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ABSTRACT

Asphalt pavements play a vital role in transportation infrastructure, but their

performance can suffer due to subpar quality resulting from improper construction

practices. To tackle this issue, we introduce the Retrofit Intelligent Compaction

Analyzer (RICA), a real-time compaction density estimation system for asphalt

pavements during construction. RICA utilizes machine learning principles and

machine learning to predict compaction density based on received vibratory patterns

at different compaction levels. By leveraging the roller’s spatial location and

analyzing vibration patterns, RICA delivers density estimates.

In this study, we gathered data from actual construction sites, implementing RICA

on a Caterpillar CB-10 Rotary dialed dual drum vibratory compactor. The density

estimates from RICA were validated against densities measured from roadway

cores extracted randomly on the compacted pavement. Our findings affirm the

efficacy of RICA in providing reliable density estimates for asphalt pavements.

The ability of RICA to provide real-time, nondestructive compaction information

to the roller operator establishes its value as a quality control tool during asphalt

pavement construction. By ensuring proper compaction, RICA contributes to

the construction of durable, high-quality roads while reducing the financial and

environmental costs associated with construction and maintenance. The validation

of RICA’s estimates with percent within limits (PWL) calculations based on

roadway cores further attests to its effectiveness as a Quality Assurance tool.

Keywords: Intelligent asphalt compaction analyzer, density estimation, machine

learning, compaction quality, nondestructive testing, quality assurance
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1. INTRODUCTION

1.1 Problem Statement

A significant portion of the paved roadways are asphalt pavements and serve as

a vital element of transportation infrastructure. The USA has more than 6.6

million kilometers of asphalt paved road whereas the EU has more than 5 million

kilometers of asphalt paved road system[1]. Hot mix asphalt (HMA) pavements

are designed to maintain their performance throughout their lifespan, even when

subjected to various traffic and weather conditions. The quality of the pavement

is influenced by factors such as proper mix design, selection of aggregates, and

the asphalt binder. However, the ultimate quality of the finished pavement relies

heavily on the construction practices employed and the implementation of quality

control procedures during the construction phase. It is crucial to emphasize that

the desired performance of a well-designed asphalt mix can only be achieved

if it is effectively compacted in the field. In the past two decades, significant

efforts have been made to establish quality measures that ensure the control of

the compaction process and verify compliance with specifications for all aspects of

asphalt production and placement.

The escalating volume of vehicles and trucks, coupled with increasingly extreme

weather conditions, places an overwhelming burden on road capacity, straining

its ability to match the growing demand. Additionally, inadequate construction

practices contribute to the rapid degradation and failure of asphalt pavements. In

the realm of HMA pavements constructions, the critical factors for maintaining
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quality are—Asphalt mix design, Gradation Analysis, and Amount of Compression.

The first two are meticulously addressed prior to asphalt mix creation in the

HMA production factory. However, achieving proper compaction, a key element,

must occur in the field during construction. This underscores the urgent need

for cutting-edge quality control tools capable of providing real-time compression

analysis for HMA throughout pavement construction, not only reducing financial

and environmental costs but also establishing durable roadways.

To ensure construction quality, quality control (QC) and quality assurance

(QA) practices are paramount [2]. QC is pivotal for overseeing construction

quality and evaluating the final product’s integrity, with paving contractors in

charge. Conversely, QA encompasses actions that endorse construction quality,

often handled by state agencies like Departments of Transportation (DOTs). As

construction dynamics evolve, the demand for innovative technology grows stronger,

enabling real-time, comprehensive compression analysis for quality assurance. By

closing this technological gap, we bolster construction quality, efficiency, cost-

effectiveness, and environmental sustainability in one bold stride.

Compaction refers to the procedure of eliminating air voids within the HMA

in the pavement, resulting in a reduction in volume and an increase in the unit

weight of the mixture [3] [4]. This process also enhances the interlocking between

the aggregate particles, promoting greater structural integrity. Compaction level

is observed as the most significant determining factor in dense graded pavement

performance [5] [6] [7] [8]. Insufficient compaction leads to several negative outcomes

for pavements, including diminished stiffness, shortened fatigue life, expedited
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aging and reduced durability, rutting, raveling, and increased vulnerability to

moisture damage. An adequate amount of compaction in asphalt pavement is

necessary to gain its designed properties and to ensure its long-term performance.

Failure to reach the desired density, i.e., under or over-compaction, could result in

pavement distresses during service such as rutting, raveling, cracking, and moisture

damage[9]. Several research studies have highlighted the impact of air voids on

various pavement properties.

Kennedy et al. (1984) [10] conducted a study and found that high air void

content leads to decreased stiffness and strength in the pavement. Tensile strength,

static and resilient moduli, and stability were observed to be reduced at high air

void levels.

Fatigue life is significantly affected by air void content. Pell and Taylor (1969)

[11], Epps and Monismith (1969) [12], and Linden et al. (1989) [13] reported a

negative relationship between increased air voids and reduced fatigue life. Finn

et al. (1973) [14] concluded that fatigue properties can be reduced by 30 to 40

percent for each one percent increase in air void content. Additionally, Scherocman

(1984) [6] found that reducing air voids from eight percent to three percent could

more than double pavement fatigue life.

Air void content also influences the aging and durability of the pavement.

McLeod (1967) [15] stated that compacting a well-designed paving mixture to low

air voids retards the rate of hardening of the asphalt binder, leading to longer

pavement life, lower maintenance, and improved overall performance.
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Raveling, which is the disintegration of the pavement surface, becomes a

significant problem above approximately eight percent air voids and turns severe

above 15 percent air voids, as noted by Kandhal and Koehler (1984) [16]. Rutting,

characterized by permanent deformation and deformation accumulation in the

pavement, is inversely proportional to the air void content (Scherocman, 1984 [6]).

Rutting can be caused by vertical consolidation and lateral distortion, both of

which can occur more rapidly if the HMA (Hot Mix Asphalt) air void content is

too low.

Moisture damage is influenced by the presence of interconnected air voids

in the HMA due to insufficient compaction. High and interconnected air voids

facilitate easy water entry, increasing the likelihood of significant moisture damage

(Kandhal and Koehler, 1984 [16]; Cooley et al., 2002 [17]). The relationship between

permeability, nominal maximum aggregate size, and lift thickness plays a crucial

role in moisture damage susceptibility and can vary significantly with changes in

these parameters.

Thus, one of the primary attributes of interest for QA/QC is the air volume

present within the compacted pavement, commonly measured as a percentage of

air voids in relation to the total volume and denoted as "percent air voids". This

calculation involves comparing the density of a test specimen with the density it

would hypothetically possess if all the air voids were eliminated, known as the

"theoretical maximum density" (TMD) or "Rice density. While the focus of interest

in HMA QC/QA is typically on the percentage of air voids, measurements are

commonly presented in terms of measured density relative to a reference density.
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This is achieved by expressing the density as a percentage of TMD (or "percent

Rice"). This density representation allows for straightforward conversion to air

voids since any volume not occupied by asphalt binder or aggregate is assumed to

be air. Exceeding a high-end threshold value of air void content in pavement leads

to a predictable reduction in pavement service life, typically identified as 7-8%.

According to Linden et al. (1989) [13], each 1 percent increase in air voids above a

base level of 7 percent results in approximately a 10 percent loss in pavement life,

equivalent to about 1 year less. Conversely, an air void content below a low-end

threshold value is indicative of an unstable mixture prone to distortion and flushing.

This threshold is commonly reported as around 2-3%.

Compaction density, asphalt content, and aggregate gradation are the three

commonly controlled characteristics during QA/QC in USA.[18]. Among these,

asphalt content and aggregate gradation are controlled in the asphalt mix

production laboratory but the density is to be obtained from the field during

construction. During the construction of asphalt pavement, vibratory compaction

rollers are used to increase the compaction. Static force, the weight of the rollers,

and dynamic force, vibration applied in the compactors, both are used to squeeze

out the air voids in the pavement and increase interlocking between the pavement

materials. The compaction that is achieved is highly dependent on the underlying

base, the formulation of the asphalt mix used, the thickness of the pavement, and

environmental conditions like rain, fog, etc. at the time of placement. In addition,

the final density of the pavement is also affected by the type of rollers used and

the rolling patterns used during the compaction process [19].
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As of now, the prevailing approach to gauge compaction density levels in

asphalt pavement construction is coring. This method employs a vacuum sealing

technique, entailing the extraction of roadway cores from the finalized pavement to

assess its density. While this density measurement from the cores provides the most

accurate indication of quality, it does present three major shortcomings. Firstly,

coring is a destructive quality check measure, making it a potential source of

decreased pavement quality. Secondly, the compaction density values are obtained

after a long time because the core needs to be taken to the lab able to apply

vacuum sealing technology. Consequently, by the time density prediction values

become available, the asphalt pavement is already dense and stiffened, making

rectification costly and complex, as the only option is to remove and rebuild the

pavement. The final flaw is that this mechanism relies on spot checks. Most

organizations responsible for maintaining pavement quality, such as departments of

transportation, mandate taking cores every 500 tons of asphalt mix, amounting to

about 2 cores per km in a 2.5 cm pavement. However, given that pavement density

is influenced by numerous factors that can vary significantly within short distances,

this spot-check approach may not always accurately represent the overall quality

of the entire pavement.

Another widely used mechanism used in the quality control of Asphalt

Pavement is by using pulsing the radiation into the pavement and studying the

backscattering called Nuclear Density Gauge (NDG). During measurements, a

radioactive source (e.g., cesium), emits gamma rays to the pavement surface. A

fraction of the radiated energy reflects and collected by the gauge. The amount of
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back-scattered radiation energy is correlated to in situ asphalt pavement density

based on lab test calibration [20]. In comparison to the core collection method,

NDG density measurement is non-destructive and as its prediction is obtained

before asphalt settles it can be used to fix the compression errors, if present, in

almost real-time as it gives results in about 5-8 minutes for each location. NDG

has been used as a non-destructive alternative to core-taking mechanisms that

provide in-situ density measurements [21], however, it requires specialized training

for operators, and its prediction accuracy could be lower than that of the core

method, and as it uses radioactive substance which in long-term use can be

harmful to the operative.

Apart from the aforementioned techniques, various studies have proposed

alternative quality control methods, including the use of Fibre Bragg grating

technology (Yiqiu et al., 2014 [[22]]), Portable Seismic Pavement Analyzer (PSPA)

[23], Ground Penetrating Radar (GPR)[24], Non-nuclear Density Gauges (NNDG)

[25], etc. However, these approaches often encounter common challenges, such

as the inability to provide real-time density measurements during construction,

limited accuracy, or reliance on destructive testing procedures. Consequently, there

is a critical demand for the development of new technologies that can overcome

these drawbacks and offer enhanced solutions for quality control in pavement

construction. Intelligent Compaction (IC) emerges as a promising candidate to

meet this demand.
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1.2 Literature Review

Intelligent compaction (IC) is a construction technique that involves the use of

specialized machinery equipped with sensors and other technology to monitor and

control the compaction process in real time. In 1994, J.Y. Richard Liao and J.

David Powell presented a paper titled "Intelligent Compaction: A New Approach

to Asphalt Pavement Construction and Evaluation" [26] at the Transportation

Research Board’s 73rd Annual Meeting. This is the first time terminology

Intelligent Compaction(IC) is used. This paper described the theoretical basis for

the development and testing of an intelligent compaction system for soil and

asphalt pavement construction and discussed the benefits and potential

applications of the technology. There is no concrete method described here but

states what is necessary for a technology to be IC. Since then, a lot of research has

been done on these types of analyzer tools but very rarely has any IC system been

used as a major QA/QC tool in construction sites.

In their study [27], Robert V. Rinehart and Michael A. Mooney investigated

the development of instrumentation for eccentric mass-based vibratory roller

compactors during Earthquake Compaction. Their research focused on studying

the vibratory behavior of these compactors. By attaching accelerometers to the

body of the compaction roller, they were able to measure the vibratory response

and analyze changes in its characteristics.

The majority of the existing Intelligent Compaction (IC) specifications are

designed for soil compaction and may not be suitable for asphalt compaction.
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The Intelligent Compaction Measurement Value (ICMVs) is a generic term for

accelerometer-based measurement systems instrumented on vibratory rollers as a

key component of intelligent compaction systems[28]. The state-of-the-art ICMVs

like Compaction meter value (CMV), Compaction Control Value (CCV), Vibratory

modulus, Roller integrated stiffness, etc are designed using the soil IC mechanisms.

During 2012-2014, Federal Highway Administration (FHWA) conducted a study

examining the relationship between pass-by-pass Nuclear Density Gauge (NDG)

density readings and ICMV data. The project’s report [29] revealed that ICMV

data correlates well with NDG readings during breakdown compaction when the

temperature of the mix is high. However, it was found that ICMV does not show a

strong correlation with core densities that are cut after the asphalt is totally settled.

Despite this, the report concluded that IC technology can be effectively utilized

for method-based acceptance, such as roller pass counts and coverage. Moreover,

the report suggested that an IC-based model, calibrated with pass-by-pass NDG

measurements and core density data from a test strip of a specific project, can

generate predicted density values alongside other existing IC measurements. This

integration can significantly enhance Quality Control (QC) during production

compaction, thus improving the overall compaction process.

The relationship between the ICMV and on-spot cored density is not uniform

in the literature. Studies conducted on the relationship between the ICMVs and

on-spot densities show that there is no acceptable correlation between them [29]

[30] [31]. Whereas other states that there is a consistent trend observed between

the in-place density and ICMV value measured by presenting the IC technique [32]
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[33]. So, instead of searching for the relationship between ICMV and on-spot core

densities, a tool that can directly estimate density can be a better option.

Commuri and Mai in 2008 [34] demonstrated that the dynamic response of

the roller-asphalt interaction during compaction can be related to the stiffness of

the HMA pavement. Vibratory compaction enhances the stiffness of the pavement

layer, leading to an alteration in the vibratory response of the compactor. Utilizing

this approach, Commuri S. et al. [35] [36] introduced a two-step IC system referred

to as the intelligent asphalt compaction analyzer (IACA). This system initially

analyzes the frequency spectrum of the roller and subsequently employs a neural

network for classification. The system was then trained to convert these vibration

levels into a “number” indicative of the asphalt mat density at a given location.

In this approach, at first Fourier transform is applied to the continuous vibration

signal in the time domain into the frequency domain. The output (i.e., the power

in decibels of the signal at different frequencies) was passed to the neural net to

classify the vibration. Finally, the compaction analyzer post-processed the output

of the NN and predicted the degree of compaction in real-time. Subsequently, in

[37], performance evaluations of the IACA through case studies were conducted,

demonstrating its capacity to enhance compaction uniformity when the tool is

provided to the roller operators as the instant level of density check mechanism.

IACA is one unique approach in the market that can directly estimate density

instead of ICMVs.

The utilization of the pavement layer’s characteristics and the vibration spectra

of the compactor, as highlighted in [38], enables the estimation of asphalt mat
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compaction. Zheng et al. [39] investigated the impact of excitation amplitude-

frequency and soil parameters on the vibratory drum’s response, leading to effective

control of jump vibration and optimization of construction parameters for enhanced

compaction quality and efficiency. Moreover, in 2019, Wan et al. [40] explored

the nonlinear dynamics of the interaction between asphalt and the screed during

compaction, revealing variations in resonance frequencies and density increments

rates for different asphalt mixtures. Consequently, a universal IC model for

estimating asphalt compaction density across all mixtures is unlikely, necessitating

separate models for different asphalt mixes.

Field compaction of pavement is always executed by a different combination

of static rolling, vibratory rolling, and pneumatic-tire rolling, while laboratory

compaction of the mixture is conducted by various compactors, such as Marshall

impactor, static compactor, vibratory compactor, and gyratory compactor. All

these different roller compaction modes result in varying mechanical

performance[38]. So, different rolling systems need different technology to

implement IC in them.

Over the last decades, the influence of rolling temperature during construction

on the mechanical strength of asphalt materials has been well-established [41] [42]

[43]. Notably, Rukavina et al. [44] demonstrated the impact of temperature on

asphalt viscosity, directly correlating it with the material’s mechanical stiffness.

As a result, any Intelligent Compaction (IC) system aiming to learn and predict

compaction levels should include different models tailored for distinct temperature

ranges, or at least different for breakdown and intermediate rollers even in the
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same project with the same asphalt mix.

Masad et al. (2016) presented a novel constitutive model within a three-

dimensional finite element system for computer-aided pavement analysis, specifically

focusing on simulating hot mix asphalt field compaction [45] [46]. This model was

designed based on nonlinear viscoelasticity theory to handle large deformations

that occur during the compaction process. In their research, Masad et al. also

explored compaction characteristics by using varying vibration frequencies to

estimate density, establishing a correlation between frequency and compaction

density. The finite element simulation results showed a satisfactory agreement with

the actual measurements of the level of compaction and percent air voids.

In 2013, Beainy F., Commuri S., et al. [47] proposed a model to represent the

interaction between the roller and asphalt called Viscoelastic-Plastic(VEP) Model.

VEP is based on Burger’s model [48] which defines roller-pavement interaction as

a coupled system. VEP is used to represent the dynamic properties of the asphalt

pavement. Using numerical simulation of the VEP model it is also shown that the

response of the coupled system can be used to study the compaction of asphalt

pavements. During field compaction, the vibratory roller and the underlying

asphalt pavement layers form a coupled system. Thus, any changes in the stiffness

and density of the asphalt mat would affect the vibratory response of the roller[49].

So, considering a limited amount of temperature change, for a given asphalt-

concrete mix and for given constant roller properties like frequency and amplitude

of compactor roller, the major change in the vibratory response of the roller is

due to the change in stiffness of the pavement. Vibratory compaction enhances
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the pavement layer’s stiffness, modifying the compactor’s vibratory response. The

characteristics of the pavement layer and the compactor’s vibration spectra can be

used to estimate asphalt mat compaction.
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1.3 Scope and Novelty

We are undertaking the development of an Intelligent Compaction (IC) system,

which can be retrofitted into a dual-drum vibratory roller equipped with an eccentric

mass. Our investigation is based on existing literature and background knowledge,

which has indicated that the vibratory pattern varies with changes in compaction

density. Consequently, we hypothesize that analyzing the vibratory patterns will

enable us to detect different levels of compaction density.

To achieve our goal, we have created models capable of learning the various

vibration patterns using unsupervised learning techniques, such as clustering. As

part of our novel approach, we extract specific characteristics from the rolling

patterns to establish a relationship between the vibration pattern and the

compaction level. Subsequently, we convert the different compaction levels into

density values using function fitting.

The study involves several phases, beginning with the creation of a retrofitting

system designed to gather data from the roller. This entails the integration of

sensors and processing units to capture information such as vibration, temperature,

and location. Additionally, a dedicated software solution was devised for the swift

acquisition and analysis of data, constituting a substantial advancement within

this project.

The focus then shifted to the analysis phase, where we processed the collected

data and formulated various attributes related to vibration patterns and rolling

patterns from the raw data. Employing various clustering techniques, we identified
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different vibration patterns present in the data. We established a conversion

between the clusters and their corresponding density levels, leading to valuable

insights into the compaction process.

Our research culminated in an innovative density prediction algorithm, which

efficiently predicts density at each time step. Through systematic analysis and

rigorous testing with multiple parameters, we have determined the effectiveness of

the system in estimating compaction density.

The research can be broadly divided into two major steps:

i) Field data collection: This phase involved designing and implementing

a mechanism for retrofitting sensors and processing units into the roller. The

hardware configuration and specialized software allowed us to collect vibration,

temperature, and location data.

ii) Analysis and Prediction: In this step, we processed the collected data,

engineered essential features, and employed clustering techniques to identify

different vibration patterns. The clusters were then associated with corresponding

density levels through conversion. The density prediction algorithm was used to

successfully estimate compaction density at each time step.

Overall, our research study involved meticulous data collection and processing,

the development of innovative engineering features, and the establishment of a

valuable relationship between vibration patterns and compaction density. Our

results imply a significant accomplishment in the field of IC and have the potential

to enhance compaction processes in asphalt paving projects.
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Figure 1.1: Flowchart of basic steps taken in thesis study

1.4 Organization

In the Introduction section, we presented the problem statement, review the

relevant literature, and outline the scope of this research. The rest of the thesis is

organized as follows:

Chapter 2: Data Collection

This chapter describes the process of data collection for the research. It discusses

the instrumentation used, the retrofit system designed for the data collection on the

impulse vibratory roller, the structure of the raw data collected, and the methods

for collecting ground truth and calibration data.
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Chapter 3: Feature Engineering

The focus of this chapter is on engineering essential features from the collected

data. It addresses the problems of missing vibratory data and presents solutions.

Then, it delves into the derivation of power attributes from vibration data and

their importance in our system. Additionally, the formulation of rolling pattern

attributes, PassID, and Average Pass Count are discussed. The chapter concludes

by covering the normalization of derived attributes, denoising, and outlier removal,

along with the various feature extraction mechanisms employed in our system.

Chapter 4: Density Prediction

In this chapter, we explore the density prediction process. We investigate various

clustering techniques employed to identify different vibration patterns. The

section discusses the clustering algorithms used in our system and emphasizes the

importance of ordering the clusters for our application. Furthermore, we explore

possible processes to convert the ordered clusters into density.

Chapter 5: Evaluation Metrics

This chapter defines the evaluation metrics used to assess the effectiveness of the

power clustering and cluster-to-density algorithms. Two types of evaluation metrics

are discussed, based on finding the cluster and as per domain knowledge. The

chapter also incorporates the use of RMSE and R-squared metrics to measure

cluster-to-density prediction.

Chapter 6: Results and Discussion

Here, we present the results obtained from the clustering step, including

visualization and identification of the optimum clustering mechanism.
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Additionally, we discuss the selection of the cluster ordering criterion and present

the results of density prediction. The chapter also formalizes the algorithm that

gives the optimum result for clustering.

Chapter 7: Conclusion and Future Work

In the final chapter, we summarize the key findings of the research and discuss their

implications. We highlight the contributions of this work to the field of Intelligent

Compaction and outline potential areas for future research and development in

this domain.



19

2. DATA COLLECTION

From the [47] [49], we get a theoretical basis that if all other factors are kept

constant, the change in stiffness of the surface changes the vibratory response

of the Compaction Roller. Also [50] [27] provide us with the instrumentation

base for the design of a system capable of measuring the change in the vibration

in rollers using an accelerometer. Subsequently, an electrical configuration was

established in tandem with software development to acquire real-time vibration

data at a sampling rate of 1000Hz. Following that the vibration data is first filtered

according to its fundamental frequency, and subsequently, the powers in both the

fundamental frequency and its six higher harmonics are measured to generate the

data utilized in this study.

2.1 Instrumentation

Initially, our objective involves developing a retrofitting system for the roller, which

should possess the capabilities of collecting data and eventually presenting results

to operators. As a first step, we must carefully select the essential instruments

that our system will employ, ensuring they can effectively manage the required

constraints.

Vibratory Rollers:

The vibratory roller compactor used for this investigation was either the

Caterpillar CB-7 or the Caterpillar CB-10 double drum vibratory roller, both of
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which were instrumented for the purpose of the study. Both of these rollers are

solid and smooth with the capability of independent as well as tandem vibratory

modes. The two rollers have drum widths of 1.49 m and 1.70 m respectively. In

both rollers, the frequency and amplitude of the vibration are the be set before

operation and can range from 40-65HZ and 0.25-0.8 millimeters (mm). All other

specifications of the rollers are provided in Table 8.1 in Appendix A. Within each

drum, an eccentric mass configuration rotating about the drum axle provides the

vibratory or eccentric force:

fecc(t) = m0e0ω
2cos(ωt) (1)

where,

ω is the circular frequency (rad/s),

m0 is the eccentric mass,

e0 is the eccentricity.

The angular frequency of vibration ω or more commonly frequency f = ω/2π

and eccentric mass m0e0 are to be set as per the construction design parameter

and using the results in the test stretches and are constant until the construction

design changes for the duration of the project. For our system, we consider this to

be constant so as to reduce the factors affecting vibration patterns other than the

compactness of the road.
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Accelerometer:

Accelerometer provides a difference in the voltage reading as per the change in

the acceleration of the system it is attached in. While a system is in vibration there

are continuous and abrupt changes of acceleration. We used a 2240-010 Titanium

Hermetic Accelerometer from Silicon Design Inc that requires +9to+32V DC to

operate and provides +0.5to+4.5 single-ended output. Accelerometer has the

nominal frequency response inside 3db in 0-1000Hz. The accelerometer is rugged

and sealed in a titanium case to be able to resist the harsh condition outdoors on

construction sites.

Temperature Gauge:

The compaction process should be carried out at the designated nominal

temperature for breakdown or intermediate rolling as per the rolling pattern

designed at constrained stretch. So, having a real-time temperature is a necessary

tool for compaction roller operators. RICA system is designed to have a CI Series

Compact IR Temperature Sensor from Raytek. As an accelerometer, it is also

rugged to be able to resist the outdoor HMA pavement construction where the

attached system is vibrating continuously. It has a 150ms response time with 0.10C

resolution and provides a linear temperature range of −20to5000C. It provides

two-way RS232 digital output that can be attached to the Data Acquisition system

to get continuous time series signals of the temperature.

GPS System:
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For the rolling pattern, we used the GPS system Vector VS1000 or VS500

GNSS RTK Receiver from Hemisphere that provides the location information at

max 20HZ. It can provide output at a baud rate of 4800-115200 through RS232,

ethernet, or USB. We opted to go the USB route. Using an RTK system on top of

the normal GPS, the Vector system could achieve a resolution of 8-15mm. Since

the system has its own Data Acquisition System, the output of the GPS hub is

directly fed into the tablet, which is the processing and communication center of

RICA.

Data Acquisition System (DAS):

Labjack T4 from Labjack Measurement and Automation is used as the data

acquisition center for Accelerometer and Temperature Gauge. It provides 8

configurable low voltage analog inputs (0-2.5V, 12-bit resolution) that can

function as digital I/O lines among other various high voltage and full digital I/O

modes. It supports the LJM driver/library for simplifying device communication

with the processing units. It stores 128 ms of data while sampling at 1000 Hz and

its memory has to be cleared at that rate to not lose data.

Central Processing Units:

xTablet T1690 along with its rugged holders from Mobile-Demand is used as

the central processing unit for RICA. It comes with 16GB SSR4 ram, 1TB SSD

storage, Intel Core i5 processor, and Windows OS preinstalled; but we moved it to

Linux 20 as our Operating System. A Special Mobile Network communication
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module is installed in the tablet so as to connect to the internet and upload data

to the cloud system as necessary. It acts as the processing unit as well as the

display unit to give real-time predictions to operators. Here, we deployed the

RICA software system developed that uses InfluxDb as a database tool. InfluxDB

is a time-series database able to store data at 1000Hz and has a high query

process rate enough to provide real-time results.

2.2 Retrofit system

Figure 2.1: Figure depicting the positions of various instruments of RICA in Rollers

RICA has been purposefully engineered for seamless integration into the
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existing market rollers, featuring an advanced data acquisition system comprising

an accelerometer, temperature gauge, and Global Positioning System (GPS). These

sensors have been seamlessly incorporated into the compaction roller to seamlessly

gather data during real-time asphalt pavement construction. The accelerometer is

strategically positioned at the axle of the roller drum to capture vibration patterns

accurately. Additionally, a temperature gauge is affixed, directed towards the

center of the road, while the GPS sensor system is meticulously situated at the

roller’s apex along the central axis, ensuring precise tracking of the roller’s central

coordinates. The precise arrangement of these sensors is of utmost significance, as

subsequent calculations depend on these assumptions – such as the GPS sensor

providing the central roller location, the accelerometer residing at the center with

its measurement direction perpendicular to the road, and the temperature sensor

gauging the temperature between the two rolling wheels.

2.3 Structure of raw data

Accelerometer and Temperature Gauge provided the time series data of vibration

response in the drum of the compaction roller and temperature of the hot mix

asphalt to be paved respectively at the rate of 1Kz. Readings received from the

sensors are just the voltage reading so we need to convert the data to respective

format. The temperature sensor reading is converted to temperature in Fahrenheit

scale in a linear relation. The calibration of the temperature sensor is done once

when the RICA is installed but can be changed if new calibration is to be done.

For the readings from the accelerometer, it gives the voltage output as per the
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amount of vibration it experiences so we don’t need to change it to anything.

The GPS system supplies the latitude and longitude coordinates of each

location, along with the speed and heading of the rollers’ movement at specific

points. Speed and headings, representing the angle of travel with respect to the

East direction, are determined based on the current and previous GPS locations.

Operating at a frequency of 1 Hertz, the sensor facilitates data collection, enabling

us to capture each position at intervals of approximately 6 to 7 feet, contingent

upon the roller’s rolling speed.

Following the subsequent stage, the data obtained from Labjack and GPS is

integrated in real-time to form a raw data table. For every 1000 data points of

vibration, one corresponding GPS data point is included. Ultimately, the raw data

system comprises the following components:

• Timestamp

• Vibration

• Temperature

• Latitude

• Longitude

• Speed

• Heading

Throughout the research process, all preceding steps were successfully carried

out on on-road HMA (Hot Mix Asphalt) pavement sites. Visualizations of the raw

data are provided in Appendix A.
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2.4 Collection of ground truth

The collected raw data is unsupervised, meaning ground truth density values are not

available for every location. Acquiring actual density ground truth involves cutting

cores, which can initiate road degradation due to water leakage into the asphalt.

Thus, obtaining ground-truth data is challenging, resulting in a small number

of available ground-truth values. Consequently, we solely relied on unsupervised

techniques to determine various vibratory patterns in the roller and only used a

few ground-truth values for validation. Additionally, coring is performed when

the roller completes its compaction process, leaving no intermediate readings for

ground truth, highlighting the challenges of data collection in real construction

sites compared to controlled environments.

2.5 Collection of calibration data

Furthermore, we gathered data on pavement density during the HMA laying

process on the pavement by the paver. In cases where a construction involves

two vibratory roller systems (Breakdown and Intermediate Rollers), we obtained

density measurements before the specific roller starts vibrating. This baseline

density represents the initial level of compaction density with which the roller

interacts.

Additionally, during the design of any HMA mix for construction, the HMA

mixing laboratory conducted tests to determine the maximum achievable level

of compaction density in an isolated lab environment. This value represents the
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theoretical maximum level of compaction that can be achieved.

These two values, the baseline density, and the theoretical maximum density,

define the theoretical minimum and maximum levels of compaction achievable. In

our RICA system, we utilize these two values to ensure that all our predictions

fall within these specified limits, thus ensuring the accuracy and reliability of our

results.
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3. FEATURE ENGINEERING

3.1 Data Imputation

The raw vibration and temperature data are presented as time-series data, and

occasionally, there were instances of missing data. To manage the data input

rate, we optimized the Data Acquisition System (DAS) by regulating the data

pull rate from DAQ to the CPU. Since the DAQ’s cache can store a maximum of

150 temperature and accelerometer data points at once, we ensured timely data

extraction to prevent reaching this threshold. Despite these efforts, there were rare

cases of missing data. To address this, we applied third-degree spline interpolation,

which can effectively resolve up to two continuous missing values in the vibration

and temperature data. This method serves as the maximum extent of missing

value resolution in our dataset.

For the GPS data, it was observed that in remote locations, chunks of data

were lost when the connection to the satellite was lost. Unfortunately, there is

no feasible solution to impute data in such conditions. In cases where only a

small amount of data was lost, we adapted a linear interpolation method as an

alternative approach.

Raw data provide us with the vibration in various locations of Rollers while

paving the HMA. Next, we needed to formulate attributes that hold the different

important information of vibration pattern and rolling pattern. Power attributes

from vibration data and Rolling pattern attributes from the GPS location data

are derived in the next step.
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3.2 Derivation of power attributes from vibration data

Figure 3.1: Stretch of raw vibration data

Figure 3.2: Corresponding spectrogram of vibration data from Figure 3.1

The frequency content of the continuous vibration time signal data x(t) can

be analyzed using the well-know Fourier Transform. A spectrogram is generated

using the Discrete Fourier Transform (DFT) by first dividing a signal into short

overlapping segments, then applying the DFT to each segment to convert the

time-domain signal into the frequency-domain representation. The fast Fourier
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transform (FFT) [51] [52] is a practical approach to the numerical computation

of the DTFT for a finite length sequence and provided the power contained at

each frequency in the spectrum of the signal. This process involves calculating the

complex amplitudes of various frequency components present in each segment of

the signal, resulting in a matrix of frequency and time bins. The magnitude or

power of these complex amplitudes is often used to create the spectrogram, where

each column represents a specific time segment, and each row corresponds to a

frequency bin, illustrating how the signal’s frequency content evolves over time.

During periods when there is no compaction vibration (i.e. when the drum

with eccentric weights inside the roller remains inactive), the spectrogram shows

no significant power at any frequency level. However, upon turning the compaction

vibration on, the accelerometer registers a substantial power shift in the vibration

data. The spectrogram reveals a concentration of power in specific frequencies,

while most frequencies display little change compared to the non-vibration state.

The first frequency of such concentration is the fundamental frequency(f0) and

observed that the f0 of the roller-pavement system is the same frequency as that

of the roller drum.

All possible frequency bands up to the Nyquist Frequency, which, in the case of

data collected at 1 KHz, is 500 Hz, are considered, and changes in power level within

each band are analyzed for any significant variations. Significantly, the frequencies

that display noteworthy power changes are the fundamental frequency, at which

the vibratory roller operates, and its harmonics. As the roller maintains vibration

in the same location, a substantial power shift occurs around the fundamental
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frequency and its harmonics, while the power at higher harmonics undergoes

minimal change, with remarkable shifts being predominantly concentrated in the

lower frequencies. Notably, at high frequencies, noise has a more considerable

impact on power levels than changes in pavement stiffness. Therefore, the power

content around the fundamental frequency and its first six harmonics is calculated

and utilized as a vibratory feature of the system.

In pursuit of real-time results, a time-step of 128ms is implemented, and all

manipulations are performed on data acquired every 128ms. Within each time-step

data, features representing the power levels in the vicinity of the fundamental

frequency (f0) and its multiples are extracted for input to the prediction model.

To achieve this, fourth-order band-pass Butterworth filters are designed.

In the realm of lower frequencies, the alteration in power manifests within

a relatively confined area. However, as the harmonics elevate, the dispersion of

power extends to encompass larger regions. With heightened compaction levels, the

collective power across the system augments; nonetheless, this doesn’t uniformly

apply to power across individual frequency tiers. Subsequent to this, the vibration

data undergoes filtration, pinpointing frequency ranges of 3Hz encompassing the

fundamental frequency, 5Hz surrounding the first harmonic, and 11Hz surrounding

the subsequent five higher harmonics. In each of these filtered frequency ranges, the

corresponding power is calculated and designated as "p0," "p1," ..."p6," respectively.

Finally, a single value representing the total power in each step is calculated.

But, we wanted this attribute to have similar weights from each of p0-p6. The
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Figure 3.3: Various power attributes created in each time-step

calculated values of p0 when the roller is in vibration is in 1e−2 whereas values of

p5/p6 are in order of 1e−4/1e−5. So, simple summing does not give the desired

result. Thus, we formulated a single parameter that weights the power value with

the frequency it belongs to power to the harmonic number of the frequency called

total_power:

total_power(P ) =
6∑

x=0
pxf (x+1)

x (2)

where,

x=harmonic number(fundamental frequency has harmonic value of 0)
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px=power in xth harmonic

fx=frequency of xth harmonic

This power value gave us a single parameter to compare and contrast various

intermediate results throughout the study.

3.3 Formulation of rolling pattern attributes

The rolling pattern encompasses the recommended technique for operating a

vibratory drum roller, derived from multiple tests performed on a controlled

stretch. Prior to commencing any Hot Mix Asphalt (HMA) construction project,

a designated section of the site is prepared as a controlled stretch. Various tests

are conducted to ascertain the optimal rolling pattern based on in-situ density

measurements. The quality control/quality assurance (QC/QA) process involves

conducting frequent checks at various points after each pass of the compaction

roller. This enables the operator to determine the number of times a specific

location should be rolled over to achieve adequate compaction.

The rolling pattern holds significant importance for roller operators, their

supervisors, and QC/QA personnel, often serving as the initial step in HMA

pavement construction. In certain instances, particularly for HMA pavement with

a thickness of less than 1.5 inches, the construction site may prioritize assessing the

roller’s rolling pattern over taking cores and conducting additional spot checks. This

approach is favored because vibration characteristics are substantially influenced

by the underlying surface rather than the HMA layer and its compaction level. As

a result, it’s worth noting that the RICA system’s effectiveness is constrained by
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a requirement for the HMA pavement to have a thickness exceeding 2 inches for

proper performance evaluation.

The compaction process involves the roller making multiple passes over a given

area while applying vibration to achieve the desired density. These passes occur

at speeds of approximately 3-5 mph. To capture the evolving state of each pass

during operation, an attribute known as "Pass-ID" is formulated. This continuous,

incrementing attribute represents each sequential pass made by the roller. It

facilitates the tracking of changes in pass direction, with an increase in the Pass-ID

recorded whenever the roller changes direction, stops, and then resumes movement

in the opposite direction.

In a given stretch of pavement, it is commonly assumed that an increase in

passId results in a corresponding increase in compaction density. However, as

demonstrated in a controlled experiment in [34], this is not always the case, and

there can be various reasons for such variations. One prominent factor is the

different ratios of compacted and non-compacted regions with each increasing pass

in the same stretch. The roller’s width typically ranges from 6-7 feet, while a lane

of road paved at a time is usually 10-12 feet wide. As a result, during each pass,

the roller may not consistently follow the same path over the entire width.

Consequently, one pass might exhibit significant overlap with a previously

compacted pavement region, resulting in a high compaction level. On the other

hand, another pass may predominantly traverse freshly laid-over asphalt mix or

uncompacted pavement on a different side of the constructed lane. It is also

observed that the start of one pass may significantly overlap with the compacted
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Figure 3.4: Visualization of location data of compaction roller during HMV pavement
construction

pavement region whereas the end of the pass reaches the virgin, uncompacted

region leading to a significant difference in compaction density in the same pass. To

address this issue, a new attribute called Average Pass Count (APC) is introduced.

It calculates and signifies what portion of the pavement area the roller has previously

passed through in the last time-step. APC represents the average number of passes

the roller has made in the area it most recently traversed, offering valuable insights

into the compaction process.
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To calculate the Average Pass Count (APC), a stretch of pavement is taken

into account, and a grid of 1/2ft X 1/2ft is constructed in the latitude-longitude

space. The size of the grid in latitude-longitude space varies based on the project

site’s location and the relation between distance and latitude-longitude. Each grid

cell possesses a pass-count property, representing the number of times the roller

has passed over it.

For each time step, a rectangular area is formed with a length equal to the

distance traveled during the last time step and a width equivalent to the roller’s

width, which is in a direction perpendicular to the roller’s heading. Subsequently,

the pass count of all grid cells within this rectangular area is incremented by

one. Finally, the APC for the given time step is calculated as the average pass

count within the previously defined area. This process enables a quantification

of the roller’s previous passes at a given location and so each time step will have

characteristics of a rolling pattern that is dependent only in its vicinity.

The complete process can be observed in the example stretch shown in Figure

3.5. In this scenario, the roller makes five passes in a specific location data stretch.

For a given time_step between two GPS data points, we create a rectangular area.

In this example, the rectangle is oriented perpendicular to the left/right direction

for simplicity, rather than being perpendicular to the heading. During each pass,

we update the pass_count for each grid area that the rectangle touches. The

Average Pass Count (APC) for the specific time step is determined by computing

the average pass count within the grid areas intersected by the rectangle.

For instance, in the example stretch, the APC for the time_step between the
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(a) An example stretch of passes of the roller when
paving the road and zoom in at a location of the stretch.

(b) Update of pass_count
parameter of each

grid in the first pass.

(c) Update of pass_count
parameter of each grid

in second pass pass.

(d) Update of pass_count
parameter of each grid

in third pass pass.

(e) Update of pass_count
parameter of each grid

in fourth pass pass.

(f) Updation of pass_count
parameter of each

grid in fifth pass pass.

Figure 3.5: Visualization of calculation of Average Pass Count(APC) attribute
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second and third GPS locations from the left in pass 1 data is 1. The APC for

the time_steps in the nearest location (between second and third gps readings

from left in zoomed-in section) in pass 2 data is 1.25. We get it by averaging

2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1. Similarly, APC in the nearest location in pass 3 data

is 1.125, in pass 4 data is 1.875, and in pass 5 data is 2.75.

To calculate the APC, access to a continuous stretch of data is necessary,

making it impractical for real-time systems. Therefore, the APC is to be exclusively

employed for the training and evaluation stages but may not be applicable in real

time after the completion of training.

3.4 Normalization

From Figure 3.3, it is observed that the value of power in the seven frequency

bands varies a lot. We can observe that power in fundamental frequency is in the

range of 1e-1 whereas the power in the top two harmonics(p5,p6) are below 1e-5.

We are working on the presumption that each of these seven features has equal

weight but since the numerical values are different in the order of 1e3, we need

to normalize them. We choose to normalize the data using mean and standard

deviation.

P̄x = 1
N

N∑
i=1

Px,ti (3)

σ̂x =

√√√√ 1
N − 1

N1∑
i=1

(Px,ti − P̄x)2 (4)

Px,ti|norm = Px,ti − P̄x

σ̂x

(5)
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where:

N = Number of data points in training data

Px,ti = Power in xth harmonics at time ti

Px,ti|norm = Normalized power xth harmonics at time ti

P̄x = Mean power of xth harmonics

σ̂x = Standard deviation of power at xth harmonics

Using the above equation we can get the normalized values of all the powers

in the form of deviation of power from mean in terms of multiple of standard

deviation. Values of P̄x and σ̂x are saved in the calibration file from the training

step. These values are used to normalize data from each time step in the real-time

operation of the system.

3.5 Removal of outliers

From the raw power data in Figure 3.3, we observe significant disturbances in

power at various time steps. Notably, the start and stop times of the vibration in

the roller consistently yield very high power readings for the accelerometer, but

this data is considered an outlier for our system. Furthermore, we notice similar

non-normal power responses whenever the roller encounters roadside curves. In

such cases, we expect all the data that falls outside the range of +/− 2σ̂x to be

outliers of the system and clip everything to fall in this range.

These spikes in power levels occur when the roller hits curves, other hardened

substances, or large aggregates beyond the prescribed range. These occurrences

are relatively common on construction sites, but such power levels do not indicate
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the compaction process. Therefore, while making predictions, we need to clip these

extreme values and exclude such data during the training of the prediction model.

After normalization and outlier removals of data, we get the feature that we

are going to use in the learning step. The normalized powers of the unnormalized

powers in Figure 3.3 can be observed in Figure3.6. Here, we can see that each

feature ranges from -2 to +2, and anything larger than +2 is truncated to the

value of +2, and smaller than -2 is pushed up to -2.

Figure 3.6: Various power features created in each timestep

From Figure 3.1 as well as Figure 3.2, we see that there are a lot of times with

no vibration and those have no vibratory relation to the amount of compaction

and also the system we are designing cannot use those data to process. These are

the noises that can affect the learning mechanism in the system. So, remove them

in the training using the total power calculated. we always see that the power

calculated for the no-vibration data is always less than 1, and removing any data
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below this threshold resolved the issue.

3.6 Feature Extraction

Once normalized features have been generated to quantify variations in vibration

and rolling characteristics, the next step involves assessing the significance of these

variations in determining distinct compaction densities. The objective of feature

extraction within unsupervised learning is to convert the initial raw data into a

novel representation that captures crucial information and inherent patterns within

the data. This procedure trims down the data’s dimensions, filters out noise, and

emphasizes meaningful structures, thereby rendering it more suitable for subsequent

tasks such as clustering, visualization, or other unsupervised learning endeavors.

Feature extraction contributes to refining algorithm performance by concentrating

on pertinent attributes and curbing computational complexity. Consequently, we

transformed power features across various linear and non-linear frameworks, and

subsequently cherry-picked essential features using evaluation metrics to make

density predictions.

In this study, we tested various feature extraction algorithms. In this

application, we don’t have any one-to-one data to density ground truth data so we

need to apply only unsupervised methods of feature extraction. We experimented

with the original seven power data along with feature extracted using Principal

Component Analysis(PCA) [53], Kernel PCA (K-PCA) [54] and Isomap [55] to

train various clustering models and analyzed them.
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Principle Component Analysis(PCA): Principal Component Analysis, often

referred to as PCA, is a valuable method for reducing the dimensionality of data

with high dimensions. It achieves this by transforming a large set of variables

into a smaller one while retaining most of the essential information present in the

original data set. PCA encompasses both the steps of feature extraction to a new

space and the reduction of features within that space. In our study, we performed

data transformation to the PCA space and evaluated the various feature reduction

in the metrics defined in Section 5.1 for clustered data.

Channel PCA (K-PCA): Channel-PCA or Kernel-PCA is nonlinear feature

extraction and then reduction algorithm. K-PCA effectively computes principle

components in higher dimension feature spaces related to the input space using

Kernel methods [56]. Evaluation of feature reduction was done on the basis of the

metrics in Section 5.1.

Isomap: Isomap [57] is a dimensionality reduction technique that constructs a

lower-dimensional representation of data by preserving geodesic distances (shortest

path distances) between data points on a manifold. Its ability to capture nonlinear

relationships and maintain the local and global structure of data makes it a valuable

tool for exploring complex datasets and gaining insights into the underlying patterns

and clusters within the data. We evaluated the use of Isomap in our application

using the clustering evaluation metrics defined in Section 5.1.

When working with data transformed into various spaces, we aimed to avoid
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Figure 3.7: The flowchart depicting the method of Feature Extraction and Selection
utilized.

using all the high-dimensional data. To address the curse of dimensionality, we

experimented with reducing the number of features and examined the outcomes.

We adopted a Wrapper-based feature selection approach, utilizing the evaluation

metrics defined in Section 5.1, to assess the effectiveness of feature extraction and

selection for our application. Wrapper-based feature selection involves applying

the selected features to the model and analyzing the evaluation metric on the

verification data.

As illustrated in Figure 3.7, we implemented a two-level iteration to explore different

feature extraction and selection processes. While this method is time-consuming,

it offers a comprehensive assessment of feature selection and provides exhaustive

results.

3.7 Data Visualization

Feature extraction is a mechanism that is not only used to decrease the

dimensionality of data but there are some feature extraction algorithms used for
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visualization but rarely for dimensionality reduction. We have used two feature

extraction algorithms in the visualization of raw data viz: t-SNE and UMAP.

t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE

(t-distributed Stochastic Neighbor Embedding) [58] is a dimensionality reduction

technique that minimizes the divergence between probability distributions to map

high-dimensional data points into a lower-dimensional space while preserving the

pairwise similarities between the data points. t-SNE primarily serves as a powerful

visualization technique for high-dimensional data, assigning each data point a

position in a two or three-dimensional map. While it can technically be used for

dimensionality reduction, as explored in [58], we discovered that it is best not

employed as a feature extractor. However, t-SNE proved invaluable for

visualizations, offering valuable insights and a better understanding of the data at

hand.

Uniform Manifold Approximation and Projection (UMAP): UMAP

(Uniform Manifold Approximation and Projection) [59] is a dimensionality reduction

technique that constructs a low-dimensional representation of high-dimensional

data by preserving local and global data structures while minimizing the spread of

points in the embedding space. UMAP is robust to variations in hyperparameters,

providing consistent and stable results across different runs, and enhancing its

reliability for data analysis and exploration. In this research, we have used it only

for visualization purposes to observe if there are clear clusters or not.



45

4. DENSITY PREDICTION

After all the feature engineering process in the data we collected, we delve into

finding the pattern of power and thus the vibration for different level of compaction

to predict density levels.

4.1 Learning mechanism

In our continuous system, regression would be the ideal technique to solve the

application problem if we had sufficient one-to-one ground truth data. However,

due to the absence of supervised data, we turned to unsupervised learning methods.

Clustering, an unsupervised technique, became our choice to group similar data

points together based on their inherent characteristics or similarities. Its main

objective is to unveil distinctive patterns and structures within the data, forming

separate clusters with shared properties yet distinct from one another. By leveraging

clustering, we can gain valuable insights into the underlying relationships and

trends in the data, allowing us to make informed decisions and predictions despite

the lack of labeled data.

In the Introduction section, we established that the vibration of the Asphalt-

Roller system directly depends on the compaction density of the asphalt. Hence,

our primary goal was to identify various power patterns and clusters representing

different compaction densities. To achieve this, clustering emerged as a prominent

solution. By employing clustering techniques, we aimed to group similar vibration

patterns together and uncover distinct clusters that correspond to different levels
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of compaction density in the asphalt. This approach allowed us to analyze and

understand the variations in vibration data and ultimately gain valuable insights

into the compaction process.

Clustering Algorithms

In our study, we extensively explored a variety of clustering algorithms to identify

the most suitable approach for our application. Our investigation encompassed

diverse techniques, including density-based, distribution-based, centroid-based, and

hierarchical-based clustering methods. For each of these methods, we carefully

assessed and fine-tuned the hyperparameters to obtain optimal results, which were

further visualized for comprehensive analysis. Some of the major algorithms we

tried in the study are described below.

⋄ K-Means Clustering

K-Means clustering is a popular unsupervised machine-learning technique used for

partitioning data into distinct clusters based on their similarities. The fundamental

concept behind K-Means clustering is to divide a dataset into ’K’ clusters, where

’K’ represents the number of desired clusters specified by the user or determined

through optimization techniques. The algorithm iteratively assigns data points

to the nearest cluster center and recalculates the centroids of these clusters until

convergence is achieved, ensuring that the data points within each cluster are as

close to the centroid as possible.

The process begins with the random selection of ’K’ initial centroids, which
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act as the center points for each cluster. Then, each data point is assigned to

the nearest centroid based on a distance metric, like Euclidean distance, cosine

similarity, Manhattan distance, or others as per the application. This assignment

creates ’K’ distinct clusters, and the mean of all data points within each cluster

becomes the new centroid. The algorithm repeats this assignment and centroid

recalculation process until the centroids stabilize, and no further reassignment is

necessary.

K-Means clustering aims to minimize the within-cluster sum of squared

distances, often referred to as the sum of squared errors (SSE) or distortion. The

objective is to find the optimal partitioning of data points into clusters that

minimize the overall SSE. The objective function for partitioning data x1, x2, ...xn

into k sets S = S1, S2, ...Sk is to minimize the SSE loss (JSSE). For each iteration,

if a data xi is assigned in cluster set Si,

JSSE =
k∑

i=1

∑
xi∈Si

||xi − µi||2 (6)

where, xi is all data belonging to cluster Si

µi is the mean of Si

However, a significant drawback of K-Means is that it is sensitive to the

initial centroid selection, leading to potential convergence to local optima. To

mitigate this issue, the algorithm is often run multiple times with different random

initialization, and the result with the lowest SSE is chosen as the final clustering.

It is essential to determine the appropriate value of ’K’ for the K-Means
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algorithm, which significantly impacts the quality of the clustering result. Several

techniques, such as the elbow method and silhouette analysis, are used to identify

the optimal ’K’ value by evaluating the trade-off between the number of clusters

and the SSE.

K-Means clustering is known for its simplicity, efficiency, and scalability.

However, it assumes clusters with spherical shapes and is sensitive to outliers,

noise, and non-linearly separable data. The two major hyperparameters to tune in

K-Means are the number of clusters(K) and the distance parameter to use.

In summary, K-Means clustering is a powerful and widely used algorithm in

unsupervised machine learning, providing valuable insights into the underlying

structure and patterns within data sets. Its ease of implementation and efficiency

make it an attractive choice for various clustering tasks, enabling us to gain valuable

insights and make data-driven decisions.

⋄ Gaussian Mixture Model(GMM)

The Gaussian Mixture Model (GMM) is a probabilistic model used for clustering

data points into multiple clusters. Unlike the K-Means algorithm, which assigns

data points to a single cluster with a hard assignment, GMM allows for soft

assignment, meaning that each data point can have a probability of belonging to

multiple clusters.

In GMM, each cluster is represented by a Gaussian distribution, also known

as a component. The model assumes that each data point is generated by one of
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these Gaussian distributions, and the goal is to estimate the parameters of these

distributions to best fit the data.

The GMM [60] algorithm works in an iterative manner to find the optimal

parameters. The general steps of the GMM algorithm are as follows:

1. Initialization: Randomly initialize the parameters of the Gaussian

distributions, including the mean, covariance, and mixing coefficients.

2. Expectation Step (E-step): In this step, the algorithm estimates the

probability that each data point belongs to each of the Gaussian

distributions. This is done using Bayes’ theorem to calculate the posterior

probability.

3. Maximization Step (M-step): In this step, the algorithm updates the

parameters of the Gaussian distributions based on the probabilities obtained

in the E-step. Specifically, it calculates the new means, co-variances, and

mixing coefficients that maximize the likelihood of the data given in the

model.

4. Convergence Check: After the E-step and M-step are performed, the

algorithm checks for convergence. If the parameters have not significantly

changed from the previous iteration, the algorithm terminates.

5. Iteration: If the convergence criteria are not met, the algorithm goes back to

the E-step and continues the iteration until convergence is achieved.

GMM provides a more flexible clustering approach than K-Means, as it can
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handle clusters of different shapes and sizes that are normally distributed. It is

particularly useful when the underlying data distribution is not well-separated and

contains overlapping clusters. Additionally, GMM can handle missing or noisy

data points and can be used for data imputation tasks.

However, GMM has some limitations, such as the sensitivity to the initial

parameter values and the potential for overfitting when the number of components

is large. Therefore, it is important to carefully tune the hyperparameters and choose

an appropriate number of components for the GMM model. Hyperparameters

are parameters that are set before the model is trained and can influence the

performance and behavior of the algorithm. Here are the main hyperparameters in

GMM:

• Number of Components (n − components): The number of Gaussian

distributions (components) to be used in the model. This hyperparameter

determines the number of clusters that GMM will try to identify in the data.

If this value is set too low, some clusters may be merged, leading to

underfitting. On the other hand, if it is set too high, some clusters may

overfit, and the model may become too complex and less interpretable.

• Covariance Type: This hyperparameter determines the type of covariance

matrices used for each component. The three common options are: ’full’:

Each component has its own general covariance matrix. It allows the model to

capture correlations between features but can be computationally expensive,

especially for high-dimensional data. ’tied’: All components share the same

covariance matrix. It reduces the number of parameters to estimate and
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is useful when the data has similar covariance structures. ’diag’: Each

component has its own diagonal covariance matrix. It assumes that the

features are uncorrelated, making it more computationally efficient and

useful for high-dimensional data.

• Initialization Method: GMM is sensitive to the initial parameter values.

Different initialization methods can affect the convergence and performance of

the algorithm. Common initialization methods include random initialization

and k-means initialization.

• Convergence Criteria: This hyperparameter sets the threshold for determining

convergence in the E-step and M-step of the algorithm. It defines how close

the parameters need to be in consecutive iterations to consider the model as

converged.

• Maximum Number of Iterations: This hyperparameter sets the maximum

number of iterations that the algorithm will run, regardless of whether

convergence is achieved. Setting this value too low may result in a premature

termination before the model has converged.

• Regularization: GMM may suffer from overfitting, especially when the number

of components is large. Regularization techniques, such as adding a small

constant to the diagonal of the covariance matrix, can help control overfitting

and improve model generalization.

The choice of hyperparameters in GMM depends on the characteristics of

the data and the specific task at hand. Tuning these hyperparameters requires
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experimentation and validation on a held-out dataset to find the best configuration

that optimizes the model’s performance and generalization ability. Grid search,

cross-validation, and model selection techniques are commonly used to find the

optimal hyperparameter values.

In summary, the Gaussian Mixture Model is a powerful and versatile clustering

algorithm that can effectively model complex data distributions and provide

valuable insights into the underlying structure of the data. Its probabilistic nature

makes it well-suited for various applications, including pattern recognition, anomaly

detection, and data generation.

⋄ Adaptive Gaussian Mixture Model

Adaptive Gaussian Mixture Model (GMM) is an extension of the traditional

GMM that incorporates adaptability to handle data with varying complexities

and underlying structures. Unlike the standard GMM, which assumes a fixed

number of components and static hyperparameters throughout the clustering

process, the adaptive GMM dynamically adjusts its model complexity based on

the characteristics of the data. This adaptability is achieved through a data-

driven approach that automatically determines the optimal number of components

and covariance structures to better capture the underlying patterns in the data.

The adaptive GMM iteratively refines its model by considering both local and

global data characteristics, allowing it to adapt to varying densities, non-uniform

cluster shapes, and noisy regions in the data. By dynamically adjusting the model

complexity, the adaptive GMM offers improved flexibility and robustness, making
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it well-suited for clustering tasks in diverse and challenging datasets.

The core idea behind the adaptive GMM lies in its ability to automatically

determine the number of components and covariance structures that best fit

the data distribution. To achieve this, the adaptive GMM employs data-driven

approaches, such as the Expectation-Maximization (EM) algorithm, to iteratively

refine the model based on the input data. In each iteration, the adaptive GMM

updates its parameters, including the means, covariances, and mixing coefficients,

to better capture the underlying patterns in the data.

One approach to adaptivity in the GMM is the use of model selection criteria,

such as the Bayesian Information Criterion (BIC) or the Akaike Information

Criterion (AIC), to estimate the optimal number of clusters. These criteria

penalize complex models and favor parsimonious solutions that better generalize

the data. As the adaptive GMM iterates through the model selection process, it

incrementally prunes or adds components to the mixture, effectively adjusting the

model complexity to fit the data.

Yang and Zwolinski[39] argue that investigating the mutual relationships

between components offers a different and potentially more effective approach to

achieving an optimal mixture model. The proposed method provides a means of

selecting an appropriate set of components without relying on the information

contained in the observed patterns directly. The paper presents an algorithm

based on mutual information theory and outlines its potential benefits in pattern

recognition and clustering tasks.
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Another aspect of adaptivity in the GMM is the use of varying covariance

structures for each component. In traditional GMM, all components share the same

covariance matrix, which might not be suitable for datasets with non-spherical or

anisotropic clusters. Adaptive GMM addresses this limitation by allowing each

component to have its own covariance structure, leading to a more accurate and

flexible representation of cluster shapes.

The adaptive GMM has proven to be a powerful tool in handling complex and

high-dimensional datasets, offering advantages over fixed-parameter models like

K-means or traditional GMM. By adapting its model complexity to the data, the

adaptive GMM can identify meaningful clusters even in the presence of noisy or

overlapping regions. This makes it well-suited for a wide range of applications,

including image segmentation, anomaly detection, and pattern recognition, where

data characteristics can vary significantly across different regions of the dataset.

Overall, the adaptive GMM provides a robust and versatile clustering solution that

can adapt to the intricacies of real-world data, making it a valuable technique in

data analysis and machine-learning tasks.

⋄ DBSCAN (Density-Based Spatial Clustering of Applications with

Noise)

DBSCAN [61] is a popular density-based clustering algorithm used for grouping

data points in a dataset based on their density. Unlike k-means, which require

the number of clusters as a hyperparameter, DBSCAN does not need a predefined

number of clusters and is capable of identifying clusters of various shapes and sizes.
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Figure 4.1: Example of DBSCAN clustering. For given ϵ and minPts=3, we get two
clusters(red and yellow) and four noise points(2 blue, 1 purple and 1 green) using
DBSCAN. There are two core points and two border points in the red cluster whereas
yellow has only one core and two border points.

The DBSCAN algorithm works by defining two critical hyperparameters:

"epsilon" (ϵ), representing the maximum distance between two points for them to

be considered neighbors, and "minPts," which sets the minimum number of points

required within (ϵ) distance to form a core point. The algorithm proceeds by

examining each data point in the dataset, determining if it qualifies as a core point

based on the number of neighboring points within ϵ distance. If a point has at

least "minPts" neighbors, it forms a cluster. Additionally, points that are reachable

from a core point but do not have enough neighbors to be core points themselves

are classified as border points and are also included in the cluster. Points that

have fewer neighbors than "minPts" and are not reachable from any core point are

considered noise and are not assigned to any cluster. The value of "minPts" should

be at least greater than the dimension of the data but generally, it is taken to be

twice the dimension or as per the domain knowledge.
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DBSCAN’s ability to discover clusters of arbitrary shapes, robustness to noise,

and not require a predefined number of clusters make it suitable for various

applications, especially in cases where the number of clusters is not known

beforehand or when dealing with datasets with irregularly shaped clusters and

varying densities. However, its performance might degrade with high-dimensional

datasets due to the "curse of dimensionality." As with any clustering algorithm,

proper tuning of hyperparameters is essential to achieving optimal results in

different scenarios.

Selection of Number of Clusters

Various distribution-based, centroid-based, and hierarchical clustering algorithms

require a number of clusters as one of the major hyperparameters. Through domain

knowledge or data information, if we can have this information beforehand; that is

best. But, our data being from the sampled continuous system, we don’t have that

knowledge and so we need to figure out the number of clusters through analysis.

The idea behind the finding optimal number of clusters is that a good

clustering solution should have clusters that are tightly packed together (small

within-cluster variance) while being well-separated from each other (large

between-cluster variance). Below are some of the techniques employed in our

study to comprehend the data and identify the optimal number of clusters.

⋄ Elbow Method: This technique involves plotting the within-cluster sum of

squares (inertia) against the number of clusters. The plot typically shows a
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decreasing curve. The optimal number of clusters is often identified at the

"elbow" point, where the inertia starts to level off, indicating diminishing

returns in variance reduction with additional clusters. The inertia here is

calculated as:

Inertia =
n∑

i=1

k∑
j=1

wij(xi − cj)2 (7)

Where:

n is the total number of data points in the dataset.

k is the number of clusters being evaluated.

xi is the ith data point in the dataset.

cj is the centroid (mean) of the jth cluster.

wij is a binary indicator function that takes the value 1 if data point xi is

assigned to cluster j and 0 otherwise.

While plotting the inertia VS K (number of clusters) we get a graph like

shown in Figure 4.2. By the Elbow method, the point where the inertia

starts to level off corresponds to the optimum number of clusters. In the

demo example at 4.2, k=4 is the optimum value.

⋄ Silhouette Analysis: Silhouette analysis evaluates the compactness and

separation of clusters. It calculates the average silhouette score for different

cluster numbers. The silhouette score ranges from -1 to +1, with higher

values indicating better-defined clusters.
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Figure 4.2: Inertia Vs K(number of cluster) plot. Here, using the elbow method, K=4 is
the optimum number of clusters

Silhouette score for each data point i is calculated as:

s(i) = b(i)− a(i)
max(a(i), b(i) (8)

where,

a(i) is the average distance between data point i and all other data points in

the same cluster. This measures the cohesion of data i with its cluster.

b(i) is the average distance between data point i and all data points in the

nearest neighboring cluster (i.e., the cluster to which data point i is not

assigned). This measures the separation of data i from other clusters.

The overall Silhouette score for the clustering solution is the average of all
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individual silhouette scores. To determine the optimal number of clusters

using silhouette analysis, you calculate the silhouette score for different values

of k(number of clusters) and choose the value that maximizes the average

silhouette score. A higher average silhouette score suggests a better-defined

clustering solution with well-separated and compact clusters.

A silhouette plot is a visual representation used to evaluate the quality of

clustering results. It is a graphical tool that helps assess how well data

points are assigned to their respective clusters. The silhouette plot displays

individual data points represented as vertical bars within the plot. Each data

point is assigned to a cluster, and the bars are color-coded based on their

cluster assignment.

The silhouette value for each data point is calculated by considering its

proximity to other data points within its own cluster (intra-cluster distance)

and its proximity to data points in the nearest neighboring cluster (inter-

cluster distance). A high silhouette value indicates that the data point is

well-clustered and relatively closer to its own cluster compared to neighboring

clusters. The silhouette plot allows us to visually inspect the distribution of

silhouette values across all clusters. Ideally, we want to see predominantly

positive silhouette values, which indicate well-separated and compact clusters.

The silhouette plot analysis is a valuable tool for identifying the optimal

number of clusters (k) in a dataset. By considering specific criteria from the

silhouette plot, we can determine the best k value for the clustering task.

Firstly, it is important to select a value of k that ensures all clusters have
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silhouette scores above the average silhouette score. This criterion helps in

identifying consistent and well-separated clusters, as clusters with below-

average silhouette scores indicate inconsistencies in the clustering process.

Secondly, observing wide fluctuations in the size of silhouette plots suggests

uneven cluster sizes, which is unexpected for balanced data. Therefore, we

should aim for a value of k that leads to more uniform and evenly sized

clusters. Additionally, the presence of a large number of data points with

negative silhouette scores signifies that a substantial amount of data is being

wrongly clustered, implying that these data points are closer to the next

cluster than their assigned one. By taking these criteria into account, along

with aiming for higher silhouette scores, we can pinpoint the optimal number

of clusters that result in a more reliable and well-defined clustering solution

for the given dataset.

Silhouette analysis provides a valuable and intuitive way to assess the quality

of clustering results and helps in selecting the optimal number of clusters for

a given dataset. However, it is essential to be cautious when interpreting the

results, especially if the silhouette scores are close to 0, as it may indicate

overlapping or poorly separated clusters. Therefore, it is recommended to

combine silhouette analysis with other clustering evaluation methods to make

a more informed decision about the optimal number of clusters.

⋄ Calinski-Harabasz Index: Calinski-Harabasz Index evaluates the quality

and compactness of the clustering solution based on the ratio of between-

cluster variance to within-cluster variance. The index aims to identify the
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number of clusters that results in well-separated and tightly packed clusters.

The number of clusters corresponding to the highest Calinski-Harabasz Index

is considered optimal for the problem.

The Calinski-Harabasz Index is calculated using the following formula:

CH = B(k)
W (k)X

n− k

k − 1 (9)

Where:

CH is the Calinski-Harabasz Index.

B(k) is the between-cluster variance, representing the variance between

cluster centroids.

W(k) is the within-cluster variance, representing the variance within each

cluster.

n is the total number of data points in the dataset.

k is the number of clusters being evaluated.

When using the Calinski-Harabasz Index, it is essential to be mindful of

some limitations. The index can be sensitive to the dataset’s size and

dimensionality, and it may not perform well with irregularly shaped clusters

or datasets with varying densities. Therefore, it is advisable to combine the

Calinski-Harabasz Index with other clustering evaluation metrics to get a

comprehensive understanding of the optimal number of clusters for a given

dataset.
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⋄ Davies-Bouldin Index(DB Index): This index evaluates the average

similarity between each cluster and its most similar cluster. A lower Davies-

Bouldin Index indicates better-defined clusters. The number of clusters with

the lowest index is chosen as the optimal number.

DBI = 1
k

σk
i=1maxj ̸=i(

Si + Sj

Mij

) (10)

Where:

DBI is the Davies-Bouldin Index.

k is the number of clusters being evaluated.

Si is the average distance (similarity) of each data point in cluster i to the

centroid of cluster i.

Sj is the average distance (similarity) of each data point in cluster j to the

centroid of cluster j.

Mij is the distance between the centroids of clusters i and j.

To determine the optimal number of clusters using the Davies-Bouldin Index,

you would calculate the index for different values of k and choose the value

of k that minimizes the Davies-Bouldin Index. The k value that leads to the

smallest Davies-Bouldin Index is considered the optimal number of clusters

for the given dataset.

It is important to note that the Davies-Bouldin Index should be used in

conjunction with other clustering evaluation metrics to gain a comprehensive
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understanding of the clustering solution’s quality and stability. Additionally,

domain knowledge and practical interpretation of the clustering results should

also be considered when determining the final number of clusters.

⋄ Hierarchical Clustering: Hierarchical clustering can be visualized using a

dendrogram, a tree-like diagram illustrating data points merging into clusters

based on similarity or distance, displaying step-by-step relationships and

grouping data points into clusters at various similarity levels. The optimal

number of clusters can be determined by cutting the dendrogram at a height

that best fits the problem’s requirements.

⋄ Density-Based Clustering: In density-based methods like DBSCAN, the

number of clusters is not explicitly specified. Instead, the algorithm identifies

clusters based on density-reachability relationships. The number of clusters

can be considered to be the number of distinct clusters found by the algorithm.

Various hyper-parameter and their relation to the features of data is a huge

factor in determining the number of clusters in this algorithm.

⋄ Domain Knowledge: Expert domain knowledge or specific problem

requirements may also help determine the appropriate number of clusters

based on the practical interpretation of the data. In our application, we

tried various methods to find the optimum number of clusters but we always

put an eye out that most of the data from the same APC should fall in the

same or neighboring cluster.
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Sorting of clusters

Clustering enables us to group similar data into different clusters, but it doesn’t

provide specific information about which cluster corresponds to a particular level

of compaction density. To gain a better understanding of the relationship between

data and compaction density, we devised a mechanism to organize the clusters

based on certain features. Several options were considered for sorting, such as Total

Power, Power in the fundamental frequency, Average Pass-ID, and Average Pass

Count. Since Power in the fundamental frequency is already used in clustering,

it was not the most suitable option. We also found that Average Pass-ID did not

effectively represent the rolling pattern as Average Pass Count (APC) did. After

careful consideration, we concluded that ordering the clusters using APC or Total

Power would be the most effective approach.

In the final step, the points within clusters possessing the smallest average

ordering feature are assigned the value 1, the next smallest cluster is assigned 2,

and so on. This establishes a relationship where the clustering order is determined

by the powers. We use this clustering order to identify the cluster to which a

vibration at a specific time step belongs. Additionally, we leverage the Average

Pass Count (APC) to estimate the density level of the corresponding cluster. This

process enables us to effectively determine the compaction density associated with

each cluster.

This novel idea in our research allowed us to incorporate the rolling pattern into

the Learning Phase itself, resulting in significant improvements to the performance
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of our Intelligent Compaction mechanism. By sorting the clusters based on relevant

features, we were able to gain valuable insights and enhance the overall efficiency

of our approach.

4.2 Mapping Clusters to Density

Finally, our task was to convert the sorted clusters into density predictions. The

main objective here was to establish a suitable function that could map the

clusters to corresponding density values. To accomplish this, we obtained data

on the minimum possible density at which the pavers lay the mix(dmin) and also

the maximum density achievabledmax, determined from tests conducted in the

HMA mixing laboratory. These two density values served as reference points for

our function fitting process, enabling us to accurately convert the clusters into

corresponding density predictions.

Exactly, in the clustering process, the cluster that represents the lowest Average

Pass Count (APC) should be associated with the minimum possible density dmin, as

it indicates the lowest level of compaction achieved. On the other hand, the cluster

that represents the highest APC should correspond to the maximum achievable

density dmax, as it signifies the highest level of compaction that can be attained.

These are going to the limits of the prediction function.

We tried linear and sigmoid functions to convert data from cluster numbers to

density prediction.

• Linear fitting: We tried a straight-line relationship between the cluster
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number and density prediction. In a linear function, the output variable y

(density) is directly proportional to the input variable (cluster number) with

a constant rate of change, known as the slope or gradient.

The general form of a linear function can be expressed as:

y = mx + c (11)

where:

y is the density prediction.

x is the cluster number predicted.

m represents the slope or gradient, which determines how steep or flat the

line is. It signifies the rate of change of y with respect to x.

b is the y-intercept, which is the value of y when x is equal to zero. It

indicates the point where the line intersects the y-axis.

We just need two points to fit the function and we used (1,dmin) and (k,dmax),

where k is the optimum number of clusters selected, to create the linear

fitting. After fading the m and c, we predict the density using the cluster

number determined in the last step.

• Sigmoid function: We observe that low clusters are extensively present in

low APC while high clusters are present in high APC in abundance. Whereas,

there is not much of an average cluster present in either condition. From

this, we can infer that there is an abrupt change in low to high density after

some specific amount of compaction rather than linear. So, we tried sigmoid
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fitting. The general form of a sigmoid function is:

f(x) = L + ( 1
1 + e−m(x−x0) )X(H − L) (12)

where: f(x) is the output value of the sigmoid function for a given input x.

L is the lower limit of the function i.e. dmin

H is the highest limit of the function i.e. dmax

e is the base of the natural logarithm (approximately 2.71828)

m is the slope of the curve, determining the steepness of the sigmoid

x0=k+1
2 is the x-coordinate of the midpoint, which indicates the point where

the sigmoid function transitions from the lower value to the upper value

k=optimum number of cluster

Here, at any point, at most we want the slope to be 1, so we specify m=1.

Then, as per the project, we specify L, H, and k and predict the density

using the cluster number determined in the last step.
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5. EVALUATION METRICS

5.1 Metrics for evaluating Power Clustering Algorithms

Evaluation metrics play a crucial role in assessing the effectiveness and quality

of clustering algorithms. Clustering is an unsupervised learning technique that

aims to group similar data points together based on their intrinsic characteristics.

However, determining the optimal number of clusters and evaluating the clustering

results can be challenging tasks. Evaluation metrics provide objective measures to

quantify the performance of clustering algorithms and help in selecting the most

appropriate clustering solution for a given dataset. These metrics enable us to

compare different clustering methods, assess the consistency of cluster assignments,

and make informed decisions about the quality of the clustering results. A range

of evaluation metrics, including the Silhouette Score, Davies-Bouldin Index, and

Calinski-Harabasz Index, have been devised to assess distinct facets of clustering

evaluation, such as cluster compactness and separation. These metrics can be

applied both for determining the optimal number of clusters for specific algorithms,

as discussed in Section 4.1.2, and for identifying the most suitable clustering

approach in this context. The careful selection and application of these metrics

are crucial for gaining insights into the clustering performance and ensuring the

reliability and validity of the clustered data for subsequent analyses and decision-

making processes.

• Silhouette Coefficient:

The silhouette coefficient is a measure used to evaluate the quality of clustering
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results in unsupervised machine learning. It assesses how well each data

point fits into its assigned cluster while also considering its similarity to

other clusters. The Silhouette coefficient calculation is described in 8. The

silhouette coefficient ranges from -1 to 1, where:

1. A coefficient close to +1 indicates that the data point is well-clustered

and located far away from neighboring clusters.

2. A coefficient close to 0 indicates that the data point is near the decision

boundary between two clusters.

3. A coefficient close to -1 indicates that the data point may have been

assigned to the wrong cluster.

A higher silhouette coefficient indicates better-defined and well-separated

clusters, while a lower value suggests that the clustering may not be

appropriate or that data points are assigned to incorrect clusters.

• The Davies-Bouldin Index (DB index): DB Index, equation 10, is a clustering

evaluation metric used to assess the quality of clustering results. It quantifies

the compactness of individual clusters and the separation between different

clusters in a clustering solution. Conversely, a higher DB index implies

that the clusters are less distinct and may overlap, indicating suboptimal

clustering. The lower the DB index, the better the clustering quality.

• Calinski-Harabasz Index (CH Index): The Calinski-Harabasz Index, also

known as the Variance Ratio Criterion and calculated as in equation 9, is a

clustering evaluation metric used to assess the quality of clustering results.
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It quantifies the separation between clusters and the compactness of each

cluster in a clustering solution. A higher Calinski-Harabasz Index value

indicates better-defined and well-separated clusters.

All these evaluation metrics look at the similarity between the intra-cluster

data and the difference between inter-cluster measures but we also need to satisfy

a few application-based metrics. So, we created a few application-based metrics to

measure output of clustering.

It is observed that first passes will have low compaction density and is highly

affected by underlying substrate composition and thus is very uneven. But when

the roller finishes its rolling pattern, the compaction density is high and smooth.

So, two major concepts taken into account while creating these metrics are that in

the final passes of well constructed pavements, value of the cluster mean should

be high and there should be high amount of smoothness of cluster values in final

passes.

• Cluster mean in final pass(fmean): For any given stretch, the final pass

is the last pass the roller vibrates in it. It is supposed to have compacted to

the highest quality possible. Looking at the mean of the cluster predicted

here to let us know if the clustering done can detect the high-density regions

or not. A higher mean in the final pass in the cluster is desirable.

• Standard deviation in final pass(fstd): Standard deviation is a statistical

measure that quantifies the amount of variability or dispersion in a set of

data points. It indicates how much individual data points deviate from the
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mean (average) of the dataset. It is desired to have a uniform high cluster

prediction in the final pass, so a smaller standard deviation in the final pass

is a measure of the smoothness of clustering.

• One lag auto-correlation of cluster predicted in final pass

(one_lag_auto): Autocorrelation, also known as serial correlation, is a

statistical concept that measures the degree of similarity between a time

series data and a delayed version of itself. In other words, it quantifies the

relationship between an observation at a particular time and previous

observations in the same time series. One lag autocorrelation is

autocorrelation between time series data delayed by one time_step.

Autocorrelation can be used as the measure of the smoothness of the data.

The formula for autocorrelation at lag k in a time series data is given by:

Autocorrelation at lag k =
∑N

t=k+1(xt − x̄)(xt−k − x̄)∑N
t=1(xt − x̄)2 (13)

where:

N is the total number of observations in the time series data

xt is the value of the time series at time t

xt−k is the value of the time series at time t− k (lagged version)

x̄ is the mean of the time series data

The larger the value of final_autocorr, the smoother the prediction in the

final pass. Thus, a higher value of one_lag_auto is desirable.

After determining the proper clustering mechanism, we used those clusters
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to convert to density values. Results of these values are directly compared to the

ground truth values and different results were compared using evaluation metrics

designed to asses density prediction.

5.2 Metrics for evaluating Cluster to Density Algorithms

Evaluating the final density prediction to the ground_truth is the final measure of

the IC system we are developing. Even though we are using clustering as pattern

recognition too, we are to predict the compression density as if we were doing

regression. So, to evaluate the prediction of density, we are using the RMSE(Root

Mean Squared Error) and R2 (R-squared) metric.

RMSE(Root Mean Squared Error)

The Root Mean Squared Error (RMSE) is a commonly used evaluation metric in

regression analysis and machine learning to measure the accuracy of a predictive

model. It quantifies the difference between the predicted values of the model and

the actual (observed) values of the target variable. The RMSE provides a measure

of how well the model’s predictions match the true values, and it is particularly

useful when dealing with continuous numeric data.

Mathematically, the RMSE is calculated as follows:

RMSE =
√∑n

i=1(yi − ȳi)2

n
(14)

where:
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n is the total number of data points in the dataset.

yi is the actual (observed) value of the target variable for data point i.

ȳi is the predicted value of the target variable for data point i generated by the

regression model.

The RMSE computes the average of the squared differences between the

predicted and actual values, takes the square root of the result, and provides a

single scalar value representing the average prediction error. The lower the RMSE,

the better the model’s predictions align with the actual data, indicating a more

accurate and precise predictive model.

The RMSE is sensitive to outliers, as large errors in predictions can lead to

higher values of RMSE. It is commonly used as part of model evaluation and

selection to compare different regression models or to tune hyperparameters in the

model to achieve the best performance.

R2 (R-squared)

The R2 (R-squared) evaluation metric, also known as the coefficient of

determination, is a statistical measure used to assess the goodness of fit of a

regression model. It indicates the proportion of the variance in the dependent

variable (predicted density) that is explained by the independent variables

(predictor variables) in the model.

The R2 value ranges from 0 to 1, where:

• R2=0 indicates that the model does not explain any of the variance in the



74

dependent variable. In other words, the model does not fit the data well.

• R2=1 indicates that the model explains all the variance in the dependent

variable. The model perfectly fits the data.

Mathematically, the R2 value is calculated as follows:

R2 = 1− Sum of Squared Residuals

Sum of Squared Residuals
(15)

where:

The Sum of Squared Residuals is the sum of the squared differences between the

actual values of the dependent variable and the predicted values from the

regression model

The Total Sum of Squares is the sum of the squared differences between the actual

values of the dependent variable and the mean of the dependent variable

The R2 score varies from 0 to 1, with larger values signifying a stronger

alignment between the regression model and the data. Nevertheless, it’s vital to

recognize that a high R2 score doesn’t automatically imply the model’s suitability

or the existence of a cause-and-effect link between the predictor and target variables.

Instead, it reflects how much the model explains variability.

Therefore, when appraising the effectiveness and credibility of the predictive

model, it’s prudent to jointly consider both the root mean squared error (RMSE)

and the R2 score. This holistic evaluation approach ensures a thorough and

well-rounded assessment.
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6. RESULTS AND DISCUSSION

6.1 Results of clustering step

Detailed examination is conducted on data sourced from two significant HMA (Hot

Mix Asphalt) pavement construction projects: one located in Shawnee, Oklahoma,

and the other in Lathrop, California. For each of these projects, two distinct sets of

data segments are scrutinized at each phase of analysis. This approach facilitates

the generalization of findings across diverse construction methodologies employed

by different companies at varying geographical sites.

In each case, the initial data segment serves as training data for clustering,

while subsequent segments are utilized for validation purposes. This methodology

enhances our comprehension of the data and affords us comprehensive insight into

the behavior across entire stretches, enabling location-based analyses. However,

during the testing phase, the entirety of remaining project data is employed. This

strategy ensures that evaluations encompass a wide array of real-world construction

site scenarios.

The training and validation processes involve the deliberate selection of

distinct stretches from the time-series data. These chosen stretches exhibit clear

and discernible multiple passes, which is essential for accurate Asphalt Pavement

Compactor (APC) calculations during the training phase and for result

interpretation within the validation dataset. Each of the selected stretches

comprises five passes, contributing to the robustness of the analysis.
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The amount of data in number of time_steps in the constrained stretches is

listed below:

• Lathrop Project:

– Test Stretch: 2558

Pass1:517 Pass2:508 Pass3:533 Pass4:492 Pass5:508

– Test Stretch: 2234

Pass1:438 Pass2:443 Pass3:451 Pass4:451 Pass5: 451

• Shawnee Project:

– Test Stretch: 1805

Pass1:357 Pass2:359 Pass3:365 Pass4:365 Pass5:359

– Test Stretch: 1054

Pass1:225 Pass2:225 Pass3:185 Pass4:186 Pass5:233

Visualization

We employed t-SNE and UMAP as feature extraction mechanisms and used

visualization of those resultant features to gain insights into the underlying data

patterns. These visualization techniques allowed us to observe the data in lower-

dimensional spaces, making it easier to identify clusters and potential relationships

among the data points. By employing t-SNE and UMAP, we aimed to gain a

better understanding of the structure and grouping of the power features, which

could potentially reveal valuable insights regarding the compaction process and its

variations during pavement construction.
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(a) 3D t-SNE to see if there are some
clear clusters in Lathrop train data

(b) 3D t-SNE to see if there are some
clear clusters in Shawnee train data

(c) 3D UMAP to see if there are some
clear clusters in Lathrop train data

(d) 3D UMAP to see if there are some
clear clusters in Shawnee train data

Figure 6.1: Visualization of the data in t-SNE and UMAP space to observe if there is
existence of clusters

Upon examining the t-SNE and UMAP visualizations of the training data in

Figure 6.1, it became apparent that distinct clusters of the data points were not

present. This observation aligns with our expectations since our system deals with

continuous data, making the expectation of discrete clusters infeasible. Despite

the absence of clear clusters, we decided to further investigate the distribution

of the t-SNE and UMAP visualizations concerning the average pass count and

total power characteristics. By analyzing the visualizations in relation to these

attributes, we aimed to gain a better understanding of any potential patterns or

trends that might emerge in the data.
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(a) Visualize using t-SNE to see the
existence of a trend of power change

with the features in Lathrop train data

(b) Visualize using t-SNE to see the
existence of a trend of power change

with the features in Shawnee train data

(c) Visualize using t-SNE to see
the existence of a trend of APC

change in Lathrop train data

(d) Visualize using t-SNE to see
the existence of a trend of APC
change in Shawnee train data

(e) Visualize using UMAP to see
the existence of a trend of power

change in Lathrop train data

(f) Visualize using UMAP to see
the existence of a trend of power

change in Shawnee train data

(g) Visualize using UMAP to see
the existence of a trend of APC

change in Lathrop train data

(h) Visualize using UMAP to see
the existence of a trend of APC
change in Shawnee train data

Figure 6.2: Visualization of power and APC trend on the training data
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(a) Change in inertia with K at Lathrop_train(b) Change in inertia with K at Shawnee_train

Figure 6.3: Change in Inertia Value with Increasing Number of Clusters (k) in K-Means.
Clustering at Figure 6.3b Lathrop_location_1 and Figure 6.3b Shawnee_location_1

Based on the Figure 6.2, we noticed the absence of clear definitive clusters in

the data. However, a discernible trend in power emerged, with a concentration

of data points representing high powers in specific regions. The same pattern

holds for Average Pass Count (APC) as well. This observation provides crucial

insights, suggesting that we can utilize total_power or APC as attributes to guide

the ordering of the clusters we create in subsequent steps.

Optimum clustering mechanism

The initial step in our analysis involved determining the optimal number of clusters.

To accomplish this, we conducted an exhaustive search by employing various

clustering algorithms and implemented the cluster selection techniques mentioned in

Section 4.1.2. Initially, we applied the K-Means algorithm with multiple clusters and

evaluated different clustering indices. Subsequently, we determined the appropriate

base cluster size for our further analysis.
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First, we implemented the elbow method based on cluster inertia to find the

optimum number of clusters. We observed the decrease in inertia values for different

K-values in two projects, Shawnee and Lathrop as seen in Figure 4.2. The curves

obtained are pretty continuous and there is no clear elbow position in any of the K

values. So, using this we cannot have any conclusive value of K.

(a) Change in average silhouette coefficient
with respect to K at Lathrop_location_1

when using K_Means clustering

(b) Change in average silhouette
coefficient with respect to K

at Shawnee_location_1 when
using K_Means clustering

(c) Shiloutte plot for K_Means
clustering using K from 2 to
11 at Lathrop_location_1

(d) Shiloutte plot for K_Means
clustering using K from 2 to
11 at Lathrop_location_1

Figure 6.4: Silhouette graphs for various cluster sizes while using K-Means clustering to
determine the optimum number of clusters

The overall trend of the silhouette score is in decreasing order with respect to

the increase in K, as seen in Figure 6.4(a) and Figure 6.4(b) at Lathrop and
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Shawnee projects respectively. Looking into the silhouette score VS K plots only,

we see that the silhouette score value, for K greater than two, is maximum K=5

and so is the optimum cluster number for the Lathrop project but for Shawnee, it

is at K=7. But when we dive deep into the silhouette plot, where we also look at

the number of negative coefficients in each cluster, we observe that using K=7 at

Shawnee is not always the best option. Since the amount of data points with

negative values is similar in the range of k=5,6,7,8, and 9; using any of these are

equally near-optimal solutions when using K-Means Clustering.

Likewise, when we utilized DB and CH indices to assess the clustering process,

we obtained near-optimal solutions with either 4, 5, or 7 clusters. These are the k

values where CH is maximum or DB is minimum.

Table 6.1: Optimum number of the cluster for K-Means and Gaussian Mixture
Model(GMM) clustering using feature with no transformation

Clustering Methods Optimum number of cluster(K)
Shawnee Lathrop

K-Means Elbow(Inertia) Inconclusive Inconclusive
Silhouette 5 5/7

DB 7 4
CH 5 4

GMM Silhouette 7 7
DB 7 5
CH 3 5

Based on Table 6.1, when utilizing K-Means as a clustering technique, we find

that the optimal value of K can be 4, 5, or 7, depending on the specific project

and the evaluation parameter used. Similarly, in our exploration with Gaussian

Mixture Model (GMM), as shown in Table 6.1, we discovered that the optimum
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number of clusters also falls in the range of 3, 5, or 7, depending on the evaluation

parameter and project.

This suggests that when employing distance-based clustering mechanisms, it

is preferable to embrace a dynamic number of clusters tailored to the specific

characteristics of the project. Nevertheless, if there is a need to set a fixed value for

K, opting for 5 appears reasonable, considering it represents a central near-optimal

choice for K and also the most frequently occurring one in the above result at

Table 6.1.

We also experimented with Adaptive Gaussian Mixture Model (AGMM) based

on the information content. In this context, we observed that the number of

clusters selected varies significantly depending on the hyperparameter’s definition

for the start of the cluster size, from which the model attempts to reduce the

cluster number to the optimum value called max_cluster. From Table 6.2, it is

Table 6.2: Numbers of clusters selected by Adaptive Gaussian Mixture Model for
clustering

Max_Cluster Number of Clusters selected
Shawnee Lathrop

5 5 5
10 9 9
15 14 13
20 19 17
25 23 24

evident that as the value of max_cluster increases, the number of clusters opted

by AGMM also increases. This indicates that AGMM is not a suitable fit for

clustering the data because it fails to effectively reduce the number of clusters

when starting from a higher value of max_cluster.
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Table 6.3: Numbers of clusters selected by DBSCAN (Here, Sh signify Shawnee
project and La signify Lathrop project)

Number of cluster selected
min_sample <=2 =4 =6 >=8

Sh/La Sh La Sh La Sh/La
eps=0.6 >15 10 10 0 0 0
eps=0.8 >15 7 7 1 1 1
eps=1 >15 7 5 5 5 1
eps=1.2 >15 5 5 2 2 1
eps=1.4 >15 2 2 1 1 1

Finally, we also tried DBSCAN for the sole purpose to observe what optimum

number of cluster it provide for our data. The two major hyperparameters for

DBSCAN are eps and min_sample as described in Section 4.1.1. A small change

in any of these will cause a change in the number of clusters.

Based on Table 6.3, it is evident that varying hyperparameter values result in

a significant difference in the number of clusters obtained. Moreover, there is no

single value for the number of clusters that appears across multiple hyperparameter

combinations. To use the DBSCAN, one needs to tune the hyperparameter eps

and min_sample and make the decision. Among the different values observed,

K=5 occurs most frequently, indicating that using a density-based selection of the

number of clusters, K=5 is the preferable choice compared to others. As the result

of using density-based and distance-based algorithms is similar, we move ahead to

do experiments in distance-based clusterings.

Then, various feature extraction mechanisms were tested to see if better

transformations can be obtained to have better clustering results. For this, PCA,

Isomap, and Kernel-PCA were tried. In this experiment, we first transformed the

features into PCA, KPCA, and Isomap space and clustered using K-Means or
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Gaussian mixture Model for different numbers of transformed features. Finally,

the Silhouette Score, CH Index, and DB Index of each of the permutations is

calculated and analyzed.

Upon utilizing the transformed features in K-Means clustering and evaluating

the results, the outcomes are displayed in Table 6.4. For the Shawnee project, we

have the best silhouette score to be on the original feature, using 6 or 7 features

in PCA transformation. It is the same case when evaluating using the CH Index

or DB Index in the Shawnee project. In the case of the Lathrop project, we see

that no transformed feature can match the original feature in the case of the

Silhouette Coefficient, CB Index or DB Index. It is evident that the best Silhouette

Coefficient, CH Index, and DB Index are obtained when using the original features

without any transformation and with K=5. As a result, in the subsequent steps

involving K-Means clustering, we choose to employ the original features without

any transformation and set K=5.

We also performed a similar exhaustive experiment using Gaussian Mixture

Model and the result can be soon in Table 6.5. Here, in the Shawnee project, we

observe that the best silhouette score is when using one or two principle components

with maximum information in PCA space. While evaluating DB or CH score, the

best is when using only the first principle component. The case in Lathrop project

data is also exactly the same, to use one or two principle components in PCA

space.

So, for experiments in the next sages, the three best clustering methods we

have selected are:
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Table 6.4: Result of use of various Feature Extraction methods in K-Means
Clustering of power data. Here, Sh signifies Shawnee project and La signifies
Lathrop project

No.
of Evaluation Original PCA KPCA Isomap

features Metrics Features
Sh La Sh La Sh La Sh La

1 Silh – – 0.02 0.02 -0.15 -0.1 0.02 0.02
CH – – 154.64 171.55 48.67 66.61 150.54 157.6
DB – – 4.31 4.7 9.47 8.98 4.43 4.88

2 Silh – – 0.08 0.08 -0.11 -0.11 0.07 0.08
CH – – 223.72 262.19 78.98 81.53 199.98 250.5
DB – – 2.49 2.57 4.04 3.59 2.58 2.66

3 Silh – – 0.1 0.11 -0.11 -0.1 0.1 0.1
CH – – 254.62 303.32 70.08 90.63 242.15 283.03
DB – – 2.15 2.19 2.49 2.68 2.15 2.31

4 Silh – – 0.13 0.13 -0.1 -0.09 0.13 0.12
CH – – 271.38 326.55 69.14 88.47 257.11 306.53
DB – – 1.92 1.91 2.38 2.12 1.98 1.98

5 Silh – – 0.12 0.13 -0.1 -0.09 0.13 0.12
CH – – 274.61 330 70.75 89.16 260.29 307.57
DB – – 1.92 1.9 2.34 2.12 1.93 1.98

6 Silh – – 0.14 0.13 -0.11 -0.09 0.13 0.12
CH – – 282.44 330.38 66.42 89.76 266.11 304.83
DB – – 1.82 1.9 2.58 2.13 1.89 1.98

7 Silh 0.14 0.13 0.14 0.13 -0.11 -0.08 0.13 0.12
CH 283.46 336.28 283.46 336.28 71.23 92.35 265.48 308.81
DB 1.81 1.88 1.81 1.88 2.59 2.16 1.9 1.92

i) K-Means with k=5 in original power feature space with all seven features

(KMC7), Algorithm1

ii) GMM with k=5 using first principle component in PCA space as feature

(GMM1), Algorithm2

iii) GMM with k=5 using first two principle components in PCA space as features

(GMM2): Algorithm3



86

Algorithm 1 KMC7: K-Means Clustering with K=5 taking all seven powers from
original space as features

Input: Dataset X
Fix_hyperparameter: Number of clusters K ← 5
Output: Cluster centers C, Cluster assignments S
Initialize: Randomly choose K data points as initial cluster centers C
repeat

Assign: For each data point xi ∈ X, find the nearest cluster center ck and
assign xi to cluster k: si = arg mink ∥xi − ck∥

Update: For each cluster k, update the cluster center ck as the mean of all
data points assigned to the cluster: ck = 1

|si=k|
∑

xi∈X xi⊮(si = k)
until Convergence
Return: Final cluster centers C and cluster assignments S

Algorithm 2 GMM1: PCA Feature Extraction and GMM Clustering with First
Principal Component

Input: Dataset X
Fix_hyperparameter: Number of clusters K ← 5
Output: Cluster centers C, Cluster assignments S
PCA Feature Extraction:
Compute the mean: Calculate the mean vector x̄ of the data points in X
Center the data: Subtract the mean vector x̄ from each data point to get the
centered data matrix X̂
Compute the covariance matrix: Compute the covariance matrix C of the
centered data matrix X̂ as C = 1

n
X̂T X̂, where n is the number of data points

Compute the eigenvectors and eigenvalues: Compute the eigenvectors and
eigenvalues of the covariance matrix C. Let v1 be the eigenvector corresponding
to the largest eigenvalue.
GMM Clustering with First Principal Component:
Project data onto the first principal component: Project the data points
in X onto the first principal component v1 to obtain the 1-dimensional feature
vectors.
Initialize GMM: Randomly initialize K cluster centers C.
repeat

Expectation Step: For each data point, compute the probability of
belonging to each cluster using the current cluster centers.

Maximization Step: Update the cluster centers as the weighted mean of the
data points, where the weights are the probabilities obtained in the expectation
step.
until Convergence
Assign data points to clusters: Assign each data point to the cluster with
the highest probability obtained in the expectation step.
Return: Final cluster centers C and cluster assignments S
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Algorithm 3 GMM2: PCA Feature Extraction and GMM Clustering with First
Two Principal Components

Input: Dataset X
Fix_hyperparameter: Number of clusters K ← 5
Output: Cluster centers C, Cluster assignments S
PCA Feature Extraction:
Compute the mean: Calculate the mean vector x̄ of the data points in X
Center the data: Subtract the mean vector x̄ from each data point to get the
centered data matrix X̂
Compute the covariance matrix: Compute the covariance matrix C of the
centered data matrix X̂ as C = 1

n
X̂T X̂, where n is the number of data points

Compute the eigenvectors and eigenvalues: Compute the eigenvectors and
eigenvalues of the covariance matrix C. Sort them in decreasing order and select
the first two eigenvectors, denoted by v1 and v2.
GMM Clustering with First Two Principal Components:
Project data onto the first two principal components: Project the data
points in X onto the plane spanned by the first two principal components v1
and v2 to obtain the 2-dimensional feature vectors.
Initialize GMM: Randomly initialize K cluster centers C.
repeat

Expectation Step: For each data point, compute the probability of
belonging to each cluster using the current cluster centers.

Maximization Step: Update the cluster centers as the weighted mean of the
data points, where the weights are the probabilities obtained in the expectation
step.
until Convergence
Assign data points to clusters: Assign each data point to the cluster with
the highest probability obtained in the expectation step.
Return: Final cluster centers C and cluster assignments S
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Table 6.5: Evaluation Metrics of use of various Feature Extraction methods in
GMM Clustering of power data

No.
of Evaluation Original PCA KPCA Isomap

features Metrics Features
Sh La Sh La Sh La Sh La

1 Silh – – 0.14 0.18 -0.14 -0.1 0.03 0.02
CH – – 395.42 470.12 62.49 78.55 151.12 158.16
DB – – 2.27 2.23 9.05 8.57 4.28 4.86

2 Silh – – 0.14 0.18 -0.05 -0.04 0.06 0.08
CH – – 383.16 466.78 96.63 122.69 196.35 248.29
DB – – 2.3 2.25 4.34 4.46 2.69 2.73

3 Silh – – 0.13 0.18 -0.04 -0.03 0.11 0.1
CH – – 366.06 463.69 82.64 131.86 222.87 268.85
DB – – 2.34 2.25 7.08 4.55 2.31 2.23

4 Silh – – 0.11 0.17 -0.04 0.01 0.1 0.12
CH – – 269.34 458.04 83.84 146 205 296.87
DB – – 2.73 2.28 7.01 3.79 2.17 2

5 Silh – – 0.09 0.12 -0.01 0.03 0.07 0.1
CH – – 218.54 378 94.45 145.09 185.67 277.83
DB – – 3 2.43 4.69 4.08 2.43 2.11

6 Silh – – 0.1 0.11 -0.03 0.03 0.05 0.02
CH – – 232.86 334.35 90.93 142.4 164.6 175.78
DB – – 2.93 2.54 5.4 4.18 2.45 2.63

7 Silh 0.09 0.11 0.1 0.11 0 0.01 0.07 0.07
CH 247.85 340.57 247.85 340.57 97.81 131.27 181.72 243.24
DB 2.79 2.57 2.79 2.57 4.57 4.82 2.43 2.41

Selection of cluster ordering criterion

We have determined the optimal clustering mechanisms for our application in the

previous step. However, the next major step is to identify which clusters represent

highly compacted regions and which ones represent low compacted regions. To

achieve this, we need to arrange these clusters based on certain characteristics. In

addition to the seven power features, each time_step data also includes total power,

passID, and APC characteristics. While PassID simply indicates the increase in

pass count without considering any overlap between consecutive passes, APC

takes into account both the progressive pass count over time and the overlap
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(a) Train data-set of Lathrop using
total_power as ordering attribute

(b) Test data-set of Lathrop using
total_power as ordering attribute

(c) Train data-set of Lathrop
using APC as ordering attribute

(d) Test data-set of Lathrop
using APC as ordering attribute

Figure 6.5: Box and whisker plot illustrating the results of clustering using K-Means
clustering, utilizing original power feature, on Lathrop project data with different cluster
ordering attributes.

of the previous passes in the position of the current time_step. Total_power

represents the weighted sum of powers in the fundamental frequency and the

first six harmonics. Hence, it is expected to hold important implications for the

amount of compaction. Consequently, we proceed to examine which characteristic,

total_power or APC, is optimal to use as ordering criteria.
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(a) Train data-set of Shawnee using
total_power as ordering attribute

(b) Test data-set of Shawnee using
total_power as ordering attribute

(c) Train data-set of Shawnee
using APC as ordering attribute

(d) Test data-set of Shawnee
using APC as ordering attribute

Figure 6.6: Box and whisker plot illustrating the results of clustering using K-Means
clustering, utilizing original power feature, on Shawnee project data with different cluster
ordering attributes.
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(a) Train data-set of Lathrop using
total_power as ordering attribute

(b) Test data-set of Lathrop using
total_power as ordering attribute

(c) Train data-set of Lathrop
using APC as ordering attribute

(d) Test data-set of Lathrop
using APC as ordering attribute

Figure 6.7: Box and whisker plot illustrating the results of clustering using Gaussian
Mixture Model (GMM), utilizing the first principle component from PCA space as a
feature, on Lathrop project data with different cluster ordering attributes.
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(a) Train data-set of Shawnee using
total_power as ordering attribute

(b) Test data-set of Shawnee using
total_power as ordering attribute

(c) Train data-set of Shawnee
using APC as ordering attribute

(d) Test data-set of Shawnee
using APC as ordering attribute

Figure 6.8: Box and whisker plot illustrating the results of clustering using Gaussian
Mixture Model (GMM), utilizing the first principle component from PCA space as a
feature, on Shawnee project data with different cluster ordering attributes.
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(a) Train data-set of Lathrop using
total_power as ordering attribute

(b) Test data-set of Lathrop using
total_power as ordering attribute

(c) Train data-set of Lathrop
using APC as ordering attribute

(d) Test data-set of Lathrop
using APC as ordering attribute

Figure 6.9: Box and whisker plot illustrating the results of clustering using Gaussian
Mixture Model (GMM), utilizing the first two principle component from PCA space as
feature, on Lathrop project data with different cluster ordering attributes.
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(a) Train data-set of Shawnee using
total_power as ordering attribute

(b) Test data-set of Shawnee using
total_power as ordering attribute

(c) Train data-set of Shawnee
using APC as ordering attribute

(d) Test data-set of Shawnee
using APC as ordering attribute

Figure 6.10: Box and whisker plot illustrating the results of clustering using Gaussian
Mixture Model (GMM), utilizing the first two principle component from PCA space as
feature, on Shawnee project data with different cluster ordering attributes.
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From Figure 6.5 and Figure 6.6, we can see that while using total_power as

the cluster ordering attribute, there are huge amounts of low cluster predictions

in high APC even in the control training stretch. If this is true, then the system

had not obtained compaction enough at these locations but, it being a controlled

stretch where the final level of compaction was good enough to proceed to conduct

the construction, that is not the case. Then when we tried using APC as our cluster

ordering attribute, we see better distribution of high clusters in the high APC and

low clusters in the low APC. This trend is not applicable to the training data but

is the same in the test data in both Lathrop and Shawnee projects. This shows us

that using APC as the cluster ordering parameter is the optimum option. We tried

using both total_power and APC as cluster ordering attributes while clustering

with GMM with a single principle component and two principle components in

Figure 6.7, Figure 6.8, Figure 6.9 and Figure 6.10 respectively. Here too, we see a

high average cluster value in high APC and also a smaller standard deviation in

the final passes. So, from the visualization itself, we can say that using APC as

the ordering attribute of the cluster is better than using total_power.

For the quantitative evaluation, we calculated the f_mean, f_std, and

one_lag_auto evaluations metrics described in Section 5.1. These parameters give

us the measure of how well is the algorithm working in the final pass. For our

data, the mechanism that gives higher f_mean and one_lag_auto along with low

f_std is the optimum mechanism.

Examining the data presented in Table 6.6, we observe that when "total_power"

is used as the cluster ordering attribute for the Shawnee project and applying the
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Table 6.6: Comparison of evaluation metrics when using total_power and APC as
cluster ordering attributes

KMC7 clustering mechanism, the average cluster values in the final pass are 2.66

for the training set and 2.37 for the test set. When substituting "APC" as the

ordering attribute, the corresponding values become 2.66 for training and 2.44 for

testing, yielding similar outcomes. The f_mean results remain consistent in this

project across GMM1 and GMM2 implementations, and a similar trend is evident

for f_std and one_lag_auto metrics. Hence, for the Shawnee project, the choice

between "APC" and "total_power" as the cluster ordering attribute appears to

yield comparable results.

However, a different pattern emerges when considering the Lathrop project.

For instance, when using KMC7, GMM1, and GMM2 with "total_power" as the

ordering attribute, the f_mean values in the train set are 2.94, 3.07, and 2.91

respectively, and in the test set, they are 1, 1.55, and 1.57. Notably, the f_mean

value in the test set is significantly lower than that in the train set, indicating

inconsistent prediction characteristics. Conversely, when "APC" is employed for

cluster ordering, the f_mean values in the train set are 2.91, 3.17, and 2.89, and
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Table 6.7: Metrics obtained when using features from 1 time_step and 2 time_step
for KMC7, GMM1 and GMM2. Cluster ordering is done here using APC

in the test set, they are 2.63, 3.19, and 2.83 for KMC7, GMM1, and GMM2

respectively. In this case, the f_std is also lower when using "APC," and the

prediction consistency between the test and train sets improves. These findings

underscore the superiority of "APC" as a cluster ordering attribute, resulting in

the same or better performance in terms of f_mean and f_std.

However, it’s worth noting that when "APC" is utilized as the ordering

parameter, the one_lag_auto metric, which gauges the smoothness of cluster

predictions, experiences a slight decline. To investigate whether this change is

influenced by noise within the system, a comparison was made between using a

single 128ms time_step and taking the average of the present and last time_step

(256ms). The resulting metrics are detailed in Table 6.7.

When we were using features from the given time step to cluster, we obtained

one_lag_auto of 0.34,0.35 in the train set and 0.3,0.48 and 0.31 in the test set
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at Shawnee for KMC7, GMM1, and GMM2 respectively. But, when we averaged

the features from current time_step to the previous time_step, the values of

one_lag_auto were 0.48, 0.62, and 0.43 in test data and 0.62, 0.74, and 0.64

in test data at Shawnee for KMC7, GMM1, and GMM2. This shows that we

can increase the smoothness of the final pass prediction using information from

consecutive time_step. But the best part is that the f_mean and f_std are similar

to using features of given time_step only. This result indicates that we can use

two time_step and get similar predictions with better smoothness in comparison

to using only one. Also, in the future, we may experiment with using 256ms as

time_step and observe the results.

The best f_mean at Lathrop for the train is 3.1 and the test is 3.16, both

when using GMM1 with APC as cluster ordering and average of two time_step

features to cluster. But the f_std and one_lag_auto are best when using GMM2

for the same cases. And. looking into the Shawnee, it is observed that the best

values of the f_mean and f_std are best while using GMM2 but one_lag_auto is

best for GMM1. So, we can clearly state that using KMC7 is not the best option,

and it is not much difference between GMM1 and GMM2.

The primary goal behind clustering and ordering of clusters is to establish a

mechanism that accurately reflects the compaction level trend. Our foundational

understanding is that regions with high APC values should correspond to high

compaction, moderate APC values to medium or low compaction, and low APC

values to low compaction. However, a closer inspection of the cluster distribution

depicted in Figure 6.8 reveals that this trend is not consistently adhered to,
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(a) Distribution of percentage of clusters
in training data from Lathrop project

(b) Distribution of percentage of clusters
in test data from Lathrop project

(c) Distribution of percentage of clusters
in training data from Shawnee project

(d) Distribution of percentage of clusters
in test data from Shawnee project

Figure 6.11: Plots showing the distribution of clusters in various locations

particularly in areas with lower pass counts. Notably, there is a substantial

presence of high clusters even in regions with low APC values. Another intriguing

observation is that the percentage of high clusters is minimal when APC values

are low, a trend consistent across both the Shawnee and Lathrop project data.

At first glance, these results might seem to indicate that the developed system

struggles to align with the known information about HMA construction that with

increase in APC, there should be increase in the level of compaction density. Yet,

a deeper analysis is warranted to comprehend the underlying dynamics. When

APC is approximately 1, signifying substantial uncompressed HMA, the roller’s

movement leads to material shifting rather than compaction. Consequently, the

vibration data obtained is significantly influenced by the underlying pavement

substrate. In such regions, the data appears scattered, making it challenging to

accurately predict asphalt compaction levels. Additionally, considering that the
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(a) Distribution of percentage of clusters
in training data from Lathrop project

(b) Distribution of percentage of clusters
in test data from Lathrop project

(c) Distribution of percentage of clusters
in training data from Shawnee project

(d) Distribution of percentage of clusters
in test data from Shawnee project

Figure 6.12: Plots of levels of cluster distribution in train and validation data

roller’s width is around 5-6 feet and it typically compacts within a lane width of

about 10 feet, initial passes focus on compressing the lane’s edges – whether they

are shoulders, curves, or adjacent lanes. As a result, areas with APC values near 1

are inherently susceptible to substantial noise.

Given these insights, it becomes reasonable to expect a notable presence of

high clusters in such regions. However, as the roller progresses through its final

passes, consistent high compaction is achieved, resulting in a predominance of

high clusters, as depicted in Figure 6.11. This visual representation reinforces the

trend that high compaction is indeed achieved in the later stages. If we make

the cluster prediction into three level, high clusters(4 and 5), mid_clusters(2 and

3) and low clusters(cluster 1) as in Figure 6.12, the trend is more prominent to

the expectation. We can observe that with increase of the APC, there is higher

percentage of high clusters and low percentage of low clusters. The percentage of
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high and low clusters is reversed in low APC, other than in the error region of

APC<1.5.

In essence, while the observed cluster distribution may appear initially

counterintuitive, a comprehensive understanding of the underlying factors, such as

the roller’s initial lane-edge compression and the impact of the underlying

substrate, reveals that the system’s behavior aligns with the complexity of the

compaction process. This deeper analysis underscores the system’s capability to

capture the nuanced behavior of compaction and provides context for the observed

cluster patterns.

In Figure 6.11(a), we observe the distribution of clusters in the training data

from Lathrop, and in Figure 6.11(b), we see the test data from the same project. In

the region with APC=1-1.5, all clusters are present, with cluster 4, a high cluster,

being the most prominent one in the training set. However, as we move to the

region of APC=1.5-2, we notice all the high clusters vanish, and the low clusters

become prominent in this region. Then, in the region of APC=2-2.5, there is a

slight increase in the percentage of high clusters, and the number of low clusters

decreases considerably. Finally, for the region with APC>2.5, high clusters (4 and

5) take over.

Figure6.11(c) and Figure6.11(d) show the distribution of clusters in various

APC values in the train and test data from the Shawnee project. The trend is

similar here as well. All these trends are generated from the results of implementing

Algorithm 4. Therefore, we can conclude that by implementing Algorithm 4, we

can effectively capture the trend of changes in the compactness of HMA pavement
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Algorithm 4 Optimum Clustering Mechanism: PCA Feature Extraction, GMM
Clustering, and Cluster Ordering

Input: Dataset X
Fix_hyperparameter: Number of clusters K ← 5
Output: Cluster centers C, Cluster assignments S
PCA Feature Extraction:
Compute the mean: Calculate the mean vector x̄ of the data points in X
Center the data: Subtract the mean vector x̄ from each data point to get the
centered data matrix X̂
Compute the covariance matrix: Compute the covariance matrix C of the
centered data matrix X̂ as C = 1

n
X̂T X̂, where n is the number of data points

Compute the eigenvectors and eigenvalues: Compute the eigenvectors and
eigenvalues of the covariance matrix C. Sort them in decreasing order and select
the first two eigenvectors, denoted by v1 and v2.
GMM Clustering with First Two Principal Components:
Project data onto the first two principal components: Project the data
points in X onto the plane spanned by the first two principal components v1
and v2 to obtain the 2-dimensional feature vectors.
Initialize GMM: Randomly initialize K cluster centers C.
repeat

Expectation Step: For each data point, compute the probability of
belonging to each cluster using the current cluster centers.

Maximization Step: Update the cluster centers as the weighted mean of the
data points, where the weights are the probabilities obtained in the expectation
step.
until Convergence
Assign data points to clusters: Assign each data point to the cluster with
the highest probability obtained in the expectation step.
Cluster Ordering based on Average APC Attribute:
Compute the Average APC for each cluster: Calculate the average APC
(Average Pass Count) attribute for each cluster using the data points assigned
to that cluster.
Order the clusters: Order the clusters based on their average APC values, with
the cluster having the highest average APC considered as the most compacted
with cluster number K and the cluster with the lowest average APC considered
as the least compacted with cluster number 1.
Return: Final cluster centers C and cluster assignments S in ordered fashion
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during construction through the cluster numbers.

6.2 Results in density prediction

Table 6.8: Prediction results in the various core data collected

The subsequent crucial phase involves predicting the density values based on

the cluster numbers that represent varying levels of compactness. Initially, we

explored employing linear regression to establish a relationship between the cluster

numbers and density values. Subsequently, we also experimented with utilizing

sigmoidal fittings to capture the underlying patterns more accurately.

In the Shawnee project, the construction involved distinct Breakdown and

Intermediate rollers, with our system connected to the Intermediate roller.

Consequently, our data collection commenced after a certain degree of pavement

compression, subsequent to the Breakdown phase. The minimum density observed

through our system aligned with measurements from an NDG density
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measurement device, registering at 91%. The project’s maximum achievable

density was recorded as 96.5%. Similarly, in the Lathrop project, the determined

min_density was 90%, while the max_density reached 95.5%.

To predict the final cluster number at a core location, data from the nearest

final pass time_step was selected, as it was most relevant to the given core location

for cluster prediction. Subsequently, both linear and sigmoidal fitting methodologies

were applied. The outcomes, as detailed in Table 6.8, were analyzed.

The predicted density values, as showcased in Table 6.8, led to calculated

Root Mean Squared Error (RMSE) values of 0.266 for linear fitting and 0.103

for sigmoidal fitting. Additionally, the computed R_squared values were 0.69 for

linear fitting and 0.88 for sigmoidal fitting. These metrics provide insight into the

predictive accuracy of each approach.

Based on these results, we can deduce that sigmoidal fitting outperforms linear

fitting for this specific application. The lower RMSE and higher R_squared values

associated with sigmoidal fitting indicate its superior suitability in capturing the

complex relationship between cluster numbers and density values in this context.
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7. CONCLUSION AND FUTURE WORK

After conducting various experiments and analyzing the results of this

application-based research, we have identified an algorithm capable of monitoring

the compaction level in HMA pavement during construction. The algorithm is

designed specifically for vibratory roller compactors, as the vibration patterns

contain crucial information about the pavement’s compactness during

construction.

Initially, a retrofit system was devised to attach to impulse vibratory roller

compactors, enabling the collection of vibration, temperature, and location data.

Vibration and temperature information were collected at 1000Hz, while GPS

location data was collected at 1Hz. Utilizing FFT, we converted the time-domain

vibration data into the frequency domain, observing significant changes around

the fundamental frequency and its harmonics. Focusing on the readings in those

regions, we termed them as the power of the given frequency band.

Later, we discovered that the power content in the fundamental frequency

and its harmonics can serve as essential characteristics to determine the level of

compaction density. Throughout our research, we primarily focused on a time_step

of 128ms and formulated various attributes for that specific time interval using

vibration and location data. Additionally, we attempted to reduce noise by

averaging the last two 128ms time_steps, yet still predicting the clusters every

128ms.

To further enhance our understanding, we need to conduct a thorough
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investigation to determine the optimum duration of the time_step. This

investigation should strike a balance between having a small enough time_step to

detect changes in density levels and having a long enough time_step to mitigate

the impact of noise effectively. Such an analysis will aid in optimizing the system’s

performance and accuracy.

Determining the compaction density ideally should be approached as a

regression problem. However, due to the limited availability of ground truth data,

we need to proceed using unsupervised learning methods. Among various

unsupervised techniques, we have considered clustering and ordering the resulting

clusters to determine the different levels of compaction densities.

To find the optimum combination, we explored various feature extractions

and different clustering algorithms with varying cluster numbers. Based on the

Silhouette Score, DB Index, and CH Index analysis, we identified KMC7, GMM1,

and GMM2 as the optimal clustering algorithms. Moving forward, we aimed to

find the best attribute for ordering the clusters based on the level of compaction.

It was determined that APC (Average Pass Count) is the most suitable attribute

for executing the ordering.

The main objective of clustering and ordering the clusters is to develop a

mechanism that accurately follows the trend of compaction levels. The most

optimal resulting algorithm from all the experiments conducted is identified as

Algorithm 4. Figure 6.11 demonstrates proper trend detection of compaction

levels using this algorithm. As an unsupervised learning problem, we employ

domain knowledge to assess the results of the clustering mechanism. Based on the
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results, we can confidently assert that this system is effective in learning the various

levels of compaction density. However, obtaining exact density values remains

unattainable due to the limitations in ground truth data and the inherent nature

of the unsupervised learning approach.

Furthermore, we attempted to determine the fitting mechanism for converting

the cluster numbers into density predictions. Sigmoidal fitting was observed to be

the best option, although further research is necessary to gain a better

understanding. Due to limited ground truth data (11 cores from two projects),

statistical significance is challenging to establish. More core data needs to be

collected from real construction sites to facilitate comprehensive analysis.

Additionally, a major limitation is that all the available ground truth data is from

the final fully compacted regions, leaving us without data to evaluate the system’s

performance in low and intermediate compaction during non-final passes. Data

from those situations is essential to make robust claims about the system.
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8. APPENDIX

Table 8.1: Specifications of the two vibratory rollers used (referenced from the
Caterpillar Tandem Vibratory Roller specifications)

Property CB-7 CB-10
Operating Frequency Range (Hz) 42-63.3 40-63.3

Vibratory Amplitude(mm) 0.25-0.65 0.18-0.84
Drum width(mm) 1500 1700

Drum diameter(mm) 1108 1198
Operating weight(kg) 7990 9500

Table 8.2: Specifications of the 2240-010 Titanium Hermetic Accelerometer used
in RICA (ref: https : //www.silicondesigns.com/2240− 2480)

Parameter Min Typ Max Units
Bias Calibration Error (%) 0.25 0.6 ± % of span

Bias Calibration Error (mV) 25 60 ± mV
Scale Factor Calibration Error (1) 0.5 1.25 ± %

Non-Linearity (-90 to +90% of span) (1) 0.15 0.5 ± % of span
Bias Temperature Shift (Coefficient) -100 0 +100 (PPM of span)/°C

Scale Factor Temperature Shift (Coefficient) -150 0 +50 PPM/°C
Cross Axis Sensitivity 2 3 ± %

Power Supply Rejection Ratio 50 >65 dB
Output Impedance 1 W

Output Common-Mode Voltage 2.5 VDC
Operating Voltage 8 32 VDC

Operating Current 2240 / 2480 6 / 19 7 / 23 12 / 27 mA DC
Operating Temperature -55 +125 °C

Mass 2240 / 2480 15 / 25 grams
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Table 8.3: Specifications of the CI Series Compact IR Temperature
Sensor from Raytek used in RICA (ref: https : //www.raytek −
direct.com/pdfs/cache/www.raytek − direct.com/cm − series/datasheet/cm −
series− datasheet.pdf)

Parameter Range
Temperature Range -20ºC to 500ºC (-4ºF to 932ºF)
Accuracy (mV) ± 1.5% of reading or ± 2ºC, whichever is greater 1,2
Accuracy (t/c) ± 1.5% of reading or ± 4ºC, whichever is greater1,2,3
Spectral Response 8 to 14 microns
System Repeatability ± 0.5% of reading or ± 2ºC, whichever is greater
Temperature Resolution 0.1°C
Response Time (95%) 150 mSec
Emissivity 0.10 to 1.10 (adjustable)
Transmissivity 0.10 to 1.00 (adjustable)
Signal Processing Peak hold, valley hold, variable averaging
Bore-Sight tolerance 3º @ focal point

Table 8.4: Specifications of the GNSS Receiver for GPS location (ref:https :
//www.navtechgps.com/wp− content/uploads/V ector − V S1000DS.pdf)

Parameter GNSS Receiver Specifications
Receiver Type: Vector GNSS RTK Receiver
Signals Received: GPS, GLONASS, BeiDou, Galileo, & Atlas 3
Channels: 1059
GPS Sensitivity: -142 dBm
SBAS Tracking: 2-channel, parallel tracking
Update Rate: 10 Hz standard, 20 Hz optional
Timing (1PPS) Accuracy: 20 ns
Rate of Turn: 100°/s maximum
Cold Start: 60 s (no almanac or RTC)
Warm Start: 30 s typical (almanac and RTC)
Hot Start: 10 s typical (almanac, RTC, and position)
Heading Fix: 10 s typical (valid position)
Antenna Input Impedance: 50 Ω
Maximum Speed: 1,850 kph (999 kts)
Maximum Altitude: 18,000 m (59,055 ft)
Differential Options: SBAS, Atlas (L-band), RTK
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