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Abstract

Time series data, reecting phenomena like climate patterns and stock

prices, oer key insights for prediction and trend analysis. Contemporary re-

search has independently developed disparate geometric approaches to time

series analysis. These include tree methods, visibility algorithms, as well as

persistence-based barcodes common to topological data analysis. This the-

sis enhances time series analysis by innovatively combining these perspectives

through our concept of horizontal tunnelability. We prove that the level set

tree gotten from its Harris Path (a time series), is dual to the time series’ hor-

izontal tunnelability graph, itself a subgraph of the more common horizontal

visibility graph. This technique extends previous work by relating Merge, Chi-

ral Merge, and Level Set Trees together along with visibility and persistence

methodologies. Our method promises signicant computational advantages and

illuminates the tying threads between previously unconnected work. To facili-

tate its implementation, we provide accompanying empirical code and discuss

its advantages.

Keywords: harris path, random self-similar trees, time series, duals, visibility,

barcodes, topological data analysis, graphs
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1 Introduction

Just as Ted Harris noted that Walks and trees are abstractly identical objects

(Harris 10) so too is it commonly considered that planar graphs and their duals are

abstractly identical. The seminal observation by Harris led to the development of

what is now commonly termed the Harris correspondence by which trees are associ-

ated to an appropriate random walk or time series and vice versa. This has allowed

for the domain of time series analysis to be made applicable to studying trees. The

converse is true as well as various stochastic processes have been shown to be related

to certain distributions of random trees — the level set trees (Kovchegov and Zaliapin

14). We attempt to broaden this area of research by understanding such time-series

derived level set trees as graphs rst and hence as those possessing duals. There are

two aims of this work: one, is to produce eective metrics for time-series analysis

via such duals as has been produced before, and two is to potentially connect other

theoretical approaches together and give a deeper understanding of many at-present

unconnected methods.

Of particular consideration is the technology of horizontal visibility graphs for

time series which captures its dynamical ngerprints (Luque et al. 19). Horizontal

visibility graphs are not the rst graph-theoretic approach to time-series analysis

and are immediately preceded by visibility graphs/visibility algorithms. Unlike the

Harris correspondence by which an isomorphism is established between the graph

(the resulting tree) and the time series, these approaches typically do not yield such

a direct connection. Despite this lack of theoretical delity, these methods have

proven to be very eective at problems of signal vs. noise detection and distributional

discrimination. Our research aims to provide justication for such methods by relating

them back to the isomorphism that is rst obtained by the Harris correspondence via

duality.
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Although not typically considered a graph-theoretic approach, Time Series Merge

Trees also produce tree objects for time series analysis (Stephen 28). Typically these

objects are studied in the domain of computational algebraic topology and tools such

as persistent homology are used to study the time series (Goldfarb 9). There is

insucient cross-talk between this area of study and other similar approaches to time

series analysis as we will show that Time Series Merge Trees are precisely the same

as Chiral Merge Trees in other literature(Baryshnikov 3). Moreover, we will prove by

way of Horton Pruning the connection between this approach and level set trees.

Recently, a paper by Colin Stephen has shown that Horizon Visibility Graphs,

an extension of the aforementioned Horizontal Visibility Graphs, are dual to Time

Series Merge Trees (Stephen 28). Prior to this, earlier results were found by Zaliapin

and Kovchegov showing that the Harris path time series generating operation and

the level set tree generating operations are inverse to each other, and moreover that

the level set tree captures long-term information on the time series (such as the fact

that there is a correspondence between leaves on the tree and the maxima on the

time series)(Kovchegov, Zaliapin, and Foufoula-Georgiou 15). The dual construction

in the Stephen paper is what motivated studying the relationship between horizontal

visibility and the dual of a tree gotten as the level set tree of a corresponding time

series.

The main tool that we introduce is the concept of horizontal tunnelability and

horizontal tunnelability graphs. We will prove that horizontal tunnelability graphs on

U-shaped segments of a given time series is precisely the dual of its level set tree.

In doing so, we will additionally characterize the duals of all binary, rooted trees as

well as prove the level set trees are isomorphic to chiral merge trees. Although these

two results are simple, it was not found by the authors of this work anywhere in the

literature. Furthermore, we will also prove that the rst Horton pruning of the time
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series merge tree is the level set tree of the vertically ipped time series. Hence, this

connection allows us to formally explain the similarities between empirical analysis

of time series via level-set tree and time-series merge tree methods in the realms of

computational algebraic topology and topological data analysis. As such, our research

devises a new method for tree-based time series analysis and proves its relations to

many others, as well as relations between them.

Figure 1 summarizes the main relationships between our objects of study, in par-

ticular, the novel horizontal tunnelability graph. Starting from a time series X we

compute its ipped version −X (the time series multiplied by −1), its level set tree T

(isomorphic to the time-series inverted chiral merge tree CMT−, or that T− ∼= CMT),

the weighted path X̆, the series appended with ±∞ (X∞), as well as the time se-

ries merge tree TX̆ . From there we can compute the duals of these trees, that is,

the horizon visibility graph (T ∗
X̆

= HVG∞) and our horizontal tunnelability graphs

(T ∗ = HTG), which are related to the classic horizontal visibility graph (HVG). We

can additionally go back either via double duals, the Harris Path operation (HT = X),

or by one Horton pruning (R).

X T
Level(X)

HT

T ∗
HTG

TX̆

X̆
X∞

HVG∞T ∗
X̆ ⊇

HVG

HTG∗

⊆

∼=

CMT−

−X

L
ev
el
(−

X
)

T− R

Figure 1: Here is an overview of the objects in our research and their relationships
with each other. We begin with a time series X and compute various related objects
including its associated trees and from their produce the associated graph objects
(via duality).

Furthermore, our work is secondly concentrated on developing practical tools for
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doing such analysis. As such, we have written code to compute such duals and made

it generic (see Appendix). Packages for computing duals of any kind are sparse,

clunky, and dicult to work with. At least for the computation of duals of binary,

rooted trees, our package will be the rst of its kind. Additionally, we produce

code to compute various topological data analysis metrics for our duals, their various

related-trees, and the time series in general. We do this in service of demonstrating

the empirical ecacy of using our method, horizontal tunnelability, over others, for

the specic problems of signal vs. noise detection and distributional discrimination.

Lastly, we use our code to empirically investigate open problems regarding random

trees and tree self-similarity. We propose various conjectures based on this empirical

analysis and hope that our research may prove fruitful in future inquiry.

2 Background and Literature Review

In this section, we aim to elucidate the fundamental mathematical foundations

integral to our research - a novel approach to time series analysis using the concept of

graph duals. To appreciate the essence of this approach and the innovative dimension

it contributes to the established landscape of time series analysis, a thorough under-

standing of several key mathematical concepts and methodologies is indispensable.

Here, we will provide the necessary background into graphs, time series, duality, and

other interrelated principles that anchor our theoretical framework.

2.1 Graphs and Duality

To begin, we will rst discuss graphs in general and their basic properties. We

will then discuss trees, the main graph object of focus in this thesis. Subsequently,

we will then dive into the main graph theoretical tool we will work with in this thesis:
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duality.

Denition 2.1 (Graph). An undirected graph G is an ordered pair G = (V,E)

consisting of a set of vertices, V , and a set of edges, E, which are unordered pairs of

vertices. A directed graph has the edges be ordered pairs indicating the direction of

the link. Two vertices are said to be connected if there is an edge connecting them

and a graph is connected if there are no vertices lacking an edge. A cycle in a graph

is any path, that is a sequence of unique (except for the last) connected vertices, that

start and end at the same vertex.

Figure 2: An example of a graph. In red, we have our vertices and in blue we have
our edges.

Figure 2 shows the famous Petersen graph with its vertices in red and its edges

in blue. We call parts of the graph that constitute in themselves another graph

a subgraph and we additionally term a sequence of edge-connected vertices a path.

Hence, the Petersen graph is a connected graph containing many cycle subgraphs.

In our research, our particular graphs will acquire probabilistic signicance. In

particular, we will be interested in vertex degrees, edge lengths, and various related

distributions. We refer to those graphs without given edge lengths as unweighted such

as the one in Figure 2.

Denition 2.2 (Degree of a Vertex; Degree Sequence). The degree of a vertex v in a
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graph G, denoted deg(v), is the number of edges connected to v. The degree sequence

of the graph is the non-increasing sequence of vertex degrees.

Denition 2.3 (Degree Distribution). The degree distribution of an undirected graph

G, with maximum vertex degree K and N vertices, is the probability distribution of

the vertex degrees. That is, it is the probability distribution

P (k) =
# vertices with degree k

N
(1)

with k = 0, 1, ,K. We denote the degree function as the non-normalized distri-

bution, that is f(k) = # vertices with degree k.

Given this, we are now ready to establish our main graph-theoretical tool: duality.

In our case, however, we will only be interested in the typical scenario of duals for

planar graphs. Something to note from Figure 2 is that the edges self-intersect, that

is, the graph is not able to be properly embedded in the plane. For our research, we

will only be interested in computing duals for graphs that can be drawn in the plane

without self-intersecting edges.

Denition 2.4 (Graph Embedding). An embedding of a graph is a drawing of it

on some surface or manifold, often two-dimensional. That is, every vertex and edge

of the graph are given geometric coordinates on some surface such that the edges

become arcs that do not ever intersect other edge-arcs or contain points belonging

to other edges and whose endpoints are associated with the graph’s vertices. If the

graph can be embedded on the plane, it is termed planar.

Denition 2.5 (Dual of a Planar Graph). Given an embedding of the planar graph,

the dual (based on this embedding) can be constructed by identifying the faces of

the primal graph as its vertices. The edges of the dual are constructed wherever the

face-vertices share a primal edge. The resulting dual graph is also itself planar.
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Figure 3: Here is the plane-embedded dual (in red) of a primal graph (in blue). Each
red vertex is associated to a region of the plane partitioned by the primal graph. Note
the bottom-most red vertex associated with the remainder of the innite plane.

Although, a requirement for our work regarding duals is that the graphs be planar,

we will not be working with typical plane embeddings. We give here a general idea of

how duals are computed. As seen in Figure 3, our original graph in blue has a plane-

embedded dual in red. Note that there is exactly one region outside of our graph

representing the remainder of the innite, real plane. Our embedding, however, is

specic to the tree that we wish to compute the dual of, and is instead onto a closed

disk in the real plane.

2.2 Trees

To begin, we will rst introduce some basic terminology, following in the conven-

tion of earlier research(Haskell 11). We will rst discuss trees, random walks, and

how exactly it is that they are abstractly identical. Then we will discuss time se-

ries and horizontal visibility. Finally, we will conclude this section by introducing our

particular duality construction.

By tree, we will be referring to nite, rooted (planar) trees. We are particularly

interested in those generated by stochastic processes. That is, they are some particular
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Internal Vertex A

Leaf 1
Internal Vertex B

Leaf 2
Internal Vertex C

Leaf 3

Root

Figure 4: Here is an example of a rooted, binary tree with appropriately labeled leaves
and internal vertices.

realizations of a related tree distribution (Pitman 22).

Denition 2.6 (Tree). A connected acyclic undirected graph is called a tree.

First, trees are graphs possessing vertices and edges that connect them. Trees have

hierarchical structure by which each vertex is connected to its parent or to nothing

at all. Each vertex can also have children or descendants, that is the, the vertices

connected to it excluding its singular parent. Those trees only having at most two

children per vertex are termed binary. Should a tree possess a parent vertex with

only 1 child and no parents, that vertex is denoted the root and we consider the tree

rooted. Vertices with no children are deemed leaves of the tree. Finally, considering

the tree as a graph, we denote its subgraphs as subtrees provided the subgraph is

indeed a tree.

Here we will give a useful generalization of the tree concept that will allow us to

consider the tree as a metric space. Later in this thesis, we will be dealing with trees

with specied edge lengths and it is with this formalism that we will be able to dene

their size and traversability.

Denition 2.7 (Metric Tree). A metric space (M,d) is called a tree if ∀u,w ∈ M

there exists a unique continuous path σu,w : [0, d(u,w)] → M that travels from u
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to w at unit speed, and for any continuous, injective (simple) path F : [0, L] → M

with F (0) = u and F (L) = w, the ranges of F and σu,w coincide. That is, the direct

traversal without repetition or backtracking between any two points in the metric

space is only possible through one unique path.

It is worth mentioning an alternative characterization of our metric trees, Real or

R-trees. Elements of our thesis attempt to bridge literature across many domains, in

particular topological data analysis (TDA). There, it is common to work with simpli-

cial trees, connected simplicial complexes with no cycles, and for whom R-trees oer

a simple generalization maintaining the applicability of various TDA constructions

(Goldfarb 9).

Denition 2.8 (Real Trees). Ametric space (M,d) is called a R-tree if it is connected

and that it satises the 0-hyperbolicity condition:

∀w, x, y, z ∈ M, d(w, x) + d(y, z) ≤ maxd(w, y) + d(x, z), d(x, y) + d(w, z) (2)

0-hyperbolicity is characterized by the given four-point condition but is also equiv-

alent to the three-point condition that any triplet be geodesically connected, however

this formulation lacks an algebraic denition (Kovchegov and Zaliapin 14). Thus, our

0-hyperbolicity condition establishes two things: that our space is a geodesic metric

space- that all points are connected through some minimal geodesic- and that every

triangle is a tripod, meaning that all points are indeed connected in a tree-like man-

ner. This formalism makes it simpler to work with innite trees and it can be seen

that any nite metric tree satises our condition, where nite refers to the number of

vertices.

As mentioned before, we will be interested in trees as considered as particular

realizations of a tree distribution. The idea is that each tree in some set will be
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assigned a particular probability such that the whole appropriately sums to 1. We will

rst provide some necessary terminology and then introduce an important example

tree distribution.

Denition 2.9 (Forest). A forest is a collection of trees.

Denition 2.10 (Finite, Rooted, Reduced Trees). A tree T possessing some root

(some labeled vertex) with a nite number of vertices is a nite, rooted tree. The

root understood as a parent, induces a parent-ospring relation between any two

adjacent vertices. Vertices with no ospring are termed leaves and the only vertex

with no parent is the root. Equivalently, nite, rooted trees are those nite trees

who have planar embedding (correspondent to the order on the tree, i.e. the choice

of root). A tree is termed reduced if there are no vertices with degree 2 except for

perhaps the root. We write #T for the number of non-root vertices or alternatively,

the number of edges.

Denition 2.11 (Spaces of Finite, Rooted, Reduced Trees). First, we will refer to

planted trees as those whose root has degree 1 and otherwise call them stemless.

Further, we will refer to binary trees as those with at most 2 ospring per vertex.

Then we denote our spaces and projections as follows.

Note that the trees in T have no planar embedding because there is no dened

order among ospring of the same parent. Also note that L = L∨  L|, ϕ = L∨  L|,

and vice versa for T  The empty tree is always a member of all of our above spaces.

Additionally, it is worth noting that trees given planar embedding possess a left-right

ordering given by their locations in the plane.

We are now prepared to discuss tree distributions and provide a concrete example

of one: Galton-Watson Tree Distributions. Galton-Watson trees are incredibly pivotal

to the study of random trees in general and have been used to describe the propagation
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T Unlabeled, nite, rooted, reduced, non-planar trees

L Weighted trees from T with positive edge lengths ℓi

Splane Subspace of trees from S with given planar embeddings

T |,L| Planted trees from T and L
T ∨,L∨ Stemless trees from T and L
BS Subspace of binary trees from S
SHAPE The projection L → T
P-SHAPE The projection Lplane → Tplane

Table 1: Provided here is a summary of our denoted tree spaces.

of family names, the proliferation of free neutrons in a nuclear ssion reaction, and

river networks among many other applications (Lalley 17)(Watson and Galton 31).

The Galton-Watson process is a branching stochastic process which can be represented

as tree, the formalism for which we give below.

Denition 2.12 (Tree Distribution). A tree distribution is a probability measure

over some space of trees.

Figure 5: Observe this example Galton-Watson tree for modeling the number of chil-
dren in each generation for a particular lineage. Note that this tree is not necessarily
binary (McKenna 20)

.
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Denition 2.13 (Galton-Watson Tree Distribution). We denote the Galton-Watson

Tree distribution over T | as GW(qk) with

k = 0, 1, ,K, q1 = 0 with
K

k=0

qk = 1 and
K

k=0

kqk ≤ 1 (3)

A random Galton-Watson tree starts with a root and evolves stepwise with steps

d = 0, 1, , dmax. At each step d > 0 every leaf at max depth d−1 will produce k ≥ 0

ospring with probability qk. The q1 = 0 requirement assures that the generated tree

is reduced. The tree is nite because
K

k=0 kqk ≤ 1 and terminates at step dmax when

all leaves at depth dmax − 1 produce no ospring. A Galton-Watson Process with

n-individuals will beget an n-forest of Galton-Watson trees.

We will additionally require technology by which we will traverse and index our

trees. Again, as we intend to use trees to aid time series analysis, we will need

appropriate quantication tools. Traversing trees and keeping track of its vertices

will accomplish what is correspondingly already achieved by such objects as the linear

interpolation of time series. We will introduce our tree traversal function as evolving

from the classical depth-rst search.
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Figure 6: We give the numbered order of depth-rst search in a binary tree with root
ρ. We start from the leftmost leaf, progress to the root, and keep going until the tree
is indexed (Haskell 11)

.

Denition 2.14 (Depth-First Search). Given a tree T ∈ BT plane and its set of

vertices vi#T
i=1, the depth-rst search function D : vi#T

i=1 → 1, 2, ,#T uniquely

assigns indices left-to-right in such a way that for any two vertices the rightmost one

has larger index. Informally, the indices are assigned by traversing the tree along the

leftmost branches until termination and then backtracking (hence, depth-rst).

Denition 2.15 (Edge Lengths). Let T be a tree in L and let ei denote the parental

edge of the vertex vi. Then the length of ei and the length of the tree Length(T ) is

denoted as follows

Length(ei) = ℓi, Length(T ) =

#T

i=1

Length(ei) (4)

Denition 2.16 (Edge Traversal). Let T be a tree in Lplane indexed by depth-rst

search with index i and let ei denote the parental edge of the vertex vi. A continuous
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function f(t) is said to traverse ei towards the root if for t2, t1 ∈ Supp(f) where t2 −

t1 = ℓi, f(t1) = vi and f(t2) = parent of vi. Likewise, f(t) traverses ei away from the

root if f(t1) = parent of vi and f(t2) = vi.

Denition 2.17 (Tree Traversal). The tree traversal function of a tree T ∈ Lplane

which is indexed by i via depth-rst search is given by the unique continuous map

uT : [0, 2 · Length(T )] → T . uT traverses the edges of T at unit speed starting and

ending at the root so as to traverse all the paths σij between vertices vi, vj in the

following order: (σρ1,σ12, ,σ#Tρ). Informally, this function traverses the edges of

the tree in depth-rst order twice — rst traversing away from the root and then

towards it.

Our thesis will be interested in examining certain simple metrics, among others,

from given trees. These include, the number of leaves, the number of vertices, and

the leaf-to-leaf distances.

Denition 2.18 (Leaf-to-Leaf Distance). In a tree, the leaf-to-leaf distance is the

minimum number of vertices required to traverse from one leaf to the other via a

connected path.

The more complicated metrics primarily involve those arriving from a study of self-

similar random trees. In particular, our context emerges from literature surrounding

Horton self-similar trees and their various generalizations. Originating from studies

in hydrogeomorphology, the Horton-Strahler ordering system has become increasingly

useful for the study of random trees, in particular those which exhibit Horton laws

related to the power-law distributions of various statistics in the trees (or more gen-

erally, networks) (Haskell 11). In the modest case of our thesis, we will primarily

work with the Horton pruning operation and its implications. We will now introduce

sucient terminology for these more complicated metrics.
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Denition 2.19 (Series Reduction). For a rooted tree ∆, series reduction removes

each degree-two non-root vertex by merging its adjacent edges into one (edge lengths

are added appropriately).

Figure 7: Described here is Horton Pruning on a tree. The operation is repeated until
the entire tree is pruned from the left to right by cutting its leaves and performing
series reduction to simplify singly-connected branches to one vertex (Haskell 11)

.

Denition 2.20 (Horton Pruning). Let T denote the space of nite, rooted real trees.

Then, Horton Pruning denoted, R : T → T , is a surjection given by R() =  and

for ∆ ̸= , R(∆) =the tree gotten by removing its leaves, their parental edges, and

then performing series reduction.

It can be seen that the xed point of the Horton pruning operation, a contraction

map, is the empty tree and that any tree may be deleted via successive Horton

prunings.

Denition 2.21 (Horton Self-Similarity). A tree distribution is termed Horton self-

similar if its distribution is not changed by Horton pruning. That, is for some tree
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T in a specied space of rooted trees, and for some tree distribution µ on that space

µ(R−1(T T ̸= ) = µ(T ) (5)

Denition 2.22 (Horton-Strahler Orders). The order of a leaf vertex is 1. For an

internal vertex p with m ≥ 1 ospring of orders i1, i2, , im resp., the Horton-Strahler

order for this vertex or alternatively its parental edge is

ord(p) =





r, if s : is = r = 1

r + 1, otherwise

(6)

The order of a nonempty tree is given as follows.

ord(∆) = max
v∈∆

ord(v) (7)
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Figure 8: Presented here is the Horton-Strahler ordering on the edges and vertices of
a binary (metric) tree (Kovchegov and Zaliapin 14)

.

The order of a tree coincides with the number of successive Horton pruning oper-

ations required to eliminate a planted (root is degree 1) tree. If the tree is stemless

(not planted), then consider a phantom edge to a phantom root of degree one and

the order is now just one more corresponding to this extra pruning operation.

In the course of this thesis, we will be working with random time series transformed

into appropriate random trees which will then be transformed into appropriate (ran-

dom) duals. We will make a case for how such notions as number of leaves, vertices,
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leaf-to-leaf distances, and Horton-Strahler orders emerge in our dual representation

and what can be gleaned by this understanding. However, recall that our duals are

constructed by a particular tree-specic embedding into the disk. We provide this

embedding below and will refer to duals from hereon out as those constructed as

such.

Figure 9: We construct a disk-embedded dual of a tree Tτ̆ (in grey) as the solid, dark
lines T ∗

τ̆ (Stephen 28)

.

Denition 2.23 (Dual of a Planted Tree). Given a tree T ∈ L|
plane, embed it into D2

by adjoining all leaves and the root to the boundary. Then, dene the dual graph G as

follows. Internal vertices of G are connected regions of D2(GS1) whose boundary

does not include all of S1 (the faces of the graph). Likewise, there is at most external

vertex of G, also a connected region of D2(G  S1) whose boundary does includes

all of S1. Edges in G connect vertices whose primal regions share an edge (when two
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faces share a tree branch), copying that primal edge’s length in the case of a metric

dual.

2.3 Time Series

Time series are ubiquitous in the eld of statistics that primarily deals with ana-

lyzing data collected over time. Applications of time series are abundant and diverse

and permeates numerous elds. In economics and nance, they are used for forecast-

ing stock prices, economic indicators, and nancial risk management(Box et al. 4).

In environmental science, time series analysis aids in understanding climate change

and weather patterns, and earthquake predictions(Cazalles et al. 6). The medical

and health elds utilize time series for epidemiology studies, monitoring patient vital

signs, and predicting disease trends(Unkel et al. 30). It is also an essential tool in sig-

nal processing and control engineering, enabling the understanding and prediction of

signals and systems’ behavior over time(Ljung 18). The utility of time series cannot

be understated.

Our angle on time series will primarily involve being given them either as-is or

understand as the result of some dynamical system or random walk process. Here

we will provide some terminology and some of our own original notions that are of

consequence to our main results.

Denition 2.24 (Time Series). A time series X is an ordered sequence of n-data

points (Xt1, Xt2, , Xtn) indexed by times t1, , tn.

Denition 2.25 (Random Walk). Suppose X1,...,Xn are Rd-valued independent and

identically distributed random variables. A random walk starting at z ∈ Rd is a

sequence (Sn)n≥0 such that S0 = z and that

Sn = Sn−1 +Xn, n ≥ 1 (8)
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Thus, a random walk may be considered a process that generates a time series

starting at z where the steps are given by Xn. As such, we may be interested in parts

of this process as well as how we will geometrically give meaning to it. We will do

this via excursions and linear interpolations respectively.

Denition 2.26 (Linear Interpolation). Given a time series in the plane, its piecewise

linear interpolation is the graph generated by connecting all points in the time series

(xt, yt) with straight line segments.

Denition 2.27 (Excursion). An excursion Xt is a function dened on a real interval

[0, a] such that X0 = 0, Xa = 0 and Xt ≥ 0∀t ∈ [0, a]. Let E denote the space

of piecewise linear interpolations and let Eex denote the space of piecewise linear

excursions.

For the bulk of this thesis, we will be dealing with those time series that are

piecewise linear excursions or that could be appropriately be made into piecewise

linear excursions (either by cutting them short, vertically shifting them, or by adding

in data points).
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Figure 10: In blue is our piecewise linear interpolation of a time series. Note that it
is also piecewise linear excursion as it starts and ends at 0.

Denition 2.28 (Time Series as Piecewise Linear Excursions). A nonnegative time

series X, starting and ending at the same point, is necessarily a piecewise linear

excursion and has distinct, nite extrema. Furthermore, any real continuous function

Xt dened on a closed real interval I has a time series approximation gotten by joining

extremal and end points with linear segments. Let the function E : C(I) → Eex do

precisely this but with the addition of shifting I to start at the origin and taking the

absolute value.

There is a great deal of literature surrounding the mathematics and statistics of

excursions. In particular, Brownian excursions have attracted much study due to the

relevance to Wiener processes and their applicability in physics modeling(Revuz and

Yor 23). However, for us, we will be working with excursions primarily for the fact

that our research works only for the case of these excursions with limited versatility

outside of this scope. This is because, we will be focusing on certain properties of



22

what we have termed U-shaped segments. This is a novel way of partitioning time

series and reveals new and interesting geometric implications.

Denition 2.29 (U-shaped Segments). Suppose we have a time series X ∈ Eex with

support I = [ti = 0, tf ] and distinct, nite extrema with n-maxima denoted from left

to right at t1, , tn. U-shaped segments on X are those portions corresponding to

subintervals [ti = 0, t1], [t2, t3], , [tn, tf ].

2.4 Tree and Time Series Duality

The program of our thesis is to establish a useful transformation of a time series

to a tree and then to its dual. We now elucidate the rst part of this program. That

is, we now establish the Harris correspondence to identify the relationship between

trees and excursions.

Denition 2.30 (Harris Path). Given a metric plane tree T ∈ Lplane, the Harris path

is a linear piecewise function HT (t) : [0, 2 · Length(T )] → R s.t.

∀t,HT (t) := dT (uT (0), uT (t)) (9)

where dT (x, y) is the distance measured along edges between the vertices x and y on

the metric space T . The graph of HT is an element of E so we may think of the Harris

path as an operation H : Lplane → E . Likewise, if the original tree is planted then the

graph of HT is an element of Eex.

Remark. In the case of a planted binary tree with n leaves and unit edge lengths,

the Harris Path has a simple construction as a lattice excursion with 2n steps. Start

the excursion with a +1 step and begin traveling the tree vertices from left to right

without repetition starting from the root. If the vertex is internal, the next step is

+1, if it is a leaf it is −1.
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Figure 11: From the tree on the left, we construct its Harris Path (time series) on
the right and appropriately color the segments to match each other (Haskell 11)

.

2.5 Level-Set Trees

Just as we may start from a tree to yield a time series so too may we more

appropriately begin from a time series and yield a tree. We will focus on three

particular methods of achieving this. These include Time Series Merge Trees, Chiral

Merge Trees, and Level-Set Trees. All three of these methods aim to describe via

trees the hierarchical structure of time series as understood by their relative maxima

and minima and how points are connected between them. In particular, the former

two methods, although belonging to radically disparate literature, are actually one

and the same.

Denition 2.31 (Level-Set Tree). Let I ⊂ R be a closed interval and let f : I → R

be a continuous function with a nite number of extrema. Let f(u, v) = infx∈[u,v] f(x)

for any subinterval [u, v] ∈ I. Then, dene the pseudometric df on I as

df(u, v) = (f(u)− f(u, v)) + (f(v)− f(u, v)), for u, v ∈ I (10)
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Figure 12: We construct a level set tree on the right from the given continuous
function on the left. We additionally note extrema and note how it corresponds to
vertices of the tree.

Thus, the quotient space If = I ∼df is a metric space and moreover, it is a metric tree

denoted Level(f). One may think of level-set trees as an operation Level : E → Lplane

or alternatively Level : Eex → L|
plane.

The Level-Set Tree is so-called because it describes the structure of level sets

Lα(f) = x ∈ I : f(x) ≥ α as a function of the threshold α. Level-Set Trees have

some important properties that make them useful representations of time series. The

equivalence classes, for example, bijectively correspond to various time series features.



25

1 point classes Leaf vertices in the tree corresponding to local maxima.

2 point classes Edge portions corresponding to the rst positive excur-
sions of X(t) − X(ti) to the right and left of a local
minima at ti. The left and rightmost edge portions may
instead correspond to positive segments instead of out-
right excursions of X(t)−X(ti).

3+ point classes Internal vertices corresponding to local minima not on
the boundary.

Table 2: Here we summarize the various point classes (equivalence classes) of level-set
trees.

Remark. The Level-Set Tree is always a binary tree —that is, any vertex has at most

two children, provided that its generating time series is a piecewise linear excursion

with no consecutively repeated values. In this case, construction is geometrically

simple. Create the tree by placing leaves at local maxima, placing internal vertices at

local minima, and placing the root at 0 in the center of the time series. Then, simply

connect your tree vertices left-to-right.

There are a number of important uses to level-set trees. One such use is the fact

that Horton self-similarity of a level-set tree corresponds to invariance of the time

series under transition to local extrema(Kovchegov and Zaliapin 14). This is because

Horton pruning itself corresponds to transition to the local extrema of a function.

Proposition 1 (Horton pruning of positive excursions(Kovchegov and Zaliapin 14)).

The transition from a positive excursion Xt to the respective excursion X
(1)
t of its

local minima corresponds to the Horton pruning of the level set tree Level(Xt). In

general,

Level(X
(m)
t ) = Rm(Level(Xt)), ∀m ≥ 1 (11)
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Figure 13: Depicted here is the transition of an excursion to its local minima (a) and
its correspondent Horton-pruned level set tree (b) (Kovchegov and Zaliapin 14)

.

As a result of this, it becomes possible to geometrically display the distributional

equivalence of time series. That is, the counterpart to Horton self-similarity for time

series is extreme-invariance. This can be interpreted as the time-series ability to

maintain its statistical structure regardless of its coarsening down of extrema. The

general transformability of level set trees to time series and vice versa further exposes

suitable study of such invariant behavior by either object.

Theorem 2.1 (The Harris Path Contour is the Inverse of the Level-Set Tree (Pitman

22)). Consider a tree T ∈ Lplane and let HT be the Harris Path Contour with support

I = [0, 2·Length(T )]. Then, (I ∼HT
, dHT

) = Level(HT ) is a metric tree and moreover

it is isometric to (T, dT ). That is, Level(HT ) ∼= T . Similarly, HLevel(f) = f for f ∈ Eex.

We will conclude this section with a short discussion of chiral merge trees and the

related TDA-based literature. In topological data analysis and morse theory, merge

trees are used to keep track of the development of connected components of sublevel

sets of a Morse function in a similar fashion to level set trees (Brüggeman 5). If we

restrict our Morse functions, that is functions on a smooth dierentiable manifold

with no degenerate critical points, to just those functions from R → R this will yield

almost the same construction as level-set trees. The chirality refers to the left and
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right handedness of the resulting tree which is given by the plane embedding of our

level-set tree such that vertices are left or right children of their parents. The fact

that these constructions are the same is not found in the literature and it is worth

tying the two here. To be specic, chiral merge trees are isomorphic to inverted,

rooted level-set trees.

The particular version of chiral merge trees which we establish our correspondence

to level set trees with is given by J. Curry (Curry 7). There, they establish a useful

notion of graph-equivalence by which continuous functions may be easily related to

particular linear interpolations along extrema.

Figure 14: On the left we depict a continuous function (in blue) shown to be graph-
equivalent to the time series linear interpolation (in orange). On the right, we depict
their Chiral Merge Tree, which has preserved chirality labeled as right or left, de-
scribing the time-order of the original functions’ merge set hierarchy (Curry 7)

.

2.6 Time Series Merge Trees

As discussed before, unlike the past two approaches for yielding a tree from a

time series there is a third approach. We briey recreate here the approach taken by

Colin Stephen in producing his time series merge trees. This approach is not at all

dissimilar from the usual approach in TDA for which a characterization is given by
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Baryshnikov (Baryshnikov 3).

Recall our prior use of the term weighted. We will now generalize this for all

graphs as such and in particular for time series as considered as graphs.

Denition 2.32 (Weighted Graph). A weighted graph G = (V,E, f) is a graph

equipped with a weight function f : E → R.

Denition 2.33 (Weighted Time Series). Given a time series τ = (x1, , xN) dene

the time series weighted path τ̆ to be the graph τ̆ = (V,E, f) where:

V = 0, 1, , N E = ei = (i− 1, i) f : E → R; ei → xi 1 ≤ i ≤ N (12)

Just as level-set tree before characterize sublevel sets before, for this construction

we will formalize the notion of sublevel graphs.

Denition 2.34 (Sublevel Graph). Given a graph G = (V,E, f) and a ∈ R dene

the sublevel graph Ga to be the subgraph of G whose edges have weight no greater

than a : Ga := (V,Ea, f) ⊆ G, where Ea := e ∈ E : f(e) ≤ a.

Remark. Note that all vertices of G will be present in its sublevel graphs and that

the weight function induces a strictly increasing sequence of sublevel graphs of G

beginning at (V,) and ending at G = (V,E).

Next, we will introduce notions of a-connectedness and maximally a-connectedness

through which we will be able to aptly dene Time Series Merge Trees. That is, max-

imally a-connectedness will establish the ready equivalence relation that will create

our tree-like hierarchical structure from our sublevel graphs.

Denition 2.35 (a-Connected). Given an acyclic graph G = (V,E, f) and a ∈ R say

that two vertices v, w ∈ V are a-connected when any path inG between them contains

no weight exceeding a. Additionally say v and w are maximally a-connected when

any path in G extending an a-connected path between them is not itself a-connected.
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Denition 2.36 (Time Series Merge Tree). For a connected, weighted graph G =

(V,E, f) the relation of being maximally a-connected induces a renement of parti-

tions of V . Recall that a renement of a partition P is P ′ such that P ⊆ P ′. The

renement has the structure of a rooted tree called the merge tree TG of G, with V as

the root, v : v ∈ V the leaves, and internal vertices being the maximally a-connected

components of G induced by its edge weights.

Figure 15: Here is a Time Series Merge Tree computed from the weighted time series
G with y-values given by the edge weights. (Stephen 28)

2.7 Barcodes and Interchangeability

In TDA-literature, the computation of merge trees in general is often done to

produce another object, namely, barcodes or pile of stems or its persistence diagram.

The role of these diagrams lies in persistent homology which is a framework in com-

putational topology to measure topological features of data that persists across scales
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and has found wide applicability for studying data networks in elds as disparate as

biology and the social sciences(Aktas, Akbas, and Fatmaoui 1).

The focus of this thesis will primarily be in working with and constructing these

persistence diagrams. Here, we briey show their construction which simply follows

from a merge tree and drawing stems appropriately as long from the merge tree as

seen in Figure 16.

Figure 16: Here is an example of a pile of stems (right-most) from a merge tree
(middle) of a continuous function (left, with grey-shading to indicate how to vertically
construct the tree) (Baryshnikov 3)

.

There is a useful connection between time series merge trees and level set trees

that has not yet been made apparent in the literature. Earlier, Colin Stephen had

noted that Horton Pruning his horizon visibility graphs (via duality), to be discussed

in the following section, yielded the branch structure of the merge tree associated to

its nite time series’ piecewise linear interpolation. Moreover, he showed that the

Elder Rule on the rst Horton pruning of the persistence weighted horizon visibility
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graph (the graph with edge lengths copied over from the weighted merge tree which

copies over edge lengths from the original weighted time series), yields the barcode of

the piecewise linear interpolation (Stephen 28). This inspires our observation, which

follows along the similar lines of proof. We use the work of Jussi Klemelä as reference

for the alternative characterization of Level-Set Trees used in our proof (Klemelä 13).

Proposition 2 (Interchangeability of Time Series Merge Trees and Level Set Trees).

The rst Horton pruning of the time series merge tree is the Level-Set Tree of the

inverted time series.

Proof. Let our time series’ linear interpolation be denoted f from the closed interval

I ⊂ R to R. Recall that the Level-Set Tree of the inverted time series describes the

structure of the level-sets Lα as a function of the threshold α where

Lα(f) = x ∈ I : f(x) ≥ a (13)

Lα(−f) = x ∈ I : f(x) ≤ a (14)

That is, the Level-Set for any particular α is a disjoint union of subintervals of I. The

nodes are identied with the connected components of the level sets and child-parent

relations correspond to set inclusion, and so the root corresponds to the support I.

Now, recall the denition of time series merge trees as characterized by their sub-

level sets. That is, time series merge trees describe the structure of merge sets of the

weighted time series graph, f̆ , with (bijective) weight function W , under the relation,

∼â of being maximally a-connected. Maximality implies that we only consider those

paths Pathf̆(v, w) such that no edges extending it are also a-connected, we denote

this with the relation loosely with ≤∼. The merge sets, Mα, given that 1 ≤ i, j ≤ N ,
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are then of form

Mα = vi, vj ∈ V : v ∼â vj

= vi, vj ∈ V : ∀ek ∈ Pathf̆(vi, vj), ek ≤∼ a

= vi, vj ∈ V : ∀W−1(xk) ∈ W−1(xi, , xj),W−1(xk) ≤∼ a

(15)

Now, if we bijectively associate each vertex to its immediate edge we have that

Mα
∼= W−1(evi),W

−1(evj)vi, vj ∈ V : ∀W−1(xk) ∈ W−1(xi, , xj),W
−1(xk) ≤∼ a

∼= W−1(ei),W
−1(ej)ei, ej ∈ E : ∀W−1(xk) ∈ W−1(xi, , xj),W

−1(xk) ≤∼ a

∼= xi, xj ∈ x1, , xN : bf(xi, , xj, b ≤∼ a

(16)

Applying the intermediate value theorem on account of the continuity of f we have

that

Mα
∼= x ∈ I : f(x) ≤ a

Mα
∼= Lα(−f)

(17)

The time series merge tree is constructed similarly to level set trees with the root

corresponding to the set of all vertices, or isomorphically the support I, the internal

vertices corresponding to the connected components of the merge sets, child-parent

relations being set inclusion, etc. However, time series merge trees additionally con-

nect as the leaves of the tree all of the individual vertices as well. Horton pruning

removes these extra leaves and we are left with what is isomorphic to the level set

tree of the inverted time series.

Essentially, this proposition reveals what is mysterious about the Horton pruning

operation in the original paper by Colin Stephen. The mystery is nothing more than
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the Time Series Merge Tree’s additional construction of including the (extraneous)

leaves. The reconstruction result of the Horton pruning on Stephen’s horizon visibility

graphs corresponds so well to the piecewise linear interpolation precisely because the

merge tree adds this extra information which Horton pruning removes. We argue

then, that the focus of such study should be turned towards the level-set tree object

as opposed to the time series merge tree which obfuscates the real relations between

things.

2.8 Visibility Approaches

Previously, we have discussed tree-based constructions that are amenable for time

series analysis. However, there has been another geometric approach to time series

analysis involving visibility alogrithms and their consequent visibility graphs. Our

aim here is to provide introductory background to these methods and illuminate

their connections to and their compatibility with tree methods as a prelude to our

own tunnelability algorithms.

The rst introduction of such methods began with the general visibility algorithm

and visibility graph which were introduced by Lacasa et. al. in 2008 (Lacasa et al. 16).

The basic idea is represented in Figure 17. Two points in a time series are considered

visible if a straight line can be drawn between them without being intersected by any

of the bars representing the data points. The resultant visibility graph summarizes

the visibility of all of the points with each node in the graph corresponding to a data

point and each edge corresponding to the visibility between them. The graph then

is invariant under translation, horizontal and vertical rescaling, and critically, the

addition of a linear trend in the data (Lacasa et al. 16).
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Figure 17: Here we depict the visibility of bars in a time series and its associated
visibility graph below (Lacasa et al. 16)

.

Furthermore, it became possible to study time series through such a graph by its

degree distribution, the mean path length, and mean degree, among other measures.

Discriminatory analysis and distributional identication of time series is now possible

through such graph analysis and we discuss some implications in Figures 18 and 19.

Denition 2.37 (Mean Degree). The mean degree of a graph is the average degree

of all of its nodes. As a function of n-nodes, the mean degree is computed as the

mean degree of the subgraph of the rst n nodes.

Denition 2.38 (Mean Path Length (Asif et al. 2)). The mean (average) or char-

acteristic path length of a graph is the average number of steps along the shortest

paths to traverse between all possible pairs of nodes. Suppose we have a graph G

with vertices vi, vj denote d(vi, vj) as the smallest number of connected edges needed

to traverse from vi to vj. Then, the mean path length of the whole graph given it has
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N total vertices is

lG =
1

N(N − 1)



i̸=j

d(vi, vj) (18)

The mean path length considered as a function of the total number of vertices is

computed by computing lG for the subgraph consisting of the rst n nodes. That is,

lG(n) = lGn where Gn is the subgraph of the rst n vertices.

Figure 18: On the left we have a random time series. On the right we have its visibility
graph’s degree distribution showing the probability (in semilog) of observing a node of
degree k. As observed by its tail, the degree distribution is exponential and in general
we expect random time series to have exponential (visibility) degree distributions
(Lacasa et al. 16).
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Figure 19: On the far left we have a Brownian and a Conway time series. In the
middle we have their degree distributions, both power laws with dierent exponents
α, and on the right we have their mean path lengths(Lacasa et al. 16).

Something worth considering about the graphs in Figure 19 is that the visibility

graph for Brownian motion exhibits the small-world property and that both visibility

graphs are scale-invariant. These are key metrics in computational graph theory and

we give some brief introduction to these metrics here.

Denition 2.39 (Clustering Coecient (Watts and Strogatz 32)). Let A denote

the number of items in the set A. For a graph G = (V,E) with n-many vertices, the

neighborhood Ni for a vertex vi is its immediately connected neighbors.

Ni = vj : eij, eji ∈ E (19)

where eab denotes the edge connecting vertex va to vertex vb. Then, the local clustering

coecient for a given vertex vi is given as

Ci =
2ejk : vj, vk ∈ Ni, ejk ∈ E

Ni(Ni − 1)
(20)



37

The global clustering coecient, C̄, of the graph is then the average of its local

clustering coecients.

C̄ =
1

n

n

i=1

Ci (21)

Denition 2.40 (Small-World Property(Mehlhorn and Schreiber 21)). A graph has

the small-world property when it has a high clustering coecient but a small mean

path length. Typically, this means that the mean path length grows logarithmically

but the clustering coecient is large (usually more than 05).

Denition 2.41 (Scale-Invariant Graph). A scale-invariant or a scale-free graph is

one whose degree distribution follows (asymptotically) a power-law distribution.

Denition 2.42 (Graph Self-Similarity). Let the diameter of a graph, G = (V,E)

with N vertices, be d̂ = maxv,w∈V (d(v, w)). If the graph possesses the small-world

property, then

N ∼ e
d
lG (22)

Similarly, the graph is considered self similar if it exhibits a power law distribution

with some notion of scale, often d, with some positive exponent α.

N ∼ d−α (23)

Although, the two notions are seemingly disparate there is growing literature showing

that under appropriate renormalization procedures complex graphs can be self-similar

while also being small-world(Song, Havlin, and Makse 27).

For the purposes of this thesis, we will be primarily working with variations of

this visibility idea that aim to make analysis simpler. Real-world time series have

thousands to even millions or billions of data points. Generating a graph with this

many nodes and even more edges makes the analysis computationally expensive if
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not impossible. A simplication of the earlier approach begins with horizontal visi-

bility(Luque et al. 19). This simplication is made apparent in Figure 20.

Figure 20: Here we depict the horizontal visibility of bars in a time series and its
associated Horizontal Visibility Graph below (Luque et al. 19).

Considering only two are points horizontally visible if a horizontal line can be

drawn without intersection with the bars signicantly reduces the number of edges,

and similar analysis can be done at greater speed. This is additionally sped up by

the aid of closed-form formulas for various metrics such as the clustering coecients,

mean path lengths, mean degrees, and degree distributions. (Luque et al. 19). We

posit an additional simplication that greatly reduces not just the number of edges,

but primarily, the number of nodes. This is accomplished by our concept of U-shaped

segments and so metrics may be computed not at every data point but instead on

each U-shaped segment or subinterval. We provide characterizations of horizontal

visibility and later, our own tunnelability, with both the per data point and per

U-shaped segment construction.

Denition 2.43 (Horizontal Visibility). Let X ∈ Eex be a time series with distinct,

nite extrema and n-many U-shaped segments lying on subintervals U = I1, , In.
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Consider the horizontal visibility function HV : (X, Ia, Ib) → 0, 1 with a, b ∈

1, , n.

HV(X, Ia, Ib) =





1 if ∃ p1 ∈ Ia, p2 ∈ Ib s.t. X(p1) = X(p2) and the horizontal

line x = X(p1) has no intersection with X on (p1, p2) or

(p2, p1) if p1 > p2

0 otherwise

(24)

Two points Xt1, Xt2 with t1 ∈ Ia, t2 ∈ Ib are horizontally visible if HV(Xt, Ia, Ib) = 1

with the choice of p1 = Xt1, p2 = Xt2. They are termed distinctly horizontally visible

if additionally Ia ̸= Ib.

Then, the horizontal visibility of a particular U-shaped segment Ic is

HV(Ic) =


Ii∈U
Ii ̸=Ic

HV(X, Ic, Ii) (25)

Denition 2.44 (Horizontal Visibility Graph). The Horizontal Visibility Graph on

Data Points is constructed by assigning each data point a vertex and connecting

edges where data points are horizontally visible. The Horizontal Visibility Graph on

U-Shaped Segments is constructed by assigning each U-shaped segment a node and

connecting edges where U-shaped segments are horizontally visible.

2.9 Duality of Time Series Merge Trees and Horizon Visibil-

ity

As an overture to our duality results, we briey summarize Colin Stephen’s earlier

work (Stephen 28) establishing the duality of Time Series Merge Trees and Horizon

Visibility Graphs.
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Denition 2.45 (Horizon Visibility Graph (Stephen 28)). Given a time series τ =

(x1, , xn) its horizon visibility graph HVG∞(τ) is dened to be the horizontal visi-

bility graph of τinfty = (∞, x1, , xn,∞).

The horizon visibility graph, thus, is simply the horizontal visibility graph with

two additional vertices representing the innite past and the innite future.

Theorem 2.2 (Horizon Visibility Graphs are Dual to Merge Trees (Stephen 28)).

Given a time series τ = (x1, , xN) its horizon visibility graph HVG∞(τ) is exactly

the dual of its merge tree: HVG∞(τ) = T ∗
τ̆ .

Just as horizontal visibility graphs can be analyzed by the metrics listed above

and can later be used to estimate dynamical parameters such as reversibility, the

Lyapuvnov exponent, and Hurst exponent amongst many others, so too can this be

established with horizon visibility graphs (Stephen 28). There are additional benets

however, other than just the theoretical benet of being able to work with either HVGs

or time series merge trees. The addition of information about the past and future

allows horizon visibility to detect the dierence between leading and trailing trends,

are more sensitive to monotonic sub-sequences, and can similarly be reconstructed

from degree sequences (Stephen 28).

3 Horizontal Tunnelability of a Time Series

We now introduce our main contribution to this area, the notion of horizontal

tunnelability. As discussed previously, the main advantages are the reduction in the

size of the graphs— U-shaped segments reduce the number of vertices and tunnela-

bility itself is shown to be a sub-relation of visibility. We give exact details of the

construction of these objects and discuss their applicability.
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3.1 Horizontal Tunnelability

Horizontal tunnelability is extremely similar to horizontal visibility, the main dif-

ference being that two points are tunnelable if and only if they are visible and they

pass through a mountain, that is, a portion of the linear interpolation of the time

series that lies above the two points. As such, U-shaped segments dictate the valleys

between the mountains with the sole exceptions of those segments corresponding to

the implied unenclosed valleys at the beginnging and end of the excursion.

We dene this term here along with the subsequent horizontal tunnelability graph.

This graph construction, we will later show, bears a unique relevance to level-set trees.

As such, we obtain interchangeability results to and from time series merge trees via

Horton pruning.

Figure 21: We graphically depict the U-shaped segments (via the labeled subintervals)
of the time series in blue and label horizontally tunnelable points via red tunnels.

Denition 3.1. (Horizontal Tunnelability) Let X be a time series as before with the

same U-shaped segments. Horizontal tunnelability is essentially horizontal visibility
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with the added condition that the time series always be above the two visible points.

More formally, consider the horizontal tunnelability function HT : (X, Ia, Ib) → 0, 1

with a, b ∈ 1, , n.

HT (X, Ia, Ib) =





1 if HV(X, Ia, Ib) = 1 with some choice of p1, p2 s.t.

X > X(p1) on (p1, p2).

0 otherwise

(26)

Two points Xt1, Xt2 with t1 ∈ Ia, t2 ∈ Ib are termed horizontally tunnelable if

HT (Xt, Ia, Ib) = 1 with the choice of p1 = Xt1, p2 = Xt2. They are termed dis-

tinctly horizontally tunnelable if additionally Ia ̸= Ib.

Then, the horizontal tunnelability of a particular U-shaped segment Ic is

HT(Ic) =


Ii∈U
Ii ̸=Ic

HT (X, Ic, Ii) (27)

Remark. There are some time series for which horizontal visibility on U-shaped seg-

ments is the same as its horizontal tunnelability. These are those time series who do

not possess valleys- that is, a U-shaped segment that is smaller in maximal height

than the U-shaped segments adjacent to it.

3.2 Horizontal Tunnelability Graphs

One can suciently invert U-shaped segments to obtain a time series for whose

horizontal tunnelabilities is precisely its horizontal visibilities. Clearly, if something

is horizontally tunnelable it is also horizontally visible.

Denition 3.2 (Horizontal Tunnelability Graph). Denoted HTG, it is the graph with

vertices associated to U-shaped segments possessing edges connecting them wherever
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the segments are horizontally tunnelable. Similarly, HTG for data points is dened as

the graph with vertices per data point and edges wherever two points are horizontally

tunnelable.

Figure 22: We compute the horizontal tunnelability graph constructed from the prior
time series. Observe that the edges correspond to the tunnelability of each of the
U-shaped segments of the time series (ex: U1 is tunnelable, connected, to U2 and U5.

Lemma 3.1. The horizontal tunnelability graph is a subgraph of the horizontal visi-

bility graph of the time series.

Proof. This immediately follows from the fact that any two points and any two U-

shaped segments are horizontally tunnelable if and only if they are also horizontally

visible. We attain a proper subgraph for those time series that do not possess valleys

as per the prior remark.

We conclude this section by emphasizing the increased utility of horizontal tun-

nelability. The smaller graph we aim to show retains many of the same important

capabilities as others. We would like to additionally highlight that our construction

is the rst to make use of the additional geometric information imparted by the linear

interpolations of time series. The horizontal tunnelability concept is one that is more

suited to elds in which convexity or concavity are important measures.
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4 Dual of a Level-Set Tree

Our discovery of horizontal tunnelability as a concept begins rst with the study

of duals of level-set trees. In doing so, we have given a characterization of the duals of

rooted, binary trees and how to construct them that is not found in existing literature.

It is this characterization that later helps motivate our algorithm to generate these

duals.

4.1 Duals of Rooted Binary Trees

The general characterization of dual of rooted binary trees follows from the general

construction of rooted, binary trees. We will rst begin with the minimal rooted,

binary tree with two leaves. We additional embed all of our trees and duals in the

disk for clarity. To construct the dual, we similarly begin from the minimal triangle

dual.

Figure 23: We begin with the minimal rooted binary tree (in green) and the minimal
dual (in purple).

Next, to iterate another rooted, binary tree instance, we arbitrarily append to a

leaf a v-branch. Similarly, for the dual we add a new point onto the circle and connect

two edges to its neighbor points keeping all prior edges. This new point is arbitrary

but for sake of clarity we choose those points that correspond to our tree construction

in our gures. We iterate this process for both the tree and the dual.
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Figure 24: The construction iterates by adding v-shaped branches in the green tree
and associated triangles in the purple dual.

By iterating this process, we may generate any rooted, binary tree and any dual

of a rooted, binary tree. This works because each face-vertex of the dual corresponds

precisely to a v-branch and each face-vertex necessarily connects to its two neighbor

edges (for binary trees). No other edges are possible in the dual as faces are only

formable by correspondent v-branches.

4.2 The Dual of a Level-Set Tree is the Horizontal Tunnela-

bility Graph on U-shaped Segments

We now continue to establish the main result of our thesis— that is, that level

set trees are dual to our horizontal tunnelability graphs. We will begin with a few

helpful lemmas that will make this correspondence clear.

Lemma 4.1. Nonzero distinctly horizontally tunnelable points on a time series, Xt ∈

Eex with distinct, nite extrema and no consecutively repeated values, either share an

edge in its level set tree T = Level(Xt) or have the same value as some local minima

in the time series.

Proof. Suppose two points, X(t1) = X(t2) ̸= 0 are distinctly horizontally tunnelable

with t1 ∈ Ia, t2 ∈ Ib, t2 > t1 and Ia ̸= Ib being subintervals of associated U-shaped
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segments. Since the two points are horizontally tunnelable, for all t ∈ (t1, t2), Xt is

always above Xt1 = Xt2. If this were not the case, then by the Intermediate Value

Theorem (since all piecewise linear interpolations are continuous), there would be

some t3 ∈ (t1, t2) such that Xt3 = Xt1 = Xt2. But this would violate the horizontal

tunnelability (and visibility) of Xt1 and Xt2.

In the case that the time series is always above the horizontally tunnelable points,

the inmum on [Xt1, Xt2] is exactly Xt1 = Xt2. Hence, by the metric dX on the level

set tree T , Xt1 ∼ Xt2 because

dX(t1, t2) = Xt1 −Xt1 +Xt1 −Xt1 = 0 (28)

A two point equivalence class bijectively corresponds to edge portions meaning that

uT (t1) and uT (t2) simply map to the left and right (resp.) portions of the same edge in

the level set tree. Alternatively, the two horizontally tunnelable points could instead

belong to a 3+ point equivalence class in which case Xt1 = Xt2 is a local minima

value obtained somewhere along the time series.

Remark. It is important for our theorem to require horizontal tunnelability as op-

posed to horizontal visibility because otherwise there would no longer be a guaranteed

equivalence class to which the two points would belong and so they could lie on very

dierent edges in the tree.

Lemma 4.2. Suppose that there exists a pair of nonzero distinctly horizontally tun-

nelable points (Xt1, Xt2) on a time series, Xt ∈ Eex with distinct, nite extrema and

no consecutively repeated values. Let this pair correspond to the 3 point equivalence

class of local minima and further let t1 ∈ Ia, t2 ∈ Ib where Ia, Ib are support subinter-

vals of distinct U-shaped segments. Then, there exists another pair of points (Xt3, Xt4)

with t3 ∈ Ia, t4 ∈ Ib that are also nonzero distinctly horizontally tunnelable but instead
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correspond to the 2 point equivalence class of a shared edge.

Proof. Since the time series has distinct, nite extrema, the set of local minimal y-

values has measure 0. Thus, on the U-shaped segment containing Xt1, one can choose

a point slightly below that y-value that does not have the same height as some local

minima. The same can be done for the U-shape segment containing Xt2 such that the

newly chosen points (Xt3, Xt4) are nonzero distinctly horizontally tunnelable. This

can only not be done in the case that one of the points Xt1 or Xt2 is itself a local

minima, in which case choose (Xt3, Xt4) to be slightly above. There is always space

to choose points above and below so long as our original pair is nonzero and because

real intervals are dense and have nonzero measure. The original pair of points cannot

both be local minima because the time series has distinct extrema.

Lemma 4.3. U-shaped segments in the time series X correspond to the borders of

the faces formed by the embedding of T = Level(X) into D2, or alternatively, to the

vertices of the dual graph.

Proof. Let there be nU-shaped segments with support on subintervals U = I1, , In

and denote the local maxima of X in order left-to-right as occurring at t1, , tn.

Consider the images of the tree traversal function uT on each of these subintervals.

uT (I1) = uT ([0, t1]) so this is the path of leftmost edges from the root to the left-

most leaf on the level set tree (since each leaf corresponds to a local maxima). For

I2, , In−1, the images of the tree traversal function on these subintervals is the paths

of edges between adjacent leaves in depth-rst search order. Similarly, for In the

appropriate image is just the path of edges from the rightmost leaf down to the root.

Thus all the images are depth-rst search paths between either the root to the left-

most leaf, between a leaf to the right adjacent leaf, or from the rightmost leaf to the

root. When the level set tree is embedded into D2, we place the root and leaves onto

S1. Between any two of these points on S1, there is exactly one, unique portion of
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the circle connecting them. This portion, along with the tree traversal image of the

given subinterval, forms the border of the faces and hence the nodes of the dual

graph.

Theorem 4.4. Suppose we have a time series Xt ∈ Eex with distinct, nite extrema

and no consecutively repeated values. The horizontal tunnelability of its U-shaped

segments is given precisely by the degree sequence of the dual of its level set tree.

Moreover, the horizontal tunnelability graph itself is precisely the dual of its level set

tree.

Proof. According to Lemma 4.3, each U-shaped segment corresponds to a vertex in

the dual graph. Moreover, by the denition of the dual, the number of edges forming

the borders of each vertex-face not lying on S1 is exactly the degree of that vertex.

By Lemmas 4.1 and 4.2, the horizontal tunnelability of each U-shaped segment is the

number of edges shared on the level set tree by the tree traversal image of that U-

shaped segment. Hence, the U-shaped segments’ horizontal tunnelabilities is precisely

given by the corresponding degrees of the dual graph’s vertices.

Remark. Suppose that the level set tree be drawn with the root at the bottom and the

dual be drawn such that its nodes are located centrally amongst the faces. Then,

the U-shaped segment’s horizontal tunnelabilities from left to right is given by the

degrees on the dual in clockwise order starting from the appropriate vertex (which is

always located near the root).
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Figure 25: In Matlab, we compute the dual (in red) of a disk embedded level set tree
(in blue). Note that the blue disk is not part of the tree.

There are some interesting properties of this dual graph. We summarize one such

property here and leave the rest for empirical assay.

Lemma 4.5. The degree function f of the dual graph of a binary, planted tree T ∈ T |

has a xed point f(2) = 2. Further, f(0) = f(1) = 0 and f(kmax) = 1 or f(kmax) = 2

where kmax is the maximal degree of the tree.

Proof. Since T is a binary, planted tree, the two edges going to the left and right

from the planted edge demarcates two faces, ergo, two vertices in the dual graph.

This is because the left edge will lead to the leftmost vertex of the tree which will

necessarily be on S1 upon embedding the tree into D2. The same is true for the

rightmost vertex.
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5 Empirical Studies

We have written Matlab code (see Appendix) to produce the duals of our level

set trees, the horizontal tunnelability graphs. The code is written with some help

from tinevez’s @tree package (Tinevez 29) and the level set tree.m function from

Zoe Haskell’s Ph.D thesis (Haskell 11) code. This code is available here https://

tinevez.github.io/matlab-tree/ and here https://zenodo.org/record/4302471

respectively. The totality of our code is hosted here https://github.com/pikhan/

Research.

In similar fashion to prior literature, we compute the following metrics:

1. Local and Global Clustering Coecients

2. Local and Global Mean Path Lengths

3. Local and Global Mean Degrees

4. Degree Distributions and Degree Sequences

All of our experiments were conducted by generating level set trees from simulated

time series of 1000 data points. We additionally note that our results remained

stable with very small dierences in numbers or image quality compared to the large

ones we see between dierent distributions. In general, we believe the results of our

experimentation validates the success of this method in being able to perform the

same functions as its predecessors at a fraction of the computational cost.

Our actual code is, however, somewhat slow, but not due to the horizontal tun-

nelability object structure, rather it is primarily due to the computation of some of

our metrics. For example, we use the Floyd-Warshall algorithm (Ingerman 12) which

has complexity O(V 3) for computing the average path length for a graph with V -many

vertices, which we run recursively to compute the mean path length as a function of n
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(Rosen 24). Implementing Dijkstra’s would be much faster and an improvement that,

along with many other speedups, would improve the versatility of the code. Despite,

this we were able to run each of the simulations in seconds on an old Lenovo laptop.

We tested the following time series:

1. Uniform Random

2. Brownian (Gaussian) Random Walk

3. Fractional Brownian Motion with Hurst exponent 0.7

4. Time Series with Linear Trend (slope=0.1) and Noise

5. Lorenz Attractor with σ = 10,β = 8
3
, ρ = 28, x0 = 01, y0 = 0, z0 = 20

5.1 Single-Value Metrics

We summarize some of our results in the following table.

Time Series Mean Clustering Coe. Mean Path Length Mean Degree
Uniform Random 0.9827 2.7150 94.3473

Brownian 0.9829 1.9644 123.0996
Frac. Brownian 0.9149 3.0454 21.5869
Linear Trend 0.3442 2.1068 2.9091

Lorenz 0.9138 1.4744 6.6154

Table 3: Here is a small summary of our single-valued experimental results.

We easily observe a sharp dierence in the mean clustering coecient between

our time series with linear trend and the other, more chaotic series. The mean path

length and mean degree in particular, are much more sensitive measure metrics. Time

Series with linear trends, in particular, are easily detectable by all three single-value

metrics. Although, we did not compute any closed form formulas for these metrics

or the others discussed below, we believe a similar approach as before (Luque et al.
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19) could be undertaken and one may similarly also estimate dynamical parameters

such as the Hurst exponent.

In particular, observe the fractional Brownian motion results. With Hurst expo-

nent 0.7 we achieve the results as in Table 3. Although, not listed we also tested with

many other Hurst exponents. We observe strong changes in behavior of our degree

distributions and mean path lengths graphs between the regime of Hurst exponent

being close to 0 versus 1. Typically, we see behavior such as the degree distribution

exponentially rising and the mean path length plateaus after rising (in low Hurst

exponents, opposite in high). We hint at a method for Hurst exponent estimation

via a known relationship between fractional brownian noise and our plotted graph

metrics. However, our single-value metrics are not enough to perform Hurst expo-

nent estimation as empirically we do not observe any good correlations between Hurst

exponent and our single-value metrics. However, we do observe consistency between

distributions and by our results in general. The stability of our results implies a

strong applicability for distributional discrimination and identication of time series

data, especially by our plotted metrics.

5.2 Visual Discrimination by Duals and Trees

We now compare some of our duals and trees. There are remarkable, immediately

striking dierences between the trees and duals of these distributions.
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(a) Uniform Random Level Set Tree (b) Linear Trend Level Set Tree

(c) Frac. Brownian Level Set Tree (d) Lorenz Level Set Tree

Figure 26: Here we provide a few plots of some of our computed level-set trees.

(a) Uniform Random Level Set Tree
embedded in the disk

(b) Lorenz Level Set Tree embedded in the
disk

Figure 27: Here are plots of some of our level-set trees embedded in the disk.

We now summarize the plots of our horizontal tunnelability graphs, which bear

similar stark visual dierences.
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(a) Uniform Random HTG (b) Linear Trend HTG

(c) Frac. Brownian HTG (d) Lorenz

Figure 28: Finally, we plot in Matlab (in polar coordinates) some of our HTGs.

5.3 Plot Metrics

By far, however, our most informative metrics are the degree distributions, local

clustering coecients, mean path lengths, and mean degrees (as functions of n). Al-

though, not computed, clustering distributions may also be computed (instead of just

raw local clustering coecients), although we did not nd the clustering coecient

metric to be particularly informative in our experiments. We summarize our results

below.



55

(a) Uniform Random HTG Degree
Distribution (b) Uniform Random HTG Mean Degree

(c) Uniform Random HTG Local Clustering
Coe.

(d) Uniform Random HTG Mean Path
Length

Figure 29: We compute four graph metrics for Uniform Random HTGs. These include
their degree distributions in a semi-log scale for the probability (y-axis), the mean
degree as a function of vertices included, the depth-rst search ordered (from the
level set tree) local clustering coecients, and the mean path length as a function of
vertices included in the analyzed subgraph.

As seen in Figure 29 we observe our random time series to have somewhat fat-

tailed and somewhat exponential rising degree distributions. The mean degrees tend

to increase and mean path lengths tend to a middle. On the surface, we see behavior

similar to that of our Brownian HTGs in Figure 30 which are random (but normally

distributed), but crucially observe that our Brownian HTGmean path lengths plateau

much lower than 2.5 and exhibit stronger small-world property. Fractional brownian

noise, linear trend, and lorenz time series show much more contrasting distributions,

mean path lengths, and mean degrees.
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(a) Brownian HTG Degree Distribution (b) Brownian HTG Mean Degree

(c) Brownian HTG Local Clustering Coe. (d) Brownian HTG Mean Path Length

Figure 30: Here we compute the same metrics as before for Brownian HTGs. Notice,
that similar to uniform random we exhibit similar fat-tailed behavior in our degree
distributions and increase in our mean degree. This is what we expect, is similar to
previous work with horizontal visibility, and is due to the existence of large outliers
in the data.
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(a) Frac. Brown HTG Degree Distribution (b) Frac. Brown HTG Mean Degree

(c) Frac. Brown HTG Local Clustering
Coe. (d) Frac. Brown HTG Mean Path Length

Figure 31: Observe that for Fractional Brownian motion, we observe strikingly dif-
ferent behavior. In particular, in Matlab we can see that our degree distribution can
be well approximated by a power-law distribution (recall that the y-axis is semilog).
Also observe that our mean path lengths tend to increase.
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(a) Linear Trend HTG Degree Distribution (b) Linear Trend HTG Mean Degree

(c) Linear Trend HTG Local Clustering
Coe. (d) Linear Trend HTG Mean Path Length

Figure 32: Almost no matter what method we use to assess linear trends, they are easy
to pick out. Even here we see at-lining mean path lengths and linearly decreasing
degree distributions (along with U-shaped mean degree). This is precisely what we
expect for a linearly trending time series and replicates similar results with horizontal
visibility.
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(a) Lorenz HTG Degree Distribution (b) Lorenz HTG Mean Degree

(c) Lorenz HTG Local Clustering Coe. (d) Lorenz HTG Mean Path Length

Figure 33: Lorenz Attractor based time series produced interesting results, with a
noticeable single major peak in the degree distribution.

6 Discussion

The development of our concept of horizontal tunnelability marks a noteworthy

advancement in time series analysis, bridging the gap between disparate geometric

approaches. By unifying methodologies like tree methods, visibility algorithms, and

persistence-based barcodes, we have not only provided a novel perspective but have

also succeeded in illuminating connections between previously unrelated work. The

duality between the level set tree, obtained as the Harris path of a time series, and

the time series’ horizontal tunnelability graph, a subgraph of the horizontal visibility

graph, is a particularly signicant nding.

A critical aspect of our study is the exploration of computational algorithms for

such geometric time series analysis. Algorithms such as the Floyd-Warshall algorithm

brought computational challenges, aecting the overall performance of the code. Po-
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tential improvements like implementing Dijkstra’s algorithm (Dijkstra 8) could oer

a more ecient computation balance between accuracy and speed. Visual discrimina-

tion between trees and duals of various distributions oers insight into the structural

nuances of the data, providing opportunities for classication or understanding the

underlying process generating the time series.

The sharp dierence in metrics between various time series, such as the mean path

lengths, degree distributions, and mean degrees between, for example, linear trend

time series and other chaotic series, provides intriguing insights. These dierences

may be connected to the underlying characteristics of the time series, that may persist

in scale-free resolutions.

One of the key strengths of our approach lies in its computational eciency over

prior methods, oering promising applications across various domains, including eco-

nomics, climatology, and other elds requiring robust, geometric time series analysis.

Reecting on overall stability and consistency, our results validate the method while

identifying limitations, such as specic cases where performance may be compromised.

Future work could explore closed-form formulas, improving computational eciency,

or applying the method to dierent types or larger datasets. Particularly, we would

like to test our methods on real-world data. Despite potential challenges in imple-

mentation, the real-world applicability of this research could lead to problem-solving

in various disciplines.

In conclusion, the provision of empirical code bridges the gap between theory and

practice, making our innovative approach accessible to practitioners and researchers

alike. Further exploration and validation, especially in real-world applications, may

yield deeper insights and rene our understanding of time series behavior. This thesis

presents our main methods and some proof-of-concept simulations but also hints at

far-reaching implications and future directions, such as a possible method for Hurst
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exponent estimation.

Appendices

A Conjectures

Conjectures on Level-Set Trees

1. We know that Level(f) produces a level-set tree corresponding to the function

f and that moreover, local maxima (nite patterns of length 2 on 1,−1n :

(+1,−1)) corresponds to its leaves. Local maxima are traditionally found by

setting the derivative equal to 0, which correspond to our search for patterns

of type (+1,−1). This is because the intermediate value theorem states that

going from a positive to negative derivative/slope implies that the zero lies be-

tween there. The same is true for the situation of (-1,1) patterns but this gives

us minima and in the symbols used in Haskell’s thesis the full state space is

described by B2.

Idea: Assess Level(f ′) (the derivative) trees. Just like in the situation of

Level(f) trees, local maxima correspond to leaves but now, local maxima

of f ′ mean inection points. Can we transform the Level(f) to Level(f ′)

trees with an appropriate operation? Can we identify concavity or inection

points from Level(f) trees alone? Although not Horton pruning, there may be

some pruning operation that corresponds to taking the derivative. That is,

Level(f ′) = PLevel(f) where P is some pruning operation. This is because, the

number of local maxima decreases when taking the derivative along the same

interval.

Idea: Consider a degree n polynomial. Dierentiating it yields a degree n − 1
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polynomial and hence there are at max ⌈n−1
2
⌉ local maxima.Similarly, dieren-

tiating again will yield at max ⌈n−2
2
⌉ inection points. So the Level(f ′) tree

should have ∼ 1 of the leaves pruned. Never will the Level(f ′) tree have more

leaves than its Level(f) counterpart, so the appropriate tree-level dierentiation

operation should do some kind of pruning.

2. Assign Horton-Strahler orders to level-set trees. How are these orders preserved

and what patterns may be observed?

Conjectures on Patterns of Length n

1. Only patterns of length 2 have representation as tree vertex. This much is clear

from the construction of level set trees. What are other identiable features of

level set trees? We already know the correspondence between internal vertices,

degree 1 vertices, and edges. Whats more is that these are still level -set trees,

the level information can only be gotten by looking at maxima and minima.

So patterns of greater than length 2 dont give us any information more. Even-

length patterns just provide the same information over a longer interval, odd-

length patterns dont provide enough information.

2. Instead of looking at patterns of length n and their occurrence translated di-

rectly into the level set tree, can we instead look at the statistics of their oc-

currences on both the time series and level set trees? For example, can we say

something about heteroskedasticity of a time series from the number of local

maxima observed? Can we say something about heteroskedasticity by tracking

the degrees of vertices? What do measures of graph density/sparseness tell us

about the time series?

Miscellaneous
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1. What continuous functions correspond to general Critical Tokunaga processes?

2. What do HTGs and HVGs look like for Galton-Watson trees?

B Code

The code is hosted on github at https://github.com/pikhan/Research. To

run simulations one can download the repository, unzip the folder, and run the

mySimulations.m MatLab program (MatLab R2019B or above should work). It

is important to keep the downloaded folder’s structure and naming due to le de-

pendencies. Should one wish to compute duals alone, calc circular layout.m and

calc dual layout.m are the functions of concern. Helpful comments are maintained

in the github repository but for brevity we only provide the code itself here.

B.1 tree.m

The code used in this thesis is primarily written in Matlab and utilizes a modied

version of the @tree package by tinevez (Tinevez 29). The modication is in the

tree.m le as below:

1 c l a s s d e f t r e e

2 p r op e r t i e s ( SetAccess = pr i va t e )

3 Node =  [ ]  ;

4 Parent = [ 0 ] ; %#ok<NBRAK>

5 end

6 methods

7 f unc t i on [ obj , root ID ] = t r e e ( content , va l )

8 i f narg in < 1

9 root ID = 1 ;
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10 re turn

11 end

12 i f i s a ( content , ’ t r e e ’ )

13 obj . Parent = content . Parent ;

14 i f narg in > 1

15 i f s trcmpi ( val , ’ c l e a r ’ )

16 obj . Node = c e l l ( numel ( obj . Parent ) , 1)

;

17 e l s e

18 c e l l v a l = c e l l ( numel ( obj . Parent ) , 1) ;

19 f o r i = 1 : numel ( obj . Parent )

20 c e l l v a l  i  = val ;

21 end

22 obj . Node = c e l l v a l ;

23 end

24 e l s e

25 obj . Node = content . Node ;

26 end

27 e l s e i f i s a ( content , ’ double ’ )

28 obj . Parent = transpose ( content ) ;

29 obj . Node = transpose ( c e l l s t r ( s t r i n g ( 1 : l ength (

content ) ) ) ) ;

30 root ID = f ind ( content == 0) ;

31 e l s e

32 obj . Node =  content  ;

33 root ID = 1 ;
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34 end

35 end

36 f unc t i on [ obj , ID ] = addnode ( obj , parent , data )

37 i f parent < 0   parent > numel ( obj . Parent )

38 e r r o r ( ’MATLAB: t r e e : addnode ’ , . . .

39 ’ Cannot add to unknown parent with index

%d .\n ’ , parent )

40 end

41 i f parent == 0

42 obj . Node =  data  ;

43 obj . Parent = 0 ;

44 ID = 1 ;

45 re turn

46 end

47 obj . Node end + 1 , 1  = data ;

48 obj . Parent = [

49 obj . Parent

50 parent ] ;

51 ID = numel ( obj . Node) ;

52 end

53 f unc t i on f l a g = i s l e a f ( obj , ID)

54 i f ID < 1   ID > numel ( obj . Parent )

55 e r r o r ( ’MATLAB: t r e e : i s l e a f ’ , . . .

56 ’No node with ID %d . ’ , ID)

57 end

58 parent = obj . Parent ;
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59 f l a g = ˜any ( parent == ID ) ;

60 end

61 f unc t i on IDs = f i nd l e a v e s ( obj )

62 parents = obj . Parent ;

63 IDs = (1 : numel ( parents ) ) ; % Al l IDs

64 IDs = s e t d i f f ( IDs , parents ) ; % Remove those which

are marked as parent

65 end

66 f unc t i on content = get ( obj , ID)

67 content = obj . NodeID  ;

68 end

69 f unc t i on obj = se t ( obj , ID , content )

70 obj . NodeID = content ;

71 end

72 f unc t i on IDs = ge t ch i l d r en ( obj , ID)

73 parent = obj . Parent ;

74 IDs = f ind ( parent == ID ) ;

75 IDs = IDs ’ ;

76 end

77 f unc t i on ID = getparent ( obj , ID)

78 i f ID < 1   ID > numel ( obj . Parent )

79 e r r o r ( ’MATLAB: t r e e : getparent ’ , . . .

80 ’No node with ID %d . ’ , ID)

81 end

82 ID = obj . Parent ( ID) ;

83 end
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84 f unc t i on IDs = g e t s i b l i n g s ( obj , ID)

85 i f ID < 1   ID > numel ( obj . Parent )

86 e r r o r ( ’MATLAB: t r e e : g e t s i b l i n g s ’ , . . .

87 ’No node with ID %d . ’ , ID)

88 end

89 i f ID == 1 % Spec i a l case : the root

90 IDs = 1 ;

91 re turn

92 end

93 parent = obj . Parent ( ID) ;

94 IDs = obj . g e t ch i l d r en ( parent ) ;

95 end

96 f unc t i on n = nnodes ( obj )

97 n = numel ( obj . Parent ) ;

98 end

99 end

100 methods ( S t a t i c )

101 hl = deco ra t ep l o t s ( ha )

102 f unc t i on [ l i neage , durat ion ] = example

103 l ineage AB = t r e e ( ’AB’ ) ;

104 [ l ineage AB , id ABa ] = lineage AB . addnode (1 , ’AB.

a ’ ) ;

105 [ l ineage AB , id ABp ] = lineage AB . addnode (1 , ’AB.

p ’ ) ;

106 [ l ineage AB , id ABal ] = l ineage AB . addnode ( id ABa

, ’AB. a l ’ ) ;
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107 [ l ineage AB , id ABar ] = lineage AB . addnode ( id ABa

, ’AB. ar ’ ) ;

108 [ l ineage AB , id ABala ] = l ineage AB . addnode (

id ABal , ’AB. a la ’ ) ;

109 [ l ineage AB , id ABalp ] = lineage AB . addnode (

id ABal , ’AB. alp ’ ) ;

110 [ l ineage AB , id ABara ] = lineage AB . addnode (

id ABar , ’AB. ara ’ ) ;

111 [ l ineage AB , id ABarp ] = lineage AB . addnode (

id ABar , ’AB. arp ’ ) ;

112 [ l ineage AB , id ABpl ] = l ineage AB . addnode ( id ABp

, ’AB. p l ’ ) ;

113 [ l ineage AB , id ABpr ] = lineage AB . addnode ( id ABp

, ’AB. pr ’ ) ;

114 [ l ineage AB , id ABpla ] = lineage AB . addnode (

id ABpl , ’AB. pla ’ ) ;

115 [ l ineage AB , id ABplp ] = lineage AB . addnode (

id ABpl , ’AB. plp ’ ) ;

116 [ l ineage AB , id ABpra ] = lineage AB . addnode (

id ABpr , ’AB. pra ’ ) ;

117 [ l ineage AB , id ABprp ] = lineage AB . addnode (

id ABpr , ’AB. prp ’ ) ;

118 l i neage P1 = t r e e ( ’P1 ’ ) ;

119 [ l ineage P1 , id P2 ] = l ineage P1 . addnode (1 , ’P2 ’ )

;
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120 [ l ineage P1 , id EMS ] = l ineage P1 . addnode (1 , ’EMS

’ ) ;

121 [ l ineage P1 , id P3 ] = l ineage P1 . addnode ( id P2 , ’

P3 ’ ) ;

122 [ l ineage P1 , id C ] = l ineage P1 . addnode ( id P2 , ’C

’ ) ;

123 [ l ineage P1 , id Ca ] = l ineage P1 . addnode ( id C , ’C

. a ’ ) ;

124 [ l ineage P1 , id Caa ] = l ineage P1 . addnode ( id Ca ,

’C. aa ’ ) ;

125 [ l ineage P1 , id Cap ] = l ineage P1 . addnode ( id Ca ,

’C. ap ’ ) ;

126 [ l ineage P1 , id Cp ] = l ineage P1 . addnode ( id C , ’C

. p ’ ) ;

127 [ l ineage P1 , id Cpa ] = l ineage P1 . addnode ( id Cp ,

’C. pa ’ ) ;

128 [ l ineage P1 , id Cpp ] = l ineage P1 . addnode ( id Cp ,

’C. pp ’ ) ;

129 [ l ineage P1 , id MS ] = l ineage P1 . addnode ( id EMS ,

’MS’ ) ;

130 [ l ineage P1 , id MSa ] = l ineage P1 . addnode ( id MS ,

’MS. a ’ ) ;

131 [ l ineage P1 , id MSp ] = l ineage P1 . addnode ( id MS ,

’MS. p ’ ) ;

132 [ l ineage P1 , id E ] = l ineage P1 . addnode ( id EMS , ’

E ’ ) ;
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133 [ l ineage P1 , id Ea ] = l ineage P1 . addnode ( id E , ’E

. a ’ ) ;

134 [ l ineage P1 , id Ea l ] = l ineage P1 . addnode ( id Ea ,

’E. a l ’ ) ; %#ok<∗NASGU>

135 [ l ineage P1 , id Ear ] = l ineage P1 . addnode ( id Ea ,

’E. ar ’ ) ;

136 [ l ineage P1 , id Ep ] = l ineage P1 . addnode ( id E , ’E

. p ’ ) ;

137 [ l ineage P1 , id Epl ] = l ineage P1 . addnode ( id Ep ,

’E. p l ’ ) ;

138 [ l ineage P1 , id Epr ] = l ineage P1 . addnode ( id Ep ,

’E. pr ’ ) ;

139 [ l ineage P1 , id P4 ] = l ineage P1 . addnode ( id P3 , ’

P4 ’ ) ;

140 [ l ineage P1 , id Z2 ] = l ineage P1 . addnode ( id P4 , ’

Z2 ’ ) ;

141 [ l ineage P1 , id Z3 ] = l ineage P1 . addnode ( id P4 , ’

Z3 ’ ) ;

142 [ l ineage P1 , id D ] = l ineage P1 . addnode ( id P3 , ’D

’ ) ;

143 l i n e a g e = t r e e ( ’ Zygote ’ ) ;

144 l i n e a g e = l i n e ag e . g r a f t (1 , l ineage AB ) ;

145 l i n e a g e = l i n e ag e . g r a f t (1 , l i neage P1 ) ;

146 durat ion = t r e e ( l i neage , ’ c l e a r ’ ) ;

147 i t e r a t o r = durat ion . d e p t h f i r s t i t e r a t o r ;

148 f o r i = i t e r a t o r
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149 durat ion = durat ion . s e t ( i , round (20∗ rand ) ) ;

150 end

151 end

152 end

153 end

From there, we dene a number of custom functions which are given as follows.

B.2 calc circular layout.m

1 f unc t i on layout = c a l c c i r c u l a r l a y o u t ( t ree , r oo t id ,

s t a r t ang l e , t o t a l ang l e , s ca l e , plotParam )

2 ang l e s = conta ine r s .Map( ’KeyType ’ , ’ double ’ , ’ ValueType ’ , ’

any ’ ) ;

3 ang l eS e l e c t = ge t ang l e ( t ree , r oo t id , s t a r t ang l e ,

t o t a l a n g l e ) ;

4 d i s t anc e s = conta ine r s .Map( ’KeyType ’ , ’ double ’ , ’ ValueType ’

, ’ any ’ ) ;

5 queue =  r o o t i d  ;

6 l e a f i t e r a t o r = 0 ;

7 ang l e s ( r o o t i d )=90;

8 d i s t anc e s ( r o o t i d )=1;

9 whi le ˜ isempty ( queue )

10 node = queue 1 ;

11 queue (1) = [ ] ;

12 ch i l d r en = t r e e . g e t ch i l d r en ( node ) ;

13 f o r i = 1 : l ength ( ch i l d r en )

14 c h i l d i d = ch i l d r en ( i ) ;
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15 angle=0;

16 d i s t ance =0;

17 i f t r e e . i s l e a f ( c h i l d i d )

18 d i s t ance = 1 ;

19 angle=ang l eS e l e c t ( c h i l d i d ) ;

20 e l s e i f c h i l d i d==1

21 d i s t ance = ge t d i s t an c e f r om roo t ( tree ,

c h i l d i d , r oo t id , s c a l e ) ;

22 angle = ang l eS e l e c t ( c h i l d i d ) ;

23 e l s e i f isempty ( c h i l d i d )

24 di sp ( l e a f ) ;

25 e l s e

26 d i s t ance = ge t d i s t an c e f r om roo t ( tree ,

c h i l d i d , r oo t id , s c a l e ) ;

27 angle = ang l eS e l e c t ( c h i l d i d ) ;

28 end

29 ang l e s ( c h i l d i d ) = angle ;

30 d i s t anc e s ( c h i l d i d )=d i s tance ;

31 queueend+1 = ch i l d i d ;

32 end

33 end

34 ang l eva l s=ang l e s . va lues ;

35 ang l eva lue s=ve r t ca t ( ang l eva l s  : ) ;

36 d i s t an c eva l s=d i s t anc e s . va lues ;

37 d i s t anc eva lue s=ve r t ca t ( d i s t an c eva l s  : ) ;

38 l ayout=angles , d i s t anc e s  ;
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39 i f plotParam==1

40 f i g u r e ( ) ;

41 po l a rp l o t ( deg2rad ( ang l eva lue s ) , d i s tanceva lue s , ’ o ’ , ’

Color ’ , ’ b lue ’ ) ;

42 hold on ;

43 f o r i =1: t r e e . nnodes

44 f o r j =1: t r e e . nnodes

45 i f i==t r e e . getparent ( j )   j==t r e e . getparent ( i )

46 l i n e ( [ deg2rad ( ang l e s ( i ) ) , deg2rad ( ang l e s ( j ) )

] , [ d i s t anc e s ( i ) , d i s t anc e s ( j ) ] , ’ Color ’ , ’

b lue ’ ) ;

47 end

48 end

49 end

50 k = 1 ;

51 theta = l i n spa c e (0 ,2∗ pi ) ;

52 rho = l i n spa c e (k , k ) ;

53 po l a rp l o t ( theta , rho , ’ green ’ ) ;

54 hold o f f ;

55 end

B.3 calc dual layout.m

1 f unc t i on layout = ca l c dua l l a y ou t ( t ree , t r e e l ayout ,

graph param )

2 ang l e s=t r e e l ayou t 1 ;

3 d i s t anc e s=t r e e l ayou t 2 ;
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4 ang l eva l s=ang l e s . va lues ;

5 ang l eva lue s=ve r t ca t ( ang l eva l s  : ) ;

6 d i s t an c eva l s=d i s t anc e s . va lues ;

7 d i s t anc eva lue s=ve r t ca t ( d i s t an c eva l s  : ) ;

8 f i g u r e ( ) ;

9 po l a rp l o t ( deg2rad ( ang l eva lue s ) , d i s tanceva lue s , ’ o ’ , ’ Color ’ ,

’ b lue ’ ) ;

10 se l ec tedKeys = keys ( d i s t anc e s ) ;

11 se l ec tedKeys = se l ec tedKeys ( ce l l 2mat ( c e l l f u n (@(x ) x == 1 ,

va lues ( d i s t anc e s ) , ’ UniformOutput ’ , f a l s e ) ) ) ;

12 subsetMap = conta in e r s .Map( se lectedKeys , va lues ( angles ,

s e l ec tedKeys ) ) ;

13 l e a fAng l e s = ce l l2mat ( subsetMap . va lues ) ;

14 l e a fAng l e s copy=l ea fAng l e s ;

15 l e a fAng l e s ( l ea fAng le s >360)=l ea fAng l e s ( l ea fAng l e s >360) − 360 ;

16 c en t e r ed ang l e s = l ea fAng l e s − 90 ;

17 wrapped angles = cen t e r ed ang l e s ;

18 wrapped angles ( wrapped angles < 0) = wrapped angles (

wrapped angles < 0) + 360 ;

19 sor ted wrapped ang le s = so r t ( wrapped angles ) ;

20 s o r t ed ang l e s = mod( sor ted wrapped ang le s + 90 , 360) ;

21 s o r t ed ang l e s o g=so r t ed ang l e s ;

22 s o r t ed ang l e s o g ( so r t ed ang l e s og <90)=so r t ed ang l e s o g (

so r t ed ang l e s og <90)+360;

23 s o r t ed key s = ze ro s ( s i z e ( s o r t ed ang l e s o g ) ) ;

24 f o r i = 1 : l ength ( s o r t ed ang l e s o g )
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25 f o r j = 1 : l ength ( ang l e s )

26 i f s o r t ed ang l e s o g ( i ) == ang l e s ( j )

27 s o r t ed key s ( i ) = j ;

28 break ;

29 end

30 end

31 end

32 f aceEdgeLi s t = populateFaces ( t ree , s o r t ed key s ) ; %populate our

f a c e edge l i s t

33 connect ions =  ;

34 f o r i = 1 : l ength ( faceEdgeLi s t )−1

35 currentElement = faceEdgeLi s t  i  ;

36 temp=; %temp array to s t o r e the j f o r which there are

connnect ions

37 f o r j = i +1: l ength ( faceEdgeLi s t )

38 nextElement = faceEdgeLi s t  j  ;

39 sharedElements = i n t e r s e c t ( currentElement ,

nextElement ) ;

40 i f isempty ( sharedElements )==0

41 temp=[temp j ] ;

42 end

43 end

44 connect ions  i  = temp ;

45 end

46 l ayout=connect ions ;

47 f o r i = 1 : l ength ( l e a fAng l e s )
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48 disp ( i ) ;

49 myIndex= f ind ( s o r t ed ang l e s==lea fAng l e s ( i ) ) ;

50 i t e r a t o r s e l e c t=myIndex ;

51 t ext ( deg2rad ( l e a fAng l e s ( i ) ) , 1 , Leaf+s t r i n g (

i t e r a t o r s e l e c t ) , ’ HorizontalAl ignment ’ , ’ r i g h t ’ , ’

Vert ica lAl ignment ’ , ’ top ’ , ’Margin ’ , 25) ;

52 end

53 hold on ;

54 f o r i =1: t r e e . nnodes

55 f o r j =1: t r e e . nnodes

56 i f i==t r e e . getparent ( j )   j==t r e e . getparent ( i )

57 l i n e ( [ deg2rad ( ang l e s ( i ) ) , deg2rad ( ang l e s ( j ) ) ] , [

d i s t anc e s ( i ) , d i s t anc e s ( j ) ] , ’ Color ’ , ’ b lue ’ ) ;

58 end

59 end

60 end

61 midangles=;

62 f o r i =1: l ength ( s o r t ed ang l e s o g )

63 mid angle=0;

64 i f i ˜=length ( s o r t ed ang l e s o g )

65 mid angle=( s o r t ed ang l e s o g ( i )+so r t ed ang l e s o g ( i +1) )

/2 ;

66 e l s e

67 mid angle=( s o r t ed ang l e s o g ( i )+450) /2 ;

68 end

69 midangles i=mid angle ;
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70 end

71 f o r i =1: l ength ( midangles )−1

72 t ext ( deg2rad ( midangles i ) , 1 , Face+s t r i n g ( i +1) , ’

HorizontalAl ignment ’ , ’ r i g h t ’ , ’ Vert ica lAl ignment ’ , ’

top ’ , ’Margin ’ , 25 , ’ Color ’ , ’ red ’ ) ;

73 end

74 t ext ( deg2rad ( midangles l ength ( midangles ) ) , 1 , Face+s t r i n g

(1) , ’ HorizontalAl ignment ’ , ’ r i g h t ’ , ’ Vert ica lAl ignment ’ , ’

top ’ , ’Margin ’ , 25 , ’ Color ’ , ’ red ’ ) ;

75 midang l e s r eo rde r=midangles ( 1 : end−1) ;

76 l a s t e l emen t=midanglesend  ;

77 midang l e s r eo rde r=[ l a s t e l emen t midang l e s r eo rde r ] ;

78 f o r i =1: l ength ( connect ions )

79 f o r j =1: l ength ( connect ions  i )

80 l i n e ( [ deg2rad ( midang l e s r eo rde r  connect ions  i  j ) ,

deg2rad ( midang l e s r eo rde r  i ) ] , [ 1 , 1 ] , ’ Color ’ , ’ red ’

) ;

81 end

82 end

83 k = 1 ;

84 theta = l i n spa c e (0 ,2∗ pi ) ;

85 rho = l i n spa c e (k , k ) ;

86 po l a rp l o t ( theta , rho , ’ b lue ’ ) ;

87 hold o f f ;

88 i f graph param==1

89 f i g u r e ( ) ;
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90 k = 1 ;

91 theta = l i n spa c e (0 ,2∗ pi ) ;

92 rho = l i n spa c e (k , k ) ;

93 po l a rp l o t ( theta , rho , ’ b lue ’ ) ;

94 f o r i =1: l ength ( connect ions )

95 f o r j =1: l ength ( connect ions  i )

96 l i n e ( [ deg2rad ( midang l e s r eo rde r  connect ions  i  j

) , deg2rad ( midang l e s r eo rde r  i ) ] , [ 1 , 1 ] , ’

Color ’ , ’ red ’ ) ;

97 end

98 end

99 end

B.4 draw tree.m

1 f unc t i on draw tree ( root , layout )

2 f i g u r e ;

3 hold on ;

4 f o r i = 1 : l ength ( layout )

5 node = layout . keys i  ;

6 pos = layout ( node ) ;

7 x = pos (2) ∗ cosd ( pos (1) ) ;

8 y = pos (2) ∗ s ind ( pos (1) ) ;

9 parent = get parent ( node ) ;

10 i f ˜ isempty ( parent )

11 parent pos = layout ( parent ) ;

12 parent x = parent pos (2) ∗ cosd ( parent pos (1) ) ;
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13 parent y = parent pos (2) ∗ s ind ( parent pos (1) ) ;

14 l i n e ( [ parent x , x ] , [ parent y , y ] , ’ LineWidth ’ ,

2) ;

15 end

16 s c a t t e r (x , y , ’ f i l l e d ’ ) ;

17 t ext (x , y , node ) ;

18 end

19 ax i s equal ;

20 hold o f f ;

21 end

B.5 get angle.m

1 f unc t i on ang l e s = ge t ang l e ( t ree , r oo t id , s t a r t ang l e ,

t o t a l a n g l e )

2 ang l e s = conta ine r s .Map( ’KeyType ’ , ’ double ’ , ’ ValueType ’ , ’ any ’ )

;

3 f o r i = 1 : nnodes ( t r e e )

4 ang l e s ( i ) = NaN;

5 end

6 ang le increment = t o t a l a n g l e /( numel ( t r e e . f i n d l e a v e s )+1) ;

7 l e a f i t e r a t o r = 0 ;

8 i t = t r a v e r s e l e f t t o r i g h t ( tree , r o o t i d ) ;

9 f o r i=i t

10 i f t r e e . i s l e a f ( i )

11 l e a f i t e r a t o r=l e a f i t e r a t o r +1;

12 ang l e s ( i ) = s t a r t a n g l e+l e a f i t e r a t o r ∗ ang le increment
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;

13 e l s e i f i==roo t i d  i==t r e e . g e t ch i l d r en ( r o o t i d )

14 ang l e s ( i ) = 90 ;

15 end

16 end

17 whi le sum(˜ isnan ( ce l l 2mat ( va lues ( ang l e s ) ) ) )˜=nnodes ( t r e e )

18 queue = [ r o o t i d ] ;

19 whi le ˜ isempty ( queue )

20 node = queue (1) ;

21 queue (1) = [ ] ;

22 ch i l d r en = t r e e . g e t ch i l d r en ( node ) ;

23 t ruth=0;

24 f o r i =1: l ength ( ch i l d r en )

25 t ruth=truth+˜isnan ( ang l e s ( ch i l d r en ( i ) ) ) ;

26 end

27 i f t ruth==length ( ch i l d r en ) && length ( ch i l d r en )˜=0

28 average=0;

29 f o r i =1: l ength ( ch i l d r en )

30 average=average+ang l e s ( ch i l d r en ( i ) ) ;

31 end

32 average=average / l ength ( ch i l d r en ) ;

33 ang l e s ( node )=average ;

34 end

35 queue = [ ch i ld ren , queue ] ;

36 end

37 end
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38 end

B.6 get distance from root.m

1 f unc t i on d i s t ance = ge t d i s t an c e f r om roo t ( tree , c h i l d i d ,

r oo t id , s c a l e )

2 depth=0;

3 node id=ch i l d i d ;

4 whi le node id ˜= roo t i d

5 node id=t r e e . getparent ( node id ) ;

6 depth=depth+1;

7 disp ( node id ) ;

8 end

9 d i s t ance=s c a l e ∗ ( ( depth ) / t r e e . depth ) ;

10 end

B.7 intersections.m

This is a modied version of the typical intersections function gotten from Schwarz’s

Matlab package (Schwarz 25).

1 f unc t i on [ x0 , y0 , iout , j out ] = i n t e r s e c t i o n s ( x1 , y1 , x2 , y2 ,

robust )

2 i f verLessThan ( ’ matlab ’ , ’ 7 .13 ’ )

3 e r r o r ( nargchk (2 ,5 , narg in ) ) %#ok<NCHKN>

4 e l s e

5 narginchk (2 , 5 )

6 end
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7 switch narg in

8 case 2

9 robust = true ;

10 x2 = x1 ;

11 y2 = y1 ;

12 s e l f i n t e r s e c t = true ;

13 case 3

14 robust = x2 ;

15 x2 = x1 ;

16 y2 = y1 ;

17 s e l f i n t e r s e c t = true ;

18 case 4

19 robust = true ;

20 s e l f i n t e r s e c t = f a l s e ;

21 case 5

22 s e l f i n t e r s e c t = f a l s e ;

23 end

24 i f sum( s i z e ( x1 ) > 1) ˜= 1   sum( s i z e ( y1 ) > 1) ˜= 1   . . .

25 l ength ( x1 ) ˜= length ( y1 )

26 e r r o r ( ’X1 and Y1 must be equal−l ength vec to r s o f at

l e a s t 2 po int s . ’ )

27 end

28 i f sum( s i z e ( x2 ) > 1) ˜= 1   sum( s i z e ( y2 ) > 1) ˜= 1   . . .

29 l ength ( x2 ) ˜= length ( y2 )

30 e r r o r ( ’X2 and Y2 must be equal−l ength vec to r s o f at

l e a s t 2 po int s . ’ )
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31 end

32 x1 = x1 ( : ) ;

33 y1 = y1 ( : ) ;

34 x2 = x2 ( : ) ;

35 y2 = y2 ( : ) ;

36 n1 = length ( x1 ) − 1 ;

37 n2 = length ( x2 ) − 1 ;

38 xy1 = [ x1 y1 ] ;

39 xy2 = [ x2 y2 ] ;

40 dxy1 = d i f f ( xy1 ) ;

41 dxy2 = d i f f ( xy2 ) ;

42 i f n1 > 1000   n2 > 1000   verLessThan ( ’ matlab ’ , ’ 7 . 4 ’ )

43 i f n1 >= n2

44 i j c = c e l l (1 , n2 ) ;

45 min x1 = mvmin( x1 ) ;

46 max x1 = mvmax( x1 ) ;

47 min y1 = mvmin( y1 ) ;

48 max y1 = mvmax( y1 ) ;

49 f o r k = 1 : n2

50 k1 = k + 1 ;

51 i j c k = f ind ( . . .

52 min x1 <= max( x2 (k ) , x2 ( k1 ) ) &

max x1 >= min( x2 (k ) , x2 ( k1

) ) & . . .

53 min y1 <= max( y2 (k ) , y2 ( k1 ) ) &

max y1 >= min( y2 (k ) , y2 ( k1
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) ) ) ;

54 i j c k  ( : , 2 ) = k ;

55 end

56 i j = ve r t ca t ( i j c  : ) ;

57 i = i j ( : , 1 ) ;

58 j = i j ( : , 2 ) ;

59 e l s e

60 i j c = c e l l (1 , n1 ) ;

61 min x2 = mvmin( x2 ) ;

62 max x2 = mvmax( x2 ) ;

63 min y2 = mvmin( y2 ) ;

64 max y2 = mvmax( y2 ) ;

65 f o r k = 1 : n1

66 k1 = k + 1 ;

67 i j c k  ( : , 2 ) = f i nd ( . . .

68 min x2 <= max( x1 (k ) , x1 ( k1 ) ) &

max x2 >= min( x1 (k ) , x1 ( k1

) ) & . . .

69 min y2 <= max( y1 (k ) , y1 ( k1 ) ) &

max y2 >= min( y1 (k ) , y1 ( k1

) ) ) ;

70 i j c k  ( : , 1 ) = k ;

71 end

72 i j = ve r t ca t ( i j c  : ) ;

73 i = i j ( : , 1 ) ;

74 j = i j ( : , 2 ) ;
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75 end

76 e l s e i f verLessThan ( ’ matlab ’ , ’ 9 . 1 ’ )

77 [ i , j ] = f i nd ( . . .

78 bsxfun (@le ,mvmin( x1 ) ,mvmax( x2 ) . ’ ) & . . .

79 bsxfun (@ge ,mvmax( x1 ) ,mvmin( x2 ) . ’ ) & . . .

80 bsxfun (@le ,mvmin( y1 ) ,mvmax( y2 ) . ’ ) & . . .

81 bsxfun (@ge ,mvmax( y1 ) ,mvmin( y2 ) . ’ ) ) ;

82 e l s e

83 [ i , j ] = f i nd ( . . .

84 mvmin( x1 ) <= mvmax( x2 ) . ’ & mvmax( x1 ) >= mvmin

( x2 ) . ’ & . . .

85 mvmin( y1 ) <= mvmax( y2 ) . ’ & mvmax( y1 ) >= mvmin

( y2 ) . ’ ) ;

86 end

87 i f s e l f i n t e r s e c t

88 remove = isnan (sum(dxy1 ( i , : ) + dxy2 ( j , : ) , 2 ) )  j <= i

+ 1 ;

89 e l s e

90 remove = isnan (sum(dxy1 ( i , : ) + dxy2 ( j , : ) , 2 ) ) ;

91 end

92 i ( remove ) = [ ] ;

93 j ( remove ) = [ ] ;

94 n = length ( i ) ;

95 T = zero s (4 , n) ;

96 AA = zero s (4 ,4 , n) ;

97 AA( [ 1 2 ] , 3 , : ) = −1;
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98 AA( [ 3 4 ] , 4 , : ) = −1;

99 AA( [ 1 3 ] , 1 , : ) = dxy1 ( i , : ) . ’ ;

100 AA( [ 2 4 ] , 2 , : ) = dxy2 ( j , : ) . ’ ;

101 B = −[x1 ( i ) x2 ( j ) y1 ( i ) y2 ( j ) ] . ’ ;

102 i f robust

103 over lap = f a l s e (n , 1 ) ;

104 warn ing s tate = warning ( ’ o f f ’ , ’MATLAB: s ingu la rMatr ix ’

) ;

105 t ry

106 l astwarn ( ’ ’ )

107 f o r k = 1 : n

108 T( : , k ) = AA( : , : , k )\B( : , k ) ;

109 [ unused , l a s t warn ] = lastwarn ; %#ok<

ASGLU>

110 l astwarn ( ’ ’ )

111 i f strcmp ( last warn , ’MATLAB:

s ingu la rMatr ix ’ )

112 T(1 , k ) = NaN;

113 over lap (k ) = rcond ( [ dxy1 ( i ( k )

, : ) ; xy2 ( j ( k ) , : ) − xy1 ( i ( k )

, : ) ] ) < eps ;

114 end

115 end

116 warning ( warn ing s tate )

117 catch e r r

118 warning ( warn ing s tate )
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119 rethrow ( e r r )

120 end

121 i n range = (T( 1 , : ) >= 0 & T( 2 , : ) >= 0 & T( 1 , : ) <= 1 &

T( 2 , : ) <= 1) . ’ ;

122 i f any ( over lap )

123 i a = i ( over lap ) ;

124 j a = j ( over lap ) ;

125 T(3 , over lap ) = (max(min( x1 ( i a ) , x1 ( i a+1) ) ,min (

x2 ( ja ) , x2 ( ja+1) ) ) + . . .

126 min(max( x1 ( i a ) , x1 ( i a+1) ) ,max( x2 ( ja ) ,

x2 ( ja+1) ) ) ) . ’ / 2 ;

127 T(4 , over lap ) = (max(min( y1 ( i a ) , y1 ( i a+1) ) ,min (

y2 ( ja ) , y2 ( ja+1) ) ) + . . .

128 min(max( y1 ( i a ) , y1 ( i a+1) ) ,max( y2 ( ja ) ,

y2 ( ja+1) ) ) ) . ’ / 2 ;

129 s e l e c t e d = in range  over lap ;

130 e l s e

131 s e l e c t e d = in range ;

132 end

133 xy0 = T(3 : 4 , s e l e c t e d ) . ’ ;

134 [ xy0 , index ] = unique ( xy0 , ’ rows ’ ) ;

135 x0 = xy0 ( : , 1 ) ;

136 y0 = xy0 ( : , 2 ) ;

137 i f nargout > 2

138 s e l i n d e x = f ind ( s e l e c t e d ) ;

139 s e l = s e l i n d e x ( index ) ;
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140 i ou t = i ( s e l ) + T(1 , s e l ) . ’ ;

141 j out = j ( s e l ) + T(2 , s e l ) . ’ ;

142 end

143 e l s e % non−robust opt ion

144 f o r k = 1 : n

145 [ L ,U] = lu (AA( : , : , k ) ) ;

146 T( : , k ) = U\(L\B( : , k ) ) ;

147 end

148 i n range = (T( 1 , : ) >= 0 & T( 2 , : ) >= 0 & T( 1 , : ) < 1 &

T( 2 , : ) < 1) . ’ ;

149 x0 = T(3 , i n range ) . ’ ;

150 y0 = T(4 , i n range ) . ’ ;

151 i f nargout > 2

152 i ou t = i ( in range ) + T(1 , in range ) . ’ ;

153 j out = j ( in range ) + T(2 , in range ) . ’ ;

154 end

155 end

156 f unc t i on y = mvmin(x )

157 y = min(x ( 1 : end−1) , x ( 2 : end ) ) ;

158 f unc t i on y = mvmax(x )

159 y = max(x ( 1 : end−1) , x ( 2 : end ) ) ;

B.8 populateFaces.m

1 f unc t i on faceEdgeLi s t = populateFaces ( t ree , l e a f k e y s )

2 f aceEdgeLi s t = c e l l ( l ength ( l e a f k e y s ) ,1 ) ;

3 j =1;
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4 whi le j˜=length ( l e a f k e y s )+1

5 faceNum=0;

6 l e a f 1 =0;

7 l e a f 2 =0;

8 i f j˜=length ( l e a f k e y s )

9 faceNum=j +1;

10 l e a f 1 = l e a f k e y s ( j +1) ;

11 l e a f 2 = l e a f k e y s ( j ) ;

12 end

13 i f j==length ( l e a f k e y s ) %cond i t i on f o r the l a s t l e a f

connect ing to the root

14 l e a f 1=l e a f k e y s ( j ) ;

15 l e a f 2=l e a f k e y s (1) ;

16 faceNum=1;

17 end

18 v i s i t e d 1 =  l e a f 1  ;

19 i f l e a f 1 ˜=1

20 parent1 = t r e e . getparent ( l e a f 1 ) ;

21 whi le ˜ i s e qua l ( parent1 , 1)

22 v i s i t e d 1 = [ v i s i t ed1 , parent1 ] ;

23 parent1 = t r e e . getparent ( parent1 ) ;

24 end

25 v i s i t e d 1 = [ v i s i t ed1 , 1 ] ; % add the root node to the

l i s t

26 end

27 v i s i t e d 2 =  l e a f 2  ;
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28 i f l e a f 2 ˜=1

29 parent2 = t r e e . getparent ( l e a f 2 ) ;

30 whi le ˜ i s e qua l ( parent2 , 1)

31 v i s i t e d 2 = [ v i s i t ed2 , parent2 ] ;

32 parent2 = t r e e . getparent ( parent2 ) ;

33 end

34 v i s i t e d 2 = [ v i s i t ed2 , 1 ] ; % add the root node to the

l i s t

35 end

36 v i s i t e d 1=ce l l2mat ( v i s i t e d 1 ) ;

37 v i s i t e d 2=ce l l2mat ( v i s i t e d 2 ) ;

38 di sp ( v i s i t e d 1 ) ;

39 di sp ( v i s i t e d 2 ) ;

40 common node = max( i n t e r s e c t ( v i s i t ed1 , v i s i t e d 2 ) ) ;

41 di sp ( common node ) ;

42 index1 = f ind ( v i s i t e d 1 == common node ) ;

43 di sp ( index1 ) ;

44 v i s i t e d 1 = v i s i t e d 1 ( 1 : index1−1) ; %get r i d o f common node

as we dont a c tua l l y t r av e r s e that node ’ s correspondent

edge .

45 di sp ( v i s i t e d 1 ) ;

46 index2 = f ind ( v i s i t e d 2 == common node ) ;

47 v i s i t e d 1 = [ v i s i t ed1 , v i s i t e d 2 ( index2 −1:−1:1) ] ;

48 path = v i s i t e d 1 ;

49 f aceEdgeLi s t faceNum,1=path ;

50 j=j +1;
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51 end

B.9 traverse left to right.m

1 f unc t i on output = t r a v e r s e l e f t t o r i g h t ( tree , id )

2 output = [ ] ;

3 i f ˜( t r e e . i s l e a f ( id ) )

4 ch i l d r en = t r e e . g e t ch i l d r en ( id ) ;

5 f o r i = 1 : l ength ( ch i l d r en )

6 output = [ output , t r a v e r s e l e f t t o r i g h t ( tree ,

ch i l d r en ( i ) ) ] ;

7 end

8 end

9 output = [ output , id ] ;

10 f p r i n t f ( ’%d ’ , id ) ;

11 end

B.10 layout to adj.m

1 f unc t i on adj = l ayou t t o ad j ( layout )

2 n = length ( layout ) + 1 ;

3 adj = i n f (n) ; % I n i t i a l i z e adjacency matrix with i n f

4 f o r i = 1 : n−1

5 f o r j = 1 : l ength ( layout  i )

6 adj ( i , l ayout  i  j ) = 1 ; % Set edge between i

and layout  i  j 
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7 adj ( layout  i  j  , i ) = 1 ; % Set edge between

layout  i  j  and i

8 end

9 end

10 adj (1 , n) = 1 ;

11 adj (n , 1 ) = 1 ;

12 f o r i = 1 : n

13 adj ( i , i ) = 0 ;

14 end

15 end

B.11 floyd warshall.m

1 f unc t i on [ d i s t , apl ] = f l o yd wa r sha l l ( adj )

2 n = s i z e ( adj , 1 ) ;

3 d i s t = adj ;

4 f o r k = 1 : n

5 f o r i = 1 : n

6 f o r j = 1 : n

7 i f d i s t ( i , k ) + d i s t (k , j ) < d i s t ( i , j )

8 d i s t ( i , j ) = d i s t ( i , k ) + d i s t (k , j ) ;

9 end

10 end

11 end

12 end

13 apl = sum(sum( d i s t ) ) /(n∗(n−1) ) ;

14 end
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B.12 compute mean path length.m

1 f unc t i on mean path length n = compute mean path length n (

d i s t )

2 N = length ( d i s t ) ;

3 mean path length n = ze ro s (1 , N) ;

4 f o r n = 1 :N

5 subgraph d i s t = d i s t ( 1 : n , 1 : n) ;

6 va l i d pa th s = subgraph d i s t ( subgraph d i s t ˜= i n f &

subgraph d i s t ˜= 0) ;

7 mean path length n (n) = sum( va l i d pa th s ) / l ength (

va l i d pa th s ) ;

8 end

9 end

B.13 compute clustering coefficients.m

1 f unc t i on [ c l u s t e r i n g c o e f f i c i e n t s ,

me an c l u s t e r i n g c o e f f i c i e n t ] =

c ompu t e c l u s t e r i n g c o e f f i c i e n t ( adj matr ix )

2 N = length ( adj matr ix ) ;

3 c l u s t e r i n g c o e f f i c i e n t s = ze ro s (1 , N) ;

4 f o r i = 1 :N

5 adj matr ix ( i s i n f ( ad j matr ix )  i snan ( adj matr ix ) ) = 0 ;

6 ne ighbors = f i nd ( adj matr ix ( i , : ) ) ; % get the i nd i c e s o f

the ne ighbors

7 N i = length ( ne ighbors ) ; % number o f ne ighbors
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8 i f N i > 1 % only cons ide r nodes with at l e a s t two

ne ighbors

9 E i = sum(sum( adj matr ix ( neighbors , ne ighbors ) ) ) / 2 ;

% number o f edges between ne ighbors

10 c l u s t e r i n g c o e f f i c i e n t s ( i ) = 2 ∗ E i / ( N i ∗ ( N i −

1) ) ;

11 end

12 end

13 mean c l u s t e r i n g c o e f f i c i e n t = mean( c l u s t e r i n g c o e f f i c i e n t s ) ;

B.14 reorder parent pointer.m

1 f unc t i on pp new = reo rd e r pa r en t po i n t e r ( pp old ,

r oo t index )

2 pp new = zero s ( s i z e ( pp old ) ) ;

3 sh i f t amount = root index − 1 ;

4 f o r i = 1 : l ength ( pp old )

5 new index = mod( i − sh i f t amount − 1 , l ength ( pp old ) )

+ 1 ;

6 i f pp old ( i ) == 0 % I f t h i s i s the root

7 pp new ( new index ) = 0 ;

8 e l s e

9 new parent index = mod( pp old ( i ) − sh i f t amount −

1 , l ength ( pp old ) ) + 1 ;

10 pp new ( new index ) = new parent index ;

11 end

12 end
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13 end

B.15 compute degrees.m

1 f unc t i on [ degree sequence , unique degrees ,

d e g r e e d i s t r i bu t i on , mean deg , mean deg n ] =

compute degrees ( layout )

2 degrees = ze ro s (1 , l ength ( layout ) + 1) ;

3 f o r i = 1 : l ength ( layout )

4 degrees ( i ) = length ( layout  i ) ;

5 end

6 f o r i = 1 : l ength ( layout )

7 f o r j = 1 : l ength ( layout  i )

8 degrees ( layout  i  j ) = degrees ( layout  i  j ) +

1 ;

9 end

10 end

11 degree sequence = so r t ( degrees , ’ descend ’ ) ;

12 [ un ique degrees , ˜ , d e g r e e i nd i c e s ] = unique ( degree sequence )

;

13 degree counts = accumarray ( deg r e e i nd i c e s , 1) ;

14 d e g r e e d i s t r i b u t i o n = degree counts / sum( degree counts ) ;

15 f i g u r e ( ) ;

16 semi logy ( unique degrees , d e g r e e d i s t r i b u t i o n ) ;

17 x l abe l ( ’ Degree ’ ) ;

18 y l abe l ( ’ Frequency ’ ) ;

19 t i t l e ( ’ Degree D i s t r i bu t i on ’ ) ;
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20 mean deg = mean( degrees ) ;

21 mean deg n = ze ro s (1 , l ength ( layout ) + 1) ;

22 cum sum degrees = cumsum( degrees ) ;

23 f o r i = 1 : l ength ( layout )

24 mean deg n ( i ) = cum sum degrees ( i ) / i ;

25 end

26 mean deg n ( end ) = mean deg ; % The mean degree o f a l l

v e r t i c e s i s the mean degree we computed e a r l i e r

27 end

B.16 mySimulations.m

1 f unc t i on sim = mySimulations ( )

2 l e v e l S e tTr ee = l e v e l s e t t r e e ( t ime s e r i e s , [ 1 : 1 0 0 0 ] , 0 ) ; %our

l e v e l s e t t ree , code from Zoe Haskel l ’ s Ph .D t h e s i s

3 r oo t index = f ind ( l eve l S e tTre e == 0) ;

4 l v lTreeParentPo inte r = r eo rd e r pa r en t po i n t e r ( l eve lSe tTree ,

r oo t index ) ;

5 l v lTr e e = t r e e ( lv lTreeParentPo inte r ) ;

6 t r e e p l o t ( l ev e l S e tTre e ) ;

7 f i g u r e ( ) ;

8 t r e e l ayou t = c a l c c i r c u l a r l a y o u t ( lv lTree , 1 , 120 , 300 , 0 . 75 , 1 ) ;

9 l ayout = ca l c dua l l a y ou t ( lv lTree , t r ee l ayout , 1 ) ;

10 [ degree sequence , unique degrees , d e g r e e d i s t r i bu t i on ,

mean deg , mean deg n ] = compute degrees ( layout ) ;

11 disp (The degree sequence : ) ;

12 disp (The unique degrees : ) ;
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13 disp (The degree d i s t ) ;

14 disp ( d e g r e e d i s t r i b u t i o n ) ;

15 disp ( the mean degree ) ;

16 disp (mean deg ) ;

17 disp ( the mean deg n) ;

18 f i g u r e ( ) ;

19 p lo t (mean deg n ) ;

20 t i t l e ( ’Mean Degree as a Function o f N ’ )

21 adj = l ayou t t o ad j ( layout ) ;

22 [ d i s t , apl ] = f l o yd wa r sha l l ( adj ) ;

23 disp ( the apl :  ) ;

24 disp ( apl ) ;

25 mean path length n = compute mean path length n ( d i s t ) ;

26 disp ( the mean path length n) ;

27 mean path length n ( i snan ( mean path length n ) )=0;

28 f i g u r e ( ) ;

29 p lo t ( mean path length n ) ;

30 t i t l e ( ’The Mean Path Length as a Function o f N ’ ) ;

31 [ c l u s t e r i n g c o e f f i c i e n t s , m e an c l u s t e r i n g c o e f f i c i e n t ] =

c ompu t e c l u s t e r i n g c o e f f i c i e n t ( adj ) ;

32 disp ( the c l u s t e r i n g c o e f f i c i e n t s :  ) ;

33 f i g u r e ( ) ;

34 p lo t ( c l u s t e r i n g c o e f f i c i e n t s ) ;

35 t i t l e ( ’ C lus t e r ing Co e f f i c i e n t s in Order o f Ve r t i c e s ’ ) ;

36 disp ( the mean c l u s t e r i n g c o e f f i c i e n t ) ;

37 disp ( me an c l u s t e r i n g c o e f f i c i e n t ) ;
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38 sim = 1 ;

C Circle Packing Code

This code was unused in the nal version of the thesis. It can be used to get

approximate, but not exact, duals.

1 f unc t i on [C, E] = c i r c l e p a c k i n g (R, C)

2 n = s i z e (C, 1) ; % Number o f c i r c l e s

3 E = [ ] ; % L i s t o f edges

4 D = sqr t (sum( ( reshape (C, [ n , 1 , 2 ] ) − reshape (C, [ 1 , n , 2 ] ) ) . ˆ2 ,

3) ) ;% Compute minimum and maximum r ad i i

5 rmin = min(R) ;

6 rmax = max(R) ;

7 Rsum = bsxfun (@plus , R, R. ’ ) ;

8 Ravg = Rsum / 2 ;

9 disp ( t e s t e r ) ;

10 disp ( s i z e (D) ) ;

11 de l t a = D−(R+R’ ) /2 ;

12 theta = ze ro s (n) ;

13 f o r i = 1 : n

14 f o r j = i +1:n

15 i f d e l t a ( i , j ) < 0

16 i f D( i , j ) < (R( i ) + R( j ) )

17 theta ( i , j ) = pi ;

18 e l s e
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19 a = acos ( (R( i ) ˆ2 + D( i , j ) ˆ2 − R( j ) ˆ2) / (2 ∗

R( i ) ∗ D( i , j ) ) ) ;

20 b = acos ( (R( j ) ˆ2 + D( i , j ) ˆ2 − R( i ) ˆ2) / (2 ∗

R( j ) ∗ D( i , j ) ) ) ;

21 theta ( i , j ) = a + b ;

22 end

23 theta ( j , i ) = theta ( i , j ) ; % Symmetric

24 E = [E; i , j ] ; % Add edge to l i s t

25 end

26 end

27 end

28 f o r i = 1 : n

29 t = sum( theta ( i , : ) ) ;

30 i f t == 0

31 C( i , : ) = [ 0 , 0 ] ;

32 e l s e

33 C( i , : ) = sum(C .∗ ( theta ( i , : ) ’ ∗ ones (1 , 2 ) ) , 1) / t ;

34 end

35 end

36 end

D Potential Alternative Procedure For Producing

Duals

We briey give here a potential alternative procedure for producing duals inspired

by a 1988 paper by Thurston and others on triangulations and trees (Sleator, Tarjan,
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and Thurston 26).

1. Start with a binary, rooted tree with m nodes

2. Order nodes with inorder traversal for binary trees

3. Identify the index of the root node

4. Draw a convex (m+ 2)− gon

5. Label the non-root vertices of the polygon counterclockwise with the root oc-

cupying the top left and top right vertices.

6. Draw the root triangle by connecting the root vertices of the polygon with the

vertex with the same index as the tree’s root

7. Recursively triangulate the diagonals or the root triangle partitions of the poly-

gon. Triangulate the left and right sides. The diagonal’s two vertices are now

the new polygon roots corresponding to a subtree with its own root.

8. Obtain the structure of the constructed diagonals

9. Obtain the dual by removing the 2 edges between the polygons original two roots

and the constructed diagonal of the rightmost original root. Leave all sides of

the formative dual (the sides will form a smaller polygon) in tact. Connect any

loose points to the leftmost original root of the polygon.
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[13] Jussi Klemelä. Level Set Tree Methods. In: WIREs Computational Statistics.

Advanced Review 10(5) (2018).

[14] Yevgeniy Kovchegov and Ilya Zaliapin. Random self-similar trees: A mathe-

matical theory of Horton laws. In: Probability Surveys 17 (2020), pp. 1–213.

url: https://doi.org/10.1214/19-PS331.

[15] Yevgeniy Kovchegov, Ilya Zaliapin, and E Foufoula-Georgiou. Random Self-

similar Trees: Emergence of Scaling Laws. In: Survey in Geophysics (2022).

url: https://doi.org/10.1007/s10712-021-09682-0.

[16] L. Lacasa et al. From time series to complex networks: The visibility graph.

In: PNAS 105(13) (2008), pp. 4972–4975. url: https://doi.org/10.1073/

pnas.0709247105.

[17] Steven Lalley. BRANCHING PROCESSES. In: Stochastic Processes Notes

(). url: https://galton.uchicago.edu/~lalley/Courses/312/Branching.

pdf.

[18] L. Ljung. Signal analysis and prediction. Vol. System identication. Birkhauser,

1999.

[19] B. Luque et al. Horizontal visibility graphs: exact results for random time

series. In: Phys. Rev. E 80:046103 (2009). url: https://doi.org/10.48550/

arXiv.1002.4526.



103

[20] Ian McKenna. The Galton Watson Process – Part I. In: Core Computations

(2011). url: https://corecomputations.wordpress.com/2011/07/26/the-

galton-watson-process-part-i/.

[21] H. Mehlhorn and F. Schreiber. Small-World Property. In: Encyclopedia of

Systems Biology (2013). url: https://doi.org/10.1007/978-1-4419-9863-

7_2.

[22] J. Pitman. Combinatorial stochastic processes. Vol. 1875. Lecture Notes in

Mathematics. Lectures from the 32nd Summer School on Probability The-

ory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean Picard.

Berlin: Springer-Verlag, 2006, pp. x+256. isbn: 978-3-540-30990-1. doi: 10.

1007/b11601500. url: http://bibserver.berkeley.edu/csp/april05/

bookcsp.pdf.

[23] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer

Science & Business Media, 2005.

[24] Kenneth H. Rosen. Discrete Mathematics and Its Applications 5 ed. Addison

Wesley, 2003. isbn: 978-0-07-119881-3.

[25] Douglas M. Schwarz. intersections. https://www.mathworks.com/matlabcentral/

fileexchange/11837-fast-and-robust-curve-intersections. 2017.

[26] D. Sleator, R. Tarjan, and W. Thurston. Rotation Distance, Triangulations,

and Hyperbolic Geometry. In: Journal of the American Mathematical Society

(1988).

[27] C. Song, S. Havlin, and H. Makse. Self-similarity of complex networks. In:

Nature 433(7024) (2005). url: https://doi.org/10.1038/nature03248.

[28] Colin Stephen. Horizon Visibility Graphs and Time Series Merge Trees are

Dual. In: Preprint (June 2019). url: http://arxiv.org/abs/1906.08825.



104

[29] Jean-Yves Tinevez.@tree: A MATLAB class to represent the tree data structure.

https://github.com/tinevez/matlab-tree. 2015.

[30] S. Unkel et al. Statistical methods for the prospective detection of infectious

disease outbreaks: a review. In: Journal of the Royal Statistical Society. A:

Statistics in Society 171(1) (2012), pp. 49–82.

[31] H. W. Watson and Francis Galton. On the Probability of the Extinction of

Families. In: The Journal of the Anthropological Institute of Great Britain and

Ireland 4 (1875), pp. 138–144. url: https://www.jstor.org/stable/pdf/

2841222.pdf.

[32] D.J. Watts and Steven Strogatz. Collective dynamics of ’small-world’ net-

works. In: Nature 393(6684) (1998). url: https://doi.org/10.1038/30918.


