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Abstract

YANG, JINGXUAN. Variable Selection in Linear Models with Grouped Vari-

ables. (Under the direction of Dr. Mihye Ahn and Dr. Yinghan Chen)

Linear mixed models have been widely used for repeated measurements, longitudinal

studies, or multilevel data. The selection of random effects in linear mixed models has

received much attention recently in the literature. Random effects consider depen-

dent structure between repeatedly measured data. Due to computational challenges,

the selection of grouped random effects has yet to be studied. Grouped random ef-

fects, including genetics data or categorical variables, are commonly seen in practice.

We present an efficient method for selecting random effects at group levels in lin-

ear mixed models. Specifically, the proposed method employs a restricted maximum

likelihood function to estimate the covariance matrix of random effects. To achieve

sparse estimation and grouped random effects selection, we then introduce a new

shrinkage penalty term.

In addition, we extend the idea of grouped variable selection onto the latent regres-

sion model. By incorporating regression onto latent traits, latent regression models

provide a way to uncover hidden influential factors from the data and make more

accurate predictions. Specifically, we develop a variable selection approach for latent

regression item response theory models by introducing the group LASSO penalty

into the marginal log-likelihood function of observed test responses. We derive the

explicit forms of updating steps for model parameters in a modified Newton-Raphson

method. Our approach selects significant covariates and estimates model parameters

simultaneously.
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For both variable selection frameworks, we perform simulation studies to evaluate

the variable selection performance of the proposed methods. We then compare them

to existing or naive selection methods. Additionally, we apply the proposed methods

on real data sets.
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Chapter 1

Introduction

1.1 Background

In the field of Statistics, the topic of variable selection has received considerable in-

terest in recent decades. Variable selection is a procedure that aims to find a set of

the most useful variables in predicting a response variable. Many statisticians have

developed efficient and accurate methodologies to select important variables to in-

clude in the model. Choosing relevant variables to add to the model helps in reducing

the variance of parameter estimates. Additionally, having irrelevant variables in the

model can cause the problem of overfitting, which means that the model fits the noise

in the data. Overfitting usually results in poor predictive performance of the model.

The procedure of selecting important variables can remove noise variables and al-

leviate the problem of overfitting, effectively improving the final model’s predictive

ability. Moreover, including many unnecessary variables can make interpreting the

model much more challenging. By including only the most informative variables,

statisticians can develop more parsimonious models that are easier to interpret. In

practice, a simpler model can provide more meaningful insights into decision-making.

Furthermore, modeling with the most important variables can reduce both time and
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money costs and lead to more efficient modeling procedures.

A linear model, also called a linear regression model, is a statistical model that

allows statisticians to study the linear relationship between a response variable and a

set of independent variables or predictors. In linear regression problems, the primary

goal is to estimate the regression coefficients in a manner that accurately characterizes

the true relationship between the response variable and predictors. The standard

estimation technique is the ordinary least squares (OLS) estimation, which finds

the solution of regression coefficients by minimizing the sum of the squared errors.

However, statisticians find OLS estimates to be unsatisfactory because they usually

have a low bias but large variance, which can result in poor prediction accuracy. In

addition, since the OLS method keeps all predictors in the final model, it does not

give an easily interpretable model when there are many predictors. Hence, variable

selection is considerably necessary in linear regression problems.

A wide range of variable selection methods in the linear model have been investi-

gated in the literature. Best subset selection is one of the classical variable selection

approaches. If there are p variables, the best subset selection considers all 2p possible

combinations of independent variables and selects the best subset of variables meeting

some selection criteria. For example, if p = 20, the best subset selection selects the

best subset of variables among 220 = 1, 048, 576 different combinations of candidate

models. Thus, it can be computationally intense to utilize the best subset selection,

especially when the number of variables p is very large. Other classical methods,

including backward elimination, forward selection, and stepwise regression, can be

employed to select variables with relatively low computational costs. Those methods

choose variables sequentially without considering all possible combinations of predic-

tors and stop picking when some specific selection criteria are met. Many well-defined

selection criteria have been widely used in literature, including the Akaike informa-
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tion criterion (AIC) (Akaike, 1973), Bayesian information criterion (BIC) (Schwarz,

1978) and Mallows’ Cp (Mallows, 1973). In Section 1.2.1, we will provide a detailed

explanation of several selection criteria. However, those classical variable selection

methods may produce unstable selection results. Consequently, a slight change in

data can lead to significant variability in the resulting models (Breiman, 1995).

1.1.1 Variable Selection in Linear Models

In recent years, there has been increasing literature on penalized likelihood methods

in variable selection methods research. The general idea of the penalized methods is

to estimate the regression coefficients by minimizing an objective function that con-

tains two parts, a loss function and a penalty term. There are various choices for both

loss functions and penalty terms. Several penalized likelihood methods have been

developed in the recent literature, including non-negative garrote (Breiman, 1995),

LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), Elastic net (Zou & Hastie, 2005),

Adaptive LASSO (Zou, 2006; Zhang & Lu, 2007) and group LASSO (Yuan & Lin,

2006). Differently from other variable selection methods, group LASSO specifically

focuses on selecting variables at the group level instead of the individual level in

linear models. In Section 1.3, we will review these methods that have been designed

to select and estimate regression coefficients in linear regression models.

1.1.2 Variable Selection in Linear Mixed Models

In linear models, the underlying assumption is that each observation is independent

of each other. However, the assumption of independence might not hold true in all

cases in real data. In order to account for the dependence structure in the data, Laird

& Ware (1982) proposed a linear mixed model considering random effects in addition

to fixed effects. This model is frequently employed for non-independent data, such
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as longitudinal, spatial, panel, or multi-level data.

Variable selection on fixed and random effects are popular research topics in the

literature. Researchers have developed various selection methods for selecting impor-

tant fixed effects, random effects, or both in the framework of linear mixed models.

Important fixed effects mean that the corresponding coefficients of those fixed-effect

covariates are non-zero, and important random effects are the random effects whose

coefficients have non-zero variance. Important random effects significantly contribute

to the variability in the data. We will describe the rule of choosing random effects

in detail in Section 1.4.

Selection of not only fixed effects but also random effects is crucial. In fact, the

selection of random effects is closely related to the estimation of a variance-covariance

matrix of random effects’ coefficients. If significant random effects are omitted from

the model, the covariance matrix would be underfitted and then could negatively

affect the selection and estimation of fixed effects. Conversely, if insignificant random

effects are wrongly added to the model, the covariance matrix may become nearly

singular, leading to numerical instability for model fitting. Therefore, making a good

selection of random effects can enhance the selection of fixed effects, consequently

improving the prediction accuracy.

It has been a challenging problem to select important random effects in the linear

mixed models due to the nature of their variance-covariance matrix. Many works of

literature, including Bondell et al. (2010), Ahn et al. (2012), Pan & Shang (2018), Li

et al. (2018), have studied this problem and given efficient ways to select significant

random and fixed effects. We will present these existing methods in detail in Section

1.4.

We are motivated by the idea of group LASSO in the linear models and intend

to select grouped random effects in the linear mixed models because no existing
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methods have considered this case. We propose a novel method for the linear mixed

models to select random effects at group levels. In addition, we extend the idea of

grouped variable selection onto the latent regression models. Specifically, we develop

a variable selection approach for latent regression item response theory models by

introducing the group LASSO penalty into the marginal log-likelihood function of

observed test responses.

1.1.3 Outlines of Dissertation

In Chapter 1, we introduce some background information and perform a literature

review on existing variable selection methods in both linear models and linear mixed

models. Chapter 2 showcases our first proposed method, which pertains to the ran-

dom effects selection for grouped variables. We present our methodology, compu-

tational algorithm, and the process of tuning parameter selection in detail, from

Sections 2.1 through 2.3. We then perform simulation studies and real data analysis,

and draw comparisons with alternative methods in Section 2.4. Additionally, we fol-

low a similar outline to describe our second variable selection methodology in latent

variable models in Chapter 3. Furthermore, we include the extended comments on

our current projects and possible future work in Chapter 4.

1.2 Classical Variable Selection Methods in Linear

Models

Assume that the number of observations is n and the number of independent variables

is p. In a matrix form, the linear regression model has the following model equation:

y = Xβ + ϵ,
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where y = (y1, y2, . . . , yn)
⊤ is the n× 1 vector of response variables, X is the n× p

design matrix, β = (β1, β2, . . . , βp)
⊤ is the p× 1 vector of regression coefficients, and

ϵ = (ϵ1, ϵ2, . . . , ϵn)
⊤ is the n× 1 vector of random errors that is assumed to follow a

multivariate normal distribution with mean 0 and variance-covariance matrix σ2In.

Because of the normality assumption of random errors ϵ, the response vector y is

assumed to have a multivariate normal distribution with mean Xβ and variance-

covariance matrix σ2In.

The common approach to solving the linear regression problem is the ordinary

least squares (OLS). The OLS estimator has an explicit form as follows:

β̂OLS = (X⊤X)−1X⊤y (1.1)

Unfortunately, the OLS estimates include all the ordinary variables in the model. It

means that it is not able to perform variable selection. Therefore, to obtain a more

interpretable model, some variable selection techniques are necessary to be employed

if there are many independent variables.

In the literature, many selection criteria and variable selection methods have been

proposed to identify the most informative set of predictors for inclusion in the model,

with the goal of ultimately obtaining the best model. In the following subsection, we

will review several selection criteria that have been commonly used in practice.

1.2.1 Selection Criteria

1.2.1.1 Mean Squared Error (MSE)

The mean square error (MSE) is defined as

MSE =

∑n
i=1(yi − ŷi)

2

n− p
=

RSS

n− p
,
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where ŷi is the fitted value of yi, n is the number of observations, and p is the

number of predictors in the fitted model. RSS represents the residual sum of squares,

measuring the discrepancy between the estimated model and the actual data. The

model with the smallest MSE is preferred among all candidate models. In the case

of small data sets, the effectiveness of MSE may be limited.

1.2.1.2 Coefficient of Determination: R2

The coefficient of determination, R2, is defined as

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

=
SSR

SST
= 1− RSS

SST
,

where ȳ is the mean of y, SSR is the regression sum of squares, and SST is the total

sum of squares. The coefficient of determination measures the proportion of variance

in the response variable that the predictors can explain. It assesses how well the

data fit the model and takes a value between 0 and 1. The selection rule of using

R2 is to choose the model with the largest R2. However, since R2 always increases

when more predictors enter the model, model selection based on R2 might result in

the problem of overfitting.

1.2.1.3 Adjusted R2

To overcome the drawback of R2, a modified version of R2, called adjusted R2, is

proposed. The adjusted R2 has the form as follows:

R2
adj = 1− RSS/(n− p)

SST/(n− 1)
= 1− (n− 1)MSE

SST
= 1−

(
n− 1

n− p

)
(1−R2)

Similar to the rule using R2, we choose the model with the largest adjusted R2.

However, the adjusted R2 increases only when the inclusion of additional predictors
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improves the overall model fit. Additionally, it is straightforward to see that mini-

mizing MSE is equivalent to maximizing adjusted R2. Therefore, comparing models

in terms of MSE or adjusted R2 can give the same selection result.

1.2.1.4 AIC

The concept of the Akaike information criterion (AIC), first introduced by Akaike

(1973), offers a way to compare various candidate models and select the best model

among them. It is one of the most popular selection tools nowadays. The AIC

incorporates a penalty for model complexity to the log-likelihood of the model so

that it penalizes models that use more parameters. The general form of AIC is

defined as

AIC = −2 log(likelihood) + 2p.

However, AIC might select overly complex models in the small sample, leading to

overfitting problems. Then, an adjusted version of AIC was proposed by Hurvich &

Tsai (1989), called corrected AIC. The corrected AIC has the following form

AICc = AIC +
2(p+ 1)(p+ 2)

n− p− 2
.

The corrected AIC improves the model selection performance in a small sample

setting by considering the sample size in the penalty. It induces a heavier penalty

on the number of parameters. Among a set of candidate models, the one with the

smallest AIC or corrected AIC is preferred. Several other variants of AIC have also

been studied to solve various problems (McQuarrie & Tsai, 1998).



9

1.2.1.5 BIC

Bayesian Information Criterion (BIC) is another popular information criterion in

model selection, proposed by Schwarz (1978). The idea of BIC is derived from

Bayesian principles, and it is defined as

BIC = −2 log(likelihood) + p log n.

Both BIC and AIC are likelihood-based methods. The only difference between cal-

culating BIC and AIC is the multiplier of p in the penalty term. Consequently, when

n > e2, BIC penalizes more on the number of parameters. Therefore, BIC tends to

select more parsimonious models. Additionally, BIC exhibits asymptotic consistency,

implying that as the sample size approaches infinity, the probability of choosing the

correct model using the BIC approaches 1. In other words, as the sample size grows

infinitely large, BIC can always select the true model if the true model happens to be

under consideration. The consistency property of BIC is attractive for statisticians

to use in practice. However, BIC has some limitations as well. Since BIC penalizes

more complex models, it tends to select overly simple models in finite samples, which

may result in underfitting. Moreover, Hurvich & Tsai (1989) demonstrated that BIC

might have poor selection performance in small samples.

1.2.1.6 Mallows’ Cp

The statistic known as Mallows’ Cp (Mallows, 1973) is used to compare models that

have different subsets of parameters when compared to the full model. It can be

calculated using the following form:

Cp =
RSSp

σ̂2 − n+ 2p,
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where RSSp is to the RSS of the reduced model, while σ̂2 is the MSE of the full

model. According to Murtaugh (1998), a stepwise procedure is employed to add or

remove predictors until the smallest value of Cp is achieved. To compare models

using this statistic, selecting the model that minimizes the Cp criterion and Cp ≈ p

is recommended.

1.2.1.7 PRESS

The prediction sum of squares (PRESS) (Allen, 1974) is a statistic that can assess a

model’s predictive ability. The formula of PRESS is given by

PRESS =
n∑

i=1

(yi − ŷ(i))
2,

where ŷ(i) refers to the predicted value of the ith observation yi obtained from the

model that is fitted without including yi. In other words, to calculate PRESS, each

observation is excluded one at a time, and a linear regression model is fitted to the

remaining n − 1 observations to predict the value of the omitted response variable.

Smaller PRESS indicates the better predictive ability of the model. Therefore, the

model with the minimum PRESS is preferred.

PRESS utilizes all data and avoids data-splitting difficulties to validate the models

(Holiday et al., 1995). On the other hand, since the calculation of PRESS requires

fitting models n times, it is highly time-consuming to compute PRESS when the

sample size n is large. Moreover, Breiman & Spector (1992) demonstrated that non-

resampling estimates, such as the PRESS, can result in imprecise estimates of the

mean squared error of prediction. They proposed using resampling techniques, such

as cross-validation and bootstrap methods, to address this issue.
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1.2.1.8 Cross Validation

Cross-validation is a model evaluation method that measures the model’s predictive

performance on unseen data. In cross-validation, the data is usually divided into

two subsets. One subset, called training data, is used to train the model; the other

subset, called test data, is used to test its performance. Among various types of

cross-validation techniques, K-fold cross-validation is one of the most widely used

methods. Specifically, the K-fold cross-validation randomly splits the sample data

into K equal-sized groups. Then, the model is trained using K − 1 groups and is

tested using the remaining group. The process repeats K times until each group gets

a chance to be the test group. The model’s performance can be averaged over K

repetitions to give an overall estimation. In practice, 5 and 10 are commonly used

choices for K.

Leave-one-out cross-validation (LOOCV) is a special case ofK-fold cross-validation

whereK equals n. In other words, each observation is considered as a separate group.

PRESS statistic uses the idea of LOOCV in its computation. However, when the

sample size is large, it is considerably computationally expensive to perform LOOCV.

In this case, K-fold cross-validation with K ≪ n might be more appropriate.

When selecting a model, the one with the lowest squared error from cross-validation

is usually considered to be the best option. We then pick the model with the lowest

MSE, averaged across testing sets.

1.2.1.9 Generalized Cross Validation (GCV)

Generalized Cross-Validation (GCV) method is a computational shortcut of LOOCV

(Hastie et al., 2009), proposed by Craven & Wahba (1979). It attempts to reduce the

computational burden of cross-validation and provide an approximation to LOOCV.
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The general form of GCV approximation is defined as

GCV =
1

n

n∑
i=1

(
yi − ŷi

1− tr(S)/n

)2

,

where S is the matrix for ŷ = Sy and tr(S) refers to the effective number of degrees

of freedom.

In linear models, tr(S) = p. Thus, GCV can be written as follows

GCV =
RSS

n
· 1

(1− p/n)2
.

In practice, it is challenging to calculate each diagonal element in the matrix S, which

motivates statisticians to propose various GCV-type statistics to address this issue.

Several different GCV-type statistics will be described and utilized in the proposed

method in Section 3.4.

1.2.2 Computational Techniques

When there are many predictors in the data set, it is necessary to choose a sub-

set of predictors significantly related to the response variable and then include this

subset of predictors to build the best model. Many statisticians have proposed var-

ious methods to perform variable selection to improve the selection accuracy and

computation efficiency. This section will describe several classical variable selection

methods widely used in practice.

1.2.2.1 Best Subset Selection

Best subset selection involves considering every possible combination of the poten-

tial predictors. Specifically, if there are p predictors, 2p candidate models will be

considered. The best model is determined by certain selection criteria through the
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process of best subset selection from all the candidate models. For example, based on

adjusted R2, the candidate model with the largest R2
adj is selected, and the predictors

in this model are considered the best independent variables. Besides adjusted R2,

many other selection criteria described in Section 1.2.1, such as Mallows’ Cp, MSE,

etc., can also be used in the best subset selection. Even though the best subset

selection is easy to understand and implement, in practice, it requires a significantly

massive computation when the number of predictors is large. Additionally, best sub-

set selection tends to select overly complex models potentially leading to overfitting

problems.

Since best subset selection requires expensive computation, statisticians usually

prefer alternative methods to select variables. In the following, we will present several

traditional variable selection methods that are more computationally efficient.

1.2.2.2 Backward Elimination

Backward elimination is a straightforward and efficient model selection approach.

The process of backward elimination requires at most 1 + p(p+ 1)/2 model fittings

to identify the best model, which is significantly lower than 2p required in best subset

selection as p grows. The general idea of backward elimination is that it gradually

removes unimportant variables until only important variables are left in the model.

Specifically, it starts with considering a full model that includes all potential predic-

tors from the data. The next step drops the least statistically significant variable

one at a time. In the traditional implementation of backward elimination, the sig-

nificance of each variable is assessed using the F -statistic. The variable with the

smallest F -statistic, which indicates the least significant variable, is then deleted

from the model. This process is repeated until the remaining variables are all sig-

nificant at a pre-determined significance level. Besides F -statistic, other selection
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criteria, such as adjusted R2, BIC, AIC, etc., can also be implemented at each step

as a criterion to decide the deletion of a predictor. If the value of the selected criterion

is not improved during the procedure, backward elimination stops.

It is worth noting that backward elimination can only be employed when the

number of predictors is less than the number of observations, as the method starts

with the full model that includes every variable in the model. Thus, backward

elimination is not a good choice for variable selection in a high-dimensional setting.

Moreover, in backward elimination, once the predictor is removed, it is not re-entered

to the model even if it becomes significant later in model fitting.

1.2.2.3 Forward Selection

Forward selection works in the opposite direction of backward elimination. Similar

to backward elimination, forward selection also needs to fit at most 1 + p(p+ 1)/2

models to obtain the best model. However, instead of starting with a full model,

forward selection starts with a null model that includes no variables in the model.

The next step is to add one variable at a time to the model based on its statistical

significance. Among the variables that are not included in the model, the one with

the largest F -statistic is added to the model. Other pre-specified criteria, such as

AIC or BIC, can also be implemented to decide if the variable should be added or

not. The above step is repeated until every variable in the model is significant based

on F -statistic, or the selected criterion is no longer improved by adding any of the

remaining variables.

Forward selection is useful when the number of predictors from data is large

because it reduces the computational complexity of searching for the best model by

starting with a null model. In a study by Roecker (1991), using forward selection can

result in a slight reduction in prediction error and bias when compared to using all
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possible regression models. Different from backward elimination, once the predictor

is added to the model, it always stays in the model.

1.2.2.4 Stepwise Selection

Stepwise regression is a combination of backward elimination and forward selection.

Its selection procedure can either go backward (start with a full model) or forward

(begin with a null model). At each step, the procedure either enters or removes one

variable at a time based on the pre-specified selection criterion. The main difference

in stepwise selection is that a variable that has been removed in a previous step can

be added back to the model if it is found to be significant later on.

Those classical methods presented above are easy to implement in practice. How-

ever, their selection results are not stable because of inherent discreteness (Breiman,

1995; Fan & Li, 2001). A small change in the data may result in quite different vari-

able selection results. Moreover, the unstable performance of those methods might

lead to worse prediction accuracy. In the next section, we will review several penal-

ized likelihood methods that provide more reliable selection results than the stepwise

methods do.

1.3 Penalized Likelihood Methods in Linear Mod-

els

Penalized likelihood methods, also called shrinkage methods, work as variable selec-

tion approaches by adding a particular type of penalty term to the likelihood function.

This penalty term is designed to shrink some regression coefficients towards zeros,

while shrinking some small coefficients to exactly zeros. By such shrinkage on re-

gression coefficients, many unimportant variables are excluded from the model. One
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advantage of penalized likelihood methods is that they can effectively avoid overfit-

ting by penalizing the regression coefficients of insignificant variables. Additionally,

it improves the interpretability of the model by only keeping the most informative

variables in the model. Furthermore, some methods are able to estimate regression

coefficients and select variables simultaneously.

The general form of penalized likelihood approaches is to minimize the following

objective function

L(β) + λP (β), (1.2)

where β represents a vector of regression coefficients, L(β) represents a loss func-

tion, such as the negative likelihood function or least square loss function among other

various options, P (β) is a penalty function, and λ is a tuning parameter, which is a

non-negative constant. λ controls the strength of penalization and thus controls the

complexity of the model. When λ = 0, the second term in (1.2) disappears, which

means that there is no penalty added. For example, if the loss function is the least

square loss function and λ = 0, no variables are eliminated, and the problem is equiv-

alent to ordinary least squares estimation. As the value of λ increases, the penalty

term also increases, resulting in greater shrinkage imposed on the coefficients. When

λ is sufficiently large, all regression coefficients can be shrunk to zero. Moreover, the

value of λ is closely related to the bias and variance of the model. As the value of λ

increases, the bias in the model also increases, whereas decreasing λ leads to a higher

variance. For instance, choosing a small λ results in a bigger model with a lower

bias, but it comes with the trade-off of a much larger variance. Thus, selecting an

appropriate value for λ is crucial to achieving accurate and efficient variable selection.

Using the criteria for variable selection presented in Section 1.2.1, we can determine

the appropriate value of λ.

Many penalized likelihood methods have been developed by statisticians, consid-
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ering various likelihood functions and penalty terms. In the following subsections,

we will review several penalized likelihood approaches.

1.3.1 Ridge Regression

Ridge regression is the first penalized regression method proposed by Hoerl & Ken-

nard (1970b,a). The penalty term in ridge regression is L2 penalty, also called L2

norm, defined as the sum of the squared coefficients. The ridge estimate is defined

as

β̂ = argmin
β

( n∑
i=1

(
yi −

p∑
j=1

βjxij

)2
+ λ

p∑
j=1

β2
j

)
, (1.3)

with λ ≥ 0. We assume both design matrix X and responses y are centered. Thus,

the intercept term is ignored in (1.3). The ridge estimator is given by

β̂ridge = (X⊤X + λI)−1X⊤y,

where I is a p×p identity matrix. It is easy to see that the ridge estimator is analogous

to OLS estimator in (1.1). Even though β̂OLS is an unbiased estimator of β, it does

not perform well when X is ill-conditioned. Since β̂OLS involves the term (X⊤X)−1,

it is infeasible to compute (X⊤X)−1 if X⊤X is singular or nearly singular. In this

case, X is called ill-conditioned because a small change in the elements of X could

result in a large change in (X⊤X)−1. The extra term λI in the ridge estimator

makes it a biased estimator but also improves the coefficient estimation in the case

of ill-conditioned X.

Ridge regression successfully shrinks the estimates towards zero and produces an

improved estimation than OLS. Compared with stepwise selection, ridge regression

is more stable in selecting variables, but it does not shrink any regression coefficients

to exact zero. Thus, it cannot be used as a tool for variable selection.
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1.3.2 Non-negative Garrote

Breiman (1995) presented an innovative method, called non-negative garrote, to se-

lect the best subset of variables. Let us assume that X is standardized, and the

response vector y has a mean of zero. Then, the non-negative garrote intends to find

a set of non-negative slicing factors cj to minimize

n∑
i=1

(
yi −

p∑
j=1

cjβ̂
OLS
j xij

)2
+ λ

p∑
j=1

cj subject to cj ≥ 0,

where β̂OLS
j is the OLS estimates and λ ≥ 0. The garrote estimates are β̂garrote

j =

cjβ̂
OLS
j for j = 1, . . . , p. As λ increases, more cj shrinks to exact zero. Therefore,

the non-negative garrote is able to produce sparse models. Additionally, Zou (2006)

proved that variable selection by the non-negative garrote is consistent.

1.3.3 LASSO

Tibshirani (1996) introduced the least absolute shrinkage and selection operator

(LASSO) as a new regression method. The objective function includes the least

squares loss function and L1 penalty. The L1 penalty, also called L1 norm, takes the

sum of the absolute value of the magnitude of coefficients. The LASSO estimator is

defined by

β̂LASSO = argmin
β

( n∑
i=1

(
yi −

p∑
j=1

βjxij

)2
+ λ

p∑
j=1

|βj|
)
,

where |βj| is the absolute value of βj and λ ≥ 0 is a tuning parameter. Due to

the property of L1 penalty, LASSO is able to shrink some coefficients to exact zero.

Therefore, LASSO is capable of selecting informative variables and estimating re-

gression coefficients efficiently at the same time.

Leng et al. (2006) found that the LASSO estimate does not give consistent model
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selection in a setting of the fixed p and orthogonal designs. Zou (2006) examined a

necessary condition for the LASSO to be consistent, whereas Zhao & Yu (2006) pre-

sented an almost necessary and sufficient condition for a consistent LASSO solution

in the fixed p setting and in the large p setting as the sample size gets larger. Mein-

shausen & Bühlmann (2006) also demonstrated that, under some conditions, LASSO

can provide consistent estimates of the dependency between Gaussian variables in

high-dimensional settings. Therefore, the LASSO may not always be consistent.

LASSO has certain limitations as well. Firstly, if the number of predictors exceeds

the number of observations, indicated by p > n, then LASSO selects at most n

predictors before it reaches saturation. Secondly, when some predictors are highly

correlated with each other, LASSO tends to choose one of those predictors and does

not consider which one is selected. Lastly, for the case where n > p with collinearity

predictors, empirical studies suggest that ridge regression outperforms LASSO in

terms of predictive performance (Tibshirani, 1996).

1.3.4 Elastic Net

Motivated by the limitations of LASSO, Zou & Hastie (2005) proposed an elastic net

that takes advantage of both LASSO and ridge regression. The elastic net estimate

is defined by

β̂elastic net = argmin
β

( n∑
i=1

(
yi −

p∑
j=1

βjxij

)2
+ λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j

)
, (1.4)

where both λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. The penalty term in (1.4)

combines L1 and L2 penalties. Elastic net does a good job of selecting variables for

high-dimensional data, where p >> n.
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1.3.5 SCAD

Fan & Li (2001) proposed a novel penalty function, smoothly clipped absolute devi-

ation (SCAD). The SCAD penalty imposes different penalty terms on the regression

coefficients based on the relationship between the magnitude of coefficients and the

tuning parameter λ. For each regression coefficient βj, the SCAD penalty is given by

pSCAD(βj) =


λ|βj|, for |βj| ≤ λ

−(
|βj|2 − 2aλ|βj|+ λ2

2(a− 1)
), for λ < |βj| ≤ aλ

(a+ 1)λ2

2
, for |βj| > aλ,

where a > 2 and λ > 0.

Then, the SCAD estimates can be defined by

β̂SCAD = argmin
β

( n∑
i=1

(
yi −

p∑
j=1

βjxij

)2
+

p∑
j=1

pSCAD(|βj|)
)
.

Additionally, Fan & Li (2001) introduced ‘oracle properties’ of a variable selection

procedure. In their opinion, a good variable selection procedure should have such

properties. Let β̂(γ) denote the coefficient estimator produced by a procedure γ,

and A denote the set of non-zero regression coefficients in the true model. Then, an

oracle procedure γ is called if β̂(γ) has the oracle properties that:

1. identifies the correct model, i.e. {j : β̂j ̸= 0} = A, for j = 1, . . . , p.

2. has the optimal estimation rate,
√
n(β̂(γ)A − β∗

A) → N(0,Σ∗) in distribution,

where β∗ refers to the true values of β and Σ∗ refers to the variance-covariance

matrix of the true predictors.

They have shown that the SCAD penalty exhibits oracle properties, which means

that it is capable of consistent selection and optimal estimation asymptotically. Con-
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versely, the LASSO penalty lacks these properties. However, since the SCAD penalty

is a non-concave function and non-differentiable at zero, there is no guarantee that

the local maximum of the penalized likelihood is the global maximum. This property

makes it challenging to find the optimal solution.

1.3.6 Adaptive LASSO

Zou (2006) showed that LASSO can be consistent under a necessary condition. He

also mentioned some scenarios in which the LASSO selection cannot be consistent.

He then proposed a modification of LASSO, called adaptive LASSO. Assume β̃ is

a root-n-consistent estimator to β∗. The solution of adaptive LASSO is shown as

follows:

β̂ALASSO = argmin
β

( n∑
i=1

(
yi −

p∑
j=1

βjxij

)2
+ λ

p∑
j=1

ω̂j|βj|
)
,

where λ ≥ 0 and the weight ω̂j = 1/|β̃j|γj for γj > 0.

Compared to the LASSO penalty, the penalty term of adaptive LASSO contains

an additional weight in front of the magnitude of regression coefficients. Zou (2006)

showed that adaptive LASSO has the oracle properties.

1.3.7 Group LASSO

Yuan & Lin (2006) extended the idea of LASSO to solve the problem of selecting

group variables in order to achieve better prediction accuracy in regression problems.

Group variables are commonly seen in regression problems: one example is that a

multi-level categorical variable is usually represented in a group of dummy variables;

another example is the additive model with continuous variables, where a continuous

variable could be represented in a linear combination of some basis functions of the

measured variable. Both examples contain group structure, and the group LASSO
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intends to select those important group variables rather than individual predictors.

Let us explore the concept of group variables using a real data example. For

this purpose, we can analyze the birth weight data set presented in Hosmer Jr &

Lemeshow (1989). This birth weight data set contains the birth weights of 189 new-

borns and several predictors containing the mother’s information. In the following

two examples, we will specifically focus on two predictors: a categorical variable rep-

resenting the mother’s race, which consists of three levels (white, black, or other), and

a continuous variable indicating the mother’s weight in pounds at the last menstrual

period. Denote the newborn’s birth weight as Y , mother’s race as X1, and mother’s

weight as X2.

Example 1: If we are interested in the relationship between the newborn’s birth

weight (Y ) and the mother’s race (X1), we can fit a one-way analysis of variance

(ANOVA) model, which is given by:

Y = β0 + β1X1·Balck + β2X1·Other + ϵ,

where β0 is the intercept, β1 and β2 are regression coefficients, X1·Balck and X1·Other

are dummy variables of black and other levels, respectively, and ϵ are the random

errors. Here, the reference level is white. To select important variables, the group

LASSO approach treats two dummy variables, X1·Balck and X1·Other, of the predictor

mother’s race as a group. While the LASSO may choose either X1·Balck or X1·Other

or both, the group LASSO selects or eliminates the entire group, treating all levels

in race as a cohesive unit.

Example 2: If a non-linear effect of the mother’s weight (X2) on the newborn’s

weight (Y ) exists, a polynomial additive model can be considered. Suppose we
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employ a third-order polynomial regression on Y :

Y = β0 + β1X2 + β2X
2
2 + β3X

3
2 + ϵ,

where β0 is the intercept, β1,β2 and β3 are regression coefficients, X2
2 represents the

quadratic term of mother’s weight, and X3
2 represents the cubic term of mother’s

weight. It is important to note that in this scenario, the group LASSO approach

treats X2 and its quadratic and cubic terms as a group, as they are all derived from

the same variable X2. Therefore, the group LASSO would either select or exclude

X2, X
2
2 and X3

2 simultaneously as a cohesive group, while the LASSO would likely

select only one or two of these terms individually. From the above two examples of

group variables, we can see that group variables are commonly seen in practice in

regression problems.

The linear regression model can be written in terms of m groups of variables:

y =
m∑
l=1

X(l)β(l) + ϵ,

where ϵ ∼ N(0, σ2I), X(l) is an n× pl design matrix corresponding to the lth group

of predictors, and β(l) is the vector of regression coefficients in the lth group with

group size pl for l = 1, . . . ,m. Let p denote the total number of predictors, that is,

p =
∑m

l=1 pl. The group LASSO estimator is defined as:

β̂GLASSO = argmin
β

∣∣∣∣∣∣∣∣y −
m∑
l=1

X(l)β(l)

∣∣∣∣∣∣∣∣2
2

+ λ

m∑
l=1

√
pl||β(l)||2,

where λ ≥ 0 is a tuning parameter.

Interestingly, when p1 = · · · = pm = 1, such as only one individual in each group,

the group LASSO reduces to the LASSO. Moreover, when m = 1, that means there

only exists one group with p variables, the group LASSO becomes equivalent to ridge
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regression. The idea of group LASSO has also been extended to the logistic regression

model (Lukas et al., 2008).

The group LASSO has gained significant popularity in practice due to its advan-

tages over the LASSO:

1. Group variable selection: the group LASSO performs group variable selection

instead of individual variable selection. It is particularly advantageous in sce-

narios such as ANOVA models and additive models with polynomial terms,

where selecting groups of variables is often more desirable. For example, when

dealing with categorical variables, the LASSO may select individual dummy

variables instead of choosing whole factors (Lukas et al., 2008). However, in

practice, it is generally preferred to select all levels within a categorical variable

together rather than separately.

2. Robustness to dummy variable encoding: the group LASSO is more robust

to the encoding of dummy variables compared to the LASSO. The variable

selection results from the LASSO can be affected by how dummy variables

of categorical variables are encoded in modeling. Different ways of encoding

dummy variables may result in different selection outcomes. Since the group

LASSO selects variables at the group level, it is much less sensitive to encoding

of dummy variables.

3. Enhanced Interpretability: by selecting entire groups of variables together, the

group LASSO significantly improves the interpretability of the final model.

4. Improved prediction accuracy: by incorporating group structures, the group

LASSO can improve prediction accuracy in some instances. The group struc-

ture helps to detect important interactions and dependencies among variables.
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1.4 Variable Selection in Linear Mixed Models

As mentioned in Section 1.1, the linear mixed model incorporates both fixed and

random effects. Assume that there are m subjects (or clusters), and subject i gets

ni measurements. Let N =
∑m

i=1 ni be the total number of observations. A linear

mixed model has a general form for each subject i:

yi = Xiβ +Zibi + ϵi, i = 1, 2, ...,m, (1.5)

where yi = (yi1, ..., yini
)⊤ is an ni × 1 vector of responses for subject i, Xi =

(X⊤
i1, ...,X

⊤
ini
)⊤ is an ni × p matrix of fixed-effect covariates for subject i, β =

(β1, ..., βp)
⊤ is a p × 1 vector of fixed-effect coefficients, Zi = (Z⊤

i1, ...,Z
⊤
ini
)⊤ is an

ni × q matrix of random-effect covariates for subject i, bi = (bi1, ..., biq)
⊤ is a q × 1

vector of random-effect coefficients, and ϵi = (ϵi1, ..., ϵini
)⊤ is an ni × 1 random error

vector.

Similar to the linear model, the linear mixed model also has a few assumptions:

1) Each observed individual is independent to each other. 2) There exists linearity

in fixed and random effects covariates, Xi and Zi. 3) The random effects coefficients

bi follows a multivariate normal distribution, that is bi ∼ N(0, σ2D), where the

variance-covariance matrix D is a symmetric and positive semi-definite. 4) The

residuals ϵi’s are independent and identically distributed as a multivariate normal

distribution, that is ϵi ∼ N(0, σ2Ini
), where Ini

is an ni × ni identity matrix with

1’s on the diagonal of the matrix and 0’s are off-diagonal. 5) bi and fixed effects

covariates Xi’s are independent. Based on those assumptions, it can be derived that

yi ∼ N(Xiβ, σ2Vi),

where Vi = Ini
+ ZiDZ⊤

i . Therefore, the variance-covariance matrix D is closely
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related to selecting random effects.

Considerable research has been devoted to variable selection for both fixed and

random effects. The literature encompasses studies on various information criteria

as well as investigations into the effectiveness of penalized likelihood approaches for

selecting either fixed effects, random effects, or both. In this section, we will review

several information criteria and penalized likelihood methods in the framework of

linear mixed models.

1.4.1 Information Criteria

Information criteria are widely adopted in model selection in linear mixed models.

The AIC is one of the most frequently utilized information criteria in model selection.

While the AIC has been frequently used in the linear models, it has also been con-

structed within the framework of the linear mixed model. For example, the marginal

AIC (mAIC) is a commonly used AIC in the linear mixed models. The mAIC was

developed based on the marginal likelihood of responses, which is defined as

mAIC = −2ℓ(β̂, θ̂, σ̂2) + 2aN(p+ q),

where ℓ(β̂, θ̂, σ̂2) is the maximized likelihood with the maximum likelihood estimates

(MLE) or restricted maximum likelihood estimates (REML) of parameters, for the

fixed effects β̂ and for variance-covariance of random effects θ̂. aN = 1 in the infinite

sample form and aN = N/(N − p− q − 1) in the finite sample form (Sugiura, 1978).

Additionally, p is the number of parameters in the fixed effects and q is the number

of parameters in the variance-covariance matrix Vi. However, it has been shown

that mAIC is positively biased for the marginal Akaike Information, and there is no

simple bias correction to make mAIC exactly unbiased (Greven & Kneib, 2010).
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Vaida & Blanchard (2005) derived the AIC based on the conditional model for-

mulation, called conditional AIC (cAIC). It is formulated as

cAIC = −2 log[f(y|β̂, b̂, θ̂)] + 2K,

where f(·) is the conditional likelihood and K is the effective number of degrees of

freedom.

Another widely used information criterion is BIC. The simplest BIC in linear

mixed models is obtained by replacing 2aN in the penalty term by log(N) in mAIC.

It is called the marginal BIC (mBIC), which is given by:

mBIC = −2ℓ(β̂, θ̂, σ̂2) + log(N)(p+ q).

The increased weight on the term (p+ q) encourages mBIC to pick smaller models

than mAIC does.

1.4.2 Penalized Likelihood Methods

Penalized likelihood methods have been successfully extended to the linear mixed

models. The selection of random effects is one of the challenges for linear mixed

models. To remove an unimportant random effect, an entire row and column of D

should be eliminated. Therefore, using penalized methods properly on random effects

is challenging. Recently, many penalized variable selection methods on linear mixed

models have been proposed.

Bondell et al. (2010) proposed a penalized joint variable selection method for both

fixed and random effects in linear mixed models. They adopted a modified Cholesky

decomposition on the covariance matrix of random effects D from Z. Chen & Dunson

(2003), such that
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D = D̃Γ̃Γ̃⊤D̃,

where D̃ is a diagonal matrix with d1, d2, . . . , dq and Γ̃ is a lower triangular ma-

trix with 1’s on the diagonal. They also added adaptive penalty terms on the log-

likelihood function to select fixed and random effects, respectively. According to

their reparameterization, the linear mixed model can be written as:

yi = Xiβ +ZiD̃Γ̃b̃i + ϵi,

where yi is a centered response for the ith subject, Xi and Zi are design matrices for

fixed and random effects, respectively, b̃i = (bi1, . . . , biq)
⊤ is a q× 1 coefficient vector

for random effects, and ϵi is a random error vector. They denote ϕ = (β⊤,d⊤,γ⊤)⊤

as a parameter set, where d = (d1, . . . , dq)
⊤ is a vector of the diagonal elements of

D̃ and γ is a vector of the q(q − 1)/2 free elements of Γ̃.

After reparameterization and treating random effects coefficients as observed,

they derived the complete data log-likelihood function:

Lc(ϕ|y, b) = −N +mq

2
log σ2 − 1

2σ2 (||y −ZD∗γ∗b−Xβ||2 + b
′
b),

where Z is a block diagonal matrix of Zi, D
∗ = Im ⊗ D̃ and Γ∗ = Im ⊗ Γ̃, with ⊗

represents the Kronecker product.

Since ||y − ZD∗γ∗b − Xβ|| is the only term that related to fixed effects and

random effects in the complete data log-likelihood, they define the objective function

by adding the L1 penalty with the adaptive weights to this norm term:

Qc(ϕ|y, b) = ||y −ZD∗γ∗b−Xβ||2 + λm

(
p∑

j=1

|βj|
|β̄j|

+

q∑
j=1

|dj|
|d̄j|

)
,
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where β̄j represents the generalized least squares estimate of βj, and d̄j represents

the decomposed component of the estimated covariance matrix obtained from the

restricted maximum likelihood. Here, the penalty terms of fixed and random effects

use the same λm as the tuning parameter. They implemented the constraint EM

algorithm to solve Qc(ϕ|y, b). Additionally, they proved that their estimates have

enjoyed the Oracle properties.

Ahn et al. (2012) developed a moment-based method for selection on random ef-

fects in linear mixed models. Since their method is moment-based, the assumption of

normality for the error terms is not required for their method. This attractive prop-

erty results in a more robust estimation when dealing with non-normal data. Their

objective function uses a second-order moment loss function with penalty terms.

By optimizing their objective function, their method can effectively estimate and

select random effects. They consider two types of penalty terms, including a hard

thresholding operator and a sandwich-type soft thresholding penalty. Moreover, they

extended their selection method to encompass the selection of fixed effects.

Pan & Shang (2018) introduced a two-stage procedure that addressed the se-

lection of both fixed and random effects in the linear mixed model. Their method

incorporates adaptive LASSO penalty terms. In the first step, the random effect is

selected through the penalized restricted profile log-likelihood. In the following step,

the fixed effects are determined using the profile log-likelihood function with a penalty

added. They assume that yi ∼ N(Xiβ, σ
2Vi(θ)), where Vi(θ) = Ini

+ZiDZ⊤
i with

θ denotes the vector consisting of k = q(q + 1)/2 unique variance components in D.

In the first stage, their proposed penalized restricted profile log-likelihood function

is given as:

QR(θ) = pR(θ)− λ1n

q∑
j=1

ω1j|dj|, (1.6)

where pR(θ) is the restricted profile log-likelihood shown in (2.7), dj is the jth element
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of d, ω1j is the corresponding weight of dj, and λ1n ≥ 0 is the tuning parameter.

Let w1 = (ω11, . . . , ω1q)
⊤. They propose to use w1 = 1/|d̃|, where d̃ is a root-n

consistent estimator of d. To maximizeQR(θ) in (1.6), they use the Newton–Raphson

algorithm. A similar idea is also implemented in fixed effects selection. In the second

stage, their proposed penalized profile log-likelihood is shown as:

QF (β) = pF (β)− λ2n

p∑
j=1

ω2j|βj|, (1.7)

where pF (β) is the profile log-likelihood defined in (2.7), λ2n ≥ 0 is the tuning

parameter and the weight vector is suggested to define as w2 = 1/|β̃|, where β̃ is the

MLE of β using the estimated covariance matrix. They also use Newton–Raphson

algorithm to maximize (1.7) to find solutions. Furthermore, they showed that their

proposed procedure is consistent and enjoys the oracle properties.

Li et al. (2018) developed a doubly regularized method in linear mixed models for

high-dimensional longitudinal data to simultaneously select fixed and random effects.

They invoked the Cholesky decomposition on the variance-covariance matrix D for

random effects selection. For instance, D = LL⊤, where L is a lower triangular

matrix with positive diagonal elements. Let L(k) be the kth row of L. If L(k) = 0,

then the variance of the kth random effect, denoted as Dkk, is also zero. There-

fore, instead of optimizing D, they target optimizing L. Their doubly regularized

objective function is defined as

Qn(β,L, σ2) = ℓn(β,L, σ2)− λ1

p∑
j=1

∣∣βj

∣∣− λ2

q∑
k=2

||L(k)||2,

where |βj| is the absolute value of βj, ||L(k)||2 =
√
L2
k1 + · · ·+ L2

kq, and λ1 ≥ 0

and λ2 ≥ 0 are tuning parameters. Moreover, when N > p, the restricted log-

likelihood function is used in ℓn(β,L, σ2), while the log-likelihood function for the
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data is implemented in ℓn(β,L, σ2) when N < p. Furthermore, the authors establish

the large sample properties of their method for the high-dimensional setting. They

introduce new regularity conditions for the diverging rates, which guarantee that the

proposed method achieves both estimation and selection consistency.

1.5 Latent Variable Models

Latent variable models are a group of statistical models to investigate relationships

between unobserved and observed variables. The unobserved latent variables refer to

the variables that cannot be measured directly from the observed data. Even though

latent variables are not observable, their information can be inferred through their

relationship with observable variables. There has been a wide range of applications

of latent variable models in various fields, such as psychology, economics, and social

sciences, especially with applications to data analysis of longitudinal studies and

repeated measures.

According to the types of observed and latent variables, the latent variable mod-

els can be classified into different models (Knott & Bartholomew, 1999). In this

dissertation, we will focus on item response theory (IRT) models, a statistical model

containing continuous latent variables, so-called latent traits, and categorical ob-

served variables.

1.5.1 Common IRT Models

Psychometrics is a scientific discipline that studies testing, measurement, assessment,

and related activities within psychology and education. It focuses on the develop-

ment and application of psychological and educational tests and assessment tools to

quantify and evaluate psychological attributes, such as personality traits, abilities,
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knowledge, and so on.

In psychometrics, the item response theory (IRT) model is one of the most widely

utilized latent variable models. Specifically, in the IRT model, the latent traits are

continuous, while the observed variables are categorical. The IRT model is often

used to analyze responses from tests and assessments. Based on the type of those

responses, different IRT models can be implemented. For instance, when the test

responses are binary, meaning there are only two possible outcomes, dichotomous

IRT models can be utilized. In tests or assessments, the attributes of test takers that

researchers are interested in, including personality traits, abilities, and knowledge,

cannot be measured directly. Hence, those attributes are considered as latent traits.

Through IRT models, we can deeply understand the latent traits of the test takers

based on their responses to test items.

According to the number of latent traits, IRT models can be divided into uni-

dimensional IRT models and multidimensional IRT models. Unidimensional IRT

models include a single latent trait, while multidimensional IRT models consider

multiple latent traits. Due to the complexity of modeling with higher dimensional

latent traits, unidimensional IRT models are more frequently utilized in practice.

IRT models can also be categorized based on the number of test items’ responses.

For multiple choice questions, the correctness of each answer is scored with either

correct or incorrect. In this case, the dichotomous IRT models are used because

the responses to the items are dichotomous (i.e., Correct/Wrong). Polytomous IRT

models are employed when there are three or more response options, such as choosing

a scale from 1 to 5. In this project, we focus on unidimensional dichotomous IRT

models.

We will introduce three commonly seen IRT models for binary test responses:

one-parameter, two-parameter, and three-parameter logistic models. Those three
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logistic models share common assumptions:

1. Unidimensinality: each test item measures only one continuous latent trait.

Sometimes, it is hard to meet this assumption in practice because test tak-

ers’ personalities, attitudes, and other test-taking factors can always influence

test performance. However, what is required for this assumption to be met

is a presence of a dominant latent factor that mainly affects test performance

(Hambleton et al., 1991).

2. Local independence: given a fixed latent trait value, test takers’ responses

to any test item are statistically independent. It means that a test taker’s

response on one test item would not influence the response on another test

item (Hambleton et al., 1991).

In this section, we will give notations for IRT models. For the rest of the disser-

tation, the notations will be consistently used.

Consider a test containing J binary test items. Assume that N subjects take this

test and we only consider one latent trait θ = (θ1, . . . , θN)
⊤ for the ith subject. Let

Y denote the N × J matrix of all item responses. Then, Yij represents the binary

response of the ith subject on the jth test item, where 1 represents a correct answer,

and 0 represents a wrong answer.

1.5.1.1 One-Parameter Logistic Model

The one-parameter logistic model, also called the Rasch model, is one of the most

popular IRT models in applications. It has the simplest form of IRT models. This

model has a mathematical form of the probability of ith subject answering the jth

item correctly as below:

P (Yij = 1|θi, bj) =
exp(θi + bj)

1 + exp(θi + bj)
,
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where bj is an item parameter that represents easiness of jth test item and θi indicates

the latent trait of ith subject. Since the coefficient of θi is 1, it indicates that the

Rache model treats each item with the same ability of discrimination. Therefore, only

the easiness level of items and abilities of subjects affect the probability of correct

answers simultaneously.

Under local independence assumption, the joint likelihood of responses matrix

Y = (Y1, · · · ,YN)
⊤ is

L(Y ,θ; b) =
N∏
i=1

J∏
j=1

exp(θi + bj)

1 + exp(θi + bj)

Yij 1

1 + exp(θi + bj)

(1−Yij)

.

Then, the marginal likelihood of Y given a latent trait and an item parameter b can

be obtained by integrating θ out:

L(Y ;θ, b) =
N∏
i=1

[∫
θi

J∏
j=1

exp(θi + bj)

1 + exp(θi + bj)

Yij 1

1 + exp(θi + bj)

(1−Yij)

f(θi)dθi

]
,

where f(θi) is the probability density function (pdf) of the ith subject’s latent trait.

1.5.1.2 Two-Parameter Logistic Model

The two-parameter logistic model (2PL model) contains two item parameters: dis-

crimination and easiness. Discrimination parameter a measures the differential ca-

pability of an item. An item with a high discrimination parameter value indicates its

high ability to distinguish test takers. The probability of correct responses would in-

crease faster on items as the latent trait increases. Moreover, the easiness parameter

measures the easiness of an item.

For the ith test taker on the jth item, the probability of getting a correct response

Yij is modeled as

P (Yij = 1|θi; aj, bj) =
exp(ajθi + bj)

1 + exp(ajθi + bj)
, (1.8)
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where aj is the discrimination parameter, bj is the easiness parameter for j = 1, . . . , J ,

and θi represents the latent trait for subject i.

Under local independence assumption, the joint likelihood of responses matrix Y

is

L(Y ,θ;a, b) =
N∏
i=1

J∏
j=1

exp(ajθi + bj)

1 + exp(ajθi + bj)

Yij 1

1 + exp(ajθi + bj)

(1−Yij)

and the marginal likelihood L(Y ;θ,a, b) is

L(Y ;θ;a, b) =
N∏
i=1

[∫
θi

J∏
j=1

exp(ajθi + bj)

1 + exp(ajθi + bj)

Yij 1

1 + exp(ajθi + bj)

(1−Yij)

f(θi)dθi

]
,

(1.9)

where a = (a1, . . . , aJ)
⊤ is a vector of discrimination parameters, b = (b1, . . . , bJ)

⊤ is

a vector of easiness parameters of J test items, and f(θi) represents the probability

density function of θi.

1.5.1.3 Three-Parameter Logistic Model

The three-parameter logistic model (Birnbaum, 1968) extends the two-parameter

logistic model by introducing an extra item parameter: the guessing parameter,

denoted by c. The guessing parameter describes the probability that a test takes a

correct response by guessing alone. Guessing usually happens when a test taker is

unsure about the correct answer and still tries to give an answer. (Hutchinson, 1991;

Maris, 1995; Mart́ın et al., 2006). The probability of getting a correct answer from

ith subject on jth test item is then given by:

P (Yij = 1|θi; aj, bj, cj) = cj + (1− cj)
exp(ajθi + bj)

1 + exp(ajθi + bj)
,

where aj is the discrimination parameter, bj is the easiness parameter, cj is the

guessing parameter each test item, and θi represents the latent trait for subject i.
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1.5.2 Latent Regression IRT Models

The latent regression IRT model is a type of extension to the traditional IRT model,

where the inclusion of observed covariates as predictors allows for investigating their

effects on the conditional distribution of the latent trait. By incorporating regression

onto latent traits, latent regression IRT models provide a way to uncover hidden

influential factors from the data and make more accurate predictions. In other words,

the latent regression IRT model incorporates external predictors of test takers to

explore how they might affect the latent traits and the observed responses to test

items. Based on research interests, a variety of external predictors may be considered,

such as demographic variables, including age, gender, education, and others, for test

takers in large-scale assessment programs.

Latent regression IRT models assume that a set of predictors could be directly

linked to the latent traits through a linear relationship. Additionally, the conditional

distribution of the latent traits follows a normal distribution when the dimension of

the latent trait is one or a multivariate normal distribution when the dimension of

the latent traits exceeds one. Generally, each individual is characterized by a mean

vector determined by the observed covariates and regression parameters.

Maximum likelihood estimation of latent regression IRT models involves calcu-

lating integrals in the likelihood function, which presents a significant challenge due

to the difficulty in finding explicit solutions. Consequently, instead of finding exact

solutions, approximations are needed to be utilized during estimations. Therefore,

many approximation approaches have been studied in the literature. In large-scale

educational assessment programs, the estimations of latent regression models are

usually implemented in two steps (von Davier & Sinharay, 2013). The first step is to

make an estimation on the item parameters based on a unidimensional IRT model.

At this step, the predictors are ignored when fitting the model. The second step is to
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assess the latent regression and variance parameters by assuming the item parameters

are held constant. In the second step, there are several methods can be used. One

option is to utilize an expectation-maximization (EM) algorithm with a second-order

Laplace approximation method, as described by Thomas (1993). Another option is

to apply stochastic approximation, as suggested by von Davier & Sinharay (2010).

In addition to such a two-step estimation approach, it is feasible to estimate

the item and regression parameters simultaneously by utilizing adaptive quadrature,

stochastic approximations, or a Laplace approximation (Chalmers, 2015; Harrell,

2015; Raudenbush et al., 2000). However, due to the heavy computational burden,

those methods are not commonly used in large-scale assessment programs. Andersson

& Xin (2021) proposed to use a second-order Laplace approximation of the likelihood

to estimate latent regression IRT models. Their method can be employed on the

data with categorical observed variables. Additionally, their method can estimate all

parameters simultaneously. They showed their approximation approach significantly

improved over the first-order Laplace approximation in terms of bias. Furthermore,

their method exhibits high computational efficiency, particularly in large sample sizes

and a substantial number of items.

Variable selection in latent variable models has been a new research area in psy-

chometrics. In large-scale assessment programs, besides a large number of item

responses from students, a wealth of additional information about examinees can

also be collected, such as students’ demographic information, academic record and

school experience, affective disposition, and more. Consequently, an essential ques-

tion arises: can we identify the factors significantly related to the latent trait being

considered during the assessment? For example, in a mathematics test, which tends

to quantify students’ mathematics ability, we wonder whether we can ascertain the

important factors that affect their mathematical skills. Are the number of days
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absent from school correlated with their math abilities? Does computer access at

home influence their mathematical ability? To answer such questions, the current

operational procedures to perform such variable selection can be done in two steps.

First, we fit a unidimensional IRT model to estimate item parameters and the latent

variable, disregarding the influence of additional covariates. Second, we employ a

variable selection method, such as stepwise selection or LASSO, on a set of factors

to choose the most important factors affecting the latent trait. Even though such

a two-step procedure is easy to implement in practice, it produces biased estimates

of regression parameters and tends to yield unsatisfactory prediction performance.

To enhance the accuracy and reliability of variable selection results, we propose an

innovative method for variable selection.
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Chapter 2

Random Effects Selection

2.1 New Methodology

A significant body of literature has been dedicated to selecting random effects, with

a predominant focus on the selection of individual random effects. However, in the

context of this dissertation, we present a novel methodology that specifically targets

the selection of grouped random effects as opposed to individual random effects.

Recall from (1.5), the linear mixed model can be written as

yi = Xiβ +Zibi + ϵi, i = 1, 2, . . . ,m, (2.1)

where yi = (yi1, . . . , yini
) is a ni × 1 vector of observations for subject i, Xi =

(Xi1, . . . ,Xini
)⊤ is a ni × p design matrix of fixed-effect covariates for subject i,

β = (β1, . . . , βp)
⊤ is a p × 1 vector of fixed-effect coefficients, Zi = (Zi1, . . . ,Zini

)⊤

is a ni × q design matrix of random-effect covariates for subject i, bi = (bi1, . . . , biq)

is a q vector of random-effect coefficients and ϵi = (ϵi1, . . . , ϵini
) is a ni × 1 random

error vector. Like ML and REML estimations, we also assume that bi and ϵi follow

a normal distribution, respectively. To be specific, bi ∼ N(0, σ2D) where the matrix
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D is a symmetric and positive semi-definite matrix, and ϵi
iid∼ N(0, σ2Ini

) where Ini

is an ni×ni identity matrix with all 1’s on the diagonal. Therefore, it can be derived

that the responses of the ith cluster yi also follows a multivariate normal distribution

with mean vector Xiβ and variance-covariance σ2Vi with Vi = Ini
+ZiDZ⊤

i . It has

been discussed that the selection rule of random effects is based on the underlying

structure of the variance-covariance matrixD. Specifically, if the jth random effect is

unimportant, then its corresponding variance is zero. Consequently, this is equivalent

to setting all elements in both the jth column and the jth row of matrix D to zero.

Let θ denote the parameter vector of the linear mixed model in (2.1) with θ =

(β,D)⊤. One common method to estimate the parameter vector θ is by the method

of maximum likelihood (Laird & Ware, 1982), which gives the ML estimators, also

called MLE. The MLE can be obtained by maximizing the log-likelihood function:

l(θ, σ2) = −1

2
N log σ2 − 1

2

m∑
i=1

logVi −
1

2σ2 (yi −Xiβ)
⊤V −1

i (yi −Xiβ). (2.2)

It is known that the log-likelihood function in (2.2) is maximized at

σ̂2
MLE =

1

N

m∑
i=1

(yi −Xiβ)
TV −1

i (yi −Xiβ). (2.3)

By Lindstrom & Bates (1988) and Wolfinger et al. (1994), if we substitute (2.3) into

the log-likelihood function in (2.2), we will have an equivalent objective function but

with σ2 eliminated, that called variance-profile log-likelihood function. To make it

simple, we call it the profile log-likelihood function. Then, the profile log-likelihood

function of the model in (1.5) is given by:

pF (θ) = −1

2

m∑
i=1

log |Vi| −
N

2

m∑
i=1

((yi −Xiβ)
⊤V −1

i (yi −Xiβ)). (2.4)
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If the variance-covariance matrix of the random effects D is known, the ML estimate

of the coefficients of the fixed effects can be found by the generalized least squares:

β̂ML =

(
m∑
i=1

X⊤
i V

−1
i Xi

)−1( m∑
i=1

X⊤
i V

−1
i yi

)
.

Since there is no simple expression for the ML estimator of the covariance compo-

nents, e.g., D, it requires some iterative techniques, such as the EM algorithm and

Newton-Raphson algorithm, to find the solutions. Moreover, since ML estimation

does not account for the loss of degrees of freedom incurred during the estimation

of the fixed effects, the ML estimates of the covariance component are known to

be biased. Therefore, restricted ML (REML) estimation would be preferred in the

estimation of covariance. The restricted log-likelihood is defined as:

lR(θ, σ
2) = l(θ, σ2)− 1

2
log

∣∣∣∣∣ 1σ2

m∑
i=1

X⊤
i V

−1
i Xi

∣∣∣∣∣ , (2.5)

where l(θ, σ2) is the log-likelihood function from (2.2). By maximizing (2.5) with

respect to σ2, the REML estimate of σ2 can be obtained as:

σ̂2
REML =

1

N − p

m∑
i=1

(yi −Xiβ)
⊤V −1

i (yi −Xiβ). (2.6)

Then, the profile restricted log-likelihood function can be obtained by replacing σ2

defined in (2.5) with σ̂2
REML defined in (2.6), which is given by:

pR(θ) = −1

2
log

∣∣∣∣∣
m∑
i=1

Xi
⊤Vi

−1Xi

∣∣∣∣∣− 1

2

m∑
i=1

log |Vi| −
1

2
(N − p) log

[
m∑
i=1

ri
⊤Vi

−1ri

]
(2.7)

with ri = yi −Xiβ.

REML estimation accounts for the degree of freedom lost by estimating the fixed
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effects; thus, it provides unbiased estimates of the covariance components. Due to

such attractive property, we propose to use the restricted log-likelihood function in

our objective function. To make optimization iteration converge in fewer steps, we

also adopt the profile restricted log-likelihood function by replacing σ2 with σ̂2
REML

defined in (2.6). Also, optimizing the profile log-likelihood needs simpler derivatives

and has more consistent convergence (Lindstrom & Bates, 1988). To guarantee the

positive-definiteness of the estimated variance-covariance matrix D during compu-

tation, we apply the Cholesky decomposition, i.e., D = LLT , where L is a lower

triangular matrix with non-negative diagonal entries and L⊤ is its conjugate trans-

pose. We take advantage of Cholesky decomposition because it is numerically stable

and accurate (Turing, 1948). Therefore, instead of estimating D, we focus on esti-

mating the decomposed matrix L. Additionally, since we are especially interested in

selecting important grouped random effects, we adopt a group LASSO type penalty

(Yuan & Lin, 2006) in the framework of linear mixed models.

Assume there are G groups of random effects, and the gth group has ug covariates

for g = 1, . . . , G. We also call ug as the group size for the gth group. For g =

1, . . . , G, we define a vector Lg as a vectorization of all the row vectors of matrix L

corresponding to the gth group:

Lg = vec(Lg∗),

where Lg∗ corresponds to all row vectors that belong to the gth group.

For illustration on finding Lg, let us assume we obtain a 5 × 5 matrix L after
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decomposing on the variance-covariance matrix D, which is



l11 0 0 0 0

l21 l22 0 0 0

l31 l32 l33 0 0

l41 l42 l43 l44 0

l51 l52 l53 l54 l55


.

We also assume that the first three rows belong to the first group while the last two

rows correspond to the second group. Next, we can obtain Lg for g = 1, 2 as below

L1 = (l11, 0, 0, 0, 0, l21, l22, 0, 0, 0, l31, l32, l33, 0, 0)
⊤ (2.8)

and

L2 = (l41, l42, l43, l44, 0, l51, l52, l53, l54, l55)
⊤. (2.9)

Then, we define the penalty term as

G∑
g=1

√
ug||Lg||2, (2.10)

where G is the number of groups of random effects, ug is the number of variables

within gth group, and || · ||2 represents L2 norm. The L2 norm, also called the

Euclidean norm, is the square root of the sum of the squares of the vector’s compo-

nents. For example, if a vector x = (x1, x2)
⊤, then its L2 norm can be calculated

by ||x||2 =
√

x2
1 + x2

2. If we use L1 and L2 in (2.8) and (2.9) as an example, we can

calculate

||L1||2 =
√

l211 + l221 + l222 + l231 + l232 + l233 (2.11)
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and

||L2||2 =
√

l241 + l242 + l243 + l244 + l251 + l252 + l253 + l254. (2.12)

Therefore, in this example, we can obtain the penalty term in (2.10) as

2∑
g=1

√
ug||Lg||2 =

√
3 · ||L1||2 +

√
2 · ||L2||2,

where ||L1||2 and ||L2||2 are calculated as (2.11) and (2.12), respectively, and µ1 = 3

and µ2 = 2 because there are 3 and 2 covariates in each group.

Finally, we propose to minimize the following objective function:

Q(L) = −pR(L) + λ
G∑

g=1

√
ug||Lg||2, (2.13)

where pR(L) is the restricted profile log-likelihood function defined in (2.5), G is

the number of groups of random effects, ug is the number of variables within gth

group, Lg is the vector of elements associated with gth group, and λ ≥ 0 is a tuning

parameter. By leveraging the property of the group LASSO penalty, which enables

the coefficients of variables within a group to be shrunk to zero, our method extends

this capability to the row vectors of matrix L corresponding to the same group,

effectively shrinking it towards zero. Let Dg = (dg1, · · · , dgµg
)⊤, where dgj indicates

the diagonal elements of the matrix D corresponding to the gth group. Then, for

any given g, we have the following selection rule at the group level:

Lg = 0 ⇐⇒ Dg = 0 ⇐⇒ gth group is not important

If all row vectors of matrix L corresponding to the gth group are successfully shrunk

to zero, it implies that the corresponding variances in matrix D are also shrunk

to zero. This observation indicates that the considered group does not significantly
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contribute as a random effect group.

2.2 Computational Algorithm

Solving L directly from (2.13) is challenging. Inspired by Lin & Zhang (2006) and Li

et al. (2018), we utilize a transformation to reframe the original objective function

into a more easily solvable equivalent form.

Proposition 2.1 Given any β and λ, consider two objective functions as follows:

Q1(L|β) = −pR(L|β) + λ
G∑

g=1

√
ug||Lg||2 (2.14)

Q2(L,γ|β) = −pR(L|β) +
G∑

g=1

γg
2 +

λ2

4

G∑
g=1

ug

γ2
g

||Lg||22 (2.15)

Let L̂g be the minimizer of (2.14) and (L̃g, γ̃g) be the minimizer of (2.15). Then,

it can be proved:

L̂g = L̃g, g = 1, . . . , G

γ̃2
g =

λ

2

√
ug||L̃g||2, g = 1, . . . , G (2.16)

Proposition 2.1 states that instead of minimizing (2.14) with respect to L directly

to find the solution for L, it is equivalent to minimizing (2.15) iteratively between Lg

and γg. When γg is fixed, the objective function (2.15) looks similar to a generalized

ridge regression problem. Thus, we can use the Newton-Raphson algorithm to solve

it. When Lg’s are fixed, γ̃g can be obtained based on (2.16).

The Newton-Raphson algorithm is a widely adopted iterative method to find the

optimizer of a function. Assume we want to optimize a function f(t) with respect to
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t. Denote t(r) as parameter estimates at rth iteration, t(r+1) as updated parameter

estimates at (r + 1)th iteration, g(t)(r) as gradient vector of f(t) with respect to

t, H(t)(r) as the Hessian matrix of f(t) with respect to t, and λ(r) as step length.

Then, the process of the Newton-Raphson algorithm is repeated as

t(r+1) = t(r) − λ(r)H(t)(r)
−1
g(t)(r), r = 0, 1, · · ·

until a convergence criterion is reached. Newton-Raphson algorithm tends to con-

verge fast, especially when initial estimates are close to the true solution. Also,

it is easy to implement if gradient and Hessian matrix are available. Therefore,

the Newton-Raphson algorithm is applied during the optimization procedure in our

method.

We derive the gradient and Hessian matrix with respect to L for the term pR(L|β)

in (2.15). The following notations will be used in the derivation. Let

vi = Zi
⊤Vi

−1ri be a q × 1 vector with ri = yi −Xiβ,

Bi = Zi
⊤Vi

−1Zi ⊗ vivi
⊤ be a q2 × q2 matrix,

Ci = Z⊤
i Vi

−1Xi be a q × p matrix,

Hi = X⊤V −1X be a p× p matrix,

L̃ = diag(L, . . . ,L) be a q2 × q2 matrix,

and ⊗ denote the Kronecker product. By Lindstrom & Bates (1988), we can obtain
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the first and second derivative of the first term in (2.7) as

∂ log |
∑m

i=1Xi
⊤Vi

−1Xi|
∂vec(L)

= L̃

(
∂ log |

∑m
i=1Xi

⊤Vi
−1Xi|

∂vec(D⊤)
+

∂ log |
∑m

i=1 Xi
⊤Vi

−1Xi|
∂vec (D)

)

= L̃

[
−vec

(
m∑
i

CiH
−1C⊤

i

)
− vec

(
m∑
i

CiH
−1C⊤

i

)]
,

(2.17)

and

∂2 log |
∑m

i=1Xi
⊤Vi

−1Xi|
∂(L(k))⊤∂L(j)

=

(
∂ log |X⊤V −1X|

∂Djk

+
∂ log |X⊤V −1X|

∂Dkj

)
I

+ 2L

(
∂2 log |X⊤V −1X|

∂D[k]∂D(j)
+

∂2 log |X⊤V −1X|
∂(D(k))⊤∂(D(j))

)
L⊤,

(2.18)

where D[k] denotes the kth row of D and D(j) denotes the jth column of D. To

compute (2.18), we use the following information:

∂ log |X⊤V −1X|
∂Djk

= −
m∑
i

tr
[
H−1X⊤

i (V
−1
i Z

(j)
i Z

(k)
⊤

i Vi)Xi

]
,

and

∂2 log |X⊤V −1X|
∂vec(D⊤)⊤∂vec(D)

= −

[∑
i

(Ci(H
− 1

2 )⊤ ⊗Ci(H
− 1

2 )⊤)

]
×

[∑
i

(H− 1
2C⊤

i )⊗ ((H− 1
2C⊤

i )

]

+ 2
∑
i

[
CiH

−1C⊤
i ⊗Z⊤

i V
−1
i Zi +Z⊤

i V
−1
i Zi ⊗CiH

−1C⊤
i

]
.

For the second term in (2.7), the first and second derivatives can be derived as

∂ log |Vi|
∂vec(L)

= L̃

(
∂ log |Vi|
∂vec(D⊤)

+
∂ log |Vi|
∂vec(D)

)
= L̃

(
vec(Z⊤

i V
−1
i Zi) + vec(Z⊤

i V
−1
i Zi)

)
,

(2.19)
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and

∂2 log |Vi|
∂(L(k))⊤∂L(j)

=

(
∂ log |Vi|
∂Djk

+
∂ log |Vi|
∂Dkj

)
I

+ 2L

(
∂2 log |Vi|
∂D[k]∂D(j)

+
∂2 log |Vi|

∂D(k)⊤∂D(j)

)
L⊤.

(2.20)

We use the following information to compute (2.20):

∂ log |Vi|
∂Djk

= tr
(
V −1

i V −1
i Z

(j)
i (Z

(k)
i )⊤V −1

i

)
,

and

∂2 log |Vi|
∂vec(D⊤)⊤∂vec(D)

= −Z⊤
i V

−1
i Zi ⊗Z⊤

i V
−1
i Zi.

For the third term in (2.7), the first and second derivatives can be derived as

∂r⊤
i V

−1
i ri

∂vec(L)
= L̃

(
∂r⊤

i V
−1
i ri

∂vec(D⊤)
+

∂r⊤
i V

−1
i ri

∂vec(D)

)

= L̃
(
−vec(viv

⊤
i )− vec(viv

⊤
i )
) (2.21)

and

∂2r⊤
i V

−1
i ri

∂(L(k))⊤∂L(j)
=

(
∂r⊤

i V
−1
i ri

∂Djk

+
∂r⊤

i V
−1
i ri

∂Dkj

)
I

+ 2L

(
∂2r⊤

i V
−1
i ri

∂D[k]∂D(j)
+

∂2r⊤
i V

−1
i ri

∂D(k)⊤∂D(j)

)
L⊤

(2.22)

We use the following information to compute (2.22):

∂2r⊤
i V

−1
i ri

∂Djk

= −r⊤
i V

−1
i Z

(j)
i (Z

(k)
i )⊤V −1

i ri,
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and

∂2r⊤
i V

−1
i ri

∂vec(D⊤)⊤∂vec(D)
= Bi +B⊤

i .

Since the variance-covariance matrix D is symmetric in our model (1.5), that is

D = D⊤. The derivation formula described in (2.17) to (2.22) can be much simplified

in coding.

Consequently, the detailed optimization steps can be applied as below:

• Step 1: Initialize β(0),L(0)
g and γ(0)

g with some feasible values. For example, we

initialize β with the ML estimates of fixed effects and Lg for g = 1, . . . , G with

Cholesky decomposition of REML estimates on variance components. Both

ML and REML estimates can be obtained by lmer function in R. Additionally,

we initialize γg with constant 1’s for g = 1, . . . , G.

• Step 2: For the rth iteration, update Lg by minimizing the following function:

−pR(L|β̂(r−1)) +
G∑

g=1

γ(r−1)
g

2
+

λ2

4

G∑
g=1

ug

γ(r−1)
2

g

||Lg||22 (2.23)

where β̂(r−1) and γ(r−1)
g are the estimates of β and γg from the r − 1th step.

To optimize (2.23), we implement the Newton-Raphson algorithm.

• Step 3: Update γg using

γ(r)
2

g =
λ

2

√
ug||L(r)

g ||2

• Step 4: Update β(r) using

β(r) = (X⊤V (r)
−1

X)−1X⊤V (r)
−1

y,

where V (r) = Ini
+ZiD

(r)Z⊤
i with D(r) = L(r)L(r)⊤.
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• Step 5: When maxg

{∣∣∣L(r)
g −L(r−1)

g

∣∣∣} is smaller than a threshold value, we

stop the iterations and consider it as convergence. Otherwise, let r = r+1 and

repeat Steps 2 to 4 until the convergence criterion mentioned above is met. In

the simulation, we use 0.0001 as our threshold value.

2.3 Selection of Tuning Parameter λ

The choice of tuning parameter λ in (2.14) and (2.15) plays an important role in

model performance. A proper tuning parameter would result in better selection

performance. Many selection criteria have been discussed in Sections 1.2.1 and 1.4.

We adopt a modified BIC as a selection criterion that defined as

BICR = −2× pR(L̂) + log(N)× dfR, (2.24)

where dfR is the number of non-zero diagonal elements in the estimated variance-

covariance matrix D and N is the total number of observations. In the simulations,

we select the tuning parameter λ that results in the minimum value of BICR.

2.4 Simulation Studies

In the simulation studies, we are interested in the selection performance of the pro-

posed method under various scenarios. We use the following measurements to mea-

sure the performance of our simulation studies: the number of zero coefficients that

are correctly estimated as zero (denoted as ‘CZ’), the number of non-zero coefficients

that are incorrectly set to zero (denoted as ‘IZ’), the number of unimportant groups

which are correctly estimated as unimportant groups (denoted as ‘CZ∗’), the number

of important groups which are incorrectly set to zero (denoted as ‘IZ∗’), the number
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of non-zero coefficients that are correctly estimated as non-zero (denoted as ‘CN ’),

the number of important groups that are correctly selected(denoted as ‘CN∗’), the

number of models that select non-zero individual coefficients correctly( denoted as

‘F ’), the number of models that select important groups correctly(denoted as ‘F ∗’),

the frequency of selecting the correct model (denoted as ‘C’), the frequency of over-

selecting variables (denoted as ‘O’), and the frequency of under-selecting variables

(denoted as ‘U ’).

2.4.1 Setting

We perform 100 runs for each scenario, and the median performance is recorded.

We use BIC defined in (2.24) as our selection criterion to choose the best tuning

parameter. We make the assumption that neither the fixed intercept nor the random

intercept is included in the model. We consider three different scenarios.

Example 1: We consider n = 50 subjects and ni = 5 observations per subject. The

true model with p = 6 for fixed effects and q = 7 for random effects. The true fixed

effects vector β = (2, 2, 2, 0, 0, 0)T and the true covariance matrix

D =



1 0.7 0.49 0 0 0 0

0.7 1 0.7 0 0 0 0

0.49 0.7 1 0 0 0 0

0 0 0 1 0.7 0 0

0 0 0 0.7 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.

The first three columns correspond to one group, while the middle two columns
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correspond to the second group. The last two columns belong to an unimportant

group.

The response Yij follows:

Yij = 2Xij,1 + 2Xij,2 + 2Xij,3 + 0Xij,4 + 0Xij,5 + 0Xij,6

+bi1Zij,1 + bi2Zij,2 + bi3Zij,3 + bi4Zij,4 + bi5Zij,5 + ϵij,

for i = 1, . . . , 50 and j = 1, . . . , 5.

We generate simulated data using the following assumed distributions:

• Xi ∼ MVN(0, Ip)

• Zi ∼ MVN(0, Iq)

• Yi ∼ MVN(Xiβ, σ2(ZiDZ⊤
i + Ini

)) with σ2 = 1

Then, we simulate data with different numbers of observations for each subject,

such as n = 50, n = 100, and n = 200.

Example 2: The setup is the same as example 1, except the true variance-covariance

matrix D becomes

D =



1 0.5 0.5 0 0 0 0

0.5 1 0.5 0 0 0 0

0.5 0.5 1 0 0 0 0

0 0 0 1 0.5 0 0

0 0 0 0.5 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.
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We also consider different sample sizes with n = 50, 100, and 200.

Example 3: We decrease the dimension of random effects to 6. There are still three

groups of random effects. The last column of D refers to an unimportant group of

random effects. And the true variance-covariance D is given by

D =



1 0.1 0.3 0 0 0

0.1 0.2 0.1 0 0 0

0.3 0.1 0.6 0 0 0

0 0 0 1 0.5 0

0 0 0 0.5 1 0

0 0 0 0 0 0


.

Other simulation setting is the same as Example 1.

2.4.2 Results

We present a summary of the random effects selection results for each example in

Table 2.1 through Table 2.6. We also compare the performance with methods from

Bondell et al. (2010) and Pan & Shang (2018). For each measurement, we report the

median in the tables. The ‘Oracle’ row in each table represents the true values of

measurements from simulated datasets.

Based on the measurement results presented in Tables 2.1 and 2.2, several findings

can be made. In Example 1, with subjects of 50, our method and Bondell’s method

exhibit commendable performance in selecting variables such as CZ, IZ, CZ∗, and

IZ∗. However, Pan’s method does not perform well on CZ and CZ∗, as it tends to

overselect random effects. Thus, their method leads to difficulties in identifying the

correct ones in this case. As the sample size increases to 100, all methods demonstrate
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Table 2.1: Random effects selection results for Example 1 with seven measurements:
CZ, CZ∗, IZ, IZ∗, C, U and O

Example 1 Method CZ IZ CZ∗ IZ∗ C U O

n=50

Proposed 2 0 1 0 88 0 12

Bondell 2 0 1 0 60 16 24

Pan 0 0 0 0 19 8 72

n=100

Proposed 2 0 1 0 89 0 11

Bondell 2 0 1 0 82 0 18

Pan 2 0 1 0 90 0 10

n=200

Proposed 2 0 1 0 98 0 2

Bondell 2 0 1 0 64 0 37

Pan 2 0 1 0 100 0 0

Oracle 2 0 1 0 100 0 0

Table 2.2: Random effects selection results for Example 1 with four measurements:
CN , CN∗, F and F ∗

Example 1 Method CN CN∗ F F ∗

n=50

Proposed 5 2 83 100

Bondell 5 2 74 95

Pan 5 2 100 100

n=100

Proposed 5 2 100 100

Bondell 5 2 92 98

Pan 5 2 100 100

n=200

Proposed 5 2 98 100

Bondell 5 2 100 100

Pan 5 2 100 100

Oracle 5 2 100 100
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Table 2.3: Random effects selection results for Example 2 with seven measurements:
CZ, CZ∗, IZ, IZ∗, C, U and O

Example 2 Method CZ IZ CZ∗ IZ∗ C U O

n=50

Proposed 2 0 1 0 83 3 14

Bondell 2 0 1 0 54 18 28

Pan 0 0 0 0 19 7 74

n=100

Proposed 2 0 1 0 90 2 8

Bondell 2 0 1 0 80 0 20

Pan 2 0 1 0 92 0 8

n=200

Proposed 2 0 1 0 98 0 2

Bondell 2 0 1 0 52 0 48

Pan 2 0 1 0 100 0 0

Oracle 2 0 1 0 100 0 0

improved selection performance, with a notable increase in the frequency of selecting

the correct model. Upon reaching 200 subjects, our approach and Pan’s method

exhibit similar and satisfactory selection performance, while Bondell’s method faces

convergence challenges, resulting in worse performance. It is worth noting that Table

2.2, which measures the selection of non-zero random effects, shows seemingly perfect

results for all three methods. However, it is essential to consider the insights from

Table 2.1 alongside Table 2.2 to gain a comprehensive understanding. For instance,

when n = 200, Bondell’s method achieves an oracle value of 100 for both F and

F ∗. However, this outcome results from Bondell’s method preferring to overselect

variables. Therefore, we need to simultaneously read Table 2.1 with Table 2.2 to

have accurate insights.

From Tables 2.3 and 2.4, which present the selection results from Example 2, we

observe similar performance patterns to those seen in Example 1. When n = 50,

our method demonstrates the best performance, while Bondell’s method performs



56

Table 2.4: Random effects selection results for Example 2 with four measurements:
CN , CN∗, F and F ∗

Example 2 Method CN CN∗ F F ∗

n=50

Proposed 5 2 97 100

Bondell 5 2 82 98

Pan 5 2 93 96

n=100

Proposed 5 2 98 100

Bondell 5 2 100 100

Pan 5 2 100 100

n=200

Proposed 5 2 100 100

Bondell 5 2 100 100

Pan 5 2 100 100

Oracle 5 2 100 100

adequately, and Pan’s method exhibits the weakest performance in terms of CZ, CZ∗,

and C. As the sample size increases to 100, all methods show improved performance

compared to the sample size of 50. When the sample size increases to 200, our

method and Pan’s method achieve highly accurate selection.

Example 3 involves a smaller dimension for the variance-covariance matrix and

thus results in faster computational speed compared to the previous examples. Addi-

tionally, some variance components are considerably small in this case. Table 2.5 and

2.6 provide insights into the performance of each method for this example. For small

sample sizes n = 50, our method consistently demonstrates the best performance,

while Bondell’s and Pan’s methods tend to underselect variables. Specifically, in

terms of IZ, Pan’s method exhibits a large value, which indicates a significant loss

of information during the selection process. For n = 100, all methods improve their

selection performance in terms of C and U , with fewer underselected models. As the

sample size increases to 200, all methods exhibit further improvements in selection
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Table 2.5: Random effects selection results for Example 3 with seven measurements:
CZ, CZ∗, IZ, IZ∗, C, U and O

Example 3 Method CZ IZ CZ∗ IZ∗ C U O

n=50

Proposed 1 0 1 0 79 19 2

Bondell 1 1 1 0 48 46 6

Pan 1 4 1 1 25 55 20

n=100

Proposed 1 0 1 0 91 9 0

Bondell 1 0 1 0 70 19 11

Pan 1 0 1 0 55 45 0

n=200

Proposed 1 0 1 0 92 8 0

Bondell 1 0 1 0 72 13 15

Pan 1 0 1 0 80 20 0

Oracle 1 0 1 0 100 0 0

Table 2.6: Random effects selection results for Example 3 with four measurements:
CN , CN∗, F and F ∗

Example 3 Method CN CN∗ F F ∗

n=50

Proposed 5 2 81 90

Bondell 4 2 36 96

Pan 4 2 25 100

n=100

Proposed 5 2 91 95

Bondell 5 2 63 93

Pan 5 2 55 100

n=200

Proposed 5 2 92 100

Bondell 5 2 87 100

Pan 5 2 80 100

Oracle 5 2 100 100
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performance across all measurements. Notably, our method outperforms the other

methods in this scenario.

In conclusion, our method demonstrates superior performance when the number

of subjects is small. However, as the number of subjects increases, our and Pan’s

methods exhibit comparable performance.

2.5 Real Data Example

We apply the proposed method to the early childhood longitudinal study for the

Kindergarten Class of 1998-99 (ECLS-K), which tracks children’s early school expe-

riences from kindergarten through middle school. We enter several candidate random

effects into the proposed method to choose the most important ones and use the pro-

posed BICR defined in (2.24) to tune the parameter.

2.5.1 Description

ECLS-K is a longitudinal study that follows the developmental progress of the same

group of children from kindergarten through 8th grade. The information is collected

at seven different time points: in the fall and the spring of Kindergarten (1998-99),

the fall and spring of 1st grade (1999-2000), the spring of 3rd grade (2002), the spring

of 5th grade (2004), and the spring of 8th grade (2007) (Early Childhood Longitudinal

Studies Program - Kindergarten Class of 1998-99 , 1998-2007). Much information is

collected, including information about the child, family, school, and their testing

scores. This study collects a wide range of information, including details about the

child, their family, school, and their test scores.

We focus on looking at the reading score of children (Y ) and how it relates to

several factors of children and their families. We use N = 1050 subjects after data
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Table 2.7: ECLS-K data set variable descriptions

Variable Type Description

READING Continuous Reading score (from 50− 116)

BMI Continuous Body mass index

LANGST Categorical If the child speaks English at home (1.No; 2.Yes)

PORVTY Categorical If the child’s family is below the poverty threshold

(1=No; 2=Yes)

FAMTYPE Categorical Family type

(1=Two parents; 2=One parent; 3=other)

SIBLS Categorical If the child has siblings

(1=No sibling; 2=One sibling; 3=More than one)

cleaning. Additionally, we choose p = 5 variables as fixed effects, including BMI,

LANGST, PORVTY, FAMTYPE, and SIBLS, and q = 5 same variables as random

effects. Table 2.7 provides detailed variable information, and the first category for

each variable is referred to as the reference group. Consequently, we build the model

for describing the reading score of the ith student at the jth measurement as

Yij =β1BIMij + β2I(LANGSTij = 2) + β3I(PORVTYij = 2)

+ β4I(FAMTYPEij = 2) + β5I(FAMTYPEij = 3)

+ β6I(SIBLSij = 2) + β7I(SIBLSij = 3)

+ b1BIMij + b2I(LANGSTij = 2) + b3I(PORVTYij = 2)

+ b4I(FAMTYPEij = 2) + b5I(FAMTYPEij = 3)

+ b6I(SIBLSij = 2) + b7I(SIBLSij = 3),

where β’s are the coefficients for fixed effects and b’s are the coefficients for random

effects.
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Table 2.8: Selection and estimation results on ECLS-K data set

Random effect Variable REML Our method

BMI 0.18 0

LANGST (YES) 0.59 0.52

POVRTY (NO) 0.21 0.18

FAMTYPE (1 parent) 0.05 0.0003

FAMTYPE (other) 0.32 0.28

SIBLS (1 sibling) 0.12 0

SIBLS (more siblings) 0.03 0

2.5.2 Results

Our method selects three out of five random effects, which are LANGST, PORVRT,

and FAMTYPE. It indicates that whether students speak English at home, whether

their family is below the poverty line, and their family type are significant random

effects for their reading scores, while students’ BMI and whether the student has

siblings are not important. Table 2.8 presents the selection results and estimation of

the variance of each variable.
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Chapter 3

Variable Selection in Latent

Variable Models

3.1 New Methodology

Our research question is how to select important factors related to the latent variable.

The two-step approach mentioned in Section 1.5.2 is an ad-hoc approach. The first

step is estimating the latent traits by ignoring the covariates, and the second is

applying variable selection strategies. One of the most frequently used selection

methods is stepwise selection because it is easy to implement in practice. However,

there are some drawbacks to using stepwise selection. First, since stepwise selection

choose variables based on parameter inference (Chatfield, 1995), it may lead to biased

parameter estimation. Second, stepwise selection results are not stable and reliable.

The results could be affected by selection criterion, the order of input covariates,

or the number of candidates parameters (Derksen & Keselman, 1992). Motivated

by such problems, we propose a new method for selecting important factors. This

involves incorporating a penalty term into the marginal likelihood of item responses.

In this dissertation, we only consider the unidimensional latent regression IRT
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models. Let us use Y to represent the N × J matrix of item responses and X to

represent the N × p matrix of covariates of N subjects. We can also use yi to denote

the item response vector for the ith subject, which has dimensions of J×1. Similarly,

the covariate vector for the ith subject can be represented by xi and has dimensions

of p× 1. Denote a vector of all item parameters by Γ. Let θi be the latent trait for

the ith subject and P (yi|θi;Γ) indicate the likelihood of the response vector yi given

θi. Due to the assumption of local independence, as we mentioned in Section 1.5.2,

P (yi|θi;Γ) is the product of P (yij|θi;Γj) for j = 1, . . . , J . Equivalently,

P (yi|θi;Γ) =
J∏

j=1

P (yij|θi;Γj),

where yij is the item response on the jth test item for subject i and Γj is a vector of

item parameters for the jth item.

For each subject i, it is assumed that

θi|xi = x⊤
i β + ei, (3.1)

where β is a p-dimensional vector of latent regression coefficients and error term

ei ∼ N(0, σ2) for i = 1, . . . , N . Thus, the distribution of the latent trait conditioned

on fixed covariates follows a normal distribution with mean x⊤
i β and variance σ2.

In other words, the mean of each subject’s latent trait is defined by both individual

covariates and regression coefficients. Let ϕ(θi;x
⊤
i β, σ

2) denote the normal density

with mean x⊤
i β and variance σ2. It has the mathematics form defined as

ϕ(θi;x
⊤
i β, σ

2) =
1

σ
√
2π

exp

(
−(θi − x⊤

i β)
2

2σ2

)
.

The joint likelihood function of item responses yi and θi for each subject is shown
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as below:

Li(yi, θi;Γ) =
N∏
i=1

J∏
j=1

P (yi|θi;Γ)ϕ(θi;x⊤
i β, σ

2). (3.2)

The joint likelihood function can be used to estimate latent traits and item param-

eters. However, it results in asymptotically inconsistent estimates for many IRT

models (Y. Chen et al., 2018). Due to this limitation, the marginal likelihood func-

tion is often preferred as an alternative. In addition, since the parameter θi in (3.2)

is not observable and with the assumption that it comes from a fixed mean vector

related to xi and β, the marginal likelihood function is a more appropriate choice

for estimation in the proposed method.

Therefore, by integrating out the latent trait in (3.2), the marginal likelihood of

a response vector yi can be derived from (3.2), which is given by

Li(Γ,β, σ
2|yi,xi) =

∫
P (yi|θi;Γ)ϕ(θi;x⊤

i β, σ
2)dθi (3.3)

and the marginal likelihood for all N subjects is given by

L(Γ,β, σ2|Y ,X) =

∫ N∏
i=1

P (yi|θi;Γ)ϕ(θi;x⊤
i β, σ

2)dθi. (3.4)

By taking log on (3.3) and (3.4), the log marginal likelihood for the ith individual

is obtained as

logLi(Γ,β, σ
2|yi,xi) = log

∫
P (yi|θi;Γ)ϕ(θi;x⊤

i β, σ
2)dθi (3.5)

and the log marginal likelihood for all N subjects can be represented as

logL(Γ,β, σ2|yi,xi) =
N∑
i=1

log

∫
P (yi|θi;Γ)ϕ(θi;x⊤

i β, σ
2)dθi. (3.6)
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Evaluating the integral part in (3.6) is a big challenge in computation because it

lacks tractable analytical solutions. To overcome this challenge, we apply a second-

order approximation approach (Shun, 1997; Andersson & Xin, 2021), which is able to

approximate the integral more accurately and efficiently under the latent regression

IRT model. Specifically, the second-order Laplace approximation utilizes up to 4th

order of the function to make an approximation.

Now we adapt the second-order Laplace approximation method (Andersson &

Xin, 2021) to calculate the integration in (3.6) in detail. The Laplace approximation

was introduced as a method to approximate the integral of the form:

I(J) =

∫
e−Jh(x)dx, (3.7)

where 0 < J < ∞ and h(x) being a smooth function with a unique minimum at

x0 ∈ Rp.

Let H0 be a p× p matrix, H0 =
∂2h(x)

∂x∂x⊤

∣∣∣∣
x=x0

. Then, the integral in (3.7) can be

written as in Shun (1997)

I(J) =

(
2π

J

)p/2

|H0|−1/2e−Jh(x0)(1 +RJ + · · · ),

with

RJ = − 1

2J

[
1

4

∑
ijkl

hijklbikbjl −
∑
ijkrst

hijkhrst ×
(
1

4
birbjkbst +

1

6
birbjsbkt

)]
,

where {bjk} refer to the entries in H−1
0 ,

hijk =
∂3h

∂xi∂xj∂xk
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and

hijkl =
∂4h

∂xi∂xj∂xk∂xl

.

For a subject i, a multidimensional latent regression IRT model is defined by

θi|xi ∼ N(x⊤
i β,Σ),

where θi is a vector of multidimensional latent traits, Σ is the variance-covariance

matrix of latent traits, and xi and β are the same as defined in (3.1). Let

hi(θ) = − log
[
P (yi|θ;Γ)φ(θ;x⊤

i β,Σ)
]
, (3.8)

where P (yi|θ;Γ) represents the likelihood of response vector yi given θ andφ(θ;x⊤
i β,Σ)

represents the probability density function of θ, and let θ̂i be the minimizer of

hi(θ), i = 1, . . . , N . Then, the proposed second-order Laplace approximation (An-

dersson & Xin, 2021) of the marginal likelihood of responses for the ith subject can

be represented as

LLap2
i (Γ,β,Σ|yi,xi) = (2π)p/2

∣∣∣∣∣∣ ∂
2hi(θ)

∂θ∂θ⊤

∣∣∣∣θ=θ̂i

∣∣∣∣∣∣
−1/2

e−hi(θ̂i)(1 + ϵ0), (3.9)

with

ϵ0 = −1

2

[
1

4

p∑
j=1

∂4ĥi

∂θ4j
b2i,jj −

1

2

p∑
j=1

p∑
k=1

∂3ĥi

∂θ3j

∂3ĥi

∂θ3k
(bi,jkbi,jjbi,kk + b3i,jk)

]
,

where bi,jj is the jth column and jth row entry of the inverse of a p × p matrix

Hi =
∂2hi(θ)

∂θ∂θ⊤

∣∣∣∣θ=θ̂i

, and ĥi = hi(θ̂i). By taking log of (3.9), it is straightforward to
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obtain the approximated log marginal likelihood for the i subject:

lLap2i (Γ,β,Σ|yi,xi) =
p

2
log(2π)− 1

2
log

∣∣∣∣∣∣ ∂
2hi(θ)

∂θ∂θ⊤

∣∣∣∣θ=θ̂i

∣∣∣∣∣∣− hi(θ̂i) + log(1 + ϵ0).

Given our focus on a unidimensional latent regression IRT model defined in (3.1),

where only one latent variable is taken into account, the application of the second-

order Laplace approximation approach becomes more straightforward. We define a

function of the latent trait hi(θ), where

hi(θ) = − log
[
P (yi|θ;Γ)ϕ(θ;x⊤

i β, σ
2)
]
, (3.10)

and thus (3.5) can be written in terms of (3.10) as

Li(Γ,β, σ
2|yi,xi) =

∫
θ

e−hi(θ)d(θ).

Let θ̂i be the minimizer of hi(θ) defined in (3.10) for i = 1, . . . , N . For notation sim-

plicity, we let ĥ = hi(θ̂i), which represents the value of hi(θ) when θ = θ̂i. Addition-

ally, we use hm(θ̂i) for m = 1, . . . , 4 to represent the mth order of hi(θ) respectively,

when θ = θ̂i. Consequently, by applying the second-order Laplace approximation

on (3.5), the approximated marginal likelihood of responses vector yi for each ith

individual can be derived as

LA
i (Γ,β, σ

2|yi,xi) =
√
2π ĥ

− 1
2

2 e−ĥ

(
1− ĥ4

8ĥ2
2

+
5ĥ2

3

24ĥ3
2

)
. (3.11)

We can derive one more step to obtain the log marginal likelihood from (3.11), which
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is given by

logLA
i (Γ,β, σ

2|yi,xi) =
1

2
log(2π)− 1

2
log(ĥ2)− ĥ+ log

(
1− ĥ4

8ĥ2
2

+
5ĥ2

3

24ĥ3
2

)
. (3.12)

Therefore, the log marginal likelihood of responses for all N individuals is defined as

logLA(Γ,β, σ2|Y ,X) =
N∑
i=1

logLA
i (Γ,β, σ

2|yi,xi).

In addition to incorporating the likelihood function, our method involves adding

a shrinkage penalty on latent regression coefficients β. Specifically, we choose the

group LASSO type penalty, which takes L2 norms on coefficients of grouped variables.

This choice is motivated by the predominant presence of factors, which are categorical

variables, in large-scale educational assessment programs. As mentioned in Section

1.3.7, group LASSO shrinks variables at the group level instead of the individual

level. The group LASSO penalty holds a distinct advantage in effectively selecting

categorical variables. By utilizing this advantageous property, our approach adopted

the group LASSO penalty to improve the identification of factors that are significantly

associated with the latent trait.

Assume there are m groups of predictors and the number of coefficients in the lth

group is pl with l = 1, . . . ,m. Finally, we propose to minimize the following objective

function

Q(β) = −
N∑
i=1

logLA
i (Γ,β, σ

2|yi,xi) + λ
m∑
l=1

√
pl||β(l)||2, (3.13)

where logLA
i (Γ,β, σ

2|yi,xi) is the approximated marginal likelihood defined in (3.12),

β(l) represents latent regression coefficients associated with the lth group, and λ ≥ 0

is the tuning parameter. The next step is to minimize (3.13) with respect to β to

find the best latent regression coefficients.
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3.2 Explicit Formulation for 2PL IRT Models

We present the explicit formulation for a two-parameter logistic (2PL) model as

described in Section 1.5.1.2. The 2PL model is particularly useful for analyzing

binary item responses, such as those encountered in multiple-choice questions, where

the response options are either correct or incorrect. In general, the 2PL model allows

items to vary in terms of their easiness and their ability to discriminate. It also

assumes a zero probability of a correct guess on an item. Therefore, two parameters

in the model refer to the easiness parameter (b) and the discrimination parameter

(a). In some literature, the easiness parameter is often represented as the difficulty

parameter by changing its sign, and the two ways of the formulation are equivalent.

We consider a 2PL model with a latent regression structure for the following

derivation. Assume there are J test items and N test takers. The probability that

the ith test taker whose latent trait is described by θi will answer the test item j

correctly has been given in (1.8). Recall (1.9) and (3.1), the marginal likelihood of

test responses Y for N test takers is

L(Y |θ;a, b) (3.14)

=
N∏
i=1

[∫
θi

J∏
j=1

exp(ajθi + bj)

1 + exp(ajθi + bj)

Yij 1

1 + exp(ajθi + bj)

(1−Yij)

ϕ(θi;x
⊤
i β, σ

2)dθi

]
,

where a = (a1, . . . , aJ)
⊤ is a vector of discrimination parameters, b = (b1, . . . , bJ)

⊤

is a vector of easiness parameters of J test items, and ϕ(θi;x
⊤
i β, σ

2) represents the

probability density function of θi. Based on the assumption (3.1), the probability

density function of a normal distribution with mean zero and variance σ2 is used for

ϕ(θi;x
⊤
i β, σ

2), that is given by

ϕ(θi;x
⊤
i β, σ

2) =
1

σ
√
2π

exp

{
−(θi − x⊤

i β)
2

2σ2

}
.
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To adopt the second-order Laplace approximation on the integral in (3.14), we

first write down the h∗
i (θ) based on (3.10) in the following form

h∗
i (θ) = − log

[
J∏

j=1

eajθi+bj

1 + eajθi+bj

Yij
1

1 + eajθi+bj

1−Yij

ϕ(θi;x
⊤
i β, σ

2)

]
(3.15)

= − log

{
J∏

j=1

eajθi+bj

1 + eajθi+bj

Yij
1

1 + eajθi+bj

1−Yij 1

σ
√
2π

exp

[
−(θi − x⊤

i β)
2

2σ2

]}

= −
J∑

j=1

[
Yij log

eajθi+bj

1 + eajθi+bj
+ (1− Yij) log

1

1 + eajθi+bj

]

−
[
−1

2
log(2π)− 1

2
log σ2 − 1

2σ2 (θi − xT
i β)

2

]
.

Hence, we can derive the first derivative and even higher orders of h∗
i (θ) with

respect to θ. The first derivative of h∗
i (θ) are derived as

∂h∗
i (θ)

∂θ
= −

J∑
j=1

aj ·
[(

ebjYij − ebj
)
eajθi+Yij

]
eajθi+bj + 1

+
θi − xT

i β

σ2 . (3.16)

Then, we obtain the higher order, including 2nd, 3rd and 4th order, of h∗
i (θ) with

respect to θ via continuing to take derivative on (3.16), which are presented as

∂2h∗
i (θ)

∂2θ
=

J∑
j=1

a2je
ajθi+bj[

eajθi+bj + 1
]2 +

1

σ2 (3.17)

∂3h∗
i (θ)

∂3θ
= −

J∑
j=1

a3j ·
[
eajθi+bj − 1

]
eajθi+bj[

eajθi+bj + 1
]3 (3.18)

∂4h∗
i (θ)

∂4θ
=

J∑
j=1

a4je
ajθi+bj ·

[
e2ajθi+2bj − 4eajθi+bj + 1

]
(
eajθi+bj + 1

)4 . (3.19)

Since θ̂i is the minimizer of hi
∗(θ) defined in (3.15) and it is needed in approximating
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the marginal likelihood function, we employ an optimization method on hi
∗(θ) to

find θ̂i for i = 1, . . . , N . The detail will be described in (3.3). Once θ̂i is obtained

for each subject, we are able to plug in its value into the first to the fourth order of

h∗
i (θ) derived in (3.16) to (3.19) and then approximate the marginal likelihood based

on (3.12) for N subjects on J test items for a 2PL model.

To estimate other parameters, including item parameters a, b, and σ, the gra-

dients of the objective function with respect to those parameters are required for

computation. Since the explicit forms of Hessian matrices are considerably chal-

lenging to find in our case, we employ a modified Newton-Raphson algorithm by

approximating the Hessian matrix based on information from gradients. Therefore,

gradients play an important role in the optimization procedure. The general opti-

mization steps will be described in Section 3.3. In the following part of this section,

we provide explicit forms of gradients with respect to different parameters, which are

utilized in computing the vectors of the gradient.

Let

ĥ = h∗
i (θ), ĥ2 =

∂2h∗
i (θ)

∂2θ
, ĥ3 =

∂3h∗
i (θ)

∂3θ
, ĥ4 =

∂4h∗
i (θ)

∂4θ
,

with θ = θ̂i and γ = (a⊤, b⊤)⊤. For each subject i, the gradient of the approximated

marginal likelihood function with respect to γ can be represented as

∂ logLA
i (Yi|θ;Γ,β, σ2)

∂γ
= − 1

2ĥ2

· ∂ĥ2

∂γ
− ∂ĥ

∂γ
+

∂ log(1 + τ)

∂γ
, (3.20)

with

τ = − ĥ4

8ĥ2
2

− 5ĥ2
3

24ĥ3
2

.

Each term in (3.20) can be achieved by plugging in the required derivative to it.

Therefore, we present all derivatives in the following part. For j = 1, . . . , J , we have
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∂ĥ

∂aj
= −Yije

−aj θ̂i−bj ·
(
eaj θ̂i+bj + 1

) θ̂ie
aj θ̂i+bj

eaj θ̂i+bj + 1
− θ̂ie

2aj θ̂i+2bj(
eaj θ̂i+bj + 1

)2


+
θ̂i ·
(
1− Yij

)
eaj θ̂i+bj

eaj θ̂i+bj + 1
, (3.21)

∂ĥ2

∂aj
= −

2aj θ̂
2
i e

2aj θ̂i+2bj(
ej

aj θ̂i+bj + 1
)3 +

aj θ̂
2
i e

aj θ̂i+bj(
eaj θ̂i+bj + 1

)2 +
2aje

aj θ̂i+bj(
eaj θ̂i+bj + 1

)2 , (3.22)

∂ĥ3

∂aj
= −

aj θ̂
3
i e

2aj θ̂i+2bj(
eaj θ̂i+bj + 1

)3 +
3aj θ̂

3
i ·
(
eaj θ̂i+bj − 1

)
e2aj θ̂i+2bj(

eaj θ̂i+bj + 1
)4

−
aj θ̂

3
i ·
(
eaj θ̂i+bj − 1

)
eaj θ̂i+bj(

eaj θ̂i+bj + 1
)3 −

3a2j ·
(
eaj θ̂i+bj − 1

)
eaj θ̂i+bj(

eθ̂iaj+bj + 1
)3 , (3.23)

and

∂ĥ4

∂aj
= −

4aj θ̂
4
i e

2aj θ̂i+2bj ·
(
ej

2aj θ̂i+2bj − 4ej
aj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)5
+

a4je
aj θ̂i+bj ·

(
2θ̂ie

2aj θ̂i+2bj − 4θ̂ie
aj θ̂i+bj

)
(
eaj θ̂i+bj + 1

)4
+

aj θ̂
4
i e

aj θ̂i+bj ·
(
e2aj θ̂i+2bj − 4eaj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)4
+

4a3je
aj θ̂i+bj ·

(
e2aj θ̂i+2bj − 4eaj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)4 ,

(3.24)
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By plugging (3.23) and (3.24),
∂ log(1 + τ)

∂aj
can be obtained as

∂ log(1 + τ)

∂aj
(3.25)

=

(
1− ĥ4

8ĥ2
2

+
5ĥ2

3

ĥ3
2

)−1

−
8
∂ĥ4

∂aj
ĥ2
2 − 16

∂ĥ2

∂aj
ĥ4ĥ2

(8ĥ2
2)

2
+

240
∂ĥ3

∂aj
ĥ3
2ĥ3 − 360

∂ĥ2

∂aj
ĥ2
3ĥ

2
2

(24ĥ3
2)

2

 .

Similar derivations are also required for b. For each subject i, the needed deriva-

tives with respect to bj are provided as below:

∂ĥ

∂bj
= −

(
eaj θ̂iYij − eaj θ̂i

)
ebj + y

eaj θ̂i+bj+ + 1
, (3.26)

∂ĥ2

∂bj
=

a2je
aj θ̂i+bj(

eaj θ̂i+bj + 1
)2 −

2a2je
2aj θ̂i+2bj(

eaj θ̂i+bj + 1
)3 , (3.27)

and

∂ log(1 + τ)

∂bj
(3.28)

=

(
1− ĥ4

8ĥ2
2

+
5ĥ2

3

ĥ3
2

)−1

−
8
∂ĥ4

∂bj
ĥ2
2 − 16

∂ĥ2

∂bj
ĥ4ĥ2

(8ĥ2
2)

2
+

240
∂ĥ3

∂bj
ĥ3
2ĥ3 − 360

∂ĥ2

∂bj
ĥ2
3ĥ

2
2

(24ĥ3
2)

2

 ,

where

∂ĥ3

∂bj
=

a3je
aj θ̂i+bj ·

(
e2aj θ̂i+2bj − 4eaj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)4 (3.29)
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and

∂ĥ4

∂bj
=

a4je
aj θ̂i+bj ·

(
2e2aj θ̂i + 2bj − 4eaj θ̂i+bj

)
(
eaj θ̂i+bj + 1

)4 (3.30)

−
4a4je

2aj θ̂i+2bj ·
(
e2aj θ̂i+2bj − 4eaj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)5
+
a4je

aj θ̂i+bj ·
(
e2aj θ̂i+2bj − 4eaj θ̂i+bj + 1

)
(
eaj θ̂i+bj + 1

)4 .

For the gradient with respect to the variance σ2 described in (3.1), we use the

following explicit forms. To avoid negative values for σ2 during optimization, we

focus on updating the standard error σ instead. Then, we have

∂ĥ

∂σ
=

1

σ
−

(
θ̂i − xiβ

)2
σ3 , (3.31)

∂ĥ2

∂σ
= − 2

σ3 , (3.32)

∂ĥ3

∂σ
=

∂ĥ4

∂σ
= 0.

All terms in (3.20) have now been expressed in explicit forms with respect to a

from (3.21) to (3.25), b from (3.26) to (3.30) and σ from (3.31) to (3.32). Additionally,

we need the following derivatives to complete the gradient based on (3.33)

∂2ĥi

∂θ∂aj
= −

(
e2bjYij − e2bj

)
e2aj θ̂i +

(
−ebjaj θ̂i + 2ebjYij − ebj

)
eaj θ̂i + Yij(

eaj θ̂i+bj + 1
)2 ,

∂2ĥi

∂θ∂bj
= −

aj ·
[(

ebjYij − ebj
)
eaj θ̂i + Yij

]
eaj θ̂i+bj + 1

,
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and

∂2ĥi

∂θ∂σ
= −

2
(
θ̂i − xiβ

)
σ3 .

3.3 Computational Algorithm

In order to solve (3.13), the Newton-Raphson algorithm is not an appropriate choice

because such an optimization algorithm requires the calculation of the inverse of the

Hessian matrix. However, in our case, obtaining the exact form of the inverse Hessian

matrix with respect to β is exceptionally challenging. As a result, we implement

quasi-Newton methods to find the optimizer, as these methods have the capability to

approximate the inverse Hessian matrix using the gradient during the computation

process. This enables us to effectively operate the optimization process without using

an exact inverse Hessian matrix.

Let Ω denote the parameter vector, including item parameters and variance com-

ponent. According to Andersson & Xin (2021), for each ω ∈ Ω, the gradient with

respect to parameter vector is written as

∇ =
N∑
i=1

∇i =
N∑
i=1

∂ logLA
i (Ω,β|yi,xi)

∂ω
+

∂θi
∂ω

· ∂ logL
A
i (Ω,β|yi,xi)

∂θ
. (3.33)

By employing a quasi-Newton method, we can represent the updating formula for

the parameter vector at r + 1th step as follows:

Ω(r+1) = Ω(r) − λ(r)
s B−1∇(r), (3.34)

where Ω(r) represents the estimated parameter vector at rth step, λ(r)
s represents

the step length used at rth step and B is the approximated Hessian matrix based

on the gradient at rth step, ∇(r). Many literatures have studied the methods that
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approximate the Hessian matrix based on the gradient vector obtained in (3.33).

Berndt–Hall–Hall–Hausman (BHHH) (Berndt et al., 1974) algorithm is one of the

widely used quasi-Newton methods. It substitutes the Hessian matrix with the outer

product of the gradient. The BHHH algorithm relies on the information matrix equal-

ity, which is an approximation of the expected Hessian matrix. Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;

Shanno, 1970) is another frequently utilized quasi-Newton method in practice. The

BFGS algorithm is an iterative procedure that aims to find the optimum value of an

objective function. It gradually improves an approximation of the Hessian matrix by

iteratively updating the gradient via a generalized secant method. According to the

experience shared by Andersson & Xin (2021), it has been observed that the BFGS

approximation achieves better convergence rates for small sample sizes. However, it

takes a significantly higher number of iterations to converge in comparison to the

BHHH approximation. Therefore, it is recommended to use BFGS if the sample size

is small, whereas BHHH is more suitable for larger sample sizes.

The detailed optimization procedure of the proposed method can be summarized

below:

• Step 1: Initialize item parameters Γ, variance σ2, regression coefficients β and

latent trait θi for i = 1, . . . , N with some feasible values. And the initial values

are denoted as Γ(0), σ2(0), β(0) and θi
(0) respectively. θi

(0) is obtained by fitting

an IRT model without considering any predictors in ltm R package. We choose

constant vectors for Γ(0) and β(0), such vectors with all 1’s. For σ2(0), we use 1

as the initial value.

• Step 2: update the latent trait θi
(r) for i = 1, . . . , N by minimizing

hi(θ) = − log
[
P (yi|θ;Γ)ϕ(θ;x⊤

i β, σ
2)
]
.



76

Specifically, we use BFGS algorithm for the optimization of the latent trait.

• Step 3: update Γ(r) and σ2(r) using BHHH algorithm based on (3.34)

• Step 4: update β(r) using group LASSO

• Step 5: When the largest difference between all parameters in step r and step

r − 1 is smaller than a threshold value, we stop the iterations and consider

it as convergence. Otherwise, let r = r + 1 and repeat Steps 2 to 4 until

the convergence criterion mentioned above is met. In the simulation, we use

0.00001 as our threshold value.

In Step 4 above, we employ a fast unified algorithm, proposed by Yang & Zou (2015),

to solve group LASSO problems.

3.4 Selection of Tuning Parameter λ

The tuning parameter λ in (3.13) plays an essential role in selecting important groups

of covariates because it determines the strength of the penalty applied to the vari-

ables. When λ grows bigger, it shrinks more coefficients towards zero. Conversely,

as λ decreases, fewer coefficients are shrunk, and more variables are included in the

model. Therefore, an appropriate value of λ is crucial for our proposed variable

selection method.

As mentioned in Section 1.2.1.9, GCV is a shortcut of LOOCV, and it is more

computationally efficient than the traditional cross-validation approach. We propose

to use the GCV style statistic in our method, which is defined by

GCV (λ) =
1

N

N∑
i=1

(
θ̂i − x⊤

i β̂

1− p(λ)/N

)2

, (3.35)
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where θ̂i and β̂ are estimated from our method, and p(λ) represents the effective

degrees of freedom. Let W1 = diag(|β̂j|), W2 = diag(2|β̂j|), and W−
1 and W−

2

denote a generalized inverse matrix of W1 and W2 respectively. We consider four

versions of p(λ) in (3.35) :

• GCV1: p(λ) = trace{X(X⊤X + λW−
1 )−1X⊤}

• GCV2: p(λ) = the number of non-zero coefficients in β̂.

• GCV3: p(λ) = trace{X(X⊤X+λW−
1 )−1X⊤}− number of zero coefficients in β̂.

• GCV4: p(λ) = trace{X(X⊤X+λW−
2 )−1X⊤}− number of zero coefficients in β̂.

We select the best λ that results in the smallest value of GCV defined in (3.35). In

Section 3.5.2, we will utilize those four different versions of GCV and compare the

selection performance based on them.

3.5 Simulation Studies

3.5.1 Setting

To examine the performance of the proposed method, we perform simulation studies

with several various settings. We also compare results with the two-step approach

mentioned in Section 1.5.2. Specifically, in the first step, we fit a unidimensional

IRT model to estimate item parameters and the latent trait without considering a

set of covariates, and in the second step, we use either stepwise selection or LASSO

for variable selection. To estimate parameters in the first step, we implement ltm

package in R (Rizopoulos, 2006). This package uses the Gauss-Hermite quadrature

rule to estimate the integral in the marginal likelihood function. In the simulation

studies, we mainly focus on a 2PL model that has been mentioned in Section 1.5.1.2.
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The 2PL model contains two item parameters: discrimination (a) and easiness (b).

The responses to test items are binary, taking values of either 1 (indicating a correct

response) or 0 (indicating a wrong response). Moreover, We use the following several

measurements to measure the performance of each approach: the number of zero

coefficients that are correctly estimated as zero (denoted as ‘CZ’), the number of

non-zero coefficients that are incorrectly set to zero (denoted as ‘IZ’), the number of

unimportant groups which are correctly estimated as unimportant group (denoted as

‘CZG’), the number of important groups which are incorrectly set to zero (denoted as

‘IZG’), the frequency of selecting the correct model (denoted as ‘C’), the frequency of

over-selecting models (denoted as ‘O’) and the frequency of under-selecting models

(denoted as ‘U ’). To measure the performance of estimation on latent regression

coefficients, we apply the root mean squared error (RMSE) defined as

RMSE =

∑I
i=1

√
||β(i) − β||2/p

I
,

where β(i) represents the estimated coefficients vector at ith replication, β represents

the true values of coefficients, p represents the number of covariates and I is the

number of total replications. We collect I = 100 observations for each simulation

setting, and the medians are recorded.

• Example 1: In this example, we mimic the setting with the NAEP sample

data that will be used in Section 3.6. There are N = 2000 subjects and J = 15

question items. The set of covariates follows a similar distribution to the NAEP

sample data. For the latent regression coefficients, we set

β =(0,−0.8,−0.3, 0.2,−0.5,−0.2, 0.6,−0.6,−0.1, 0.2, 0.3,−0.1,−0.2,

0.1,−0.3,−0.2,−0.7, 0, 0, 0, 0.1, 0.2, 0.2, 0.3, 0, 0, 0, 0)⊤
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There are nine categorical variables in total, and the group size for each vari-

able, that is, the number of dummy variables converted from each variable, is

1, 5, 2, 4, 1, 4, 3, 4, and 4. Specifically, the 1st, 7th, and the last group are unim-

portant factors. Additionally, we generate item parameters a from a uniform

distribution between 0.3 and 2 and b from a uniform distribution between -2

and 2.

• Example 2: 6 variables Z1,. . . , Z6 are generated by a multivariate normal

distribution with mean zeros and covariance between Zi and Zj being 0.5|i−j|.

Then, we created 6 groups of categorical variables corresponding to Z1, . . . , Z6

respectively. Then, Z1 is categorized as 0, 1, 2, 3, 4 if it is less than Φ−1(1
5
),

between Φ−1(1
5
) and Φ−1(2

5
), between Φ−1(2

5
) and Φ−1(3

5
), between Φ−1(3

5
) and

Φ−1(4
5
) or greater than Φ−1(4

5
). Z2 and Z3 are categorized as 0, 1, 2, 3 if it is

less than Φ−1(1
4
), between Φ−1(1

4
) and Φ−1(1

2
), between Φ−1(1

2
) and Φ−1(3

4
), or

greater than Φ−1(3
4
). Z4, Z5 and Z6 are categorized as 0,1,2 if it is less than

Φ−1(1
3
), greater than Φ−1(2

3
) or in between. The latent trait for each subject i

was generated from

θi =I(Z1i = 0)− I(Z1i = 1)− I(Z1i = 3) + I(Z1i = 4)

+ I(Z2i = 0)− 0.5I(Z2i = 1)− 0.5I(Z2i = 3)

+ 0.5I(Z3i = 0) + 0.5I(Z3i = 1)− (Z3i = 3)

+ I(Z4i = 0)− I(Z4i = 2) + ϵi,

where I(·) is the indicator function. The error term ϵi is assumed to follow a

normal distribution with mean 0 and variance 1. Then, we simulated a test

response data with

– Case 1 : N = 500 test takers and J = 20 test items
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– Case 2 : N = 1000 test takers and J = 40 test items

with item parameters

b ∼ Uniform(−2, 2),

a = (1, 1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2),

and a vector of latent trait θ = (θ1, . . . , θm)
⊤ for m = 1, . . . , 500.

• Example 3: Same setup as example 2 except the latent trait for the subject

i is now given by:

θi =0.7I(Z1i = 0)− 0.7I(Z1i = 1)− 0.5I(Z1i = 3) + 0.5I(Z1i = 4)

+ 0.4I(Z2i = 0)− 0.1I(Z2i = 1)− 0.1I(Z2i = 3)

+ 0.2I(Z3i = 0) + 0.1I(Z3i = 1)− 0.6I(Z3i = 3)

+ 0.3I(Z4i = 0)− 0.3I(Z4i = 2) + ϵi

We also consider two cases:

– Case 1 : N = 500 test takers and J = 20 test items

– Case 2 : N = 1000 test takers and J = 40 test items

• Example 4: 8 variables Z1,. . . , Z8 are generated by a multivariate normal

distribution with mean zeros and covariance between Zi and Zj being 0.5|i−j|.

Then we created 8 groups of categorical variables corresponding to Z1, . . . , Z8

respectively. Then, Z1 is categorized as 0, 1, 2, 3, 4, 5 if it is less than Φ−1(1
6
),

between Φ−1(1
6
) and Φ−1(2

6
), between Φ−1(2

6
) and Φ−1(3

6
), between Φ−1(3

6
) and

Φ−1(4
6
),between Φ−1(4

6
) and Φ−1(5

6
) or greater than Φ−1(5

6
). Z2 is categorized

as 0, 1, 2, 3, 4 if it is less than Φ−1(1
5
), between Φ−1(1

5
) and Φ−1(2

5
), between

Φ−1(2
5
) and Φ−1(3

5
), between Φ−1(3

5
) and Φ−1(4

5
)or greater than Φ−1(4

5
). Z3,
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Z4 and Z5 are categorized as 0, 1, 2, 3, 4 if they are less than Φ−1(1
4
), between

Φ−1(1
4
) and Φ−1(1

2
), between Φ−1(1

2
) and Φ−1(3

4
), or greater than Φ−1(3

4
). Z6

and Z7 are categorized as 0,1,2 if it is less than Φ−1(1
3
), greater than Φ−1(2

3
) or

in between. Z8 is categorized as either 0 or 1 if it is either less than or greater

than Φ−1(1
2
).

Latent trait for each subject i was generated from:

θi = 0.5I(Z1i = 0)− 0.5I(Z1i = 1)− 0.5I(Z1i = 3) + 0.5I(Z1i = 4)

− 0.5I(Z1i = 5) + 0.5I(Z1i = 6)

+ 0.5I(Z2i = 0) + 0.1I(Z2i = 1)− 0.1I(Z2i = 3) + 0.1(Z2i = 4)

− 0.2(Z2i = 5)

+ 0.2I(Z3i = 0)− 0.4I(Z3i = 1) + 0.1(Z3i = 3)− 0.4I(Z3i = 4)

+ 0.1I(Z4i = 0)− 0.5I(Z4i = 2)− 0.3I(Z4i = 3) + 0.1I(Z4i = 4) + ϵi,

where I(·) is the indicator function. The error term ϵi is assumed to follow a

normal distribution with mean 0 and variance 1. Then, we simulated a test

response data with

– Case 1 : N = 500 test takers and J = 20 test items

– Case 2 : N = 1000 test takers and J = 40 test items

with item parameters

b ∼ Uniform(−2, 2),

a = (1, 1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2),

and a vector of latent trait θ = (θ1, . . . , θm)
⊤,m = 1, . . . , 500.
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Table 3.1: Grouped variable selection results of Example 1

N J Method CZ IZ CZG IZG C O U RMSE

500 15

Proposed (GCV1) 8 0 3 0 26 40 34 0.2193

Proposed (GCV2) 8 0 3 0 29 35 36 0.2185

Proposed (GCV3) 8 0 3 0 29 35 36 0.2185

Proposed (GCV4) 8 0 3 0 29 35 36 0.2185

2-step (stepwise) 8 3 5 2 0 0 100 0.4503

2-step (LASSO) 3 0 0 0 0 10 86 0.3558

2000 15

Proposed (GCV1) 8 0 3 0 33 34 33 0.1722

Proposed (GCV2) 8 0 3 0 34 34 32 0.1724

Proposed (GCV3) 8 0 3 0 34 34 32 0.1724

Proposed (GCV4) 8 0 3 0 34 34 32 0.1724

2-step (stepwise) 8 3 5 2 3 0 97 0.4398

2-step (LASSO) 3 0 0 0 1 5 94 0.3672

Oracle 8 0 6 0 100 0 0

3.5.2 Results

We present the simulation results using the measurements as mentioned earlier in Ta-

bles 3.1 to 3.4. Additionally, we include the performance of the two-step approaches,

which utilize stepwise selection based on BIC and LASSO, separately. We assess the

variable selection performance at both the group and individual levels.

Table 3.1 reports the performance of the proposed method and the other 2-step

approaches. The case N = 2, 000 and J = 15 mimics the applied real data, and the

proposed method outperforms the other two 2-step approaches. In particular, the

proposed method has better chances of selecting the true models and consistently

smaller RMSEs compared to the other approaches. The case N = 500 and J = 20 is

a more extreme case in the real world when there is a smaller number of examinees in
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Table 3.2: Grouped variable selection results for case 1 and case 2 of Example 2

N J Method CZ IZ CZG IZG C O U RMSE

500 20

Proposed (GCV1) 4 0 2 0 97 3 0 0.4138

Proposed (GCV2) 4 0 2 0 98 2 0 0.4140

Proposed (GCV3) 4 0 2 0 98 2 0 0.4140

Proposed (GCV4) 4 0 2 0 98 2 0 0.4140

2-step (stepwise) 4 0 2 0 100 0 0 0.4353

2-step (LASSO) 1 0 0 0 1 99 0 0.9076

1000 40

Proposed (GCV1) 4 0 2 0 81 19 0 0.2301

Proposed (GCV2) 4 0 2 0 85 15 0 0.2201

Proposed (GCV3) 4 0 2 0 85 15 0 0.2201

Proposed (GCV4) 4 0 2 0 85 15 0 0.2201

2-step (stepwise) 4 0 2 0 100 0 0 0.3924

2-step (LASSO) 1 0 0 0 8 92 0 0.9328

Oracle 4 0 2 0 100 0 0

the assessment. The proposed method has outperformed the other two approaches

on both variable selection and coefficient estimation.

Table 3.2 considers an ideal case where all coefficients are relatively large, and all

methods perform well on variable selection. The two-step stepwise approach ideally

selects all correct variables; however, as introduced in the previous section, two-step

approaches are biased; hence they have larger RMSEs in coefficient estimation than

the proposed method.

Table 3.3 considers the case where the number of groups and group size stays the

same with Table 3.2, but coefficients vary. The proposed method outperforms both

two-step approaches in a small sample size case of N = 500, and the performance

of the proposed method and two-step stepwise selection are comparable in a large

sample size case of N = 1000.
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Table 3.3: Grouped variable selection results for case 1 and case 2 of Example 3

N J Method CZ IZ CZG IZG C O U RMSE

500 20

Proposed (GCV1) 4 0 2 0 54 26 20 0.1521

Proposed (GCV2) 4 0 2 0 58 20 22 0.1503

Proposed (GCV3) 4 0 2 0 58 20 22 0.1503

Proposed (GCV4) 4 0 2 0 58 20 22 0.1503

2-step (stepwise) 4 2 2 1 20 1 79 0.1778

2-step (LASSO) 2 1 0 0 0 26 74 0.5012

1000 40

Proposed (GCV1) 4 0 2 0 80 7 13 0.1403

Proposed (GCV2) 4 0 2 0 81 10 9 0.1385

Proposed (GCV3) 4 0 2 0 81 10 9 0.1385

Proposed (GCV4) 4 0 2 0 81 10 9 0.1385

2-step (stepwise) 4 0 2 0 82 0 18 0.1325

2-step (LASSO) 1 0 0 0 1 51 48 0.5186

Oracle 4 0 2 0 100 0 0

Table 3.4 considers the case where both the number of groups and group size

increase and coefficients vary. The proposed method outperforms both two-step

approaches on variable selection and coefficient estimation for both small and large

sample sizes.

In conclusion, the two-step stepwise approach performs well under ideal cases

where all coefficients are large enough or when the sample size is large. The proposed

method outperforms two-step approaches under more sophisticated cases, which are

commonly seen in practice.
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Table 3.4: Grouped variable selection results for case 1 and case 2 of Example 4

N J Method CZ IZ CZG IZG C O U RMSE

500 20

Proposed (GCV1) 10 0 3 0 42 16 42 0.1519

Proposed (GCV2) 10 0 3 0 44 12 44 0.1501

Proposed (GCV3) 10 0 3 0 44 12 44 0.1501

Proposed (GCV4) 10 0 3 0 44 12 44 0.1501

2-step (stepwise) 12 9 4 2 2 0 98 0.1878

2-step (LASSO) 5 0 2 0 0 11 89 0.3810

1000 40

Proposed (GCV1) 12 0 4 0 65 9 22 0.1201

Proposed (GCV2) 12 0 4 0 70 11 18 0.1183

Proposed (GCV3) 12 0 4 0 70 11 18 0.1183

Proposed (GCV4) 12 0 4 0 70 11 18 0.1183

2-step (stepwise) 12 0 4 0 42 0 58 0.1298

2-step (LASSO) 5 0 0 0 2 16 72 0.3949

Oracle 12 0 4 0 100 0 0

3.6 Real Data Example

3.6.1 Description

We have implemented the proposed method for selecting grouped variables in the

datasets of the National Assessment of Educational Progress (NAEP) from 2005.

NAEP is an ongoing assessment program across the United States that evaluates

students’ academic performance in diverse subjects such as reading, mathematics,

science, and more. In this real data example, we focus on selecting several person

predictors that significantly affect the mathematics ability of a student.

We use a sample data set downloaded from R package ‘EdSurvey’ (Bailey et al.,

2023). The data set contains assessment responses on 17 items from 2348 8th-grade

students. We use those responses as our Y . Additionally, we are able to extract
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several person predictors for each student to construct a design matrix X. In par-

ticular, x1 is gender (0= white, 1= black, 2= Hispanic, 3= Asian/pacific islander),

4= American Indian/ Alaska Native, 5= other), x2 is gender (0=male, 1=female),

x3 is if the student classified as an English language learner (ELL) (0=yes, 1=no,

2= formerly ELL), x4 is parental education level (0=did not finish high school, 1=

graduated from high school, 2=some education after high school, 3=graduated col-

lege, 4=I don’t know), x5 is if students have access to a computer at home (0=yes,

1=no), x6 is the number of days absent from school last month (0=none, 1= 1 to 2

days, 2= 3 to 4 days, 3= 5 to 10 days, 4= more than 10 days), x7 is if the student

speaks a language other than English at home (0=never, 1=once in a while,2= half

the time, 3=all or most of the time), x8 is how often the student talks about studies

at home (0=never or hardly ever, 2=once every few weeks, 3= about once a week,

4= 2 or 3 times a week, 5=every day), x9 is how often the student uses comput-

ers to make up tests for individual students (0=never use computers, 1=sometimes

computers, 2=always use computers), x10 is how often the student uses computers

for individual tests (0=never use computers, 1=sometimes use computers, 2=always

use computers), x11 is how often the student uses math tool for math concepts as

a computer activity (0=never or hardly ever, 1=once or twice per month, 2=once

or twice a week, 3=almost every day), x12 is how often the student develops math

curricula and assignments as a computer activity (0=never or hardly ever, 1=once

or twice/month, 2=once or twice a week, 3=almost every day), x13 is how often

the student uses a gradebook program as a computer activity (0=never or hardly

ever, 1=once or twice/month, 2=once or twice a week, 3=almost every day), x14

is how often the student posts homework, schedule information as a computer ac-

tivity (0=never or hardly ever, 1=once or twice/month, 2=once or twice a week,

3=almost every day). In total, there are 14 categorical predictors. Since x11, x12,
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x13, and x14 all measure the frequency of performing computer activities, we treat

those as a group. Similarly, for x9 and x10, they both represent computer access for

students’ tests, so we also treat them as a group of predictors. Therefore, 10 groups

of predictors are entered into our method for variable selection.

3.6.2 Results

After applying our method to the NAEP sample data, we have successfully identified

several significant variables that related to the mathematics skill of those eighth grade

students. The selection results are listed in Table 3.5. We also have observed some

variables’ coefficients are shrunk to zero. In this case, we consider those variables

as unimportant, and they are listed in Table 3.6. Besides the proposed method, we

employ a two-step approach by using stepwise selection based on BIC. The selection

results are demonstrated in Table 3.9 and 3.10. Furthermore, we implement stepwise

selection by using plausible values provided in NAEP data as the response variable.

The selection results are presented in Table 3.7 and 3.8.

Based on the selection results of person predictors, we can see that our method

successfully selects six important predictors related to students’ math skills: students’

race, their parent’s education level, English Language Learner (ELL) status, if they

have computer access at home, how frequently they were absent last month and how

often students talk about study at home. The results of the estimated coefficients

of these predictors provide additional insights. Among different racial groups, white

students exhibit better mathematical abilities compared to other races, except for

Asian or Pacific Islander students, who have slightly higher math skills, although

the difference is relatively small. The math ability of students is also significantly

influenced by their ELL status. Non-ELL students and those who were formerly ELL

demonstrate considerably better skills.
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Table 3.5: Important predictors to mathematics ability of 8th-grade students and
their estimated coefficients from the proposed approach

Variable Coefficient

Race (White) - ref. -

Race (Black) -0.8796

Race (Hispanic) -0.5435

Race (Asian/Pacific Islander) 0.0686

Race (Amer Ind/ Alaska Native) -0.1404

Race (Other) -0.0402

English language learner (Yes) -ref. -

English language learner (No) 0.7232

English language learner (Formerly) 0.7004

Parental education level (Did not finish H.S) - ref. -

Parental education level (Graduated H.S) -0.0771

Parental education level (Some ed after H.S) 0.1356

Parental education level (Graduated college) 0.3088

Parental education level (I don’t know) -0.2298

Computer at home (Yes) - ref. -

Computer at home (No) -0.3180

Days absent from school last month (None) - ref. -

Days absent from school last month (1-2 days) -0.0935

Days absent from school last month (3-4 days) -0.3094

Days absent from school last month (5-10 days) -0.2372

Days absent from school last month (More than 10 days) -0.7268

Talk about study at home (Never) - ref. -

Talk about study at home (Once every few weeks) -0.0472

Talk about study at home (Once a week) 0.0484

Talk about study at home (2-3 times a week) 0.0823

Talk about study at home (Every day) -0.0292
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Table 3.6: Unimportant predictors to mathematics ability of 8th-grade students from
the proposed approach

Variable

Gender

Language other than English spoken at home

Use computers to make up tests for individual student

Use computers for individual tests for all students

Computer activities: Math tool for math concepts

Computer activities: Develop math curricula,assignments

Computer activities: Use a gradebook program

Computer activities: Post homework, schedule info

Furthermore, students whose parents have graduated from college demonstrate

the highest level of math ability. The presence of computer access at home is also pos-

itively associated with improved math skills. This finding highlights the significance

of accessing computers for student learning outcomes. Moreover, the frequency of

absence from last month negatively related to math skills. In other words, the more

absences a student has, the lower their math ability tends to be. Finally, the last

selected factor is how often the student talks about study at home. The coefficient

results show that students who engage in frequent discussions about their studies at

home tend to display better math skills.

There are several predictors have also been excluded from the final model. The

selection results show that students’ math skills are not significantly affected by

the following predictors: students’ gender, how often they speak a language other

than English spoken at home, computer access for student tests, and engagement in

multiple computer activities. For instance, irrespective of whether students speak a

language other than English at home, it does not appear to influence their learning

ability in mathematics.

In addition to using the proposed method, we also fit a linear model with plausible
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values as response and the same factors as covariates, followed by stepwise selection.

Plausible values are computed based on the posterior distribution of the latent trait

and can be regarded as estimations of the distribution of the latent trait. In the

sample NAEP data, six plausible values are available. Consequently, we compute

the average of these plausible values as our response variable.

Table 3.7 presents the important factors selected using this method, and Table

3.8 lists the insignificant factors. It is shown that the chosen variables are consistent

with those selected by the proposed method. In practice, the computation of plausible

values might be complicated; thus, plausible values may not be easily accessible in

real-world data.

Table 3.9 presents the selected factors using a two-step approach. In the first

step, we obtain the latent trait estimates from the ltm package and then perform

stepwise selection based on BIC. Compared to the proposed method and regression

on plausible values, the naive approach ignores two factors: whether the students

have access to a computer at home and how frequently they talk about study at

home. Including these two variables makes more sense since they are closely related

to students’ learning attitudes and resources. In today’s digital age, many learning

materials and resources are accessible through computers, and having more access to

computers could provide students with increased opportunities for studying.

In general, the two-step approach continues to exclude more variables in the final

model, as we have seen in simulation studies. Additionally, the selection results of

the proposed method align with the results obtained from modeling with plausible

values. Therefore, our method can be highly beneficial when plausible values are

unavailable in the assessment data.
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Table 3.7: Important predictors to mathematics ability of 8th-grade students and
their estimated coefficients from two-step approach based on plausible values

Variable Coefficient

Race (White) - ref. -

Race (Black) -0.8113

Race (Hispanic) -0.3591

Race (Asian/Pacific Islander) 0.1435

Race (Amer Ind/ Alaska Native) -0.5282

Race (Other) -0.3570

English language learner (Yes) -ref. -

English language learner (No) 0.6932

English language learner (Formerly) 0.6121

Parental education level (Did not finish H.S) - ref. -

Parental education level (Graduated H.S) -0.0951

Parental education level (Some ed after H.S) 0.2894

Parental education level (Graduated college) 0.4132

Parental education level (I don’t know) -0.1364

Computer at home (Yes) - ref. -

Computer at home (No) -0.2044

Days absent from school last month (None) - ref. -

Days absent from school last month (1-2 days) -0.0935

Days absent from school last month (3-4 days) -0.3094

Days absent from school last month (5-10 days) -0.2372

Days absent from school last month (More than 10 days) -0.7268

Talk about study at home (Never) - ref. -

Talk about study at home (Once every few weeks) -0.0054

Talk about study at home (Once a week) 0.2126

Talk about study at home (2-3 times a week) 0.2749

Talk about study at home (Every day) 0.0703
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Table 3.8: Unimportant predictors to mathematics ability of 8th-grade students from
two-step approach based on plausible values

Variable

Gender

Language other than English spoken at home

Use computers to make up tests for individual students

Use computers for individual tests for all students

Computer activities: Math tool for math concepts

Computer activities: Develop math curricula, assignments

Computer activities: Use a gradebook program

Computer activities: Post homework, schedule info

Table 3.9: Important predictors to mathematics ability of 8th-grade students and
their estimated coefficients from a two-step approach based on estimation from ltm
R package

Variable Coefficient

Race (White) - ref. -

Race (Black) -0.5981

Race (Hispanic) -0.2819

Race (Asian/Pacific Islander) 0.0982

Race (Amer Ind/ Alaska Native) -0.3220

Race (Other) -0.4034

English language learner (Yes) -ref. -

English language learner (No) 0.5020

English language learner (Formerly) 0.4884

Parental education level (Did not finish H.S) - ref. -

Parental education level (Graduated H.S) -0.0807

Parental education level (Some ed after H.S) 0.2387

Parental education level (Graduated college) 0.3186

Parental education level (I don’t know) -0.1536

Days absent from school last month (None) - ref. -

Days absent from school last month (1-2 days) -0.0682

Days absent from school last month (3-4 days) -0.2312

Days absent from school last month (5-10 days) -0.1603

Days absent from school last month (More than 10 days) -0.4936
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Table 3.10: Unimportant predictors to mathematics ability of 8th-grade students
from two-step approach based on estimation from ltm R package

Variable

Gender

Computer access at home

Talk about study at home

Language other than English spoken at home

Use computers to make up tests for individual student

Use computers for individual tests for all students

Computer activities: Math tool for math concepts

Computer activities: Develop math curricula,assigments

Computer activities: Use a gradebook program

Computer activities: Post homework, schedule information
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Chapter 4

Discussion & Future work

4.1 Discussion

In this dissertation, we developed new variable selection methods for identifying

grouped variables within linear mixed effects and latent variable models. Specifically,

we construct frameworks for a penalized likelihood selection approach by integrating a

group LASSO penalty into appropriate likelihood functions. In these two statistical

modelings, grouped variables are frequently seen in practice. However, selection

methods aimed at group-level selection remain largely unexplored. Therefore, our

approaches address such gaps and make variable selection more efficient and accurate.

In simulation studies on the linear mixed models, the proposed method demon-

strates superior performance in terms of selection accuracy compared to other meth-

ods. It is particularly effective when the sample size is small. It is known that

longitudinal studies usually involve small sample sizes due to the cost of collecting

observations. In this scenario, our method could be a great choice. In the simulation

studies related to the IRT models, our proposed method presents a superior capabil-

ity in detecting variables that have small coefficients but are significantly associated

with the latent variable, while the two-step approach tends to ignore them. In addi-



95

tion, the proposed method results in a better estimation of model parameters than

the two-step approach in both small and large samples. In practical applications,

this method could effectively identify critical factors that impact the latent variables

measured from test items.

We use two proposed methods on real education data. In the first topic, we use

longitudinal data from ECLS-K that follows a group of students from Kindergarten

through the 8th grade. We consider both continuous and categorical variables to

enter the model and perform random effects selection. The first proposed method is

able to select important random effects at the group level for grouped variables. In

the second topic, we use a sample NAEP data that contains item responses from 8th-

grade students in the U.S. We consider a set of candidate factors that might affect

students’ math skills and perform variable selection using the proposed method and

the traditional two-step approach. The second proposed method outperforms the

traditional two-step approach in estimating parameters and selection accuracy.

Nevertheless, there remain areas for potential improvement in these two projects.

For the first project, we can keep working on the computation part to make com-

putation more efficient. In the second topic, we can try more methods on tuning

parameters, such as cross-validation, to make selection and parameter estimation

even better. A suitable tuning parameter can closely affect the performance of pa-

rameter estimations and the selection of coefficients.

4.2 Future Work

There are potential extensions to my current research topics. In the linear mixed

model, it is common to consider selecting both grouped random effects and fixed

effects simultaneously. This is an important aspect to study in the future, as it will

help to determine the most informative variables. Moreover, I focused on variable
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selection in unidimensional item response theory models in this dissertation, which

considers one latent trait in the model. Multidimensional item response theory mod-

els extend the unidimensional IRT models by accounting for the possibility that

multiple latent traits or abilities may underlie the responses to test items. We can

extend our selection idea to multidimensional IRT models. Additionally, it would be

possible to explore latent trait selection for multidimensional IRT models in static

and dynamic setups.
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