCCULLOUGH PASS ALL DENSITY MODELS AIC VALUES. 
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FIGURE 50: SHEEP MOUNTAIN SATELLITE GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 51: SHEEP MOUNTAIN SATELLITE GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

 

TABLE 12: SHEEP MOUNTAIN SATELLITE GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: 

ESTIMATED DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-
STATISTIC (F) AND P-VALUES. 
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FIGURE 52: SHEEP MOUNTAIN SATELLITE MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES . GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 
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FIGURE 53: SHEEP MOUNTAIN UAV GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 54: SHEEP MOUNTAIN UAV GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

  

 

TABLE 13: SHEEP MOUNTAIN UAV GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 55: SHEEP MOUNTAIN UAV MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES. GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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FIGURE 56: SHEEP MOUNTAIN HYBRID GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 57: SHEEP MOUNTAIN HYBRID GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

 

 

TABLE 14: SHEEP MOUNTAIN HYBRID GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 58: SHEEP MOUNTAIN HYBRID MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES . GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 

 

 

 

TABLE 15: SHEEP MOUNTAIN ALL DENSITY MODELS AIC VALUES. 
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FIGURE 59: SILVER STATE SATELLITE GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 60: SILVER STATE SATELLITE GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

 

 

TABLE 16: SILVER STATE SATELLITE GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 61: SILVER STATE SATELLITE MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES . GRAY 

REGIONS REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS . 
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FIGURE 62: SILVER STATE UAV GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 63 SILVER STATE UAV GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

 

 

TABLE 17: SILVER STATE UAV GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 64: SILVER STATE UAV MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES. GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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FIGURE 65: SILVER STATE HYBRID GENERALIZED ADDITIVE MODEL PREDICTED DENSITY MAP. 
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FIGURE 66: SILVER STATE HYBRID GAM PREDICTED DENSITY VERSUS TRUE SAMPLED DENSITY 

 

 

TABLE 18: SILVER STATE HYBRID GENERALIZED ADDITIVE MODEL SUMMARY INCLUDING: ESTIMATED 

DEGREES OF FREEDOM (EDF), REFERENCE NUMBER OF DEGREES OF FREEDOM (REF.DF), F-STATISTIC (F) 

AND P-VALUES. 
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FIGURE 67: SILVER STATE HYBRID MODEL COVARIATE EFFECTS WITH TORTOISE DENSITIES . GRAY REGIONS 

REPRESENT UNCERTAINTY DUE TO LACK OF DATA POINTS. 
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TABLE 19: SILVER STATE ALL DENSITY MODELS AIC VALUES. 

 

 

Discussion 
 

The Mojave Desert tortoise, like other reptiles and amphibians across many 

different landscapes, is threatened by numerous circumstances including disturbance, 

drought, predation, and increasing urbanization just to list a few. Characterizing 

densities of the desert tortoise based on habitat characteristics is crucial to informing 

future management and conservation decisions. When the Mojave desert tortoise was 

listed as threatened on the endangered species list in 1990 one of the criteria for 

determining whether this protection could be removed was that tortoises must be well 

distributed across the range (Averill-Murray et al. 2012). Thus, the need to improve 

models evaluating tortoise densities throughout suitable habitat so that we may better 

understand why tortoises are dense in certain areas but sparse in others. Given the 

inevitability of a rapidly changing ecosystem, understanding spatial variation of species 

in relation to key environmental variables will prove valuable in managing the species 

habitat and distributions. The variables used in the models presented here were 

informed by previous studies on Mojave desert tortoises such as the species distribution 

model constructed by Nussear and others (2009) revealing regions of habitat suitability 
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across the range of the desert tortoise.  The models I’ve constructed take these analyses 

a step further by not only evaluating what environmental variables have a significant 

influence on tortoise distributions but also how tortoises respond to these variables. 

Various methods exist for analyzing species densities, and the methods used in this 

project are suitable for beginning to understand the processes influencing tortoise 

distributions. The models presented here have the potential to be applied to data 

collected at multiple scales and with varying collection methods as well as to historical 

data. With the advancement of remote sensing imagery collected with UAVs, density 

models such as this have the potential to be significantly improved upon, as they are 

more reflective of the local landscape experienced by tortoises. Satellite imagery proves 

useful for range wide analyses but may not be as interpretable at finer scales. For 

example, NDVI derived from satellite imagery returns a coarse image that is not 

precisely reflective of the vegetation present at local scales and in many instances this 

NDVI satellite covariate revealed differing responses from tortoise densities compared 

to the UAV derived shrub cover covariate. Field based methods provide extremely fine 

scale and detailed data; however, these methods cannot capture the heterogeneity of 

the landscape, nor can they be applied across large regions due to limitations of time 

and resources. With data collected using UAVs we have the potential to analyze species 

densities at finer scales in relation to significant variables and begin to bridge the gap 

between remotely sensed satellite imagery and data collected through field-based 

methods. Though these methods hold a great deal of potential they are also fairly knew 

and much more research must be done before the data collected through the use of 
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UAVs can be solely relied upon for input into species models. For instance, obtaining 

specific plant species compositions across the landscape would require longer flight 

times due to the need to reduce the height and speed at which the UAV is flown and 

even this data is not yet capable of being as precise as on the ground field methods. 

Other studies have already begun to reveal the potential of UAV remotely sensed 

imagery in evaluating species’ habitat and densities. Fritz and others (2018) found that 

predictor variables derived from fine scale imagery obtained using UAVs played a 

significant role in describing the variance of a bird community in eastern Qinghai-

Tibetan Plateau. A combination of data collected at various scales for input into species 

density analyses will provide conservation managers with the greatest possible 

understanding of the processes influencing the patchy distribution of desert tortoises 

throughout the Mojave Desert from fine to large spatial scales.  
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Index I 
TABLE 20: MCCULLOUGH PASS ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 21: SHEEP MOUNTAIN ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 22: SILVER STATE ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB COVER OF 

100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 23: COYOTE SPRINGS ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 24: STUMP SPRINGS ZONE 1 ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 25: STUMP SPRINGS ZONE 2 ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 26: STUMP SPRINGS ZONE 4 ONE SAMPLE T-TEST MARCH 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 27: MCCULLOUGH PASS ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 28: SHEEP MOUNTAIN ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 29: SILVER STATE ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB COVER OF 

100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 30: COYOTE SPRINGS ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 31: STUMP SPRINGS ZONE 1 ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 32: STUMP SPRINGS ZONE 2 ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 33: STUMP SPRINGS ZONE 3 ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 34: STUMP SPRINGS ZONE 4 ONE SAMPLE T-TEST APRIL 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 35: MCCULLOUGH PASS ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 36: SHEEP MOUNTAIN ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 37: SILVER STATE ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB COVER OF 

100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 38: COYOTE SPRINGS ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB COVER OF 

100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 39: STUMP SPRINGS ZONE 1 ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 40: STUMP SPRINGS ZONE 2 ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 41: STUMP SPRINGS ZONE 3 ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 42: STUMP SPRINGS ZONE 4 ONE SAMPLE T-TEST MAY 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 43: MCCULLOUGH PASS ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 44: SHEEP MOUNTAIN ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 45: SILVER STATE ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN SHRUB COVER 

OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 46: COYOTE SPRINGS ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN SHRUB 

COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 

TABLE 47: STUMP SPRINGS ZONE 1 ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN 

SHRUB COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

TABLE 48: STUMP SPRINGS ZONE 2 ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN 

SHRUB COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 
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TABLE 49: STUMP SPRINGS ZONE 3 ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN 

SHRUB COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

TABLE 50: STUMP SPRINGS ZONE 4 ONE SAMPLE T-TEST SEPTEMBER 2022 EVALUATING UAV MEAN 

SHRUB COVER OF 100 TRANSECTS VERSUS AIM MEAN SHRUB COVER ACROSS A SINGLE TRANSECT 

 


