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Overview 

  

Essential trace minerals (Zn, Cu, Fe, Mn, Se and I) are traditionally included as supplements 

through mineral premixes in poultry feeds. In comparison to other essential nutrients, as well as 

energy, they are scarcely studied. The essentiality of a nutrient, by definition, refers to the 

nutrient role in normal body function, such as growth or egg production, and considers that they 

cannot be synthesized by the body and, therefore, must be supplied from the feed. The references 

mostly utilized to support poultry nutritionists when daily formulating feeds are suggestions of 

supplements with the minerals stated above (NRC, 1994, Rostagno et al., 2017, Cobb, 2018, 

Aviagen, 2022) instead of their actual required content in feeds, as usually done with the other 

nutrients. Several factors contribute to that practice. The first factor is obviously related to the 

low cost of the trace minerals when compared to all other nutrients, which makes it much safer to 

include supplements at levels that surpass any risk of deficiency. Subsequent factors are mostly 

related to uncertainties related to the trace mineral contents in feedstuffs, as well as their actual 

availability for birds. The expectation that divalent cations can potentially bind to phytic acid, 

rendering them unavailable for birds, plays an important role when the decision to supplement or 

not and at a certain level is to take. Except for Se and I, which have very specific known 

metabolic functions, the other essential trace minerals are transition metals, which are keen to 

form coordinated bonds and have a multitude of functions in animal metabolism in this form. 

The market availability of different supplemental sources of trace minerals for poultry, as salts or 

organically bound, have brought to attention a wide range of potential benefits. However, the 

recovery of these supplements in feeds after adequate analyses, remain as an added factor of 

uncertainty for the decision maker. The growing concerns with sustainability of the practices 
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presently utilized to produce food for the humanity have added importance to the adequate 

utilization of finite resources as well as the excess deposition of trace minerals in the 

environment. Regulation on the total trace minerals in animal feeds has been in place (EFSA, 

2016), which may overrule the traditional economics of their supplemental sources. 

The tables and figures below summarize the research done at the Universidade Federal do Rio 

Grande do Sul in the last decade for broilers and broiler breeders, investigating trace mineral 

requirements as well as when investigating the benefits of using complexed amino acid minerals. 
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Table 1. Effect of trace mineral treatment on hatchability, shell proportion and shell thickness.1 
Item2 Hatchability of Fertile, % Shell Proportion, % Shell Thickness, µm 
Control 88,4b 8,96b 382b 
ISO 90,6a 9,10a 385a 
ON TOP 90,3a 9,17a 386a 
Probability 0.0459 0.0164 0.0353 
a–b Means within the same column with different superscripts differ (P ≤ 0.05). 
1Favero et al. (2013). 
2Control = 100 ppm of ZnSO4, 100 ppm of MnSO4, and 10 ppm of CuSO4; ISO = 60 ppm of ZnSO4, 60 ppm of 
MnSO4, and 3 ppm of CuSO4 plus 40 ppm of Zn-amino acid complex, 40 ppm of Mn-amino acid complex, and 7 
ppm Cu-amino acid complex; on top = 100 ppm of ZnSO4, 100 ppm of MnSO4, and 10 ppm of CuSO4 plus 40 ppm 
of Zn-amino acid complex, 40 ppm of Mn-amino acid complex, and 7 ppm of Cu-amino acid complex. 
 

 

Table 2. Broiler breeder hen parameters as affected by increased dietary Mn.1 

Mn, ppm Egg Production, % Hatchability, % Yolk Mn, ppm Breaking strength, kg/cm 
22.2 58.5b 70.8b 1.81b 3.53b 
48.5 64ab 85.9a 2.00ab 3.84ab 
77.9 64.1ab 86.3a 2.09ab 3.96a 
103.1 64.9a 89.9a 2.37a 4.00a 
140.0 64.2ab 89.2a 2.29a 4.06a 
168.2 64.1ab 89.2a 2.12ab 4.07a 
Probability 0.0289 0.0001 0.0122 0.0023 
a–b Means with different letters in the same column indicate significant differences (P < 0.05). 
1Noetzold et al. (2020). 
 

 

Table 3. Broiler breeder hen parameters as affected by increased dietary Cu.1 

Cu, ppm Hatching Eggs Yolk Cu, ppm Shell Membrane 
2.67 70b 1.30b 58.4b 
5.82 80ab 1.80ab 69.9ab 
9.38 87a 1.79ab 72.9a 
12.92 85a 2.04a 73.0a 
16.83 81ab 2.25a 68.8 
20.19 82ab 1.98a 72.6 
Probability 0.0032 0.0002 0.0059 
a–b Means with different letters in the same column indicate significant differences (P < 0.05). 
1Berwanger et al. (2018). 
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Table 4. Broiler breeder hen parameters as affected by increased dietary Zn.1 

Zn, ppm Total Egg 
Production 

Shell, % Breaking strength, 
kg/cm 

Shell Thickness 

18.7 57b 8.6c 3.91 350.4b 
50.3 62a 9.0bc 4.30 392.6a 
77.3 64a 9.8ab 4.00 399.3a 
110.2 64a 10.0a 4.44 393.3a 
140.0 63a 10.0a 4.45 400.6a 
170.6 63a 9.7ab 4.45 401.0a 
Probability <0.0001 <0.0001 <0.0001 <0.0001 
a-c Means with different letters in the same column indicate significant differences (P < 0.05). 
1Mayer et al. (2019).  
 
 
Table 5. Broiler breeder hen parameters as affected by increased dietary Fe.1 

Fe, ppm Total Egg 
Production 

Hematocrit, 
% 

Hemoglobin, g/dL Yolk Fe, ppm 

24.6 78.9b 30.7b 7.3b 83.5c 
48.6 83.7ab 31.5ab 8.2a 92.7bc 
74.3 85.2ab 31.4ab 8.1a 101.2b 
99.6 90.4a 32.4a 8.1a 101.5ab 
125.6 87.4ab 32.0ab 8.5a 101.7ab 
148.2 89.0ab 32.0ab 8.4a 102.6a 
Probability 0.028 0.024 0.001 0.001 
a-c Means with different letters in the same column indicate significant differences (P < 0.05). 
1Taschetto et al. 2017. 
 
 
 
 

5

Vieira et al.: Organic Trace Minerals in Environmentally Sustainable Systems

Published by ScholarWorks@UARK, 2023



 ANC 2023 Little Rock, AR 
 

 

Table 6. Growth performance of broilers as affected by feeds with or without phytase and with 
graded increases of supplemental Fe.1 
Item2 BWG, g FCR 
Phytase, FYT/kg3   
0 1,293 1.347 
4,000 1,330 1.307 
Fe, mg/kg4   
57 1,315 1.324 
67 1,312 1.318 
77 1,310 1.338 
87 1,309 1.328 
97 1,311 1.326 
Phytase <0.0001 <0.0001 
Fe 0.9821 0.4562 
1Feijo et al. (2023). 
2BWG = body weight gain; FCR = feed conversion ratio corrected for the weight of dead birds.  
3Ronozyme HiPhorius 40,000 FYT/g, Novozymes A/S, Bagsvaerd, Denmark; analyzed phytase in the Fe 
supplemented feeds were (from the lowest to the highest Fe content feeds) 4,452 ± 487 FYT/kg. 
4Analyzed Fe in the feeds without phytase were 51.9 ± 1.81, 66.0 ± 1.89, 79.2 ± 1.96, 85.8 ± 2.31, 96.3 ± 2.03 
whereas in the feeds with phytase were 54.7 ± 1.36, 64.9 ± 1.74, 75.2 ± 2.15, 89.3 ± 1.84, 99.0 ± 2.41. 
 
 
 
Table 7. Ileal digestible Fe and retention responses of broilers as affected by increased dietary Fe 
with or without phytase.1 

Item Ileal digestible Fe, % Retention   Intake Excretion 
Fe, % Fe, mg/bird   Fe, mg/bird 

Phytase, FYT/kg2       
0 10.6 13.1 5.5   42.1 36.6 
4000 11.8 14.2 6.0   42.0 36.0 
Fe, mg/kg3            
57 11.6 14.1 4.1e   29.1e 25.0e 
67 11.2 13.8 4.9d   35.6d 30.7d 
77 11.4 13.5 5.9c   43.9c 38.0c 
87 11.1 13.4 6.4b   48.1b 41.7b 
97 10.8 13.5 7.2a   53.3a 46.1a 
Phytase <0.0001 <0.0001 0.0002   0.8651 0.2927 
Fe 0.4071 0.2093 <0.0001   <0.0001 <0.0001 
a-e Means with different letters in the same column indicate significant differences (P < 0.05). 
1Feijo et al (2023). 
2Ronozyme HiPhorius 40,000 FYT/g, Novozymes A/S, Bagsvaerd, Denmark; analyzed phytase in the Fe 
supplemented feeds were (from the lowest to the highest Fe content feeds) 4,452 ± 487 FYT/kg. 
3Analyzed Fe in the feeds without phytase were 51.9 ± 1.81, 66.0 ± 1.89, 79.2 ± 1.96, 85.8 ± 2.31, 96.3 ± 2.03 
whereas in the feeds with phytase were 54.7 ± 1.36, 64.9 ± 1.74, 75.2 ± 2.15, 89.3 ± 1.84, 99.0 ± 2.41. 
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Table 8. Growth performance of broilers as affected by feeds with or without phytase and with 
graded increases of supplemental Cu.1 
Item2 BWG, g FCR 
Phytase, FYT/kg3   
0 1,384 1.301 
2,500 1,453 1.286 
Cu, mg/kg4   
8 1,405 1.299 
11 1,434 1.289 
14 1,433 1.293 
17 1,419 1.288 
20 1,404 1.300 
Phytase <0.001 <0.005 
Cu 0.261 0.448 
1Soster et al (2023). 
2BWG = body weight gain; FCR = feed conversion ratio corrected for the weight of dead birds. 
3Ronozyme HiPhos 20,000 FYT/g, Novozymes A/S, Bagsvaerd, Denmark; analyzed phytase in the Cu 
supplemented feeds were (from the lowest to the highest Cu content feeds) 2,768 ± 135.2. 
4Formulated Cu in feeding treatments were 8.31, 11.31, 14.31, 17.31, 20.31 mg/kg; analyzed Cu in the feeds without 
phytase were 7.83 ± 0.2, 11.11 ± 0.4, 14.62 ± 0.1, 16.47 ± 0.2, 18.96 ± 0.1 whereas in the feeds with phytase were 
8.28 ± 0.2, 11.36 ± 0.6, 13.77 ± 0.3, 16.63 ± 0.2, 19.94 ± 0.4. 
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Table 7. Ileal digestible Cu and retention responses of broilers as affected by increased dietary 
Cu with or without phytase.1 

Item Ileal digestible Cu, % 
Retention  Intake Excretion 

Cu, mg/bird  Cu, mg/bird 
Phytase, FYT/kg2      
0 31.8 9.87  14.13 4.26 
2,500 34.6 9.72  13.85 4.13 
Cu, mg/kg3      
8  30.6 5.72d  8.22e 2.50e 
11 34.0 7.93c  11.34d 3.41d 
14  34.1 10.30b  14.79c 4.27c 
17  33.7 11.66b  16.75b 5.09b 
20 33.8 13.40a  19.08a 5.68a 
Phytase 0.013 0.602  0.594 0.276 
Fe 0.238 0.001  0.001 0.001 
a-e Means with different letters in the same column indicate significant differences (P < 0.05). 
1Soster et al (2023). 
2Ronozyme HiPhos 20,000 FYT/g, Novozymes A/S, Bagsvaerd, Denmark; analyzed phytase in the Cu 
supplemented feeds were (from the lowest to the highest Cu content feeds) 2,768 ± 135.2. 
3Formulated Cu in feeding treatments were 8.31, 11.31, 14.31, 17.31, 20.31 mg/kg; analyzed Cu in the feeds without 
phytase were 7.83 ± 0.2, 11.11 ± 0.4, 14.62 ± 0.1, 16.47 ± 0.2, 18.96 ± 0.1 whereas in the feeds with phytase were 
8.28 ± 0.2, 11.36 ± 0.6, 13.77 ± 0.3, 16.63 ± 0.2, 19.94 ± 0.4. 
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Fig.1. Egg production as a function of dietary Mn in broiler breeder hens. (Noetzold et al., 2020). 
 
 
 
 
 

 
Fig.2. Hatchability as a function of dietary Mn in broiler breeder hens (Noetzold et al, 2020). 
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Fig.3. Total hatching eggs as a function of dietary Cu in broiler breeder hens (Berwanger et al., 2018). 
 
 
 
 
 

 
Fig.4. Membrane thickness as a function of dietary Cu in broiler breeder hens (Berwanger et al.,2018). 
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Fig.5. Cu in yolk as a function of dietary Cu in broiler breeder hens (Berwanger et al., 2018). 
 
 
 
 
 

 
Fig.6. Total egg production in yolk as a function of dietary Zn in broiler breeder hens (Mayer et al., 2019). 
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Fig.7. Egg shell as a function of dietary Zn in broiler breeder hens (Mayer et al., 2019). 
 
 

 
Fig.8. Egg shell thickness as a function of dietary Zn in broiler breeder hens (Mayer et al., 2019). 
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Fig. 9. Fe in yolk as a function of dietary Fe in broiler breeder hens (Taschetto et al., 2017). 
 
 
 
 

 

Fig. 10. Total egg production as a function of dietary Fe in broiler breeder hens (Taschetto et al., 2017). 
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Fig.11. Ferritin as a function of dietary iron in broiler chickens (Feijo et al., 2023). 
 
 
 
 
 
 

 
Fig. 12. Intake, excretion and retention Fe as a function of dietary Fe in broiler chickens (Feijo et al., 2023). 
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Fig. 13. Fe in liver as a function of dietary Fe in broiler chickens (Feijo et al., 2023). 
 
 
 
 

 
 
Fig. 14. Intake, excretion and retention Cu as a function of dietary Cu in broiler chickens (Soster et al., 2023). 
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Fig. 15. Cu in liver as a function of dietary Cu in broiler chickens (Soster et al., 2023). 
 
 
 
 
 

 
Fig. 16. Body weight gain and feed conversion ratio as a function of dietary Se in broiler chickens (Cemin et al., 
2018). 
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