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Abstract 

Stoneflies are a globally threatened aquatic insect order. In Arkansas, a diverse group of winter 

stonefly (Capniidae: Allocapnia) have not been surveyed since the 1980s, likely because species-

level identification requires the rarely-collected adult form. Allocapnia mohri, a regional 

endemic, was previously commonly found in mountainous, intermittent streams from the 

Ouachita Mountains ecoregion north to the Ozark Highlands, but no species distributional 

models including land use or climate variables exist to our knowledge. We collected adults from 

70 stream reaches from the historic Arkansas range from November to April 2020 and 2021. We 

modeled distributions using random forest (RF) models populated with landscape, climate, and 

both data to determine which were most predictive of species presence. Correlations between 

landscape or climate variables and presence were examined using multiple logistic regression. 

The landscape RF models performed better than the climate or landscape + climate RF models. 

A. mohri presence sites tended to have a greater elevation, a lower mean July temperature, and a 

greater percentage of very slow infiltration soils in the watershed, compared to absence sites. A. 

mohri was absent at the Ouachita Mountains sites and may be experiencing a range contraction 

or migration northward. 
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I. Introduction 

Stoneflies (Plecoptera) are a highly diverse macroinvertebrate group encompassing more than 

1000 species and representing 99 genera and ten families in North America [1]. Though the 

plecopteran group is expansive, little species-specific data on habitat, feeding habits, and 

distributions exist, and several existing records need updating to more accurately estimate their 

population status and to manage their conservation. This information is essential as Plecoptera 

are estimated to be one of the most endangered groups of insects globally [2,3]. Possible reasons 

for this include the alteration of plecopteran habitat by anthropogenic influences, such as climate 

and land use changes [3]. Here we model distributions of an endemic stonefly species to close 

the gap in species-specific stonefly knowledge, and to investigate whether climate, landscape, or 

a combination of factors could be affecting spatial distributions of stoneflies. 

Several insect species, including the nymphs of some species of stonefly, are reliant on 

allochthonous resources [4], and the energy transported by these terrestrial materials, along with 

the energy acquired through autochthonous resources, is the primary source of matter and energy 

for many streams, particularly low order forested streams [5–7]. Shredding stoneflies will 

consume autumn-shed leaves, then these nymphs are subject to predation, thereby using the 

energy acquired through allochthonous sources. [8]. This cycling of allochthonous material into 

the stream makes stoneflies a vital component of the stream food web [9]. The reliance on fallen 

leaves for food adds a habitat requirement of course particulate organic matter (CPOM) for 

shredder stoneflies in this macroinvertebrate group, and several stonefly species have strict water 

oxygenation and temperature requirements [10,11], increasing the habitat needs for these 

sensitive plecopteran nymphs. One such group of threatened plecopterans is the winter stonefly. 
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Stoneflies require specific environmental conditions, such as stream water temperatures and 

hydroperiod [12], and these factors will be affected by global climate change [13]. 

Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness has displayed a decline of 81.6% 

worldwide, coming to an average loss of 1.9% loss of EPT richness each year. This 1.9% loss in 

richness mirrors the 1.88 °C increase in water temperature over the 40 years [14]. Several 

stonefly species have a thermal cue for egg hatching, and if stream temperatures do not reach a 

thermal low-end cue, nymphs will not hatch, causing extinction of species in certain thermally 

inadequate streams [12]. The effect of changing hydroperiod can greatly affect stoneflies, as they 

spend most of their lives as aquatic nymphs. Plecopterans are sensitive to benthic habitat loss, 

due in part to their need to lay eggs inside refugia within the stream (i.e., aquatic plants and 

woody debris), and their need to emerge using this refugia [12]. In some streams, stonefly 

nymphs can retreat to the hyporheic zone in dry periods, and it was found that several stonefly 

species even have diapausing eggs to outlast the dry stream conditions [15], though for many 

species and for many systems, the hyporheic zone is not as important as refugia. Small stoneflies 

have been found to aggregate on stones, and larger stoneflies aggregate in leaf patches during 

high flow, as well as a general movement toward areas with flow in drying summer months [16]. 

Land-use change is another key driver of declines in stonefly populations [3]. Loss of riparian 

forest will likely amplify increases in stream water temperatures [17], reducing forested area in 

catchments, which may reduce stonefly habitat availability [18], and this, along with climate 

change, may cause reductions in stonefly populations due to their strict thermal requirements 

[10]. Further, standing crops of coarse benthic organic detritus can be directly related to the 

secondary production of shredding macroinvertebrates, such as stoneflies [19,20]. So, the loss of 
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forested land in catchments can be strongly linked to a lower standing crop of litter detritus and 

likely reduced food availability for shredding stoneflies. 

Forested land is often converted to agricultural or urban land uses that may also contribute to 

stonefly population declines and local species extinctions. Anthropogenic activities and land 

usage around stream systems directly influence the physical and chemical characteristics of the 

streams [21], including the amounts of sewage inputs, salts from road de-icing, and agricultural 

fertilizer and pesticides that seep into streams [22–24]. Anthropogenic activities can also result in 

impervious soil surrounding streams, leading to slow infiltration of water [25], causing an 

increase in speed and volume of storm runoff [26], and an increase in pollutants, ultimately 

causing a degradation of the aquatic habitat [27] and a loss of benthic macroinvertebrate 

diversity [28]. 

Anthropogenic nutrient inputs often lead to an increase in primary production [29], and this 

eutrophication can lead to low levels of dissolved oxygen (DO) during certain times of the day 

[29], thereby killing sensitive species in the stream, such as stoneflies [30]. This increase in 

nutrients can also stimulate microbial decomposition of leaf litter, the food source of shredders 

such as stoneflies [31]. While microbial colonization is thought to improve the nutritional quality 

of leaf litter for shredders, this is not always the case [32–35]. Further, elevated microbial 

decomposition may reduce the quantity of coarse detrital carbon available for food in stream 

ecosystems [36]. These effects can compound over time and be detrimental to stonefly species in 

the long-term. 

Plecopterans are sensitive to these stream impurities and to microhabitat disturbances, which 

makes them an important biological model to indicate water quality [37]. Most of the studies on 

benthic macroinvertebrates in relation to water quality evaluations have dealt with the richness of 
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the EPT community because these groups are intolerant to pollutants in water bodies, but in the 

EPT community, plecopterans are often the most sensitive to changes in water quality [38]. 

While the common causes of global-scale stonefly declines are known, a finer-scale, regional 

perspective is needed for conservation of sensitive groups, such as winter stoneflies. Winter 

stoneflies (Order: Plecoptera) emerge from the nymph stage in the winter months, and they are 

known as “clean-water insects’’ due to their need for highly oxygenated water [39]. A genus of 

winter stoneflies (Family: Capniidae, Genus: Allocapnia) emerges from the nymph stage to a 

small-winged adult across a wide variety of intermittent to perennial streams on vertical surfaces 

in and around the water body and lacks stream-to-stream vagility [12]. The Arkansas Level III 

Ecoregions known as the Ozark Highlands, Boston Mountains, Arkansas Valley, and Ouachita 

Mountains have a high diversity of Allocapnia. During the last regional census in the late 1980′s, 

seven endemic species of Allocapnia were found in Arkansas [12], several of which have 

recently been listed as species of greatest conservation need (SGCN) according to the Arkansas 

Game and Fish Commission’s 2019 Arkansas Wildlife Action Plan (AWAP). 

Allocapnia mohri is a regional endemic that was commonly collected in the last 1980′s census 

[12], making it a good possible candidate for assessing important habitat factors and for 

distribution modeling. A. mohri populations during the previous census occurred broadly across 

Strahler stream orders one through five and were also found broadly across sites with differing 

flow permanence, from intermittent sites with a completely dry stream bed or only pools with no 

flowing water for part of the year to perennial sites [12]. However, they were not detected at 

perennial sites with a significant groundwater flow [12]. This may be due to groundwater-based 

streams lacking the necessary temperature cue for egg hatching, whereas runoff dominated 

streams get cold enough with ice and snow melt entering the stream to cue hatching. 
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During the last widespread survey of Allocapnia in Arkansas, geospatial climate and land use 

data for stream catchments were not readily available [12] making it difficult to determine what 

factors are associated with A. mori distributions in the region. Species distribution models 

(SDMs) are empirical models relating field presence or abundance data to environmental 

predictor variables [40]. The use of SDMs has gained popularity in the past 20 years in 

ecological fields as geospatial mapping data with high resolution has become more readily 

available to conservation biology, making it possible to gauge the effect of climate, land use, and 

other environmental changes on the distribution of rare and understudied species [41]. 

One particular way of creating distribution maps that is gaining popularity is Random Forest 

(RF) modeling. Random Forest modeling is a group of tree predictors based on classification and 

regression tree (CART). The trees depend on the value of a random, independently sampled 

vector, so the method reduces bias [42]. Random Forest makes predictions by machine learning 

and then utilizes out-of-bag samples for model validation [43]. This method is excellent at 

minimizing overfitting due to its random nature and is effective at modeling spatial data even 

though it is not a spatial method. Random Forest modeling is superior to other popular SDM 

procedures, such as Mahalanobis Typicalities, a method adopted from remote sensing analyses. It 

is comparable to Maxent, a statistical mechanics approach, when one has a small-to-moderate 

number of the collected species presence/absence records (n = 38–94), and in species with low 

dispersal abilities [44]. The average number of records of each species of Allocapnia sampled in 

the previous census was 39 [12], and Plecoptera have reduced or absent flight capabilities, so 

Random Forest will likely work well for modeling winter stonefly species. 

No SDMs exist for A. mohri to our knowledge. However, it was found to be the most widely 

distributed species of Allocapnia in Arkansas in the 1980′s (Figure 1A). Though this species used 
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to be the most common through Arkansas, the species range has not been evaluated since the 

1990s census. Also, due to the lack of geospatial data, no distribution models including land use 

and landcover or climate variables have been developed for A. mohri. Thus, our study objective 

was to recensus the Arkansas population and use the data to spatially model A. mohri 

distributions in Arkansas using RF models. Landscape, climate, and a combined landscape and 

climate data set were used to populate our RF model to determine which factors were most 

predictive of species presence. We then used multiple logistic regression to examine four 

hypotheses: 

Hypothesis H1-A. mohri will be more likely to occur in mountainous regions and higher 

elevations [45]. Hypothesis H2- A. mohri will differ across landuse types. Specifically, we expect 

that the species should be more common in areas with high percentages of forested land [46] 

because leaf litter inputs are an important food source for detritivorous stoneflies [47] and will 

decline with shifts to other landuse types. Hypothesis H3-A. mohri will be more common in 

streams with high rainfall and low water temperatures [46]. Hypothesis H4-A. mohri will be less 

common in streams with a slow soil infiltration rate, due to their sensitivity to stream impurities 

[12]. 

 

 

 

 

 

A B 
Ozark Highlands 

Boston Mountains 

Arkansas Valley 

Ouachita 
Mountains 
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Figure 1. (A) Historic distribution of A. mohri across Omernik Level III ecoregions. The HUC8 
units that overlapped with A. mohri presence watersheds from Poulton and Stewart, 1991 are 
hatched. The HUC8 units in Arkansas that did not have A. mohri presence are outlined. (B) 
Locations of the 70 reaches sampled in the present study. The northernmost site coordinates are 
(36.44117572, −94.22998045), and the southernmost site coordinates are (34.68526175, 
−94.32049797). Sample reaches fell within the following HUC8 units: Ouachita Headwaters, 
Upper Saline, Fourche La Fave, Poteau, Petit Jean, Frog-Mulberry, Dardanelle Reservoir, Robert 
S. Kerr Reservoir, Beaver Reservoir, Bull Shoals Lake, Elk, Little Red, Middle White, Buffalo, 
Upper Ouachita, Little Missouri, Lower Little, Illinois. 

 

II. Materials and Methods 

2.1. Study Design 

Our resulting RF SDMs are some of the first published for a North American plecopteran species 

(but see [48]), and the landscape RF model performed better than the climate or combined RF 

models. The MLR modeling indicated both landscape and climate variables were important for 

predicting presence. Allocapnia mohri was absent at the Ouachita Mountains sites in 2020 and 

2021, possibly indicating range changes [12]. 

Our study area included 70 sample reaches stratified across the Level II Ecoregion 

Ozark/Ouachita–Appalachian Forests, which lies within the Level I Ecoregion, the Eastern 

Temperate Forests. The sample reaches were further spread into the following Level III Arkansas 

Ecoregions: Ozark Highlands (n = 15), Boston Mountains (n = 29), Arkansas Valley (n = 13), 

and Ouachita Mountains (n = 13) (Figure 1). These Level III ecoregions historically had high 

stonefly diversity compared to other ecoregions in Arkansas [12]. Sample locations were based 

on historical studies reporting presence of Allocapnia genera [12]. We also stratified sample sites 

by Strahler stream order with several representing 1st order (n = 28), 2nd order (n = 15), 3rd 

order (n = 10), 4th order streams (n = 10), 5th order (n = 6), and 6th order (n = 1) (Table 1). 

Finally, the hydrologic flow regime was evaluated using the GeoCrawler Google Earth 
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application (application located in Appendix B https://doi.org/10.1002/rra.2838). Due to the high 

amount of headwater streams sampled, and the stream locale belonging mainly to the Eastern 

Temperate Forests, most study sites had a high probability of belonging to the intermittent flashy 

flow regime (n = 46) [49]. 

Table 1. The range, median, and mean of each variable across our study sites. 

Variables Range Median Mean 

Stream Order 1st - 6th 2 2.37 
Mean Width (m) 0.66 - 6.52 2.6 2.99 
Mean Depth (cm) 5.56 - 41.40 14.72 15.63 
Elevation (m) 155-598 402 376.11 
%Forested 8.61 - 98.6 86.27 75.92 
%Agriculture 0.00 - 51.57 7.67 12.78 
%Urban 0.23 - 57.73 5.04 10.99 
%High Infiltration Soils 0.00 - 66.76 2.09 4.30 
%Moderate Infiltration Soils 0.00 - 84.21 19.25 25.13 
%Low Infiltration Soils 0.00 - 100.00 16.73 26.49 
%Very Slow Infiltration Soils 0.00 - 96.10 39.02 39.57 
Total Annual Precipitation (cm) 110.0 - 155.3 126.0 125.33 
Total February Precipitation (cm) 5.9 - 10.8 7.9 7.86 
Total May Precipitation (cm) 12.7 - 17.5 14.7 14.8 
Annual Mean Water Temperature (oC) 14.2 - 16.9 14.6 15.1 

January Mean Water Temperature (oC) 2.1 - 5.6 2.8 3.3 

July Mean Water Temperature (oC) 25.1 - 27.6 25.9 26.1 

 

2.2. Local Site Characterization 

We measured the length and five wetted widths along evenly spaced transects for each habitat 

unit (e.g., riffles, pools, runs) at wadable sites in August and September 2020–2022. Stream 

depth was measured at each width transect by taking five measurements across the cross-section 

of the stream. Each sample stream reach was 200 m in length, allowing all reaches to measure at 

least six times the wetted width of the stream, and each reach included at least one pool and riffle 
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sequence [50]. Discharge was measured at the base of the reach using the mid-section method 

[51] at wadable sites with no U.S. Geological Survey (USGS) gaging station. Otherwise, gaging 

station discharge was used. 

Stream permanence was also estimated according to two separate metrics—one method 

described by Poulton and Stewart (1991) [12] and the other by Sheldon and Warren (2009) [52] 

in August and September of 2020–2022, which is generally the driest time of the year. The first 

method involved giving streams a ranking of A through D depending on the dryness over time, 

with an A ranking given to streams with a dry bed for part of the year and a D ranking given to 

streams with a permanent flow through the year along with a significant underground source. 

The second metric was a stream drying metric wherein we measured the linear extent of visible 

surface water in the stream reach in marked 50 m sections on each visit, then converted the 

wetted extent to a proportion, and calculated a time-weighted annual average for each site. This 

stream drying metric is primarily an index of time without surface flow, whereas the former 

gives a large-scale idea of the stream permanence. Using both metrics gives a clearer idea of the 

flow characteristics of each stream. 

2.3. Landscape-Level Site Characterization 

We collected two main types of landscape data: table and raster. Tabular climate and watershed 

data was collected virtually for all sites via Model My Watershed [53], and it was used in 

Multiple Logistic Regression (MLR) models (see Statistical analyses and modeling section). 

Several high-resolution landscape-level rasters were collected for the state of Arkansas to create 

distribution models of the species (see Statistical analyses and modeling section), including a 

land use raster (NLCD 2016) [54], a soil variable raster (gNATSGO) [55], and a large-scale 

environmental data raster (WorldClim) [56]. 
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2.4. A. mohri Presence 

Adult stonefly sampling started in early December and continued through mid-April during the 

2020–2021 and 2021–2022 field seasons to match the emergence periods of A. mohri. Several 

approaches have been used to determine presence of Allocapnia populations in the past 

[12,52,57,58]. None of these methods have been evaluated to determine detection probability, 

which requires multiple samples over the emergence period. We chose to focus on adult 

collections, and all sample reaches were visited at least nine times across the emergence period 

to allow for evaluation of detection probability for future research. We searched for adults in all 

areas of the 200 m reaches but particularly focused searches on compacted leaves and rocks in 

riffles, tree trunks, woody debris, and leaf litter debris piles on the side of the stream for 20 

minutes per reach. All adults were collected by hand with forceps and immediately preserved in 

95% ethanol, transported back to the laboratory, sexed, and identified to species using a regional 

taxonomic key [12]. The species were then placed on a distributional map. 

2.5. Statistical Analyses and Modeling 

We chose Random Forest (RF) to determine the possible distribution of a species of Allocapnia 

mohri relative to using MaxEnt and Mahalanobis because of its reduced bias with moderate to 

large sample size and transparent readout [43]. The RF species distribution models in this study 

were created in ArcGIS [59], which also produced out-of-bag score, mean squared error, 

Matthews Correlation Coefficient, and F1 statistics to evaluate model accuracy. The out-of-bag 

(OOB) error is the average error for each tree, calculated using predictions from the trees that do 

not contain it in their respective bootstrap sample. This score provides information on the 

expected performance on new, unseen data, and generally, smaller OOB scores correspond with 

better models. The mean squared error (MSE) is a measure of the prediction accuracy of the 



11 
 

model. There are no set acceptable limits for MSE, but in general the lower the MSE, the more 

accurate the model. F1 scores are a weighted average of the precision and recall of a model, 

where an F1 score reaches its best value at 1 and worst score at 0. The Matthews Correlation 

Coefficient scores are based on results for all four confusion matrix categories (true positives, 

false negatives, true negatives, and false positives), and a higher score corresponds to a better 

result. It scores proportionally both to the size of positive and negative elements in the dataset, 

making it a great metric for unbalanced data [60,61]. 

Three different RF models were created to parse out effects of land cover and climatic data. Each 

model was trained with 80% of the collected presence and absence data, and 20% of the data was 

used to validate and test the models. Model 1 was the “Landscape Model”, which included all 

land use and soil variable rasters along with an elevation raster. Model 2 was the “Climate 

Model”, which included only climatic raster data. Model 3 was the “Combined Model”, which 

included soil, land cover, and climatic variable rasters. 

Random forest models are limited in that they do not depict the way that variables relate to one 

another, and they do not determine if the variables are significantly affecting A. mohri presence. 

Therefore, they are not appropriate for testing hypotheses about important habitat factors 

describing the landscape or climate niche of A. mohri in headwater streams. To resolve this issue, 

the data were evaluated using a multiple logistic regression (MLR). The MLR models were 

created in R (glm{stats})[62]. A total of four separate models were created based on the four 

established hypotheses for this study (Table 2). The Hypothesis 1 (H1) model evaluated the 

ecoregion and elevation variables in the study to see if A. mohri was more common in 

mountainous regions and higher elevations. The Hypothesis 2 (H2) model included land use data 

to determine if A. mohri will differ across land use types. The Hypothesis 3 (H3) model included 
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annual precipitation total and annual mean temperature variables to determine if A. mohri is 

more common in streams with high rainfall and low water temperatures. The Hypothesis 4 (H4) 

model included water infiltration rate variables to determine if A. mohri would be less common 

in streams with impacted soils. All landscape and climate predictor variables were tested for 

model assumptions including binomial distribution, independence of error terms, linear 

relationship between logit(Y) and X, and lack of collinearity among predictors. After checking 

for assumptions, some variables were excluded from analysis due to collinearity issues 

(correlation among predictor variables), and the variables that lacked logistic restraints and were 

determined to be of highest biological importance in the model were retained. All models were 

then compared and ranked using Akaike Information Criterion (AIC) to determine which model 

was best at predicting A. mohri presence, and Hosmer–Lemeshow goodness-of-fit tests and 

likelihood-ratio tests were run to compare all models to the global model. 

Table 2. Variables used in Multiple Logistic Regression analyses grouped by hypothesis. N/A 
indicates that no variable was removed from the final model due to correlation and/or collinearity. 

Model Variables included in MLR models Removed Due to Correlation 
and/or Collinearity 

H1 Model Ecoregion, Max Elevation Average Elevation, Minimum 
Elevation, Elevation 

H2 Model %Urban %Forest, %Agriculture 

H3 Model Annual Precipitation Total (cm), July 
Mean Water Temperature, January Mean 

Water Temperature, May Total 
Precipitation  

Annual Mean Temperature, 
May Total Temperature, 

February Total Precipitation 

H4 Model High Infiltration, Moderate Infiltration, 
Very Slow Infiltration 

Slow Infiltration 
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III. Results 

We collected and identified 3463 A. mohri individuals, with 2519 males and 944 females. This 

species began emerging around the end of November with the first A. mohri collection being 

made on November 23, 2020, nearly coinciding with the previously stated early December start 

of the emergence period for A. mohri [12]. We found A. mohri adults at 28 of our 70 sample 

reaches. Adults were found across stream orders one through five with no bias towards a 

particular stream order (Pearson’s chi-square = 3.98, p = 0.55, Figure 2A). Allocapnia mohri was 

not found at our 6th order stream site. Allocapnia mohri presence differed across sites with a bias 

towards the Boston Mountain ecoregion (Pearson’s chi square = 12.045, p = 0.07, Figure 2B) and 

was not found in the Ouachita Mountain sites. Adults were also found across all hydrologic 

permanence categories with no bias towards a particular category (Pearson’s chi-square = 2.01, p 

= 0.57, Figure 2C). 

 

A 
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Figure 2. The distribution of A. mohri present and absent sites across stream orders (A), Omernik 
level III Ecoregions (B) of Ozark Highlands (OH) Boston Mountains (BM), Arkansas Valley (AV), 
and Ouachita Mountains (OM), and Hydrologic Permanence Categories (C); Poulton and Stewart, 
1991).   

 

Random Forest models estimated the potential distribution of A. mohri across Arkansas. The 

Landscape Model (Figure 3A) had an out-of-bag score of 0.409, an F1 score of 0.80, and MSE of 

4.382, and a MCC of 0.74. Further evaluation of the visual present/absent prediction output of 

the RF model shows that 19 known present sites fall within the produced predicted bounds and 

B 

C 
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31 known absent sites correctly fall within the produced predicted absent bounds, meaning the 

visual prediction output for the Landscape model correctly sorted 50 present and absent sites out 

of 70 (71.4%). 

The Climate Model (Figure 3B) had an out-of-bag score of 0.864, an F1 score of 0.62, a MSE of 

1.173, and a MCC of 0.33 (Table 3). Further evaluation of the visual present/absent prediction 

output of this RF model shows that 23 known present sites fall within the produced predicted 

bounds and 31 known absent sites fall inside the produced predicted absent bounds, meaning the 

visual prediction output for the Climate model correctly sorted 54 present and absent sites out of 

70 (77.1%). 

The Combined Model (Figure 3C) had an out-of-bag score of 0.114, an F1 score of 0.60, a MSE 

of 1.373, and a MCC of 0.43 (Table 3). Further evaluation of the visual present/absent prediction 

output of this RF model shows that 24 known present sites fall within the produced predicted 

bounds and 30 known absent sites fall inside the produced predicted absent bounds, meaning the 

visual prediction output for the Landscape model correctly sorted 54 present and absent sites 

(77.1%).  

 

Figure 3. The Random Forest distribution models for Allocapnia mohri plotted with the known 
species distribution. A. mohri presence (red circle) and absence (+) sites are marked. The areas that 
the Landscape distribution model predicted would have A. mohri presence are marked in blue (A). 

C B A 



16 
 

The areas that the Climate distribution model predicted would have A. mohri presence are marked 
in yellow (B). The combined Landscape and Climate model prediction is in green (C).  

 

Table 3. Random Forest model scores for Out-of-Bag (OOB), F1, Mean Squared Error (MSE), 
Matthews Correlation Coefficient (MCC), Accuracy, and Validation Accuracy variables grouped 
by hypothesis.  

Model Out of Bag 
Score 

F1 Score MSE MCC Accuracy Validation 
Accuracy 

Model 1: 
Landscape 0.409 0.80 4.382 0.74 0.98 0.87 

Model 2: 
Climate 0.864 0.62 1.173 0.33 0.91 0.67 

Model 3: 
Climate + 
Landscape 

0.114 0.60 1.373 0.43 0.93 0.73 

 

Next, MLR models were used to test our study hypotheses. The H1 model showed no elevation 

or ecoregion variable was significant in predicting A. mohri presence (p > 0.05) (Table 4). The 

H2 model was the best model according to AIC ranking. This H2 model only consisted of a 

single variable, urban land percentage. The H2 model showed that percent urban land use 

variable was significant in predicting A. mohri presence (p < 0.05, chi-squared = 0.07, Table 4), 

and correlation between urban land and species presence was negative (Figure 4). The H3 model 

showed that three temperature variables were significant in predicting A. mohri presence (Table 

4): January water temperature (p < 0.05, chi-square = 0.05) (Figure 4B), July water temperature 

(p < 0.05, chi-square = 0.03) (Figure 4C), and annual temperature (p < 0.05, chi-square = 0.05) 

(Figure 4D); all temperature variables were negatively correlated with species presence (Fig. 4). 

The results from the H4 model revealed that very slow soil infiltration was significant in 

predicting A. mohri presence (p < 0.05, chi-square = 0.03; Table 4), and the correlation between 

A. mohri presence and very slow soil infiltration was positive (Figure 4E). 
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Figure 4. The mean and standard error of urban land percentage (A), January water temperatures 
(B), July water temperatures (C), annual temperatures (D), and the percentage of very fine soils in 
the watershed (E) for sites where Allocapnia mohri was present and absent. 

 

Table 4. Results from the Multiple Logistic Regression (MLR) showing values for p and chi-
square, then Akaike Information Criterion (AIC) ranking for four hypotheses related to Allocapnia 
mohri presence/absence. 

Model df Chi-Squared p-Value AIC Score 
H1 Model 3 0.03 P > 0.05 96.57 
H2 Model 2 0.07 P < 0.05 90.01 
H3 Model 2 0.05 P < 0.05 92.37 
H4 Model 2 0.03 P < 0.05 96.52 

 

IV. Discussion 

Stoneflies are a major component to aquatic diversity [47]. Many species are globally imperiled 

[3,63], and yet little is known about species-specific habitat requirements and tolerances to 

changing land use and climate variables. Our study provides one of the first RF species 

distributional models for a North American plecopteran species. It also provides more detailed 

habitat and climate sensitivity information and updates distribution data that can aid conservation 

of a regional endemic winter stonefly species. 

A 1980′s census provided some information about A. mohri’s habitat [12] that is generally 

consistent with the present study’s findings, but our study adds to their results. We also found A. 

mohri broadly inhabited stream orders and hydrologic permanence categories. Specifically, A. 

mohri has been historically found at intermittent lower-order sites that have a completely dry 

stream bed or only have pools during parts of the year; therefore, they may have desiccation-

resistant, diapausing eggs [64]. They also occurred at higher-order perennial sites; we found 

them at perennial sites that also have a significant underground spring source. Allocapnia mohri 



19 
 

was historically found in first through fifth-order streams but not in sixth-order streams. We 

found this same pattern. However, we only censused one sixth-order stream, which was located 

in the Ouachita Mountains. So, our study has limited power evaluating species presence in larger 

rivers. 

Curiously, we did not find A. mohri in any of our 16 Ouachita Mountains stream reaches. 

Allocapnia mohri was found in Ouachita Mountains streams in the 1980′s [12]. Further, it was 

found in the Little Glazypeau Creek and Alum Fork of the Saline River drainages in 2000–2001 

[52], and in Lick Creek of the Petit Jean River drainages in 2022 (DeWalt et. al., Unpublished 

Data). We have study reaches in these watersheds and did not find them despite visiting the 

reaches nine times during the winter emergence period. Their absence in the Ouachita Mountains 

ecoregion may be a sampling artefact, but it is possible that their southern range is shifting 

northward. 

The Random Forest model using only landscape predictor variables was the best model of A. 

mohri distribution according to the MCC and F1 scores (Table 3). The Landscape model scored 

the highest in MCC out of all models and this metric in particular is an appropriate metric for this 

dataset, being that it works proportionally to the size of both positive and negative elements in 

the data, and the dataset that was used was uneven, with much more absence values than 

presence values. The Landscape model had the best accuracy in correctly predicting A. mohri 

absence when evaluating the incorrectly sorted present and absent sites in the RF prediction 

output. However, the Landscape model incorrectly sorted 20 present and absent sites out of the 

total 70 sample sites and incorrectly predicted that A. mohri should be present in the Ouachita 

Mountains ecoregion. 
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The Climate model was determined to be less accurate than the Landscape model according to 

the MC and, F1 scores, though it was the most accurate at sorting the present sites in the RF 

prediction output and had only 16 incorrectly sorted present and absent sites out of 70 sample 

sites. Though the Climatic model had the lowest MSE out of all three models, those scores test 

how accurately the model predicts the data it was given, meaning our Climate model did a great 

job in predicting the sites that we already knew about. The purpose of our distributional models 

was to predict the distribution of A. mohri outward into the rest of the state, which the Climate 

RF model does not do as well as the Landscape RF model, according to the other metrics used. 

The Climate model did correctly predict that A. mohri would not be present in the Ouachita 

Mountains ecoregion.  

Elevation is known to be an important component for plecopterans, as stonefly presence 

increases as elevation increases [12,45,65,66], and this is even true for rare stonefly species, like 

Beloneuria jamesae [67]. Elevation has also been found to be an important factor in stonefly 

abundance [45], showing that mountain streams are beneficial for plecopterans as a whole. This 

link between elevation and species presence could be due to high elevation streams being a lower 

stream size order (1–3) [68] with riparian vegetation contributing allochthonous inputs to the 

stream, which shredding macroinvertebrates utilize. The forested canopy also shades the stream 

and keeps water temperatures cooler compared to areas further downstream [69]. Though we 

found that no elevation or ecoregion was significant in predicting A. mohri species presence, this 

may be due to the small range of elevation in our study (Table 1). In the future, studies should 

incorporate a wider range of elevation to determine if higher elevation streams are more likely to 

have A. mohri. 
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Catchment urban land cover percentages were found in the highest ranked model according to 

AIC (Table 4), and the Arkansas Valley ecoregion had the lowest percentage of urban land of all 

ecoregions (Figure 4A). As impervious cover, such as that found in urban land development of 

roads, houses, etc. increases, EPT richness decreases [70]. This is due in part to the nutrient 

additions that urban areas add to streams. Dissolved N and P additions to streams proliferate 

growth of decomposers, which will break down allochthonous materials, leaving less detrital 

material for the shredder species [34, 35]. This loss in EPT richness is also due to the lack of 

overhead tree canopy [60]. Forested habitat loss is one major driver of decline in stonefly 

populations [3], and if land in a watershed is transformed to majority urban, this could have 

devastating effects on the EPT community, including A. mohri. 

Environmental temperature variables were found to be significant in predicting A. mohri 

presence (Table 4). Stoneflies have been shown to be sensitive to stream temperature, and as 

water temperatures increase, streams become less hospitable to stoneflies [71]. Water 

temperature can be important to winter stonefly life cycles. For example, diapausing eggs may 

require a thermal cue to hatch [12]. Streams with average July temperatures reaching 26.4oC did 

not tend to have A. mohri present (Figure 4C). It is possible that these temperatures did not get 

low enough to cue eggs or nymphs [12]. Mean January and July temperatures increased as one 

moves from the Ozark Highlands south to the Ouachita Mountains ecoregion (Figures 5B and C, 

respectively). The Ouachita Mountains streams had a higher minimum and maximum mean 

temperature across the year than other ecoregions, as well as a higher mean annual temperature 

(Figure 4D), possibly explaining the absence of A. mohri. Higher elevation streams in the region 

may be a refuge from warmer stream temperatures [72]. Future studies should endeavor to 

sample some higher elevation streams in the Ouachita ecoregions to see if they might be A. 
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mohri refuges. If these higher elevation streams act as shelter for temperature sensitive species, 

such as Allocapnia mohri, they might not be a haven for much longer. As climate change 

increases the temperatures of the vulnerable cool mountain streams, cold water adapted species 

like Allocapnia mohri will lose their thermal refuges [72] and eventually be replaced by more 

thermal generalist species, affecting the diversity of freshwater ecosystems [73–76]. 

 

Figure 5. The mean + 1SE of Urban land use percentage (A), mean January (B), July (C) and 
annual (D) stream temperatures during our study period and percentage of very slow infiltration 
soils (E) in study reach catchments grouped by ecoregions. Ecoregions move from north (left) to 
south (right). OH = Ozark Highlands, BM = Boston Mountains, AV= Arkansas Valley, OM = 
Ouachita Mountains. 

Catchment soil infiltration category percentages were found to be significant in predicting A. 

mohri presence (Table 4). This result may be due to the inherent soil texture found in each 

ecoregion. Soil texture refers to the percentage of sand, silt, and clay, which are the major factors 

B A 

C D 

E 
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affecting water infiltration. Species presence dropped to zero in the Ouachita Mountains 

ecoregion, which had the highest infiltration values of all visited ecoregions (Figure 5D). Soil in 

the Arkansas Valley, Boston Mountains, and Ozark High-lands ecoregions had a higher 

proportion of clay (a very small-pored soil) compared to the Ouachita Mountains, which has 

more sandy soil. Therefore, this correlation between very slow infiltration and species presence 

could just be due to the correlation between soil type and ecoregion.  

V. Conclusions 

Our resulting RF SDMs are some of the first published for a North American plecopteran 

species. Though the landscape RF model performed better than the climate or combined RF 

models, our MLR modeling indicates that both climate and landscape factors are important 

habitat variables controlling A. mori distributions. This discrepancy could be due to the differing 

types of data used by the RF and MLR models, and the general approach that these models used. 

The RF models used rasters that had gridded satellite data, whereas the MLR data was 

watershed-specific, higher resolution data, and this could have made the RF models less reliable 

overall. Also, since the RF models used rasters consisting of large sets of data, the amount of 

predictor variables in that set of data were not reduced before creating a distributional map. 

When developing the MLR models, however, it was easier to determine which precise variables 

were significant to species presence, and which variables were diminishing the accuracy of the 

model. As high-resolution satellite imaging becomes more readily available, more accurate 

rasters including landscape and climate variables can be used to improve upon these species 

distribution models. 

Even though the landscape-level soil infiltration categories led to a strong MLR model, these 

variables have likely not changed much over the last thirty years as A. mohri shifted from present 
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to absent in censuses occurring in the Ouachita Mountains. The Landscape RF model also clearly 

predicts A. mohri should be present there, but the Climate RF model does not. Additional surveys 

for adults in the Ouachita Mountains stream reaches within predicted presence watersheds based 

on the RF model, particularly those with greater maximum elevation, could help determine if 

these reaches may be a refuge for A. mohri populations. 

Climate change and associated warming stream waters can be a significant threat to 

macroinvertebrate taxa and can be responsible for species losses [3,65,71,77]. Warming stream 

temperatures may be causing losses of A. mohri in streams at the southern edge of its range (e.g., 

the Ouachita Mountains), shifting its distributions northwards. Evidence of range shifts due to 

effects of climate change has been observed in other macroinvertebrate species [76,78], and 

could be expected to occur for sensitive species in a continually warming climate. 
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