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Abstract  

Saline and sodic soils are major abiotic stressors on the production of flood-irrigated crops in 

drylands. We conducted a crop phenotyping, remote sensing study on five genotypes of 

sorghum [Sorghum bicolor (L.) Moench], a drought and salt-tolerant crop, to assist in the 

molecular breeding of salt-tolerant cultivars. A control plot and a spatially heterogeneous saline-

sodic plot (treatment plot) were established in collaboration with Dr. Yerka, Mr. Alfredo 

Delgado, Dr. Washington-Allen, the Nevada Agricultural Experiment Station (NAES) and the 

United States Department of Agriculture’s Plant Materials Center (USDA-PMC) in Fallon, 

Nevada. This location is representative of the variable salinity/sodicity conditions typical of 

Northern Nevada soils and associated belowground biomass dynamics in drylands. We 

generated pre- and post-harvest soil attribute maps of the treatment plot using spatial 

interpolation, we expected individual genotypes to be affected differently by the gradient of 

various soil constituents. We hypothesized that above- and belowground three-dimensional 

structural phenology of the five genotypes would be differently affected across the salinity 

gradient in the treatment plot relative to the control plot. Additionally, we hypothesized that the 

GPR signal return would vary with the salinity gradient. Finally, we expected an increase in 

belowground biomass, relative to the control plot, in response to salt-stress as an adaptation to 

drought. The phenology of coarse-root depth and three-dimensional structure from pre-planting 

to harvest was non-invasively measured 15 times using a real-time kinematic (RTK) GPS-

mounted IDS GeoRadar dual channel (400MHz and 900MHz) ground penetrating radar (GPR) 

system. Plant height and three-dimensional structural phenology of the five varieties were 

mapped using a FARO Focus3D X 330 terrestrial laser scanner (TLS). We found differences in 

above- and belowground three-dimensional structural phenology across the five genotypes in 

response to the salinity and sodicity gradient. Of the five genotypes in this study, only four 
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emerged in the treatment plot, where Richardson Seed’s Ultra-Early Hybrid performed best 

under the gradient of salinity and sodicity with the highest rate of emergence (68%), the highest 

rate of panicle production (4.1 panicles per row), and the greatest panicle volume (67.2%) relative 

to the control plot. Furthermore, we found that the GPR return signal was not able to detect root 

mass in the highly saline-sodic soil, however, I was able to detect root mass phenology in the 

control plot. GPR return signal was not linear in response to the salinity gradient, however, a 

signal pattern emerged from the different salinity ranges suggesting a gradient response. This 

study shows the efficacy of the use of these technologies in crop phenotyping and precision 

agriculture. Future work may improve TLS derived data processing efficiency by developing 

methods for automating the detection of phenotypic traits (e.g., panicles, leaf area index, number 

of individual plants). These methods likely will include machine learning algorithms, allometric 

equations for biomass calculations, and use of drone-mounted LiDAR to reduce occlusion. The 

use of GPR in the salt-affected soils of this study was not able to definitively identify root mass, 

however, its use in soil composition for salts and other constituents is indeed promising. Further 

testing of GPR’s non-detect threshold in salt-affected soils and its ability to quantify individual 

soil constituents has potential to be highly valuable to the field of soil science and precision 

agriculture. Furthermore, this study was able to detect a root mass response using GPR, future 

work may focus on differentiating genotypic variation in root phenology.  
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CHAPTER 1 

Review 

Erin L. Smith 1 

1 Department of Agriculture, Veterinary & Rangeland Science, University of Nevada, Reno, 

Reno, NV, erinlsmith@nevada.unr.edu 

Abstract: Drylands cover approximately 41.3 percent of the Earth’s land surface and are home to 

38 percent of the global population. These areas are often underestimated or seen as less 

productive, however, drylands contribute 44 percent to global crop production and are valued at 

approximately $18 Trillion in ecosystem services. Crop production in drylands is increasingly 

limited by increasing temperatures, aridity, and soil salinization. Saline and sodic soils are major 

abiotic stressors on the production of irrigated crops in drylands. An estimated 230Mha of 

irrigated land globally is impacted by salinization. Additionally, belowground biomass  estimates 

in drylands are uncertain, particularly because belowground estimates are at times uncoupled 

from aboveground estimates. We conducted a crop phenotyping, remote sensing study on five 

genotypes of sorghum [Sorghum bicolor (L.) Moench], a drought and salt-tolerant crop, to assist in 

the molecular breeding of salt-tolerant cultivars adapted to the climatic and edaphic conditions 

common to northern Nevada. Sorghum is widely planted across drylands due to its relatively 

higher tolerance to drought, heat, and salt stress. A non-saline/non-sodic control plot and a 

spatially heterogeneous saline-sodic plot (treatment plot) were established in Fallon, Nevada. 

This location is representative of the variable salinity conditions typical of Northern Nevada soils 

as well as a model site for belowground biomass dynamics in drylands. We generated pre- and 

post-harvest soil attribute maps of the control plot and treatment plot using spatial interpolation. 
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We hypothesized that above- and belowground three-dimensional structural phenology of the 

five genotypes would be differently affected across the flood irrigated salinity gradient. 

Phenology of coarse-root depth and three-dimensional structure from pre-planting to harvest 

was non-invasively measured 15 times using a real-time kinematic (RTK) GPS-mounted IDS 

GeoRadar dual channel (400MHz and 900MHz) ground penetrating radar (GPR) system. Plant 

height and three-dimensional structural phenology of the five varieties were mapped using a 

FARO Focus3D X 330 terrestrial laser scanner (TLS).  

1.1. Introduction 

The ancient grain sorghum [Sorghum bicolor (L.) Moench], also known commonly as 

sweet sorghum, millet, milo, and durra, is a staple cereal crop for many global populations, 

particularly those found in arid regions. Sorghum is often widely planted in dry climates due to 

its relatively higher tolerance to abiotic and edaphic stressors such as drought, high 

temperatures, and salt-affected soils, which negatively impact crop production and contribute to 

issues of global food insecurity [1]. For its relative success under these stressful conditions, 

sorghum is the fifth most grown cereal crop worldwide following maize, rice, wheat, and barley 

[2].  

Drylands are water-limited regions with high rates of evapotranspiration and are defined 

by an aridity index between 0.03-0.65, which is the ratio of mean annual precipitation to mean 

annual evaporation [3,4]. These regions are often viewed as less productive, however, they 

contribute 44 percent of global crop production and have been valued at $18 Trillion in ecosystem 

services [5]. Drylands make up more than 41.3 percent of the Earth’s land surface and are home 

to 38 percent of the global population, approximately 2.1 billion people, the majority of whom are 
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critically poor [6,7]. Drylands are experiencing expansion resulting from increasing aridity and 

higher temperatures caused by climate change [8,9].  

Small farmers and rural communities are at a particular disadvantage, as they are often 

without the resources to mitigate soil salinization or do not have access to  increased irrigation 

water needed to cope with climate change [4,8-10]. Therefore, it is vitally important to develop 

sorghum varieties specifically adapted to these stressors and improve methods for efficient data 

collection through emerging technologies. 

The Sorghum genus is a member of the Poaceae family of grasses, of which there are 24 

recognized species. These various species of sorghum have been cultivated for a variety of uses 

such as biofuel, livestock forage, and alcohol production [2]. Beyond the species level, tolerance 

to various stressors can be further subdivided by individual genotype which can impact crop 

yield and other measures of resiliency, and can be significant at different stages of crop 

development.  

The cereal grain species was cultivated from wild Sorghum bicolor and has been developed 

into a wide variety of cultivars through selective breeding. Cultivars of sorghum can be 

developed regionally, by selecting characteristics suited to specific environmental conditions. 

Cultivar development is typically a time-consuming process [11,12], requiring many generations 

of growth, close monitoring of phenology, and reoccurring measurements of above- and 

belowground biometrics. 

Crop breeders use above- and belowground phenotypic traits (e.g., leaf area index (LAI), 

average height, biomass, panicle density, root depth, root volume, root mass) to compare 

genotype response to specific growing conditions. To measure the response of these phenotypic 
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indicators of resiliency to abiotic stressors, data are usually collected by means of destructive 

sampling, which is particularly true for collection of belowground data.  

In crop breeding programs, destructive sampling is often done throughout the growing 

season at the various stages of development. The challenge of destructive sampling is selecting 

representative specimens and collecting a large enough sample size to be representative while 

also leaving enough material for iterative sampling. Additionally, this process can be slow, 

subjective, labor intensive, and sampled locations cannot be resampled, and these issues have the 

potential to introduce bias and misrepresentation into data.   

This study compares the above- and the belowground response of five genotypes of 

early-emergent Sorghum bicolor to heterogeneous, highly-saline, and sodic soil conditions. This 

research assists an ongoing molecular breeding program for Sorghum bicolor at the University of 

Nevada, Reno (UNR), in collaboration with the United States Department of Agriculture Plant 

Materials Center (USDA-PMC) located in Fallon, Nevada, United States. The goal of this specific 

project is to develop sorghum cultivars best suited to the climatic and edaphic conditions found 

in Northern Nevada; however similar conditions occur throughout dryland ecosystems globally 

[7]. The broader goals are to (1) expand the frequency and scope of crop-response data to drought 

and saline-sodic soil conditions; and (2) develop methods for high-throughput and fine-grain 

data collection using emerging, non-invasive, remote sensing technologies.  

Light detection-and-ranging (LiDAR) and radio detection-and-ranging (RADAR) were 

the two types of remote sensing technologies utilized in this study to non-invasively quantify 

phenotypic traits of sorghum throughout the growing season. Aboveground LiDAR data was 

collected using a terrestrial laser scanner (TLS) and belowground RADAR data was collected 

using ground penetrating radar (GPR). A benefit of using these technologies simultaneously 
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along with a real-time kinematic global positioning system (RTK-GPS), is that the above- and 

belowground data can be precisely paired, a result which is unprecedented in sorghum 

cultivation [13].  

Creating a means of investigating crop traits in response to abiotic and edaphic stressors 

through remote sensing technologies is a step toward addressing the reliability of future food 

supplies and global food security. Therefore, it is crucial for plant phenotypic traits to be linked 

to physiological responses and genotypes that will aid in promoting resource efficiency and crop 

yields towards the development of a sustainable intensive agricultural system [14,15]. 

1.2.  Global Significance of Sorghum 

Sorghum bicolor is a flowering grass in the family Poaceae that is usually cultivated as an 

annual [16]. This cereal grain likely originated in Northeastern Africa near what is now Sudan 

and Ethiopia, most likely domesticated from a wild species sometime between 8,000 – 4,000 

B.C.E. [17]. Since then, sorghum cultivation has spread regionally by various means, eventually

being grown in over one hundred countries [18]. 

Presently, the United States produces the largest amount of grain sorghum annually. Its 

primary use is for the production of ethanol for biofuel and as livestock fodder [19]. Although the 

United States is the largest global producer, other dryland countries in Sub-Saharan Africa, Asia, 

South America, and the Caribbean dedicate a larger percentage of their arable land to sorghum 

cultivation, which is mainly used for human consumption [20]. Global production of grain 

sorghum is divided into two general groupings: countries that produce grain sorghum as a 

surplus for industrial purposes (e.g., the United States), and those that produce grain sorghum 

for human consumption or local trade (e.g., Sub-Saharan counties). Promoting international trade 



6 

and increasing crop productivity while also preserving the various uses of the plant will be 

important to maintain or grow the global significance of grain sorghum [20].  

Within drier regions of the world, sorghum is grown primarily because of its 

morphological traits that confer drought tolerance. Sorghum has unique root traits that help 

establishment and resiliency during drought. These traits include the formation of a root system 

prior to rapid aboveground growth, an extensive secondary root system, and silica deposits in 

the endodermis of roots that prevents structural collapse under drought stress. Additionally, 

sorghum leaves have a waxy coating that can curl inward, reducing evapotranspiration during 

drought conditions but can resume growth when conditions improve [16]. 

1.3. Salt-Affected Soils 

Salt stress can have a significant impact on plant growth. For example, it can inhibit net 

photosynthesis, metabolism, and protein synthesis. Only a limited number of plants can thrive, 

or even survive, in saline or sodic soils, also know a salt-affected soils. However, when salt-

tolerant sorghum detects salt stress, cascades of endogenous hormones are initiated provoking 

numerous salt-stress responses [21]. These hormones can restrict the transport of sodium from 

the roots to the aboveground plant matter and allows maintenance of photosynthetic efficiency 

and accumulation of sucrose. Sorghum’s tolerance to salt, multiple uses, and low input 

requirements are characteristics that make it an attractive alternative to other cereal grain crops 

that have much higher resource demands (e.g., rice, corn).   

Salt-affected soils, which include saline soils, sodic soils, and saline-sodic soils, are 

among the most significant abiotic factors negatively impacting agricultural production and food 

security in arid and semi-arid regions [21]. Sources of salt can be naturally occurring through 
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saline groundwater, soluble complexes in rain water, eolian deposition, and weathering of saline 

parent material. They can also be anthropogenically created through the mismanagement of 

irrigation production systems [22].  

In regions with greater precipitation, salts are often leached out of the soil profile, 

however, in arid climates where there are greater evaporative losses, salts will either leach very 

slowly or accumulate within the soil profile [23]. The impact of salinization, or the accumulation 

of water-soluble salts in soil, is projected to increase with climate change, co-occurring with more 

extreme variation in weather patterns [1,24]. Therefore, there is an impetus to manage salt-

affected soils by selecting for drought-tolerant crops, which is an objective of this thesis.  

Soluble salts include sodium, calcium, magnesium, chlorine, sulphate, and bicarbonate 

(i.e., Na+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-), which can impact microbial activity, chemical 

properties, and physical structure, inhibiting seed germination, plant growth, and yield [25]. 

Saline, sodic, and saline-sodic soils are most commonly differentiated using the following 

metrics: pH of saturated soil paste, exchangeable sodium percentage (ESP), sodium adsorption 

ratio (SAR), and electrical conductivity (ECe) [26-28]. Exchangeable sodium percentage is the 

fraction of adsorbed sodium on the soil exchange sites, where ESP is expressed as a percentage, 

(Equation 1); an ESP value above 15 percent is indicative of sodic soil. The sodium adsorption 

ratio quantifies the relationship between sodium and divalent cations (i.e., calcium and 

magnesium), in a water extract (Equation 2); a SAR value above 13 is another indicator of 

sodicity. 

𝐸𝑆𝑃 =
𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑆𝑜𝑑𝑖𝑢𝑚

𝐶𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
∗ 100 (1) 

𝑆𝐴𝑅 =
𝑁𝑎+

(𝐶𝑎2++𝑀𝑔2+)0.5 (2)
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Table 1.1.  Differentiation of the types of salt-affected soils by chemical composition. 

Salt-affected 

Soil Type 

Sodium 

Adsorption Ratio 

(SAR) 

Exchangeable 

Sodium Percentage 

(ESP) 

Electrical 

Conductivity 

(dS m-1) 

Soil pH 

Saline < 13 ≤ 15% > 4 < 8.5 

Sodic ≥ 13 ≥ 15% < 4 > 8.5

Saline-Sodic ≥ 13 ≥ 15% > 4 < 8.5 

Soils are considered saline if they have ECe values above 4dS m-1, whereas sodic soils 

tend to have an ECe below 4dS m-1. Plant water uptake is inhibited by salt and solutes in the soil 

solution that lowers the water potential making it more difficult for plant roots to retrieve water 

from the soil. Often plants will also uptake some sodium along with water, and excessive ion 

uptake over time causes toxicity in the plant tissue [29].   

Sodic soils or Solonetz soils (European & FAO classification system) typically have pH 

values at or above 8.5 and contain high relative proportions of sodium, which reduces nutrient 

availability to plants [30]. With sodium saturation greater than 15 percent and in the presence of 

fresh water, the high proportions of sodium and potassium cations and low proportion of 

divalent salts can cause clay particles to disperse and soil aggregates to collapse. As a result, wet 

soils have a jelly-like consistency, and when dry, may exhibit surface cracking [31]. A lack of soil 

aggregates affects drainage, induces hard setting, can cause soil surface sealing, and restricts 

water and oxygen movement, which can suffocate plant roots [32].  

1.3.1.  Remediation Practices for Salt-Affected Soils 

Saline soils can be reclaimed by removing salts through leaching. There are three general 

management strategies for removing salts: 1) Leaching salts from the root zone by irrigating 

beyond what is needed by a plant; 2) Installation of belowground drains to move leachate out of 
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the root zone in a controlled manner; and 3) Leaching salts to another area in an irrigated field 

that does not impact plant growth [33].  

Leaching salts, however, can induce other issues for crop production, such as the 

leaching of desired nutrients and pesticides, which could also risk contaminating surface or 

groundwater resources. Water quality is an important consideration when remediating for 

salinity; poor water quality can exacerbate salt accumulation in soils, particularly in arid climates 

where evaporation exceeds precipitation [34].  

Sodic soils often have poor physical structure and drainage resulting from the 

deflocculation of clay particles, and therefore, often need amendments to restore aggregation. 

The objective of using amendments is to replace sodium with calcium and leach out the excess 

sodium. Typically gypsum (CaSO4) is used as a source of Ca because it is easily soluble at high 

pH. If limestone or, calcium carbonate, is present in the soil, the addition of sulfur can lower the 

pH making the calcium from the lime available. Two basic management strategies are used to 

remediate sodic soils for crop production: 1) Change crop to a more sodium tolerant species, 

variety or genotype; and 2) Change the soil conditions with addition of amendments followed by 

leaching with increased irrigation to remove excess Na [33].  

For many rural farmers remediating salt-affected soils with irrigation or amendments is 

often unfeasible, especially for those living in developing nations and relying on rain-fed 

agriculture. In the global drylands many farmers are without resources to accommodate the scale 

or significant time requirements for soil remediation [35,36]. An often more affordable and 

available alternative is changing crops to a variety or genotype that is more tolerant of salt, 

which, through careful management, can become vegetative bioremediation, a practice used in 

conservation agriculture [37,38]. Molecular breeding programs are important for developing 

cultivars capable 
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of growing under a variety of these edaphic conditions and has the potential to assist many 

disadvantaged people living in drylands.  

1.4.  Emerging Technologies for High-Throughput Phenotyping 

In the coming decades, population growth and loss of arable land to climate change, 

pollution, and soil degradation are projected to exponentially increase global issues of food 

insecurity if not addressed [39]. Crop breeding programs that cultivate genotypes capable of 

producing higher yields under abiotic and edaphic stress are crucial for addressing these issues. 

High-throughput crop phenotyping is a process or method used by molecular breeding 

programs to rapidly select visible crop traits and train predictive genomic selection models [40]. 

However, efficient and affordable collection of fine-grained and high-quality data over 

geographically large agricultural fields remains challenging [41].  

Emerging technologies such as the terrestrial laser scanning and ground penetrating 

radar can be used effectively for high-throughput data collection by crop breeders, as they offer 

high accuracy and precision [42-44]. Furthermore, these technologies are a quantitative and non-

destructive approach to monitoring crop health and physiology through remote sensing [45].  

1.4.1.  Terrestrial Laser Scanning Technology 

Terrestrial laser scanning, also known as ground-based LiDAR (light detection-and-

ranging), is a type of active remote sensing that emits energy in the form of electromagnetic 

radiation (EMR) from the sensor to detect objects and materials in the surrounding environment 

[46]. There are two distinct types of TLS ranging systems: pulse-based or time-of-flight (TOF) and 

phase-shift [47].  
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Time-of-flight TLS is the most common type and consists of a laser transmitter that emits 

pulses of EMR in the visible or near infrared wavelength, a receiver channel, amplifiers, an 

automatic gain control, and timing discriminators. The emitted EMR pulse triggers a time 

interval measurement unit that records the time it takes for that pulse of EMR to travel to a 

target, reflect off the surface of that target, and be intercepted by the sensor. A single pulse is 

used for the unequivocal determination of range which is half of the round-trip distance and time 

traveled by the emitted photons. Equation 3 shows the basic range calculation for TOF sensors.  

d = [c  * t] / 2 (3) 

Where, c = speed of light, and t = time.  

Phase-shift ranging uses interferometry where a specific wavelength of EMR is 

continuously emitted, but power is modulated at a constant frequency (phase), and the fraction 

of the whole wavelength returned is recorded. The scanner uses phase-shift algorithms to 

determine distance to an object, these are based on the unique properties of each individual 

phase, which calculate distance as a fraction of the modulated signal’s wavelength.  

Between pulse-based TLS and phase-based TLS, one main tradeoff is between the speed 

of acquisition and dynamic range. Time-of-flight systems often have longer scanning times since 

they initiate the EMR pulse only after the previous one is received. However, TOF systems 

typically offer greater scanning distance ranges than phase-shift systems. Phase-shift systems can 

be very precise, with ranging errors in the order of a few millimeters, but have much higher 

energy requirements. Thus, phase-based ranging is more often used for short-range scanning.  
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Both types of TLS have the capacity to collect three-dimensional structural data of 

targeted objects, a feature unique to this type of remote sensing [48]. Multiple scans of the same 

object or target, collected at different positions around the target, are registered together to create 

three-dimensional point clouds; this is a principal of structure from motion [41]. The high 

accuracy of TLS data allows measurements to be taken from the direct manipulation of three-

dimensional point clouds and enables users to detect changes in spatial data sets over time [49].   

1.4.2.  TLS-Based Aboveground Crop Phenotyping 

Most environmental applications of LiDAR to date have been in forestry, where it has 

been used to derive forest traits such as leaf area, tree height, diameter-at-breast-height, tree 

density, crown area, and biomass estimates of individual trees [47,48,50]. However, the 

application of TLS in agriculture studies is a relatively recent development. Now, TLS technology 

is being used to quantify agricultural parameters, such as plant height, three-dimensional 

structure, aboveground biomass, panicle density, and for predicting yield [50-53]. Depending on 

the wavelength of the EMR emitted by the TLS, other physiological characteristics and health 

metrics can be generated, such as plant water stress, leaf nitrogen status, and plant pigments such 

as chlorophyll a and b, and xanthophylls [54,55].  

Most recently, TLS in conjunction with machine learning algorithms has been used to 

identify individual plants. TLS and adaptive learning technologies have been used to estimate the 

number of wheat tillers and has shown promising results at capturing phenology, though, results 

generally under estimated number of tillers due to occlusion issues [56]. However, manually 

counting tillers is incredibly labor intensive, often infeasible, and results are arguably subjective; 
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having a technology to automate this process can save an innumerable amount of time and 

resources, and has the potential to reduce human error.  

Machine learning processes are also being used to identify individual panicles for 

improved yield estimates and for determining leaf base and inclination angles, leaf area, and 

stem diameter [57,58]. Using TLS technology, cultivars developed in crop breeding programs can 

be studied with enough spatial and temporal resolution to isolate specific physiological and 

agronomic traits of significance, for example, those adapted to abiotic stressors.   

1.4.3.  Ground Penetrating Radar Technology 

Ground penetrating radar (GPR) uses RADAR technology and has applications in a wide 

array of scientific fields such as geology, soil science, archaeology, mining, biogeochemistry, and 

civil engineering. Pulses of EMR in the microwave range are emitted from the GPR transmitter to 

the subsurface, where the signal is either absorbed, scattered, or reflected off buried objects or 

substrates, and then detected by a receiver. The reflected energy returns are transformed into 

amplitude and a two-way travel time, from which substrate composition and depth can be 

determined. In general, lower frequencies are able to penetrate deeper belowground but have 

lower resolution than higher frequencies, which do not penetrate as deep but have higher 

resolution.  

Electromagnetic properties such as ECe, magnetic permeability, dielectric permittivity, or 

relative permittivity (Ɛr), are important when trying to identify belowground objects [59]. 

Essentially, GPR is capable of detecting an object when there is a difference between the 

electromagnetic properties of the object and the soil. The relative permittivity of the soil is of 

great importance when determining effectiveness of the GPR signal for “seeing” belowground 
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(see Equation 4). Relative permittivity is the resistance of a material to an electrical field, where Ɛr 

impacts the propagation of the electromagnetic signal from the GPR. 

Ɛr = (c/V)2 (4) 

Where c = speed of light, V = velocity of a given wavelength, and Ɛr  = relative permittivity 

1.4.4. GPR and Saline-Sodic Soil Conditions 

The use of GPR is limited in soils with higher ECe and higher Ɛr, these include soils with 

relatively higher clay contents and high volumetric water content. Such soils restrict the depth of 

signal penetration, return response, and signal resolution, and may cause signal scattering or 

attenuation. However, results can vary based on the frequency used [60], consequently, the use of 

GPR in salt-affected soil is limited [61,62]. Only a few studies have used GPR as a means to detect 

soil properties such as volumetric water content [59] and soil salinity, and none of these studies 

had the added objective of subsurface object detection [63,64]. We hypothesize that the GPR 

return signal for the 400MHz and 900MHz frequencies will vary linearly with the gradient of 

salinity in the treatment plot.   

1.4.5.  GPR-Based Belowground Root Phenotyping 

Understanding crop root dynamics is necessary for optimizing agricultural production 

because crop roots anchor the plant and absorb the water and nutrients necessary for plant 

growth and grain production. Crop breeders want to understand the ability of a genotype’s roots 

to adapt to selective pressures in order to develop cultivars with traits for specific growing 

environments [65]. In crop breeding programs, both above- and belowground phenotyping is 

used to train prediction models, identify genetic markers for later selection, and to study gene-
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environment interactions. Crop phenotyping requires direct measurements of phenotypic traits 

of interest, however, measurements of root traits is limited by the current means of directly study 

roots that are often destructive or limited to greenhouse environments [66].  

In-situ observation and monitoring of root growth is needed in crop breeding and can 

improve resource management and our knowledge of terrestrial biogeochemical cycling. 

However, this often requires removing roots from the ground and the destruction of the plant. 

Improved methods for root phenotyping involve a non-destructive iterative approach to allow 

crop breeders to track the belowground phenology of individual plants through time; this is 

otherwise not possible with destructive sampling. Non-destructive detection of Sorghum bicolor 

root phenology with GPR has not yet been attempted; other non-destructive technologies for root 

monitoring, such as a mini-rhizotron and X-ray, have been used. However, these methods 

provide only point-based data collection method [43]. This poses a challenge in interpolating 

point data to a plot-wide or field scale, given the spatial and temporal variation of soil conditions 

even in an agricultural field.  

Currently, there is a lack of access to root phenotyping techniques that can quantify traits 

related to growth and yield. Most phenotyping is done through visual assessment by experts, 

which is time consuming and destructive, thereby limiting data collection potential for molecular 

breeding programs [67]. However, roots usually have a higher water content than the 

surrounding bulk soil, allowing GPR to detect a wide variety of physical root attributes, such as 

root depth, root mass, and root architecture [66].  

Ground penetrating radar is a way to capture real-time, continuous data on root 

phenology in field conditions and can support molecular breeding programs aimed at 

developing cultivars adapted to specific environmental stressors. The potential for high-quality, 
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high-accuracy, high-throughput data collection with emerging technologies can be applied to 

crop breeding programs and precision agriculture, which is an important step toward improving 

yield and resiliency under abiotic and edaphic stress while also using fewer resources.  

Consequently, the goals of this study were to develop salt tolerant cultivars of Sorghum 

bicolor for northern Nevada producers. This study was a genome-wide association study, of five 

of the approximately 400 sorghum genotypes in the Sorghum Association Panel, to identify 

genetic tolerances to salt stress. In this study I use TLS and GPR technologies to track the above- 

and belowground phenology of five genotypes of sorghum in a gradient of highly saline-sodic 

soil in a treatment plot, and in a control plot. I asked how a salinity gradient affects above- and 

belowground phenology of individual genotypes and which genotypes are more tolerant to this 

stressor. Additionally, I ask whether GPR can detect root mass in highly saline-sodic soil and if 

an observable difference in root response can be detected between salinity treatments and the 

control plot.  

In this study I expected a difference in above- and belowground phenology of the five 

genotypes between the both the treatment and control plots. I expected individual genotypes to 

be affected differently by the gradient of soil characteristics in addition to salinity. I expected the 

GPR return signal to vary with the salinity gradient in the treatment plot. Finally, I expected an 

increase in belowground biomass in response to salt-stress, relative to the control plot.  
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Tracking the above- and belowground phenology 

and physiological response of Sorghum bicolor to 

highly saline-sodic soils using lidar and radar 
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Abstract: Saline and sodic soils are major abiotic stressors on the production of flood-irrigated 

crops in drylands. I conducted a crop phenotyping, remote sensing study on five genotypes of 

sorghum [Sorghum bicolor (L.) Moench], a drought and salt-tolerant crop, to assist in the 

molecular breeding of salt-tolerant cultivars. A control plot and a spatially heterogeneous saline-

sodic treatment plot were established in Fallon, Nevada. The phenology of three-dimensional 

root mass from pre-planting to harvest was measured throughout the growing season using the 

16-bit amplitude reflection values of the top 20cm of soil radargram from a dual-frequency

(400MHz and 900MHz) ground penetrating radar system (GPR). The three-dimensional above-
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ground plant structural phenology of the five genotypes was measured using a terrestrial laser 

scanner (TLS). Both GPR frequencies at 400MHz and 900MHz were able to detect root mass 

phenology in the control plot, with 900MHz providing greater detail for the amplitude measures.  

The GPR was able to detect changes in amplitude relative to a saline-sodic gradient that may 

have been due to changes in root mass phenology in the treatment plot. Of the four out of five 

genotypes that emerged, we found distinct variations in aboveground phenology in response to a 

salinity gradient. Overall, Richardson Seed’s Ultra-Early Hybrid performed the best under the 

gradient of salinity with the highest rate of crop emergence (68% of expected), highest ratio of 

panicles to sorghum plants across all treatments (0.21 in medium-low, 0.88 in medium, and 0.54 

in medium-high), and the greatest panicle volume (67.2%) relative to the control plot. This study 

found that TLS-measured height in the treatment plot for each of the four emerged genotypes 

was significantly influenced by different soil constituents, particularly pH, boron, HCO3, and 

CO3.  

Keywords: crop phenotyping; genotype; GPR; TLS 
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2.1. Introduction 

Drylands occupy 41.3 percent of the world’s land area and are home to 2.1 billion people, 

many of whom are critically poor [1,2]. They are characterized by climates where mean annual 

evapotranspiration exceeds mean annual precipitation, high temperatures, and often the presence 

of salt-affected soils [3-5]. These regions are often viewed as less productive, however, they 

contribute 44 percent of the global crop production and have been valued at $18 Trillion in 

ecosystem services [6].  

Increasing temperatures, increasing aridity, and variable precipitation due to climate 

change are causing dryland expansion worldwide [7-9]. Furthermore, these climactic changes are 

causing an increase in salinization that is impacting irrigated agriculture. Salt-affected soils 

account for 20 percent of irrigated land globally and cause the removal of 0.3Mha to 1.5Mha of 

farmland from production each year [10]. As a result, annual rates of crop production do not keep 

up with the growing global demand for grain from a population predicted to reach 10.9 billion 

people by 2050 [11].  

The combined pressures of increasing grain demand from a growing population, 

expanding drylands and variable climate, and greater demand on finite resources used in 

agriculture (i.e., arable land, water, and water quality sufficient for irrigation), threaten global 

food security [5]. Small farmers and rural communities are at a particular disadvantage, as they 

are often without the resources to mitigate soil salinization and lack access to sufficient irrigation 

water (7-9,10]. A solution to these pertinent global issues of food security is breeding cereal crops 

adapted to these abiotic and edaphic conditions, such as the grain Sorghum bicolor [12].  

Sorghum bicolor is the fifth most grown cereal grain across the world; it is widely planted 

across drylands due to its higher tolerance to drought, heat, and salt-affected soils relative to 
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other cereal crops such as maize, rice, wheat, and barley [13]. This cereal grain was cultivated 

from wild sorghum between 8,000-4,000BCE and has since been selectively bread to develop a 

variety of cultivars [14,15]. The practices of selecting specific traits, such as leaf area index, 

biomass, yield, root depth, time to maturity, and linking those to known genetic markers is 

molecular breeding [12,16,17]. Molecular breeding selects specific genetic traits in various 

genotypes that respond best to an environmental condition, such as salt-affected soils, in order to 

develop cultivar varieties. These cultivars are ideally optimized to tolerate salt-affected soils and 

use fewer resource inputs, while still providing a substantial grain yield. It is therefore vitally 

important to support molecular breeding with improved methods for efficient data collection to 

develop sorghum cultivars specifically adapted to the abiotic stressors common in drylands. 

Sodicity can cause clay particles to dissociate in solution, preventing aggregation in the 

soil column and leading to the development of an impermeable layer [18]. This can cause surface 

crusting and hard setting, resulting in shallow root penetration, inhibited germination, limited 

emergence, runoff, erosion, and difficulty in tilling or sowing. Soluble salts in soil inhibit plant 

water uptake by reducing the osmotic potential of the soil solution relative to that inside the plant 

root, thereby limiting the effective supply of water to the plant roots. Water absorbed by the plant 

carries salt ions that over time cause toxicity in plant tissue, negatively impacting net 

photosynthesis, metabolism, and protein synthesis [19].  

Salt-affected soils include saline, sodic, and the combined saline-sodic soils, with 

common soluble salts including Na+, Ca2+, Mg2+, Cl-, SO42-, and HCO3- [20]. Sodic soils have a high 

percentage of absorbed Na+ ions that cause structural and hydraulic properties of the soil to 

deteriorate. Both the sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), 

electrical conductivity (ECe), and pH of saturated soil paste are used to measure the salinity and 
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sodicity of soils [21]. An ESP above 15 percent and a SAR above 13 percent are indicative of sodic 

or saline-sodic soils. A pH between 7 and 8.5 is common in saline-sodic soils, while a pH above 

8.5 is common in sodic soils. Saline and saline-sodic soils characteristically have ECe values above 

4dS m-1, whereas sodic soils are often characterized by ECe values below 4dS m-1 [22,23].  

For many rural dryland farmers across the world, remediating salt-affected soils is 

unfeasible [24,25]. Saline soils can only be remediated by leaching salts out of the soil profile, 

which requires irrigation water of good quality and low solute content. However, leaching can 

incur secondary issues that could potentially impact groundwater and surface water quality with 

high solute leachate. Remediation of sodic soils requires adequate Ca2+ to exchange for the excess 

Na+ at the rooting zone, this is typically achieved through the addition of chemical amendments, 

with gypsum being the most commonly used. Another option for mitigating the effects of salt is 

vegetal bioremediation, where root respiration produces CO2, releasing H+ ions that cause Ca2+ to 

disassociate from CaCO3-, thus reducing soil sodicity. Vegetal bioremediation also improves 

infiltration, aggregate formation, and carbon sequestration [3]. However, vegetative 

bioremediation is often used in conjunction with other agronomic techniques to remove or 

reduce salts.  

Some crops are better adapted to salt stress and possess mechanisms that help regulate 

water uptake, Na+ exclusion, and Na+ tissue tolerance; sorghum [Sorghum bicolor (L) Moench] is 

one of the most salt, heat, and drought tolerant cereal crops that is widely grown [26]. Vegetal 

bioremediation with Sordan, a kind of sorghum crop tolerant to saline and sodic conditions has 

been suggested [27]. It is important to utilize crop management, soil remediation, and irrigation 

strategies that fit the unique local environmental, political, and economic conditions of each 
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community. With further breeding, sorghum may have both a viable economic value as a cereal 

crop and as a plant used for bioremediation. 

To develop salt-tolerant cultivars, it is important to identify and understand the genes 

responsible for these mechanisms. Molecular breeding programs seek to improve traits of interest 

through genomics, where genes associated with traits of interest are identified and tracked 

throughout the growth of the plant, through a process called crop phenotyping. It has been 

shown that salt tolerance is an “inheritable and quantitative trait” [28]. Crop breeders compare 

genotype phenotypic traits, such as leaf area index, average height, biomass, panicle density, root 

depth, and root mass as responses to various growing conditions. There is a lack of 

understanding salt-stress on sorghum at various stages of growth. High-throughput, high-

resolution remote sensing technologies used in crop breeding can potentially address this 

problem. Remote sensing technologies can be used to study the physiological traits of cultivars 

developed in crop breeding programs, enabling the isolation of specific physiological and 

agronomic traits of significance, especially those adapted to abiotic stressors [10].  

Currently, most phenotyping for molecular breeding purposes relies on visual 

assessment by experts and physical data collection, which can be highly labor-intensive and can 

introduce bias into data [29]. A lack of access to high-throughput phenotyping techniques to 

quantify traits related to gene-environment interactions hinders molecular breeding. High-

throughput crop phenotyping is needed to select and train predictive models in genomic 

selection used in molecular breeding programs [29]. Emerging technologies such as GPR and TLS 

have the potential to be useful methods for non-destructively collecting high-resolution spatial 

and temporal crop data. These technologies highlight the growing importance of novel 
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applications of technology and non-destructive approaches to monitoring crop health and 

physiology.  

Terrestrial laser scanning is a ground-based LiDAR (light detection and ranging) system 

capable of collecting highly accurate three-dimensional structural data, a feature unique to this 

type of remote sensing technology [30]. Terrestrial LiDAR was initially used to estimate biomass 

and gather structural information of forests, more recently TLS has been applied in agricultural 

studies, primarily to estimate aboveground biomass and to measure plant growth as a metric for 

plant health [31,32]. Depending on the wavelength of the TLS, other physiological characteristics 

and health metrics can be generated, such as plant water stress, leaf area index, leaf angle, panicle 

density, and rates of photosynthesis. Recently, TLS was used to estimate the number of tillers in a 

plot of wheat by using machine learning algorithms [33]. The development of technology for 

collecting these growth metrics is highly attractive, as manual measurements are tedious and 

expensive. 

Understanding root dynamics is critical for agricultural production, resource management, 

and terrestrial biogeochemical cycling, making it significant for crop phenotyping. Destructive 

root sampling (i.e., digging up roots) is the most commonly used method for collecting root data, 

however, there are other non-destructive techniques such as minirhizotron and X-ray imaging 

technologies to collect in situ data [34]. Ground penetrating radar has been used in root 

characterization studies, but on a limited basis and has only in a few cases been used iteratively 

in a crop phenotyping study [35,36]. There is an increasing need for more root characterization 

studies in arid agriculture, which necessitates the expanded use of multiple frequencies in GPR 

applications [36]. However, GPR use is limited by soils with higher electrical conductivity, high 

clay contents, and high volumetric water contents. Soils such as these limit the depth of signal 
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and the return response. Doolittle et al. (2009) published a GPR soil suitability map of the 

conterminous United States which qualified saline and sodic soils as “unsuitable”[37]. To date, 

very little research exists on the use of GPR in saline or sodic soil conditions or for detection of 

pore water quality.  

Consequently, in this crop phenotyping study, I used TLS and GPR, both active remote 

sensing technologies, to monitor above- and belowground traits of five of more than 400 

genotypes of sorghum [Sorghum bicolor (L.) Moench] from the Sorghum Association Panel. These 

genotypes were planted in heterogeneous highly saline-sodic soil. My goals in this study were to 

quantitatively track the crop phenology of each of the five sorghum genotypes as they responded 

to different levels of sodicity and salinity and to test the efficacy of these technologies for high-

throughput crop phenotyping. The aim was to determine which genotypes showed tolerance to 

salt stress and how these observable traits related to soil characteristics. Additionally, I wanted to 

use GPR in highly saline-sodic soil to test its ability to detect root mass over two frequencies 

(400MHz and 900MHz) and determine its effectiveness as a predictive tool for assessing soil 

characteristics such as salinity, sodicity, SAR, ESP, and cation exchange capacity. Based on the 

literature [36,38], I expected no detection of belowground characteristics of three-dimensional 

structure, phenology, and biomass using GPR under saline and sodic soil conditions, but I 

expected to detect changes in belowground structure, phenology, and biomass within the control 

plot. Moreover, I expected to detect significant differences in aboveground three-dimensional 

characteristics between the genotypes and between the sodic and saline soil treatments in the 

treatment plot using TLS technology.  

2.2. Materials and Methods 
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2.2.1. Study Area 

This paired plot experiment established a control plot (39˚27’24.79” North, 118˚46’39.23” 

West) and a treatment plot (39˚27’15.89” North, 118˚46’27.51” West). The study area was located 

at the United States Department of Agriculture Great Basin Plant Materials Center (USDA-

GBPMC) at the University of Nevada, Reno’s (UNR) experiment station, the Fallon Research 

Center (FRC) in Fallon, Nevada (Figure 2.1). The FRC was established in 1906 to conduct research 

on crop rotation, alkali salt toxicity, and alkali soil reclamation. The treatment plot was in a field 

that had traditionally suffered from high alkalinity that was managed by the USDA-GBPMC.  

Figure 2.1. (a) Study location of the UNR FRC in Fallon, Nevada; (b) Treatment plot in June of 

2020, one week prior to planting; (c) Control plot in June of 2020, one week prior to planting.  
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The treatment plot soil type consisted of coarse-loamy, mixed, superactive, non-acidic, 

mesic, oxyaquic torrifluvent [39]; soil texture was generally very fine sandy loam. The control 

plot was comprised of sandy, mixed, mesic, oxyaquic torrifluvent soil type, which is qualified as 

being prime farmland if irrigated and if factors such as soil erodibility and climate are within 

reasonable levels [39]; soil texture was generally loamy sand. These soil types are of the Entisol 

soil order and are typically found on historic stream terraces, which have parent material derived 

from various upgradient sources that are deposited during periodic flood events. The ecological 

site description of the treatment plot soil is a sodic flat (R027XY025NV – SODIC FLAT), but has 

the potential to be prime farmland if irrigated and reclaimed of excess salts [39]. Both plots have 

similar mean annual precipitation (10-15cm) and similar frost-free periods (120-140 days).  

2.2.2. Trait Response to Various Soil Constituents 

This study also wanted to investigate how other soil variables related to measures of 

salinity and sodicity and how these relationships impacted aboveground sorghum growth. 

Eleven soil variables were sampled across a grid in the treatment plot. These soil data were 

interpolated to a 2mm grid size across the treatment plot. 

The control plot dimensions were 8.52m x 4.57m with five replications of one-meter rows, 

where each genotype was planted once in each replication, totaling 25 one-meter rows. Spacing 

between rows was 76cm, a common width for agriculture and wide enough to push the GPR 

through the rows (Figure 2.2). Prior to planting a single soil sample was collected in the center of 

the control plot by homogenizing four soil cores from the top 30.5cm creating a single “top soil” 

sample to confirm that the soil conditions were appropriate for a control plot. Additionally, TLS 
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target and scan positions were established at the control plot corners and mirrored in the adjacent 

unplanted field to the east.  

Figure 2.2. Layout of the control plot in Fallon, Nevada, with five repetitions of the five 

genotypes totaling 25 one-meter rows. The locations of the soil samples taken following harvest 

and their associated salinity concentrations, in millimolar units, are provided in the rectangles.  

The treatment plot dimensions were 15.24m x 9.14m, where prior to planting soil samples 

were collected in a grid pattern across the plot. At each sampling point four soil cores from the 

top 30.5cm were collected and homogenized to create a single “top soil” sample. As a result, 15 

individual replication blocks were created inside the soil sampling grid (Figure 2.3). Each 

replication was given a salinity treatment level based on the mean ECe calculated by averaging 

the four corners. There were four salinity treatment ranges: medium-low (8.0-9.0dS m-1), medium 
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(10.0-11.0dS m-1), medium-high (12.0-13.0dS m-1), and high (14.5-15.5dS m-1). There were two 

medium-low replications, seven medium replications, three medium-high replications, and three 

high replications. The four treatment levels were intended to identify each genotype’s level of 

tolerance to salinity; all treatment levels were considerably higher than sorghum’s believed 

tolerance for survival [40]. All five genotypes were planted once in each replication, in one-meter 

rows, spaced 76cm apart, with an unplanted row called “n/a” in Figure 2.3. Additionally, TLS 

target and scan locations were established at each of the treatment plot corners.  
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Figure 2.3. The layout of the treatment plot in Fallon, Nevada, which includes 15 replications of 

the five genotypes, totaling 75 one-meter rows; “n/a” represents locations where no genotypes 

were planted. Each replication is set up within a block design where all five genotypes are 

planted within each block. Furthermore, each bock has relative salinity levels of medium-low, 

medium, medium-high, and high. Salinity levels were determined from pre-planting soil 

sampling. Salinity concentrations from the outside four corners of each block were averaged to 

get the relative salinity levels; salinity concentrations are provided in millimolar units for each 

sampling location across the treatment plot.  

Both the control plot and treatment plot were flood irrigated with approximately 30.5cm 

of water every week until the sorghum plants reached full seed maturity. Water was supplied by 
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the Truckee-Carson Irrigation District through a network of surface irrigation ditches. Irrigation 

water was sourced from the Truckee River, with a diversion at the Derby Dam approximately 

32km downstream of Reno, Nevada, then conveyed to the Lahontan Reservoir, and distributed 

through open channels for irrigation purposes. Water quality data for the control and treatment 

plots were not available, however, it was assumed to be similar or identical at the irrigation 

ditches, based on the close proximity of the two plots to each other. Following harvest, soil 

samples were collected in the treatment plot at the pre-planting sampling locations as a check on 

irrigation water quality. Similarly, soil samples were collected in a grid pattern across the control 

plot (12 total) to check irrigation water quality and confirm the soil composition was indeed 

appropriate for a control.  

Aluminum flashing (5cm x 20cm strips) was buried at 15cm, 30cm, and 60cm depths 

within both the control and treatment plot at georeferenced locations. These were intended to be 

used as calibration for the GPR signal velocity.  

2.2.3. Planting 

Five separate genotypes of sorghum were selected from the Sorghum Association Panel, 

these included PI-533752, PI-533912, PI-533936, Richardson Seed’s Ultra-Early Hybrid 

(Richardson), and S&W Seed Company Sordan 79 (S&W Seed). These specific genotypes were 

chosen based on their likelihood to be salt tolerant, which was evidenced by previous field work. 

Both plots utilized conventional agronomic practices for grain sorghum production. The seed 

beds were laser-leveled to ensure even coverage for flood irrigation. Soil preparation involved 

using a moldboard plow, which cuts soil and partially overturns the soil to allow for the 

application of soil amendments and planting of seed. Each one-meter row in the control plot and 
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treatment plot was hand planted with the five genotypes of sorghum. The rows were thinned 

throughout the growing season, as needed, to keep 8cm spacing between individual plants. 

Given the 8cm spacing parameter, the estimated maximum number of plants that could occupy a 

one-meter row is approximately 14 plants. 

The treatment plot had a mean pH of 9.3, which required the addition of elemental 

Sulphur to be added prior to planting, to bring the pH down to 7.5 to facilitate sorghum growth. 

Other soil nutrients such as calcium (Ca), nitrogen (N), phosphorus (P), and potassium (K) were 

found to be within acceptable ranges for sorghum cultivation. 

The control plot was divided into five replications running east to west, where each of 

the five sorghum genotypes were planted in each replication following a randomized 

experimental design (Figure 2.4). The five sorghum genotypes were planted within each of the 

replication blocks in the treatment plot in a randomized order (Figure 2.5). 

Figure 2.4. Distribution of the five genotypes in the control plot, where each replication is 

outlined in black. In the replication farthest to the south genotype PI-533912 was inadvertently 

planted twice in place of genotype PI-533936. 
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Figure 2.5. The distribution of the five genotypes in the treatment plot where each treatment 

block is outlined in black and color-coded by level; medium-low is yellow, medium is light blue, 

medium-high is blue, and high is dark blue. Genotypes were planted in one-meter row that ran 

from east to west. However, here it is oriented to the north for easier viewing.   

2.2.4. TLS and GPR Field Sampling 

Throughout the growing season, data collection was conducted once each week until 

sorghum reached maturity, then every two weeks until harvest. Throughout the growing season 

TLS data collection was conducted 15 times and GPR data collection was conducted 16 times in 

both the control and treatment plots (Table 2.1). During these data collection sessions both above- 

and belowground data were gathered, however, there were some instances where the control 

plot and treatment plot scans had to be collected on different days of the same week.  
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Table 2.1. Schedule of data collection for the control and treatment plot in Fallon, Nevada using 

the TLS and GPR for the control plot and treatment plot. Except where noted, TLS and GPR scans 

were collected simultaneously at each plot. RMSE = root mean square error of registration.  

Control Plot 

Number of TLS 

Scans 

(RMSE) 

Treatment Plot 

Number of TLS 

Scans 

(RMSE) 

May 26, 2020 4x (2.0mm) May 27, 2020 3x (2.1mm) 

June 6, 2020 4x (2.1mm) June 8, 2020 3x (2.1mm) 

June 8, 2020 4x (2.7mm) June 18, 2020 3x (1.7mm) 

June 15, 2020 5x (4.2mm) June 25, 2020 3x (1.7mm) 

June 25, 2020 5x (5.0mm) July 2, 2020 3x (1.9mm) 

July 2, 2020 5x (5.0mm) July 16, 2020 3x (2.0mm) 

July 9, 2020 5x (3.9mm) July 22, 2020 4x (3.9mm) 

July 16, 2020 5x (5.8mm) Aug. 6, 2020 4x (2.7mm) 

July 22, 2020 5x (7.1mm) Aug. 12, 2020 4x (2.0mm) 

Aug. 6, 2020 7x (8.0mm) Aug. 18, 2020 4x (2.6mm) 

Aug. 12, 2020 7x (5.9mm) Aug. 26, 2020 4x (2.3mm) 

Aug. 18, 2020 7x (5.5mm) Sept. 2, 2020 4x (2.9mm) 

Sept. 16, 2020 5x (5.3mm) Sept. 16, 2020 4x (3.9mm) 

Sept. 30, 2020 5x (6.0mm) Sept. 30, 2020 4x (4.2mm) 

Oct. 14, 2020 5x (4.7mm) Oct. 14, 2020 4x (3.2mm) 

Nov. 5, 2020 
*Only GPR Scan

Collected 
Nov. 5, 2020 

*Only GPR Scan

Collected 

Aboveground phenology and physiological characteristics were monitored with a 

FAROTM Focus3D X 330 (FARO) TLS (Table 2.2). The FARO TLS is a phase shift ground-based 

laser scanner that operates at 1550nm wavelength. Scans were collected from multiple angles, 360 

degrees around each plot. To facilitate accurate data processing and registration of scans, white 

spheres were placed at the corners and edges of each plot as targets. The control plot exhibited 
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significant growth throughout the season, which required more frequent scans and the use of 

additional targets to address occlusion-related issues during data processing. A total of 73 scans 

for the control plot were registered to produce 15 different point clouds and 54 total scans were 

registered to produce 15 point clouds for the treatment plot. 

Table 2.2. Equipment specifications for the FARO Focus3D X 330 terrestrial laser scanner, used in 

this study to collect aboveground phenotypic characteristics.   

TLS Parameter Scan Preset Values 

Wavelength Infra-red 1550nm 

Range 0.6m to 330m 

Scan Size (pts) 10,240 x 4,410 

Resolution (Mpts) 45.2 (1/4) 

Field-of-View Horizontal: 0.0 to 260.0 degrees 

Vertical: -60.0 to 90.0 degrees 

Beam Divergence 0.19mrad (0.011 degrees) 

Belowground root monitoring and data collection were conducted using an IDS 

GeoRadar RIS MF Hi-Mod Dual-channel (IDS GeoRadar) ground penetrating radar, which was 

equipped with a custom three-dimensional printed carriage and integrated with an Emlid Reach 

RS2 real-time-kinematic global positioning system (GPS). The OneVision software from IDS 

GeoRadar was used for data collection in the field, allowing for real-time viewing of the RADAR 

image, or rardargrams. The GPR was equipped with two antennas to transmit and receive at 

400MHz and 900MHz frequency. Polarization was adjustable and was set to horizontal 

(transmitted) and horizontal (received), or HH polarization (Table 2.3).  
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Table 2.3. The specifications of the IDS GeoRadar RIS MF Hi-Mod Dual-channel ground 

penetrating radar system that was used in this study. 

GPR Parameter Value 

Footprint 38cm x 43cm (Single antenna) 

Channels 2 (up to 8) 

Frequency 400MHz / 900MHz 

Polarization Horizontal (HH) 

Antenna Spacing 50cm 

Biomass samples were collected in both the control plot and treatment plot on October 

30th, 2020, prior to harvesting, when the plants had reached maturity and had fully dried-down in 

the field. Samples were collected where available throughout the treatment plot; samples were 

collected in each of the treatments and for the four genotypes that emerged. When possible, 

plants with seedheads were chosen for sample collection. Due to the data collection needs for 

other studies and the limited aboveground biomass that grew in the treatment plot, limited 

samples were collected. Two individual plants, both above- and belowground biomass, were 

collected for each genotype in the control plot. These biomass samples were used to validate 

remote sensing data.   

2.2.5. TLS Data Processing and Analysis 

After each data collection event, field data from the TLS individual scans were registered 

together into a single point cloud using FARO SCENE, a proprietary software [41]. Point clouds 

were exported from FARO SCENE software as LAS files, then stray points and ground points 

were removed, and genotypes were segmented by treatment in CloudCompare [42], an 

opensource software for point cloud processing (Figure 2.6 a-c). Clipping 15 point clouds and 
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25 individual one-meter rows amounted to a total of 375 aboveground analytical units for the 

control plot; 15 point clouds and 90 individual one-meter rows totaled 1,350 aboveground 

analytical units for the treatment plot. Analytical units were used to track individual genotype 

response to treatments and to capture trait phenology.   

(a) 

(b) 

Figure 2.6. (a) A colorized TLS point cloud of the control plot at maturity (September 30, 2020), 

with examples of individual panicles segmented (insets); (b) Colorized TLS point cloud of the 

treatment plot at maturity (September 30, 2020), clipped to plot-scale and panicle segmented 

(inset).  
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Clipped point clouds were rasterized in QGIS, an opensource software, to 5cm pixel size 

[43]. This pixel size was chosen as a conservative grid size, considering point cloud registration in 

FARO SCENE software had a mean point error that ranged from 1.7 to 8.0mm. The 5cm pixel 

resolution was sufficient to capture individual parts of a single sorghum plant throughout its 

growth. Rasters were georeferenced in QGIS and overlaid with a template that identified 

individual rows. This template allowed for the comparison of unique row data with below-

ground data. The resulting data was exported in comma-separated variable format and analyzed 

using RStudio [44], an open-source software. Figure 2.7 provides the general workflow for TLS 

data processing. 

Figure 2.7. Workflow diagram for TLS data processing for aboveground phenology in the control 

and treatment plots for this study.  

Other programs were tried for ground removal, these included Quick Terrain Modeler, 

Surfer, and RStudio, however, they were not as effective as CloudCompare and often removed 

five to ten centimeters of the aboveground biomass from the treatment plot. Due to the need for a 

high level of detail for continued analysis, especially in the treatment plot where aboveground 

biomass was substantially lower than the control plot, point cloud clipping in CloudCompare 

was found to be more suitable.  
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2.2.6. GPR Data Processing and Analysis 

Ground penetrating radar data collected in the field was processed using GPR-SLICE© 

software, which may have facilitated root visualization and seasonal root growth measurements. 

Georeferenced GPR data from the IDS GeoRadar unit was downloaded, but before processing, 

the raw SCAN files needed to be converted to the DT file format used by GPR-SLICE.  

Depth calibration required estimating velocity based on the known root depths observed 

during biomass collection as the aluminum flashing was not detected in GPR SLICE but was 

detectable in real-time viewing of OneVision. However, velocity estimation was only used in the 

control plot, as it had an even conductivity reading across the entire plot (approximately 

0.8dS m-1). In contrast, the treatment plot had significant changes in soil conductivity, which 

could cause apparent reflected depths to vary [45]. Consequently, only the top 20cm of the radar 

return signal was utilized for the analysis in the treatment plot.  

Within GPR-SLICE, a time zero correction was made for each scan to remove air waves 

from ground wave reflections. This was achieved by using the software option for a 15 percent 

threshold detection for the return amplitude, which was performed line-by-line for each scan. 

Subsequently, a bandpass filter was applied to select specific ranges, effectively reducing drift in 

the data. For the 900MHz frequency, a range of 450-1350MHz was used, and for the 400MHz 

frequency, a range of 200-600MHz was chosen, these were based on power spectra return 

responses. A Hilbert transform was then applied to enhance the amplitude response of root 

masses, making them more detectable when converted to a raster file format. 

 After filtering, the radargrams were sliced at an approximate depth of 30cm for the 

control plot and 20cm for the treatment plot. These depths were based from the known mean 
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root mass depth, observed during physical biomass collection. The amplitude response for each 

slice was inverse distance weighted and gridded with a small search radius, with grid cells set to 

five centimeters. The resulting gridded slices were exported from GPR-SLICE© as georeferenced 

GRD files. The return amplitude responses were further analyzed in QGIS by overlaying a 

template with the locations of each row by genotype and treatment block. The data was then 

extracted from QGIS and analyzed in R Studio for further analysis and interpretation. A general 

workflow for GPR data processing and analysis is provided in Figure 2.8.  

Figure 2.8. Workflow for GPR data processing for monitoring of root response in the control and 

treatment plots.  

Errors with the RTK GPS unit for the GPR scans resulted in the removal from analysis of 

scans one through six for the control plot and scans one through five for the treatment plot. The 

remaining 10 scans for the control plot, which were segmented by the 25 one-meter rows, totaled 

250 belowground analytical units. For the treatment plot, the remaining 11 scans were segmented 

by the 90 one-meter rows, which totaled 990 belowground analytical units.  
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2.3. Results 

2.3.1. Aboveground Phenology and Response to Treatments 

Only four of the five genotypes emerged in the treatment plot, these were: PI-533752, PI-

533912, Richardson, and S&W Seed. Additionally, there was no emergence in the high salinity 

treatment from any genotype. The aboveground height phenology of all five genotypes is 

provided in Figure 2.9, which compares the phenology of each genotype in response to the 

saline-sodic gradient to that of the control plot, as the mean of the maximum row heights.  

Figure 2.9. Plotting the treatment plot treatments next to the control plot phenology for each of 

the five genotypes, with mean height in meters on the y-axis and growing season on the x-axis. 

The 95 percent confidence interval for mean height shades the area around each growth curve. 

The height of each genotype relative to the control plot was analyzed for each treatment 

and is given as a percentage of the control plot mean height (Table 2.4). These height data were 

taken on September 30, 2020 from TLS LiDAR point clouds when all sorghum plants had reached 

either maturity or their maximum aboveground growth, some plants never reached maturity in 
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the treatment plot. A Chi-squared test was performed on the heights as percent of control for 

each genotype and by treatment (Table 2.5).  

Table 2.4. Mean heights of each sorghum genotype at maturity on September 30, 2020 are given 

in centimeters for each salinity treatment, and as a proportion of their mean heights in the control 

plot (provided as a percentage). Height data was analyzed from TLS LiDAR point clouds.  

GENOTYPE 
Med-Low 

(% of Control) 

Medium 

(% of Control) 

Med-High 

(% of Control) 
Control 

Richardson 23.4cm (23.0%) 46.7cm (45.9%) 32.0cm (31.4%) 101.8cm (100%) 

S&W Seed 84.9cm (27.8%) 78.9cm (25.8%) 43.9cm (14.4%) 305.4cm (100%) 

P-533912 0.0cm (0.0%) 19.4cm (17.7%) 0.0cm (0.0%) 109.5cm (100%) 

PI-533752 39.4cm (42.4%) 56.2cm (60.5%) 9.70cm (10.4%) 92.9cm (100%) 

PI-533936 0.0cm (0.0%) 0.0cm (0.0%) 0.0cm (0.0%) 99.0cm (100%) 

Table 2.5. Results of the Chi-squared test of the mean heights of each genotype by treatment as a 

percentage of the control plot mean heights to determine significant difference. Where the 

expected result for each treatment is 100 percent. Degrees of freedom are calculated from the 

number of replication in each treatment.  

Treatment Richardson S&W Seed PI-533912 PI-533752 PI-533936 DF (n-1) alpha 

Med-Low 157.91 160.80 200 145.20 200 1 0.05 

Medium 270.41 482.03 536.98 361.37 700 6 0.05 

Med-High 213.40 247.57 300 281.13 300 2 0.05 

High 300 300 300 300 300 2 0.05 

2.3.2. Height Response to Various Soil Constituents 

The eleven soil variables were interpolated to a 2mm grid size across the treatment plot 

and compared using a correlation matrix (Figure 2.10). 
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Figure 2.10. The correlation matrix shows the relationship of soil constituents for the entire 

treatment plot, using soil samples collected prior to planting. 

Following the soils correlation matrix, a generalized linear model (GLM) regression was 

used to analyze potential relationships between genotype heights as a percentage of the control 

and a variety of soil constituents that included salinity and sodicity (Table 2.6). GLMs with p-

values less than 0.05 were considered significant and were confirmed to be more significant than 

other models by using an Akaike Information Criterion (AIC) table. A Shapiro-Wilks test for 

normality was run on the model residuals for those GLMs with p-values less than 0.05 (Table 

2.7). Input data for the GLM included: 1) Mean soil constituent values, from the area surrounding 

each one-meter row (soils data interpolated to a 2mm pixel size); 2) maximum row heights from 
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TLS LiDAR point clouds (rasterized to 5cm pixel size). If there was no emergence in a row, then 

the height for that row was zero. This data set included all treatments and all rows.  

Table 2.6. Summary table of generalized linear models of soil constituents as a predictor of 

genotype height relative to the control plot height. P-values below 0.05 are highlighted in bold to 

denote significance. 

SOIL 

VARIABLE 

PI-533752 PI-533912 Richardson S&W Seed 

P-value (R2) P-value (R2) P-value (R2) P-value (R2)

SAR 0.431 (0.04836) 0.1756 (0.1363) 0.2684 (0.09325) 0.03237 (0.3062) 

pH 0.1559 (0.146) 0.7917 (0.00556) 0.0007419 (0.5963) 0.02451 (0.3322) 

Na 0.1382 (0.161) 0.1835 (0.1318) 0.04305 (0.2788) 0.0441 (0.2765) 

Mg 0.3702 (0.06216) 0.9101 (0.001019) 0.06333 (0.2407) 0.8379 (0.00334) 

HCO3 0.1284 (0.1686) 0.3418 (0.06967) 0.009479 (0.4155) 0.003792 (0.4875) 

ESP 0.4515 (0.04431) 0.2348 (0.1067) 0.3436 (0.06918) 0.03551 (0.2974) 

EC 0.2631 (0.09521) 0.323 (0.0751) 0.0277 (0.3209) 0.1581 (0.1471) 

CO3 0.03301 (0.3043) 0.9323 (0.0005763) 0.005805 (0.4551) 0.02749 (0.3216) 

Cl 0.2199 (0.1133) 0.258 (0.09707) 0.08061 (0.2164) 0.05596 (0.253) 

Ca 0.3171 (0.07686) 0.7765 (0.00642) 0.0533 (0.2579) 0.943 (0.0004093) 

B 0.0377 (0.2916) 0.2879 (0.08629) 0.02075 (0.3474) 0.03695 (0.2936) 

Table 2.7. Shapiro-Wilks Test for normality of model residuals for significant soil variables for 

each genotype. P-values equal to or lower than 0.05 for the Shapiro-Wilks Test indicate that 

model residuals are not normally distributed. 

Genotype Soil Variable Shapiro-Wilks P-value 

PI-53752 CO3 

B 

0.1130 

0.1669 

PI-533912 *No statistically significant soil predictor variable

Richardson pH 0.7121 

S&W Seed HCO3 0.9303 
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2.3.3. Belowground Phenology and Response to Treatments 

Root phenology was detected with the 400MHz and 900MHz GPR frequencies in the 

control plot with increasing return amplitude through the growing season (Figure 2.11).  

(a) 

(b) 

Figure 2.11 a) Root phenology of the control and treatment plot showing return amplitude on the 

y-axis from the 400MHz frequency of the GPR; b) Root phenology of the control and treatment

plot showing return amplitude on the y-axis from the 900MHz frequency of the GPR.
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To determine if there is a root response in the treatment plot, the signal response from 

the unplanted rows was regressed to the genotypes in each salinity treatment for both the 

400MHz signal return (Table 2.8) and the 900MHz return signal (Table 2.9). 

Table 2.8. Regression of the 400MHz signal response of the unplanted rows in the salinity 

treatments to each genotype. P-values of less than 0.05 show highly correlated signal response. P-

values less than 0.05 are highlighted in bold.  

Genotype Med-Low Medium Med-High High 

P-value R2 P-value R2 P-value R2 P-value R2 

Richardson 0.1865 0.08573 2e-16 0.942 0.5584 0.01116 0.1603 0.06259 

PI-533912 0.3006 0.05344 2e-16 0.9673 0.5845 0.009756 0.2065 0.05096 

S&W Seed 7.069e-05 0.5543 2e-16 0.9561 9.72e-09 0.6593 6.804e-11 0.7517 

PI-533752 0.3151 0.05042 2e-16 0.9803 0.555 0.01134 0.2092 0.05037 

PI-533936 0.2456 0.06676 2e-16 0.964 0.392 0.02376 0.028 0.03753 

Table 2.9. Regression of the 900MHz signal response of the unplanted rows in the salinity 

treatments to each genotype. P-values of less than 0.05 show highly correlated signal response. P-

values less than 0.05 are highlighted in bold. 

Genotype Med-Low Medium Med-High High 

P-value R2 P-value R2 P-value R2 P-value R2 

Richardson 0.178 0.1104 0.01568 0.09198 0.2431 0.05407 0.3648 0.03295 

PI-533912 0.1832 0.1079 0.01534 0.09256 0.2926 0.0442 0.31 0.04118 

S&W Seed 2.2e-16 0.989 2.2e-16 0.9881 2.2e-16 0.998 2.2e-16 0.9955 

PI-533752 0.1856 0.1068 0.02111 0.08414 0.2664 0.04915 0.2968 0.04344 

PI-533936 0.1752 0.1117 0.01764 0.08887 0.2244 0.05845 0.332 0.03768 
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2.3.4. Biomass Response to Treatments 

The survivability rate was calculated for each row in the Treatment plot by dividing the 

number of plants growing in each row by the possible number of plants for a row (Table 2.10); 

the possible number of plants for each row was 14 given the 8cm spacing. The number of plants 

emerged for each genotype by treatment was analyzed with a Chi-squared test that assumed an 

anticipated emergence of 14 plants in each row.  

Table 2.10. Survivability rate for each genotype in the Treatment plot, based on the potential 

possible number of sorghum plants that could exist in each row. A total number of 

approximately 14 plants could exist in each row.  

Med-Low 

(2 replications) 

Medium 

(7 replications) 

Med-High 

(3 replications) 

Genotype No. 

Plants 

Growth Rate No. 

Plants 

Growth Rate No. 

Plants 

Growth Rate 

Richardson 19 68% 33 34% 13 31% 

PI-533912 0 0.0% 10 10% 0 0.0% 

S&W Seed 2 7.1% 33 34% 11 26% 

PI-533752 2 7.1% 13 13% 1 2.4% 

Table 2.11. A summary of the Chi-squared test analyzing emergence with the anticipated 

emergence of 14 plants for each row. Chi-squared values in bold signify an insignificant 

difference between actual emergence and anticipated emergence. Degrees of freedom are 

calculated from the number of repetitions in each salinity treatment.  

Treatment Richardson S&W Seed PI-533912 PI-533752 DF (n-1) alpha 

Med-Low 2.93 24.29 28 24.29 1 0.05 

Medium 44.5 49.07 80.43 74.79 6 0.05 

Med-High 22.07 24.21 42 40.07 2 0.05 
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The number of panicles produced in each of the planted rows in the treatment plot was 

manually verified on September 30, 2020, and data are presented in Table 2.12. In the control 

plot, point clouds were filtered to have an even point density to determine and average point 

counts for panicles in the treatment plot were regressed to mean panicle weight collected in the 

field (Figure 2.12). P-values of this regression are (0.03 for mean panicle mass to point count) and 

(0.01 for mean total panicle mass to point count).  

Table 2.12. Panicle production ratio for each genotype by salinity treatment.  

Med-Low 

(2 rows each 

genotype) 

Medium 

(7 rows each 

genotype) 

Med-High 

(3 rows each 

genotype) 

Genotype No. 

Panicles 

Ratio of 

Panicles 

per Plant 

No. 

Panicles 

Ratio of 

Panicles 

per Plant 

No. 

Panicles 

Ratio of 

Panicles 

per Plant 

Richardson 4 0.21 29 0.88 7 0.54 

PI-533912 0 0.0 8 0.80 0 0.0 

S&W Seed 0 0.0 18 0.55 0 0.0 

PI-533752 0 0.0 2 0.15 0 0.0 
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(a)      (b) 

Figure 2.12. a) Mean panicle point counts from 3-D point cloud of September 30, 2020, scan of the 

control plot. Point density was homogenized and panicles were dissected from the point cloud; b) 

Regressed mean panicle point count by genotype to mean panicle mass and mean total panicle 

mass of sorghum plant by genotype.   

2.3.5. Manually Collected Biomass 

Aboveground and belowground biomass samples were collected when both plots had 

reached full maturity and had dried down in the field. The mean dry weight in grams of the 

above- and belowground biomass from samples collected in the salinity treatments and the 

control plot are provided in Table 2.13. These values are then converted to a ratio of above to 

belowground biomass for the salinity treatments and the control plot (Table 2.14). 

Table 2.13. Results of the manually collected biomass samples from the salinity treatments and 

control plot, reported in grams. Asterisks represent where data was not collected but plants were 

known to grow; “n/a” represents where there was no emergence.  

Genotype Med-Low Medium Med-High Control 

Above Below Above Below Above Below Above Below 

Richardson 2.0 0.7 26.2 15.3 1.6 0.4 104.4 107.0 
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PI-533912 n/a n/a 3.1 0.6 n/a n/a 115.8 61.5 

S&W Seed 38.2 10.8 18.5 9.4 2.9 0.7 893.7 209.8 

PI-533752 *** *** 14.6 4.8 *** *** 129.6 103.3 

PI-533936 n/a n/a n/a n/a n/a n/a 61.2 34.1 

Table 2.14. Ratio of mean aboveground biomass to mean belowground biomass. Asterisks 

represent missing data due to limited sample availability; “n/a” represents areas where there was 

no emergence.  

Genotype Control Med-Low Medium Med-High 

Richardson 1.0 3.7 2.8 4.1 

PI 533912 1.9 n/a 5.2 n/a 

S&W Seed 4.2 3.5 3.6 3.1 

PI 533752 1.3 *** 3.2 *** 

PI 533936 1.7 n/a n/a n/a 

2.4. Discussion 

2.4.1. Aboveground Sorghum Response to Salinity Treatments 

In this study, when the control plot phenology of each genotype is compared to the 

salinity treatments it is apparent that all treatments decreased the mean maximum height of each 

of the four genotypes. The TLS was able to detect aboveground phenology of the five genotypes 

of sorghum with accuracy corroborated by observation and manual data collection. The 

aboveground growth in response to the four salinity treatments was significantly inhibited 

compared to growth in the control plot. Additionally, only four of the five sorghum genotypes 

were able to grow in the treatment plot (i.e., PI-533912, PI-533752, Richardson, and S&W Seed), 

genotype PI-533936 did not emerge in any salinity treatment. Finally, no sorghum genotypes 
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were able to grow in the high salinity treatment. The results of the Chi-squared test indicate that 

genotypes in each treatment were significantly different in mean height from the control plot 

mean height using an alpha level of significance of 0.05 (Table 2.5). The S&W Seed genotype had 

the tallest mean height in the control plot (3.05m), but the Richardson genotype was the quickest 

to reach maturity in early August.  

In general, the height of all genotypes was significantly impacted by salinity treatment. 

However, the Richardson Seed’s Ultra-Early Hybrid grew the most consistently across the 

medium-low, medium, and medium-high gradients, where height as a percentage of the control 

was 23.0%, 45.9%, and 31.4%, respectively. The PI-533752 genotype attained the highest 

percentage of its control height at 60.5% in the medium treatment; following that are S&W Seed 

Sordan 79, and PI-533912. Contrary to the hypothesis, salinity was not the most significant factor 

influencing height, rather these factors varied by genotype. The AIC table model comparison for 

PI-533752 confirms that CO3 and B are most influential to percent of control height. The AIC 

table has a delta of 2.40 between B and HCO3 which indicates the first two models (CO3 and B) 

are significant, and model residuals are normally distributed (Shapiro-Wilks p-values = 0.113 and 

0.1669, respectively). For genotype PI-533912 the AIC table model comparison indicated that 

there was no clear model that was more influential to predicting percent of control height. The 

AIC table delta values were significantly less than a value of two between models. For the 

Richardson genotype, the AIC table model comparison clearly indicated that pH was the most 

significant predictor with a delta value of 4.50 between pH and CO3. Additionally, the pH model 

was normally distributed (Shapiro-Wilks p-value = 0.7121). Finally, S&W Seed Sordan 79 AIC 

table model comparison showed HCO3 as the most significant predictor of percent of control 

height with a delta value of 3.97 between HCO3 and pH. The model residuals were normally 
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distributed (Shapiro-Wilks p-value = 0.9303). Using the percent of control produced much clearer 

results than using the maximum row height. Each genotype had obvious soil variables affecting 

the percent of control height, with the exception of PI-533912.  

2.4.2. Belowground Root Monitoring and Response 

The return responses from the control plot varied substantially from the return responses 

across the four salinity treatments. In the control plot, both frequencies followed a similar trend, 

which is an increase in amplitude at the end of July to the beginning of August, then a gentle 

decrease toward the end of August followed by a slight increase in amplitudes at the beginning 

of October (Fig. 2.11). The return response for both the 400MHz and 900MHz frequencies across 

the treatment plot did not follow similar trends across the growing season. There were no steep 

growth curves in return amplitudes attributed to greater signal attenuation from increasing root 

water as was apparent with the control plot. Root phenology was detected with both the 400MHz 

and 900MHz frequencies in the control plot, as evidenced by the increase in return amplitudes for 

each genotype as plants grew toward maturity, then decreased as roots dried out nearing 

harvest. Both frequencies had similar patterns across the growing season in the control plot. 

However, the general trend in the treatment plot is that the 900MHz amplitude responses spiked 

once in mid-September, whereas the 400MHz amplitude responses spiked in the beginning of 

August and again in mid-September. Conversely, in the control plot, both frequencies increased 

in amplitude at the end of July to beginning of August, then a gentle decrease toward the end of 

August followed by a slight increase in amplitudes in the beginning of October.  

Data from the 2020 study in Fallon, Nevada suggest that GPR in the 400MHz and 

900MHz frequencies has limited use for identifying fine root mass in highly saline-sodic soil 
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conditions. Belowground imaging results throughout the growing season showed varied “mass” 

locations throughout the treatment plot that were unsubstantiated when compared to actual 

plant locations and excavated root sampling data. High soil sodicity in the treatment plot caused 

the deflocculation of soil aggregates that impaired drainage and caused irrigation water to sit in 

the upper part of the soil profile. It is unclear whether the greater issue with GPR ranging in the 

treatment plot came from the high relative permittivity of the soil or the lack of adequate 

drainage through the soil profile.  

This study does suggest that GPR can detect a gradient response to soil conductivity. 

Returned amplitude values from genotypes in the control plot were regressed to the unplanted 

row within each treatment. Although the GPR was unable to significantly detect root mass, a 

pattern emerged between the two frequencies. There was a strong correlation in the medium 

salinity treatment with correlation becoming less as salinity increases.   

2.4.3. Biomass Response to Salinity Treatments 

Results of the Chi-squared test indicated that all rates of emergence were significantly 

different from the anticipated rate, except for the Richardson genotype growing in the medium-

low salinity treatment (Table 2.11). The Richardson genotype had the highest rate of 

survivability, or mean number of plants per row relative to the expected number of 14 plants per 

row. Richardson produced the highest mean number of plants per row, which was represented as 

a percent of the expected outcome (68% in medium-low, 34% in medium, and 31% in medium-

high). S&W Seed had the second highest rate of plant production (7.1% in medium-low, 34% in 

medium, and 26% in medium-high).  
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The rate of plant growth was lower in the medium salinity treatment level. However, the 

rate of panicle production was higher. The rate of panicle production, or ratio of panicles to 

plants was overall highest in the medium salinity treatment, however, Richardson had the 

highest ratio across all treatments, (0.21 in medium-low, 0.88 in medium, and 0.54 in medium-

high). PI-533912 had the second highest panicle to plant ratio of 0.80 in the medium treatment.   

Belowground biomass in the treatment plot was smaller than in the control plot. This was 

true for all genotypes, with the exception of PI-533936, which did not successfully grow in the 

treatment plot. Sample collection was limited, and not all genotypes were represented in 

treatments where there was indeed growth; this was due to limited sample availability. However, 

the Richardson genotype had the highest relative root mass accumulation within the medium 

salinity treatment. S&W Seed and PI-533752 had similar outcomes for root mass accumulation in 

the medium salinity treatment. Root mass accumulation was very limited in the medium-high 

salinity treatment, only Richardson and S&W Seed grew,  but had root masses of less than one 

percent of the corresponding root masses in the control plot.  

The ratio of mean above- to below-ground mass increased substantially in response to 

the salinity gradient when compared to the control. This was counter to the original hypothesis 

that excess sodium would limit water intake and induce greater root production. Most of the 

genotypes in the control plot had a lower ratio of less than 2:1, with the exception being the S&W 

Seed genotype, which had a ratio of 4.2:1. In the various salinity treatments the ratio of above- to 

belowground mass increased, the exception again being S&W Seed, which decreased.   

2.5. Consideration for Further Study 

2.5.1. Terrestrial Laser Scanning  
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New methods for above and belowground biomass monitoring in crop breeding was 

proposed for this study. In monitoring height, terrestrial laser scanning has proven to be a 

valuable tool in monitoring aboveground phenology in many crop phenotyping studies 

[32,46,47]. Its non-destructive sampling and real-time data collection capabilities make it useful 

for vegetation monitoring in both natural and agricultural systems. Ultimately, the use of TLS in 

agriculture and crop breeding studies is of particular usefulness for precision agriculture [48].  

The five genotypes of sorghum used in the 2020 Fallon, Nevada salinity-sodicity study 

were planted in one-meter rows in a randomized plot design. In the control plot, rows were 

spaced 76 cm apart. At maturity, the sorghum leaves grew into one another, making the task of 

sectioning out each genotype in TLS point clouds difficult. Terrestrial laser scanning has been 

used in many agricultural applications where there is a single crop or a field with adjacent rows 

of the same species or genotype, but no TLS studies have been specifically developed for 

molecular breeding purposes.  

Molecular breeding programs often grow dozens to hundreds of different genotypes 

each season. Molecular breeding studies comparing multiple genotype responses to 

environmental variables are often limited by seed quantity. Planting numerous rows of each 

genotype being studied may not be feasible, limiting the amount of destructive sampling that is 

possible and making crop phenotyping, biomass, and yield data more difficult to obtain. The 

industry standard for row width is 76cm, which provides enough room for sorghum to grow but 

results in thick leaf overlap when the crop becomes mature.  

The smaller aboveground biomass produced in the treatment plot was difficult for the 

TLS to detect initially. In the treatment plot, aboveground growth was detectable in the TLS-

generated point clouds a month after sorghum growth was apparent in field observations. The 
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slower rate of emergence and substantially smaller size of growth was challenging for the TLS to 

detect initially. Furthermore, many of the panicles that formed in the treatment plot were very 

small and more challenging to detect with the TLS despite increasing the number of scans 

collected during each sampling event.  

Narrow row spacing resulted in significant areas of occlusion in the TLS point clouds, 

this issue was exacerbated when trying to differentiate between rows where different genotypes 

were planted. Significant occlusion becomes an issue of greater concern in multi-genotype studies 

as it can prevent accurate estimation of biomass, panicle count and density, height, and plant 

architecture traits. In many agricultural studies seeking height estimates or tiller counts, a TLS is 

rigged to either run transects above a field using cables or is placed on towers at set locations 

throughout the field, well above the maximum canopy height. Occlusion may be reduced in 

future studies by keeping the TLS sensor well above the canopy height for better line of sight to 

more surfaces, and more scanning angles can also improve the issue of occlusion. Terrestrial laser 

scanning in conjunction with LiDAR-mounted unmanned aerial vehicles (UAV) is a promising 

area of emerging research that may reduce occlusion and improve resolution [49]. The precision 

of high-resolution, georeferenced LiDAR data with new methods for individual genotype and 

even individual plant detection is the future of genotype-based molecular breeding studies. 

2.5.2. Ground Penetrating Radar 

Root detection and monitoring is important for estimating regional and local carbon 

dynamics [50] and for estimating belowground carbon stocks in drylands, which are 

underrepresented in landscape-scale studies [51-53]. Furthermore, non-destructive root mass 

detection and phenology are vital to crop breeding programs [35]. In the rapidly growing field of 
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GPR and root detection, there exist many areas for future research. Many past root detection 

studies have focused investigations on large woody roots and fine root masses. High-throughput 

GPR studies is still a burgeoning area of research, but is needed to improve genetic selection 

processes in plant breeding program [54]. Ground penetrating radar has the capacity to collect in-

situ root mass data iteratively, if done with high spatial accuracy, and has the potential to detect 

variations in root structure and growth over time, as electromagnetic radiation interaction varies 

between healthy roots and stressed roots. Future research in crop breeding studies may strive to 

detect genotype variation in root phenology by testing various frequencies.  

In research to date, GPR has only been used for detection of salinity concentration but 

has not been investigated thoroughly [55,56]. A future study might investigate GPR sensitivity by 

testing multiple frequencies with a variety of soil characteristics that are useful for crop breeders 

or are significant to agricultural production. How GPR signal functions in the presence of 

different levels of salinity and sodicity, and how the signal response relates to detection of other 

soil characteristics in field conditions, is not yet fully understood. Furthermore, there have been 

no GPR-based salinity composition studies that also considered soil water content [57]. The 

relationship of soil composition, salinity and sodicity, and soil water content to GPR detection are 

areas for future research and would be of great significance for molecular breeding to develop 

salt-tolerant cultivars. Moreover, real-time detection of soil composition would also assist in 

improved resource allocation, a key component of precision agriculture.  

2.6. Conclusions 
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This study found that above- and belowground phenology was affected differently by a 

gradient of salinity in the treatment plot. For genotypes PI-533752, PI-533912, and Richardson, 

belowground biomass production decreased relative to aboveground biomass production, 

contrary to my hypothesis. Additionally, this study found that the salinity was not the driving 

soil variable for plant height, in fact pH, B, HCO3, and CO3 were more influential and varied by 

genotype. In general, above- and belowground biomass production was greater in the medium 

salinity treatment for all genotypes that grew in the treatment plot that may suggest other 

physiological adaptations to salt-stress, or a threshold response. Overall, the Richardson Seed’s 

Ultra-Early Hybrid and S&W Seed Sordan 79 had the widest range of growth across the salinity 

gradient and highest biomass and panicle production. In this study I was not able to detect root 

mass in highly saline-sodic soil, though, root phenology was detected with the 400MHz and 

900MHz frequencies in the control plot. The GPR signal return was not linear in response to a 

salinity gradient, but a pattern did emerge across the different salinity ranges.  

Each remote sensing study has unique environmental, technological, and logistical 

variables that require special means for data collection, processing, and analysis. Novel 

applications of these technologies require innovative techniques to mitigate for variables that are 

not always apparent at the beginning of a study. It is through the discovery of these 

idiosyncrasies that new and promising studies are developed.  
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