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Abstract 

Landscape-scale mapping of individual trees derived from LiDAR (Light Detection And 

Ranging) data have been found to be valuable for a wide range of environmental analyses 

including carbon inventories; fuel estimations for wildfire risk assessment and 

management.  These mapping efforts use individual tree crown (ITC) recognition 

algorithms applied to LiDAR point clouds, which have complex parameter sets. Genetic 

algorithms (GA) have been demonstrated to be excellent function optimizers for very 

complex search spaces and perform well for parameter tuning. Here, we use GAs to 

identify the best of a set of published ITC models and their optimal parameters for 

airborne LiDAR of forested plots in the Sierra Nevada Mountains of California. We 

assessed the accuracy of these ITC models in terms of the F-score and percentage bias for 

tree crown prediction. GA-optimization generally improved on ITC default parameters 

and showed that these models typically perform better for detecting overstory trees. 
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Introduction 

Mapping tree crowns at an individual level over large scales can be useful for estimating 

leaf area (Ke et al. 2016) and canopy cover (Carreiras et al., 2006), which can be used for 

making inferences about light penetration and availability, microclimates and understory 

competition (Binkley, 2021). Also, accurate individual tree maps at landscape levels are 

useful inputs into wildfire and insect outbreak models (Sánchez et al., 2018; Negron et al., 

2009). The more precise these maps are, the better models we can develop for mitigating 

these issues. 

Mapping individual trees at a landscape level is often slow and infeasible for conventional 

field techniques (Ko et al., 2009). Hence, we need a way of acquiring these data over large 

and often inaccessible regions reliably and quickly. Remote sensing, specifically  airborne 

LiDAR (Light Detection and Ranging), produces datasets conducive for doing these 

landscape-level analyses. 

Over the previous decades, multiple individual tree crown (ITC) recognition algorithms 

have been developed that can be applied to LiDAR datasets for the purpose of producing 

landscape-level forest inventories at the scale of individual trees (Wulder et al., 2000; 

Dalponte et al., 2016; Silva et al., 2016; Li et al., 2012; Vega et al., 2014; Hamraz et al., 

2016). These algorithms often have complex parameter sets that may not necessarily have 

real-life analogs (i.e., cannot be measured in the field) that, if poorly tuned, can 

significantly degrade the performance of the ITCs for tree crown mapping. Hence, we are 

posed with the challenge of optimizing their parameters for the best possible performance. 
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Multiple techniques exist for optimizing the values of parameters in a search space. Hill 

climbers are a common technique for exploring a single solution at a time but are prone to 

getting stuck in local optima and are not suited for discrete, poorly understood search 

spaces (Johnson and Jacobson, 2002). Moreover, multiple combinations of parameters for 

these ITCs can yield similar levels of accuracy for tree crown mapping, thereby increasing 

the chances of hill climbers to find only local optima. 

Machine learners have seen recent advances in various spheres but often require training 

datasets with inputs and known possibilities as labels. However, these are often unsuitable 

for tree crown mapping as only inputs without corresponding output labels (tree crown 

shapes) are typically available. Neural networks in particular, which are suited for this 

likely computer vision problem require huge datasets which are unavailable in this context 

(Shaikhina and Khovanova, 2017). 

Genetic algorithms (GAs) overcome the challenges of the previous optimization techniques 

as they work well with sparse datasets and are suited for discontinuous, multi-modal, 

poorly understood search spaces. GAs are evolutionary algorithms that utilize the principle 

of natural selection in a mathematical context for evolving solutions over multiple 

iterations or generations (Goldberg, 1988). They encode parameters directly in bit strings 

as chromosomes and are effective for this kind of problem as they seek to maximize a 

defined fitness value representing the context of what is to be optimized. 

Here, GAs are used for simultaneously optimizing the parameters from a set of widely 

available ITC models with the goal of selecting the best for landscape tree crown mapping 

of airborne LiDAR. The tree crowns are validated using tree stems acquired for 
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corresponding LiDAR plots and the performance of the GA-tuning is evaluated using 

various tree level and plot level metrics. The performance of the GA-optimized parameters 

is then compared to their default values. Finally, we assessed their performance over 

various DBH cutoffs. 
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Chapter 1 – Improving Tree Crown Mapping using 

Airborne LiDAR with Genetic Algorithms 

Abstract 

Landscape-scale mapping of individual trees derived from LiDAR (Light Detection And 

Ranging) data have been found to be valuable for a wide range of environmental analyses 

including carbon inventories, inputs into tree growth models, and fuels estimations for 

wildfire risk assessment and management.  These mapping efforts use individual tree 

crown (ITC) recognition algorithms and several ITCs have been developed for 

delineating trees from point cloud. These ITCs have complex sets of parameters and vary 

considerably in their ability to detect trees under varying forest stand sizes, canopy layers 

and density conditions. 

Genetic algorithms (GA) have been demonstrated to be excellent function optimizers for 

very complex search spaces and have been shown to perform well for parameter tuning. 

Here, we use GAs to identify the best ITC model, out of 6, and its optimal parameters for 

airborne LiDAR of forested plots. We used a fitness function which focused on balancing 

the number of predicted tree crowns and their positions relative to actual tree stems. We 

assessed the accuracy of these ITC models and GA-optimized parameters in terms of the 

F-score, percentage bias and other metrics; then compared the performance GA-

optimized parameters to the ITC defaults their default parameters to assess the degree to 

which the genetic algorithm improved on the performance of naive implementations of 

the ITC algorithms. GA-optimization generally improved on ITC default parameters, and 

we also showed that these models generally perform better for detecting overstory trees. 
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Introduction 

Individual tree mapping has gained increased focus as modern techniques have moved 

from manual to various forms of automated mapping methods (Karlson et el., 2014; 

Duncanson et al., 2014). Often, landscape-scale mapping of trees at a generic level is 

done and the data is typically used for assessing percentage of tree cover on land, 

classifying vegetation type, monitoring forest conversion, leaf area and canopy closure 

(Heumann, 2011). However, advances in technology, individual and government needs 

have necessitated the increased relevance of individual tree mapping at these landscape-

scale levels that were previously generalized. 

Deriving information on trees at an individual level is often done to identify and 

aggregate various tree species, which can be useful for assessing the vulnerability of the 

associated flora and fauna (Bunting et al., 2010) especially as increased deforestation 

happens in many industrialized parts of the world. Assessing tree stem volume for 

estimating carbon stock based on CO2 sources and sinks is becoming increasingly useful 

today, as many countries today seek to reduce their carbon footprints (Tonolli et al., 

2011). Such information comes from individual tree properties including tree height, 

diameter and basal volume, which require data at fine resolutions to be estimated. And 

unlike multiple studies on tree stem mapping which are typically done in small areas 

(Zhang, 2019; Qian et al., 2019; Liang et al., 2011), acquiring such information at a 

landscape level is useful for assessing the potential impact of forested environments on 

the climate. 
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Beyond just individual tree attributes, the underlying spatial distribution of these forests 

is essential for wildfire mitigation and insect outbreak analysis (Forbes et al., 2022; 

Lantschner and Corley, 2015). Understanding the demography of trees in a forest is also 

useful for monitoring and making projections of forest productivity. And such analysis 

often relies on attributes about size classes, regeneration gaps, productivity and mortality 

(Ogden, 1985). These useful details for assessing forest dynamics are only accessible 

with tree level characteristics at a landscape scale. Monitoring forest growth, age, growth 

and the relationship between various species including competition and dominance are 

important steps for assessing forest demography and making useful predictions (Enright 

and Hartshorn, 1981).  

Tree species identification is also useful in assessing forest ecosystem functionality as 

forest functionality typically benefits more increased biodiversity. These tree crown maps 

can also help determine the dominant tree species in a forest (Queinnec et al., 2023), 

which are significant determiners of floristic turnover (Draper et al., 2019). Furthermore, 

monitoring tree growth (and eventual forest growth); calculating and monitoring tree 

biomass; and carbon flux is very important for assessing the health of forests and 

implications on the climate today (Zhao et al., 2018). Tree crown mapping, which is 

useful for determining tree canopy volume, can be used to inform decision making for 

various management purposes in agriculture (Marín-Buzón et al., 2020). 

Determining all these tree-level attributes at a landscape scale is important for fast, 

accurate and representative information on forest attributes which are also useful for 

agricultural health monitoring (Ji-Hua and Bing-Fang, 2008), forest fire mitigation and 
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treatment plans (Li et al., 2022), insect outbreak monitoring (Fassnacht et al., 2014) 

among others. The vertical and horizontal continuity and gaps between understory and 

overstory vegetation affect the spread of any potentially destructive agent such as 

wildfires, as increased fuel loading typically increases the wildfire severity (Hanan et al., 

2021). Consequently, precise spatial maps, especially in 3D forms can serve as a basis for 

developing more reliable scientific models for analyzing and mitigating these naturally 

occurring disasters in forests. 

Historically, individual tree mapping utilized laborious, manual field surveys in which 

trees had to be geolocated usually through the establishment of reference positions and 

determine the range and azimuth from these positions.  The amount of effort to map 

individual trees using field surveys scales fairly directly with the number of trees or areas 

under investigation, so landscape-scale surveys are impractical using these techniques. 

Moreover, it is nearly infeasible to precisely map tree crowns with fieldwork. The use of 

remote sensing data, particularly data collected at resolutions significant finer than the 

size of individual tree crowns (Brolly and Kiraly, 2009; Lindberg and Holmgren, 2017), 

have been proposed as an alternative to field surveys for creating landscape-scale stem 

maps.   These techniques have employed the use of unmanned aerial vehicles (UAVs) 

(Schiefer et al., 2020; Onishi and Ise, 2021); terrestrial (Tao et al., 2021) and airborne (Li 

et al.; 2012) LiDAR (Light Detection and Ranging); multispectral (Abutaleb et al., 2021) 

and hyperspectral satellite imagery (Shafri and Hamdan, 2009).  However, these 

techniques introduce new challenges of producing stem maps with sufficient accuracy to 

replace field surveys. 
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A common challenge with tree crown mapping involves the spatial resolution of such 

maps, which is a significant consideration for the domain of application of the final 

product (Nwilo et al., 2022; Greenberg et al., 2009). The visibility from lighting 

conditions and weather constraints imposes severe limitations on data from passive 

remote sensing sources such as satellite imagery and UAVs (Khanal etal., 2020). Ethical 

issues concerning data access and ownership in remote sensing can often arise (Slonecker 

et al., 1998; Sanger and Barnett, 2021), and this is important with regards to adjoining 

private agricultural sites considering large swaths are typically captured in remotely 

sensed data. Occlusion due to cloud cover (Ajayi and Ojima, 2022); aerosols and smoke 

(Ulku et al., 2022); and overstory trees for subcanopies (Ryu et al., 2014) are challenges 

that need to be addressed for effective tree crown mapping with remote sensing imagery. 

Also, fine tree level attributes beyond the canopy like height and diameter at breast height 

(DBH) are often difficult to estimate, and these are relevant to reconstruct the forest 

scene and delineate trees (Morsdorf et al., 2004). 

Amongst the various datasets used in individual tree crown recognition, small footprint 

airborne laser scanning (ALS) otherwise known as airborne LiDAR, has a great track 

record of producing accurate stem maps (Tang et al., 2015;  Popescu, 2007; Næsset and 

Bjerknes, 2001). LiDAR is an active remote sensing technology that utilizes laser pulses 

for capturing information about the environment. Point clouds produced from LiDAR are 

effective for computing the absolute/relative distances and heights of objects (Kellner et 

al., 2019), a quality unobtainable with multispectral, high spatial resolution datasets. 

Also, the LiDAR emitted pulses typically have multiple returns and can hence provide 
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profile information at various elevations (Dong and Chen, 2017), yielding accurate data 

about sub-canopy layers in a forest (Renslow et al., 2000). 

However, passive remote sensing is severely limited in extracting such detailed spatial 

information, even at very fine spatial and radiometric resolution due to the single pixel 

value in output rasters. Technologies such as LiDAR provide the ability to obtain such 

levels of detailed spatial information at sub-canopy levels, due to records from multiple 

returns of a single laser pulse to the same location. Hence, even more precise spatial 

maps of trees, rather than an aggregation of forest cover, is available with LiDAR. 

Terrestrial LiDAR from terrestrial laser scanners (TLS) in particular, can provide detailed 

information about tree stems and the vertical profile of individual trees, synonymous to 

the perspective of a person standing in front of a tree. The visibility of details captured by 

TLS for tree crowns can be obscured in dense forests or where tree continuity in the 

horizontal and vertical dimensions is locally emphasized (Zong et al., 2021). However, 

airborne LiDAR tends to capture better tree crowns as its sampling footprint is typically 

larger than TLS and multiple returns tend to capture various canopy layers until the very 

last return – ground. 

The use of satellite imagery for tree crown mapping is often constrained by the spatial 

and radiometric resolution of the imagery, which often requires feature identification and 

classification of fine details to detect individual trees. Google Earth imagery has been 

employed in tree crown mapping which was fed into a region-based convolutional neural 

network (CNN) that achieved over 80% accuracy for both number of trees and crown 

area (Yang et al., 2022). Very fine spatial resolutions aid individual tree crown 
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recognition with this type of imagery as seen in Karlson et el. (2014) where Geographic 

Object Based Image Analysis (GEOBIA) was used with Worldview-2 image for 

delineating trees, with accuracy level positively correlated with tree crown area.  

Multispectral satellite imagery is sparsely used in isolation for tree stem mapping as 

available resolutions are often not feasible for individual tree detection (Larsen, 2007) 

and often require integration with a more precise and detailed remotely sensed data 

source such as LiDAR (Holmgren et al., 2008). 

Hyperspectral imagery typically provides a more reliable means of mapping individual 

trees than multispectral imagery, as seen in Moriya (2021), where it was used in mapping 

infected citrus trees with an accuracy of 94% and F-score of 0.85 compared to just 

multispectral imagery with similar respective results of 79% accuracy and 0.55 as the F-

score. Bark beetle damage was also mapped at the tree level with hyperspectral imagery 

in Näsi (2015) with 74.7% accuracy at the single tree level for trees with DBH above 

26.2cm and at least 23.9m tall. Unfortunately, the accuracy of remotely sensed imagery is 

severely limited due to the inability to detect understory trees. Hence, they are best suited 

for isolated trees in single vertical layers when solely used or combined with LiDAR for 

detailed information (Alonzo, 2016). 

Due to the level of detail provided by the data and its ability to map understory trees in 

dense forests, LiDAR remote sensing is being increasingly used for individual tree 

mapping. In Brolly and Kiraly (2009), TLS was used to map individual trees at a forest 

reserve, which was used to derive individual tree heights, DBH and their locations. 

Another study by Liu et al. (2017) employed the use of matching for multiple TLS scans 
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of a single forest plot to reconstruct and subsequently map tree stems. TLS stem mapping 

algorithms generally use point clustering and geometric analysis to identify tree stems. 

One common technique of mapping individual trees from TLS involves the generation 

and extraction of ground points, and the classification of remaining points for modelling 

stems based on the connectedness of points (Brolly and Kiraly, 2009). Another algorithm 

employed for tree detection from TLS point cloud involves stem identification and 

isolation based on connected component segmentation and curvature of points (Zhang, 

2019). 

A common approach to tree segmentation algorithms from airborne LiDAR employs the 

use of local maximum filtering and slope breaks for detecting individual trees from a 

rasterized canopy height model (CHM) as seen in the watershed algorithm developed in 

Wulder et al. (2000). This study used either a fixed or dynamic window size with 

omnidirectional transects from a central pixel until a minimum radiance value is reached. 

Bigger trees were easier to detect than smaller ones, the latter which were more likely to 

be detected with smaller window sizes. Dalponte and Silva also use this similar local 

maximum technique to detect trees from a CHM, designating these maxima as tree tops 

to isolate individual trees, and having height thresholds for what considering pixels 

would be used for classifying a cluster of points as a single tree. 

Holmgren (2008) also utilized this raster-based technique for Individual Tree Crown 

(ITC) delineation, and the watershed algorithm is a quite popular method of mapping 

trees available in R (R Core Team, 2022). Ayrey et al. (2017) uses layer stacking in a 

slight variation from the CHM model for isolating trees. This layer stacking algorithm 
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attempts to overcome the previous challenge of raster-based ITCs by slicing the entire 

forest into 1m intervals and attempting to cluster points in each of these sliced layers. 

Afterwards, it attempts to stack these layers to find cluster location agreements as 

representations of individual trees. 

There are also non-raster-based methods of segmenting trees – each with its unique 

strengths and weaknesses. These segmentation algorithms all have their unique 

parameters with varying implications that directly affect the performance on LiDAR 

datasets. An integration of the watershed’s CHM model and raw LiDAR returns was 

employed in Duncanson et al. (2014) for multi-layer tree-level classification, which was 

used for detecting understory and overstory trees. And although it had difficulty detecting 

small, dense understory trees, it performed well in identifying trees of various strata – 

dominant, co-dominant and intermediate-level trees at decreasing levels of accuracy. 

Li et al. (2012) describes a tree delineation method that is based on raw point cloud, 

which identifies trees based on the relative spacing of points between trees after height 

normalization based on a defined threshold distance. It works well where the spacing 

between trees at the top is greater than the spacing at the bottom, typical in coniferous 

forests. Ptrees (Vega et al., 2014) is another tree segmentation algorithm that works with 

raw point clouds and uses the raw elevation values (rather than normalized height) to 

perform multiple segmentations at different scales before selecting the best set of apices 

that are used for the final segmentation. It achieves this while preserving the geometry of 

crown points and similarly works better for conifers than deciduous plants, and tends to 

have higher commission errors than other methods that work with raw point cloud. 
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In Ferraz (2012), an iterative algorithm was developed that works directly with the point 

cloud segments trees based on a selected kernel bandwidth and uses the mean-shift 

algorithm. This algorithm is based on the assumption that the point cloud from airborne 

LiDAR consists of multiple modes, and hence the goal is to extract these modes which 

represent a tree. It works well for multi-layer forests and adequately differentiates 

between ground vegetation and taller trees with up to 98.6% detection for dominant trees. 

Hamraz et al. (2016) is a non-parametric approach that uses the highest elevation points 

in a gridded LiDAR point cloud, which is then expanded out and used to identify trees 

based on identified crown boundaries. Afterwards, elevation points in each grid below a 

threshold height are discarded and a convex hull of boundary points are also used to 

generate tree crowns. It detected 100% of all dominant trees and decreased in detection 

ability for trees of lower strata with an overall accuracy of 77%, while omissions were 

generally more common than commission errors. A common hassle with utilizing and 

comparing the relative performances of these segmentation algorithms involves the 

determination of the optimal value of their parameters. 

Delineating individual trees from remote sensing data often depends on several 

parameters, and the optimal selection of these parameter values is often a common 

challenge remote sensing analysts have to overcome (Ke and Quackenbush, 2011). A 

common approach for delineating trees with passive remote sensing imagery relies on 

finding the local maxima of pixels, based on the assumption of tree crown centroids 

coinciding at that point (Culvenor, 2002). The detection of local optimas of groups of 

pixels is a technique exploited by classification algorithms in machine learning for 
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delineating individual trees from imagery, alongside various geometric properties of trees 

(Yu et al., 2006). 

Feature selection often poses a major computational challenge in accurately delineating 

trees and making selections among the vast array of features to be optimized can be quite 

challenging (Kattenborn, 2021) for even experts. And although machine learning 

approaches might have experienced success in many tree detection applications, it often 

requires a lot of transformation of data to extract reasonable parameters and supervised 

learning, which requires human guidance, is typically the preferred approach (Weiss et 

al., 2010). This would pose a major challenge of addition parameter and hyperparameter 

inclusion when tuning several models, each of which have their own parameters. 

Moreover, parallelization of machine learning models is a complex issue (Cheng, 2021) 

and these classification algorithms work best on continuous, mathematical spaces with 

differentiable parameters. Hence, a different approach is needed to optimize discrete 

parameters of multiple models in parallel. 

Genetic algorithms (GAs) are an evolutionary-based approach to effectively exploring 

search spaces and are based on the principle of natural selection or a “survival of the 

fittest” approach in their exploration (Goldberg, 1988). It involves the use of a parallel 

population of individuals, also known as chromosomes, encoded with the parameters 

whose optimal values are being sought. They are highly effective in complex search 

spaces and have found great applications in optimization problems (Louis and Johnson, 

1997; Damanik et al., 2019; Liashchynskyi and Liashchynskyi, 2019). The interpretation 

of optimality in this exploration largely rests on the specific problem. Each individual 
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explores the complex search space with various fitness values assigned to them, based on 

a mathematical metric designed to assess their performance, to converge at an optimal 

solution. 

A pre-assigned probability of crossover determines if two individuals are selected to 

exchange information, and such combination is often directly or indirectly proportional to 

the fitness of individuals. Over various generations, the fitness of these individuals tends 

to improve and converge to the values of the fittest chromosomes with typically optimal 

values of parameters achieved. A typically small probability of mutation helps to 

preserve the diversity of individuals in their exploration and hence prevents premature 

convergence at a local optimum. GAs are highly effective in quickly exploring complex 

search spaces, and take significantly less time than an exhaustive search to converge at an 

optimal solution by exploring patterns of fitness (Goldberg, 1998). 

Fitness values are often mathematical functions whose solutions yield the maximum 

value of the function, hence are always maximized. Simple GA problems often search 

through the space of solutions for the solution to one or multiple variables. Multi-

objective fitness functions are quite common in GA-problems where multiple goals are 

sought like where health and damage done to an opponent are being simultaneously 

optimized, or in the design of aircrafts where drag is being minimized and lift is 

maximized. The aim of such multi-objective functions is to optimize objectives in various 

dimensions (Paterna et al., 2020). This can be as common as pareto-optimality problems 

where a solution is only better than a previous one if it better optimizes all its 

“objectives” than another (Horn et al., 1994). A pareto-optimal objective function was 
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used when estimating plasma and temperature gradients in X-ray spectroscopy (Golovkin 

et al., 2000), while a cumulative objective function was used in decision-making for a 

multi-use reservoir serving both human and ecological needs (Chang et al., 2010).  

Many studies have also incorporated genetic algorithms into optimization problems and 

found the solutions much better than those of conventional optimization techniques that 

have been previously used and continuously developed (Lin and Zhang, 2020; 

Marchesini and Farinelli, 2020). Gesù and Bosco (2005) described an image 

segmentation technique based on GAs in which the image segmentation problem was 

defined and reduced to that of an optimization problem, and outperformed 3 other image 

segmentation algorithms previously used, and had a faster convergence to the correct 

solution. Mumtaz et al. (2008) assessed the relative performances of an existing image 

fusion algorithm and three image fusion algorithms in which GAs are used. And despite 

the computational complexity of the GA-based image fusion algorithms and subsequent 

unsuitability for real-time applications, they were shown to outperform the existing non-

GA integrated technique and proved suitable for static image fusion applications. 

Aim and Objectives of Research 

Tree crown mapping is useful for monitoring and informing decision making about tree 

cover on land, vegetation type, monitoring forest conversion, leaf area and canopy 

closure (Heumann, 2011). With airborne LiDAR, we can delineate these individual tree 

crowns precisely and various ITCs with complex sets of parameters have been developed 

for which we seek to improve on, by optimizing the discrete parameters each provides, 

for mapping trees. 
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Hence, if a complex search problem can be reduced to an optimization goal, it can be 

solved with a genetic algorithm (Goldberg, 1988). Consequently, the aim of this study is 

to improve tree crown mapping of forested regions with airborne LiDAR. The following 

research questions are the objectives we seek to answer: 

1. Can we optimize the performance of ITC recognition algorithms for tree crown 

mapping? 

2. How do our GA-optimized parameters compare to the default values? 

3. How does the performance of ITC recognition algorithms vary for different tree 

DBH size classes? 
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Methods 

For this study, airborne LiDAR data, for which tree crown recognition would be 

implemented on, was acquired over various plots. Also, TLS data for the same plots were 

acquired to be used as ground truth for validating results. Thereafter, various ITC 

recognition algorithms across a range of parameters about their default values were tested 

on a few plots and the results were used in designing the fitness functions for the genetic 

algorithms that would possibly optimize tree crown recognition. These GAs were run on 

training plots and the results were validated on test plots that were withheld prior to any 

computation. Afterwards, these were evaluated with various accuracy metrics on various 

DBH cutoffs and used to map trees over multiple plots. This is shown in Figure 1. 

 

Figure 1: Flowchart representing workflow of the entire study. 
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Study Area and Plot Design 

The study area is a forested region of the Sierra Nevada Mountains, CA/NV, specifically 

the Lake Tahoe Basin Management Unit (LTBMU) and Plumas National Forest (PNF). 

The LTBMU is responsible for the management and preservation of the watershed 

ecosystem of Lake Tahoe, which is a popular destination in a high-risk fire environment. 

While the Plumas National Forest spans has mostly old-growth forests. 

Both sites in Figure 2 are mixed conifer forests in a Mediterranean climate with elevation 

ranging from 215m to 2,818m above sea level. They are characterized by long, hot-dry 

summers and cool, wet winters with increasing precipitation at higher elevations (Moody 

et al., 2006). Current management efforts aim at protecting these sites from wildfires, 

which have been altered by fire suppression over the last 100 years, after an early period 

of clear-cutting up until the 20th century (Stanton and Dailey, 2007). Figure 2 is a map of 

the study area produced with ArcMap (Esri Inc., 2020). 
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Figure 2: Study area with TLS Plot centers shown 
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Data Collection and Pre-processing 

Airborne LiDAR: Airborne LiDAR data was acquired over the entire Plumas National 

Forest and the Lake Tahoe Basin Management Unit (Table 1). The area was tiled into 

square plots in the study area of length 30m, with a 5m buffer about the edges. Hence, 

each airborne LiDAR plot had point clouds for areas spanning approximately 40m by 

40m in size, which were pre-processed for use as input data. 

In addition to the airborne LiDAR data acquired over the study area, TLS data was 

acquired for selected plots in the same region. The TLS data served as ground truth data 

for validation.  

Calibration/Validation Data: Our analysis required positions and sizes of stands of trees 

confined to specific areas (plots).  To accomplish this, we leveraged a plot network with a 

two-stage stratified random sampling design to ensure a representative sample of forest 

types across Plumas National Forest and the Lake Tahoe Basin. The first stage of 

sampling involved placing 10 km grid cells within the boundaries of the sample sites. The 

second stage placed a 30 x 30 m plot centered within each grid cell randomly selected to 

be on publicly accessible land, between 60-120 m from the nearest road, and have more 

than 10% tree cover based on a LANDSAT analysis and were stratified by location. Also, 

plot locations in any areas with recent burn scars or signs of recent logging were avoided 

(Wade, 2022). A total of 108 plots were scanned and used in this analysis during leaf-on 

periods in 2017 and 2018. Each plot represents a 30 x 30 m square (plus a 5 m buffer) 

centered on the plot center using 9-13 separate scanner positions, with 2-4 scans per 

position (dependent on stand density) to maximize the vertical distribution of data (Figure 
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3). Additional scan positions were added to maintain a visual line of sight between 

reflectors. Scans were taken with a Riegl VZ-400i Terrestrial Laser Scanner (Table 2). 

All scans were coregistered within-plot using RiSCAN PRO (Riegl Laser Measurement 

Systems GmbH, 2020), and then subsequently to an airborne laser scanning (ALS) base 

map using LAStools (RapidLasso GmbH, 2019), and CloudCompare (Girardeau-

Montaut, 2020). The average number of points per plot was 125,830,459 and the average 

density was 7.86 points/cm2 (Hartsook, 2021). 

 

Figure 3: TLS scan set-ups (5m buffers were used to prevent edge effects) 

The airborne LiDAR data was acquired with the specifications shown in Table 1, while 

Table 2 shows the specifications for which the TLS data was acquired. 

 



20 
 

 

Table 1: Airborne LiDAR flight specifications 

Multi-Swath Pulse Density ≥ 8 pulses/m2 

Field of View (Scan Angle) < 30o (± 15o from Nadir) 

Returns/Laser Pulse Up to 4 

Laser Footprint Diameter  20-25 cm 

Intensity Range 1-255 

Swath Overlap  
≥ 50% side-lap (100% overlap); 

up to 75% in some areas 

Pulse rate ≥ 150,000 laser pulses per second 

Data Completeness No voids 

Maximum GPS Baseline ≤13 nautical miles 

GPS PDOP During Acquisition ≤ 3.5 

GPS Satellite Constellation ≥ 6 

Vertical Accuracy  (1.96𝜎), bare earth, slope < 20o < 30 cm 

RMSE (1𝜎) ≤ 15 cm  

Horizontal Accuracy (1𝜎), bare earth, slope < 20o < 30 cm 

Between-swath reproducibility ≤ 15 cm 

Range reproducibility ≤ 5 cm 

 

Table 2: Terrestrial LiDAR acquisition specifications 

Laser scanner RIEGL VZ-400i 

Pulse repetition rate 1.2 MHz 

Data acquisition speed 500,000 measurements per second 

Range 800m 

Accuracy 5mm 

Precision 3mm 



21 
 

 

Laser wavelength Near infrared 

Laser Beam Divergence 0.35 mrad 

Laser Class Class 1 

Field of view 100o (Vertical +60o / -40o) × 360o (Horizontal) 

Vertical scan speed 3 – 240 lines per second 

Horizontal scan speed 0o to 150o per second 

Angle measurement resolution 2.5 arcsec (Vertical) and 1.8 arcsec (Horizontal) 

Cloud connectivity Wi-Fi and 3G/4G LTE 

Compatibility RIEGL VMZ Mobile Laser Mapping System 

Internal storage 256 GB SSD (Solid State Disc) 

 

For the TLS to be used for validation against the airborne LiDAR point cloud, a means of 

simplifying the overlaying and comparison of delineated trees against tree stems was 

needed. Hence, rasters were generated from 5cm vertical slices about 1.37m height 

(approximate DBH) of the TLS data. Afterwards rasters of 1cm spatial resolution were 

generated from the point cloud between 1.345 – 1.395m (5cm depth) which generally 

carved out near-circular stem outlines in the raster. These was done in an automated 

workflow with pdal (PDAL Contributors, 2022). These rasters were then digitized and 

converted to shapefiles for use for validation as tree stems in QGIS (QGIS.org, 2019). 

Attributes of the shapefiles were mostly about tree stems with attributes including 

diameter at breast height (DBH), species, azimuth and (rarely) short notes about the trees. 

Corresponding airborne LiDAR and TLS plots were matched and cropped within the 

extent of the generated raster using the raster package (Hijmans, 2022). Forty-five 
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matching plots were identified, for which there was an 80/20 training and test set split. 

The 45 airborne LiDAR plots which had an average density of 28.18 points/m², were split 

into 3 distinct point cloud density categories of high, medium and low densities based on 

the total number of returns per plot – 15 per category. For each category, 12 were 

randomly selected as training plots and the remaining 3 were withheld as test plots. 

Thirty-six corresponding plots were used for training and hence used in the actual genetic 

algorithms for parameter tuning, and 9 for validation after GA-fine tuning. Table 3 below 

shows the distribution of DBH of trees in all plots. 

Table 3: Statistics on DBH distribution of trees in the training and test plots used 

 

Min 

DBH 

(cm) 

Max 

DBH 

(cm) 

Under 

5cm 

(%) 

5 – 10 

cm 

(%) 

10 – 15 

cm 

(%) 

15 – 20 

cm 

(%) 

20 – 25 

cm 

(%) 

Over 

25cm 

(%) 

No. 

of 

trees 

Training 

plots 
2.15 153.33 1.98 14.18 17.25 14.44 10.34 41.81 2631 

Test 

plots 
2.20 142.94 3.80 23.88 18.18 12.89 6.78 34.47 737 

All plots 2.15 153.33 2.38 16.30 17.46 14.10 9.56 40.20 3368 

Afterwards, each of the training and test plots were duplicated and modified to represent 

various DBH cutoffs. For each plot (training/test), the TLS plots, which are already pre-

processed as shapefiles in the form of polygons with attributes that include area, were 

subset based on the DBH of trees within each of them. For a DBH cutoff, the initial TLS 

plot was first duplicated to preserve the original, and all trees less than that cutoff size 

were removed from the plot. DBH cutoff values used were 5cm, 10cm, 15cm, 20cm and 

25cm; 0cm cutoff being the preserved TLS plot. Hence, each training/test plot over 

various DBH cutoffs typically had variations of the same original plot with larger and 
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often fewer trees for increasing cutoff sizes in the TLS plots, while the airborne LiDAR 

plots were unmodified in this scenario. 

Genetic Algorithms 

Genetic algorithms generally utilizes a population of individuals/chromosomes with 

encodings of parameters in a binary string (Figure 1), which are often randomly 

initialized before the start of exploration. For each generation, some of these individuals 

are randomnly selected for exchange of genes (a combination of bits) in a process called 

crossover (Goldberg, 1988). This combination process for 2 chromosomes is determined 

probabilistically, often in proportion to the calculated fitness of individuals. Thus, 

individuals of higher fitness values are more likely to be paired for crossover. 

Afterwards, a typically slight probability of mutation can alter the value of one of more 

bits of an individual. These probably altered individuals proceed to the next generation 

and the cycle repeats until a reasonable solution is reached. 

For a given parameter of range [a, b] and p as its precision, the number of bits for binary 

representation, n, and decoding is given by: 

Precision (p)                        =    (b – a) / (2n – 1) 

decimal value                       =    binary to decimal conversion of bits 

Decoded parameter value     =   a + precision × decimal value  

Equation 1: Parameter encoding/decoding given range [a, b]  occupying n bits in the 

chromosome 
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Figure 4: Chromosome illustrating encoding and decoding of parameters. 

From Figure 4, “Parameter 1” must be at least 5 bits (2n = 32 ≥ 31) for encoding this 

parameter. To decode the actual value of any encoded ITC’s parameter, the binary value 

is first decoded to base 10. Thereafter, the parameter’s value is calculated by adding the 

minimum acceptable value in its range with the product of this base 10 value and the 

precision as seen in equation 1. 

Individual Tree Crown Recognition Algorithms 

Multiple ITC recognition algorithms have been developed, and six (6) of these were used 

for this study. The choice of these algorithms was based on multiple factors including the 

fact that they were developed in R, where the genetic algorithms and LiDAR data was 

being processed. Also, these 6 algorithms were available in R packages and had 

accessible publications documenting their development and implementation. 

These tree crown recognition algorithms include Watershed (Wulder et al. 2000), 

dalponte2016 ((Dalponte and Coomes, 2016), and silva2016 (Silva et al., 2016), which 

are all raster-based tree segmentation algorithms available through the lidR package 

(Roussel et al. 2020; Roussel and Auty, 2022). While li2012 (Li et al., 2012) is a non-

raster-based segmentation algorithm also available in lidR. Also, two more segmentation 
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algorithms – ptrees (Vega et al., 2014) and hamraz2016 (Hamraz et al. 2016) were used 

and are both available from the lidRplugins package (Roussel, 2022). For the rest of this 

study, these 6 algorithms would be referred to as Watershed, Dalponte, Silva, Li, Trees 

and Hamraz. Each of these ITCs have varying numbers of default parameters that are 

used for tree crown recognition. The values of these discrete parameters were not 

necessarily always related to actual tree-level attributes, and changes to a single one can 

significantly affect performance of an ITC. 

The parameters to be tuned for each tree segmentation algorithm were identified. To 

obtain a reasonable range of values and precision/step sizes of tuning for each parameter, 

several tests were carried out on each tree segmentation algorithm with manual fine-

tuning of each parameter’s value incremented in fine steps. This was done with a basic 

performance assessment for the number of identified trees for a known airborne LiDAR 

plot. This range and step sizes for values were necessary to determine the number of bits 

for encoding each parameter in a chromosome. 

Table 4 shows the individual parameters for each ITC as they were developed, including 

their identified ranges (both inclusive) and precisions that were fed into the genetic 

algorithm. The meaning of each parameter can be found in the official R documentation 

for each ITC. An “algorithm” parameter was used as a pseudo-parameter to select one out 

of 3 provided algorithms for generating a digital surface model – “p2r” (point-to-raster), 

“pitfree” (pit-free algorithm) and “dsmtin” (Delaunay triangulation). The kernel size used 

is the size of the moving kernel for raster-based ITCs – radius for the circular kernels 

used in Watershed and Dalponte; length for the square kernels used in Silva. Each of 
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these had its own parameters which were tuned as well before implementing a grid 

canopy model as the first computational step in the implementation of 3 of the tree 

segmentation algorithms that utilized such.  

Table 4: List of encoded chromosome’s parameters (raster-based ITCs make use of 

pseudo-algorithm parameter) 

ITC Number of parameters Number of bits Raster-based 

Watershed 7 25 Yes (circular kernel) 

Dalponte 10 42 Yes (circular kernel) 

Silva 8 33 Yes (square kernel) 

Li 4 16 No 

Ptrees 2 10 No 

Hamraz 9 50 No 

Thus, a single chromosome had a binary encoding for all 40 parameters (29 inherently 

unique with 11 variations for different ITCs) and a total length of 176 bits. 

Fitness Function 

To evaluate the objective function per chromosome at every generation, an individual is 

decoded into the values of its various parameters and all 6 ITC recognition algorithms 

were evaluated using these parameters for a single plot, producing an output LAS file 

with detected trees at various coordinates identified. This output contains information 

about the number of uniquely identified trees and their spatial positions. 

The objective function is defined here as a measure of deviation from the optimal 

solution of the GA, and hence the aim is to minimize it. While the fitness function is to be 
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maximized as it represents a measure of performance of the GA, and is typically derived 

as an additive or multiplicative inverse of the objective function. Each ITC algorithm 

identifies and delineates n tree crowns (as a cluster of points with an ID) per plot.  

Consequently, each segmentation algorithm is evaluated as follows:    

Objective function            =       0.5*(Tree count error + Spatial error) 

Tree count error                   =       Δtree/ maximum(actual trees, predicted trees) 

Spatial error                      =     Δdist
̅̅ ̅̅ ̅̅ / maximum value of Δdist 

Equation 2: Objective function of genetic algorithm to be minimized 

Where Δtree  is the absolute difference in actual and identified trees, and Δdist  is the 

Euclidean distance from an actual tree to the nearest identified tree by an algorithm – 

using the rgeos package (Bivand and Rundel, 2021). Δdist was evaluated for every actual 

tree on site with the ground truth and averaged to get Δdist
̅̅ ̅̅ ̅̅  Details about the actual 

number of trees and their positions were derived from ground truth data available for 

each plot in the form of shapefiles using the rgdal package (Bivand et al. 2022). 

The multi-objective function in equation 2 was designed with the intention of (as 

optimally as possible) weighting the impacts of over or under identification of trees, as 

well as the deviation in coordinates from actual trees on site. This was necessary due to 

the unequal units of these two error sources, as the mean distance is typically measured in 

meters and typically had values ranging from a fraction to a few meters. Whereas Δtree 

has no unit and can take on any possible non-negative value. Consequently, a perfect tree 

crown recognition algorithm that identifies the exact number of actual trees (a tree count 
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error of zero) at their exact locations (a spatial error of zero) would have the least 

objective function value of zero and hence maximum fitness. 

Fitness per algorithm           =       1 – Objective Function 

Total chromosome fitness   =       6 × Fitness per algorithm 

Equation 3: Fitness function to be maximized by each chromosome of genetic algorithm. 

Fitness sharing was implemented in equation 3 by equally distributing the maximum 

fitness for each algorithm, and this fitness was carefully chosen to ensure it always 

remains positive. Moreover, the maximum value of the objective function (corresponding 

to the minimum fitness) per chromosome is such that it typically never exceeds 1 for 

even the worst algorithms. Error checking was implemented such that if an unlikely 

combination of parameters fails to identify a tree, a fitness value of 0.0006 per 

chromosome (10-4 per ITC) is the resulting output. 

Fitness sharing also ensured the final solution of the genetic algorithm did not converge 

to a single tree segmentation algorithm but distributed across all of them, and thus 

creating multiple optima in the search space. The subsequent effect is an optimization of 

as many parameters as possible for the different tree segmentation algorithms irrespective 

of the performance of one or a few of them. 

GA Parameters 

The entire implementation of the genetic algorithm was done in R using the GA package 

(Scrucca, 2013). A population size of 200 over at most 500 generations for 176-bit long 

chromosomes were used. A chromosome with values representative of the defaults 
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(where available) or sample values of parameters from their documentations for all 

algorithms was seeded into the GA as the initial point of optimization. These genetic 

algorithms were run over the training plots. A random seed (77) was used for 

reproducibility of results. 

Each chromosome’s objective function and fitness were evaluated using equations 4 and 

5 respectively after running all 6 ITC recognition algorithms per fitness evaluation with 

the decoded parameters. These were then combined into a fitness value with equation 6. 

Due to the computationally expensive nature of the fitness evaluation – running all 6 tree 

segmentation algorithms and evaluating the objective functions, parallelization of the 

population’s fitness evaluation was implemented with 100 cores (Scrucca, 2017). 

One-point crossover and flip mutation were used with probabilities of 0.95 and 0.05 

respectively, while linear rank selection was used to minimize selection pressure, which 

in turn reduces rapid convergence of solutions unlike what is commonly obtainable in 

fitness proportional selection (Goldberg and Deb, 1991). To ensure the best individuals 

are always preserved or only replaced with fitter individuals, elitist selection was utilized 

with a “keep 6-best” method implemented per generation. The genetic algorithm gets 

terminated when the fittest individual does not improve after 50 consecutive generations. 

Due to the complexity of the search space, specific combinations of parameter values 

threw errors and error handling was implemented to prevent uninterrupted execution of 

the genetic algorithm, while the chromosome and the tree segmentation algorithm (just 

before it is evaluated for fitness) were logged to a file using the logr package (Bosak, 

2022). 



30 
 

 

Accuracy Metrics 

The results were evaluated with various metrics, described shortly, to assess and analyze 

the performance of the genetic algorithm. Also, these metrics were used to evaluate the 

performance of the genetic algorithm for modified variations of the groundtruth at 

various DBH cut-offs. While the airborne las files were unmodified, the groundtruth data 

containing the tree stems were subsampled to contain trees having DBH sizes with 

minimum threshold values of 5cm, 10cm, 15cm, 20cm and 25cm. For each of these 

thresholds, the entire genetic algorithm was re-run with the subsampled groundtruth and 

each of these metrics were re-evaluated on the same subsamples. 

Assessment of accuracy and validation of results was done using precision, recall, F-

score, root mean squared error (RMSE), percentage bias, and the coefficients of 

correlation and determination. To calculate the true positives (used in precision and 

recall), a 1.5m threshold is set as the maximum cut-off distance between a predicted 

(point cloud cluster) and actual tree stems as being the same tree. For each actual tree on 

site, since all test plots are non-empty, if there is at least one predicted tree within 1.5m 

radius of the ground truth, the closest of them is assigned to the actual tree, and this 

counts as a true positive. While the remaining predicted trees are used for the rest of the 

iteration. In the event of no predicted tree being within that threshold, this counts as a 

false negative. 

For each iteration, any matched predicted tree is temporarily removed from the rest of the 

data to avoid multiple counting and thus introducing flaws to the analysis. Consequently, 

there is one less actual and one less predicted tree on site for each iteration. This iterative 
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process continues for all in-situ trees as the sum of all matched trees for predictions and 

reality with the existing ground truth is the total false positives. It is important to note that 

this threshold is selected with the assumption that tree stems are reasonably expected to 

be within the canopy due to the typical triangular shape of conifers. Hence, 1.5m was 

used for this study as the threshold distance for matching tree stems to predicted canopy’s 

centroid (presumably the canopy’s center). 

For the false positives with each cluster of points identified as belonging to a single tree 

ID, and therefore an individual tree, the mean of the two-dimensional coordinates is 

calculated for each of these identified trees by the ITC algorithm. This aggregation of 

mean coordinates is converted to a simple feature in the same coordinate reference 

system as the ground truth for comparison. Thereafter, a 1.5m threshold for matching 

trees is also selected. While there is a predicted tree in the plot, the closest (in spatial 

proximity) actual tree is matched to it (which is a true positive as previously calculated). 

However, if there is no actual tree within that threshold, it is considered a false positive. 

Similar precautions are taken by temporarily removing matched actual and identified 

trees to avoid double counting, and the process terminates after going through all 

predicted trees. Thus, the total sum of unmatched trees serves as the false positives. 

Whereas the false negatives for any plot is the difference between the actual number of 

trees on site and the true positives. 

Landscape Tree Crown Mapping with Optimized Parameters 

After evaluating the performance of the ITC models post GA run, the best model among 

all ITC GA-tuned parameters was chosen for mapping multiple airborne LiDAR plots in 
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the Lake Tahoe Basin Management Unit. This model selection decision was made based 

on the F-scores values; with the tree crown recognition algorithm whose F-score was the 

highest for all DBHs chosen. 
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Results 

GA Fitness Values 

The peak fitness values increased up to the 15cm DBH cutoff before plummeting past 

that cutoff value (Figure 5). Also, all genetic algorithms stopped well before the 

maximum number of generations set, as seen in Table 5, with convergence typically 

happening early. The common stopping criterion for all GAs was 50 consecutive 

maximum fitness values. 

Table 5: Maximum number of generations run by genetic algorithms for different DBH 

cutoffs 

DBH minimum 

cutoff 
All sizes 5cm 10cm 15cm 20cm 25cm 

Number of 

generations 
109 165 174 216 91 229 
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Figure 5: Fitness values of GAs over different DBH cutoffs 

 

Confusion matrix 

The precision values from Figure 6 generally decreased for increasing DBH cutoffs, with 

the genetic algorithm’s fine-tuned parameters having higher precision for most DBH size 

cutoffs across the validation plots. Also, Table 6 shows the 5cm DBH cutoff had the 

highest precision values for all ITCs, with watershed’s default parameters generally being 

the worst performing at all cutoff values. 
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However, watershed and Dalponte were the best-performing ITCs for the GA-tuned 

parameters, outperforming all other ITCs after parameter tuning. Although, at the 15cm 

DBH cutoff, Silva’s default outperformed watershed’s GA-optimized parameters and all 

other ITC default values. 

Table 6: Precision values for default and GA-optimized tree crown recognition 

algorithms (best values in each row are color-coded) 

DBH 

Cutoff 

(cm) 

Watershed Dalponte Silva Li Ptrees Hamraz GA- optimized 

(GA-best) 

5 0.1864 0.3955 0.4028 0.4118 0.2676 0.2731 
0.4500 

(Watershed) 

10 0.1533 0.3475 0.3654 0.3665 0.2263 0.2423 
0.4048 

(Dalponte) 

15 0.1205 0.3107 0.3222 0.2941 0.1895 0.2203 
0.3161 

(Watershed) 

20 0.0950 0.2684 0.2692 0.2353 0.1460 0.1718 
0.2925 

(Dalponte) 

25 0.0817 0.2373 0.2338 0.1946 0.1237 0.1454 
0.2602 

(Dalponte) 
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Figure 6: Plot of Precision versus DBH cutoffs 

Either Li or Hamraz had the worst recall across all DBH cutoffs as seen in Table 7. Also, 

either Silva or Ptrees among the ITCs had the best recall values across all DBH cutoffs 

for GA-optimized parameters. Watershed’s default parameters outperformed all other 

ITC defaults and even the GA-tuned predictions in the recall values. Whereas the trend of 

recall values from Figure 7 is the reverse of that for precision, as it generally increases for 

higher DBH cutoffs. 
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Table 7: Recall values for default and GA-optimized tree crown recognition algorithms 

(best values in each row are color-coded) 

DBH 

Cutoff 

(cm) 

Watershed Dalponte Silva Li Ptrees Hamraz 
GA- optimized 

(GA-best) 

5 0.7306 0.1975 0.2891 0.1283 0.3385 0.0874 
0.3385 

(Ptrees) 

10 0.7992 0.2308 0.3490 0.1520 0.3809 0.1032 
0.3058 

(Silva) 

15 0.8396 0.2757 0.4110 0.1629 0.4261 0.1253 
0.3534 

(Silva) 

20 0.8684 0.3125 0.4507 0.1711 0.4309 0.1283 
0.6711 

(Silva) 

25 0.8937 0.3307 0.4685 0.1693 0.4370 0.1299 
0.4370 

(Ptrees) 
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Figure 7: Plot of Recall versus DBH cutoffs 

The F-scores in Figure 8 do not show any specific trend across DBH values. Silva’s 

default had the highest F-score values across all DBH cutoffs for all ITCs from Table 8. 

Quite interestingly, Silva’s default outperformed the GA-tuned parameters for all but one 

DBH value, 20cm, which was led by same Silva’s GA-tuned parameters. Once again, 

either Li or Hamraz generally had the least F-scores across DBH cutoffs. 
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Table 8: F-scores for default and GA-optimized tree crown recognition algorithms (best 

values in each row are color-coded) 

DBH 

Cutoff 

(cm) 

Watershed Dalponte Silva Li Ptrees Hamraz 
GA- optimized 

(GA-best) 

5 0.2970 0.2634 0.3366 0.1957 0.2989 0.1325 
0.2989 

(Ptrees) 

10 0.2572 0.2773 0.3570 0.2149 0.2839 0.1447 
0.3267 

(Silva) 

15 0.2108 0.2922 0.3612 0.2097 0.2623 0.1597 
0.3264 

(Silva) 

20 0.1713 0.2888 0.3370 0.1981 0.2182 0.1469 
0.3585 

(Silva) 

25 0.1497 0.2763 0.3119 0.1811 0.1929 0.1372 0.2897 

(Dalponte) 

 

 



40 
 

 

 

Figure 8: Plot of F-scores versus DBH cutoffs 

Predicted Trees 

The number of predicted trees across the test plots for all ITCs after GA-tuning of 

parameters is shown in Figure 9. This prediction on the airborne LiDAR was first 

compared with tree stems of at least 5cm DBH, and afterwards tree stems of at least 

25cm DBH to compare trends of predictions for all trees versus large trees. There is 

generally a high negative percentage bias for trees with at least 5cm DBH, while this 

percentage bias was less negative when compared with trees of at least 25cm DBH. In a 

few cases for the latter, the percentage bias was a large positive value. 
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(a)  

(b)  
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(c)  

(d)  
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(e)  

(f)  

Figure 9: Predicting trees with GA-tuned parameters validated with tree stems of 

minimum DBH: 5cm (Left); 25cm (Right) 

(a) Watershed (b) Dalponte (c) Silva (d) Li (e) Ptrees (f) Hamraz 

Tree Crown Maps at Landscape Level 

Tree crown maps of an LTBMU plot at a landscape scale were produced with all ITC 

models with the GA-optimized parameters, as shown in Figure 11. This plot measures 

275m × 265m, and a tree crown prediction comparison is shown for them. 
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Figure 10: LTBMU airborne LiDAR plot (275m × 265m) 
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(a) (b)  

Figure 11: Watershed’s tree crown map 

(a) Default parameters (18,027 trees) (b) GA-optimized parameters (1,107 trees) 

 

(a)  (b)  

Figure 12: Dalponte’s tree crown map 

(a) Default parameters (675 trees) (b) GA-optimized parameters (507 trees) 
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(a) (b)  

Figure 13: Silva’s tree crown map 

(a) Default parameters (871 trees) (b) GA-optimized parameters (782 trees) 

(a) (b)  

Figure 14: Li’s tree crown map 

(a) Default parameters (1,177 trees) (b) GA-optimized parameters (1,507 trees) 



47 
 

 

(a) (b)  

Figure 15: Ptrees' tree crown map 

(a) Default parameters (311 trees) (b) GA-optimized parameters (243 trees) 

(a) (b)  

Figure 16: Hamraz’s tree crown map 

(a) Default parameters (586 trees) (b) GA-optimized parameters (599 trees) 
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Discussion and Conclusion 

GA-optimization of parameters did show we can significantly improve the performance of 

most ITCs for tree crown mapping as the results have shown. The fitness function for the 

GA played a significant role in achieving these results, as its dual-optimization purpose for 

tree count and spatial locations sought to strike a balance between predicting the actual 

number of trees and making these predictions at the right locations. Evaluations of GAs 

were not based on the same fitness function, but rather on F-scores as it is important to 

objectively evaluate on an independent but relevant metric that is intuitive to the remote 

sensing and ecological implications. 

Consequently, the fitness functions in Figure 5 tells very little about the actual 

performance, as it is a purely mathematical metric meant to numerically evaluate each 

chromosome. Although it is developed with the actual problem statement in mind, the 

remote sensing problem and subsequent application is less mathematical than ecological. 

This is because a plot with 70 trees could, in theory, be more closely satisfied by a GA-

solution that predicts a hundred trees where at least one predicted tree matches the location 

of an actual one, than a more realistic prediction of 56 trees with a slight offset from actual 

ones. This is important to note in the context of the typically larger trees that ITCs generally 

detect and are often of more practical importance.  The F-scores are meant to more closely 

represent how a human would think about how a tree crown prediction algorithm should 

match reality in forests, based on how true positives, false positives and false negatives 

were evaluated. 
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The general decreasing trend of precision values as DBH sizes increase (Figure 6) suggests 

either an increase in the number of false positives, or a decrease in the number of true 

positives, or both. The combination is more likely as the number of true positives is 

expected to decline due to the presence of less actual trees on site since smaller tree sizes 

were excluded from the groundtruth in larger DBH cutoffs when evaluating precision. 

Also, the number of false negatives would increase because the same previously detected 

small trees from the airborne LiDAR, in the excluded DBH size would still be predicted 

by the GA-tuned parameters of the tree crown recognition algorithms. But these small 

trees would appear as false negatives due to their exclusion from the ground truth. The 

increase in false negatives is expected to be significantly higher than the decrease in true 

positives for a declining trend to be the outcome in the equation defining precision. 

In most cases, dalponte and watershed when fine-tuned by the genetic algorithm had the 

highest precision across various DBH values from Table 6, and experienced the largest 

increase in this metric. This improvement is significant considering their default 

parameters had precision values always strictly less than the GA-optimized values. 

Ptrees, Hamraz and Watershed had the worst precision values when tree crown 

predictions are made with their default parameters, suggesting a tendency to predict more 

non-existent trees than others. 

However, recalls had a different trend with a general to improve for large DBH cutoff 

values (Figure 7). Consequently, it’s either there is an increase in true positives or a 

decrease in false negatives or both. The previous analysis of precision already suggests an 

increase in true positives for higher DBH cutoffs is quite unlikely. Hence, the most 
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probable reason for this increasing trend of recall is lower false negatives. A simple 

technical analysis of the datasets for various DBH cutoffs shows that since there are 

fewer actual trees in the ground truth as the cutoff size increases, due to exclusion of 

smaller trees. Consequently, the number of undetected actual trees would likely reduce 

significantly. This likely implication is further strengthened by the fact that the remaining 

trees are of much larger sizes and easy to detect, since larger DBH generally implies 

larger trees. 

It is also important to note that watershed’s default parameters outperformed that of all 

other ITCs and even the GA-tuned predictions in recall. While this might seem 

unexpected, watershed uses a moving window on a canopy height model to detect trees 

based on peak irradiance is often prone to commission errors at fine spatial resolutions or 

for trees at close proximity (Wulder, 2000). Lt was developed on forest stands with 

median DBH of 24cm, which is much larger than the one used for this study. Moreover, 

the commission errors of the watershed algorithm for a fixed window size (which is used 

by default) tends to predict non-existent trees, which can eventually match some actual 

trees on site, even while lowering the precision. It’s default parameters grossly 

overestimated trees on site, with micro tree crown shapes (Figure 11) as predictions. 

However, its crown mapping ability significantly improved after GA-tuning even though 

the tree crown shapes especially along edges were rather sharp. 

Beyond watershed, the GA-tuned parameters performed just as well as the best of other 

ITC default parameters for recall, with a sharp peak at 20cm DBH cutoff. This is 

probably the point at which the false negatives were least due to detection of almost all 
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actual trees relative to the true positives, such that the equation for recall had a much 

higher value than other DBH values. Li and Hamraz had the worst recall across all DBH 

cutoffs with very little tendency to improve which might either suggest a poor ability to 

predict trees at actual tree locations. Hence more false negatives, or a very conservative 

prediction ability in general, and less true positives. 

Silva and Ptrees led the recall values for GA-optimized parameters from Table 7 and 

generally experienced either none or a negative increase in the performance of their 

default parameters. Hence, parameter tuning by GAs probably did not have a major effect 

on the precision of ITCs in general. However, Silva and Ptree’s default parameters 

seemed to perform at least as well as the GA-optimized parameters at all but the peak 

DBH cutoff values.  

The F-scores in Figure 8, which represent the harmonic mean of precision and recall do 

not show any specific trend across DBH values which isn’t surprising considering the 

opposing trends shown by its components. Silva generally had the highest F-score values 

for various DBH cutoffs and outperformed the GA-tuned parameters for all but one DBH 

value, 20cm, which was the same as the peak value of the GA-tuned recall parameters. 

This probably implies Silva’s default parameters were expertly chosen and tuned prior to 

publishing such, considering it also generally performed quite close to the GA-tuned 

parameters for precision and recall as well. Also, its tree crown predictions (Figure 13) 

seemed to be the most realistic when compared to the landscape plot (Figure 10) it was 

applied to. 
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Once again, Li and Hamraz generally had the least F-scores across DBH cutoffs, with 

watershed experiencing a steep decline in F-score values at higher DBH cutoffs. This 

implication is critical when using such ITC algorithms for tree classification from 

airborne LiDAR, as it suggests their default parameters would need a lot more fine-tuning 

before use in large-scale practical applications. 

However, the GA-optimized parameters had one of the best F-score values and Silva led 

in most DBH cutoffs among all ITC algorithms from Table 8. It is noteworthy to observe 

that Silva’s default parameters outperformed the GA-tuned parameters for all but a single 

DBH cutoff, the 20cm cutoff, whose faults was outperformed by the GA-optimized 

Silva’s parameters. An explanation for this would be due to the fitness sharing concept 

implemented in the genetic algorithm since all ITC algorithms and their parameters were 

encoded in a single chromosome and jointly used in the evaluation of the fitness of each 

individual. Thus, highly fit individuals in the population might have a more balanced 

spread of fitness values across each ITC rather than optimizing for any single one. 

Consequently, a decline in fitness of a single ITC’s parameters in relation to its default 

can be counterbalanced by significant gains in fitnesses of other ITCs. 

The results from Figure 9 show a very weak linear relationship between predicted and 

actual trees for the ITCs, as seen by their R² values, with rather high RMSE values for 

watershed, ptrees and hamraz. The overall trend for trees of at least 5cm DBH is a gross 

underestimation tendency, indicated by the typically high negative percentage bias each 

has. When the same tree crown predictions were made on trees of at least 25cm DBH 

cutoff, the percentage bias values all tended towards a positive increment, suggesting the 
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ITCs are likely capable of better detecting large trees compared to the mix of trees of 

varying sizes. Spatially continuous canopy layers in the plots can also lead to the 

classification of multiple closeby trees as a single tree. 

The 3 raster-based ITCs, in particular, still had negative percentage bias values much 

closer to zero for these large trees. While the non-raster based ITCs had their percentage 

bias significantly change to large positive values, indicating significant overestimation 

tendencies. Ptrees was the most drastic, with a general likelihood of overpredicting the 

number of large trees by over 160%. This might be likely due to oversplitting of large, 

overstory trees with spread out branches, while losing most of the small trees present. 

This loss of small trees becomes evident it was applied to a landscape level plot (Figure 

15); it seemed to predict much large tree crowns than the reality. This result seems to be 

suggested in the development of the algorithm where dominant trees had a 96% detection 

rate compared to a 44% for dominated trees (Vega et al., 2014). 

From the literature on the ITCs used, Silva (Silva et al., 2016) and Watershed (Wulder et 

al., 2000) were developed on trees with minimum DBHs of 9.5cm and 9cm respectively. 

Also, the density of the plots used for most ITCs were significantly less than this study, 

with Silva having an average density of 290 trees per hectare and watershed having an 

average maximum density of about 200 trees per hectare. These values compared to the 

812 and 910 trees per hectare for the training and test plots of this study respectively 

imply tree density had a significant impact on the performance of the ITCs. 

Hamraz, which had the worst recalls and very low precisions for all DBH cutoffs, had a 

tendency to predict large crown shapes (Figure 16) like ptrees, with GA-tuning having 
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little effect on the number of identified trees on the landscape plot. This result is 

supported in Hamraz et al. (2016), which had better recognition for overstory/dominant 

trees. While dalponte, alongside Silva, closely matched the actual tree shapes (Figure 12) 

with fewer but larger tree crowns than Silva, while givinga an apparent indication of 

more sparsity than reality. This is probably due to overstory detection as well, with this 

ITC model known to have a very poor detection rate for small trees (Dalponte et al., 

2016). 

Although Li’s precision was among the highest for ITC defaults, its tree crown 

predictions still seemed poor in shapes and sizes with lots of predicted trees (Figure 14), 

and GA-tuning of its parameters having the effect of reducing predicted crown sizes. 

Since there is no validation data for the landscape level plot, we can make no inferences 

about the predicted number of trees. But it is important to highlight the high correlation 

between number of predicted and actual trees reported in Li et al. (2012), which could be 

a plausible reason for the high number of predicted trees on the plot. 

Genetic algorithms have shown to be highly effective in simultaneously tuning the 

parameters of various tree segmentation algorithms for optimal performance. Despite the 

computational cost of the fitness function, GA proves to be a preferable method to the 

manual tuning of parameters, of which all the ITCs had multiple parameters with varying 

ranges and precisions. However, the interpretation of the fitness values of the 

segmentation algorithms in the context of the problem statement is not as direct as the 

fitnesses imply. Careful considerations of the application of the results and desired 
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outcomes precede the fitness statistics. Visualization of results often helps to put into 

context the apparent performance of the algorithms on the domain problem. 

The various tree crown recognition algorithms generally underestimated the actual 

number of trees on each plot by a significant margin. This can be possibly addressed by 

adjusting the relative weights of penalties applied to displacement and tree count errors. 

Perhaps a manual or some optimization-based approach for tuning the weight of the 

penalty applied to the tree count error in the objective function would have helped. Also, 

a new fitness function can be defined that addresses the combined issues of precise tree 

counting and positioning. Future studies could consider utilizing a statistic like the kappa 

coefficient which would be based on the number of identified trees (by each 

segmentation algorithm) within a set threshold distance from actual trees in the ground 

truth, and the equivalent for “absence trees” which are randomly generated on the site 

within certain distance limits from the actual trees present. Also, intersection over union 

for tree canopy predictions would be a useful way of evaluating future studies. Other 

fitness functions can be designed depending on the desired objective of the tree 

segmentation problem or pareto-optimality integrated can be used. 

The issue of parameter dependence of tree segmentation algorithms also needs to be 

addressed for similar problems in the future. Duplicates of the same parameter utilized by 

various algorithms can be encoded in the chromosome, and each independently optimized 

and utilized by each tree segmentation algorithm as they may be implemented in different 

ways. The consequence of this would be longer chromosomes and increased 

computational complexity. But as this study showed, the chromosome length has very 
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little bearing on the time computational complexity since each parameter is decoded 

quickly from its binary encoding to its precise value, before being used in the 

computationally expensive fitness function that implements all 6 segmentation 

algorithms. Moreover, the precision and range of certain parameters can be refined to 

increase the search space and possibly improve the performance, which has the same 

effect of increasing the bit size of those parameters. 

While this study was mostly evaluated in the context of the existing ITC algorithms 

alone, a different perspective on the strengths and limitations of a GA-approach could 

have been thrown by comparing it to other optimization approaches including machine 

learning techniques (Lin and Zhang, 2020), hill climbers and greedy algorithms. We can 

only confidently assert that a GA-approach is more computationally efficient than an 

exhaustive search for the number of bits which has a search space of 2176, which can take 

an unreasonable amount of time by even the most computationally efficient computing 

systems. Other optimization approaches would have offered insight into the relative time 

complexity and optimality of parameter convergence for this study. 

Existing ITC models used for this study have no filter for assessing tree sizes beyond 

height thresholds and the size of moving windows in relation to the resolution of the 

canopy height models for the raster-based ITCs. Properties such as canopy area are not 

accounted for, and large branched trees might be oversplit, as very small cluster of point 

cloud indicative of canopies are not overlooked as independent trees. It might also be 

worth investigating properties of the forested regions as there might be an almost always 

direct correlation between the values of certain parameters and some of the characteristics 
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of forest stands. Knowledge of this might improve the computational expense of the GAs 

as such values can be seeded as part of the initial population or not encoded in the 

chromosome for tuning, and with increased computational speed be integrated into real-

time applications. 

Nonetheless, GAs have shown wide applications in various fields and its optimization 

power shown in this study is a property that could be greatly utilized in the natural 

resource and ecological discipline, once the problem of interest can be reduced to an 

optimization function. Hence, GAs can be applied to any ecological problem that can be 

modelled mathematically and requires selection of attributes and/or scenarios among a 

range of possibilities, with each having different implications that can be modelled. And 

while this study did improve on existing ITC’s default parameters, it is still limited by the 

inherent limitations of the original ITCs on which the GAs were optimizing. And hence, 

genetic algorithms are not algorithms for identifying trees themselves. Future studies 

would address the development of new tree recognition algorithm that identifies trees in 

various forest stand structures, canopy layers and densities, which seemed to be a general 

limitation in the performance of the existing models. Integrating this development with 

machine learning techniques, especially computer vision, might improve the performance 

of tree crown mapping. It would still be worthwhile to tune the parameters of newly 

developed models with genetic algorithms as this study showed its capacity to improve 

on default values.  
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Conclusion 

This thesis demonstrated the use of genetic algorithms (GAs) for optimizing the 

performance of six (6) individual tree crown recognition (ITC) models for mapping trees 

using airborne LiDAR (Light Detection and Ranging) at a landscape level. The GA-tuned 

parameters outperformed the default values for 5 out of 6 of them, evaluated based on 

their F-scores. Also, we found out that each ITC model was generally poor at predicting 

the actual number of trees on site, with either gross overestimation or underestimation 

errors. However, they had better performances in detecting large trees than a mix of trees 

of different sizes. The GA-optimization of these ITCs was limited by the inherent 

capabilities of the original models themselves, and accurate tree crown mapping from 

airborne LiDAR probably still remains an unsolved remote sensing problem. 


