
University of Nevada, Reno

Harnessing the Power of Distributed Computing:

Advancements in Scientific Applications, Homomorphic

Encryption, and Federated Learning Security

A dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of

Philosophy in Computer Science and Engineering

by

Olamide Timothy Tawose

Dr. Dongfang Zhao, Dissertation Advisor

August 2023

© by Olamide Timothy Tawose 2023
All Rights Reserved

The Graduate School

We recommend that the dissertation prepared under our supervision by

Olamide Timothy Tawose

entitled

Harnessing the Power of Distributed Computing: Advancements in Scientific

Applications, Homomorphic Encryption, and Federated Learning Security

be accepted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Dongfang Zhao, Ph.D., Advisor

Lei Yang, Ph.D., Committee Member

Tin Nguyen, Ph.D., Committee Member

Rui Hu, Ph.D., Committee Member

Yan Wang, Ph.D., Graduate School Representative

Markus Kemmelmeier, Ph.D., Dean, Graduate School

August 2023

i

Abstract

Data explosion poses lot of challenges to the state-of-the art systems, applications, and

methodologies. It has been reported that 181 zettabytes of data are expected to be generated

in 2025 which is over 150% increase compared to the data that is expected to be generated

in 2023. However, while system manufacturers are consistently developing devices with

larger storage spaces and providing alternative storage capacities in the cloud at affordable

rates, another key challenge experienced is how to effectively process the fraction of large

scale of stored data in time-critical conventional systems. One transformative paradigm

revolutionizing the processing and management of these large data is distributed comput-

ing whose application requires deep understanding. This dissertation focuses on exploring

the potential impact of applying efficient distributed computing concepts to long existing

challenges or issues in (i) a widely data-intensive scientific application (ii) applying ho-

momorphic encryption to data intensive workloads found in outsourced databases and (iii)

security of tokenized incentive mechanism for Federated learning (FL) systems.

The first part of the dissertation tackles the Microelectrode arrays (MEAs) parameter-

ization problem from an orthogonal viewpoint enlightened by algebraic topology, which

allows us to algebraically parametrize MEAs whose structure and intrinsic parallelism are

hard to identify otherwise. We implement a new paradigm, namely Parma, to demonstrate

the effectiveness of the proposed approach and report how it outperforms the state-of-the-

practice in time, scalability, and memory usage.

The second part discusses our work on introducing the concept of parallel caching of

secure aggregation to mitigate the performance overhead incurred by the HE module in

outsourced databases. The key idea of this optimization approach is caching selected radix-

ii

ciphertexts in parallel without violating existing security guarantees of the primitive/base

HE scheme. A new radix HE algorithm was designed and applied to both batch and incre-

mental HE schemes, and experiments carried out on six workloads show that the proposed

caching boost state-of-the-art HE schemes by high orders of magnitudes.

In the third part, I will discuss our work on leveraging the security benefit of blockchains

to enhance or protect the fairness and reliability of tokenized incentive mechanism for FL

systems. We designed a blockchain-based auditing protocol to mitigate Gaussian attacks

and carried out experiments with multiple FL aggregation algorithms, popular data sets and

a variety of scales to validate its effectiveness.

iii

Acknowledgments

I would like to express my deepest gratitude to my advisor Dr. Dongfang Zhao for the ex-

ceptional guidance, caring, patience, and engagement throughout the coiurse of my study at

the University of Nevada, Reno. Thank you for all your intellectual and emotional support

throughout this dissertation work, especially during hard times. He has been a great friend

and guide to me during my Ph.D. study. I am very fortunate to have him as my advisor.

I would like to express my sincere gratitude to my committee members, Dr. Lei Yang,

Dr. Tin Nguyen, Dr. Rui Hu, and Dr. Yan Wang, for their invaluable intellectual input

in improving the dissertation work. I am also grateful to Dr. Eelke Folmer (Departmen-

tal Chair), Dr. David Feil-Seifer (Graduate Director), Ms. Erin Keith and the entire past

(Heather Lara, Julie Hill, Ashley Ricks, Christina Ruymaekers) and present (Alisa Kader)

administrative staff of the CSE office for their unwavering support during my program.

I would also like to thank all the members of the High Performance and Data-Intensive

Computing (HPDIC) Lab at UNR with whom I had a great chance to collaborate. Their

diverse backgrounds, inspiring suggestions, and in-depth discussions have formed an in-

tellectual environment for interdisciplinary research. I am eternally grateful to my family

and dependable friends for their endless love and support. I dedicate all my works in this

dissertation to my parents, without whom I couldn’t have come this far.

iv

TABLE OF CONTENTS

Abstract i

Acknowledgments iii

List of Figures xi

1 Introduction 1

1.1 Overview . 1

1.2 Dissertation Contributions . 2

1.2.1 Topological Modeling and Parallelization of Multidimensional Data

on Microelectrode Arrays . 2

1.2.2 Toward Efficient Homomorphic Encryption for Outsourced Databases

through Parallel Caching . 3

1.2.3 Gaussian Attacks and Blockchain-based Auditing on Tokenized In-

centive for Federated Machine Learning Systems 4

1.3 Organization . 4

2 Topological Modeling and Parallelization of Multidimensional Data on Micro-

electrode Arrays 6

v

2.1 Introduction . 6

2.2 Background and Problem Formulation . 9

2.2.1 Kirchhoff Laws and Maxwell Cyclomatic Numbers 9

2.2.2 Electrode Array and Graph Abstraction 10

2.2.3 Anomaly Detection through Electrode Arrays 11

2.3 Algebraic-Topological Modeling of MEAs 14

2.3.1 Topology Basics . 15

2.3.2 Modeling through Homology Groups 17

2.4 Parallel Processing of Multidimensional Electrode Arrays using Algebraic

Invariant . 21

2.4.1 Categorizing Vertex-oriented Constraints 21

2.4.2 Parallelization on MEA Manifolds 25

2.4.3 System Optimization . 28

2.4.3.1 Balanced Parallel . 28

2.4.3.2 Fine-grained Multiprocessing (PyMP-k). 28

2.5 Implementation and Evaluation . 30

2.5.1 Implementation . 30

2.5.2 Experimental Setup . 31

vi

2.5.3 Computation Time . 32

2.5.4 Memory Footprint . 33

2.5.5 I/O Cost . 35

2.5.6 Scalability . 35

2.6 Related Work . 36

2.7 Summary . 37

3 Toward Efficient Homomorphic Encryption for Outsourced Databases through

Parallel Caching 39

3.1 Introduction . 39

3.1.1 Background and Motivation . 39

3.1.2 Contributions . 41

3.2 Preliminaries and Related Work . 42

3.2.1 Confidentiality of Outsourced Data 42

3.2.2 Homomorphic Encryption . 44

3.2.3 Provable Security . 47

3.3 RHE: Radix Homomorphic Encryption . 49

3.3.1 Overview . 49

3.3.2 Algorithm . 50

vii

3.3.3 Parameterization . 52

3.3.3.1 Heuristic Radix Selection 52

3.3.3.2 Optimal Radix in the Worst Case 53

3.4 Rache: Radix-Additive Caching for Homomorphic Encryption 55

3.4.1 Security Definitions and Assumptions 55

3.4.2 Scheme Description . 56

3.4.3 Provable Security . 58

3.5 Incremental Rache . 59

3.5.1 Overview . 59

3.5.2 Definitions and Notations . 60

3.5.3 Scheme Description . 61

3.5.4 Provable Security . 63

3.6 Evaluation . 64

3.6.1 Objectives . 64

3.6.2 Experimental Setup . 65

3.6.2.1 Systems and Implementation 65

3.6.2.2 Configurations . 66

3.6.2.3 Workloads . 67

viii

3.6.3 Performance with and without Homomorphic Encryption 68

3.6.4 Batch Rache . 69

3.6.4.1 Encryption vs. Addition 69

3.6.4.2 TPC-H . 69

3.6.4.3 Random Numbers . 70

3.6.4.4 U.S. COVID-19 Statistics 71

3.6.4.5 Human Genome Reference 38 71

3.6.4.6 Bitcoin Trade Volume 72

3.6.4.7 Scalability . 73

3.6.5 Incremental Rache . 74

3.6.5.1 TPC-H . 74

3.6.5.2 Random Numbers . 74

3.6.5.3 Aggregating Encrypted Fields 75

3.6.5.4 Computing Nuances On-the-fly 77

3.6.6 Summary of Experimental Results 77

3.7 Summary . 78

4 Gaussian Attacks and Blockchain-based Auditing on Tokenized Incentive for

Federated Machine Learning Systems 79

ix

4.1 Introduction . 79

4.2 Background and Related Work . 82

4.2.1 Incentive Mechanisms for Federated Learning 82

4.2.2 Attacks on Federated Learning . 83

4.2.3 Blockchains for Federated Learning 84

4.3 Gaussian Attack on Token Incentive for FL 85

4.3.1 Threat Model . 85

4.3.2 Attack Algorithm . 86

4.3.3 Convergence Analysis . 87

4.4 Blockchain Audit for Local Models in FL 91

4.4.1 Assumptions . 91

4.4.2 Auditing Protocol . 91

4.4.3 Complexity Analysis . 92

4.5 Evaluation . 93

4.5.1 Implementation . 93

4.5.2 Experimental Setup . 94

4.5.2.1 Test Bed . 94

4.5.2.2 Data Sets . 95

x

4.5.2.3 Machine Learning Models 95

4.5.2.4 Federated Learning Parameters 96

4.5.3 Effectiveness of Gaussian Attacks 96

4.5.4 Cost of Blockchain Auditing . 99

4.6 Summary . 101

5 Conclusions and Future works 102

5.1 Conclusions . 102

5.2 Future works . 103

Bibliography 105

xi

LIST OF FIGURES

2.1 Abstract architecture of a three-dimensional 3 × 3 electrode array, in

a physical device. Three horizontal wires (A, B, and C) and three vertical

wires (I, II and III) are interconnected through the 18 joints {0, · · · , 17} and

nine resistors (Ri j, 1 ≤ i, j ≤ 3). 11

2.2 Abstraction of a general electrode array in two-dimensional space. 13

2.3 A polyhedron of two simplices (triangles {a, b, c} and {d, e, f }) that is not

a simplicial complex. The overlap of two triangles is segment {b, f }, which

is not an element of the set of 1-simplices {{a, b}, {b, c}, {a, c}, {d, e}, {d, f }, {e, f }}. 17

2.4 A corresponding topology between C and I as Figure 2.1. There also

exists nine paths between C and I, which are semantically equivalent to

Figure 2.1 but with possible loops across sub-paths. 23

2.5 A corresponding topology between the i-th horizontal axis and the j-th

vertical axis in a n× n Array, in a 2D space. There are total (n− 1) Ua’s

and (n − 1) Ub’s as two sets of distinct voltage values for a specific pair

of i j end points, assuming the original voltage can be measured between

i and j. The conditions of subscripts are: k ∈ {1, · · · , j − 1, j + 1, · · · , n};

m ∈ {1, · · · , i − 1, i + 1, · · · , n}; k′ = k if k ≤ j, k′ = (k − 1) otherwise; and

m′ = m if m ≤ i, m′ = (m − 1) otherwise. 23

xii

2.6 Various approaches for parallel formulation of Kirchhoff law equa-

tions. The proposed joint constraints enable various parallelization possi-

bilities, namely Parallel, Balanced Parallel, and PyMP. PyMP delivers the

highest performance at scales n ≥ 20, despite of lower performance than

Balanced Parallel at n = 10 where the parallelization overhead outweighs

the speedup. 32

2.7 Computation time of various parallelism in PyMP. Applying fine-grained

multiprocessing leads to a linear decrease in the overall compute time per

workload at scales n ≥ 20. 33

2.8 Cummulative Distribution Functions (CDFs) of Memory Usage. For

all the scales of n ∈ {10..100}, the peak memory usage is about the same

regardless of data parallelism. 34

2.9 The end-to-end time of various degrees of parallelism in PyMP, in-

cluding disk I/Os. Utilization of more threads k ≥ 2 starting from a low

rank of n = 20 makes significant effect to the overall I/O time. 35

2.10 Scalability of Parma across various number of processes and varying

workloads. 36

3.1 Performance with and without encryption schemes. 69

3.2 Homomorphic encryption and addition in Paillier. 69

3.3 Performance comparison on the TPC-H benchmark. 69

3.4 Encoding performance on random numbers. 71

xiii

3.5 Encoding the U.S. COVID-19 statistics. 71

3.6 Encoding the human genome reference 38. 71

3.7 Encoding the Bitcoin trade volume. 72

3.8 Weak scaling of the encryption of random numbers. 72

3.9 Encoding a variety of workloads with a fix number of 32 cores. 72

3.10 Performance comparison on TPC-H (scale = 100), 20,000,000 tuples in

table Part. 74

3.11 Performance comparison of Symmetria and Rache on 1,024 random plain-

texts. 74

3.12 Performance overhead incurred by pivots and nuances when encrypting

232 random plaintexts. 74

3.13 Time breakdown of aggregating 200,000 tuples of table Part in TPC-H. . . 76

3.14 Aggregating time with different numbers of pivots on different TPC-H scales. 76

3.15 Rache speedup over Symmetria when computing nuances on-the-fly. . . . 76

4.1 Gaussian attack and blockchain audit for decentralized federated learning . 81

4.2 FedAvg loss under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-

10, and SVHN . 97

4.3 MultiKrum loss under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-

10, and SVHN . 98

xiv

4.4 FedAvg accuracy under Gaussian attacks for MNIST, Fashion-MNIST,

CIFAR-10, and SVHN . 98

4.5 MultiKrum accuracy under Gaussian attacks for MNIST, Fashion-MNIST,

CIFAR-10, and SVHN . 99

4.6 Computational and I/O costs of blockchain auditing for MNIST, Fashion-

MNIST, CIFAR-10, and SVHN . 100

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Data explosion has become a phenomenon in this era of data deluge where people have

more tools to create and share information which in turn has significantly increased the

storage requirements on computer systems. As indicated in a report by Statista [112] and

Bernard Marr & Co [16], 181 zettabytes of data are expected to be generated in 2025 which

is over 150% increase compared to the data that is expected to be generated in 2023. How-

ever, while system manufacturers are consistently developing devices with larger storage

spaces and providing alternative storage capacities in the cloud at affordable rates, another

key challenge experienced is how to effectively process the fraction of large scale of stored

data in time-critical conventional systems utilizing the most of available computing re-

sources which usually requires the analyst to have in-depth knowledge from both computer

systems and domain sciences in order to achieve desired characteristics like scalability,

increased performance, efficient resource utilization and enhanced reliability.

A paradigm shift transforming how we approach complex problems and process these

enormous amounts of data stored has evolved, and it is known as distributed computing.

The application of distributed computing is a plausible approach that could help achieve

the afore-mentioned characteristics. However, a deep understanding of suitable distributed

computing concepts is always required to drive innovation, meet the ever-increasing chal-

lenges, and unfold new intrinsic possibilities across various domains as there might not be

2

a one-size-fits-all or universal approach for all cases. This dissertation focuses on exploring

the potential impact of applying efficient distributed computing concepts to long existing

challenges or issues in (i) a widely data-intensive scientific application (ii) applying ho-

momorphic encryption to data intensive workloads found in outsourced databases and (iii)

security of tokenized incentive mechanism for Federated learning (FL) systems.

1.2 Dissertation Contributions

This section briefly highlights the contributions of this dissertation.

1.2.1 Topological Modeling and Parallelization of Multidimensional

Data on Microelectrode Arrays

Microelectrode arrays (MEAs) are physical devices widely used in various science and

engineering fields. One common computational challenge when applying a high-density

MEA (i.e., a larger number of wires, more accurate locations of abnormal cells) is how

to efficiently compute those resistance values provided the nonlinearity of the system of

equations with the unknown resistance values per the Kirchhoff law. This part proposes an

algebraic-topological model for MEAs such that we can identify the intrinsic parallelism

that cannot be identified by conventional approaches. We implement a system prototype

called Parma based on the proposed topological methodology. Experimental results show

that Parma outperforms the state-of-the-practice in time, scalability and memory usage: the

computation time is two orders of magnitude faster on up to 1,024 cores with almost linear

3

scalability and the memory is much better utilized with proportionally less warm-up time

with respect to the number of concurrent threads.

1.2.2 Toward Efficient Homomorphic Encryption for Outsourced Databases

through Parallel Caching

Many applications deployed to public clouds are concerned about the confidentiality of

their outsourced data, such as financial services and electronic patient records. A plausible

solution to this problem is homomorphic encryption (HE), which supports certain algebraic

operations directly over the ciphertexts. The downside of HE schemes is their significant, if

not prohibitive, performance overhead for data-intensive workloads that are very common

for outsourced databases, or database-as-a-serve in cloud computing. The objective of this

work is to mitigate the performance overhead incurred by the HE module in outsourced

databases. To that end, this part proposes a radix-based parallel caching optimization for

accelerating the performance of homomorphic encryption (HE) of outsourced databases in

cloud computing. The key insight of the proposed optimization is caching selected radix-

ciphertexts in parallel without violating existing security guarantees of the primitive/base

HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-

HE schemes; we demonstrate the security of those radix-based HE schemes by showing

that the problem of breaking them can be reduced to the problem of breaking their base

HE schemes that are known IND-CPA (i.e. Indistinguishability under Chosen-Plaintext

Attack). We implement the radix-based schemes as middleware of a 10-node Cassandra

cluster on CloudLab; experiments on six workloads show that the proposed caching can

boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of

magnitude.

4

1.2.3 Gaussian Attacks and Blockchain-based Auditing on Tokenized

Incentive for Federated Machine Learning Systems

Federated learning (FL) has emerged as a new distributed computing paradigm to both en-

rich the available training data and protect the data privacy of participating clients. Due to

the critical importance of client participation leading to the success of FL systems, multiple

incentive mechanisms have been proposed to attract and retain clients in FL; in particular,

a tokenized incentive was recently proposed, which was believed more practical than the

existing monetary-based, offline incentive mechanisms. However, this part will demon-

strate that, under mild assumptions, the tokenized incentive mechanism for FL systems can

be effectively compromised by a fraction of colluded clients who share their local train-

ing models with deliberate Gaussian noises. To that end, we design a blockchain-based

protocol such that a client suspected to have launched a Gaussian attack will be detected.

We have implemented the proposed Gaussian attack and Blockchain-based auditing with

FedML; Extensive experiments demonstrate the effectiveness of the Gaussian attack and

the efficiency of blockchain audit with reasonable overhead (less than 10% training time).

1.3 Organization

The next chapters are organized as follows. Chapter 2 focus on addressing the long-existing

computational challenge of multidimensional data in one of the most widely used engi-

neering devices, namely microelectronic array (MEA) used for (almost) real-time anomaly

detection such as potential cancer regions, the wound surface of an injured athlete. Chap-

ter 3 introduces the concept of parallel caching of secure aggregation to mitigate the per-

5

formance overhead incurred by the homomorphic encryption (HE) module in outsourced

databases. Chapter 4 addresses an important issue in federated learning: the security of tok-

enized incentives for participating clients in a federated machine learning system. Chapter

5 presents the conclusion of this dissertation and discusses some of the interesting areas

that have been identified for future work.

6

CHAPTER 2

TOPOLOGICAL MODELING AND PARALLELIZATION OF

MULTIDIMENSIONAL DATA ON MICROELECTRODE ARRAYS

2.1 Introduction

Microelectrode arrays (MEAs) are physical devices widely used in various science and

engineering fields. For example in the pandemic of COVID-19, electrode arrays were

involved in both vaccine development [68] and fast testing methods [6, 61]. More conven-

tionally: (i) in biomedical engineering [133], an MEA can be applied to a patient’s wound

surface and report the anomalies of the skin; (ii) in biological sciences [90], an MEA can

be placed on a cell medium to electronically detect the potential cancer regions; and (iii)

in electronic engineering [22,74], similar techniques are applied for the trade-offs between

currents and signals in the very-large-scale integration (VLSI) design of CPU chips. These

applications utilize multidimensional arrays as the default format for storing and managing

large volumes of measurement data.

One of the most notable limitations of applying MEAs lies in its scalabilty: an MEA

cannot be efficiently parametrized due to the complicated, nonlinear equations. Formally,

the parameterization of an MEA aims to quantify the physical resistance of the devices

given four inputs: (i) the topology of the MEA, (ii) the context where the MEA is placed,

e.g., cell medium, patient skin; (iii) a provided voltage, e.g., 5 volts, and (iv) measured

current values in the MEA. While in the real-world applications we can easily control

the voltage, accurately measure the currents, and discreetly choose the object/context, the

7

main challenge lies in the arbitrary topology exhibited by MEAs: the complexity of an

MEA topology can lead to considerable computational time that is considered impracti-

cal for applications. For instance, it takes hours to parameterize a two-dimensional 64×64

MEA [121]. Specifically, the electrical resistance values in the complex circuit cannot be

efficiently computed due to a large number of circuits at a very fine granularity and the

nonlinearity of the system of equations with the unknown resistance values per the Kirch-

hoff law [116]. Kirchhoff law is one of the most fundamental laws governing the physical

characteristics of electrode arrays. In practice, the law is applied repeatedly to every entity

in the electronic device and more importantly, the equations are correlated and thus hard

to be parallelized. To make it worse, if the internal resistors are unknown, the system of

equations becomes nonlinear, making the problem prohibitively expensive to solve analyt-

ically. Conventional computational approaches include Landweber method [113], linear

back projection [7], and Tikhonov regularization methods [118], all of which exhibit an

ill-posed computational problem [12, 73]: the solution is largely dependent on the input

and results in an unacceptable variance, which hinders its adoption in practice.

From a computational point of view, researchers have recently started to seek non-analytic

paradigms such as machine learning to estimate the solution, e.g., training a convolutional

neural network to approximate the unknown resistor distribution in an electrode array [116].

This approach is demonstrated as an effective means to “learn” the nonlinear function be-

tween inputs and outputs: the error rate is as low as 0.49%. In [89], the authors demon-

strated a 20× 20 microelectrode array device manufactured in a wet lab, and showed that a

graph-theoretical conversion from the original MEA data allowed them to efficiently utilize

storage space for the expensive computation. Later, Wang et al. [121] presented a forward

labeling technique for effectively training an artificial neural network (ANN) to predict the

unknown variables in the 64 × 64 MEA, which was more than two orders of magnitude

larger than the one shown in [116]. While the ANN can be efficiently trained, how to col-

8

lect the training data, i.e., parameterizing the MEAs, at such scales pose unprecedented

challenges in terms of computation cost. The problem is further exacerbated by the fact

that the intrinsic parallelism, if any, does not appear observational.

While aforementioned work focuses on adopting machine learning for an estimated parametriza-

tion of MEAs, this chapter tackles the MEA-parametrization problem from an orthogonal

viewpoint enlightened by algebraic topology, which allows us to algebraically parametrize

MEAs whose structure and intrinsic parallelism are hard to identify otherwise. Firstly,

the seemingly complex, interconnected circuit flows among MEA nodes can be abstracted

and simplified as a series of abstract complex, a well-studied object in algebraic topology

that we will detail shortly. Secondly, we can apply homological analysis of the abstract

complex and extract the independent high-dimensional circles for parallelization. We show

that the algebraic objects represented by the MEA data are well defined and further, form

the highly-desired topological invariant, namely homology groups, under rigorous group-

theoretical analysis. The algebraic invariant, such as Betti numbers, allows us to employ a

fine-grained parallelization technique for applying Kirchhoff’s laws concurrently, each of

which works by itself on a k-dimensional cycle.

To demonstrate the effectiveness of the proposed approach, we implement a new paradigm,

namely Parma. Preliminary results show that the proposed approach outperforms the state-

of-the-practice in various metrics: (i) the computation time is three orders of magnitude

faster; (ii) the I/O time is proportionally reduced with multithreading; (iii) the memory is

better utilized with proportionally less warm-up time with respect to the number of concur-

rent processes/threads.

In summary, this chapter discusses the following contributions:

9

• We take an algebraic-topological approach to model the parametrization of MEAs

that involves computationally-intensive Kirchhoff laws; (§2.3)

• We propose a new parallelization paradigm, which identifies the high-dimensional

“holes” that can be computed in parallel; (§2.4)

• We implement a prototype system called Parma that is extensively evaluated on var-

ious test beds at large scales of up to 1,024 cores. (§2.5)

2.2 Background and Problem Formulation

2.2.1 Kirchhoff Laws and Maxwell Cyclomatic Numbers

In Kirchhoff’s 1847 paper, he proved that the currents of a direct circuit could be uniquely

determined by two sets of linear equations given fixed source voltage and wire resistance.

The two systems of linear equations are also called the first and second Kirchhoff’s laws.

The first law (L1) states that overall flow at a specific vertex is zero, and the second law

(L2) states that the overall voltage change along a loop of edges stays the same. If we

model a circuit as a graph G(V, E), then there are |V | equations of L1, and there are |E|

unknown currents. It can be shown that the |V | equations of L1 are not independent, while

any |V |−1 equations are indeed independent. Consequently, we need to have |E|−|V |+1 or

more equations from L2 to find the |E| unknown currents. It can be further shown that these

|E|−|V |+1 equations from L2 are all independent of |V | equations in L1, indicating that both

L1 and L2 equations can collectively determine the current values. While Kirchhoff proved

this for the physical case where resistances are positive real numbers, a more general case

can be proven using algebraic topology, i.e., the introduction of cochain and coboundary,

10

see [44] for more details.

The number of independent loops represented by |E|−|V |+1 is historically called the cy-

clomatic number by Maxwell in the context of the circuit and is an important topological

property in graph theory. It should be noted, however, in many engineering applications,

Kirchhoff’s laws are applied indirectly: the currents are sometimes easy to measure, and

it is the resistance that is of interest and yet unknown, making the systems of equations

nonlinear.

2.2.2 Electrode Array and Graph Abstraction

Electrode Arrays are widely used in biomedical engineering, electrical engineering, and

mechanical engineering. A typical n × n dimensional electrode array consists of a set of

horizontal and vertical wires, joined through point-wise resistors. The n’s scale or size

highly depends on the application under consideration. For example, a continuous-flow

device [90] used for the geometric screening of core/shell hydrogel microcapsules consists

of 15 electrode pairs (i.e., n = 15), whereas a device designed for 2D electrical imaging

surveys can consist of more than 20 electrode pairs [77]. Overall, a n × n array comprises

2n2 joints/junctions and n2 resistors.

An example of such physical system is shown in Figure 2.1 with a size of n = 3. It consists

of three horizontal wires (A, B, and C) and three vertical wires (I, II and III) connected with

nine resistors resulting into a total of 18 joints {0, · · · , 17}.

In general, a n × n electrode array can be abstracted into a two-dimensional graph where

11

Figure 2.1: Abstract architecture of a three-dimensional 3 × 3 electrode array, in a physical device.
Three horizontal wires (A, B, and C) and three vertical wires (I, II and III) are interconnected through the 18
joints {0, · · · , 17} and nine resistors (Ri j, 1 ≤ i, j ≤ 3).

each vertex represents a resistor, as shown in Figure 2.2. In practice, the physical device

of an electrode array is usually in a square shape, although the following discussion can be

trivially extended to arbitrary shapes m × n (m ̸= n).

2.2.3 Anomaly Detection through Electrode Arrays

To put it in the real-world context, the electrode device is used for (almost) real-time

anomaly detection such as the wound surface of an injured athlete. A common workload of

such a n×n electrode array system is to find out the unknown resistances Ri j’s (1 ≤ i, j ≤ n)

given the pair-wise measured resistance Zi j’s between the end-points of n horizontal and n

vertical wires. These Ri j’s are usually equal and negligible in values from the device. When

the tested medium exhibits anomaly areas (e.g., cancer cells), the local resistance (i.e., R)

will significantly increase. Therefore, we have n2 unknowns (R’s) and also n2 measured

12

values (Z’s), namely ZA,I , ZB,I , ZC,I , ZA,II , ZB,II , ZC,II , ZA,III , ZB,III , and ZC,III in the example

shown in Figure 2.1.

The challenge here lies in that the measured resistance between two endpoints is a non-

linear function of all the n2 unknowns through many possible paths; To see this, take ZB,III

for example, the most straightforward circuit is through R32 (between endpoints 14 and 15).

And yet, there are other circuits flowing through, one possible path being:

B→ 8
R22
−−→ 9→ 7

R21
−−→ 6→ 12

R33
−−→ 13→ III

More examples from other pairs of endpoints include (cf. Figure 2.1):

C → 16
R33
−−→ 17→ 15

R32
−−→ 14→ 2

R12
−−→ 3→ I

A→ 12
R31
−−→ 13→ III

C → 10
R23
−−→ 11→ 9

R22
−−→ 8→ 14

R32
−−→ 15→ III

B→ 2
R12
−−→ 3→ 5

R13
−−→ 4→ 10

R23
−−→ 11→ II

A→ 0
R11
−−→ 1→ 3

R12
−−→ 2→ 8

R22
−−→ 9→ II

For a n × n array, there are overall n(n+1) possible paths. To see this, we can start with a

specific pair of endpoints. Whenever the circuit flows from one joint to the next step, there

are n possible choices. In total, there are only (n − 1) steps between the source and the

destination. Therefore, there are n(n−1) possibilities between any pair of endpoints. Note

that there are a total n2 pairs of endpoints. Consequently, the total number of paths is

n(n−1) · n2 = n(n+1). To save all of these possible paths, the required space is even larger

than the n exponential because each path has to store all the joint numbers as well. In [89],

13

Figure 2.2: Abstraction of a general electrode array in two-dimensional space.

authors reported that the data growth is so fast that the path-based approach is unfeasible

on mainstream computer hardware and systems when n > 6.

If we assume the paths can be stored efficiently (which is true only for small n’s), then the

question is how to find those paths efficiently. This is a classical problem in graph theory,

which is solvable using either depth-first or breadth-first recursive traversal algorithms.

Since the number of possible paths is exponential, any algorithm for finding them must be

at least exponential, which is indeed the case of both depth-first and breadth-first recursive

traversal algorithms. To see this, again, in the case of breadth-first recursion, there are n

neighbors to the current position, and each of the n neighbors might lead to a depth of

(n − 1), resulting in the total of an exponential number of recursion calls.

After finding out and storing the paths, the next step is to solve the equations built upon

the paths satisfying the constraints, i.e., the total incoming circuit flow is equal to the total

outgoing circuit flow according to the Kirchhoff law. In essence, all the paths are considered

14

as the parallel circuit flows between two endpoints and can be aggregated through this form:

Z−1
i j =

n(n−1)∑
k=1

P−1
k (R)

where Pk(R) indicates the summation of resistors along the k-th path between the i-th hori-

zontal wire and the j-th vertical wire in a n×n array. Therefore, the goal is to solve a system

of n2 nonlinear equations, each of which comprises an exponential number of terms, and

each term exhibits a summation of selected unknowns as the divisor. This equation-solving

procedure itself is also compute-intensive, requiring iterative method to find roots of the un-

known resistors. The state-of-the-art is to leverage deep learning to estimate the unknowns,

e.g., conventional neural networks [116]. Once the R values are known (or, estimated), the

anomaly can be simply detected.

2.3 Algebraic-Topological Modeling of MEAs

This section will first briefly review the basics of algebraic topology and show the natural

correspondence between MEAs and the topological objects such as simplex and simpli-

cial complex. We will then demonstrate that this correspondence is mathematically sound,

based on which of those topological objects can form more sophisticated ones that exhibit

strong and otherwise unnoticeable algebraic invariant, including but not limited to homol-

ogy groups and Betti numbers. As a result, the proposed modeling and analysis lead to a

new parallelization paradigm that will be discussed in §2.4.

15

2.3.1 Topology Basics

Mathematically speaking, a topology of a set S is a collection of subsets of S , denoted T ,

satisfying certain properties1 that distinguish a topology from the set of hyperedges in a

hypergraph [111]. One example topology of S is then the power set of S , P(S), which

consists of all the possible 2|S | subsets of S . This is also called the discrete topology of

S . The tuple (S ,T) is called the topological space of S . Each of the subsets U from T is

called an open set, and the complement set S \U is a closed set by definition. A function g

from space X to Y is called continuous if ∀v is an open set in Y , then g−1(v) is an open set

in X. The composition of two continuous functions is also continuous. If both g and g−1

are continuous and bijective (one-on-one mapping), we call g a homeomorphism. Because

a homeomorphism is defined purely on open and closed sets, two topological spaces are

considered equivalent if such a homeomorphism exists. Usually, we expect to migrate a

complex problem in one topological space to another such that the problem can be solved

more efficiently or more intuitively. The aforementioned concepts and techniques are also

referred to as point-set topology.

In addition to point-set topology, there is another branch of algebraic-topological meth-

ods that study homotopy groups and homology groups. Informally, these groups break the

complex down into the smaller pieces and map the geometrical objects into algebraic ob-

jects, such as groups. Some of the hardest problems were shown to be elegantly solvable

through algebraic topology [46]. Remarkably, a unique subbranch of topology, namely

combinatorial topology, specifically studied the topological properties of distributed com-

puting models [55, 56].

1Namely, both ∅ and S are in T , a finite number of intersections of elements in T is in T , and any union
of elements in T is in T .

16

The building blocks we are interested in for topological modeling of MEAs are called

simplices (the plural form of simplex). In this work, by simplex σ we mean an abstract

simplex, defined as a set S of vertices. Any subset of σ is also a simplex, and is called a

face of σ. The dimension of σ is defined as the number of vertices minus 1:

dimσ = |σ|−1.

Geometrically, a simplexσ consists of all the possible points, edges, triangles, tetrahedrons,

and higher-dimensional objects that can be composed of the vertices in S . From a combi-

natorial perspective, a collection of σ’s can be thought of as an object representing more

sophisticated relationships among the vertices in S , which is called an abstract simplicial

complex, denoted K. The dimension of a complex is defined as the highest dimension from

any simplex in the complex:

dimK = max(dimσ),∀σ ∈ K.

It is “simplicial” in the sense that any σ1 ∩ σ2 ∈ σ1, σ2, meaning that the simplices (in-

cluding the empty set ∅) shared by σ1 and σ2 must also be valid simplices of both σ1 and

σ2. This requirement might sound self-evident, but actually might be violated in practice:

Figure 2.3 shows that the shared line segment {b, f } is not an element of

{∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.

17

a c

b

d e

f

Figure 2.3: A polyhedron of two simplices (triangles {a, b, c} and {d, e, f }) that is not a simplicial com-
plex. The overlap of two triangles is segment {b, f }, which is not an element of the set of 1-simplices
{{a, b}, {b, c}, {a, c}, {d, e}, {d, f }, {e, f }}.

2.3.2 Modeling through Homology Groups

It follows that an MEA can be represented by an abstract simplicial complex, or complex if

no ambiguity arises. Before we go on the discussion on modeling MEAs with complexes,

we need to verify that the MEA can be indeed abstracted as a complex, per the above

definition.

Proposition 1. Every microelectrode array is an abstract simplicial complex with the set

of vertices represented by the joints between wires.

Proof. We will prove this for the two-dimensional case; higher-dimensional cases follow

similarly.

First, we show that the dimension of a 2-dimensional MEA is one. Let P denote the

polyhedron of the MEA object. We will show that the dimensions of all simplices are

(i) larger than or equal to one and (ii) smaller than or equal to one, both of which will

collectively prove our claim. For (i), suppose, for contradiction, that dim P < 1, that

is, dim P = 0. However, a 0-dimensional complex has only vertices without any edges,

18

indicating an MEA with joints without wires, which is impossible, thus a contradiction.

For (ii), suppose, again for contradiction, that dim P > 1. We will use induction to show

that dim P cannot be any numbers larger than 1. We first check dim P ̸= k, k = 2. This is

easy to verify since if dim P = 2, there must be at least one triangle in P, whose dimension

is 2. However, in 2-dimensional MEAs, there are only vertical and horizontal wires, and

forming triangles is not possible. Now we start checking k+1. Recall that by the definition

of simplex, any subset of a simplex (i.e., a face) is again a simplex. It follows that if γ is

a (k + 1)-dimensional simplex, then its subset, say a k-dimensional simplex σ must be a

simplex. But we just show that a simplex cannot have dimension k, starting k = 2, leading

to a contradiction.

Second, we show that any shared portion between two simplices in an MEA is a face of

both simplices. Because the dimension of a 2-dimensional MEA is 1, as shown above, we

only need to verify that the shared simplex is either a common vertex or a shared edge. It

is trivial to check the shared edge, however, because that would indicate that the two wire-

segments overlay each other. Therefore, we only need to show that the only intersection

between any two edges is their joint (or nothing if they are parallel, which will be covered

at the end of this proof). This is indeed the case because otherwise, the two segments would

touch each other on two endpoints, making them identical. Lastly, to complete the proof,

if two simplices do not share any simplex (e.g., they are parallel wires along the vertical or

horizontal axes), then their intersection is ∅ and belongs to both simplices. □

Having shown that an MEA is a complex allows us to explore strong properties that have

been extensively studied in algebraic topology. Recall that Kirchhoff’s laws say that the

voltage changes over the “loop” of a circuit. This property can be accurately and efficiently

characterized by the topological invariant called homology groups. We do not have space

19

to elaborate either homology or groups, introductory texts on these topics can be found

in [37, 51]. In the following, we will give a very brief overview of the concepts when

they are absolutely necessary for our discussion. A group is a set G along with a binary

operation ⋆ between two elements in G such that ⋆ is closed and associative in G, and

there is a special identity element e ∈ G such that any element has a counterpart to which

its multiplication equals e:

∀g, h, k ∈ G, g ⋆ h ∈ G, (g ⋆ h) ⋆ k = g ⋆ (h ⋆ k), g ⋆ e = g,

∃g−1 ∈ G such that g ⋆ g−1 = e.

Now, think of the set C consists of all the possible subsets of line segments in an MEA,

and let us define the binary operation between any pair of subsets as modulo-2 inclusion,

meaning that any duplicate simplices will cancel out. So, two 1-dimensional simplices (i.e.,

edges), say σ1 = {a, b} ∈ G and σ2 = {b, c} ∈ G, can be calculated as

σ1 ⋆ σ2 = {a, c}.

This group is called the complex chain group in the literature of algebraic topology, usually

denoted C. Obviously, some elements of C are cycles and others are not; for example in

Figure 2.1, a sequence 0 → R11 → 1 → 3 → R12 → 2 → 8 → R22 → 9 → 7 → R21 →

6 → 0 is a cycle. We are interested in this subset of cycles, denoted D, because they are

closely related to the Kirchhoff laws. Obviously, if we apply the defined modulo-2 opera-

tion along the cycle, the eventual result would be empty (i.e., the identity element in C); in

fact, there is another name to summarize the series of modulo-2 operations above, bound-

ary2, denoted δ. It is easy to verify that the boundary δ can map the set of k+1-dimensional

2There is a more formal definition of the boundary operation in algebraic topology; we do not mention it

20

simplices into k-dimensional simplices, which results in the following sequence:

· · ·
δ
−→ Ck δ−→ Ck−1 δ

−→ · · ·C1 δ
−→ C0,

where Ck denotes a k-dimensional complex chain, or a k-chain group. The result, or image,

of the δ operation, is a subset of simplices, called the boundary group, denoted Bk, and

is called k-boundary group at dimension k. In group theory, the preimage of the empty

image, δ−1(e), is called the kernel of the map δ; therefore, Dk is the kernel of δ whose result

is e ∈ Ck−1. Dk is called the k-cycle group.

We can then define Hk = Dk/Bk, the quotient group at each dimension, which also com-

pose a series of groups, also called the homology groups. The order, or cardinality, i.e., the

number of elements, of these quotient groups can be calculated as:

|Hk|= |Dk|/|Bk|,

according to the Lagrange Law (in group theory). Because the chains of groups in simpli-

cial complexes are defined under the modulo-2 operation, the number of involved simplices

is log|Hk|, which is defined as the rank of a group, or the Betti number for Hk, denoted βk,

which can be efficiently calculated as:

βk = rank(Hk) = log|Hk|= log
(
|Dk|/|Bk|

)
= log|Dk|− log|Bk|= rank(Dk) − rank(Bk).

Betti number implies the number of k-dimensional “basic” hole embedded in the topology

of the MEA data; by “basic”, we mean that the hole is not a composition of other holes. In

as it has no direct implication to our discussion.

21

our MEA applications, the Betti number implies the parallelism for applying Kirchhoff’s

laws concurrently.

2.4 Parallel Processing of Multidimensional Electrode Arrays using

Algebraic Invariant

This section presents the potential parallelism enabled by the algebraic invariant we de-

veloped in §2.3. For completeness, we will first briefly review the baseline approach that

is built upon the vertex-correlation in graph theory [89]. Then, we describe how to apply

work-stealing to improve the parallelism. Finally, we show that the parallelism exhibited by

algebraic invariant can be naturally leveraged by popular paradigms such as multithreading

and multiprocessing across nodes.

2.4.1 Categorizing Vertex-oriented Constraints

Due to the existence of redundant or several possible sub-paths between distinct pair of end

points, we propose a new approach that is not tightly correlated to the n(n+1) paths between

end points. Instead, we concentrate just on the n joints and attempt to translate a set of paths

into a set of joints while preserving all topological features. To put it another way, our aim

is to reduce the number of constraints from O(nn) to O(nc)3 without losing any information,

i.e., lossless conversion. Such conversion is only achievable if we can somehow express

the partially redundant paths as a single joint. The key idea is inspired by the observation

3We use c to denote a constant number.

22

that many distinct end-to-end paths take the same sub-paths for a lot of times. Hence, we

try to reconstruct a different/equivalent graph topology for the n × n.

Figure 2.4 shows a concrete example of converting all feasible paths (i.e., 9 paths) be-

tween two end points C and I in Figure 2.1 where n = 3. We identify the following nine

paths from C to I to verify that the transformed topology and the original array are equal.

1. C → R13 → I

2. C → R13 → R23 → R21 → R31 → R33 → I

3. C → R13 → R33 → R32 → R22 → R23 → I

4. C → R12 → R22 → R23 → I

5. C → R12 → R32 → R33 → I

6. C → R12 → R22 → R21 → R31 → R33 → I

7. C → R11 → R31 → R33 → I

8. C → R11 → R21 → R23 → I

9. C → R11 → R31 → R32 → R22 → R23 → I

For an arbitrary pair of endpoints between the i-th horizontal wire and the j-th vertical

wire as shown in Figure 2.2, the equivalent topology can be expressed as Figure 2.5. In

essence, the most straightforward path between i and j goes only through Ri j, shown as the

top path (or the top main route) in the figure. Then, there are (n − 1) main routes starting

with Rik where k ∈ {1, · · · , j−1, j+1, · · · , n}, corresponding to the first set of voltage values

called Uai jk′ where k′ = k if k ≤ j and k′ = (k − 1) otherwise. Similarly, toward the end

of each main route, there are (n − 1) Rm j’s where m ∈ {1, · · · , i − 1, i + 1, · · · , n} and (n − 1)

Ubi jm′’s where m′ = m if m ≤ i and m′ = (m − 1) otherwise. We do not assign a variable

23

Figure 2.4: A corresponding topology between C and I as Figure 2.1. There also exists nine paths between
C and I, which are semantically equivalent to Figure 2.1 but with possible loops across sub-paths.

Figure 2.5: A corresponding topology between the i-th horizontal axis and the j-th vertical axis in a
n × n Array, in a 2D space. There are total (n − 1) Ua’s and (n − 1) Ub’s as two sets of distinct voltage
values for a specific pair of i j end points, assuming the original voltage can be measured between i and j.
The conditions of subscripts are: k ∈ {1, · · · , j− 1, j+ 1, · · · , n}; m ∈ {1, · · · , i− 1, i+ 1, · · · , n}; k′ = k if k ≤ j,
k′ = (k − 1) otherwise; and m′ = m if m ≤ i, m′ = (m − 1) otherwise.

to the end-to-end voltage between i and j (i.e., Ui j) because it can be easily measured in

practice. Both Ua and Ub have three subscripts, with i and j indicating the two endpoints

and the third subscript indicating the top-down ordering of those voltage values from 1 to

(n − 1). As we will see soon, this equivalent topology would yield a polynomial number of

equations by enforcing the constraints on those 2(n − 1) voltage points Ua’s and Ub’s, as

opposed to an exponential number of equations as discussed before.

24

Given the equivalent topology, we are able to enforce the constraints on the joints (i, j,

Ua’s, and Ub’s) instead of the paths. The saving is significant: for each pair of endpoints,

there are 2n joints (1 at i, 1 at j, (n − 1) at Ua’s, and (n − 1) at Ub’s) and n(n−1) paths;

or for the entire system, there are a polynomial number 2n · n2 = O(n3) of joints and

exponential number n(n−1) · n2 = O(nn) of paths. The following of this section explains

how we generate the equations on those 2n joints for a pair of endpoints i and j. The 2n

equations (satisfying the circuit flow constraints by the Kirchhoff Law) for each pair of

endpoints (i, j) are defined as follows:

Ui j

Zi j
=

Ui j

Ri j
+

∑
k

Ui j−Ui jk′

Rik
, # One equation at i

Ui j

Zi j
=

Ui j

Ri j
+

∑
m

Ui jm′

Rm j
, # One equation at j

Ui j−Ui jk′

Rik
=

∑
k

Ui jk′−Ui jm′

Rmk
, # n-1 eq.’s for Ua

Ui jm′

Rm j
=

∑
m

Ui jk′−Ui jm′

Rmk
, # n-1 eq.’s for Ub

where (i) k′ = k if k ≤ j and k′ = (k − 1) otherwise; and (ii) m′ = m if m ≤ i and

m′ = (m− 1) otherwise. For the entire array, there are (n− 1) · n2 unknown Ua’s, (n− 1) · n2

unknown Ub’s, and n2 unknown R’s; all Ui j’s and Zi j’s are measured values. The total

number of nonlinear equations for the entire n× n array is 2n3, with (2n− 1) · n2 unknowns.

Although a system of nonlinear equations does not guarantee unique or sensible roots (for

instance, resistance cannot be non-positive values), specifying a practical and positive Ui j

value usually precludes the problem, which is out of the scope of this chapter.

Obviously, all the joints4 can be categorized into four groups: (i) source points with 1-

4Or, equivalently, vertices in the original array.

25

to-n flow constraints; (ii) destination points with n-to-1 flow constraints; (iii) intermediate

points close to the source, with 1-to-n flow constraints; and (iv) intermediate points close

to the destination, with n-to-1 flow constraints. Each of these four types is independent of

the others, thanks to the resistors in-between. Therefore, the baseline implementation for

parallelization is to assign a dedicated thread to each of the aforementioned four constraint

types. We will refer to this parallelization simply as parallel in the following discussion

and evaluation.

In Parallel, we are restricted from having more than four threads or processes to paral-

lelize the entire set of equations. As we will see in §2.5, four threads will not saturate the

optimization room in this case. Another limitation of Parallel is that users will have to

manually split the original system of nonlinear equations into sub-systems, which might

represent a technical barrier for end-users without a deep programming background.

2.4.2 Parallelization on MEA Manifolds

From a geometric point of view, the circuit flows in an MEA can be thought of as in a

vector field of the MEA manifold, if we consider the MEA device is sufficiently “dense”

or “smooth” at a local region. By vector field, we mean a function from an n-dimensional

point p to a vector vp eminated from p; by manifold, we mean an arbitrary space where each

sufficiently small region is isometric to a Euclidean space. Then, it is a well-known result

from differential geometry that the circuit accumulation, i.e., calculus, can be efficiently

computed with the local tangent spaces (along with associated metrics such as normal

vectors) and drop the global (Euclidean) coordinates. This observation has a deeper impli-

cation than it seems: Because calculus can be applied with the local parameters, which are

26

collectively called a frame in the literature of differential geometry, we can parallelize the

computation at a finer granularity.

One advantage of adopting such a differential-geometric approach is the removal of some

constraints on manufacturing MEAs. For example, our current 2-dimensional MEA de-

vice is an equidistant grid (see Figure 2.1) with orthogonal wires. With the introduction

of frames, we can adopt the Jacobian matrix to covert any arbitrary MEA into a locally

orthogonal frame for parallel computation on the directions of partial derivatives. That is,

let Ui, j denote the voltage value at a specific node, then elementary calculus on Euclidean

space Rn tells us
∂2Ui, j

∂x∂y
=
∂2Ui, j

∂y∂x
,

where x and y represents the two orthogonal axes in R2, and in a manifold the change of

Ui, j, denoted D(U), can be calculated as

D(U) =

∂Ui
∂x

∂Ui
∂y

∂U j

∂x
∂U j

∂y

 ·
dx

dy

 ,
which can then be plugged into the usual vector calculus and possibly calculate the voltage

change along the wires by applying Stokes’ theorem to the voltages:

∫
xy−boundary

U =
"

xy−patch
D(U).

The above discussion shows that as long as the smoothness assumption holds, we can

efficiently parametrize MEAs with local voltage values in parallel. In practice, although

the spatial gap among MEA nodes is not negligible, we can repeat the measurement and

consider the vector of repeated measurements as a more realistic manifold. The practicality

27

of MEA manifolds depends on the nature of the MEA applications. That is, if the voltage

change is continuous, meaning that there is no “abrupt” change exhibited in the application,

then U is evidently differentible and integrable. In a microelectronic setup, it is usually

assumed that the voltage change is continuous [49].

In §2.4.1, we present a method taking a polynomial time (i.e., O(nc), c is a constant num-

ber, n is the number of endpoints in the MEA) to parametrize MEAs at joints rather than

paths. We demonstrate that c = 3 for a two-dimensional MEA; the complexity can be

trivially generalized into O(nk+1) for an arbitrary k-dimensional MEA. With the topologi-

cal parallelization introduced in this section, we can further improve the asymptotic time

cost by paralleling the parameterization for the homology groups, or visually speaking,

the “holes”. In an k-dimensional equidistant MEA, that means we could further improve

the parallelism by (n − 1)k-fold. Therefore, the overall complexity for parametrizing a

k-dimensional MEA could be theoretically reduced to

O(nk+1)
(n − 1)k =

O(nk+1)
O(nk)

= O(n).

That is, we would be able to achieve a method linear in time for MEA parametrization

as long as the device is “smooth” enough, by which we mean the fact that the MEA has

sufficiently dense endpoints being concurrently worked by a sufficiently large number of

processes. This will be experimentally demonstrated in the evaluation, e.g., cf. Fig. 2.9 and

Fig. 2.10.

28

2.4.3 System Optimization

2.4.3.1 Balanced Parallel

An improved parallelization can be achieved by balancing the workload through work-

stealing. If we closely examine the four constraint categories, two of them comprise a lot

more constraints: the number of sources and destination joints is n, while two intermediate

types are n2 · (n− 1)—roughly in the cubic order of the former. Therefore, in this optimiza-

tion, we allow threads to continue working on other tasks instead of waiting idly. In theory,

this approach could help reduce the end-to-end execution time if the overhead of switching

threads is nicely controlled. We will refer to this implementation as Balanced Parallel.

It should be clear that, however, our implementation takes a deterministic approach to

balance the workload rather than making the decision at runtime, which is stochastic. De-

terminacy, however, is a double-edged sword: it helps reduces the runtime overhead of

switching threads, and yet might hurt the flexibility in practice, especially for large-scale

applications. In later evaluations, we will see that Balanced Parallel achieves the highest

performance at small scales and yet delivers sub-optimal performance at larger scales. If

we step back and look at the big picture, Balanced Parallel described here still falls into

the category of coarse-grained parallelization.

2.4.3.2 Fine-grained Multiprocessing (PyMP-k).

Automatic multiprocessing (e.g., OpenMP) is designed for well-structured loops, which

is, unfortunately, not the case in electrode arrays. First, the four constraint types cannot

29

be programmatically expressed in the same loop. Second, the electrode data are highly

skewed with two hefty tasks compared to others.

To leverage the OpenMP-like parallelization, we implement the Betti-number-aware mul-

tiprocessing approach by pushing the parallelization into each of the k-dimensional loops.

That is, in addition to the parallelization between constraint types, we now enable the intra-

type parallelism regardless of the constraint type. The downside is, however, for small n

of lightweight constraints, the efficiency might be low due to the small workload (com-

pared to the overhead). If the dominant workloads are at large scales, the performance gain

might outweigh the low efficiency from lightweight workloads. As we will see this in the

evaluation section, Parma incorporated with an OpenMP-like library, PyMP5, taking the

aforementioned approach delivers the highest performance at large scales up to 100 × 100

arrays. PyMP utilizes its work-sharing constructs to enable load balancing among pro-

cesses. Constructs take an amount of work and distribute it over the specified number of

processes in a parallel region.

The above approach can be extended to multiple nodes, e.g., being implemented with

MPI. In general, the overhead across nodes (e.g., I/O cost of message passing) is higher

than the parallelization within a physical node. Therefore, inter-node parallelization is

preferable only when the workload share per process is significantly higher than the amor-

tized overhead. We will quantify the workload impact to the performance of different scales

(up to 1,024 processes) in the evaluation section.

5https://github.com/classner/pymp

https://github.com/classner/pymp

30

2.5 Implementation and Evaluation

Our evaluation focuses on three metrics: the computation time (§2.5.3), the memory foot-

print (§2.5.4), the I/O cost (§2.5.5), and the scalability (§2.5.6). Three baseline systems

are used when applicable: (i) Single-thread: the serialized implementation of MEA anal-

ysis as in the literature [89] , (ii) Parallel: the naive parallel processing based on vertex-

correlation [121], and (iii) Balanced Parallel: a work-stealing approach based on Parallel

that we discuss in this section (§2.4).

2.5.1 Implementation

We have implemented the proposed parallelization methods with Python v3.7.0, PyMP

v0.4.2. Our whole framework is implemented in Python because the state-of-the-art sys-

tem [89] upon which ours is built was implemented in Python. There are about 2,600 lines

of Python code and other scripts (BASH, R, etc.) in our current implementation, which can

be downloaded from the project online repository6.

The current implementation comprises two main parts:

• MEA: This component converts the original exponential all-pair-path problems into

polynomial ones.

• Parma: This component applies various optimizations to parallelize the formation of

the system of nonlinear equations.

6https://github.com/Taotopps2006/ParMA

https://github.com/Taotopps2006/ParMA

31

We have evaluated the system prototype on up to 100 × 100 arrays or end points. The

electrode array hardware comprised 64 × 64 wires built in the wet lab of our collaborators

from the Department of Biomedical Engineering. The environment can be conveniently set

up using popular Python frameworks such as Anaconda.

2.5.2 Experimental Setup

Our test bed consists of an on-premises system comprised of a many-core server i.e., HP

Z820 server and a high-performance computing (HPC) cluster:

1. The HP Z820 server has 32 Intel Xeon E5-2670 cores, 128 GB RAM, a 500 GB SSD,

and a 2 TB HDD; and

2. The high-performance computing (HPC) cluster is comprised of 58 nodes intercon-

nected with FDR InfiniBand. Each node is equipped with an Intel Core-i7 2.6 GHz

32-core CPU along with 296 GB 2400 MHz DDR4 memory. It has a remote 2.1 PB

storage system managed by GPFS [103]. We use up to 32 nodes, or 1,024 cores, in

the following experiments.

All test beds are installed with Ubuntu 16.04, Python 3.7.0, NumPy 1.15.4, SciPy 0.17.0,

PyMP v0.4.2, mpi4py v2.0.0, and mpich2 v1.4.1.The performance results we have obtained

and illustrated graphically are an average of multiple trials.

All of the experimental data (up to 100 × 100) are obtained from a microelectrode ar-

ray device measuring (unknown) numbers of cells atop their media at a wet lab from the

Department of Biomedical Engineering. The data are originally saved as Excel files and

32

Figure 2.6: Various approaches for parallel formulation of Kirchhoff law equations. The proposed joint
constraints enable various parallelization possibilities, namely Parallel, Balanced Parallel, and PyMP. PyMP
delivers the highest performance at scales n ≥ 20, despite of lower performance than Balanced Parallel at
n = 10 where the parallelization overhead outweighs the speedup.

converted into text files before being fed to the Parma system prototype. The data at the

wet lab are measured four times a day: 0 hour, 6 hour, 12 hour, and 24 hour, after the device

setup is completed. The resistance values of cells range between 2,000 and 11,000 Kilohm,

while the electrical voltage is 5 volts.

2.5.3 Computation Time

In Figure 2.6, we report the performance of three parallelization optimizations applied

to Parma. The experiments were carried out on the on-premises system. PyMP delivers

the highest performance at scales n ≥ 20, despite of lower performance than Balanced

Parallel at n = 10 where the parallelization overhead outweighs the speedup. Since

PyMP seems to perform best at larger scales, which is not surprising as it offers fine-grained

parallelism, the remainder of this subsection will further investigate the properties of PyMP

in more detail unless otherwise noted.

In addition, we report the overall compute time at various levels of parallelism k ∈

33

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

C
o
m

p
u
te

 T
im

e
(s

ec
o
n
d
s)

Number of End Points (N)

single-threaded
pymp-2

pymp-4
pymp-8

pymp-16
pymp-32

Figure 2.7: Computation time of various parallelism in PyMP. Applying fine-grained multiprocessing
leads to a linear decrease in the overall compute time per workload at scales n ≥ 20.

{2, · · · , 32} in PyMP without the I/O time in Figure 2.7. The experiments were carried out

on the HPC cluster. It can be observed that the improvement in performance or speedup be-

comes more significant at scales n ≥ 20 for the various levels of parallelism k ∈ {2, · · · , 32}

in PyMP despite of the inconsistent performance when n = 10.

2.5.4 Memory Footprint

We report the memory characterization at various scales, as reported in Figure 2.8. For

all the scales of n ∈ {10..100}, the peak memory usage is about the same regardless of

data parallelism. However, a higher parallelism on large scales (n ≥ 40) implies a higher

utilization of the memory: for instance, two threads (k = 2) on a 100×100 array (n = 100)

incur a low memory footprint in about 60% of time while four threads (k = 4) incur the

same memory footprint only in about 30% of time. At small scales (n ≤ 20), little difference

is observed. The memory usage is proportional to the rank of n and is under 20 GB for a

100 × 100 array.

34

This experiment shows that there is negligible memory overhead while improving tempo-

ral performance due to the spawning of new processes for any selected number of endpoints

or scales. For each selected scale, the peak memory usage for a different number of threads

remains almost the same.

(a) n=10 (b) n=20

(c) n=40 (d) n=60

(e) n=80 (f) n=100

Figure 2.8: Cummulative Distribution Functions (CDFs) of Memory Usage. For all the scales of n ∈
{10..100}, the peak memory usage is about the same regardless of data parallelism.

35

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
ti

o
n
 T

im
e
 w

it
h
 I

/O
s

(s
e
c
o
n
d
s)

Number of End Points (N)

single-threaded
pymp-2

pymp-4
pymp-8

pymp-16
pymp-32

Figure 2.9: The end-to-end time of various degrees of parallelism in PyMP, including disk I/Os. Utiliza-
tion of more threads k ≥ 2 starting from a low rank of n = 20 makes significant effect to the overall I/O time.

2.5.5 I/O Cost

We report the overall time taken to generate the set of equations and write them to a file in

disk with Parma. The experiments were carried out on the HPC cluster. Figure 2.9 shows

the results at up to n = 100. In comparison with results reported in Figure 2.7, the time

taken to write the set of equations to disk exhibit noticeable differences at scales n ≥ 20 for

threads at various levels of parallelism. The results confirm our conjecture that spawning

more threads is preferable for larger workloads such that the overhead can be amortized.

2.5.6 Scalability

We report the scalability of Parma in terms of spawning more processes as reported in

Figure 2.10. Due to a maximum number of 32 physical cores on a single server, we

have implemented the topological parallelism with MPI. We deploy the MPI implemen-

tation on up to 1,024 cores, and observe a linear strong scalability for practical workloads

36

 1

 10

 100

 1000

 10000

 3
2

 6
4

 1
2
8

 2
5
6

 5
1
2

 1
0
2
4

C
o

m
p

u
te

 T
im

e
w

it
h

o
u

t
I/

O
s

(s
ec

o
n

d
s)

Number of Processes

10*10
20*20
30*30

40*40
50*50
60*60

70*70
80*80
90*90

Figure 2.10: Scalability of Parma across various number of processes and varying workloads.

(e.g., 50×50 or larger MEAs). For smaller workloads (e.g., 10×10 and 20×20 MEAs), the

inter-node parallelism is not effective and an intra-node parallelization (e.g., OpenMP) is

recommended.

2.6 Related Work

Loke et al. [77] proposed techniques for the fast computation of electrode arrays for two-

dimensional (2D) resistivity surveys. An automatic graph-based method [130] was pro-

posed for localizing distantly-spaced cochlear implant electrode arrays in clinical com-

puted tomography with sub-voxel accuracy. In [40], a method based on the concept of

Space-Amplitude Transform was proposed to transform time recordings from a 2D elec-

trode array as a one-dimensional (1D) plus time signals in order to speed up and make

simpler the data analysis. Kiele et al. presented the principles for a robust and precise

37

alignment monitoring system, which allows the detection of linear and rotational displace-

ments of two parallel electrode arrays [67]. In [33], finite element method (FEM) modeling

was proposed for studying the impact of simultaneous impedance measurement of 100 elec-

trodes of a Utah Electrode Array (UEA). Yassin et al. [127] proposed an energy-efficient

spike data extraction solution for a high-density electrode array capable of reducing the

data to be transferred by over 85%. Buccino et al. [21] proposed a semi-automatic ap-

proach involving an online implementation of the Independent Component Analysis (ICA)

algorithm for real-time spike sorting of high-density Multi-Electrode Array data. Also, a

method to automate spike sorting in electrical stimulation experiments using large multi-

electrode arrays, where artifacts are a concern, was proposed in [80].

While aforementioned literature proposed approaches to alleviate existing challenges en-

countered with the utilization of electrode arrays in various scenarios, this work instead,

for the first time, focuses on a new approach to transform the original problem from spatial

domain to temporal domain and enables unprecedented parallelization possibilities.

2.7 Summary

This chapter addresses the long-existing computational challenge of multidimensional data

in one of the most widely used engineering devices, namely microelectronic array (MEA).

We propose a new algebraic model to abstract the entities in MEA; the new model then al-

lows us to develop new methodology to parallelize the computation dictated by the Kirch-

hoff law. We implement a system prototype—namely Parma—with various optimizations

backed by the proposed algebraic model and parallelization, and evaluate its performance

on up to 1,024 cores. Experimental results show that the proposed approach significantly

38

outperforms the state-of-the-practice: the computation time is orders of magnitude faster;

the I/O cost is proportionally reduced; and the memory is efficiently utilized.

39

CHAPTER 3

TOWARD EFFICIENT HOMOMORPHIC ENCRYPTION FOR OUTSOURCED

DATABASES THROUGH PARALLEL CACHING

3.1 Introduction

3.1.1 Background and Motivation

While increasingly more applications are deployed on the public clouds, one of the biggest

challenges lies in confidentiality, especially for those applications that usually touch on

sensitive data in the fields such as public health [62], bioinformatics [132], and financial

services [58]. Although various encryption schemes (e.g., AES [87], RSA [99]) can be

applied before the data are sent to the cloud, it would defeat the purpose of cloud comput-

ing if the users must download and decrypt the encrypted data for processing: the cloud in

this case works merely as remote storage with no computing functionalities. One plausible

solution to the above confidentiality problem is adopting specific encryption schemes such

that the ciphertexts stored on the cloud can perform certain computations, which are known

as homomorphic encryption (HE). Although most HE schemes support only primitive arith-

metic operations such as addition and multiplication, it turns out that many commonly-used

operations (e.g., comparison) can be constructed on top of circuits of additions and mul-

tiplications [43]. However, a scheme supporting both addition and multiplication over

ciphertexts, namely fully homomorphic encryption (FHE), usually incurs a much higher

performance overhead than (partial) HE, or PHE schemes by orders of magnitude. These

40

PHE schemes can be categorized into two types depending on how the key is distributed.

The first type of PHE schemes, e.g., Symmetria [102], is implemented as a symmetric op-

eration for the scenarios where a secret key can be securely shared among parties. In order

to ensure high security, Symmetria introduces a randomization component in the ciphertext

that keeps growing, which might cause significant performance overhead. Seabed [92] is

another symmetric PHE cryptosystem but only supports primitive additions (e.g., no sub-

traction or negation).

The second type of PHE scheme, e.g., Paillier [91], is implemented as an asymmetric

operation with a pair of public and private keys. An asymmetric scheme employs hard

mathematical problems in number theory and group theory to safely distribute the pub-

lic keys, rendering it orders of magnitude slower than a symmetric scheme. Although a

hybrid scheme can be used with symmetric key for encryption and asymmetric operation

for key distribution, key distribution is needed per session in database-as-a-service (DaaS),

implying that asymmetric operations would be invoked routinely.

Although PHE is much more efficient than FHE, PHE still cannot meet the performance

requirements for data-intensive workloads in DaaS. As we will show later in this chap-

ter (§2.5), the state-of-the-art PHE scheme, Symmetria [102], can only encrypt data at a

rate of 3 Mbps—much lower than the commodity network bandwidth (cf. Fig. 3.11) that

is in the order of tens of Mbps or even Gbps. That being said, the performance bottle-

neck of data-intensive applications, such as video analysis [31, 52], lies at the encryption

subsystem.

Our long-term goal is to improve the performance of homomorphic encryption applied to

large volumes of outsourced data; this chapter attains the above goal, as the first step, by

41

proposing a new caching approach to reduce the computational overhead in both symmetric-

and asymmetric-PHE schemes for outsourced databases or DaaS in cloud computing. It is

our hope that data-intensive applications would better exploit the high security and low

overhead of PHE schemes by incorporating the proposed technique.

3.1.2 Contributions

The key insights of our proposed caching technique include: (i) precomputing and caching

some homomorphic ciphertexts before encrypting the large volume of plaintexts; (ii) ex-

panding a requested plaintext into a summation of additive radix entries; (iii) constructing

the ciphertexts with randomized homomorphic addition, without touching on encryption

primitives; and (iv) enabling incremental encryption based on the extended entries of the

cached ciphertexts.

Formally, this chapter discusses the following technical contributions:

• Firstly, we propose an algorithm to reconstruct the ciphertext using radixes in the

context of homomorphic encryption (HE). We name the new algorithm radix homo-

morphic encryption, or RHE. We conduct a thorough analysis of parametrization for

RHE. (§3.3)

• Secondly, we design a full-fledged protocol called Radix-additive caching for homo-

morphic encryption (Rache), which adopts RHE to securely encrypt a large volume

of data. We articulate the security goal, threat model, and security assumptions, un-

der which the RHE protocol is proven secure. (§3.4)

42

• Thirdly, we extend Rache into an incremental protocol that allows for efficient ho-

momorphic encryption of data streams. We also demonstrate the provable security

of this incremental protocol. (§3.5)

3.2 Preliminaries and Related Work

3.2.1 Confidentiality of Outsourced Data

We review four important techniques to ensure the confidentiality of outsourced data: en-

crypted storage, encrypted tuples, encrypted fields, and secure multi-party computation.

Encrypted Storage. The database instance from the cloud vendor is considered as stor-

age of encrypted data and the client is responsible for nontrivial queries. This solution is

viable only if (i) the relations touched on by the query are small enough that the network

overhead of transmitting those relations is acceptable, and (ii) the user has the capability

(both computation and storage) to execute the query locally. We stress that this solution

might defeat the purpose of outsourcing the database service to the cloud.

Encrypted Tuples. Every tuple of the original relation R is encrypted into a ciphertext

that is stored in column T of a new relation Rs. For each attribute Ai in R, there is a corre-

sponding attribute As
i in Rs, whose value is the index of R.Ai. The index is usually assigned

by a random integer based on some partitioning criteria and can be retrieved with the meta-

data stored on the client, i.e., the user’s local node. As a result, the schema stored at the

cloud provider is Rs(T, As
1, . . . , A

s
i , . . .). When the user submits a query Q, the client splits

43

Q into two subqueries Qs and Qc. Qs serves as a filter to eliminate those unqualified tuples

based on the indices in Rs and transmits the qualified tuples (in ciphertexts) to the client.

Qc then ensures that those false-positive tuples are eliminated after the encrypted tuples

are decrypted using the secret key presumably stored on the client. This approach involves

both the client (i.e., the user) and the server (i.e., the cloud provider) when completing a

query, often referred to as information hiding approaches [47].

Encrypted Fields. The third approach aims to minimize the involvement of clients when

processing the query over the encrypted data stored at the cloud vendor. The idea is to

encrypt the relations at a finer granularity—each attribute of a relation is separately en-

crypted. The key challenge of this approach lies in its expressiveness, e.g., how to apply

arithmetic or string operations over the encrypted fields. While fully homomorphic encryp-

tion (FHE) [43] can support a large set of computing problems, the performance of current

FHE implementations cannot meet the requirements of practical database systems [93,94].

An alternative solution is partially homomorphic encryption (PHE) schemes [39,91], which

are orders of magnitude faster than FHE but only support a single algebraic operation. Tra-

ditional PHE schemes are designed for public-key (asymmetric) encryption, which is desir-

able for straightforward key distribution over insecure channels but significantly more ex-

pensive than secret-key (symmetric) encryption. However, in the context of DaaS, the user

usually serves as both the sender and the receiver and there is no need to distribute the key.

To this end, symmetric (partially) homomorphic encryption (SHE), was proposed [92,102].

Secure Multi-Party Computation (MPC). In addition to HE-based methods, another

widely-used technique for data privacy is secure multi-party computation (MPC), which

originated from [126] and has been mostly built upon oblivious transfer [45, 64], threshold

homomorphic encryption [28, 29], and secret sharing [96, 106]. MPC has been applied in

multiple machine learning frameworks, such as DeepSecure [100], SecureML [84], and

44

ABY [34].

3.2.2 Homomorphic Encryption

The term homomorphic or homomorphism originates from group theory, which depicts

such a function that can be applied either before or after the operations conducted in the

domain or the image. Formally, we have the following mathematical definition.

Definition 1 (Homomorphism). Given two groups (F,⊕) and (G,⊗), a function h : F → G

is called a homomorphism if h(f1 ⊕ f2) = h(f1) ⊗ h(f2), ∀ f1, f2 ∈ F.

There are many examples of homomorphism. The following is a simple one we have seen

in basic mathematics.

Example 1. We can define two groups F = (R,+) and G = (R+,×) with the regular

arithmetic operations, where R and R+ denotes real numbers and positive real numbers,

respectively. Moreover, we define a function h(x) = 2x, where x ∈ R. Evidently, the

following equation holds: h(a + b) = 2a+b = 2a × 2b = h(a) × h(b). △

Homomorphic encryption (HE) is a specific type of encryption where certain operations

between operands can be performed directly on the ciphertexts in the sense that the result

can be decrypted into the same value as if the operations were applied to the plaintexts.

If we connect HE to the group-theoretical definition of homomorphism, the encryption

function can be thought of the homomorphism, the set of plaintexts as the domain of the

homomorphism, and the set of ciphertexts as the image of the homomorphism.

45

An HE scheme that supports the arithmetic addition over the ciphertexts is called additive.

That is to say, we can define an addition operation ⊕ between two ciphertexts, say enc(x)

and enc(y) encrypted by function enc(·), such that

dec(enc(x) ⊕ enc(y)) = x + y, (3.1)

where dec(·) denotes the decryption function corresponding to enc(·). It should be noted

that Eq. (3.1) does not necessarily imply a mathematical homomorphism as defined in

Def. 1; that is, we generally do not require enc(x) ⊕ enc(y) = enc(x + y). This is more of

a practical security consideration rather than a mathematical one: randomness is always

required for cryptographic schemes in practice (e.g., to defeat chosen-plaintext cryptanal-

ysis), and therefore, repeated encryption of the same plaintext should look different, i.e.,

random.

Many encryption schemes in the literature are homomorphic, such as Symmetria [102]

and Paillier [91]. Symmetria is a symmetric encryption scheme, meaning that a single

secret key is used to both encrypt and decrypt the messages. By contrast, Paillier is asym-

metric, where a pair of public and private keys are used for encryption and decryption,

respectively. Due to the expensive arithmetical operations performed by the asymmetric

encryption, Paillier is orders of magnitude slower than Symmetria. However, Paillier is

particularly useful when there is no secure channel to share the secret key among parties.

An HE scheme that supports multiplication is called multiplicative. Symmetria [102] is

also multiplicative using a distinct scheme than the one for addition. Other well-known

multiplicative HE schemes include RSA [99] and ElGamal [39]. A multiplicative HE

46

scheme ensures the following equality,

dec(enc(a) ⊗ enc(b)) = a × b,

where ⊗ denotes the multiplication defined over ciphertexts.

An HE scheme that supports both addition and multiplication is called a fully HE (FHE)

scheme. This requirement should not be confused with specific addition and multiplication

parameters, such as Symmetria [102] and NTRU [57]. That is, the addition and multiplica-

tion must be supported homomorphically under exactly the same scheme:

dec(enc(a) ⊕ enc(b)) = a + b

dec(enc(a) ⊗ enc(b)) = a × b

It turned out to be extremely hard to construct FHE schemes until Gentry [43] demonstrated

that such a scheme can be constructed using lattice theory. Indeed, multiple implementa-

tions are available today, such as BGV [48], BFV [41], and CKKS [26]. Nonetheless, the

performance overhead of FHE implementations still cannot meet the requirement of many

real-world applications, especially those data-intensive applications. Two popular open-

source libraries of FHE schemes are IBM HElib [54] and Microsoft SEAL [105]. Some

more recent implementations are optimized for machine learning and vector computation,

such as TenSEAL [15].

A lot of research efforts have been put to optimize the performance of HE schemes. For

instance, hardware-based optimization [36, 98, 101] has been heavily exploited. A recent

article argues that the current performance bottleneck of HE lies in the memory wall [32].

The notion of incremental cryptography was first formalized in 1990s [13, 14], mainly

47

from a theoretical perspective. More recent work on incremental encryption schemes can

be found in [8,66,82]. Incremental encryption recently draws a lot of research interests for

efficient data encoding in the resource-constraint contexts such as mobile computing [18,

63, 119].

3.2.3 Provable Security

When employing an encryption scheme in an application, it is highly desirable to demon-

strate its security in a provable manner. Formally, we need to clearly identify the following

three important pieces for provable security of a given encryption scheme: security goal,

threat model, and assumptions. The security goal spells out the desired effect when the

application is under attack; the threat model articulates what an adversary can do with

the attack, such as what information of the plaintext/ciphertext can be collected and the

resource/time limitation of the attack; the assumption lists the presumed specifics of the

subsystems or components of the cryptographic scheme, which is usually an important

building block for the security proof, e.g., reduction. The security goal and threat model

are usually called security definition collectively.

One well-accepted security definition with a good balance between efficiency and security

is that the adversary is able to launch a chosen-plaintext attack (CPA), defined as follows.

Definition 2 (Chosen-Plaintext Attack). Given a security parameter n, i.e., the bitstring

length of the key, an adversary can obtain up to poly(n) of plaintext-ciphertext pairs (m, c),

where m is arbitrarily chosen by the adversary and poly(·) is a polynomial function on

n. With such information, the adversary tries to decrypt a c′ that is not included in the

polynomial number of known ciphertexts.

48

The polynomial requirement is only for practical reasons, as we usually assume that the

adversary should only be able to run a polynomial algorithm without unlimited resources.

Accordingly, we want to design encryption schemes that are CPA secure: even if the ad-

versaryA can obtain those extra pieces of information,A should not be able to decode the

ciphertext better than a random guess up to a very small probability. To quantify the degree

of this small probability, negligible function is defined as below.

Definition 3. A function µ(·) is called negligible if for all polynomials poly(n) the inequality

µ(n) < 1
poly(n) holds for sufficiently large n’s.

For completeness, we list the following lemmas for negligible functions that will be used

in later sections. We state them without the proofs, which can be found in introductory

cryptography or complexity theory texts.

Lemma 1 (Summation of two negligible functions is a negligible function). Let µ1(n) and

µ2(n) be both negligible functions. Then µ(n) is a negligible function that is defined as

µ(n)
def
= µ1(n) + µ2(n).

Lemma 2 (Quotient of a polynomial function over an exponential function is a negligible

function). poly(n)
2n is a negligible function. That is, ∃N ∈ N, ∀n ≥ N : poly(n)

2n < 1
poly(n) , where

N denotes natural numbers.

49

3.3 RHE: Radix Homomorphic Encryption

3.3.1 Overview

Our key observation is that although a HE encryption operation is costly, the algebraic

operation over the ciphertexts is comparatively cheaper. While the concrete performance

gap is dependent on how a specific HE scheme is implemented and to which data the

scheme is applied, we exemplify such gaps in our experiments: Figure 3.2 in §3.6.4.1

shows that the addition of two ciphertexts takes less than 1% time than the encryption of a

plaintext in Paillier [91]. With that said, if we convert the expensive encryption operation

of a given plaintext into an equivalent set of algebraic operations over existing (i.e., cached)

ciphertexts, we may obtain a performance edge. There are two questions, however, in this

idea.

First, which ciphertexts should we cache? Evidently, we can always cache only he(1)

and then compute he(m) of n-bit plaintext m with ⊕m
i=1he(1). However, the accumulative

overhead caused by a lot of homomorphic additions would at some point outweigh the

encryption cost due to O(2n) additions. We propose to only cache a set of selective cipher-

texts; specifically, let r be a radix (and we will show how to pick r in §3.3.3), then the

ciphertexts of r-power series will be pre-computed: he(ri), where ri ≤ 2n. By doing so,

the target ciphertext will be constructed through O(n) additions. It should be noted that the

target ciphertext at this point is merely a deterministic ciphertext with no security.

Second, how to ensure the randomness of the ciphertext? Randomness must be added to

the ciphertext to achieve a practical security level, e.g., anti- chosen-plaintext attack (CPA).

50

Informally, the randomness must be probabilistic small, which usually takes the form of

picking a piece of data out of an exponential space. From the above discussion, we have

n cached ciphertexts; we will use these ciphertexts as ingredients to add a random he(0) to

the deterministic ciphertext. The random he(0) is constructed by working on every radix-

power ri: randomly adding radix-power he(ri) and if so, then subtracting r times of he(ri−1).

Overall, there are O(rn) homomorphic additions that will result in he(0), which is randomly

selected from an exponential space O(2n). The above radix-wise homomorphic additions

can be parallelized with the many-core architecture in modern CPUs. Before formalizing

the algorithm, we illustrate the idea of Rache in an oversimplified scenario Example 2.

Example 2. Let’s try to encrypt number 100 using the Rache encryption scheme. For the

sake of simplicity, let r = 2, Ctxt[] be the list of cached r-power ciphertexts, and ⊕ be

the addition on the ciphertexts. Obviously, 100 = 64 + 32 + 4 = r6 + r5 + r2. Therefore,

Rache(100) = Rache(r6) ⊕ Rache(r5) ⊕ Rache(r2) = Ctxt[6] ⊕ Ctxt[5] ⊕ Ctxt[2]. That

is, instead of calculating Rache(100) using sophisticated number-theoretical rules, we can

simply construct Rache(100) through two homomorphic additions of cached ciphertexts,

which are much simpler and faster. △

3.3.2 Algorithm

Algorithm 1 formalizes the radix-based procedure. Let n denote the security parameter of

the underlying PHE scheme, i.e., the bitstring length of the key k that is usually generated

by k ← Gen(1n), where Gen() is a pseudorandom generator. For the sake of clarity, we

assume that the original plaintext value can be converted into a bitstring of length n or

smaller; this should not be a technical limitation in practice, as we can always split a large

value into multiple blocks of n-bits, each of which is encrypted with randomization. In

51

Algorithm 1: RHE: Radix Homomorphic Encryption
Input: An array of plaintexts Ptxt[], each being a padded n-bitstring; A

homomorphic encryption function he(·) s.t.
∀ai ∈ Ptxt[],

⊕
i he(ai) = he(

∑
i ai); Radix r;

Output: An array of ciphertexts Ctxt[] such that ∀i, he−1 (Ctxt[i]) == Ptxt[i],
where he−1 denotes the decryption function;

// Initialization
1 m B 2n − 1
2 for i = 0; i <= ⌊logr m⌋; i + + do
3 radixes[i] B he(ri)
4 end
5 radixes

[
⌊logr m⌋ + 1

]
B he(0)

// Encoding
6 for i = 0; i ¡ Ptxt.size(); i++ do
7 for j = 0; j <= ⌊logr m⌋; j + + do
8 idx[j] B (Ptxt[i] / r j) % r
9 end

// Ptxt[i] =
∑

j idx[j] × r j

10 Ctxt[i] B
⊕⌊logr m⌋

k=0

⊕idx[k]
j=1 radixes[k]

// Randomization

11 isSwap
$
←− {0, 1}

12 if 1 == isSwap then
13 Ctxt[i] B Ctxt[i] ⊕ radixes

[
⌊logr m⌋ + 1

]
14 end
15 for j = 1; j < ⌊logr m⌋; j + + do
16 isSwap

$
←− {0, 1}

17 if 1 == isSwap then
18 Ctxt[i] B Ctxt[i] ⊕ radixes

[
j
]

19 for k = 0; k < r; k + + do
20 Ctxt[i] B Ctxt[i] ⊖ radixes

[
j − 1

]
21 end
22 end
23 end
24 end

52

other words, we construct a block cipher using Algorithm 1. If there are identical blocks,

the security is nonetheless guaranteed because Algorithm 1 is randomized (Lines 11 and

16).

Lines 1–5 initialize the reused entries of the integral powers of radix r for future con-

struction of ciphertexts. Specifically, Line 5 precomputes the homomorphic encryption of

plaintext 0, which will be used for the base case during the randomization (Lines 11–14).

Lines 6–24 encode the plaintexts, each of which is computed directly over the encoded

radixes that are initialized at the beginning of the protocol. For each plaintext, Lines 11–14

randomize the radix summation of ciphertexts such that repeated plaintexts will result in

distinct ciphertexts. The idea of the randomization is to iterate every precomputed cipher-

text radixes[i] and randomly add it to the ciphertext; if the addition happens, we subtract

ciphertext radixes[i − 1] repeatedly r times.

The correctness of Algorithm 1 can be verified by straightforward algebraic computation.

We skip the full computation here due to space constraints.

3.3.3 Parameterization

3.3.3.1 Heuristic Radix Selection

This section will discuss heuristic methods to decide the radix value r in practice. The

discussion will remain mostly informal as there are unlimited factors in real-world appli-

cations; a more rigorous approach to be presented in the next section (§3.3.3.2) focuses on

the worst-case scenario, where we can make more assumptions of the factors that allow us

53

to conduct a more quantitative analysis.

In practice, the initialization cost can be thought of a constant cost because it can be

amortized by a large number of follow-up computations. As a result, the key trade-off lies

at the cost of ⊕’s and that of encrypting the plaintext message m. Let g denote the ratio of

computational costs of ciphertext addition over homomorphic encryption:

g def
=

Time(Ctxt[i] ⊕Ctxt[j])
Time(Rache(m))

,

where Time() denotes the time function and Ctxt[] denotes the list of cached ciphertexts.

Evidently, the bottom line is to ensure the average cost of
∑

k∈K Ctxt[k] for a requested

ciphertext is lower than that of Rache(m), or g|K|< 1, because otherwise there is no per-

formance improvement from caching the ciphertext. In a specific HE scheme, g can be

estimated using some benchmarks; for example, Figure 3.2 shows that ciphertext addition

is two orders of magnitude faster than encryption in Paillier: g = 0.01. This implies that,

on average, |K| should be smaller than 100. With radix r, the maximal possible upper

bound would be r100. Therefore, we need to pick r to ensure that the maximal value of the

plaintext set is smaller than r100 in Paillier. If M is the maximal message, then we require

M < r100 or r > M
1

100 . If the plaintext space is a set of 256-bit strings, then M = 2256 and

r > (2256)
1

100 > 22.56 ≈ 5.9. Therefore, r can be set to 6.

3.3.3.2 Optimal Radix in the Worst Case

This section will investigate the optimal radix in the worst case. Let m ≥ 2 denote the

maximal value to be encrypted in the application. Let r ≥ 2 denote the radix or base of

the homomorphic encryption. Obviously, given an arbitrary number x, where 0 ≤ x ≤ m,

54

there are k + 1 radix entries: r0, r1, . . . , rk, where k = ⌊logm
r ⌋. Let 0 ≤ κ ≤ k. In the worst

case, each rκ radix-entry incurs r− 2 times of homomorphic addition, i.e., when computing

(r − 1) · xκ. Since one more homomorphic addition needs to be taken for the summation

of each radix, the overall times of homomorphic addition, in the worst case when m is one

less than the next integral power of r (i.e., ⌊logm
r ⌋ = logm+1

r −1), is

f (r) = (r − 2)(k + 1) + k = (r − 1) logm+1
r −1.

Our goal is therefore to find out the optimal r that minimizes f (r). This can be achieved

by calculating the first-order and second-order derivatives of f (r). We skip the detailed

computation here for the sake of space; the following elementary calculus and algebra

sketch the procedure to derive that r = 2 leads to the minimum number of homomorphic

additions in the worst case.

f ′(r) =
d
dr

f (r) = ln(m + 1) · (ln r)−2 · r−1 · (r ln r − r + 1) .

The stationary point is therefore the solution to g(r) = f ′(r) = 0, which yields r = 1. Since

we require r ≥ 2, we need to find another qualified radix. First, we calculate g(2):

g(2) = 2 ln 2 − 2 + 1 ≥ 2 × 0.69 − 1 > 0.

Then, let r ≥ 3, therefore ln r > 1, which yields:

g(r)|r≥3 = r ln r − r + 1 = r(ln r − 1) + 1 > 0.

55

Note that by definition, the following equation holds:

f ′(r) = ln(m + 1) · (ln r)−2 · r−1 · g(r).

If we assume m ≥ 2, then ln(m + 1) > 0. Both (ln r)−2 and r−1 factors are obviously pos-

itive. Therefore, f ′(r) is always positive, meaning that f (r) is a monotonically increasing

function. It follows that the minimal qualified radix r = 2 leads to the minimum number of

homomorphic additions.

3.4 Rache: Radix-Additive Caching for Homomorphic Encryption

3.4.1 Security Definitions and Assumptions

The security goal of our target outsourced databases is computational secrecy, which im-

plies that any adversary cannot differentiate between the encrypted data and a random string

with a probability significantly larger than 50%, coined as indistinguishability. This means

that when an adversary is given a ciphertext, he or she cannot do much better than randomly

guessing the corresponding plaintext with reasonable resources. Technically, the degree of

closeness is quantified by a negligible function; we refer readers to §3.2.3 for more techni-

cal details. Indeed, if we want to be strict on the 50% requirement, then it is called perfect

secrecy (information-theoretical secrecy), which is beyond the scope of this chapter.

In the context of computational secrecy, we assume that the adversary cannot obtain un-

limited computing resources and can only run probabilistic polynomial-time (PPT) algo-

56

rithms. We also assume that the adversary can launch a chosen-plaintext attack (CPA),

meaning that the adversary can obtain poly(n) arbitrary pairs of (plaintext, ciphertext),

where n denotes the security parameter and poly(·) denotes a polynomial function. We call

a scheme IND-CPA if it exhibits indistinguishability under CPA.

Finally, we assume the primitive homomorphic encryption schemes, into which radix-

caching is integrated, are IND-CPA. This is technically required because we will need

this assumption to prove that Rache is IND-CPA. We call those original homomorphic

encryption schemes base schemes, whose encryption function must not be deterministic—

a necessary (but not sufficient) requirement for any scheme to be IND-CPA. In practice,

many existing base schemes have been proven IND-CPA; for instance, both base schemes

(Paillier [91], Symmetria [102]) used by Rache are IND-CPA.

3.4.2 Scheme Description

We start with integrating RHE into a symmetric homomorphic encryption scheme. We

denote a quadruple

Π = (Gen, Enc,Dec,⊕)

as a symmetric homomorphic encryption, where Gen denotes the function to generate a

random key k of length n, Enc denotes the encryption function parameterized with k to

encode a plaintext m into a ciphertext c, Dec denotes a decryption function with parameter k

to decode c back into m, and ⊕ denotes the additive operation over two ciphertexts Enc(m1)

and Enc(m2) such that

Deck(Enck(m1) ⊕ Enck(m2)) = m1 + m2.

57

A symmetric Rache scheme built upon Π is a triple

Π̃(Gen,RHE,Dec), (3.2)

where RHE denotes the procedure defined in Algorithm 1. Note that RHE(m) is equal to

Enc(m) up to O(n) random ciphertexts of zeros (out of the overall rn parameter space):

RHEk(m) ≡ Enck(m)

⊕
I

Enck(0)

 ,
where I is an index set whose cardinality is a polynomial on n. By definition, the equality

Deck(RHEk(m)) = m holds.

An asymmetric Rache scheme can be similarly built upon an asymmetric base HE scheme,

except for the keys for Enc and Dec: two random keys—public key pk and private key sk—

are generated by Gen. For instance, we now require the following equality holds when RHE

is built upon an asymmetric base scheme:

Decsk(RHEpk(m1) ⊕ RHEpk(m2)) = m1 + m2.

Because RHE touches on only the encryption function, there is no need to differentiate

between symmetric and asymmetric base schemes. Therefore, in the following discussion,

we assume the underlying base scheme is symmetric for more succinct notations.

58

3.4.3 Provable Security

This subsection proves that the Rache scheme is IND-CPA. We first explain the intuition

why Rache is CPA-secure and then give the formal proof.

Recall that Rache precomputes and caches logr 2n radix entries. If we assume the system

picks the optimal r = 2 in the worst case, then the scheme will simply cache n radix

entries. Therefore, those ciphertexts cached by Rache should not significantly help the

adversary—who presumably runs a probabilistic polynomial-time (PPT) Turing machine—

as the overall space is exponential (Lines 11–23, Algorithm 1).

Technically, we want to reduce the problem of breaking the base homomorphic encryp-

tion schemeΠ to the problem of breaking its Rache extension Π̃. That is, if a PPT adversary

A takes an algorithm alg to break Π̃, thenA can efficiently (i.e., in polynomial time) con-

struct another algorithm alg′ that calls alg as a subroutine to break Π as well (simulating

alg′ with alg). However, we assume that the base scheme is IND-CPA, so the above cannot

happen—leading to a contradiction. We formalize the above in the following proposition.

Proposition 2. If HE scheme Π is IND-CPA, then its Rache-extension Π̃ defined in Eq.(3.2)

is IND-CPA.

Proof. Let CPAAX denote the indistinguishability experiment with scheme X. The proba-

bility forA to successfully break Π and Π̃ are Pr
[
CPAA

Π
= 1

]
and Pr

[
CPAA

Π̃
= 1

]
, respec-

tively. By assumption, the following inequality holds:

Pr
[
CPAAΠ = 1

]
≤

1
2
+ ϵ, (3.3)

59

where ϵ is a negligible probability. By comparing Π and Π̃, the latter yields n additional

pairs of plaintexts and ciphertexts out of the total 2n possible pairs in the worst case. There-

fore, the following inequality holds:

Pr
[
CPAA

Π̃
= 1

]
− Pr

[
CPAAΠ = 1

]
≤

poly(n)
2n . (3.4)

Combining Eq. (3.3) and Eq. (3.4) yields the following inequality:

Pr
[
CPAA

Π̃
= 1

]
≤

1
2
+ ϵ +

poly(n)
2n .

Now, we only need to show that the summation of the last two terms, ϵ + poly(n)
2n , is neg-

ligible. According to Lemma 1 and Lemma 2 (§3.2), this is indeed the case. Therefore,

the probability for the adversary A to succeed in the CPAA
Π̃

experiment is only negligibly

higher than 1
2 , proving that Rache is IND-CPA, as claimed. □

3.5 Incremental Rache

3.5.1 Overview

While Rache can effectively precompute and cache those selected ciphertexts given an

upper bound of the plaintexts, the principle cannot be applied to data streams where the

maximal value is unknown a priori. To that end, we propose to dynamically precompute

those r powers when a newly seen maximum is observed. The key idea is straightfor-

ward: whenever the cipher encounters a plaintext that is significantly larger than the largest

60

(cached) value, we submit a request to expand the list of cached values by adding a few

precomputed ciphertexts that are closer to the new large plaintext. The remaining job is

then to quantify the meaning of significantly and a few, which will be elaborated on in the

remainder of this section. Before the formal discussion, we illustrate the high-level idea of

incremental Rache by extending Example 2 into the following Example 3: recall that we

have a good set of cached ciphertexts now for up to r6, where r = 2.

Example 3. Now let’s assume that a new value 200 is being encrypted. In theory, we

could compute Rache(200) = Rache(r6) ⊕ Rache(r6) ⊕ Rache(r6) ⊕ Rache(r3); however,

this naive approach would not scale: at some point the cost of many ⊕’s would outweigh

that of the original encryption. An alternative is to precompute some larger ciphertexts and

append them into Ctxt[]: Ctxt[7] = Rache(r7) = Rache(128). As a result, we can compute

Rache(200) = Rache(r7) ⊕ Rache(r6) ⊕ Rache(r3) = Ctxt[7] ⊕ Ctxt[6] ⊕ Ctxt[3], which

saves one ⊕ in this example; but for larger plaintexts, the saving would look much more

significant. △

3.5.2 Definitions and Notations

We begin by defining two important building blocks of incremental Rache, pivot and nu-

ance.

Definition 4 (Pivot). A pivot in incremental Rache is one plaintext whose ciphertext is

precomputed and cached.

By definition, the preimage of every entry of the radixes[] array discussed in Alg. 1 is

a pivot. However, the converse is not true in general for incremental Rache: we might

optionally choose to cache more “important” ciphertexts in addition to those in radixes[].

61

Definition 5 (Nuance). A nuance in incremental Rache is a pair (ξ,RHE(ξ)), where ξ is a

plaintext and RHE(ξ) is the Rache ciphertext of ξ.

We use p = Θ(poly(n)) to denote the asymptotic number of pivots that will be prepro-

cessed. Common values for p include nc, 1 ≤ c ≤ 5 [9]. Similarly, we use d = Θ(poly(n))

to denote the asymptotic number of nuances that will be cached. We assume the plaintext

can be encoded with the security parameter n. Again, we can pad shorter ones or break

longer ones into blocks to ensure the aligned lengths. We denote by m the number of

plaintexts (thus m ≤ 2n).

3.5.3 Scheme Description

To make it more concrete, we slightly extend the triple expression of an HE scheme into

a quintuple by considering the spaces of plaintexts and ciphertexts. Formally, we denote

by quintuple Π = (P,C,K ,E,D) an HE scheme, where P is the set of plaintexts, C is

the set of ciphertexts, K is the set of secret keys (for succinctness assuming the scheme is

symmetric), E andD are sets of keyed encryption and decryption functions that satisfy the

following predicate,

∀K ∈ K , ∀x ∈ P, ∃eK ∈ E, ∃dK ∈ D, dK(eK(x)) = x.

An incremental Rache is a septuple extended from Π:

Π̃ = (P,C,K , Ẽ,D,B,N), (3.5)

62

whereB is a function from plaintexts to the set of the indexed pivots,N is a nuance function

from a polynomial number of plaintexts to their ciphertexts, and Ẽ is the set of keyed

functions for incremental encryption. While P, C, K , and D inherit the same semantics

from Π, others need more explanation. We elaborate on B, N , and Ẽ as follows.

We start with B. Recall that we assume the size of the current data set is m, implying its

index m − 1 (counting from 0). The newly added data point, therefore, has index m. The

value of functionB(m) is calculated as the encryption of the largest pivot that is smaller than

the new data point. If we sort the pivots Pi’s in an increasing order (P0 ≤ P1 ≤ P2 ≤ . . .),

then we can formally define B as follows:

B(m) def
= eK(Pi),

where Pi ≤ m < Pi+1 and i denotes the pivot index.

The nuance function N maps a logarithmic distance from Pi to its encryption:

N :
[
1,

⌈Pi+1 − Pi

2

⌉]
→ C,

ξ 7→ eK(ξ),

where ξ ∈
{
2 j : ∀ j ∈ N, 2 j ≤

⌈
Pi+1−Pi

2

⌉}
and eK ∈ Ẽ. By convention, we use dom(N) to

denote the domain of function N , i.e., the set of nuance plaintexts between two adjacent

pivots. It is evident to see that the new data point, denoted Ptxt[m], can be calculated as

follows:

Ptxt[m] = Pi +

|dom(N)|∑
j=1

{0, 1} × 2 j.

63

We are now ready to define Ẽ. Let RHEinc
K ∈ Ẽwith key K, then an incremental encryption

function in Ẽ is defined as follows:

RHEinc
K (m) def

= eK

Pi +

|dom(N)|∑
j=1

{0, 1} × 2 j

= eK(Pi) ⊕ eK

|dom(N)|∑
j=1

{0, 1} × 2 j

= eK(Pi) ⊕

|dom(N)|⊕
j=1

eK

(
{0, 1} × 2 j

)
= B(m) ⊕

⊕
ξ∈dom(N)

N(ξ) × {0, 1}.

3.5.4 Provable Security

We will demonstrate that incremental Rache is IND-CPA. We formalize the proof in the

following proposition.

Proposition 3. If a homomorphic encryption Π is IND-CPA, then its corresponding incre-

mental Rache-extension Π̃ defined in Eq. (3.5) is IND-CPA.

Proof. The probability for an adversaryA to successfully breakΠ and Π̃ are Pr
[
CPAA

Π
= 1

]
and Pr

[
CPAA

Π̃
= 1

]
, respectively. By assumption, the following inequality holds:

Pr
[
CPAAΠ = 1

]
≤

1
2
+ ϵ, (3.6)

where ϵ is a negligible probability. By comparing Π and Π̃, the latter yields p + d addi-

tional pairs of plaintexts and ciphertexts out of the total 2n possible pairs in the worst case.

64

Therefore, the following inequality holds:

Pr
[
CPAA

Π̃
= 1

]
− Pr

[
CPAAΠ = 1

]
≤

p + d
2n . (3.7)

Combining Eq. (3.6) and Eq. (3.7) yields the following inequality:

Pr
[
CPAA

Π̂
= 1

]
≤

1
2
+ ϵ +

p + d
2n =

1
2
+ ϵ +

poly(n)
2n ,

where the last equality comes from the simple fact that the summation of two polynomials

is also a polynomial:

∀x, y ∈ poly(n) : (x + y) ∈ poly(n).

Now, we only need to show that the summation of the last two terms, ϵ + poly(n)
2n , is neg-

ligible. According to Lemma 1 and Lemma 2 (§3.2), this is indeed the case. Therefore,

the probability for the adversary A to succeed in the CPAA
Π̃

experiment is only negligibly

higher than 1
2 , proving that incremental Rache is IND-CPA, as claimed. □

3.6 Evaluation

3.6.1 Objectives

We aim to answer the following questions experimentally:

• What is the performance overhead of encryption in outsourced databases? (§3.6.3)

65

• How does Rache perform comparing with state-of-the-art HE schemes in term of

computational time and scalability? (§3.6.4)

• How does incremental Rache help reduce the performance overhead of encrypting

data streams? (§3.6.5)

Specifically, in §3.6.3, we report the performance overhead of homomorphic encryp-

tion schemes, i.e., Cassandra performance with and without data encryption. In §3.6.4,

we report the performance of Rache from three perspectives: comparison on three micro

benchmarks (§§3.6.4.1–3.6.4.3), comparison on three real-world applications (§§3.6.4.4–

3.6.4.6), and scalability on the number of parallel cores and input sizes (§3.6.4.7). In §3.6.5,

we report the performance of incremental Rache from the following three perspectives. The

performance and overhead are reported in sections §§3.6.5.1–3.6.5.2. The effectiveness of

incremental encryption for aggregation functions is reported in §3.6.5.3. Lastly in §3.6.5.4,

we show that incremental Rache outperforms Symmetria even for an arbitrary message with

the original cache.

3.6.2 Experimental Setup

3.6.2.1 Systems and Implementation

We implement Rache (both the batch and the incremental versions) upon two base schemes,

an asymmetric scheme Paillier [91] and a symmetric one Symmetria [102]. Both base

schemes have proven to be IND-CPA [91, 102]. Our implementation follows the same

spirit of CryptDB [94], which leaves the vanilla database unchanged but plugs in the cryp-

tographic subsystem as a middleware. As a result, we integrate Rache into Cassandra [72]

66

through the DataStax Java driver [30].

The project is managed by Maven 3.6.3 and compiled with Java 11. The parallelization

(e.g., randomized radix additions on Lines 15–23, Algorithm 1) is implemented with Open-

MPI 4.0.3 [85]. At the time of writing this chapter, the implementation consists of 29,584

lines of code.

We deploy the Rache-enabled Cassandra on a 10-node cluster hosted at CloudLab [38].

Each node is equipped with two 36-core Intel Xeon Platinum 8360Y CPUs, 256 GB ECC

DDR4-2666 memory, and two 1 TB SSDs. The operating system image is Ubuntu 20.04.3

LTS. All servers are connected via a 1 Gbps control link (Dell D3048 switches) and a 10

Gbps experimental link (Dell S5048 switches). We only use the experimental links for our

evaluation.

3.6.2.2 Configurations

Some of the most important parameters of Cassandra are as follows. The replica factor

is set to three. Hinted handoff is enabled globally. The maximum throttle of each thread

is the default 1,024 KB. The internal buffers are flushed to disk every 10 seconds. The

partitioner is the default Murmur3Partitioner. There is one seed node (i.e., node 0) with

the SimpleSeedProvider class (implementing the SeedProvider interface). The concurrency

of reads and writes (including materialized view writes) is set to 32. The full specification

can be found in the cassandra.yaml file in the source code.

67

3.6.2.3 Workloads

We have tested the system prototype with six workloads, all of which are publicly available.

These workloads include three micro-benchmarks and three real-world applications.

The first benchmark is a micro-benchmark to quantify the cost of homomorphic encryp-

tion and homomorphic addition, respectively. For the former, a sequence of integers [0,

32,768) are homomorphically encrypted; for the latter, the ciphertexts stored at radix en-

tries are homomorphically summed up in a round-robin fashion 32,768 times.

The second benchmark is TPC-H ver. 3.0.0 [117], a standard relational database bench-

mark. TPC-H allows the user to specify the scales of the generated data; in this work we

set the scale as one, resulting in about one gigabyte of data. We will focus on the part table,

which consists of 200,000 tuples.

The third benchmark is a dynamic set of random numbers for homomorphic encryption.

This benchmark is mainly used for the purpose of weak scaling, allowing for the scalability

test ranging between 1,024 and 32,768 numbers.

The first application is the U.S. national COVID-19 statistics from April 2020 to March

2021 [27]. The data set has 341 days of 16 metrics, such as death increase, positive in-

crease, and hospitalized increase.

The second application is the human genome reference 38 [59], commonly known as

hg38, which includes 34,424 rows of singular attributes, e.g., transcription positions, cod-

ing regions, and number of exons, last updated in March 2020.

68

The third application is the history of Bitcoin trade volume [19] since it was first ex-

changed in the public in February 2013. The data consists of the accumulated Bitcoin

exchange on a 3-day basis from February 2013 to January 2022, totaling 1,086 large num-

bers.

3.6.3 Performance with and without Homomorphic Encryption

We record the execution time of Cassandra when inserting three real-world data sets. The

configuration of Cassandra and data set specification can be found in the previous sec-

tion §3.6.2. We repeat the experiments three times and report both the average and the

standard variation in the figure. To eliminate the possible caching effect, we truncate the

table every time before starting the timer for the execution.

Figure 3.1 reports the results, which clearly shows that Rache significantly improves the

performance of homomorphic encryption. For the Covid-19 data set (left column), the

original Paillier scheme incurs 20× overhead while Rache only incurs about 2×. For the

Bitcoin data set (center column), the originial Paillier scheme incurs 4× overhead while

Rache’s overhead is negligible. Similarly, for the hg38 data set (right column), Paillier

incurs about 10× overhead and Rache’s overhead is marginal.

69

Covid-19 Bitcoin hg38

103

104

105

106

T
im

e
 (

m
s)

Cassandra vs. Paillier vs. Rache

Cassandra Only
Cassandra + Paillier
Cassandra + Rache

Figure 3.1: Performance with and
without encryption schemes.

1 2 4 8 16 32
Number of Cores

101

102

103

104

105

T
im

e
 (

m
s)

Homomorphic Encryption and Addition

Encryption
Addition

Figure 3.2: Homomorphic encryp-
tion and addition in Paillier.

1 2 4 8 16 32
Number of Cores

100

101

102

103

104

105

106

T
im

e
 (

m
s)

Encoding TPC-H

Paillier
Rache Init
Rache Exec

Figure 3.3: Performance compari-
son on the TPC-H benchmark.

3.6.4 Batch Rache

3.6.4.1 Encryption vs. Addition

Fig. 3.2 shows that the homomorphic addition is a much cheaper operation than homo-

morphic encryption in Paillier. Regardless of the number of available cores, homomorphic

encryption takes more than two orders of magnitude time than homomorphic addition.

3.6.4.2 TPC-H

We report Rache’s performance of encoding the TPC-H [117] data in Fig. 3.3. We report

the execution time of initializing the radixes and that of encoding with Rache, respectively.

The former is referred to as Rache Init and the latter as Rache Exec in the figure. The

initialization time of Rache is roughly flattened, showing a marginal increase when more

cores are involved due to the inter-process communication (IPC) overhead. It should be

noted that, however, the Rache Init overhead is a one-time cost. Specifically, the Init cost

is the execution time to construct the Ptxt[] vector, which stores the radix values for future

additive computation over ciphertexts. We observe that Rache outperforms Paillier by four

orders of magnitude at all scales.

70

In general, the overhead incurred by Rache on different number of cores comes from

the coordination of multiple processes and threads, such as MPI Reduce that aggregates

the partial summations over ciphertexts. The overhead discrepancy of different workloads,

however, largely depends on the maximal value in the message space (assuming the radix

r is fixed). As we will see soon in the following sections, the Rache initialization overhead

(i.e., Rache Init) is lower than others (i.e., Figures 3.4–3.7). This can be best explained

by the fact that the Part relation in TPC-H has its maximal numeric values in the order

of thousands, which are much smaller than other benchmarks. Because the maximal value

is smaller in TPC-H, Rache needs to precompute and cache fewer ciphertexts during the

initialization phase, which results in smaller overhead than other benchmarks. This obser-

vation also explains why the overhead stays roughly constant from one core to 32 cores:

each core precomputes the same set of cached ciphertexts that are determined by radix r

and the maximal plaintext message, both of which are the same on 1–32 cores.

3.6.4.3 Random Numbers

In this benchmark, n random numbers are generated in a uniform distribution by modular

n. We report the results of Rache and Paillier in Fig. 3.4. The Rache overhead stays roughly

constant for different numbers of cores, but not as low as TPC-H. Despite the overhead, we

observe that Rache’s encoding time is about two orders of magnitude lower than Paillier’s

at all scales.

71

1 2 4 8 16 32
Number of Cores

101

102

103

T
im

e
 (

m
s)

Encoding 1,024 Random Numbers

Paillier
Rache Init
Rache Exec

Figure 3.4: Encoding performance
on random numbers.

1 2 4 8 16 32
Number of Cores

102

103

104

T
im

e
 (

m
s)

Encoding COVID-19 Data (4/1/20--3/7/21)

Paillier
Rache Init
Rache Exec

Figure 3.5: Encoding the U.S.
COVID-19 statistics.

1 2 4 8 16 32
Number of Cores

103

104

105

106

T
im

e
 (

m
s)

Encoding Human Genome #38 (3/13/2020)

Paillier
Rache Init
Rache Exec

Figure 3.6: Encoding the human
genome reference 38.

3.6.4.4 U.S. COVID-19 Statistics

Fig. 3.5 reports the encoding performance of the U.S. COVID-19 statistics published at [27].

We observe that with few cores (e.g., 1 and 2) the overhead is smaller than the encoding

cost, while with more cores (e.g., 16, 32) the per-core encoding is very efficient and takes

less time than the overhead. Some of the overhead, i.e., precomputing and caching the

large radixes, is unnecessary for those small values, and yet has to exist due to those ex-

tremely large values. We stress that the overhead is a one-time thing though: if there were,

say, ten years of COVID-19 data, the overhead would look roughly the same and would be

outweighed by the increased cost of encoding the data.

3.6.4.5 Human Genome Reference 38

Fig. 3.6 reports the encoding performance of Rache and Paillier on a database of human

genome [59] (hg38) that was last updated in March 2020, under the umbrella of the Au-

gustus gene prediction project [10]. As expected, Rache outperforms Paillier at all scales

by orders of magnitude. In sheer contrast to the COVID-19 dataset, the initialization over-

head of Rache in hg38 is much less significant: even at 32-core, the overhead is less than

30%. This is mainly due to a large number of plaintexts (172,120), whose encoding time

72

1 2 4 8 16 32
Number of Cores

101

102

103

T
im

e
 (

m
s)

Encoding Bitcoin Trade (2/8/2013--1/7/2022)

Paillier
Rache Init
Rache Exec

Figure 3.7: Encoding the Bitcoin
trade volume.

1 2 4 8 16 32
Number of Cores

102

103

T
im

e
 (

m
s)

Weak Scaling of Random Numbers

Paillier
Rache Init
Rache Exec

Figure 3.8: Weak scaling of the en-
cryption of random numbers.

1,024 2,048 4,096 8,192 16,384 32,768
Number of Plaintexts

101

102

103

104

T
im

e
 (

m
s)

Encoding Different Numbers of Plaintexts

Paillier
Rache Init
Rache Exec

Figure 3.9: Encoding a variety of
workloads with a fix number of 32
cores.

greatly outweighs the initialization, which is not trivial: 29 radixes for values as large as

248,937,123.

3.6.4.6 Bitcoin Trade Volume

We apply Rache and Paillier to the historical trade volume of Bitcoin exchanges since

2013 [19]. Fig. 3.7 shows that Rache outperforms Paillier by more than one order of mag-

nitude, which is consistent with what we have found so far. The notable thing here is the

large overhead incurred by Rache: on a single core, the overhead is on par with Rache’s

encoding time; on 32 cores, the overhead is on par with the Paillier processing time and

orders of magnitude larger than Rache’s encoding time. This phenomenon is due to two

reasons. First, the Bitcoin trade volume consists of very large numbers—most are in the

order of millions and the largest one is 4,956,849,516 requiring 34 radixes. Second, the

number of plaintexts is relatively small: there are 1,086 plaintexts, each of which records

the Bitcoin exchange for the last three days.

73

3.6.4.7 Scalability

We evaluate the scalability of Rache in this section. We focus on the data sets of random

numbers rather than specific benchmarks or applications simply because we can generate

arbitrarily large data sets of random numbers. Fig. 3.8 reports the conventional weak-

scaling experiment. We control the workload to be proportional to the number of cores:

1,024 plaintexts for every core. That is, the workloads range from 1,024 to 32,768 plain-

texts of uniformly distributed random numbers. In each workload, the maximal value is

close to the maximal number due to the uniform distribution.

Rache outperforms Paillier by orders of magnitude at all scales. However, Rache seems

to exhibit a higher slope of encoding time. We stress that the absolute values of Rache

performance are sub-seconds (and the y-axis is logarithmic), therefore the overhead can be

best explained by the IPC overhead. To verify this, we conduct the following experiment,

in which we fix the number of cores but increase the workloads.

Fig. 3.9 shows the encoding time when we fix the number of cores as 32 but increase

the number of plaintexts from 1,024 to 32,768. We observe that when the IPC overhead is

fixed (for 32 cores), the encoding time is proportionally increased regarding the workload

size.

74

3.6.5 Incremental Rache

3.6.5.1 TPC-H

We compare Rache1 and Symmetria on TPC-H with the option “-s 100”; there are overall

20,000,000 tuples in the Part table. We vary the number of pivots (i.e., p) on the x-axis be-

tween 2 and 64. We report the performance of Rache (without the overhead of constructing

the pivots p’s and nuances d’s, which will be reported in the next experiment), and com-

pare it against Symmetria in Fig. 3.10. Generally speaking, larger p values allow Rache

to complete faster because of the finer granularity of the gaps among p’s as well as fewer

nuances. Notably, Rache is about 3x faster than Symmetria when p = 32. If the plaintexts

are overly split (e.g., p = 64), the extra cost for maintaining the pivots may outweigh the

benefit of d dictionaries, causing suboptimal performance.

2 4 8 16 32 64
p

1.0

1.5

2.0

2.5

3.0

3.5

E
xe

cu
ti
o
n
 T

im
e
 (

se
co

n
d
s)

Symmetria vs. Rache on TPC-H

Average Symmetria
Average Rache

Figure 3.10: Performance com-
parison on TPC-H (scale = 100),
20,000,000 tuples in table Part.

(8,8) (8,16) (8,32) (16,8) (16,16)(16,32) (32,8) (32,16)(32,32)
(n, p)-tuples

0

2000

4000

6000

8000

10000

12000

E
xe

cu
ti
o
n
 T

im
e
 (

m
ic

ro
se

co
n
d
s)

Symmetria vs. Rache on Random Numbers

Average Symmetria
Average Rache

Figure 3.11: Performance compar-
ison of Symmetria and Rache on
1,024 random plaintexts.

(2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)
(x,y), p = 32^x, d = 32^y

101

102

103

104
O

ve
rh

e
a
d
 (

m
ill

is
e
co

n
d
s)

Overhead of Rache Init

Average Overhead
Standard Deviation

Figure 3.12: Performance over-
head incurred by pivots and nu-
ances when encrypting 232 random
plaintexts.

3.6.5.2 Random Numbers

We compare the performance of Symmetria and Rache when encrypting 1,024 random

numbers of variable lengths in Fig. 3.11. We on the x-axis vary the (n, p) pairs ranging

1For simplicity, we use Rache to indicate incremental Rache in this section.

75

between 8 and 32, where n indicates the bitstring length and p indicates the number of

pivots, respectively. We observe that Rache consistently outperforms Symmetria for all

(n, p) pairs by up to 50% reduction in running time, which is aligned with the results of the

TPC-H benchmark in Fig. 3.10.

We measure the time overhead for precomputing pivots and nuances of 232 random values.

Note that this experiment has a much larger data set than that in Fig. 3.11 (i.e., 1,024 = 210)

because we will, to a large extent, vary both the number of pivots p = nx, 2 ≤ x ≤ 5

(x is considered as a practical upper bound in complexity theory [9]), and the number of

nuances d = ny, x ≤ y. We set n = 32, meaning that there are up to 232 distinct values in

the underlying data set. The x-axis of Fig. 3.12 enumerates those (x, y) pairs.

3.6.5.3 Aggregating Encrypted Fields

For a simple aggregate query shown in Listing 3.1 (i.e., the average part size), its Rache

execution on the scale-10 TPC-H is illustrated in the following equation:

ek

2,000,000∑
i=1

si

 = 2,000,000⊕
i=1

eK(si),

where si denotes the value of the P Size field of the i-th row of relation Part.

Listing 3.1: A simple SQL aggregate query on TPC-H.

−− TPC−H 3 . 0 , ”dbgen −s 10” , two m i l l i o n t u p l e s

SELECT AVG(P S i z e)

FROM P a r t ;

76

Directly adding up eK(si) is more costly than arithmetic operations because ⊕ on cipher-

texts is number-theoretical. Rache allows us to cache the ciphertexts of both pivot and

nuance along with their frequencies in plaintexts. Therefore, we can reduce the frequency

of ⊕ by arithmetic × if the HE scheme supports it (Symmetria [102] does) and calculate the

result as follows:

ek

2,000,000∑
i=1

si

 = f reqp
i ×

p⊕
i=1

eK(Pi) + f reqξj ×
d⊕

j=1

eK(ξ j),

where p and d are much smaller than 200,000 (e.g., p = d = 32), f reqy
x indicates the

frequency of the x-th element in the y-container, and eK(·)’s are part of the entries (trees of

pivots and dictionaries of nuances) cached in memory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Step #

100

101

102

103

104

105

T
im

e
 (

m
ill

is
e
co

n
d
s)

Time Breakdown of Aggregation

Elapsed Symmetria Time
Single-step Symmetria Time
Single-step Rache Time

Figure 3.13: Time breakdown of
aggregating 200,000 tuples of ta-
ble Part in TPC-H.

(2,1) (4,1) (8,1) (16,1) (32,1) (64,1) (2,10) (4,10) (8,10) (16,10)(32,10)(64,10)

(Pivot #, TPC-H Scale)

102

103

104

105

106

107

T
im

e
 (

m
ill

is
e
co

n
d
s)

Aggregation Time of Ciphertexts

Symmetria Time
Rache Time

Figure 3.14: Aggregating time
with different numbers of pivots on
different TPC-H scales.

0 4 8 12 16 20 24 28 32
Radix Entries (2^x)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

S
p
e
e
d
u
p

Single Radix Entries

Average Speedup
Standard Deviation

Figure 3.15: Rache speedup over
Symmetria when computing nu-
ances on-the-fly.

Fig. 3.13 reports the time for aggregating 200,000 Part.P Size fields on scale-1 TPC-H,

where each step aggregates additional 10,000 encrypted fields. We observe that the one-

step cost of Symmetria is not constant: in a later step, it takes more time to aggregate

the same number of new ciphertexts. This is concerning because it implies that the batch

HE scheme is not scalable and would stop working at some point. To investigate how

bad it could become, Fig. 3.14 reports the same workload on TPC-H of both scales-1 and

scale-10; we did not report the scale-100 results because Symmetria finished only 53%

(10,550,000 out of 20,000,000) ciphertext additions after 100 hours of execution. We ob-

serve that Rache can aggregate 2,000,000 fields within a second while Symmetria takes

77

hours to complete the same workload.

3.6.5.4 Computing Nuances On-the-fly

The previous experiments assume that there is sufficient memory capacity to accommodate

p pivots and d nuances. In certain application scenarios (e.g., edge computing [1,2], supply

chains [109], system-on-chip [23]), we might have limited resources and may not be able to

hold, say, 232 nuances. Therefore, the following experiment will investigate the worst-case

scenario where we are forced to compute nuances on the fly. We report the performance

of adopting a single nuance for a random value in
[
0, 264

)
in Fig. 3.15. The worst-case

overhead of calculating a single nuance leads to as low as 1.3x speedup over the vanilla

Symmetria encryption. In the best case, i.e., when nuance is set to one, the speedup is over

2.1x.

3.6.6 Summary of Experimental Results

Rache Both micro benchmarks and real-world applications confirm the efficiency of

Rache: Rache incurs insignificant overhead to Cassandra while the conventional Paillier

encryption is 2-10 times slower. Rache also exhibits strong scalability on up to 32 cores

and 32× larger input data size.

Incremental Rache Incremental Rache is 2–3× faster than Symmetria and the initial-

ization overhead is as low as 10 ms. In particular, incremental Rache is 3–5 orders of

magnitude faster than Symmetria for aggregation workloads that are commonly deployed

78

in outsourced databases. Finally, incremental Rache outperforms Symmetria by 1.3–2.2×

speedup even though incremental ciphertexts are not cached.

3.7 Summary

This chapter proposes radix-based parallel caching optimization for accelerating the per-

formance of homomorphic encryption (HE) of outsourced databases in cloud computing.

The key insight of the proposed optimization is caching selected radix-ciphertexts in paral-

lel without violating existing security guarantees of the original HE scheme. We design the

radix HE algorithm and apply it to both batch and incremental HE schemes; we demonstrate

the security of those radix-based HE schemes by reducing the Rache-extended problem to

the base HE schemes that are known IND-CPA. We implement the radix-based schemes

as middleware of a 10-node Cassandra cluster on CloudLab; experiments on six workloads

show that the proposed caching significantly improves the performance of state-of-the-art

HE schemes.

79

CHAPTER 4

GAUSSIAN ATTACKS AND BLOCKCHAIN-BASED AUDITING ON

TOKENIZED INCENTIVE FOR FEDERATED MACHINE LEARNING

SYSTEMS

4.1 Introduction

Federated learning (FL) has emerged as a new distributed computing paradigm to both en-

rich the available training data and protect the data privacy of participating clients. It has

been found very useful in various fields ranging from industrial engineering [76], smart

cities [131], and health care [70] to name a few due to its major advantage of distributed

processing and effective privacy protection. To attract and retain clients in an FL sys-

tem, multiple incentive mechanisms have been proposed; in particular, a tokenized in-

centive [50] was recently proposed, which was believed more practical than the existing

monetary-based, offline incentive mechanisms. Other approaches to FL incentives include

the use of game theory [65], auctions [35], contract theory [122], matching theory [24], and

currency [129].

This chapter demonstrates that, under mild assumptions, the tokenized incentive mecha-

nism [50] for FL systems can be effectively compromised by a fraction of colluded clients

who share their local training models with deliberate Gaussian noises—a new type of

model-poisoning attack on FL incentives. We will show that, both analytically and em-

pirically, if the noises are well controlled, the FL aggregation will converge and therefore

80

the Gaussian attack cannot be detected. As a result, those malicious clients could be re-

warded with disproportionate tokens in addition to the degraded performance of FL systems

due to the poisoned local models. To make matters more concrete, Figure 4.1 illustrates

the proposed Gaussian attack on tokenized incentives in a decentralized FL system. In this

figure, we present a simplified FL system with five clients, two of which (X and Y) are

malicious and launch a Gaussian attack: only one malicious client, say X, follows the FL

aggregation algorithm to train a local model and the other malicious client Y simply copies

over the model of X and adds some well-controlled Gaussian noises. Suppose other three

honest clients A, B, and C produce accurate models, then the tokens rewarded to X and Y

are 2
5 of the budgeted tokens, which is unfair to those honest clients because X and Y only

contribute 1
4 to the overall computational power.

To mitigate the Gaussian attack, this chapter then designs a blockchain-based auditing

protocol, in which (i) clients must hash their local training models into a Merkle tree [81]

in each round of global synchronization and (ii) clients must persist the hashed models into

a permissioned blockchain, e.g., SciChain [4], where all local models are peer-verified with

Byzantine fault tolerance. As a result, if a client is suspected to have launched a Gaussian

attack, it will be slated for auditing by verifying its immutable training provenance on the

blockchain. We also sketch the proposed blockchain-based auditing protocol in Figure 4.1:

the right half of the figure illustrates the idea among three honest clients who hash and

persist their local training models on a blockchain.

We have implemented the proposed Gaussian attack and Blockchain-based auditing with

FedML [53] and SciChain [4]. Our extensive experiments with multiple FL algorithms

(FedAvg [78], MultiKrum [20]), popular data sets (MNIST [83], Fashion-MNIST [123],

CIFAR-10 [71], SVHN [88]), and a variety of scales (50, 100, 200, and 500 clients) demon-

strate the effectiveness of the attack (e.g., Gaussian variance under 0.04) and the efficiency

81

Client A

Client B Client CLocal Data Cluster

Local Compute Cluster

Consensus

Blockchain Auditing

Malicious Client X

Malicious Client Y

Gaussian Attack

Hashing
Blocks

Local Models

Figure 4.1: Gaussian attack and blockchain audit for decentralized federated learning

of blockchain-based auditing (10% training overhead).

In summary, this chapter discusses the following contributions.

• We develop a new model-poisoning attack on FL in which a fraction of malicious

clients shares the same training model with deliberated Gaussian noises to receive

disproportionate incentive tokens. Theoretically, we prove that the Gaussian attack

82

does not impact the convergence of FL aggregation algorithms such as FedAvg and

MultiKrum.

• We propose a new auditing mechanism enlightened by blockchains to detect the

Gaussian attack on tokenized incentive for FL: in each global synchronization round,

every client must construct a Merkle tree of all local models and verify them in a

decentralized manner. The verified local modes, once persisted to the blockchain,

cannot be altered unilaterally and will serve as evidence of malicious activities.

• We implement both the attack and audit on state-of-the-art FL and blockchain sys-

tems. Extensive experiments are carried out on four popular data sets, two widely-

used FL aggregation algorithms, and on up to 500 clients, which demonstrate the

effectiveness of the proposed attack (0.04 Gaussian variance) and the efficiency of

the blockchain audit (10% time overhead).

4.2 Background and Related Work

4.2.1 Incentive Mechanisms for Federated Learning

Client participation in the FL process incurs some cost for contributing to the FL model

with their local data set and computational power [50]. Various forms of incentive mecha-

nisms have been proposed to promote the participation of clients in the FL process. Khan

et al. [65] proposed a game-theoretic mechanism (i.e., Stackelberg game) for FL to en-

sure communication efficiency and model accuracy improvement for the leader and rev-

enue improvement for the followers. Deng et al. [35] proposed an auction-based incentive

mechanism (i.e., reverse auction) for FL where the learning tasks allocation and payment

83

determination are determined by solving the problem of maximizing the sum of the quality

of aggregated model updates. Wu et al. [122] presented a contract-theoretical incentive for

FL by jointly considering the task expenditure and privacy risk of data owners. Chen et

al. [24] proposed a matching-theoretical incentive for FL systems. Han et al. [50] address

FL incentives as tokens where tokens paid by consumers are given to the selected providers

proportionately according to their contribution to model update and the remaining tokens

are distributed to all providers according to their participation frequencies to promote long-

term active participation in a federated machine learning system.

4.2.2 Attacks on Federated Learning

Numerous attacks could occur in FL systems due to vulnerabilities leading to unfairness or

degradation of system operation. Some examples of such attacks are the free rider attacks

and poisoning attacks. Free rider attacks are one in which a client or portion of system

clients maliciously receive incentives (called tokens in our case) from the services of others

without contributing any of their resources and datasets [42]. There are two different free-

rider attack scenarios: anonymous free-riders (AFRs) who do not possess any computation

power and privacy datasets and selfish free-riders (SFRs) who possess privacy dataset but

are unwilling to participate in model training nor utilize their computation power [120].

A poisoning attack is also a major form of attack that could arise while using machine

learning models. For example, when adversary or malicious clients deliberately add com-

promised samples to the training pool of the model [5], it was called a data poisoning

attack. Similarly, a malicious client can upload an arbitrary model to the aggregator—a

model poisoning attack (also termed adversarial attack) [75]. Many known attacks belong

84

to this category, such as backdoor attacks [11, 17, 124, 125]. Several defense approaches

have been proposed to alleviate poisoning attacks in FL. These approaches can be broadly

classified as server-based or client-based defense approaches. Sun et al. [115] proposed a

client-based defense, named White Blood Cell for Federated Learning (FL-WBC) to miti-

gate model poisoning attacks that have already polluted the global model. Yin et al. [128]

proposed a server-based defense approach through robust aggregation to improve the ro-

bustness of FL against model poisoning attacks. Similarly, Sun et al. [114] proposed a

server-based defense by clipping local updates to mitigate poisoning attacks. Krum [20]

mitigated poisoning attacks in FL through the utilization of the similarity of benign clients’

local updates. Shejwalkar and Houmansadr [108] designed a defense against FL poisoning

called divide-and-conquer.

The free-rider attack is a fairly general type of attack as long as the client doesn’t train

its local model. From this general perspective, the proposed Gaussian attack (i.e., model-

poisoning attack) belongs to this category. However, we would like to highlight that the

proposed attack exhibits two differences: (i) the goal of adversaries is to obtain unfair

token rewards that were recently proposed in [50], and (ii) the adversaries are assumed to

be willing to collude, which may or may not be true for general free-rider attacks.

4.2.3 Blockchains for Federated Learning

Through immutable transaction records and distributed consensus mechanisms, blockchain

systems [60] can enable secure interaction in an untrustworthy environment without a cen-

tralized mediator. The integration of FL and blockchain thus has drawn a lot of research

interest. Zhang et al. [129] proposed a blockchain-powered FL system called Refiner to

85

tackle the challenges introduced by engaging self-interested and malicious clients. In [25],

a blockchain-powered FL is proposed to guard against adversary attacks. In this frame-

work, clients upload updates to verifiers, who will vote to select benign updates, and then

the selected updates are aggregated and written to blocks via the blockchain network. Bis-

cotti [107] is a Blockchain-based FL architecture proposed to address a single point failure,

poisoning attack, and privacy leakage in FL. Likewise, Kim et al. [69] presented BlockFL

to address issues of a single point of failure and the lack of motivation among participants

in FL. As opposed to the above work, this work identifies a new attack on FL incentives

and designs a blockchain-based auditing protocol to detect such malicious activities.

4.3 Gaussian Attack on Token Incentive for FL

4.3.1 Threat Model

We assume the FL system adopts a decentralized architecture without a centralized parame-

ter server or aggregator. That is, the proposed Gaussian attack does not rely on a centralized

aggregator. Clients can go malicious and launch arbitrary attacks, i.e., Byzantine failures.

This implies that a client can poison the data, the model, or the label during local training.

This also means multiple clients can collude, e.g., a malicious client could share its (either

clear or poisoned) model with other malicious ones. However, we do assume the ratio of

malicious clients does not dominate the system, i.e., exclusively less than 50%. In addition,

we assume that a malicious client will not share its private key.

The following three model assumptions are needed for the theoretical proof of conver-

86

gence of the proposed Gaussian attack on tokenized incentives. We denote the objective

function f , any network model parameter θ1 and θ2, and gradient descents ∇ f (θ).

1. The objective function is convex:

f (θ2) ≥ f (θ1) + ⟨∇ f (θ1), θ2 − θ1⟩,∀θ1, θ2.

2. The network parameters are bounded:

∥θ2 − θ1∥2 ≤ D.

3. The gradient descents are bounded:

∥∇ f (θ)∥2 ≤ G.

4.3.2 Attack Algorithm

Algorithm 2 illustrates the Gaussian attack launched collectively by F malicious clients.

Lines 1 and 16 are straightforward: they initialize the network parameters and broadcast

their local models to the entire network of N clients in each round, respectively. Recall that

there is no single aggregation server under our assumption.

Lines 2–17 iteratively carry out T global rounds of training. The idea is to select only

one of those F malicious clients to train a reasonably accurate model and then share this

model with all other F − 1 colluding clients. Line 3 selects a random client S out of the

87

F malicious clients. We assume here that those F malicious clients all agree on this S

selection, e.g., through some consensus protocols. Then, the attack differentiates between

the seed and its followers:

• The seed initializes the network model from the previous (global) round on Line 8

and then iterates overall local epochs and batches on Lines 9 – 13. Finally, the seed

shares its local model with other colluding clients by broadcasting the model on Line

14.

• The followers simply wait for the trained model from the seed on Line 5. The follow-

ers then add decaying noises on Line 6, i.e., ∥σt∥2 = K
tp , to the seed’s model to fake

it as their locally-trained models such that (i) the entire FL system cannot identify

the replication and (ii) the entire FL system still converges and the cheating cannot

be detected. The objective of this so-called “Gaussian attack” is not to compromise

the FL system; rather, this collusion of F clients (i) earns F shares of tokens while

only investing a single share of computation resources and (ii) deviates the accuracy

of the FL system with a fraction of F−1
N poisoned local models.

4.3.3 Convergence Analysis

The goal of this section is to show that the Gaussian attack depicted in Alg. 2 will render the

loss function to converge to 0 when the number of global rounds tends to infinity. Formally,

we want to show the following:

∑T
t=1 ft(θt) −

∑T
t=1 ft(θ∗)

T
−−→ 0, as T −−→ ∞, (4.1)

88

Algorithm 2: Gaussian attack on FL incentives
Input: A total of N clients, in which F are malicious: {n1, . . . , nF}; the index i of

current malicious client ni; total number of global rounds T ; total number
of local epochs E; local training samplesDi on ni; loss function f (·);
decaying learning rate αt =

C
tp , where 1 ≤ t ≤ T , t ∈ N and p ∈ (0, 1),

p ∈ R; bounded random Gaussian variance σ;
Output: Global model θ;

1 Initialize θ0
i

2 for t = 1; t ≤ T ; t + + do
3 S ← {1..F}
4 if i ̸= S then
5 recv(θt

S)
6 θt

i ← θ
t
S + σ

t
i

7 else
8 θt

S B θ
t−1
S

9 for in range(E) do
10 for in B do
11 θt

S B θ
t
S − αt · ∇ ft (θS)

12 end
13 end
14 Broadcast θt

S to {n1, . . . , nF}

15 end
16 Broadcast θt

i to {n1, . . . , nN}

17 end

where θ∗ denotes the optimal model parameter (i.e., minimizing f): θ∗ def
= arg min

θ

T∑
t=1

ft(θ).

Let R(T) def
=

T∑
t=1

ft(θt)−
T∑

t=1

ft(θ∗) and g def
= ∇ f (θ). According to model assumption 1, the

following holds

R(T) ≤
T∑

t=1

〈
g, θt − θ∗

〉
. (4.2)

According to Line 11 in Alg. 2, we have

θt+1
S − θ

∗ = θt
S − θ

∗ − αt gt.

Taking the squared ℓ2-norm on both sides yields:

∥θt+1
S − θ

∗∥22 = ∥θ
t
S − θ

∗∥22 + α
2
t ∥gt∥

2
2 − 2αt⟨gt, θ

t
S − θ

∗⟩.

89

Moving the inner product to the left yields:

⟨gt, θ
t
S − θ

∗⟩ =
∥θt

S − θ
∗∥22 − ∥θ

t+1
S − θ

∗∥22

2αt
+
αt∥gt∥

2
2

2
.

Consider Line 6 in Alg. 2, we know that when i ̸= S :

⟨gt, θ
t
i − θ

∗⟩ = ⟨gt, θ
t
S + σ

t
i − θ

∗⟩ ≤ ⟨gt, θ
t
S − θ

∗⟩ +
K∥gt∥2

tp .

Plug the above two equations into Eq. (4.2):

R(T) ≤ R1(T) + R2(T), (4.3)

where

R1(T) =
T∑

t=1

∥θt
S − θ

∗∥22 − ∥θ
t+1
S − θ

∗∥22

2αt
,

and

R2(T) =
T∑

t=1

αt∥gt∥
2
2

2
+

K∥gt∥2

tp .

If we expand R1(T), the intermediate terms will cancel in pairs and the last term will be

negative, which yields:

R1(T) ≤
∥θ0 − θ∗∥22

2α0
+

T∑
t=2

(
1

2αt
−

1
2αt−1

)
∥θt − θ∗∥22

≤
D2

2α0
+ D2

T∑
t=2

(
1

2αt
−

1
2αt−1

)
=

D2

2αT
=

D2

2C
· T p, (4.4)

90

where the second inequality is due to model assumption 2. Now, expanding R2(T) with

nontrivial T > 1 and applying model assumption3 yields:

R2(T) ≤
G2

2

T∑
t=1

αt + KG
T∑

t=1

1
tp

=

(
CG2

2
+ KG

) T∑
t=1

1
tp

≤

(
CG2

2
+ KG

) ∫ T

1

dt
tp

=
CG2 + 2KG

2(1 − p)
· T 1−p. (4.5)

Combining Equations (4.2), (4.4), and (4.5) yields

R(T) ≤
D2

2C
· T p +

CG2 + 2KG
2(1 − p)

· T 1−p = O(T max(p,1−p)),

where 0 < p < 1. Without loss of generality, let 0 < p < 0.5 and we have max(p, 1 − p) =

1 − p. Direct computation is then in order:

lim
T→∞

R(T)
T
= lim

T→∞

O(T 1−p)
T

= lim
T→∞

1
O(T p)

= 0,

as desired in Equation (4.1).

91

4.4 Blockchain Audit for Local Models in FL

4.4.1 Assumptions

We assume the hashing function for the local updated models is practically strong and

cannot be distinguished from a random oracle. While the existence of a perfectly random

oracle is still debatable, from a practical point of view we simply assume the hashing

function looks random to the adversaries. If a collision is indeed found, the hash will

be replaced. By convention, we also assume the malicious clients can only run efficient

algorithms, i.e., the attack should take up to probabilistic polynomial time (PPT).

4.4.2 Auditing Protocol

Algorithm 3 illustrates the auditing protocol of persisting local models to blockchains. We

only present the high-level, descriptive statements instead of implementation details, which

can be found in the source code on Github. The algorithm is again for a specific client ni,

i ∈ N, 1 ≤ i ≤ N. After initializing the model parameter on Line 1, the client gets involved

in T rounds of iterations. On line 3, the client ni is supposed to update its local model, e.g.,

following the civil procedure as depicted on Lines 8–13 of Algorithm 2 (as an honest client

or the seed of collusion of malicious clients).

Starting Line 4, the protocol mandates each client to carry out a series of hashing op-

erations on its local model weights through the MerkleTree() method. The local model

weights are usually stored as a list of tensors, each of which corresponds to a specific

92

Algorithm 3: Blockchain auditing of local models
Input: A total of N clients; the index i of current malicious client ni; total number

of global rounds T ;
Output: Global model θ;

1 Initialize θ0
i

2 for t = 1; t ≤ T ; t + + do
3 θt

i B updated local model // Lines 8-13, Alg. 2
4 Ht

i B MerkleTree(θt
i)

5 Broadcast Ht
i to {n1, . . . , nN}

6 Receive {Ht
1, . . . ,H

t
N}

7 Construct block Bt
i from {Ht

1, . . . ,H
t
N}

8 S B client ID with BFT consensus protocol
9 if i == S then

10 Append Bt
i to blockchain

11 end
12 Broadcast θt

i to {n1, . . . , nN}

13 end

layer in the local (neural network) model. On Lines 5–6, each client broadcasts its updated

model and receives all others’ models. On Line 7, each client packages its hash values into

a block, which is slated to be appended to the blockchain. However, only one client will be

able to do so, and this is determined by a consensus protocol on Line 8. If ni turns out to

be the client to append the new block, as has been agreed on by all clients, ni will append

the hashed value of all local models in this round to the blockchain on Line 10. On Line

12, each client broadcasts its local model to the entire network, just as the conventional

decentralized FL system.

4.4.3 Complexity Analysis

We are interested in two metrics regarding the performance of the proposed blockchain

auditing: the additional messages and the total number of rounds of message passing. The

former measures the (network) I/O overhead and the latter measures the time overhead

incurred by Algorithm 3, respectively. In the following analysis, we do not consider the

93

costs of the original FL algorithm (e.g., Lines 1, 3, and 12) since they are incurred by the

blockchain auditing.

I/O overhead. Lines 5 and 6 incur N2 messages. Each message is a hash value of

constant size M, e.g., 32 bytes for SHA-256. Line 8 involves O(N2) messages due to BFT.

Line 10 incurs O(MN) I/O overhead. Recall that each broadcast is invoked T times (Line

2), therefore, the overall I/O overhead is O(T MN2).

Time overhead. Line 4 takes an additionalO(L log L) to construct the Merkle tree, where

L denotes the number of layers in the network model. Lines 5 and 6 take O
(MN

I

)
, where I

denotes the bandwidth of the network. Line 7 takes O(N) to package all of N hash values.

Line 8 takes a constant times of message broadcasting, O
(M

I

)
. Therefore, the overall time

overhead is O
(
T L log L +

T MN
I

)
.

4.5 Evaluation

4.5.1 Implementation

We implement the proposed attack and auditing with FedML [53], SciChain [4], PyTorch [95],

MPI [85], and MPI4py [86]. FedML is a popular FL framework that supports a variety of

APIs, such as MPI, RPC, and HTTPS (ongoing). SciChain is a permissioned blockchain

system originally designed for tracking the provenance of scientific applications. PyTorch

is a popular machine learning framework with many built-in data sets. MPI is the de

facto communication primitive for high-performance computing, and MPI4py is the Python

94

wrapper of the MPI library. We use SHA256 as the hashing algorithm.

Each client is assigned a dedicated CPU core that is managed by an MPI rank. The

consensus protocol is implemented with C++ and MPI. The FL-level communication is

implemented with collective communication calls with MPI4py. The Gaussian attack is

implemented as part of the iterative training in FedML: overwriting the local model by the

seed’s model with the addition of Gaussian variances. Blockchain auditing is implemented

with the chained hashing of various layers of the local model in the same way as the Merkle

tree and the C++ implementation of the BFT protocol in SciChain.

4.5.2 Experimental Setup

All experiments are repeated at least three times and the average numbers are reported.

4.5.2.1 Test Bed

We carry out extensive experiments on a cluster of 16 nodes, each of which is equipped

with 32 Intel Xeon Gold-6142 cores at 2.6GHz and 384GB RAM. Overall, there are 512

physical cores and we use up to 500 cores to evaluate 500 clients. The operating system is

Ubuntu 20.04. For execution, we use OpenMPI 4.0.3, Python 3.8.10, and MPI4py 3.1.3.

The Python libraries are managed by pip 20.0.2. As for PyTorch, we use torch 1.12.0 and

torchvision 0.13.0.

95

4.5.2.2 Data Sets

We choose four popular datasets, all of which are publicly available from PyTorch: MNIST [83],

Fashion-MNIST or FMNIST [123], CIFAR-10 [71], and SVHN [88].

• Both MNIST and Fashion-MNIST have 50,000 training samples and 10,000 testing

samples.

• CIFAR-10 has 50,000 training samples and 10,000 testing samples.

• SVHN (with extra turned on) has 604,388 training samples and 26,032 testing sam-

ples.

4.5.2.3 Machine Learning Models

We pick two machine learning models to train neural networks on those four data sets:

convolutional neural network (CNN) and multi-layered perception (MLP). Both models

use ReLU and SoftMax as the activation functions.

• We apply the CNN model to MNIST and CIFAR-10. The CNN model comprises

two convolutional layers: the first from input data to 10 with kernel size 5 and the

second from 10 to 20 with kernel size 5. The CNN model applies two linear layers:

320→ 50→ 10.

• We apply the MLP model to Fashion-MNIST and SVHN. The MLP model has a

64-neuron hidden layer, and the final network has three layers: 784→ 64→ 10.

96

4.5.2.4 Federated Learning Parameters

The number of global rounds is set as 10. The number of local epochs is set as 20. The

fraction of clients for each round of model updating is 100%: all of the clients participate

in the model updating. The local batch size is set to 100. The SGD momentum is 0.5

and the learning rate is 1
20·t0.9 , where t denotes the epoch number. The training samples are

randomly and uniformly split into available clients. We test two popular FL aggregation

algorithms: FedAvg [78] and MultiKrum [20].

• The FedAvg algorithm requests all the clients to broadcasts their local models and

calculate the average weights of all the received models for the updated global model

in the next round.

• The MultiKrum algorithm mandates all the clients to broadcast their local modes

and calculate their next-round model by dropping a predetermined number (F) of

Byzantine clients whose Euclidean distances to the majority of clients are ranked top

F.

4.5.3 Effectiveness of Gaussian Attacks

Figure 4.2 reports the loss function changes of the standard FedAvg [78] FL aggregation

on four data sets when 49% of clients launch Gaussian attacks with different variances

ranging between 0.0 and 0.64. When variance Var = 0, the performance is reported for the

FL system with no Gaussian attack—the baseline case. Unsurprisingly, when no Gaussian

attack is launched, the loss drops significantly within 10 global rounds. It is also expected

to observe a slower dropping with a larger variance: the model is more poisoned. The

97

point here is, however, that with small Gaussian variances added to the model, such as

Var ∈ {0.04, 0.16, 0.36} for MNIST/F-MNIST and Var ∈ {0.04, 0.16, 0.64} for SVHN, the

plots exhibit no noticeable difference between the baseline and the poisoned models after

10 rounds of FL training. This implies that the FL system cannot detect the existence of

Gaussian attacks and would grant tokens to malicious clients.

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

FedAvg Loss on MNIST
Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

FedAvg Loss on F-MNIST
Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

FedAvg Loss on CIFAR-10

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss
FedAvg Loss on SVHN

Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

Figure 4.2: FedAvg loss under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-10, and SVHN

Figure 4.3 reports the loss function changes of the MultiKrum [20] FL aggregation on

the same set of four data sets when 49% of clients launch Gaussian attacks with different

variances ranging between 0.0 and 0.64. We observe that even if MultiKrum seems more

resilient than FedAvg, the former can be nonetheless compromised with a smaller Gaussian

variance, e.g., Var = 0.04. The FL system cannot effectively detect such attacks and

would nonetheless distribute disproportionate tokens to those malicious clients, making

those honest clients worse off and hurting the retention of clients to participate in FL.

98

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

MultiKrum Loss on MNIST
Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

MultiKrum Loss on F-MNIST
Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

MultiKrum Loss on CIFAR-10

Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10 2

10 1

100

No
rm

al
ize

d
Lo

ss

MultiKrum Loss on SVHN
Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

Figure 4.3: MultiKrum loss under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-10, and SVHN

1 2 3 4 5 6 7 8 9 10
Round Number

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

FedAvg on MNIST

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

20

40

60

80

Ac
cu

ra
cy

 (%
)

FedAvg on Fashion-MNIST

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10

20

30

40

Ac
cu

ra
cy

 (%
)

FedAvg on CIFAR-10

Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

FedAvg on SVHN

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

Figure 4.4: FedAvg accuracy under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-10, and SVHN

99

1 2 3 4 5 6 7 8 9 10
Round Number

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

MultiKrum on MNIST

Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

20

40

60

80

Ac
cu

ra
cy

 (%
)

MultiKrum on Fashion-MNIST

Var=0
Var=0.04
Var=0.16

Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10

20

30

40

Ac
cu

ra
cy

 (%
)

MultiKrum on CIFAR-10

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

1 2 3 4 5 6 7 8 9 10
Round Number

10

20

30

40

Ac
cu

ra
cy

 (%
)

MultiKrum on SVHN

Var=0
Var=0.04
Var=0.16
Var=0.36
Var=0.64

Figure 4.5: MultiKrum accuracy under Gaussian attacks for MNIST, Fashion-MNIST, CIFAR-10, and SVHN

Figures 4.4 and 4.5 report the accuracy performance of FedAvg and MultiKrum on four

data sets when 49% of clients launch Gaussian attacks with different variances ranging be-

tween 0.0 and 0.64. The accuracy is highly correlated to the (inverse of) loss function, as

expected. Both figures demonstrate that when Var is small, the overall accuracy perfor-

mance of the FL system is about the same with or without Gaussian attacks.

4.5.4 Cost of Blockchain Auditing

Figure 4.6 reports the computational and I/O costs incurred by the proposed blockchain-

based auditing. Our experiments are carried out between 50 and 500 clients. Because

100

50 100 200 500
Number of Clients

100

101

102

Ti
m

e
(s

ec
on

d)

Auditing Cost on MNIST

SHA-256 Hashing
Blockchain Consensus
End-to-end Wall Time

50 100 200 500
Number of Clients

10 1

100

101

102

Ti
m

e
(s

ec
on

d)

Auditing Cost on F-MNIST

SHA-256 Hashing
Blockchain Consensus
End-to-end Wall Time

50 100 200 500
Number of Clients

100

101

102

Ti
m

e
(s

ec
on

d)

Auditing Cost on CIFAR-10

SHA-256 Hashing
Blockchain Consensus
End-to-end Wall Time

50 100 200 500
Number of Clients

10 1

100

101

102

103

Ti
m

e
(s

ec
on

d)

Auditing Cost on SVHN

SHA-256 Hashing
Blockchain Consensus
End-to-end Wall Time

Figure 4.6: Computational and I/O costs of blockchain auditing for MNIST, Fashion-MNIST, CIFAR-10, and
SVHN

we are conducting a strong-scaling experiment, i.e., fixing the overall size of data and

increasing the number of resources, we observe decreased overall running time on more

clients.

We report the time overhead incurred by the two main components of the proposed

blockchain auditing: local model hashing (SHA-256 Hashing) and consensus protocol

(Blockchain Consensus). On the one hand, we observe that the hashing overhead is

negligible: the hashing time is more than two orders of magnitude lower than the overall

wall time. On the other hand, however, the blockchain overhead is more significant: it

takes about 10% out of the overall running time. While it can be argued that a 10% training

overhead is acceptable to trade for the highly desired auditing property, we believe that one

101

of the most interesting future research directions in this area is to explore more efficient

consensus protocols.

4.6 Summary

This chapter demonstrates that the collusion of malicious clients can share a single model

with deliberate Gaussian noises and launch a new type of model-poisoning attack on the

recently proposed tokenized incentive for federated machine learning systems. We show

that the new attack cannot be effectively detected and in fact, can be proven to converge

with well-controlled parameters. To that end, we propose a blockchain-based protocol to

efficiently track the local models submitted by the clients to audit their suspicious activ-

ities. We have evaluated the new attack and the auditing protocol with four popular data

sets, two widely used FL aggregation algorithms, and on a broad range of clients between

50 and 500. Experimental results show that the proposed Gaussian attacks are effective

with reasonable variance and the overhead of blockchain-based auditing services incurs

acceptable training overhead at about 10%.

102

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this dissertation, we have focused on investigating the impact of efficient distributed

computing concepts to long-standing issues in data-intensive scientific applications, apply-

ing homomorphic encryption to outsourced databases and improving the security of tok-

enized incentive mechanisms for Federated Learning (FL) systems. The advances provided

in this dissertation make a substantial contribution to the discipline, paving the way for im-

proved data processing, enhanced privacy and security, and the creation of novel solutions

to deal with the ever-increasing data explosion.

In Chapter 2, we took an algebraic-topological approach to model the parametrization

of microelectrode arrays (MEAs) that involves computationally intensive Kirchhoff laws.

We then developed a system prototype called Parma which is based on the algebraic-

topological model and evaluated the performance in a high-performance computing set-

ting. Experimental results showed that the Parma the state-of-the-art in time, scalability

and memory usage.

In Chapter 3, we introduced the concept of parallel caching of secure aggregation to mit-

igate the performance overhead incurred by the homomorphic encryption module when

applied to data-intensive workloads that are very common for outsourced databases, or

database-as-a-serve in cloud computing. We design a new algorithm called RHE, conduct

103

a thorough analysis of its parameterization and design a full-fledged-protocol called Rache

which adopts RHE to securely encrypt a large volume of data and data streams. Experi-

mental results on six workloads show that the proposed caching significantly improves the

performance of state-of-the-art homomorphic encryption schemes.

In Chapter 4, we addressed an important issue in federated learning: the security of tok-

enized incentive mechanisms for participating clients. A blockchain-based auditing frame-

work was designed to minimize Gaussian assaults and protect the fairness and reliability of

FL systems. The protocol’s effectiveness was proven by extensive evaluation with several

FL aggregation algorithms, diverse datasets, and varying scales. FL systems can assure the

integrity and trustworthiness of tokenized reward mechanisms by leveraging the security

features provided by blockchain, thereby promoting a more safe and resilient distributed

learning environment.

5.2 Future works

Our future work along the line of MEA research is threefold. Firstly, we will extend the

proposed approach into a cluster of heterogeneous nodes. Secondly, we plan to develop a

GPU version of Parma so that the massive number of GPU cores can be exploited. Finally,

we are also planing to re-implement both the baseline system and the proposed paralleliza-

tion techniques with low-level programming language like C or C++ in order to explore

more opportunities for performance improvement.

In addtion, our future work will focus on integrating the developed radix-based caching

into scientific blockchains [3, 4] such that sensitive scientific data can be shared and ver-

104

ified among the collaborators confidentially. One orthogonal optimization in this context

will be to exploit the specific data format used in scientific workflows [79, 110] and ar-

ray databases [97, 104]. We also plan to apply radix caching in federated learning [78] to

improve the performance of encoding local gradient updates.

Finally, our future work will focus on exploring more efficient consensus protocols to

alleviate the significant overhead incurred by the proposed blockchain-based auditing. We

will also focus on extending our proposed blockchain-based auditing algorithm or propose

new algorithms to defend against a broader range of FL attacks.

105

BIBLIOGRAPHY

[1] Abdullah Al-Mamun, Jun Dai, Xiaohua Xu, Mohammad Sadoghi, Haoting Shen,
and Dongfang Zhao. Consortium blockchain for the assurance of supply chain secu-
rity. In 27th Annual Network and Distributed System Security Symposium (NDSS),
2020.

[2] Abdullah Al-Mamun, Haoting Shen, and Dongfang Zhao. Dean: A lightweight
and resource-efficient blockchain protocol for reliable edge computing. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022.

[3] Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. BAASH: Lightweight, effi-
cient, and reliable blockchain-as-a-service for hpc systems. In International Con-
ference on High Performance Computing, Networking, Storage and Analysis (SC),
2021.

[4] Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. SciChain: Blockchain-
enabled lightweight and efficient data provenance for reproducible scientific com-
puting. In IEEE 37th International Conference on Data Engineering (ICDE), 2021.

[5] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autore-
gressive models. In Proceedings of the AAAI Conference on Artificial Intelligence,
2016.

[6] Md Azahar Ali, Chunshan Hu, Sanjida Jahan, Bin Yuan, Mohammad Sadeq Saleh,
Enguo Ju, Shou-Jiang Gao, and Rahul P Panat. Sensing of covid-19 antibodies in
seconds via aerosol jet printed three dimensional electrodes. medRxiv, 2020.

[7] R. Amirulah, S. Z. M. Muji, M. H. Jabbar, R. A. Rahim, and M. H. F. Rahiman.
Digitalization of linear back projection algorithm for fpga implementation. In 2016
IEEE Conference on Systems, Process and Control (ICSPC), 2016.

[8] Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with updates.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology –
EUROCRYPT 2017, pages 445–472, Cham, 2017. Springer International Publishing.

[9] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, USA, 1st edition, 2009.

106

[10] Augustus: Gene prediction. https://github.com/Gaius-Augustus/Augustus,
Accessed 2022.

[11] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In Proceedings of the 23rd In-
ternational Conference on Artificial Intelligence and Statistics, pages 2938–2948,
Palermo, Sicily, Italy, August 2020. PMLR.

[12] Anatoly Bakushinsky and A. Goncharsky. Ill-posed problems: theory and applica-
tions. Springer Science and Business Media, 2012.

[13] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Yvo Desmedt, editor, Advances in Cryptology
- CRYPTO ’94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in
Computer Science, pages 216–233. Springer, 1994.

[14] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In Frank Thomson Leighton and Allan Borodin,
editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing (STOC), 1995.

[15] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. Tenseal:
A library for encrypted tensor operations using homomorphic encryption, 2021.

[16] Bernard Marr. https://bernardmarr.com/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/, Accessed
2023.

[17] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. An-
alyzing federated learning through an adversarial lens. In International Conference
on Machine Learning, pages 634–643. PMLR, 2019.

[18] Tarunpreet Bhatia, A.K. Verma, and Gaurav Sharma. Towards a secure incremental
proxy re-encryption for e-healthcare data sharing in mobile cloud computing. Con-
currency and Computation: Practice and Experience (CCPE), 32(5):e5520, 2020.
e5520 CPE-18-0794.R1.

[19] Bitcoin Trade History. https://www.blockchain.com/charts/trade-volume,
Accessed 2022.

[20] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-
chine learning with adversaries: Byzantine tolerant gradient descent. In Proceed-

https://github.com/Gaius-Augustus/Augustus
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.blockchain.com/charts/trade-volume

107

ings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 118–128, Red Hook, NY, USA, 2017. Curran Associates Inc.

[21] Alessio Paolo Buccino, Sheng-Hsiou Hsu, and Gert Cauwenberghs. Real-time spike
sorting for multi-electrode arrays with online independent component analysis. In
IEEE Biomedical Circuits and Systems Conference, 2018.

[22] W. Chang, C. Lin, S. Mu, L. Chen, C. Tsai, Y. Chiu, and M. C. . Chao. Gener-
ating routing-driven power distribution networks with machine-learning technique.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
36(8):1237–1250, 2017.

[23] Subodha Charles and Prabhat Mishra. Securing network-on-chip using incremen-
tal cryptography. In 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 168–175, 2020.

[24] Dawei Chen, Choong Seon Hong, Li Wang, Yiyong Zha, Yunfei Zhanga, Xin Liu,
and Zhu Han. Matching-theory-based low-latency scheme for multitask federated
learning in mec networks. IEEE Internet of Things Journal, 2021.

[25] Hang Chen, Syed Ali Asif, Jihong Park, Chien-Chung Shen, and Mehdi Bennis.
Robust blockchained federated learning with model validation and proof-of-stake
inspired consensus. arXiv preprint arXiv:2101.03300, 2021.

[26] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of
Lecture Notes in Computer Science, pages 409–437. Springer, 2017.

[27] Covid-19 Data. https://covidtracking.com/data/download/national-
history.csv, Accessed 2022.

[28] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, Ad-
vances in Cryptology - EUROCRYPT 2001, International Conference on the Theory
and Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001,
Proceeding, volume 2045 of Lecture Notes in Computer Science, pages 280–299.
Springer, 2001.

[29] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty

 https://covidtracking.com/data/download/national-history.csv
 https://covidtracking.com/data/download/national-history.csv

108

computation from threshold homomorphic encryption. In Dan Boneh, editor, Ad-
vances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 247–264. Springer, 2003.

[30] DataStax Java Driver. https://github.com/datastax/java-driver, Accessed
2022.

[31] M. Daum, B. Haynes, D. He, A. Mazumdar, and M. Balazinska. Tasm: A tile-based
storage manager for video analytics. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 1775–1786, Los Alamitos, CA, USA, apr 2021.
IEEE Computer Society.

[32] Leo de Castro, Rashmi Agrawal, Rabia Yazicigil, Anantha Chandrakasan, Vinod
Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. Does fully homomorphic encryp-
tion need compute acceleration?, 2021.

[33] Elena della Valle and James D. Weiland. Simultaneous impedance measurements
of the utah electrodes array: A finite element method analysis. In 9th International
IEEE/EMBS Conference on Neural Engineering (NER), pages 819–822, 2019.

[34] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework
for efficient mixed-protocol secure two-party computation. In 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. The Internet Society, 2015.

[35] Yongheng Deng, Feng Lyu, Ju Ren, Yi-Chao Chen, Peng Yang, Yuezhi Zhou, and
Yaoxue Zhang. Fair: Quality-aware federated learning with precise user incentive
and model aggregation. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, 2021.

[36] Yarkın Doroz, Erdinc Ozturk, and Berk Sunar. Accelerating fully homomorphic
encryption in hardware. IEEE Transactions on Computers, 64(6):1509–1521, 2015.

[37] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley, 1999.

[38] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,
Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Em-
manuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

https://github.com/datastax/java-driver

109

[39] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[40] Federico Esposti, Jacopo Lamanna, and Maria Gabriella Signorini. A new approach
to the spatio-temporal pattern identification in neuronal multi-electrode registrations.
In Proceedings of Neuroscience Today, pages 21–24, 2007.

[41] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, Paper 2012/144, 2012. https:

//eprint.iacr.org/2012/144.

[42] Yann Fraboni, Richard Vidal, and Marco Lorenzi. Free-rider attacks on model aggre-
gation in federated learning. In International Conference on Artificial Intelligence
and Statistics, pages 1846–1854. PMLR, 2021.

[43] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, 2009.

[44] Peter Giblin. Graphs, Surfaces and Homology. Cambridge University Press, 2010.

[45] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, page 218–229, New York, NY, USA, 1987. Association for Computing
Machinery.

[46] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. A topological treatment
of early-deciding set-agreement. Theor. Comput. Sci., 410(6-7):570–580, 2009.

[47] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over
encrypted data in the database-service-provider model. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, SIGMOD ’02,
page 216–227, New York, NY, USA, 2002. Association for Computing Machinery.

[48] Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol., 34(1), jan 2021.

[49] Allan Hambley. Electrical Engineering: Principles and Applications. Pearson; 7th
edition, 2017.

[50] Jingoo Han, Ahmad Faraz Khan, Syed Zawad, Ali Anwa, Nathalie Baracaldo Angel,
Yi Zhou, Feng Yan, and Ali R. Butt. Tokenized incentive for federated learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

110

[51] Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.

[52] Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena Bal-
azinska, Alvin Cheung, and Luis Ceze. Vss: A storage system for video analytics.
In Proceedings of the 2021 International Conference on Management of Data, SIG-
MOD/PODS ’21, page 685–696, 2021.

[53] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang,
Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr.
Fedml: A research library and benchmark for federated machine learning. Advances
in Neural Information Processing Systems, Best Paper Award at Federate Learning
Workshop, 2020.

[54] HElib. https://github.com/shaih/HElib, Accessed January 18, 2016.

[55] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-
resilient tasks. In Proceedings of the Twenty-Fifth Annual ACM Symposium on The-
ory of Computing (STOC), pages 111–120, 1993.

[56] Maurice Herlihy and Nir Shavit. A simple constructive computability theorem for
wait-free computation. In Proceedings of the Twenty-Sixth Annual ACM Symposium
on Theory of Computing (STOC), pages 243–252, 1994.

[57] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third Inter-
national Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceed-
ings, volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer,
1998.

[58] W. Kuan Hon and Christopher Millard. Banking in the cloud: Part 3 – contractual
issues. Computer Law & Security Review, 34(3):595–614, 2018.

[59] Human Genome Databases. http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/database/, Accessed 2022.

[60] Hyperledger. https://www.hyperledger.org/, Accessed 2020.

[61] Vandana Jain and K. Muralidhar. Electrowetting-on-dielectric system for covid-19
testing. Transactions of the Indian National Academy of Engineering, May 2020.

[62] Tehsin Kanwal, Adeel Anjum, and Abid Khan. Privacy preservation in e-health

https://github.com/shaih/HElib
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/
 https://www.hyperledger.org/

111

cloud: taxonomy, privacy requirements, feasibility analysis, and opportunities.
Clust. Comput., 24(1):293–317, 2021.

[63] Gang Ke, Shi Wang, and Huan-huan Wu. Parallel incremental attribute-based en-
cryption for mobile cloud data storage and sharing. Journal of Ambient Intelligence
and Humanized Computing, pages 1–11, 01 2021.

[64] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arith-
metic secure computation with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, page
830–842, New York, NY, USA, 2016. Association for Computing Machinery.

[65] Latif U. Khan, Shashi Raj Pandeya, Nguyen H. Tran, Walid Saad, Zhu Han,
Minh NH Nguyen, and Choong Seon Hong. Federated learning for edge networks:
Resource optimization and incentive mechanism. IEEE Communications Magazine,
2020.

[66] Louiza Khati and Damien Vergnaud. Analysis and improvement of an authentication
scheme in incremental cryptography. In Carlos Cid and Michael J. Jacobson Jr.,
editors, Selected Areas in Cryptography - SAC 2018 - 25th International Conference,
Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers, volume 11349
of Lecture Notes in Computer Science, pages 50–70. Springer, 2018.

[67] P. Kiele, A. Kohler, C. Pasluosta, and T. Stieglitz. Robust and precise alignment
monitoring of electrode arrays for capacitive energy supply and signal transmission.
In 9th International IEEE/EMBS Conference on Neural Engineering (NER), pages
686–689, 2019.

[68] Eun Kim, Geza Erdos, Shaohua Huang, Thomas W. Kenniston, Stephen C. Balmert,
Cara Donahue Carey, V. Stalin Raj, Michael W. Epperly, William B. Klimstra,
Bart L. Haagmans, Emrullah Korkmaz, Louis D. Falo, and Andrea Gambotto. Mi-
croneedle array delivered recombinant coronavirus vaccines: Immunogenicity and
rapid translational development. EBioMedicine, 55:102743, 2020.

[69] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. Blockchained on-
device federated learning. IEEE Communications Letters, 24(6):1279–1283, 2019.

[70] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. Federated tensor factor-
ization for computational phenotyping. In Proceedings of the 23rd ACM SIGKDD
International conference on knowledge discovery and data mining, pages 887–895,
2017.

112

[71] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[72] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured stor-
age system. SIGOPS Oper. Syst. Rev., 44(2), April 2010.

[73] M. M. Lavrentev, V. G. Romanov, and Serge P. S. Ill-posed problems of mathemati-
cal physics and analysis. American Mathematical Society, 1986.

[74] H. Li, Z. Tian, J. Xu, R. K. V. Maeda, Z. Wang, and Z. Wang. Chip-specific
power delivery and consumption co-management for process-variation-aware many-
core systems using reinforcement learning. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(5):1150–1163, 2020.

[75] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated
learning. Computers & Industrial Engineering, 149:106854, 2020.

[76] Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou. Federated learning for
vision-and-language grounding problems. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 11572–11579, 2020.

[77] M. H. Loke, P. B. Wilkinson, and J. E. Chambers. Fast computation of opti-
mized electrode arrays for 2d resistivity surveys. Computers & Geosciences, 36(11),
November 2010.

[78] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of
Machine Learning Research, pages 1273–1282. PMLR, 2017.

[79] Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer Kaftan, Alvin Cheung,
Magdalena Balazinska, Ariel Rokem, Andrew Connolly, Jacob Vanderplas, and
Yusra AlSayyad. Comparative evaluation of big-data systems on scientific image
analytics workloads. In Proceedings of the 43rd International Conference on Very
Large Data Bases (VLDB), 2017.

[80] Gonzalo E. Mena, Lauren E. Grosberg, Sasidhar Madugula, Paweł Hottowy, Alan
Litke, John Cunningham, E. J. Chichilnisky, and Liam Paninski. Electrical stimulus
artifact cancellation and neural spike detection on large multi-electrode arrays. PLoS
computational biology, 13(11), November 2017.

113

[81] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–378,
Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[82] Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental de-
terministic public-key encryption. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, pages 628–644, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[83] MNIST Dataset. http://yann.lecun.com/exdb/mnist/, Accessed 2020.

[84] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 19–38, 2017.

[85] MPI. https://www.mpi-forum.org/docs/, Accessed 2019.

[86] MPI4PY. https://mpi4py.readthedocs.io/en/stable/intro.html, Ac-
cessed 2021.

[87] National Institute and Technology of Standards. Advanced encryption standard.
NIST FIPS PUB 197, 2001.

[88] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y. Ng. Reading digits in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

[89] Y. Niu, A. Al-Mamun, H. Lin, T. Li, Y. Zhao, and D. Zhao. Toward scalable anal-
ysis of multidimensional scientific data: A case study of electrode arrays. In IEEE
International Conference on Big Data, 2018.

[90] Ye Niu, Lin Qi, Fen Zhang, and Yi Zhao. Geometric screening of core/shell hy-
drogel microcapsules using a tapered microchannel with interdigitated electrodes.
Biosensors and Bioelectronics, 112:162–169, 2018.

[91] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th International Conference on Theory and Ap-
plication of Cryptographic Techniques, EUROCRYPT’99, page 223–238, Berlin,
Heidelberg, 1999. Springer-Verlag.

[92] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ram-
jee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna Badri-

 http://yann.lecun.com/exdb/mnist/
https://www.mpi-forum.org/docs/
 https://mpi4py.readthedocs.io/en/stable/intro.html

114

narayanan. Big data analytics over encrypted datasets with seabed. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI), page 587–602, USA, 2016. USENIX Association.

[93] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: An encrypted database
using semantically secure encryption. Proc. VLDB Endow., 12(11):1664–1678,
2019.

[94] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 85–
100. ACM, 2011.

[95] PyTorch. https://pytorch.org/, Accessed 2022.

[96] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with hon-
est majority. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, page 73–85, New York, NY, USA, 1989. Association for
Computing Machinery.

[97] Rasdaman. http://www.rasdaman.org/, Accessed 2021.

[98] Dayane Reis, Jonathan Takeshita, Taeho Jung, Michael Niemier, and Xiaobo Sharon
Hu. Computing-in-memory for performance and energy-efficient homomorphic
encryption. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(11):2300–2313, 2020.

[99] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978.

[100] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scal-
able provably-secure deep learning. In Proceedings of the 55th Annual Design Au-
tomation Conference, DAC ’18, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[101] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. F1: A Fast and Programmable
Accelerator for Fully Homomorphic Encryption, page 238–252. Association for
Computing Machinery, 2021.

[102] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. Efficient
confidentiality-preserving data analytics over symmetrically encrypted datasets.
Proc. VLDB Endow., 13(8):1290–1303, April 2020.

https://pytorch.org/
http://www.rasdaman.org/

115

[103] F. Schmuck and R. Haskin. Gpfs: A shared-disk file system for large computing
clusters. In Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies (FAST), 2002.

[104] SciDB. https://github.com/Paradigm4/SciDB, Accessed 2021.

[105] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, Septem-
ber 2021. Microsoft Research, Redmond, WA.

[106] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979.

[107] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Bis-
cotti: A blockchain system for private and secure federated learning. IEEE Transac-
tions on Parallel and Distributed Systems, 32(7):1513–1525, 2020.

[108] Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing
model poisoning attacks and defenses for federated learning. In Network and Dis-
tributed Systems Security (NDSS) Symposium 2021, 2021.

[109] Haoting Shen, Shahriar Badsha, and Dongfang Zhao. Consortium blockchain for the
assurance of supply chain security. In 27th Annual Network and Distributed System
Security Symposium (NDSS), 2020.

[110] Tong Shu, Yanfei Guo, Justin Wozniak, Xiaoning Ding, Ian Foster, and Tahsin Kurc.
Bootstrapping in-situ workflow auto-tuning via combining performance models of
component applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2021.

[111] Julian Shun. Practical parallel hypergraph algorithms. In Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’20, page 232–249, New York, NY, USA, 2020. Association for Computing
Machinery.

[112] statistica. https://www.statista.com/statistics/871513/worldwide-
data-created/, Accessed 2023.

[113] J. Sun, W. Tian, H. Che, S. Sun, S. Gao, L. Xu, and W. Yang. Proportional-integral
controller modified landweber iterative method for image reconstruction in electrical
capacitance tomography. IEEE Sensors Journal, 2019.

[114] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. A new approach
to the spatio-temporal pattern identification in neuronal multi-electrode registrations.

https://github.com/Paradigm4/SciDB
https://github.com/Microsoft/SEAL
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

116

In Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 391–392, 2019.

[115] Jingwei Sun, Ang Li, Louis DiValentin, Amin Hassanzadeh, Yiran Chen, and Hai Li.
Fl-wbc: Enhancing robustness against model poisoning attacks in federated learn-
ing from a client perspective. Advances in Neural Information Processing Systems,
2021.

[116] C. Tan, S. Lv, F. Dong, and M. Takei. Image reconstruction based on convolu-
tional neural network for electrical resistance tomography. IEEE Sensors Journal,
19(1):196–204, 2019.

[117] TPC-H 3.0.0. http://tpc.org/tpcdocumentscurrentversions/

currentspecifications5.asp, Accessed 2022.

[118] M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio.
Tikhonov regularization and prior information in electrical impedance tomography.
IEEE Transactions on Medical Imaging, 17(2):285–293, 1998.

[119] Fenghe Wang, Junquan Wang, and Wenfeng Yang. Efficient incremental authenti-
cation for the updated data in fog computing. Future Generation Computer Systems
(FGCS), 114:130–137, 2021.

[120] Jianhua Wang, Xiaolin Chang, Ricardo J Rodrı̀guez, and Yixiang Wang. Assess-
ing anonymous and selfish free-rider attacks in federated learning. In 2022 IEEE
Symposium on Computers and Communications (ISCC), pages 1–6. IEEE, 2022.

[121] Xinying Wang, Olamide Timothy Tawose, Feng Yan, and Dongfang Zhao. HDK:
toward high-performance deep-learning-based kirchhoff analysis. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI), pages 997–1004, 2020.

[122] Maoqiang Wu, Dongdong Ye, Jiahao Ding, Yuanxiong Guo, Rong Yu, and Miao
Pan. Incentivizing differentially private federated learning: A multidimensional con-
tract approach. IEEE Internet of Things Journal, 2021.

[123] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017.

[124] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor at-
tacks against federated learning. In International Conference on Learning Repre-
sentations, 2020.

 http://tpc.org/tpc_documents_current_versions/current_specifications5.asp
 http://tpc.org/tpc_documents_current_versions/current_specifications5.asp

117

[125] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2), jan 2019.

[126] Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on
Foundations of Computer Science, pages 160–164, 1982.

[127] Yahya H. Yassin, Catthoor Francky, Kloosterman Fabian, Jyh-Jang Sun, JoãO
Couto, Per Gunnar Kjeldsberg, and Nick Van Helleputte. Algorithm/architecture
co-optimisation technique for automatic data reduction of wireless read-out in high-
density electrode arrays. ACM Transactions on Embedded Computing Systems
(TECS), 17(3), June 2018.

[128] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. In International Con-
ference on Machine Learning, 2018.

[129] Zhebin Zhang, Dajie Dong, Yuhang Ma, Yilong Ying, Dawei Jiang, Ke Chen, Lidan
Shou, and Gang Chen. Refiner: A reliable incentive-driven federated learning sys-
tem powered by blockchain. Proceedings of the VLDB Endowment, 14(12):2659–
2662, 2021.

[130] Yiyuan Zhao, Srijata Chakravorti, Robert F. Labadie, Benoit M. Dawant, and Jack H.
Noble. Automatic graph-based method for localization of cochlear implant electrode
arrays in clinical ct with sub-voxel accuracy. Medical image analysis, 52, February
2019.

[131] Zhaohua Zheng, Yize Zhou, Yilong Sun, Zhang Wang, Boyi Liu, and Keqiu Li.
Applications of federated learning in smart cities: recent advances, taxonomy, and
open challenges. Connection Science, 34(1):1–28, 2022.

[132] Xiaojie Zhu, Erman Ayday, Roman Vitenberg, and Narasimha Raghavan Veeraraga-
van. Privacy-preserving search for a similar genomic makeup in the cloud. IEEE
Transactions on Dependable and Secure Computing, 2021.

[133] Sabine Zips, Leroy Grob, Philipp Rinklin, Korkut Terkan, Nouran Yehia Adly,
Lennart Jakob Konstantin Weiß, Dirk Mayer, and Bernhard Wolfrum. Fully printed
u-needle electrode array from conductive polymer ink for bioelectronic applications.
ACS Applied Materials & Interfaces, 11(36):32778–32786, 2019.

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Overview
	Dissertation Contributions
	Topological Modeling and Parallelization of Multidimensional Data on Microelectrode Arrays
	Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching
	Gaussian Attacks and Blockchain-based Auditing on Tokenized Incentive for Federated Machine Learning Systems

	Organization

	Topological Modeling and Parallelization of Multidimensional Data on Microelectrode Arrays
	Introduction
	Background and Problem Formulation
	Kirchhoff Laws and Maxwell Cyclomatic Numbers
	Electrode Array and Graph Abstraction
	Anomaly Detection through Electrode Arrays

	Algebraic-Topological Modeling of MEAs
	Topology Basics
	Modeling through Homology Groups

	Parallel Processing of Multidimensional Electrode Arrays using Algebraic Invariant
	Categorizing Vertex-oriented Constraints
	Parallelization on MEA Manifolds
	System Optimization
	Balanced Parallel
	Fine-grained Multiprocessing (PyMP-k).

	Implementation and Evaluation
	Implementation
	Experimental Setup
	Computation Time
	Memory Footprint
	I/O Cost
	Scalability

	Related Work
	Summary

	Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching
	Introduction
	Background and Motivation
	Contributions

	Preliminaries and Related Work
	Confidentiality of Outsourced Data
	Homomorphic Encryption
	Provable Security

	RHE: Radix Homomorphic Encryption
	Overview
	Algorithm
	Parameterization
	Heuristic Radix Selection
	Optimal Radix in the Worst Case

	Rache: Radix-Additive Caching for Homomorphic Encryption
	Security Definitions and Assumptions
	Scheme Description
	Provable Security

	Incremental Rache
	Overview
	Definitions and Notations
	Scheme Description
	Provable Security

	Evaluation
	Objectives
	Experimental Setup
	Systems and Implementation
	Configurations
	Workloads

	Performance with and without Homomorphic Encryption
	Batch Rache
	Encryption vs. Addition
	TPC-H
	Random Numbers
	U.S. COVID-19 Statistics
	Human Genome Reference 38
	Bitcoin Trade Volume
	Scalability

	Incremental Rache
	TPC-H
	Random Numbers
	Aggregating Encrypted Fields
	Computing Nuances On-the-fly

	Summary of Experimental Results

	Summary

	Gaussian Attacks and Blockchain-based Auditing on Tokenized Incentive for Federated Machine Learning Systems
	Introduction
	Background and Related Work
	Incentive Mechanisms for Federated Learning
	Attacks on Federated Learning
	Blockchains for Federated Learning

	Gaussian Attack on Token Incentive for FL
	Threat Model
	Attack Algorithm
	Convergence Analysis

	Blockchain Audit for Local Models in FL
	Assumptions
	Auditing Protocol
	Complexity Analysis

	Evaluation
	Implementation
	Experimental Setup
	Test Bed
	Data Sets
	Machine Learning Models
	Federated Learning Parameters

	Effectiveness of Gaussian Attacks
	Cost of Blockchain Auditing

	Summary

	Conclusions and Future works
	Conclusions
	Future works

	Bibliography

