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ABSTRACT 

 

GENOMICS-ASSISTED APPROACHES TO IMPROVE GRAIN YIELD AND END-

USE QUALITY IN HARD WINTER WHEAT (Triticum Aestivum L.) 

HARSIMARDEEP SINGH GILL 

2023 

Global wheat production needs to be increased by 60% to meet the future demand of 

feeding nine billion people by 2050. Simultaneously, it is important to improve the end-

use quality to meet the requirements of producers, grain markets, processors, and 

consumers. Thus, the development of more productive wheat varieties with better end-

use quality remains the primary focus for all wheat breeding programs. However, direct 

phenotypic selection for improving grain yield and end-use quality is difficult as it is 

highly influenced by environmental factors. This dissertation focuses on harnessing 

advancements in genomics applications, including genome-wide association studies 

(GWAS), for the genetic characterization of yield component traits and utilizing it in 

marker-assisted selection for grain yield. Further, we investigated the efficacy of genomic 

selection GS and assessed the performance of various statistical models in predicting 

agronomic and end-use quality traits in the South Dakota hard winter wheat (HWW) 

breeding program.  

In the first study, GWAS was used to identify genetic determinants for yield-

component traits in HWW, which exhibits higher heritability compared to grain yield per 

se. We assembled a population of breeding lines and well-adapted cultivars, genotyped 

using genotyping-by-sequencing (GBS), and evaluated over four environments for 

phenotypic analysis of spike and kernel traits. GWAS using 8,030 single nucleotide 

polymorphisms (SNPs) identified 17 significant and multi-environment marker-trait 
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associations (MTAs) for various traits, representing 12 putative quantitative trait loci 

(QTLs), with five QTLs affecting multiple traits. Further, a highly significant QTL was 

detected on chromosome 7AS that has not been previously associated with the number of 

spikelets/spike and putative candidate genes were identified in this region. The allelic 

frequencies of important QTLs were deduced in a larger set of 1,124 accessions which 

revealed the importance of identified MTAs in the U.S. HWW breeding programs.  

In the second strategy, we studied to evaluate the potential of genomic selection 

in predicting complex traits at earlier stages of the breeding program. Here, we used 

multi-trait genomic prediction (GP) models to predict multiple agronomic traits using 314 

advanced and elite breeding lines of HWW evaluated at ten site-year environments. 

Extensive data from multi-environment trials was used to cross-validate the multivariate 

machine learning (ML) models that integrate the analysis of multiple traits and/or include 

GxE interaction. The multivariate ML models performed better for all traits, with average 

improvement over the ST-CV1 reaching up to 19%, 71%, 17%, 48%, and 51% for grain 

yield, grain protein content, test weight, plant height, and days to heading, respectively. 

Next, we evaluated the efficacy of multivariate GP using a set of advanced breeding lines 

from 2015-2021 to predict various end-use quality traits that are otherwise difficult to 

phenotype in earlier generations. The multivariate GP model outperformed the univariate 

model with up to a two-fold increase in prediction accuracy (PA). For instance, PA was 

improved from 0.38 to 0.75 for bake absorption and from 0.32 to 0.52 for loaf volume. 

Further, we compared multi-trait GP models by including different combinations of easy-

to-score traits as model covariates to predict end-use quality traits and observed that the 
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incorporation of simple traits such as flour protein and flour sedimentation weight value 

can substantially improve the PA for baking traits. 

Overall, the findings of these studies elucidate the potential of multivariate GP for 

agronomic traits when advanced breeding lines are used as training population to predict 

preliminary breeding lines. The results also showed the application of multivariate GP 

models in the breeding program can reduce phenotyping costs by facilitating a sparse 

testing design. Furthermore, we observed that the inclusion of rapid low-cost traits like 

flour protein and flour sedimentation weight value in MT genomic prediction models can 

facilitate the use of GS to predict baking traits in earlier generations and provide breeders 

an opportunity for selection on end-use quality traits by culling inferior lines to increase 

selection accuracy and genetic gains. 
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CHAPTER 1 

INTRODUCTION 

 

Wheat (Triticum aestivum L.) provides an adequate and affordable intake of calories and 

proteins in human diets and plays a critical role in food security (FAO, 2017; Grote et al., 

2021). Global wheat production needs to be increased by 60% to meet the future demand 

of feeding 9 billion people by 2050 (Fischer et al., 2014); however, a gradual decrease in 

arable land and climate change is predicted to make this increase more challenging for 

the breeders (Grote et al., 2021; Wheeler & Von Braun, 2013). Thus, continued research 

efforts to understand the genetic basis of grain yield and the development of more 

productive wheat varieties remain the primary focus for all wheat breeding programs. 

Further, hard winter wheat is the major wheat class grown in the US (USDA NASS, 

2021) which is known for its excellent milling and baking characteristics suitable for a 

variety of wheat foods, especially bread. Thus, wheat breeders must improve end-use 

quality traits while simultaneously breeding for increased yield to meet projected 

demand.  

In conventional wheat breeding, the selection of progeny with desirable 

agronomic and end-use quality traits is a resource-intensive process and could take up to 

10-15 years to develop a new cultivar (Haile et al., 2020). Further, in traits with complex 

genetic architecture such as grain yield and end-use quality, the genotype-by-

environment interactions play a paramount role and impose additional challenges in 

selection. Nevertheless, Nevertheless, deployment of molecular markers for marker-

assisted selection (MAS) has been used to increase selection accuracy and accumulation 

of desired traits in an efficient way (Randhawa et al., 2013).  
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Wheat grain yield is a complex quantitative trait involving many QTLs with small 

effects and is highly influenced by environmental factors, which makes it difficult to 

improve yield by direct phenotypic selection (K. Liu et al., 2018). Nevertheless, grain 

yield is mainly determined by several component traits exhibiting high heritability (J. Liu 

et al., 2018). Thus, a promising strategy to improve grain yield in wheat is to characterize 

individual yield component traits and exploit them for improving the yield potential 

(Kuzay et al., 2019; Würschum et al., 2018). In past decades, QTL mapping approaches 

including linkage mapping and genome-wide association study (GWAS) have been 

extensively used to identify QTLs governing these yield-related traits. However, the 

exploitation of GWAS to characterize yield component traits in winter wheat had been 

relatively limited (Ward et al., 2019; Zanke et al., 2015; Zhai et al., 2016). Moreover, 

GWAS have not been reported to date on spike and kernel traits in hard winter wheat 

(HWW). This necessitates the need to explore the phenotypic and genetic variation for 

yield-related traits in the important class of wheat to provide a useful resource to the 

breeders. 

Genomic selection (GS) is another approach that utilizes genome-wide marker 

data to select individuals superior for complex traits in the early breeding cycle to 

increase the genetic gain per unit of time (Heffner et al., 2009; Meuwissen et al., 2001). 

Several studies have reported the successful implementation of GS in different crops 

resulting in an accelerated rate of genetic gain compared to traditional breeding (Bassi et 

al., 2015; Battenfield et al., 2016; Bhat et al., 2016). Moreover, GS has shown to be 

particularly useful in traits where phenotyping is cumbersome, such as quality traits and 

complex agronomic traits (Battenfield et al., 2016; Dong et al., 2018). The widespread 
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availability of genome-wide markers attributed to low-cost genotyping technologies has 

facilitated the adaptability of GS in wheat breeding programs (Bhat et al., 2016; Poland et 

al., 2012). Despite the successful evaluations of GS in wheat breeding programs, there is 

a continuous scope to improve the prediction accuracy/ability of genomic prediction (GP) 

models for quantitative traits to achieve higher genetic gains that will lead to the routine 

implementation of GS in various wheat breeding schemes. In recent years, multi-trait 

(MT) genomic prediction models have been suggested to improve the PA for a primary 

trait when secondary traits correlated to the primary trait are available (Jia & Jannink, 

2012). Thus, there is a need to explore the usefulness of GS for the improvement of grain 

yield and end-use quality traits, which otherwise exhibit complex quantitative inheritance 

or are difficult to phenotype. 

 

Based on this, the objectives of this study were: 

1. Phenotypic and genetic characterization of yield-component traits in a diverse 

population of hard winter lines from the Great Plains region of the US. 

2. Evaluation of univariate and multivariate genomic prediction models for 

predicting agronomic traits in advanced breeding lines of hard winter wheat. 

3. Explore the usability of multi-trait genomic prediction models with rapid, small-

scale, and NIRS-based traits as covariates for the prediction of processing and 

end-use quality traits in hard winter wheat. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 General introduction 
 

Wheat (Triticum aestivum L.) provides an adequate and affordable intake of calories and 

proteins in human diets and plays a critical role in food security (FAO, 2017; Grote et al., 

2021). In the United States, six different classes of wheat are grown, which are 

designated by color, hardness, and growing season. The six classes of wheat include Hard 

Red Winter (HWW), Hard Red Spring (HRS), Hard White (HW), Soft White (SW), Soft 

Red Winter (SRW), and Durum wheat (https://www.uswheat.org/working-with-

buyers/wheat-classes). Hard winter wheat (Triticum aestivum L.; HWW) is the major 

wheat class grown in the US and accounts for about 46 percent of the total wheat 

production in the country (USDA NASS, 2021). Further, HWW was the major class of 

wheat grown in South Dakota based on acreage and production 

https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=SOUTH

%20DAKOTA). This versatile class of wheat exhibits excellent milling and baking 

characteristics suitable for a variety of wheat foods, especially bread. Owing to high 

demand, most of the US-produced HWW is exported. For instance, 52 percent of the total 

HWW produced in 2020 was exported worldwide (USDA ERS, 2022). Throughout the 

wheat supply chain, end-use quality characteristics play an important role in the 

marketing and pricing of HWW (Roberts et al., 2022). 

2.1.1 Origin and Domestication 

https://www.uswheat.org/working-with-buyers/wheat-classes
https://www.uswheat.org/working-with-buyers/wheat-classes
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=SOUTH%20DAKOTA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=SOUTH%20DAKOTA
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Bread wheat or common wheat (Triticum aestivum L.) is a member of the Triticeae tribe 

within the Poaceae family. The Triticum genus encompasses about 25 distinct species, 

which include species containing a single genome (diploid wheat) or others having 

multiple homoeologous genomes resulting from hybridization (tetraploid or hexaploid 

species). For example, diploid forms include wild species (Triticum urartu with AA 

genome), cultivates einkorn wheat (Triticum monococcum with AA genome), 

allotetraploid emmer wheat (Triticum turgidum var. durum with AABB genome), and the 

allohexaploid common wheat (Triticum aestivum L. with AABBDD genome). (Kim et 

al., 2017). 

Common Bread Wheat is an allohexaploid (6x) species with three sets of 

homeologous chromosomes designated as A, B, and D subgenomes, with a large genome 

size of about 17 gigabases (Gb) (William et al., 2007). The hexaploid bread wheat 

(AABBDD, 2n = 6x = 42) is believed to have originated from hybridization between the 

diploid (DD) genome of grass species Aegilops tauschii and the domesticated emmer 

wheat T. turgidum ssp. dicoccum, a tetraploid with AABB genome (Dubcovsky & 

Dvorak, 2007). Further, Triticum urartu is considered as the progenitor of the A genome 

of bread wheat, while the B genome of bread wheat is believed several were believed to 

have originated from an annual diploid S genome species in the genus Aegilops sect. 

sitopsis (Feldman & Levy, 2015). The hybridization event between tetraploid (T. 

turgidum subsp. dicoccum) wheat and the D subgenome donor species (Ae. tauschii; 

2n=2x=14, DD) is believed to have happened spontaneously in the Caspian Sea region 

about 9,000 years that gave rise to the modern bread wheat, T. aestivum (2n=6x=42, 

AABBDD). Triticum aestivum ssp. vulgare is commonly called bread wheat, while other 
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sub species in this group include compactum, sphaerococcum, spelta, macha and 

vavilovii (Shewry, 2009). 

The transition from the tetraploid form to the modern hexaploid resulted in 

enhanced geographic and environmental adaptability, along with increased grain yield 

and quality. The event of wheat domestication is believed to have occurred in the present-

day Middle East, and had a profound impact on the development and evolution of human 

civilization, as this transition led human civilization to a more agrarian society (Eckardt, 

2010). 

2.2 Challenges and opportunities in wheat yield improvement 

 

Wheat grain yield is a complex quantitative trait influenced by various factors such as 

morphological characteristics, physiological indices, grain-related traits, and different 

environmental conditions, involving many quantitative trait loci (QTLs) with small 

effects and is highly influenced by environmental factors, which makes it difficult to 

improve yield by direct phenotypic selection (K. Liu et al., 2018). Understanding the 

genetic basis of grain yield is further hampered by the low heritability of this trait (Kuzay 

et al., 2019). However, grain yield is a collective output of several component traits 

namely spikelet number per spike (NSPS), spike length (SL), spike number, kernels per 

spike (KPS), kernel size (KS), and thousand kernel weight (TKW), which are less 

sensitive to the environment and exhibit higher heritability than that of grain yield per se 

(Hai et al., 2008; Kato et al., 2000). Among these component traits, three traits play a 

major role in determining final grain yield i.e. spike number per unit area, kernel number 

per spike, and thousand kernel weight (TKW) (J. Liu et al., 2018). The final kernel 

number per spike is affected by spike-related traits such as spike length (SL), number of 
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spikelets per spike (NSPS), and spikelet density (SD) (Z. Guo et al., 2017). Similarly, 

TKW is influenced by several kernel morphology traits such as kernel length (KL), 

kernel width (KW), and kernel area (KA) (Gegas et al., 2010). Most of these yield 

component traits are controlled by several QTLs; however, these traits are less sensitive 

to the environment and exhibit higher heritability compared to grain yield per se (Zhang 

et al., 2018). Therefore, a promising strategy to improve grain yield in wheat is to 

understand the genes and gene networks controlling individual yield component traits and 

exploiting them for improving the yield potential (Kuzay et al., 2019; Würschum et al., 

2018). 

2.3 Breeding for end-use quality in hard winter wheat 

 

Hard winter wheat is the major wheat class grown in the US and exhibits excellent 

milling and baking characteristics suitable for a variety of wheat foods, especially bread. 

Owing to high demand, most of the US-produced HWW is exported. For instance, 52 

percent of the total HWW produced in 2020 was exported worldwide (USDA ERS, 

2022). Throughout the wheat supply chain, end-use quality characteristics play an 

important role in the marketing and pricing of HWW (Roberts et al., 2022). Moreover, 

consumers’ preferences for healthier food necessitate an emphasis on the selection of 

desirable end-use quality traits. Henceforth, in HWW breeding, end-use quality and 

processing traits are important factors in varietal development and determining 

acceptance by the industry.  

The high gluten strength and damaged starch in HWW make it very suitable for 

baking, and yeast-leavened bread is a major end-use product. Bread quality is an 

important but complex trait that is defined by a combination of many parameters 
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(Battenfield et al., 2016). Several important factors including kernel characteristics, the 

milled flour quality, protein and starch strength, and dough properties all play a crucial 

role in determining the end-use quality of the final product. Hence, several assays are 

used to profile these factors and inform the selection for end-use quality. Nevertheless, 

most of the assays for the evaluation of end-use products are expensive, time-consuming, 

and require large quantities of flour. Therefore, breeders mostly prioritize the selection of 

agronomic traits and disease resistance in earlier generations and quality traits in 

advanced generations in most breeding programs (Battenfield et al., 2016). Previous 

studies have shown that end-use quality traits are controlled by a few major genes and a 

large number of quantitative trait loci with minor effects (Carter et al., 2012; Jernigan et 

al., 2018; Kiszonas & Morris, 2017; Sandhu et al., 2021). Though available major genes 

have been exploited in breeding programs, the majority of minor genes are highly 

influenced by the environment and remain uncharacterized (Jernigan et al., 2018; 

Kiszonas & Morris, 2017). 

2.4 Genetic characterization of agronomic traits for marker-assisted selection 

 

Traditional wheat breeding involves creating novel genetic variation by different 

methods, followed by extensive selection and advancement of generations. The selection 

of progeny with desirable agronomic and end-use quality traits is a resource-intensive 

process and could take up to 10-15 years to develop a new cultivar (Haile et al., 2020). 

Further, in traits with complex genetic architecture such as grain yield, the genotype-by-

environment interactions play a paramount role and impose additional challenges in 

selection. In recent years, genetic characterization of complex traits using molecular 

markers followed by deployment of markers linked/associated with a trait of interest for 
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marker-assisted selection (MAS) has been used to increase selection accuracy and 

accelerate genetic gain (Randhawa et al., 2013). Moreover, recent advents in sequencing 

technologies and advanced molecular marker technologies have facilitated the genetic 

characterization of complex traits with improved resolutions. For example,  Single 

nucleotide polymorphisms (SNPs) have emerged as powerful molecular markers in the 

recent past and become extremely popular in plant breeding research owing to their 

genome-wide abundance and ability to capture variations quickly (Korte & Ashley, 

2013). Further, the discovery of SNPs has been significantly improved by rapid advances 

in sequencing technologies (Allen et al., 2011; Berkman et al., 2012; J. A. Poland et al., 

2012). (Thomson, 2014). Recently, SNPs have been widely employed for the 

identification of quantitative trait locus (QTL) for important agronomic traits in various 

crop species. (Cook et al., 2012; Chen et al., 2016; Halder et al., 2019; Kuzay et al., 2019; 

Sidhu et al., 2020; Yang et al., 2020)  

There are two common methods used for genetic characterization of complex 

traits in plants including linkage analysis (QTL mapping) and association mapping, also 

known as LD mapping (Gupta et al., 2014). Linkage mapping or QTL mapping is based 

on genetic recombination events for a specific trait by establishing a segregation 

population such as an F2 population, Doubled Haploid (DH), or a recombinant inbred 

lines (RIL) population; and has been used to characterize both qualitative and quantitative 

traits(Collard & Mackill, 2008; Gupta et al., 2014). Though linkage mapping is a 

powerful tool and has been widely used to characterize important traits in a variety of 

crops, there are several shortcomings of this approach. It involves the development of 

segregation populations which could be time-consuming and detects only those QTL that 
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are polymorphic in the given population (Ayana et al., 2018). Further, it suffers from 

limited genetic variation and is able to exploit only one or few meiotic generations 

resulting in low resolution of QTL mapping (Gupta et al., 2014). 

Genome-wide association mapping also known as linkage-disequilibrium 

mapping, is another approach that uses genome-wide dense markers and relies on linkage 

disequilibrium to uncover the association between genotype and phenotype (Myles et al., 

2009; Randhawa et al., 2013; Zhu et al., 2008). Association mapping, unlike linkage 

mapping, utilizes genetic diversity across natural populations to detect molecular 

polymorphisms that associate with the phenotypic variation for the trait of interest, thus 

offering higher mapping resolution by exploiting historic recombination events in broad-

based diversity panels (Gupta et al., 2014; Zhu et al., 2008). In the recent past, Genome-

wide association studies (GWAS) have been used in a variety of economically important 

crops, including Arabidopsis, wheat, maize, rice, barley, soybean, tomato, etc. (Wang et 

al., 2014; Xu et al., 2017). Despite having several merits over linkage mapping, 

association mapping suffers from a few limitations, as it leads to a high frequency of 

false-positive associations due to the kinship and population structure that may exist 

among the population (Neumann et al., 2011; Korte and Farlow, 2013). Nevertheless, 

there have been recent developments in the statistical methods underlying association 

mapping to overcome these limitations and novel single or multi-locus models have been 

developed to control for false-positives and increase the power of mapping. In 

comparison to the naïve General Linear Model (GLM) method (Price et al., 2006), Mixed 

Linear Model (MLM) takes account of kinship and population structure in association 

analysis reducing type I error, and controlling for false-positive associations (Yu et al., 
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2006). Further, the introduction of multi-locus models, including Multi-locus analysis 

such as Multiple Loci Mixed Linear Model (MLMM) (Segura et al., 2012) and Fixed and 

random model Circulating Probability Unification (FarmCPU) (Liu et al., 2016) have 

increased the power of association mapping and provides better control of false-positive 

associations. Recently, s multi-locus Bayesian-information and Linkage-disequilibrium 

Iteratively Nested Keyway (BLINK) method was developed and reported to perform 

better than the popular multi-locus FarmCPU approach (Huang et al., 2019; X. Liu et al., 

2016) because it overcomes the limitations of the FarmCPU and identifies more true 

positives and produces fewer false positives when compared to other GWAS methods 

(Huang et al., 2019). In BLINK, the bin method of FarmCPU is replaced by LD 

information, eliminating the requirement that causal genes are evenly distributed (Huang 

et al., 2019). This method showed better performance than other models using simulated 

data as well as in several empirical studies from different crop species (Habyarimana et 

al., 2020; Juliana et al., 2021; L. Liu et al., 2020). 

2.5 Genomic Selection (GS) 

 

Though MAS has shown good potential in wheat breeding for the deployment of QTLs 

with large effects, its application has been limited to improving complex traits governed 

by many QTLs with small effects (Heffner et al., 2009). Genomic selection (GS) is a 

recent approach that utilizes genome-wide marker data to select individuals superior for 

complex traits in the early breeding cycle to increase the genetic gain per unit of time 

(Heffner et al., 2009; Meuwissen et al., 2001). Unlike MAS, GS does not require prior 

identification of QTLs for the traits of interest; instead, it employs all available markers 

across the genome to predict individuals' breeding values (Bassi et al., 2015). Briefly, GS 
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requires a training population (TP), which is genotyped with genome-wide markers and 

phenotyped for a given trait(s) of interest. GS involves the calibration of a prediction 

model using TP to estimate marker effects and evaluate the predictive ability of the 

model through cross-validation. Finally, the developed model is used to calculate 

genome-estimated breeding values (GEBVs) and rank the lines from a breeding or testing 

population (BP) that consists of lines with only genotypic information. Thus, the early 

selection or culling of individuals based on the GEBVs permits greater genetic gain per 

breeding cycle, facilitating an increase in the efficacy of breeding programs and resulting 

in reduced varietal development costs. Several studies have reported the successful 

implementation of GS in different crops resulting in an accelerated rate of genetic gain 

compared to traditional breeding (Bassi et al., 2015; Battenfield et al., 2016; Bhat et al., 

2016). Moreover, GS has shown to be particularly useful in traits where phenotyping is 

cumbersome, such as quality traits and complex resistance to diseases (Battenfield et al., 

2016; Dong et al., 2018).  

The widespread availability of genome-wide markers attributed to low-cost 

genotyping technologies has facilitated the adaptability of GS in wheat breeding 

programs (Bhat et al., 2016; J. Poland et al., 2012). Thus, there is growing interest in 

recent years to complement phenotyping selection and genomic selection in wheat 

breeding. GS has been evaluated for many complex traits in wheat, including but not 

limited to grain yield and yield-related traits (Guo et al., 2020; Haile et al., 2020; Juliana 

et al., 2020; Rutkoski et al., 2016; Ward et al., 2019), wheat resistance to rusts (Juliana et 

al., 2017; J. E. Rutkoski et al., 2014) and Fusarium head blight (Arruda et al., 2015; Dong 

et al., 2018; Rutkoski et al., 2012), and end-use quality traits (Battenfield et al., 2016; 
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Ibba et al., 2020; Lado et al., 2018). Despite the successful evaluations of GS in wheat 

breeding programs, there is a continuous scope to improve the prediction accuracy/ability 

of GS models for quantitative traits to achieve higher genetic gains that will lead to the 

routine implementation of GS in various wheat breeding schemes. 

2.6 Genomic prediction models and predictive ability 

 

The predictive ability (PA) of the GS model refers to the correlation between estimated 

GEBVs and the actual phenotypic values of the individuals in the validation set and is 

generally calculated through a cross-validation approach. Along with TP size, the extent 

of linkage disequilibrium (LD), and the heritability of the traits, the PA also depends on 

the choice and optimization of the statistical models (de los Campos et al., 2013; J. Guo 

et al., 2020; J. Rutkoski et al., 2016). In most studies, penalized genomic prediction 

models, including ridge-regression best linear unbiased prediction (rrBLUP) and genomic 

best linear unbiased prediction (GBLUP), have been standard GS approaches (Endelman, 

2011; VanRaden et al., 2009). In addition, several Bayesian methods with different prior 

distributions and relying on Markov-Chain Monte Carlo (MCMC) for the estimation of 

parameters have proven useful for genomic prediction (Habier et al., 2011; Wang et al., 

2018). Among Bayesian models, Bayes A (BA) and Bayes B (BB) are commonly used 

genomic prediction models, which assume different prior distributions for estimating 

marker effects and variances (Pérez & De Los Campos, 2014). The Bayes A model uses 

the scaled inverse chi-squared probability distribution for estimating marker variances. 

Bayes B is an extension of the Bayes A model (Meuwissen et al., 2001) and employs an 

inverse chi-square distribution for marker effects and assumes that some markers have no 
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effect. However, most of these models implement a univariate linear mixed model and 

are helpful to predict one dependent variable at a time.  

 

In recent years, multi-trait (MT) genomic prediction models have been suggested to 

improve the PA for a primary trait when secondary traits correlated to the primary trait 

are available (Jia & Jannink, 2012). The use of genetically correlated traits is of particular 

importance when the primary trait is difficult or expensive to phenotype and has low 

heritability. Several empirical studies have successfully evaluated MT approaches for 

different agronomic traits in wheat breeding (Hayes et al., 2017; Lado et al., 2018; 

Rutkoski et al., 2012). Improvement of 70% in the PA for grain yield was observed by 

including canopy temperature (CT) and normalized difference vegetation index as 

secondary traits using the MT approach (Rutkoski et al., 2016; Sun et al., 2017). 

Similarly, Hayes et al., (2017) and Lado et al., (2018) observed an increase in PA using 

multivariate approaches (MT) over single trait (ST) models in end-use quality traits.  

For complex traits, genotype-by-environment interactions (G x E) necessitate the 

evaluation of breeding lines for multiple traits over multiple environments. Thus, the 

extension of the MT approaches to account for the trait x genotype x environment (T x G 

x E) interaction could improve the model for genomic prediction accuracy in breeding 

programs. Montesinos-López et al. (2016) proposed a Bayesian multi-trait and multi-

environment (BMTME) model that integrates the analysis of multi-traits recorded over 

multi-environments and accounts for T x G x E interaction in a unified approach. 

Recently, an improved BMTME model has been introduced that estimates the variance-

covariance structure among trait, genotype, and environment to predict multiple traits 
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evaluated in various environments (Montesinos-López et al., 2019; Montesinos‐López et 

al., 2019). Few studies using simulated and empirical data found that the BMTME model 

outperforms ST models in agronomic and end-use quality traits in wheat (Guo et al., 

2020; Ibba et al., 2020; Montesinos-López et al., 2016). Better performance of 

multivariate GS approaches stimulates us to evaluate these models in an actual breeding 

pipeline, where several traits are evaluated over diverse environments. 

 

2.7 References  

 

Allen, A. M., Barker, G. L. A., Berry, S. T., Coghill, J. A., Gwilliam, R., Kirby, S., 

Robinson, P., Brenchley, R. C., D’Amore, R., McKenzie, N., Waite, D., Hall, A., 

Bevan, M., Hall, N., & Edwards, K. J. (2011). Transcript-specific, single-nucleotide 

polymorphism discovery and linkage analysis  in hexaploid bread wheat (Triticum 

aestivum L.). Plant Biotechnology Journal, 9(9), 1086–1099. 

https://doi.org/10.1111/j.1467-7652.2011.00628.x 

AlTameemi, R., Gill, H. S., Ali, S., Ayana, G., Halder, J., Sidhu, J. S., Gill, U. S., 

Turnipseed, B., Hernandez, J. L. G., & Sehgal, S. K. (2021). Genome-wide 

association analysis permits characterization of Stagonospora nodorum blotch 

(SNB) resistance in hard winter wheat. Scientific Reports, 11(1), 12570. 

https://doi.org/10.1038/s41598-021-91515-6 

Arruda, M. P., Brown, P. J., Lipka, A. E., Krill, A. M., Thurber, C., & Kolb, F. L. (2015). 

Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat 

Breeding Program. The Plant Genome, 8(3). 



20 
 

 

 

https://doi.org/10.3835/plantgenome2015.01.0003 

Ayana, G. T., Ali, S., Sidhu, J. S., Gonzalez Hernandez, J. L., Turnipseed, B., & Sehgal, 

S. K. (2018). Genome-Wide Association Study for Spot Blotch Resistance in Hard 

Winter Wheat. Frontiers in Plant Science, 9(July), 1–15. 

https://doi.org/10.3389/fpls.2018.00926 

Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., & Crossa, J. (2015). Breeding 

schemes for the implementation of genomic selection in wheat (Triticum spp.). 

Plant Science, 242, 23–36. https://doi.org/10.1016/j.plantsci.2015.08.021 

Battenfield, S. D., Guzmán, C., Gaynor, R. C., Singh, R. P., Peña, R. J., Dreisigacker, S., 

Fritz, A. K., & Poland, J. A. (2016). Genomic Selection for Processing and End‐Use 

Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. The Plant 

Genome, 9(2). https://doi.org/10.3835/plantgenome2016.01.0005 

Berkman, P. J., Lai, K., Lorenc, M. T., & Edwards, D. (2012). Next-generation 

sequencing applications for wheat crop improvement. American Journal of Botany, 

99(2), 365–371. https://doi.org/10.3732/ajb.1100309 

Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z. A., Dutta, S., Jadon, V., Tyagi, A., Mushtaq, 

M., Jain, N., Singh, P. K., Singh, G. P., & Prabhu, K. V. (2016). Genomic selection 

in the era of next generation sequencing for complex traits in plant breeding. In 

Frontiers in Genetics (Vol. 7, Issue DEC). Frontiers Media S.A. 

https://doi.org/10.3389/fgene.2016.00221 

Chen, G., Zhang, H., Deng, Z., Wu, R., Li, D., Wang, M., & Tian, J. (2016). Genome-

wide association study for kernel weight-related traits using SNPs in a Chinese 



21 
 

 

 

winter wheat population. Euphytica, 212(2), 173–185. 

https://doi.org/10.1007/s10681-016-1750-y 

Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for 

precision plant breeding in the twenty-first century. In Philosophical Transactions of 

the Royal Society B: Biological Sciences (Vol. 363, Issue 1491, pp. 557–572). Royal 

Society. https://doi.org/10.1098/rstb.2007.2170 

Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra, J., 

Buckler, E. S., & Flint-Garcia, S. A. (2012). Genetic architecture of maize kernel 

composition in the nested association mapping  and inbred association panels. Plant 

Physiology, 158(2), 824–834. https://doi.org/10.1104/pp.111.185033 

de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D., & Calus, M. P. L. 

(2013). Whole-genome regression and prediction methods applied to plant and 

animal breeding. In Genetics (Vol. 193, Issue 2, pp. 327–345). 

https://doi.org/10.1534/genetics.112.143313 

Dong, H., Wang, R., Yuan, Y., Anderson, J., Pumphrey, M., Zhang, Z., & Chen, J. 

(2018). Evaluation of the Potential for Genomic Selection to Improve Spring Wheat 

Resistance to Fusarium Head Blight in the Pacific Northwest. Frontiers in Plant 

Science, 9, 911. https://doi.org/10.3389/fpls.2018.00911 

Dubcovsky, J., & Dvorak, J. (2007). Genome Plasticity a Key Factor in the Success of 

Polyploid Wheat Under Domestication. Science, 316(5833), 1862–1866. 

https://doi.org/10.1126/science.1143986 

Eckardt, N. A. (2010). Evolution of domesticated bread wheat. The Plant Cell, 22(4), 



22 
 

 

 

993. https://doi.org/10.1105/tpc.110.220410 

Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with 

R Package rrBLUP. The Plant Genome, 4(3), 250–255. 

https://doi.org/10.3835/plantgenome2011.08.0024 

FAO. (2017). The future of food and agriculture – Trends and challenges. FAO. 

Feldman, M., & Levy, A. A. (2015). Origin and Evolution of Wheat and Related 

Triticeae Species. Alien Introgression in Wheat: Cytogenetics, Molecular Biology, 

and Genomics, 21–76. https://doi.org/10.1007/978-3-319-23494-6_2 

Gegas, V. C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., 

Doonan, J. H., & Snape, J. W. (2010). A Genetic Framework for Grain Size and 

Shape Variation in Wheat  . The Plant Cell, 22(4), 1046–1056. 

https://doi.org/10.1105/tpc.110.074153 

Gill, H. S., Halder, J., Zhang, J., Brar, N. K., Rai, T. S., Hall, C., Bernardo, A., Amand, P. 

S., Bai, G., Olson, E., Ali, S., Turnipseed, B., & Sehgal, S. K. (2021). Multi-Trait 

Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding 

Lines of Winter Wheat. Frontiers in Plant Science, 12. 

https://doi.org/10.3389/fpls.2021.709545 

Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the 

Dynamics of Wheat and Maize Value Chains in Africa and Asia. In Frontiers in 

Sustainable Food Systems (Vol. 4, p. 317). Frontiers Media S.A. 

https://doi.org/10.3389/fsufs.2020.617009 



23 
 

 

 

Guo, J., Khan, J., Pradhan, S., Shahi, D., Khan, N., Avci, M., Mcbreen, J., Harrison, S., 

Brown-Guedira, G., Murphy, J. P., Johnson, J., Mergoum, M., Esten Mason, R., 

Ibrahim, A. M. H., Sutton, R., Griffey, C., & Babar, M. A. (2020). Multi-Trait 

Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water 

Regimes. Genes, 11(11), 1270. https://doi.org/10.3390/genes11111270 

Guo, Z., Chen, D., Alqudah, A. M., Röder, M. S., Ganal, M. W., & Schnurbusch, T. 

(2017). Genome-wide association analyses of 54 traits identified multiple loci for 

the determination of floret fertility in wheat. New Phytologist, 214(1), 257–270. 

https://doi.org/10.1111/nph.14342 

Gupta, P. K., Kulwal, P. L., & Jaiswal, V. (2014). Association mapping in crop plants: 

Opportunities and challenges. In Advances in Genetics (Vol. 85, pp. 109–147). 

Academic Press Inc. https://doi.org/10.1016/B978-0-12-800271-1.00002-0 

Habier, D., Fernando, R. L., Kizilkaya, K., & Garrick, D. J. (2011). Extension of the 

bayesian alphabet for genomic selection. BMC Bioinformatics, 12. 

https://doi.org/10.1186/1471-2105-12-186 

Habyarimana, E., De Franceschi, P., Ercisli, S., Baloch, F. S., & Dall’Agata, M. (2020). 

Genome-Wide Association Study for Biomass Related Traits in a Panel of Sorghum 

bicolor and S. bicolor × S. halepense Populations. Frontiers in Plant Science, 11, 

1796. https://doi.org/10.3389/fpls.2020.551305 

Hai, L., Guo, H., Wagner, C., Xiao, S., & Friedt, W. (2008). Plant Science Genomic 

regions for yield and yield parameters in Chinese winter wheat ( Triticum aestivum 

L .) genotypes tested under varying environments correspond to QTL in widely 



24 
 

 

 

different wheat materials. 175, 226–232. 

https://doi.org/10.1016/j.plantsci.2008.03.006 

Haile, T. A., Walkowiak, S., N’Diaye, A., Clarke, J. M., Hucl, P. J., Cuthbert, R. D., 

Knox, R. E., & Pozniak, C. J. (2020). Genomic prediction of agronomic traits in 

wheat using different models and cross-validation designs. Theoretical and Applied 

Genetics, 1, 3. https://doi.org/10.1007/s00122-020-03703-z 

Halder, J., Zhang, J., Ali, S., Sidhu, J. S., Gill, H. S., Talukder, S. K., Kleinjan, J., 

Turnipseed, B., & Sehgal, S. K. (2019). Mining and genomic characterization of 

resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head 

blight in Watkins core collection of wheat landraces. BMC Plant Biology, 19(1), 1–

15. https://doi.org/10.1186/s12870-019-2093-3 

Hayes, B. J., Panozzo, J., Walker, C. K., Choy, A. L., Kant, S., Wong, D., Tibbits, J., 

Daetwyler, H. D., Rochfort, S., Hayden, M. J., & Spangenberg, G. C. (2017). 

Accelerating wheat breeding for end-use quality with multi-trait genomic 

predictions incorporating near infrared and nuclear magnetic resonance-derived 

phenotypes. Theoretical and Applied Genetics, 130(12), 2505–2519. 

https://doi.org/10.1007/s00122-017-2972-7 

Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop 

improvement. In Crop Science (Vol. 49, Issue 1, pp. 1–12). 

https://doi.org/10.2135/cropsci2008.08.0512 

Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2019). BLINK: A package 

for the next level of genome-wide association studies with both individuals and 



25 
 

 

 

markers in the millions. GigaScience, 8(2), 1–12. 

https://doi.org/10.1093/gigascience/giy154 

Ibba, M. I., Crossa, J., Montesinos‐López, O. A., Montesinos‐López, A., Juliana, P., 

Guzman, C., Delorean, E., Dreisigacker, S., & Poland, J. (2020). Genome‐based 

prediction of multiple wheat quality traits in multiple years. The Plant Genome, 

13(3). https://doi.org/10.1002/tpg2.20034 

Jia, Y., & Jannink, J. L. (2012). Multiple-trait genomic selection methods increase 

genetic value prediction accuracy. Genetics, 192(4), 1513–1522. 

https://doi.org/10.1534/genetics.112.144246 

Juliana, P., Singh, R. P., Braun, H.-J., Huerta-Espino, J., Crespo-Herrera, L., Govindan, 

V., Mondal, S., Poland, J., & Shrestha, S. (2020). Genomic Selection for Grain 

Yield in the CIMMYT Wheat Breeding Program—Status and Perspectives. 

Frontiers in Plant Science, 11, 1. https://doi.org/10.3389/fpls.2020.564183 

Juliana, P., Singh, R. P., Poland, J., Shrestha, S., Huerta-Espino, J., Govindan, V., 

Mondal, S., Crespo-Herrera, L. A., Kumar, U., Joshi, A. K., Payne, T., Bhati, P. K., 

Tomar, V., Consolacion, F., & Campos Serna, J. A. (2021). Elucidating the genetics 

of grain yield and stress-resilience in bread wheat using a large-scale genome-wide 

association mapping study with 55,568 lines. Scientific Reports, 11(1), 1–15. 

https://doi.org/10.1038/s41598-021-84308-4 

Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Huerta-Espino, J., Lan, C., Bhavani, S., 

Rutkoski, J. E., Poland, J. A., Bergstrom, G. C., & Sorrells, M. E. (2017). Genomic 

and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. 



26 
 

 

 

Theoretical and Applied Genetics, 130(7), 1415–1430. 

https://doi.org/10.1007/s00122-017-2897-1 

Kato, K., Miura, H., & Sawada, S. (2000). Mapping QTLs controlling grain yield and its 

components on chromosome 5A of wheat. Theoretical and Applied Genetics, 

101(7), 1114–1121. https://doi.org/10.1007/s001220051587 

Kim, S. K., Kim, J.-H., & Jang, W.-C. (2017). Past, Present and Future Molecular 

Approaches to Improve Yield in Wheat. Wheat Improvement, Management and 

Utilization. https://doi.org/10.5772/67112 

Korte, A., & Ashley, F. (2013). The advantages and limitations of trait analysis with 

GWAS : a review Self-fertilisation makes Arabidopsis particularly well suited to 

GWAS. Plant Methods, 9(1), 29. 

Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., Fraser, M., Anderson, J. A., 

Brown-Guedira, G., DeWitt, N., Peters Haugrud, A., Faris, J. D., Akhunov, E., Bai, 

G., & Dubcovsky, J. (2019). Identification of a candidate gene for a QTL for 

spikelet number per spike on wheat chromosome arm 7AL by high-resolution 

genetic mapping. Theoretical and Applied Genetics, 132(9), 2689–2705. 

https://doi.org/10.1007/s00122-019-03382-5 

Lado, B., Vázquez, D., Quincke, M., Silva, P., Aguilar, I., & Gutiérrez, L. (2018). 

Resource allocation optimization with multi-trait genomic prediction for bread 

wheat (Triticum aestivum L.) baking quality. Theoretical and Applied Genetics, 

131(12), 2719–2731. https://doi.org/10.1007/s00122-018-3186-3 

Liu, J., Xu, Z., Fan, X., Zhou, Q., Cao, J., Wang, F., Ji, G., Yang, L., Feng, B., & Wang, 



27 
 

 

 

T. (2018). A genome-wide association study of wheat spike related traits in China. 

Frontiers in Plant Science, 871, 1584. https://doi.org/10.3389/fpls.2018.01584 

Liu, K., Sun, X., Ning, T., Duan, X., Wang, Q., Liu, T., An, Y., Guan, X., Tian, J., & 

Chen, J. (2018). Genetic dissection of wheat panicle traits using linkage analysis and 

a genome-wide association study. Theoretical and Applied Genetics, 131(5), 1073–

1090. https://doi.org/10.1007/s00122-018-3059-9 

Liu, L., Wang, M., Zhang, Z., See, D. R., & Chen, X. (2020). Identification of Stripe Rust 

Resistance Loci in U.S. Spring Wheat Cultivars and Breeding Lines Using Genome-

Wide Association Mapping and Yr Gene Markers. Plant Disease, 104(8), 2181–

2192. https://doi.org/10.1094/PDIS-11-19-2402-RE 

Liu, X., Huang, M., Fan, B., Buckler, E. S., & Zhang, Z. (2016). Iterative Usage of Fixed 

and Random Effect Models for Powerful and Efficient Genome-Wide Association 

Studies. PLOS Genetics, 12(2), e1005767. 

https://doi.org/10.1371/journal.pgen.1005767 

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of Total Genetic 

Value Using Genome-Wide Dense Marker Maps. In Genetics Soc America. 

https://www.genetics.org/content/157/4/1819.short 

Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-

Hernández, O., Eskridge, K. M., & Rutkoski, J. (2016). A genomic bayesian multi-

trait and multi-environment model. G3: Genes, Genomes, Genetics, 6(9), 2725–

2774. https://doi.org/10.1534/g3.116.032359 

Montesinos-López, O. A., Montesinos-López, A., Luna-Vázquez, F. J., Toledo, F. H., 



28 
 

 

 

Pérez-Rodríguez, P., Lillemo, M., & Crossa, J. (2019). An R package for Bayesian 

analysis of multi-environment and multi-trait multi-environment data for genome-

based prediction. G3: Genes, Genomes, Genetics, 9(5), 1355–1369. 

https://doi.org/10.1534/g3.119.400126 

Montesinos‐López, O. A., Montesinos‐López, A., Hernández, M. V., Ortiz‐Monasterio, 

I., Pérez‐Rodríguez, P., Burgueño, J., & Crossa, J. (2019). Multivariate Bayesian 

Analysis of On‐Farm Trials with Multiple‐Trait and Multiple‐Environment Data. 

Agronomy Journal, 111(6), 2658–2669. https://doi.org/10.2134/agronj2018.06.0362 

Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E., & Buckler, E. 

(2009). Association mapping: Critical considerations shift from genotyping to 

experimental design. Plant Cell, 21(8), 2194–2202. 

https://doi.org/10.1105/tpc.109.068437 

Pérez, P., & De Los Campos, G. (2014). Genome-wide regression and prediction with the 

BGLR statistical package. Genetics, 198(2), 483–495. 

https://doi.org/10.1534/genetics.114.164442 

Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of 

high-density genetic maps for barley and wheat using a novel two-enzyme 

genotyping-by-sequencing approach. PLoS ONE, 7(2). 

https://doi.org/10.1371/journal.pone.0032253 

Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., Dreisigacker, S., 

Crossa, J., Sánchez‐Villeda, H., Sorrells, M., & Jannink, J. (2012). Genomic 

Selection in Wheat Breeding using Genotyping‐by‐Sequencing. The Plant Genome, 



29 
 

 

 

5(3), plantgenome2012.06.0006. https://doi.org/10.3835/plantgenome2012.06.0006 

Randhawa, H. S., Asif, M., Pozniak, C., Clarke, J. M., Graf, R. J., Fox, S. L., Humphreys, 

D. G., Knox, R. E., DePauw, R. M., Singh, A. K., Cuthbert, R. D., Hucl, P., & 

Spaner, D. (2013). Application of molecular markers to wheat breeding in Canada. 

Plant Breeding, 132(5), n/a-n/a. https://doi.org/10.1111/pbr.12057 

Roberts, S., Brooks, K., Nogueira, L., & Walters, C. G. (2022). The role of quality 

characteristics in pricing hard red winter wheat. Food Policy, 108, 102246. 

https://doi.org/10.1016/j.foodpol.2022.102246 

Rutkoski, J., Benson, J., Jia, Y., Brown-Guedira, G., Jannink, J.-L., & Sorrells, M. 

(2012). Evaluation of Genomic Prediction Methods for Fusarium Head Blight 

Resistance in Wheat. The Plant Genome, 5(2), 51–61. 

https://doi.org/10.3835/plantgenome2012.02.0001 

Rutkoski, J. E., Poland, J. A., Singh, R. P., Huerta‐Espino, J., Bhavani, S., Barbier, H., 

Rouse, M. N., Jannink, J., & Sorrells, M. E. (2014). Genomic Selection for 

Quantitative Adult Plant Stem Rust Resistance in Wheat. The Plant Genome, 7(3). 

https://doi.org/10.3835/plantgenome2014.02.0006 

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., Reynolds, M., 

& Singh, R. (2016). Canopy temperature and vegetation indices from high-

throughput phenotyping improve accuracy of pedigree and genomic selection for 

grain yield in wheat. G3: Genes, Genomes, Genetics, 6(9), 2799–2808. 

https://doi.org/10.1534/g3.116.032888 

Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537–1553. 



30 
 

 

 

https://doi.org/10.1093/jxb/erp058 

Sidhu, J. S., Singh, D., Gill, H. S., Brar, N. K., Qiu, Y., Halder, J., Al Tameemi, R., 

Turnipseed, B., & Sehgal, S. K. (2020). Genome-Wide Association Study Uncovers 

Novel Genomic Regions Associated With Coleoptile Length in Hard Winter Wheat. 

Frontiers in Genetics, 10, 1345. https://doi.org/10.3389/fgene.2019.01345 

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J., & Sorrells, M. E. (2017). 

Multitrait, Random Regression, or Simple Repeatability Model in High‐Throughput 

Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield. The Plant 

Genome, 10(2). https://doi.org/10.3835/plantgenome2016.11.0111 

Thomson, M. J. (2014). High-Throughput SNP Genotyping to Accelerate Crop 

Improvement. Plant Breeding and Biotechnology, 2, 195–212. 

USDA ERS. (2022). USDA Economic Reseasrch Service: Wheat Data. 

https://www.ers.usda.gov/data-products/wheat-data/ 

USDA NASS. (2021). Small Grains 2021 Summary. 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/smgr0921.pdf 

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., 

Taylor, J. F., & Schenkel, F. S. (2009). Invited review: Reliability of genomic 

predictions for North American Holstein bulls. In Journal of Dairy Science (Vol. 92, 

Issue 1, pp. 16–24). American Dairy Science Association. 

https://doi.org/10.3168/jds.2008-1514 

Wang, X., Xu, Y., Hu, Z., & Xu, C. (2018). Genomic selection methods for crop 



31 
 

 

 

improvement: Current status and prospects. In Crop Journal (Vol. 6, Issue 4, pp. 

330–340). Crop Science Society of China/ Institute of Crop Sciences. 

https://doi.org/10.1016/j.cj.2018.03.001 

Ward, B. P., Brown-Guedira, G., Tyagi, P., Kolb, F. L., Van Sanford, D. A., Sneller, C. 

H., & Griffey, C. A. (2019). Multienvironment and Multitrait Genomic Selection 

Models in Unbalanced Early-Generation Wheat Yield Trials. Crop Science, 59(2), 

491–507. https://doi.org/10.2135/cropsci2018.03.0189 

William, H. M., Trethowan, R., & Crosby-Galvan, E. M. (2007). Wheat breeding assisted 

by markers: CIMMYT’s experience. Euphytica, 157(3), 307–319. 

Würschum, T., Leiser, W. L., Langer, S. M., Tucker, M. R., & Longin, C. F. H. (2018). 

Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals 

long-term genetic trends of grain yield components. Theoretical and Applied 

Genetics, 131(10), 2071–2084. https://doi.org/10.1007/s00122-018-3133-3 

Yang, L., Zhao, D., Meng, Z., Xu, K., Yan, J., Xia, X., Cao, S., Tian, Y., He, Z., & 

Zhang, Y. (2020). QTL mapping for grain yield-related traits in bread wheat via 

SNP-based selective genotyping. Theoretical and Applied Genetics, 133(3), 857–

872. https://doi.org/10.1007/s00122-019-03511-0 

Zhang, J., Gizaw, S. A., Bossolini, E., Hegarty, J., Howell, T., Carter, A. H., Akhunov, 

E., & Dubcovsky, J. (2018). Identification and validation of QTL for grain yield and 

plant water status under contrasting water treatments in fall-sown spring wheats. 

Theoretical and Applied Genetics, 131(8), 1741–1759. 

https://doi.org/10.1007/s00122-018-3111-9 



32 
 

 

 

Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association 

Mapping in Plants. The Plant Genome, 1(1), plantgenome2008.02.0089. 

https://doi.org/10.3835/plantgenome2008.02.0089 

 

  



33 
 

 

 

CHAPTER 3 

Whole genome analysis of hard winter wheat germplasm identifies genomic regions 

associated with spike and kernel traits 

 

This chapter has been published in the Theoretical and Applied Genetics journal. 

Citation: Gill, H. S., Halder, J., Zhang, J., Rana, A., Kleinjan, J., Amand, P. S., ... & 

Sehgal, S. K. (2022). Whole-genome analysis of hard winter wheat germplasm identifies 

genomic regions associated with spike and kernel traits. Theoretical and Applied 

Genetics, 135(9), 2953-2967. 

 

  



34 
 

 

 

3.1 Abstract 

Genetic dissection of yield-component traits including spike and kernel characteristics is 

essential for the continuous improvement of wheat yield. Genome-wide association 

studies (GWAS) have been frequently used to identify genetic determinants for spike and 

kernel-related traits in wheat, though none have been employed in hard winter wheat 

(HWW) which represents a major class in U.S. wheat acreage. Further, most studies 

relied on assembled diversity panels instead of adapted breeding lines, limiting the 

transferability of results to practical breeding. Here we assembled a population of 

advanced/elite breeding lines and well-adapted cultivars and evaluated over four 

environments for phenotypic analysis of spike and kernel traits. GWAS identified 17 

significant and multi-environment marker-trait associations (MTAs) for various traits, 

representing 12 putative quantitative trait loci (QTLs), with five QTLs affecting multiple 

traits. Four of these QTLs mapped on three chromosomes 1A, 5B, and 7A for spike 

length, number of spikelets per spike (NSPS), and kernel length are likely novel. Further, 

a highly significant QTL was detected on chromosome 7AS that has not been previously 

associated with NSPS and putative candidate genes were identified in this region. The 

allelic frequencies of important quantitative trait nucleotides (QTNs) were deduced in a 

larger set of 1,124 accessions which revealed the importance of identified MTAs in the 

U.S. HWW breeding programs. The results from this study could be directly used by 

breeders to select the lines with favorable alleles for making crosses and reported markers 

will facilitate marker-assisted selection of stable QTLs for yield components in wheat 

breeding. 
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3.2 Introduction 

Wheat (Triticum aestivum L.) provides an adequate and affordable intake of calories and 

proteins in human diets and plays a critical role in food security (FAO, 2017; Grote et al., 

2021). Global wheat production needs to be increased by 60% to meet the future demand 

of feeding 9 billion people by 2050 (Fischer et al., 2014); however, a gradual decrease in 

arable land and climate change is predicted to make this increase more challenging for 

the breeders (Grote et al., 2021; Wheeler & Von Braun, 2013). Thus, continued research 

efforts to understand the genetic basis of grain yield and the development of more 

productive wheat varieties remain the primary focus for all wheat breeding programs.  

Wheat grain yield is a complex quantitative trait involving many quantitative trait 

loci (QTLs) with small effects and is highly influenced by environmental factors, which 

makes it difficult to improve yield by direct phenotypic selection (K. Liu et al., 2018). 

Understanding the genetic basis of grain yield is further hampered by the low heritability 

of this trait (Kuzay et al., 2019). Nevertheless, grain yield is mainly determined by three 

component traits including spike number per unit area, kernel number per spike, and 

thousand kernel weight (TKW) (J. Liu et al., 2018). Final kernel number per spike is 

affected by spike-related traits such as spike length (SL), number of spikelets per spike 

(NSPS), and spikelet density (SD) (Guo et al., 2017). Similarly, TKW is influenced by 

several kernel morphology traits such as kernel length (KL), kernel width (KW), and 

kernel area (KA) (Gegas et al., 2010). Most of these yield component traits are controlled 

by several QTLs; however, these traits are less sensitive to the environment and exhibit 

higher heritability compared to grain yield per se (Zhang et al., 2018). Therefore, a 

promising strategy to improve grain yield in wheat is to understand the genes and gene 
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networks controlling individual yield component traits and exploiting them for improving 

the yield potential (Kuzay et al., 2019; Würschum et al., 2018).  

In past decades, QTL mapping approaches including linkage mapping and 

genome-wide association study (GWAS) have been extensively used to identify QTLs 

governing these yield-related traits. These studies reported QTLs on different wheat 

chromosomes for spike and kernel traits such as SL (Alqudah et al., 2020; Gao et al., 

2015; J. Liu et al., 2018; Wu et al., 2012; Würschum et al., 2018; M. Yu et al., 2014), 

NSPS (Alqudah et al., 2020; Kuzay et al., 2019; J. Liu et al., 2018; Muqaddasi et al., 

2019; Wu et al., 2012; Zhai et al., 2016; Zhou et al., 2017), SD (Faris et al., 2014; 

Sourdille et al., 2000; Wu et al., 2012; Würschum et al., 2018; Zhou et al., 2017), kernel 

morphology (G. Chen et al., 2016; Z. Chen et al., 2020; H. Liu et al., 2020; K. Liu et al., 

2018; Würschum et al., 2018), and TKW (Alqudah et al., 2020; Börner et al., 2002; Z. 

Chen et al., 2020; Dhakal et al., 2021; H. Liu et al., 2020; Pang et al., 2020; Ward et al., 

2019; Zanke et al., 2015). Further, these approaches uncovered several genes or major-

effect QTLs affecting grain weight or spike morphology, such as TaGW2 homeologous 

genes for grain weight (Z. Su et al., 2011), TaTGW6 for grain size and weight (M. J. Hu 

et al., 2016), TaSus1 and TaSus2 affecting TKW (Hou et al., 2014), and TaAPO1 for 

spike morphology (Kuzay et al., 2019; Muqaddasi et al., 2019). Though majority of these 

studies employed linkage mapping, GWAS has also been successfully used to dissect 

various agronomic traits in wheat in recent years (Alqudah et al., 2020; Ward et al., 2019; 

Würschum et al., 2018). Furthermore, the development of more powerful methods like 

FarmCPU and BLINK  has increased the ability of GWAS to detect loci of smaller 

effects, making it useful to dissect yield-related traits (Huang et al., 2019). 
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The exploitation of GWAS to characterize yield component traits in winter wheat had 

been relatively limited (Ward et al., 2019; Zanke et al., 2015; Zhai et al., 2016). 

Moreover, GWAS have not been reported to date on spike and kernel traits in hard winter 

wheat (HWW) which is the major class grown in the U.S. Great Plains region and 

accounted for ~58% of U.S. wheat acreage in 2020 (USDA, 2021). This necessitates the 

need to explore the phenotypic and genetic variation for yield-related traits in the 

important class of wheat to provide a useful resource to the breeders. Secondly, most of 

the GWAS studies in different crop species make use of assembled diversity panels or 

landraces (Halder et al., 2019; Sidhu et al., 2020), rather than using the breeding 

materials of a program (Ward et al., 2019). The use of such panels of elite breeding lines 

is advantageous for identifying novel genomic regions underlying the trait(s) of interest. 

Several studies used a set of elite breeding lines to perform GWAS for different traits 

(Begum et al., 2015; Sukumaran et al., 2014; Ward et al., 2019), which provides an 

opportunity to harness the historical recombination along with the recombination events 

arising after crosses in the breeding programs. Another advantage of using advanced 

breeding lines is its relevance to the process of cultivar development (Ward et al., 2019) 

as the use of such a panel allows direct transfer of the identified QTLs to new germplasm 

and cultivars without linkage drag in the breeding programs through marker-assisted 

selection. 

The present study aimed to characterize the genetic basis of spike and kernel traits 

in U.S. hard winter wheat. We assembled a population of advanced and elite lines from 

the South Dakota State University (SDSU) breeding program representing most of the 

diversity of the program. To further improve the resolution, a set of released cultivars and 
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breeding lines from different breeding programs in the U.S. Great Plains region which 

were frequently used as parents in hybridizations were added to this panel. This panel 

was phenotyped for seven spike and kernel-related traits under four field environments 

over two years and genotyped via genotyping-by-sequencing (GBS) approach. The 

objectives of the current study were to (a) assess the phenotypic and genetic variation for 

the spike and kernel traits, (b) dissect the genetic architecture of these traits using GWAS, 

and (c) identify putative candidate genes responsible for the traits of interest using the 

wheat reference genome, and (d) study the distribution of the identified quantitative trait 

nucleotides (QTNs) in the SDSU winter wheat breeding program. 

3.3 Materials and Methods 

3.3.1 Plant material and field experiments 

A panel of 314 hard winter wheat breeding lines and released cultivars was assembled 

based on their pedigree to represent most of the genetic diversity in the SDSU breeding 

program. Majority of the panel (referred to as SD-Panel) included the hard winter wheat 

breeding lines developed and evaluated in advanced yield trials (AYT) and elite yield 

trials (EYT) over the past decade at SDSU winter wheat breeding program. The panel 

comprised 243 SDSU breeding lines including 16 doubled haploids (DHs), 40 widely 

adapted and grown hard winter wheat cultivars, and 31 elite breeding lines from regional 

performance nurseries developed by other state breeding programs in the U.S. Great 

Plains including Colorado, Kansas, Nebraska, Oklahoma, and Texas. The selected hard 

winter wheat cultivars have been frequently used as parents in the regional breeding 

programs. 
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The panel was phenotyped in four field environments with three trials conducted 

in the 2019-20 winter wheat growing season (referred to as E1, E2, and E3 from now on) 

and one trial conducted in the 2020-21 growing season (referred to as E4). In the 2019-20 

growing season, the panel was planted at three SDSU experimental stations at Aurora, 

Brookings, and Volga, South Dakota, respectively, while the 2020-21 trial was conducted 

at the SDSU experimental station in Brookings, South Dakota. In each environment, 

trials were planted using a randomized complete block design (RCBD) with two 

replications. Each experimental unit consisted of a 1.25-m-long row plot with an inter-

row spacing of 20 cm. The experiments were managed using the regional standard 

cultural practices for proper growth and development of wheat plants. 

3.3.2 Phenotypic evaluations and statistical analysis 

The spike-related traits were evaluated by measuring 10 representative spikes 

from each accession per replication at physiological maturity. Spike length (SL) was 

measured from the base of the first spikelet to the apex of the last spikelet excluding awns 

using a ruler (in cm). Spikelet number per spike (NSPS) was counted and subsequently 

averaged across ten spikes. The spikelet density (SD), referring to the spikelet number 

per unit of spike length, was estimated by dividing NSPS by the spike length. In addition, 

whole rows were manually harvested, threshed, and cleaned to obtain a seed sample for 

measuring KL (in mm), kernel width (KW, in mm), and kernel area (KA, in mm2) using 

an automatic grain analyzer Vibe QM3 (Vibe Imaging Analytics, CA, USA).  

Subsequently, TKW was estimated by counting 1,000 kernels using a Contrad 2 Seed 

Counter (Hoffman Manufacturing Inc, OR, USA) and weighing the counted kernels, with 

three repetitions. In each environment, the lines with missing replications or lines 
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subjected to any damage or contamination during harvesting were removed from the 

phenotypic analyses. 

Phenotypic data were analyzed as described previously in Gill et al. (2021). 

Briefly, we estimated the best linear unbiased estimates (BLUEs) for all the traits within 

each environment as well as across the four environments. The BLUEs and variance 

components were estimated using META-R (Alvarado et al., 2020), which employs 

LME4 R-package (Bates et al., 2015) for linear mixed model analysis. The broad-sense 

heritability (H2) of a trait of interest in a combined environment analysis was assessed 

based on the variance estimates from the linear mixed model as follows: 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑔𝑒

2 / 𝑛𝐿𝑜𝑐 + 𝜎𝑒
2/(𝑛𝐿𝑜𝑐 x 𝑛𝑅𝑒𝑝)

 

 

where 𝜎𝑔
2 and 𝜎𝑒

2 , are the genotype and error variance components, 𝜎𝑔𝑒
2  is the G × E 

interaction variance component and nLoc is the number of environments and nRep refers 

to the replications within an environment, respectively. The estimated BLUEs were used 

to visualize the correlation matrices between the studied traits. The correlation and 

network plots were obtained using R packages ‘psych’ (William, 2013) and ‘qgraph’ 

(Epskamp et al., 2012). The summary statistics and pairwise comparisons were 

performed in the R (R Core Team 2014). 

3.3.3 Genotyping analysis 

The SD-Panel was genotyped using the GBS approach at the USDA Central Small Grain 

Genotyping Lab, Manhattan, KS. The lines were grown in small pots and fresh leaf 

tissues were collected from each line for DNA isolation using the 

hexadecyltrimethylammonium bromide (CTAB) method (Doyle & Doyle, 1987). 



41 
 

 

 

Genotyping-by-sequencing (GBS) libraries were prepared by double restriction digestion 

with HF-PstI and MspI enzymes (Poland et al., 2012) and sequenced using an Ion Proton 

sequencer (Thermo Fisher Scientific, Waltham, MA, USA). The GBS discovery pipeline 

v2.0 in TASSEL v5.0 (Trait Analysis by aSSociation, Evolution and Linkage) was used 

to call single-nucleotide polymorphisms (SNPs) (Bradbury et al., 2007). The GBS reads 

were aligned to the Chinese Spring reference genome RefSeq v2.0 (IWGSC, 2018) using 

the default settings of Burrows-Wheeler Aligner v0.6.1. The SNP data for the 314 lines 

was extracted from the pooled data of 1,124 lines and subjected to quality control in 

TASSEL v5.0. For quality control, SNPs with more than 25% missing data points and 

more than 15% heterozygosity, and the SNPs that were unmapped on any wheat 

chromosome were removed. The missing data points in the selected SNP set were 

imputed using BEAGLE v4.1 (beagle.27Jan18.7e1.jar; 

https://faculty.washington.edu/browning/beagle/b4_1.html) (Browning & Browning, 

2007). The imputed set was filtered to remove SNPs with minor allele frequency (MAF) 

of less than 0.05. The nomenclature of SNPs was based on the chromosome and the 

physical position on IWGSC RefSeq v2.0 (IWGSC, 2018; Zhu et al., 2021), such as 

S1A_1230000 indicates SNP on chromosome 1A mapped at 1.23 Mbp.   

3.3.4 Population structure and linkage disequilibrium 

To examine the population structure, principal component analysis (PCA) of the filtered 

and imputed genotypic data was conducted using Genomic Association and Prediction 

Integrated Tool (GAPIT) v3.0 (J. Wang & Zhang, 2021) in R (R Core Team 2014). We 

also assessed the population stratification using a Bayesian model-based clustering 

program, STRUCTURE v2.3.4 assuming an Admixture model (Pritchard et al., 2000). 
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We used ten subgroups (K =1-10) with ten independent runs for each subgroup using a 

burn-in period of 10,000 iterations followed by 10,000 Monte-Carlo iterations. An ad-hoc 

statistic (DeltaK) was used to infer the most likely number of subpopulations, which uses 

the rate of change in the log probability between runs using successive K-values (Evanno 

et al., 2005) using STRUCTURE HARVESTER (Earl & vonHoldt, 2012). Linkage 

disequilibrium (LD) analysis was performed for the whole genome as well as each sub-

genome by computing r2 values for all pairwise marker comparisons using a sliding 

window size of 50 markers in TASSEL v5.0. LD decay over genetic distance was 

estimated by fitting a non-linear model using the modified Hill and Weir method (Hill & 

Weir, 1988) with the r2 threshold set at 0.2 and r2 equals half decay distance. The LD 

decay distance for the whole genome and each sub-genomes was plotted using R (R Core 

Team 2014). 

3.3.5 Association mapping and candidate gene analysis 

We performed GWAS using the 8,030 high-quality SNPs and BLUEs for seven traits 

from four individual environments (E1, E2, E3, and E4) as well as BLUEs from the 

combined analysis across all environments (CEnv). Two methods, single-locus mixed 

linear model and multi-locus mixed model, were compared to select the appropriate 

algorithm for GWAS on each trait. The single-locus method used the mixed linear model 

(MLM) by considering the kinship and population structure to adjust for population 

stratification (K-PC model) (J. Yu et al., 2006), whereas the multi-locus mixed model 

used the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway 

(BLINK) method. The BLINK model was developed more recently and reported to 

perform better than the popular multi-locus FarmCPU approach (Huang et al., 2019; X. 
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Liu et al., 2016) because it overcomes the limitations of the FarmCPU and identifies 

more true positives and produces fewer false positives when compared to other GWAS 

methods (Huang et al., 2019). Both the models were implemented through Genomic 

Association and Prediction Integrated Tool (GAPIT) version 3.0 in the R environment (J. 

Wang & Zhang, 2021), and included the first two principal components to account for the 

population structure, based upon visual examination of the scree plot and DeltaK statistic 

from STRUCTURE analysis.  

The two approaches were compared based on quantile-quantile (QQ) plots and the 

power of the models to detect known loci. The BLINK model performed better than the 

MLM model for all trait-environment combinations and was used to report the GWAS 

results. The Bonferroni-corrected threshold of P < 0.1 was estimated as -log10(P) = 4.90 

to declare any association as significant, however, this threshold proves too stringent as it 

accounts for all the SNPs in the dataset rather than independent tests. Thus, most studies 

use an exploratory threshold or a corrected Bonferroni threshold based on independent 

tests (D. Kumar et al., 2021; Pang et al., 2020). In this study, we used an exploratory 

threshold of -log10(P) = 4.00 to declare any MTA as significant in individual 

environments. Nevertheless, only those MTAs were reported as stable MTAs, which 

surpassed this threshold and were detected for the same trait over two years/growing 

seasons (not in two locations in one season) or for more than one trait. The proportion of 

the phenotypic variance explained by stable MTAs was deduced using the 

‘random.model’ attribute in GAPIT v3.0. 
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The stable MTAs were subjected to a pairwise comparison of different alleles on 

the respective traits. For each stable MTA, mean trait values for two groups of alleles 

(favorable v/s unfavorable) were compared using a t-test and visualized using boxplots 

with R package ‘ggplot2’ (Wickham, 2016). The allelic frequencies of significant and 

stable MTAs in the panel were analyzed to compare the effect of stacking favorable 

alleles for SL and NSPS. The alleles increasing SL or NSPS were defined as favorable 

alleles. The whole panel was grouped by accessions carrying the favorable alleles for 

each trait. These groups were compared using an FDR-adjusted pairwise t-test to verify 

the additive effect of the favorable alleles on SL and NSPS. Furthermore, the highly 

significant MTAs for selected traits were used for haplotype analysis. The LD-based 

haplotypes for selected regions were generated and visualized using Haploview (Barrett 

et al., 2005). The accessions from the panel were grouped based on identified haplotypes 

and trait means for each haplotype were compared using analysis of variance (ANOVA) 

in the R package ‘agricolae’ (Mendiburu Felipe de, 2021). We also performed the 

candidate gene analysis for a highly significant and stable region on wheat chromosome 

7AS. The high-confidence genes within the haplotype block of respective MTA were 

extracted from the IWGSC reference genome and identified using IWGSC v2.1 RefSeq 

annotation (IWGSC, 2018; Zhu et al., 2021). Gene expression browser 

(http://www.wheat-expression.com/) was used to exclude the unlikely candidates and the 

remaining genes were annotated manually using Blast2GO (Conesa et al., 2005) for the 

identification of likely candidates.  
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3.3.6 Allelic frequencies of important QTNs in breeding material 

To investigate the allelic frequencies of several QTNs for SL, NSPS, and TKW in the 

breeding materials used in the U.S. Great Plains, an additional set of 810 winter wheat 

accessions including advanced breeding lines of SDSU and other breeding programs, and 

released cultivars from the U.S. Great Plains region were analyzed for the selected 

markers. We also included the 314 accessions of the SD-Panel for this analysis, making a 

large set of 1,124 accessions in total. Out of 1,124 accessions, 204 genotypes that were 

evaluated in advanced trials or released as cultivars were categorized as ‘elite’ genotypes. 

The GBS data for the set of 810 accessions was available (as described in earlier 

sections) and genotypic information for the required quantitative trait nucleotides (QTNs) 

was extracted for further analysis. Based on this data, the allelic frequencies for selected 

QTNs in the complete set (1,124 accessions) as well as in 204 ‘elite’ genotypes were 

estimated and visualized using the R package ‘ggplot2’ (Wickham, 2016). 

3.4 Results 

3.4.1 Variation for spike and kernel traits 

A significant variation (Table 3.1) was observed for all the spike and kernel traits (SL, 

NSPS, SD, KL, KW, KA, and TKW) and the phenotypic distribution of studied traits was 

found to be consistent in all four environments (Figure 3.1). Broad-sense heritability (H2) 

was high for most of the studied traits, ranging from 0.54 to 0.94 (Table 3.1) with the 

highest for SL and NSPS (0.94) and the lowest for spikelet density (H2 = 0.54). For the 

kernel traits, KL had much higher heritability (0.91) than KW (0.76).
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Figure 3.1 Phenotypic distribution of the investigated spike and kernel traits in a panel of 314 genotypes evaluated in four different 

environments (E1, E2, E3, and E4). SL, spike length; SPS, spikelet number per spike; SD, spikelet density; TKW, thousand kernel 

weight; KL, kernel length; KW, kernel width; KA, kernel area. The vertical black lines represent the mean trait value in respective 

environments.
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Table 3.1 Descriptive statistics for spike and kernel traits and broad-sense heritability 

estimates obtained using a combined analysis of four environments.  

Traita Unit(s) Mean Min Max LSD CV Heritability 

NSPS  Count 15.42 12.25 18.58 0.80 4.50 0.94 

SL  Centimeters (cm) 7.35 5.76 9.10 0.43 5.40 0.94 

SD  Ratio 2.07 1.26 2.56 0.36 12.57 0.54 

KW Millimeters (mm) 2.75 2.58 3.20 0.10 3.15 0.76 

KL Millimeters (mm) 6.04 5.47 6.89 0.18 2.57 0.91 

KA Square millimeter (mm2) 12.66 11.16 14.25 0.56 1.62 0.88 

TKW Grams (g) 31.54 25.86 36.56 2.28 3.45 0.84 

aNSPS, number of spikelets per spike; SL, spike length; SD, spikelet density; KW, kernel 

width; KL, kernel length; KA, kernel area; TKW, thousand kernel weight  

CV, coefficient of variation; LSD, least significant difference; Min, minimum; Max, 

maximum 

 

3.4.2 Relationship between traits 

Pearson’s correlation coefficients estimated using the phenotypic BLUEs obtained from 

the combined environment analysis were significant among several pairs of traits (Figure 

3.2a). The strongest positive correlation (r = 0.81) was observed between the TKW and 

KA, whereas the strongest negative correlation (r = - 0.31) was observed between SL and 

SD. TKW also showed a significant positive correlation with KW (r = 0.70) and KL 

(r = 0.47). Contrarily, TKW showed a negative correlation with spike traits including SD 

(r = - 0.11) and NSPS (r = - 0.10). Further, a correlation-based network analysis was 

performed to visualize a pattern of association among spike and kernel traits. The 

network analysis revealed a moderate to strong association within the kernel traits (Figure 

3.2b). In addition to a strong association between KL, KW, and KA, the kernel traits were 
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relatively more associated with TKW as compared to spike traits, with the highest 

positive association between KA and TKW. Among the spike traits, NSPS and SD were 

negatively associated with all the kernel traits (KL, KW, and KA) as well as TKW. To 

validate these relationships in individual environments, correlation coefficients were 

calculated among seven traits in individual environments. Overall, we observed a 

consistent relationship among different trait pairs in all individual environments (Figure 

3.3).   

 

Figure 3.3 Correlation coefficients among various spike and kernel traits in individual 

environments. SL, spike length; NSPS, number of spikelets per spike; SD, spikelet 

density; TKW, thousand kernel weight; KL, kernel length; KW, kernel width; KA, kernel 

area. 
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Figure 3.2 (a) Correlation coefficients among investigated spike and kernel traits calculated by using the best linear unbiased 

estimates (BLUEs) from combined analysis of four environments. (b) Correlation-based network analysis plot depicting the 

association between studied traits. SL, spike length; NSPS, number of spikelets per spike; SD, spikelet density; KW, kernel width; 

KL, kernel length; KA, kernel area; and TKW, thousand kernel weight. Statistically significant correlations are denoted by an asterisk 

(*) where * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 
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3.4.3 Genotypic analysis, population structure, and LD  

Among 8,030 high-quality GBS SNPs, the numbers of SNPs from the A and B sub-

genomes were more than double that from the D sub-genome, with the highest number in 

the B sub-genome (3,627; 45.2%) and the lowest in the D sub-genome (1,328; 16.5%) 

(Table 3.2). Chromosome 3B had the most SNP markers (649 SNPs), while chromosome 

4D had the lowest number of markers (34 SNPs). The average LD decay distance for the 

whole genome was approximately 3.6 Mbp (Figure 3.4a). The LD decay for the three 

sub-genomes A, B, and D revealed different patterns for individual genomes (Figures 

3.4a and 3.4b). For instance, sub-genomes A and B showed smaller LD decay distance 

than sub-genome D. Principal component analysis showed substantial admixture among 

genotypes, with the first two principal components explaining around only 6.5% and 

3.4% of the total variance, respectively (Figure 3.5). The DeltaK statistic from 

STRUCTURE analysis showed a single peak at K = 2, suggesting only two sub-groups in 

the panel (Figure 3.4c). 

 

 

 

 

 

 

 

 



51 
 

 

 

Table 3.2 The distribution of 8,030 SNPs across 21 wheat chromosomes in the panel of 

314 accessions. 

Sub-genome Chromosome Number of SNPs % SNPs 

A 1 458 
 

 
2 380 

 

 
3 454 

 

 
4 286 

 

 
5 410 

 

 
6 385 

 

 
7 702 

 

Subtotal A 
 

3,075 38.3 

B 1 554 
 

 
2 593 

 

 
3 649 

 

 
4 163 

 

 
5 509 

 

 
6 610 

 

 
7 549 

 

Subtotal B 
 

3,627 45.2 

D 1 191 
 

 
2 327 

 

 
3 257 

 

 
4 34 

 

 
5 153 

 

 
6 152 

 

 
7 214 

 

Subtotal D 
 

1,328 16.5 

Total (A, B, and D) 
 

8,030 100 



 
 

 

 5
2
 

 

Figure 3.4 Intra-chromosomal linkage disequilibrium (LD) in the SD-Panel for (a) for the whole genome, and (b) for A, B, and D sub-

genomes. (c) Evanno plot of Delta-K statistic from the STRUCTURE analysis. 
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Figure 3.5 Principal component analysis (PCA) of 314 wheat accessions using 8,030 

SNPs (A) PCA scatterplot showing the first two principal components, and (B) The scree 

plot was generated to illustrate the changes in each principal component. 

3.4.4 Marker trait associations 

GWAS using BLUEs for each trait obtained from analyses of phenotypic data from four 

individual environments (namely E1, E2, E3, E4) and for environments combined (CEnv) 

identified 69 significant MTAs for six traits except KA, based on the exploratory 

threshold of -log10(P) = 4.0 (Appendix 3.1). Out of the 69 MTAs, 49 unique SNPs were 

associated with the six different traits (Appendix 3.1, Figure 3.6). The identified MTAs 

were distributed on 18 wheat chromosomes, except chromosomes 4D, 6A, and 6D. 

Among the 69 MTAs, the highest number of MTAs were detected for NSPS (18), 

followed by SL (13), and SD had the lowest MTAs (6).  
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Figure 3.6 Manhattan plot summarizing the significant MTAs reported for (a) spike 

length, SL (b) number of spikelets per spike, NSPS and (c) thousand kernel weight, TKW 

in four individual environments (E1 – E4) and combined analysis (CEnv). 
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Table 3.3 Details of stable significant marker-trait associations (MTAs) identified by 

genome-wide association studies (GWAS) for spike and kernel traits. 

Traita SNPb Chr Posc Allele -log10(P-

value)d 

Enve Other 

trait(s)

f 

SL S1A_13099591 1A 13,099,591 T/G 4.36 - 5.14 E2, E4 - 

 S2B_16305395 2B 16,305,395 G/A 4.84 - 5.31 E4, CEnv NSPS 

 S5B_432612793 5B 432,612,793 C/G 5.24 - 6.86 E2, E4, CEnv NSPS 

 S6B_619882604 6B 619,882,604 C/G 4.66 - 5.45 E1, E4 - 

 S7A_676732614 7A 676,732,614 A/G 4.91 E2 NSPS 

NSPS S2B_16305395 2B 16,305,395 G/A 4.84 - 5.20 E2, E3 SL 

 S3A_647983369 3A 647,983,369 T/C 4.43 - 6.57 E2, E4 - 

 S5B_432612793 5B 432,612,793 C/G 4.39 E4 SL 

 S7A_132414615 7A 132,414,615 C/A 7.48 - 8.27 E2, E3, E4, 

CEnv 

- 

 S7A_676732614 7A 676,732,614 A/G 5.02 - 7.61 E2, E3, E4, 

CEnv 

SL 

TKW S5A_476847493g 5A 476,847,493 C/T 4.94 CEnv KL 
 

S7D_60662020 7D 60,662,020 T/G 6.42 - 

10.12 

E1, E2, E3, 

CEnv 

KW 

KL S1A_299864277 1A 299,864,277 A/G 4.56 - 5.54 E3, E4 - 

 S5A_476898590g 5A 476,898,590 A/C 4.54 E3 TKW 

 S7A_717859384 7A 717,859,384 A/G 5.39 - 7.35 E1, E4 - 

KW S4A_619197841 4A 619,197,841 A/G 7.29 - 7.50 E1, E3 - 
 

S7D_60662020 7D 60,662,020 T/G 5.92 E1 TKW 

aSL, spike length; NSPS, number of spikelets per spike; TKW, thousand kernel weight; KL, 

kernel length; KW, kernel width  
bSNP, single nucleotide polymorphism with the peak threshold value 
cPhysical position is based on IWGSC RefSeq v2.0 (IWGSC, 2018) 
dThe range for threshold depicts the minimum to maximum -log10(P) values obtained by GWAS 

in different environments 
eThe environment(s) where the MTA was declared significant based on described threshold 
f Pleiotropic effect of the respective MTA on other traits(s) if any 
g Different SNPs representing same genomic region/QTL for KL 
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Of the 69 MTAs, 17 were considered ‘stable’ MTAs based on their repeatability 

among environments, with five MTAs each for SL and NSPS, three for KL, and two each 

for KW and TKW (Table 3.3, Figure 3.7). Several MTAs were associated with more than 

one trait, and hence the 17 MTAs representing 12 putative QTLs, with five of them 

affecting multiple traits (Figure 3.7). Five stable MTAs identified for spike length (SL) 

were distributed on chromosomes 1A, 2B, 5B, 6B, and 7A (Table 3.3). The most 

significant MTA for SL (S5B_432612793; -log10(P) = 5.24 - 6.86) was detected on 

chromosome 5B, which explained around 14% of the phenotypic variation. For NSPS, 

five MTAs were located on chromosomes 2B, 3A, 5B, and 7A. Interestingly, two 

significant MTAs (S7A_132414615 and S7A_676732614) were observed for NSPS on 

chromosome 7A and both the MTAs were consistent in four individual GWAS analyses 

(E2, E3, E4, and CEnv). One of these MTAs (S7A_676732614) localized on the long arm 

of chromosome 7A at 676 Mbp, the region harboring a major locus governing NSPS, 

whereas another locus (S7A_132414615) was on the short arm of chromosome 7A at 132 

Mbp. The phenotypic variance explained by S7A_132414615 and S7A_676732614 was 

around 5.5% and 7.1%, respectively. Out of the ten MTAs identified for SL or NSPS, 

three MTAs (S2B_16305395, S5B_432612793, and S7A_676732614) exhibited a 

pleiotropic effect on SL and NSPS (Table 3.3), suggesting seven unique QTLs for these 

traits. 
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Figure 3.7 A Phenogram representing the distribution of stable MTAs identified on 

different wheat chromosomes. 

 

Seven stable MTAs were identified for three kernel traits, KL, KW, and TKW 

(Table 3.3). Three MTAs for KL were mapped on chromosomes 1A, 5A, and 7A. The 

MTA S7A_717859384 on chromosome 7A explained about 13% of the phenotypic 

variation for the KL. Two MTAs (S5A_476847493 and S7D_60662020) for TKW were 

observed on chromosomes 5A and 7D, and these MTAs had a pleiotropic effect on KL 

and KW, respectively (Table 3.3). The MTA for TKW on chromosome 7D 

(S7D_60662020) was highly significant in four environments explaining around 7.9% of 

the phenotypic variation on average.  
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3.4.5 Evaluation of allelic effects for major QTNs 

A pairwise comparison was made to assess the allelic effects of the highly significant 

QTNs on SL, NSPS, and TKW by comparing the trait means (using BLUEs from 

combined environments) between the favorable and unfavorable alleles using an FDR-

adjusted pairwise t-test. The results showed significant differences between the two 

allelic groups for all three traits (Table 3.4; Figures 3.8a, 3.8b, and 3.8c).  

Table 3.4 Pairwise comparison for the effect of two alleles of stable marker-trait 

associations (MTAs) identified for various traits. 

Traita SNPb Allelesc Mean for 

Allele 1 

Mean for 

Allele 2 

P-Valued 

SL S1A_13099591 G/T 7.73 7.30 0.0269 

S2B_16305395 A/G 6.85 7.39 0.0010 

S5B_432612793 C/G 7.28 7.92 1.94E-05 

S6B_619882604 C/G 7.39 6.92 0.0050 

NSPS 

 

S2B_16305395 A/G 14.38 15.50 0.0006 

S5B_432612793 C/G 15.30 16.34 0.0001 

S7A_132414615 A/C 16.07 15.23 8.14E-06 

S7A_676621121 A/G 15.53 14.71 4.51E-05 

KL S1A_299864277 A/G 6.03 6.22 0.0083 

S5A_476847493 C/T 6.07 5.99 0.0029 

S7A_717859384 A/G 6.03 6.16 0.0043 

KW S7D_60662020 G/T 2.74 2.76 0.0036 

TKW S5A_476847493 C/T 31.84 31.06 0.0034 

S7D_60662020 G/T 30.82 32.16 2.78E-08 

aSL, spike length; NSPS, number of spikelets per spike; KL, kernel length; KW, kernel width; 

TKW, thousand kernel weight 
bThe most significant SNP representing respective QTLs  
cAllele1/Allele2 notation. The favorable allele has been depicted using bold font 
dP-value from the t-test 
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Figure 3.8 Boxplots showing the effect of two alleles (favorable v/s unfavorable) of the stable MTAs (enlisted in Table 2) on the trait 

means for (a) number of spikelets per spike (NSPS), (b) spike length (SL), and (c) thousand kernel weight (TKW). Trait performance 

of the lines carrying different numbers of favorable alleles for (d) number of spikelets per spike (NSPS) and (e) spike length (SL), 

compared using an FDR adjusted Least Significance Difference (LSD) test. Statistically significant differences are denoted by an 

asterisk (*) where * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 
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Interestingly, two MTAs (S2B_16305395, S5B_432612793) with a pleiotropic 

effect on SL and NSPS showed a positive effect on both traits (Figures 3.8a and 3.8b). 

We further investigated the effect of accumulating favorable alleles on associated 

phenotypes. The panel of 314 lines was divided into groups based on the number of 

favorable alleles for SL and NSPS carried by each accession. Four accession groups 

(each group carrying one to four favorable alleles) were identified for NSPS, while only 

three groups were detected for SL carrying one to three favorable alleles (Figures 3.8d 

and 3.8e). NSPS were increased significantly with the increase in the numbers of 

favorable alleles (P = 4e-10), ranging from 14.6 spikelets/spike for the group with one 

favorable allele to 16.5 spikelets/spike for the group with four favorable alleles. 

Similarly, a significant increase in SL was observed with the accumulation of favorable 

alleles (P = 9.82e-09), indicating additive effects of these MTAs for these traits (Figures 

3.8d and 3.8e).  

3.4.6 Haplotype and candidate gene analysis for 7AS region associated with NSPS 

The NSPS QTL on chromosome 7A associated with SNP S7A_132414615 showed a high 

significance and stability across different environments, which appears to be a novel 

region associated with this trait. Thus, haplotype comparison and candidate gene analysis 

were performed for this genomic region. The LD block harboring S7A_132414615 was 

2.95 Mbp long and the region contained a total of 15 SNPs (Figure 3.9a). Based on the 

allelic distribution of these SNPs in the SD-Panel, we identified four major haplotypes 

(Hap1, Hap2, Hap3, and Hap4) with a frequency of 0.76, 0.15, 0.04, and 0.01, 

respectively (Figure 3.9b). As Hap4 had very low frequency, the remaining three 

haplotypes were compared for differences in trait means. The ANOVA revealed 
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significant differences (P = 1.28e-06) among three haplotypes for NSPS, where Hap1 had 

the lower NSPS compared to Hap2 and Hap3 (Figure 3.9c). 

Candidate gene analysis for the 7AS region by blastN searching of the marker 

sequences in the 2.95 Mbp LD block against IWGSC RefSeq v2.0 (IWGSC, 2018) 

identified 41 high confidence (HC) genes. Further analysis using the wheat expression 

browser (http://www.wheat-expression.com) removed 24 tissue-specifically expressed 

genes. The remaining 17 HC genes were annotated manually, and several of them 

showed putative functions of interest (Table 3.5), including the gene 

TraesCS7A03G0411400 which encodes a MADS-box transcription factor belonging to 

the SHORT VEGETATIVE PHASE family. Intriguingly, this gene was present in a 

region within two SNPs (S7A_132414615 and S7A_132532523) that were significantly 

associated with NSPS in three different environments and combined analysis, therefore 

could be a putative candidate gene underlying the QTL for NSPS. 

http://www.wheat-expression.com/
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Figure 3.9 (a) Local linkage disequilibrium (LD) block for the 2.9 Mbp region harboring QTL for NSPS on chromosome 7A 

represented by S7A_132414615. (b) Four allelic haplotypes identified in the SD-Panel based on 15 SNPs present in the LD block 

along with frequencies for each haplotype, and (c) Differences in NSPS among three major haplotypes using analysis of variance 

(ANOVA) and an FDR adjusted Least Significance Difference (LSD) test. The fourth haplotype was excluded from ANOVA due to 

very low frequency in the studies panel. 
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Table 3.5 List of selected candidate genes with putative functions identified in the genomic region harboring QTL for NSPS 

(represented by S7A_132414615) on chromosome 7A. 

Gene IDa Startb End Previous IDc Annotation 

TraesCS7A03G0408100  131,270,859   131,272,382  TraesCS7A02G173100 protein transport protein SEC31-like 

TraesCS7A03G0408200  131,278,636   131,282,169  TraesCS7A02G173200 zinc finger protein ZOP1 

TraesCS7A03G0408300  131,403,952   131,412,808  TraesCS7A02G173300 dipeptidyl peptidase family member 6-like 

TraesCS7A03G0408500  131,469,863   131,476,058  TraesCS7A02G173500 putative aminopeptidase C 

TraesCS7A03G0410400  132,037,610   132,038,925  TraesCS7A02G174500 12-oxophytodienoate reductase 1-like 

TraesCS7A03G0411100  132,372,770   132,387,955  TraesCS7A02G174900 kinesin-like protein KIN-14L 

TraesCS7A03G0411200  132,405,506   132,407,972  TraesCS7A02G175000 putative laccase-9 

TraesCS7A03G0411300  132,412,108   132,415,806  TraesCS7A02G175100 mediator of RNA polymerase II transcription subunit 6-like 

TraesCS7A03G0411400  132,457,430   132,464,217  TraesCS7A02G175200 MIKC-type MADS-box transcription factor VRT-A2 

TraesCS7A03G0411700  132,525,848   132,531,969  TraesCS7A02G175300 peptidyl-prolyl cis-trans isomerase CYP40-like 

TraesCS7A03G0411800  132,541,926   132,543,485  TraesCS7A02G175400 blue copper protein 1b-like 

TraesCS7A03G0411900  132,543,489   132,545,593  TraesCS7A02G175500 pentatricopeptide repeat-containing protein At5g18475-like 

TraesCS7A03G0412600  132,688,877   132,690,801  TraesCS7A02G176100 KAT8 regulatory NSL complex subunit 3 

TraesCS7A03G0413100  132,886,443   132,890,382  TraesCS7A02G176200 transport inhibitor response 1-like protein 

TraesCS7A03G0413300  133,233,374   133,237,039  TraesCS7A02G176300 GEM-like protein 1 

TraesCS7A03G0413900  133,839,827   133,841,015  TraesCS7A02G176800 blue copper protein-like 

TraesCS7A03G0414600  134,014,983   134,016,747  TraesCS7A02G177300 patatin-like protein 1 

aGene ID based on the IWGSC RefSeq Annotation v2.1 (IWGSC 2018; Zhu et al. 2021) 
bPhysical position of start and end points for respective genes are based on IWGSC RefSeq v2.0 (IWGSC 2018) 
cPrevious IDs for respective genes to the IDs used in IWGSC RefSeq Annotation v1.1 (IWGSC 2018) 
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3.4.7 Allelic frequencies of significant QTNs in the HWW breeding programs 

Allelic frequencies were extracted for 314 accessions of SD-Panel and another set of 810 

accessions, making a total of 1,124 accessions, (Appendix 3.2) to study the effect of 

selection on these QTNs in the HWW breeding programs. The favorable alleles for three 

QTNs, S2B_16305395 (SL and NSPS), S6B_619882604 (SL), and S7A_676732614 (SL 

and NSPS) had a high frequency (0.94, 0.91, and 0.88, respectively) in the breeding 

materials (Figure 3.10). S5B_432612793, a pleiotropic QTN for SL and NSPS on 

chromosome 5B, had the lowest frequency of the favorable allele (0.07) in the panel. 

Interestingly, two important QTNs (S7A_132414615 for NSPS) and (S7D_60662020 for 

TKW) showed low to moderate frequencies (28% and 46%, respectively) of the favorable 

alleles (Figure 3.10), suggesting a possibility of exploring these important genomic 

regions to improve wheat yield. Out of the 1,124 accessions, 204 accessions were 

categorized as ‘elite’ as they were either released cultivars or evaluated in regional 

nurseries. We assessed the frequencies of favorable alleles for these QTNs in ‘elite’ 

material and observed that the frequencies were close in the elite lines and the whole 

breeding materials (panel of 1,124 accessions), except for S7A_132414615 (Figure 3.10). 

For S7A_132414615, the frequency of favorable allele was slightly lower in the elite 

material compared to combined breeding material (Figure 3.10). 
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Figure 3.10 Barplots showing the allelic frequencies of stable MTAs identified for different traits in a panel of 1,124 accessions. The 

bars for ‘BM’ represent the distribution of favorable/unfavorable alleles in the complete set of breeding material (1,124 accessions) 

while the bars for ‘Elite’ represent the distribution in a subset of only elite accessions from the complete panel. A detailed account of 

the represented MTAs can be found in Table 2.  
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3.5 Discussion 

In the past few decades, continuous improvement in wheat yield throughout the globe has 

been achieved through improved genetics, breeding, agronomics, and mechanization. 

Nevertheless, various predictions have indicated that the current rate of increase in wheat 

improvement might not be sufficient to achieve the yields for future needs. Thus, 

incessant research efforts are required to improve the yield potential of wheat. Grain yield 

in wheat is a complex and highly polygenic trait that exhibits a low heritability, making it 

challenging to improve yield per se. Contrarily, grain yield is largely affected by several 

components including spike number per unit area, kernel number per spike (KNS), and 

TKW (J. Liu et al., 2018), which are significantly associated with several spike- and 

kernel-related traits with high heritability. Hence, a better understanding of the genetic 

architecture of these yield component traits is key to improving the yield potential of 

wheat.  

A wide variability for three spike traits (SL, NSPS, and SD) and four kernel traits 

(KL, KW, KA, and TKW) was observed in this study (Table 3.1). The heritability 

estimates were higher for SL (0.94), NSPS (0.94), and TKW (0.84) in this study than 

those reported in previous studies (F. Li et al., 2019; Würschum et al., 2018). Moderate 

(0.76 for KW) to high heritability (0.88 for KA and 0.91 for KL) was observed for kernel 

traits, in corroboration with previous studies (F. Li et al., 2019; Pang et al., 2020). 

Overall, high broad-sense heritability estimates across four environments for most of the 

traits suggest that it could be useful to employ these traits for a better understanding of 

the genetics underlying the yield potential of wheat. Further, very low coefficients of 
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variation for the kernel traits across four environments suggest the high repeatability of 

image-based phenotyping of seed traits. 

A significant pairwise correlation was observed among different pairs of the traits 

(Figure 3.2). Among the spike traits, NSPS was positively correlated to SL (r = 0.63) and 

SD (r = 0.36) whereas a significant negative correlation was observed between SL and 

SD (r = - 0.31), consistent with previous studies (J. Liu et al., 2018; Pang et al., 2020; 

Würschum et al., 2018). A consistent negative association between SL and SD indicates 

that longer spikes tend to be sparser. Strong positive correlations among KL, KW, and 

KA are in harmony with previous studies (F. Li et al., 2019; Pang et al., 2020). Further, 

negative correlation coefficients were observed between NSPS and KL, suggesting a 

negative impact of increased NSPS on kernel traits. Negative associations of SD with KL 

and KW indicate that increased SD may negatively impact kernel size in both 

dimensions. Finally, positive correlations of TKW with KL, KW, and KA and negative 

correlations of TKW with NSPS and SL agreed with previous reports (Pang et al., 2020; 

Würschum et al., 2018). Higher effect of KW (r = 0.70) than KL (r = 0.47) on TKW 

suggests that KW plays a more important role in determining grain weight. Overall, the 

correlations among different traits show the complex nature of yield component traits, 

which suggests that genetic progress in yield can be achieved by indirect selection of the 

component traits with consideration of relationships between individual traits to identify 

the genotypes that break negative correlations (Würschum et al., 2018). For instance, 

selecting for higher NSPS with a simultaneous increase in SL can lower the negative 

impact on SD.  
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In the current study, BLINK algorithm (Huang et al., 2019) was used to perform 

GWAS for all traits due to its higher statistical power than MLM ( a single-locus method) 

and FarmCPU (a popular multi-locus method). In BLINK, the bin method of FarmCPU is 

replaced by LD information, eliminating the requirement that causal genes are evenly 

distributed (Huang et al., 2019). This method showed better performance than other 

models using simulated data as well as in several empirical studies from different crop 

species (Habyarimana et al., 2020; Juliana et al., 2021; L. Liu et al., 2020). We used this 

method for GWAS on the trait data collected from individual environments as well as 

combined data from four environments. However, only those MTAs which surpassed the 

defined threshold and were identified in at least two environments from different years or 

were associated with more than one trait were reported as stable MTAs. These MTAs 

could be more reliable and useful in breeding as they are observed over diverse 

environments. 

A total of 10 stable MTAs were identified for SL and NSPS, with three showing 

pleiotropic effects on both traits (Table 3.3). Two MTAs for SL were present on 

chromosomes 1A (S1A_13099591) and 6B (S6B_619882604). A comparison of MTAs 

identified in the current study with those from previous studies found that QTL for SL 

has not been reported in the vicinity of S1A_13099591 in winter wheat although Li et al. 

(2019) reported a QTL for kernel morphology in the same region (10 – 12 Mbp). In our 

study, a week MTA (-log10(P) > 3.48) in this region (6 – 11 Mbp) for KL was identified 

in two individual environments suggesting the presence of a putative QTL with a 

pleiotropic effect in this region. S6B_619882604 for SL was co-localized with several 

QTLs from different studies including plant height at ~620 Mbp (Pang et al., 2020), 
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NSPS at ~607 Mbp (F. Li et al., 2019), and SL at ~630 Mbp (F. Li et al., 2018), which 

suggests that this may be an important genomic region for improving spike-related traits. 

Two stable MTAs (S3A_647983369 and S7A_132414615) were identified for 

NSPS on chromosomes 3A and 7A (Table 3.3). The MTA on chromosome 3A was 

present in a similar location to QTLs for NSPS and grain size (646 – 659 Mbp) in two 

previous studies (J. Hu et al., 2020; Pang et al., 2020) and these are more likely the same 

QTL.  The second stable MTA (S7A_132414615) on chromosome arm 7AS was highly 

significant in multiple environments and no QTLs for NSPS or SL have been reported in 

this region, therefore, it is likely a new QTL for NSPS. A strong QTL for NSPS has been 

recently reported at 47 Mbp region on 7AS (Kuzay et al., 2019) which is about 85 Mbp 

away from the region identified in the current study. 

Three MTAs including S2B_16305395, S5B_432612793, and S7A_676732614 

were identified with a pleiotropic effect on both SL and NSPS (Table 3.3, Figure 3.7). 

The S2B_16305395 was located at ~16 Mbp on chromosome arm 2BS, where numerous 

QTLs for SL or NSPS have been identified in several studies (Katkout et al., 2014; Zhai 

et al., 2016), suggesting this previously reported QTL is present in U.S. hard winter 

wheat breeding programs. On the other hand, S5B_432612793 on chromosome 5B has 

not been reported in previous studies, thus it may be a novel QTL for SL and NSPS.  The 

third MTA S7A_676732614 on chromosome arm 7AL was co-localized with WAPO-A1, 

a causal gene for NSPS (Kuzay et al., 2019, 2022; Muqaddasi et al., 2019), suggesting 

these are the same gene for NSPS. Identification of WAPO-A1 indicates the importance 

and widespread distribution of this gene in modern wheat cultivars including hard winter 

wheat breeding material from the U.S. Great Plains. 
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Seven stable MTAs were identified for KL, KW, and TKW (Table 3.3). 

S1A_299864277 for KL is likely associated with a novel QTL because no QTL has been 

identified previously for kernel morphology in this region. Another MTA, 

S7A_717859384 was 15 Mbp away from a previously identified QTL for the same trait 

(A. Kumar et al., 2016), suggesting they may be the same QTL. Two additional MTAs 

S5A_476847493 and S7D_60662020 for TKW showed a pleiotropic effect on KL and 

KW, respectively. S5A_476847493 associated with TKW and KL was in a similar region 

for a previously reported QTL for KL (G. Liu et al., 2014; R. X. Wang et al., 2009) and a 

QTL for SL and grain yield (Hu et al. 2020). The MTA represented by S7D_60662020 

was consistently identified for TKW in multiple environments and was co-localized with 

an important yield QTL identified in a linkage mapping study using hard winter wheat 

cultivars from the same region (Dhakal et al., 2021). Apart from this, S4A_ 619197841 

was located near a previously reported genomic region for KL (610-616 Mbp) (Mohler et 

al., 2016) and kernel weight (Q. Su et al., 2018), and they are more likely to be the same 

QTL. However, four MTAs (S1A_13099591, S5B_432612793, S7A_132414615, and 

S1A_299864277) for SL, NSPS, and KL on chromosomes 1A, 5B, and 7A are likely 

novel (Table2, Figure 3.7) because QTLs for these traits on these chromosome positions 

have not been documented to date. Overall, our study not only validated several 

previously identified QTLs for the spike and kernel traits but also identified putative 

novel genomic regions associated with those traits. The combined allele analysis showed 

the considerable additive effects of the identified QTLs on SL and NSPS (Figures 3.8d 

and 3.8e). Thus, the identified QTLs have the potential to be deployed in winter wheat 

breeding programs by genomic breeding.  
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The putative novel QTL on chromosome 7AS for NSPS was stable across 

multiple environments and showed a similar size of effect to WAPO-A1 for NSPS.  The 

LD analysis of this region delimited the QTL to a 2.9 Mbp region, and characterization of 

the 15 SNPs in this region revealed four haplotypes, with Hap1 being predominant in the 

SD-Panel (Figure 3.9). The Hap1 was found to be associated with lower NSPS as 

significantly higher NSPS were observed in Hap2 and Hap3 than in Hap1 (Figure 3.9c). 

Though only a few lines carried Hap2, many of the Hap2 lines were elite breeding lines 

or released cultivars. For example, ‘Arapahoe’, ‘Robidoux’, and ‘Thompson’ carry Hap2 

haplotype and have been important cultivars in the northern Great Plains, suggesting the 

importance of this QTL in the improvement of the wheat grain yield potential in this 

region. 

The candidate gene analysis for the 2.9 Mbp 7AS region identified 17 putative 

high confidence candidate genes underlying this QTL. Functional annotation of these 

genes found that TraesCS7A03G0411400, a recently identified VEGETATIVE TO 

REPRODUCTIVE TRANSITION 2 (VRT2) gene, encodes a MADS-box transcription 

factor belonging to the SHORT VEGETATIVE PHASE (SVP) family. Recently, VRT-A2 

has been reported as a causal gene underlying the well-known P1 locus for the specific 

long-glume trait in Polish wheat (Triticum polonicum) (Adamski et al., 2021; J. Liu et al., 

2021). The expression levels of VRT-A2 were correlated with glume length, grain length, 

and floral organ size (Adamski et al., 2021). One more study suggested VRT-A2 as a 

major gene for KL and KL-PW at the P1 locus in Polish wheat with pleiotropic effects on 

KL, glume length, and flowering time (Chai et al., 2021). Recently, Li et al. (2021) 

investigated the interactions between VRN1 and FUL2 genes from SQUAMOSA-clade 
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with VRT and SVP genes for their effects on the regulation of spike and spikelet 

development, where VRT and SVP mutants (vrt2 and svp1) significantly reduced the 

NSPS, with differences for VRT alleles being more predominant (K. Li et al., 2021). 

Another recent study reported that VRT2 is involved in increasing the number of 

rudimentary basal spikelets in wheat (Backhaus et al., 2022). Based on the findings from 

the above-discussed studies, VRT-A2 could be a likely candidate gene underlying the 7AS 

QTL (S7A_132414615) for NSPS.  

Further, we analyzed 1,124 accessions for the distribution of favorable alleles of 

the stable MTAs in the breeding materials from the SDSU breeding program and other 

hard winter wheat breeding programs in the Great Plains (Figure 3.10).  A high frequency 

(94%, 91%, and 88%) of the favorable alleles of the three genomic regions 

(S2B_16305395 for SL and NSPS, S6B_619882604 for SL, and S7A_676732614 for SL 

and NSPS), respectively, were observed indicating the importance of these regions to 

yield improvement of the U.S. hard winter wheat. As expected, WAPO-A1 

(S7A_676732614 region) seems to be an important gene in the HWW germplasm, 

because 37 released hard winter wheat cultivars used in this study all carry the favorable 

allele with only two exceptions (Appendix 3.2). The favorable allele of another QTN 

(S5B_432612793) for SL and NSPS was found in only 7% of the lines studied. 

Intriguingly, three released cultivars from different breeding programs (‘Emerson’, 

‘Flourish’, and ‘Oahe’) had favorable alleles for S5B_432612793.  For S7A_676732614, 

only ‘Oahe’ carries the positive allele among the three cultivars carrying the favorable 

allele of S5B_432612793 (Appendix 3.2). Thus, QTL on chromosome 5B could be 
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another useful QTL for improving NSPS in the breeding programs from the northern 

Great Plains.  

Favorable alleles for two additional QTNs, S7A_132414615 for NSPS and 

S7D_60662020 for TKW, showed low to moderate frequencies in the breeding materials.  

Among the 1,124 accessions, although only 46% of the germplasm carried the favorable 

allele of S7D_60662020, 24 released cultivars from the Great Plains carry the favorable 

allele (Appendix 3.2). Similarly, the allelic frequency of the favorable allele for 

S7A_132414615 was only 29% in the complete set of 1,124 lines and slightly lower in the 

elite subset (Figure 3.10). However, several cultivars including ‘Arapahoe’, ‘Art’, 

‘Robidoux’, ‘Smoky Hill’, and ‘Thompson’ carry the favorable allele for this QTN 

(Appendix 3.2). Thus, it will be interesting to study if these regions are associated with 

factors affecting adaptability and hinder the selection for certain loci. Overall, increasing 

the frequency of the favorable allele at the QTLs with low frequency through genomic-

assisted breeding may improve the yield potential of hard winter wheat. 

 In conclusion, a significant variation for various yield component traits 

exists in hard winter wheat breeding programs from the U.S. Great Plains. Among 17 

stable MTAs identified in this study, four represent putative novel genomic regions. 

Development of breeder-friendly Kompetitive allele-specific PCR (KASP) assays for 

these MTAs using the provided information (Appendix 3.3) will be useful to facilitate the 

deployment of these QTLs through marker-assisted selection in the early stages of the 

breeding process (Gill et al., 2019). Unlike a diversity panel, this study used breeding 

materials as the panels for GWAS and the results could be directly used to select the 

parental lines with more favorable alleles for making crosses by the breeders. Moreover, 
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the allelic frequencies of identified MTAs could be used to accumulate the useful QTLs 

at low frequency in the breeding materials. The QTL for NSPS on chromosome arm 7AS 

(S7A_132414615) identified in this study appears to be an important yield-related QTL 

for U.S. hard winter wheat and can be investigated further. Finally, the genomic 

information for MTAs reported in this study can be incorporated into the genomic 

prediction models to evaluate their potential for the selection of future winter wheat 

varieties with higher grain yield potential. 
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4.1 Abstract 

Genomic prediction (GP) is a promising approach for accelerating the genetic gain of 

complex traits in wheat breeding. However, increasing the prediction accuracy (PA) of 

GP models remains a challenge in the successful implementation of this approach. 

Multivariate approaches can leverage the simultaneous evaluation of several traits under 

multiple environments by exploring correlations to improve GS performance in breeding 

programs. Though, these models have been mostly evaluated using diverse panels of 

unrelated accessions. Here, we used multivariate GP models to predict multiple 

agronomic traits using 314 advanced and elite breeding lines of winter wheat evaluated at 

ten site-year environments. We evaluated a multi-trait (MT) model with two cross-

validation schemes representing different breeding scenarios (CV1, prediction of 

completely unphenotyped lines; and CV2, prediction of lines partially phenotyped for 

correlated traits). Moreover, extensive data from multi-environment trials (METs) was 

used to cross-validate the Bayesian multi-trait multi-environment (MTME) model that 

integrates the analysis of multiple-traits including GxE interaction. The MT-CV2 model 

outperformed all other models for predicting grain yield with significant improvement in 

PA over the single-trait (ST-CV1) model. The MTME model performed better for all 

traits, with average improvement over the ST-CV1 reaching up to 19%, 71%, 17%, 48%, 

and 51% for grain yield, grain protein content, test weight, plant height, and days to 

heading, respectively. Overall, our empirical analyses elucidate the potential of both MT-

CV2 and MTME models when advanced breeding lines are used as training population to 

predict related preliminary breeding lines. Further, we also evaluated the practical 

application of MTME model in our breeding program to reduce phenotyping cost by 
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using a sparse testing design. This showed that complementing METs with GP can 

substantially enhance resource efficiency. Our results demonstrate that the multivariate 

GS models hold great potential in implementing GS in breeding programs.  

4.2 Introduction 

Global wheat production needs to be increased by 60% to meet the demand of a projected 

population of 9 billion by 2050 (Fischer et al., 2014; Tester & Langridge, 2010). In the 

past few decades, wheat breeding successfully achieved a significant increase in grain 

yield owing to significantly improved genetic resources, implementation of modern 

agronomic practices, accurate experimental designs, and other improved technology 

packages (Tadesse et al., 2019), which translates into an annual increase of 1% in terms 

of genetic gain in grain yield. However, this increase is still far from the expected yearly 

growth of 1.7% to meet the future wheat demand (Oury et al., 2012; Tadesse et al., 2019). 

Thus, new and innovative breeding technologies are essential to achieve a two-fold 

increase in annual yield to avoid potential food crises in the coming decades.  

Traditional wheat breeding involves creating novel genetic variation by different 

methods, followed by extensive selection and advancement of generations. The selection 

of progeny with desirable agronomic and end-use quality traits is a resource-intensive 

process and could take up to 10-15 years to develop a new cultivar (Haile et al., 2020). 

Further, in traits with complex genetic architecture such as grain yield, the genotype-by-

environment interactions play a paramount role and impose additional challenges in 

selection. In recent years, the deployment of molecular markers for marker-assisted 

selection (MAS) has been used to increase selection accuracy and accelerate genetic gain 

(Randhawa et al., 2013). Though MAS has shown good potential in wheat breeding for 
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the deployment of QTLs with large effects, its application has been limited to improve 

complex traits governed by many QTLs with small effects (Heffner et al., 2009).  

Genomic selection (GS) is a recent approach that utilizes genome-wide marker 

data to select individuals superior for complex traits in the early breeding cycle to 

increase the genetic gain per unit of time (Heffner et al., 2009; Meuwissen et al., 2001). 

Unlike MAS, GS does not require prior identification of QTLs for the traits of interest; 

instead, it employs all available markers across the genome to predict individuals' 

breeding values (Bassi et al., 2015). Briefly, GS requires a training population (TP), 

which is genotyped with genome-wide markers and phenotyped for a given trait(s) of 

interest. GS involves calibration of a prediction model using TP to estimate marker 

effects and evaluate the predictive ability of the model through cross-validation. Finally, 

the developed model is used to calculate genome-estimated breeding values (GEBVs) 

and rank the lines from a breeding or testing population (BP) that consists of lines with 

only genotypic information. Thus, the early selection or culling of individuals based on 

the GEBVs permits greater genetic gain per breeding cycle, facilitating an increase in the 

efficacy of breeding programs and resulting in reduced varietal development costs. 

Several studies have reported successful implementation of GS in different crops 

resulting in an accelerated rate of genetic gain compared to traditional breeding (Bassi et 

al., 2015; Battenfield et al., 2016; Bhat et al., 2016). Moreover, GS has shown to be 

particularly useful in traits where phenotyping is cumbersome, such as quaality traits and 

complex resistance to diseases (Battenfield et al., 2016; Dong et al., 2018).  

The widespread availability of genome-wide markers attributed to low-cost 

genotyping technologies has facilitated the adaptability of GS in wheat breeding 
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programs (Bhat et al., 2016; J. Poland et al., 2012). Thus, there is growing interest in 

recent years to complement phenotyping selection and genomic selection in wheat 

breeding. GS has been evaluated for many complex traits in wheat, including but not 

limited to grain yield and yield-related traits (Guo et al., 2020; Haile et al., 2020; Juliana 

et al., 2020; Rutkoski et al., 2016; Ward et al., 2019), wheat resistance to rusts (Juliana et 

al., 2017; J. E. Rutkoski et al., 2014) and Fusarium head blight (Arruda et al., 2015; Dong 

et al., 2018; Rutkoski et al., 2012), and end-use quality traits (Battenfield et al., 2016; 

Ibba et al., 2020; Lado et al., 2018). Despite the successful evaluations of GS in wheat 

breeding programs, there is a continuous scope to improve the prediction accuracy/ability 

of GS models for quantitative traits to achieve higher genetic gains that will lead to the 

routine implementation of GS in various wheat breeding schemes. 

Predictive ability (PA) of the GS model refers to the correlation between 

estimated GEBVs and the actual phenotypic values of the individuals in the validation set 

and is generally calculated through a cross-validation approach. Along with TP size, the 

extent of linkage disequilibrium (LD), and the heritability of the traits, the PA also 

depends on the choice and optimization of the statistical models (de los Campos et al., 

2013; J. Guo et al., 2020; J. Rutkoski et al., 2016). In most studies, penalized genomic 

prediction models, including ridge-regression best linear unbiased prediction (rrBLUP) 

and genomic best linear unbiased prediction (GBLUP), have been standard GS 

approaches (Endelman, 2011; VanRaden et al., 2009). In addition, several Bayesian 

methods with different prior distributions and relying on Markov-Chain Monte Carlo 

(MCMC) for the estimation of parameters have proven useful for genomic prediction 
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(Habier et al., 2011; Xin Wang et al., 2018). However, most of these models implement a 

univariate linear mixed model and are helpful to predict one dependent variable at a time.  

In recent years, multi-trait (MT) genomic prediction models have been suggested 

to improve the PA for a primary trait when secondary traits correlated to the primary trait 

are available (Jia & Jannink, 2012). The use of genetically correlated traits is of particular 

importance when the primary trait is difficult or expensive to phenotype and has low 

heritability. Several empirical studies have successfully evaluated MT approaches for 

different agronomic traits in wheat breeding (Hayes et al., 2017; Lado et al., 2018; 

Rutkoski et al., 2012). Improvement of 70% in the PA for grain yield was observed by 

including canopy temperature (CT) and normalized difference vegetation index as 

secondary traits using the MT approach (Rutkoski et al., 2016; Sun et al., 2017). 

Similarly, Hayes et al., (2017) and Lado et al., (2018) observed an increase in PA using 

multivariate approaches (MT) over single trait (ST) models in end-use quality traits.  

For complex traits, genotype-by-environment interactions (G × E) necessitate the 

evaluation of breeding lines for multiple traits over multiple environments. Thus, the 

extension of the MT approaches to account for G × E interaction could improve the 

model for genomic prediction accuracy in breeding programs. Montesinos-López et al. 

(2016) proposed a Bayesian multi-trait and multi-environment (BMTME) model that 

integrates the analysis of multi-traits recorded over multi-environments and accounts for 

T x G x E interaction in a unified approach. Recently, an improved BMTME model has 

been introduced that estimates the variance-covariance structure among trait, genotype, 

and environment to predict multiple traits evaluated in various environments 

(Montesinos-López et al., 2019). Few studies using simulated and empirical data found 
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that the BMTME model outperforms ST models in agronomic and end-use quality traits 

in wheat (Guo et al., 2020; Ibba et al., 2020; Montesinos-López et al., 2016). Better 

performance of multivariate GS approaches stimulates us to evaluate these models in an 

actual breeding pipeline, where several traits are evaluated over the diverse 

environments. 

Although different GS approaches have been tested for predicting complex traits 

in wheat breeding programs, only a few studies have reported the application of GS in 

actual yield trials where lines are evaluated over several environments (Belamkar et al., 

2018). GS has great potential in the early selection or culling in preliminary trials using 

information from advanced trials and accelerate the genetic gain. Furthermore, GS can 

complement the phenotypic selection in practical scenarios such as loss of 

complete/partial trials due to weather extremes. In the present study, we focused on the 

use of advanced breeding lines evaluated over multiple environments as training sets to 

predict untested genotypes using univariate and multivariate GS approaches. The specific 

objectives of this study were to (1) estimate the PA of various agronomic traits in 

advanced breeding lines using univariate and multivariate GP models and different cross-

validation schemes, (2) assess the reliability of multivariate GP models in predicting 

complex traits over different years and locations, and (3) investigate the application of 

multi-trait multi-environment GP models in sparse testing of breeding lines.  

4.3 Materials and methods 

4.3.1 Plant Materials 

The experiment was conducted over two growing seasons (2018-19 and 2019-20) using a 

total of 314 winter wheat genotypes. The genotypes included breeding lines from 2018-
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19 and 2019-20 wheat advanced yield trials (AYT) and elite yield trials (EYT) from the 

South Dakota State University (SDSU) winter wheat breeding program and well-adapted 

check cultivars. The majority of genotypes were either F4:7 and F4:8 filial generation. Of 

the 314 genotypes, 157 were evaluated in the growing season of 2019 and another 157 in 

2020. Forty-four genotypes were shared between the two sets of wheat materials, leaving 

270 unique genotypes in the study. We removed seven genotypes from genomic 

prediction analyses attributing to low-quality genotypic data. Thus, 151 and 156 

genotypes were used for further analyses in the 2018-19 and 2019-20 growing seasons, 

respectively. 

4.3.2 Experimental Design and Trait Measurement 

The experimental plots were planted under no-till system at five locations in South 

Dakota State (Table 4.1) in both seasons. The experimental unit at each of the five 

locations consisted of 1.5m wide and 4m long plots with seven rows spaced 20 cm apart. 

A seeding rate for plots was 300 seeds m-2 at all the locations. The recommended 

agronomic practices were followed for proper growth and yield.  

Five agronomic traits measured in this study were grain yield (bushels acre-1), 

grain protein content (%), test weight (kg hL-1), plant height (cm), and days to heading 

(Julian days). Grain yield (YLD) was weighed after harvesting the plots at maturity using 

a plot combine (Zurn, Germany). Grain protein content (PROT), test weight (TW), and 

moisture content were measured using InfratecTM 1241 Grain Analyzer (FOSS North 

America, USA). Grain yield from plot and grain protein content were adjusted to 13% 

moisture content equivalence. Plant height (HT) was recorded as the distance from the 

soil surface to the tip of the fully emerged spike, excluding any awns if present. Days to 
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heading (HD) were recorded as the Julian days required for 50% of heads to emerge from 

the boot in each plot.  

 

Table 4.1 Information of the experimental sites used in the growing seasons of 2018-19 

and 2019-20. 

Site Coordinates 2018-19 2019-20 

Date 

seeded 

Date 

harvested 

Date 

seeded 

Date 

harvested 

Brookings (BRK) 44°18'35.3"N 

96°40'14.5"W 

9/16/2018 8/6/2019 9/20/2019 7/20/2020 

Dakota Lakes 

(DL) 

44°17'34.2"N 

99°59'40.6"W 

9/28/2018 7/23/2019 9/19/2019 7/17/2020 

Hayes (HYS) 44°22'24.8"N 

101°02'45.1"W 

9/14/2018 7/31/2019 9/17/2019 7/21/2020 

Onida (OND) 44°42'57.5"N 

100°23'04.2"W 

9/25/2018 8/1/2019 9/18/2019 7/28/2020 

Winner (WIN) 43°29'57.0"N 

99°51'58.4"W 

10/2/2018 7/25/2019 9/27/2019 7/15/2020 

 

4.3.3 Phenotypic Data Analysis 

The phenotypic data for all five agronomic traits were analyzed using best linear 

unbiased estimates (BLUEs) for individual environments. The model used for estimation 

of the genotypic BLUEs for individual environments was as follows: 
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yij = µ + Ri + Gj + eij 

 

where yij is the trait of interest, μ is the overall mean, Ri is the effect of the ith replicate, 

Gj is the effect of the jth genotype, and eij is the residual error effect associated with the ith 

replication and jth genotype. The replicates correspond to the complete blocks. 

For across environment estimation of BLUEs and best linear unbiased predictions 

(BLUPs), the statistical model was modified as below: 

 

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk 

 

where yijk is the trait of interest, μ is the overall mean, Ei is the effect of the ith 

environment, R j(i) is the effect of the jth replicate nested within the ith environment, Gk is 

the effect of the kth genotype, GEik is the effect of the genotype x environment (G x E) 

interaction, and eijk is the residual error effect associated with the ith replication and jth 

genotype. The environment corresponds to the individual locations and replicates 

correspond to the complete blocks. The genotype was assumed as a fixed effect, whereas 

environment and block nested within the environment were assumed as random effects. 

The broad-sense heritability (H2) of a trait of interest in an independent environment was 

assessed as follow: 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 +  𝜎𝑒

2/ 𝑛𝑅𝑒𝑝
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where 𝜎𝑔
2 and 𝜎𝑒

2 , are the genotype and error variance components, respectively. The 

BLUEs and variance components were estimated using META-R (Alvarado et al., 2020), 

which employs LME4 R-package (Bates et al., 2015) for linear mixed model analysis. 

The Pearson correlations among traits and environments were estimated based on the 

BLUEs and BLUPs using the ‘psych’ package in the R environment (R Core Team, 

2018). The genetic correlations between five traits were estimated for individual years 

using the ‘BMTME’ R package (Montesinos-López et al., 2019). 

4.3.4 SNP Genotyping 

Fresh leaf tissues were collected from each line for DNA isolation using the 

hexadecyltrimethylammonium bromide (CTAB) method (Doyle & Doyle, 1987). 

Genotyping-by-sequencing (GBS) was performed following the double digestion with 

HF-PstI and MspI restriction enzymes for library preparation (Poland et al., 2012). GBS 

libraries were sequenced using an Ion Proton sequencer (Thermo Fisher Scientific, 

Waltham, MA, USA) at the USDA Central Small Grain Genotyping Lab, Manhattan, KS, 

USA. TASSEL v5.0 was used to call single-nucleotide polymorphisms (SNPs) using the 

GBS v2.0 discovery pipeline (Bradbury et al., 2007). The reads were aligned to the 

Chinese Spring wheat genome reference RefSeq v1.1 (IWGSC, 2018) using the default 

settings of Burrows-Wheeler Aligner v0.6.1.  

For quality control, SNPs with more than 20% missing data points and minor 

allele frequency (MAF) of less than 0.05 were removed. Additionally, we obtained 

10,290 high-quality SNPs after removing the SNPs that were unmapped on any wheat 

chromosome. The missing data points in the selected SNP set were imputed using 

BEAGLE v4.1 (Browning & Browning, 2007). The additive relationship matrix for GP 
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models was estimated using the A.mat function in the ‘rrBLUP’ package in R (Endelman, 

2011). The Kinship (K)-based marker matrix was estimated using the Centered IBS 

(identity by state) method (Endelman & Jannink, 2012) implemented through Genomic 

Association and Prediction Integrated Tool (GAPIT) (Tang et al., 2016). 

 

4.3.5 Genomic Prediction Models and Cross-validation 

We evaluated one univariate and two multivariate GP models for predicting five 

agronomic traits. Different cross-validation schemes that mimic actual scenarios in a 

breeding program were used to estimate the PA of these traits and compare the 

performance of different models.   

Single-trait model 

The ridge regression (rrBLUP) model (Endelman, 2011) is the commonly used 

GS model in plant breeding. Like the genomic best linear unbiased prediction (GBLUP) 

model, rrBLUP assumes the normal distribution of marker effects with equal variance. 

We used rrBLUP as a baseline GS model for all the traits to evaluate the performance of 

multivariate models. The within-environment trait BLUEs were calculated and then used 

as input to perform rrBLUP within each environment. A linear mixed model was 

implemented using the following model: 

 

y = 1µ + Zu + ε 

 

where y is the vector (n × 1) of adjusted means (BLUEs) from n genotypes for a given 

trait; µ is the overall mean; Z is the design matrix (n × p) with known values of p markers 
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for n genotypes; u is a genotypic predictor with u ~ N (0, Gnxn𝜎𝑔
2), where G is positive 

semidefinite matrix, obtained from markers using ‘A.mat’ which is an additive relation 

matrix function and 𝜎𝑔
2 is the additive genetic variance; ε is the residual error with e ~ N 

(0, 𝜎𝑒
2). 

 

Multi-trait model 

A Bayesian Multivariate Gaussian model with an unstructured variance-

covariance matrix was used for the multi-trait model (MT)  (Lado et al., 2018). The MT 

model can be described as: 

 

y = 1µ + Zu + ε 

 

where y is the vector with a length of n × t (n genotypes and t traits); µ is the means 

vector; Z represents the incidence matrix of order [(n × t)p], ; u[(n x t)p] is genotypic 

predictor for all individuals and traits with u ~ N (0, ∑ ⊗ G). The matrix G represents the 

positive semidefinite matrix obtained from markers. The residuals of the MT model are 

represented by the vector ε, with ε ~ N (0, R ⊗ I). The matrices ∑ and R are the variance-

covariance matrices for depicting the genetic and residual effects for each individual in 

all traits, respectively, estimated by the Gibbs sampler with 5,000 burn-in and 25,000 

iterations in R package ‘MTM’ (de los Campos & Grüneberg, 2016). ∑ was estimated as 

an unstructured matrix and R as a diagonal matrix following Lado et. al., 2018. 

Bayesian multi-trait multi-environment model 
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The Bayesian multi-trait multi-environment (BMTME) model for genomic 

predictions (Montesinos-López et al., 2016, 2019) can be briefly described as: 

 

y = Xβ + Z1b1 + Z2b2 + ε 

 

where y is the response matrix of order j × t (where t is the number of traits and j = n × l, 

where n denotes the number of genotypes and l denotes number of environments); X is 

the design matrix for environmental effects of order n × l, whereas β is the matrix of beta 

coefficients of order l × t. Z1 is the incidence matrix of genotypes of order j × n, and b1 is 

the matrix of genotypic random effects of order n × t. Z2 is the incidence matrix of 

genotype × environment interaction of order j × ln and b2 is the random effect of 

genotype × environment × traits of order ln × t. We assume b1 is distributed under a 

matrix variate normal distribution as b1 ~ MN (0, G, ∑t), where G is of order n × n, 

obtained from SNP markers using ‘A.mat’ which is an additive relation matrix function in 

rrBLUP, and is the ∑t is the unstructured variance-covariance matrix of traits of order t × 

t. The b2 is assumed to be distributed under matrix variate normal distribution as b2 ~ MN 

(0, ∑E⊗G, ∑t), where ⊗ denotes Kronecker product and ∑E is the unstructured variance-

covariance matrix of l × l. The matrix ε is the matrix of residuals of order j × t distributed 

as ε ~ MN (0, lj, Re). A detailed account of this model and prior distributions can be found 

in Montesinos-López et al. (2019). Model simulations were carried out using the R 

package ‘BMTME’ (Montesinos-López et al., 2019) with 5,000 burn-in and 25,000 

iterations. 

Assessment of prediction ability 
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Predictive ability was estimated as Pearson correlation coefficient between 

GEBVs and observed phenotypes for the testing set of breeding lines. The PA for the 

rrBLUP model was estimated using a cross-validation scheme 1 (CV1), where the 

population was equally divided into five subpopulations, with four subpopulations (80%) 

as the training population (phenotyped and genotyped) to train the model and one 

subpopulation (20%) as the testing population (genotyped only) for prediction. The 

single-trait model with cross-validation scheme 1 (designated as ST-CV1 hereafter) was 

implemented in the ‘rrBLUP’ R package (Endelman, 2011) for one trait at a time. The 

cross-validation process was repeated 1,000 times, and each iteration included different 

lines in the training and testing sets. 

The prediction accuracy of the MT model was estimated using two cross-

validation schemes as described in Lado et al. (2018) (Figure 4.1). Similar to the ST-CV1 

scheme, the first cross-validation scheme (MT-CV1) used a random set of lines (80%) as 

a training set and the remaining lines (20%) as a testing set. The model was trained using 

genotypic and phenotypic data of these lines in the training set, and only genotypic data 

were used to predict the performance of the testing set lines based on the model built 

from the training set. This process of splitting the data into training and testing sets was 

repeated 50 times. Hence, a different set of lines were selected into the training and 

testing dataset for each iteration. The CV1 scheme mocks the breeding situation where a 

set of lines that are evaluated for given traits could be used to predict an unphenotyped 

set of lines that only have genotypic information. In the second cross-validation scheme 

(MT-CV2), the lines were randomly split into a training set (80%) and a testing set 

(20%). To train the model, MT-CV2 used genotypic data and phenotypic data of 
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secondary traits from both the training and testing sets, but the phenotypic data of the 

target trait (primary trait) only from the training set. The BMTME model used a cross-

validation scheme similar to MT-CV1 to estimate the model's PA by randomly splitting 

the lines into 80% training set and 20% testing set. Since the BMTME model employs a 

Gibbs sampler with multiple iterations and is computationally expensive, the cross-

validation scheme was repeated only 25 times. 

 

Figure 4.1 Illustration of different cross-validation schemes used to evaluate different 

genomic prediction models. 

4.3.6 Application of MTME genomic prediction in the breeding program 

As the MTME model showed promise in predicting different agronomic traits using a 

cross-validation approach, we evaluated the possible application of this method in our 

breeding program to reduce the phenotyping efforts and per-plot costs. As discussed 

earlier, we evaluate ~40 elite lines and ~110 advanced lines each year under multiple 

environments. The per-plot costs and phenotyping efforts could be reduced if we can 
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successfully determine genomic estimation of breeding values (GEBVs) of the advanced 

lines at fewer locations rather than testing these lines at all available locations. The 

MTME model can estimate the environmental effect based on elite lines evaluated at all 

locations and genotypic effect of advanced lines from fewer locations. To test this, we 

used MTME model in an allocation design where we used the phenotypic data of elite 

lines from five tested environments; however, we used phenotypic records of advanced 

lines from three environments only. We predicted five traits in the remaining two 

environments in both the growing seasons. The model was fitted using the R package 

‘BMTME’ (Montesinos-López et al., 2016, 2019) with 5,000 burn-in and 15,000 

iterations. The observed phenotypic records from the remaining two environments were 

used to assess the predictive accuracy of the design. 

4.4 Results 

4.4.1 Descriptive Statistics 

The phenotypic BLUEs for grain yield, grain protein content, test weight, plant height, 

and days to heading varied significantly among different environments (Table 4.2). HYS 

produced the highest mean grain yield in both years, whereas BRK and WIN produced 

the lowest grain yield in 2018-19 and 2019-20, respectively. Broad-sense heritability (H2) 

was estimated for all five agronomic traits in each environment (Table 4.2).  Differences 

in heritability estimates (0.63 to 0.96) describe the different genetic architecture of traits 

and contrasting environmental effects. Among the five traits evaluated in the study, test 

weight, plant height, and days to heading had moderate to high heritability values in most 

environments and over both years. Relatively, grain yield (0.64 – 0.84) and grain protein 

content (0.63 – 0.96) had comparatively lower heritability than other traits. Among the 
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five environments, heritability for all the traits was high in both experimental years in 

DL. For grain yield heritability, HYS (2019-20) had the highest (0.84), whereas BRK 

(2019-20) had the lowest (Table 4.2).   

Pearson correlations among agronomic traits were calculated using BLUEs by 

combining phenotypic data from all environments in each of the two growing seasons  

(Figure 4.2). As expected, significant negative correlation values (-0.28 and -0.54) were 

observed between grain yield and grain protein content in both years. Grain yield was 

also negatively correlated with days to heading (in both years) and plant height (2019-20) 

(Figure 4.2). Similarly, test weight was positively correlated with grain protein content 

and plant height in both growing seasons. Genetic correlations between five traits were 

estimated by fitting the BMTME model for individual growing seasons and presented in 

Tables 4.3 and 4.4. Similar to the phenotypic correlation estimates, we observed a higher 

genetic correlation in 2019-20 compared to 2018-19. 

 

Figure 4.2 Scatter plot matrix with phenotypic distributions and Pearson correlations 

between agronomic traits using best linear unbiased predictions (BLUPs) by combining 
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five experimental sites (BRK, DL, HYS, OND, and WIN) (A) from the growing season 

of 2018-19 and (B) from the growing season of 2019-20. YLD, grain yield; PROT, grain 

protein content; TW, test weight; HT, plant height; and HD, days to heading. 



 
 

 

Table 4.2. Trait descriptive statistics and broad-sense heritability estimate for individual site-year environments for lines grown over 

five locations (Env) in 2018-19 and 2019-20 growing seasons. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and 

WIN, Winner. 19, the growing season of 2019-19; and 20, the growing season of 2019-20. 

Year 

Enva 

Yield (bu ac-1) Protein content (%) Test weight (kg hL-1) Plant height (cm) Days to heading (j days) 

GMb CV H2 GM CV H2 GM CV H2 GM CV H2 GM CV H2 

2018-19 BRK 64.69 8.96 0.80 12.16 5.45 0.69 56.34 1.42 0.91 94.78 4.25 0.89 163.22 0.48 0.92 

DL 77.44 6.48 0.77 14.25 1.55 0.94 59.90 1.35 0.78 86.06 3.99 0.89 164.65 0.76 0.92 

HYS 81.98 6.46 0.73 12.04 3.66 0.72 59.48 1.06 0.92 99.12 3.18 0.90 163.84 0.70 0.74 

OND 71.21 7.27 0.76 13.25 3.30 0.85 60.77 1.27 0.82 89.91 3.62 0.91 168.73 0.65 0.87 

WIN 81.27 5.89 0.79 13.17 4.27 0.63 61.48 1.00 0.88 93.63 2.90 0.95 164.19 0.80 0.89 

2019-20 BRK 84.26 6.25 0.64 12.49 3.65 0.80 60.13 0.90 0.89 86.67 4.42 0.75 156.18 0.63 0.89 

DL 93.31 4.14 0.78 13.55 1.40 0.96 61.46 0.64 0.95 85.80 3.45 0.83 155.74 0.40 0.94 

HYS 96.64 4.66 0.84 13.87 2.02 0.90 60.03 1.30 0.91 102.8 3.95 0.82 159.36 0.51 0.85 

OND 92.21 4.40 0.81 11.99 4.97 0.59 61.11 1.08 0.87 92.53 3.59 0.85 157.09 0.63 0.87 

WIN 84.16 4.73 0.80 13.24 2.99 0.84 60.79 0.90 0.89 92.70 3.47 0.85 158.75 0.63 0.91 

a: Env, refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; OND, Onida; and WIN, Winner. 
b: GM, general mean for respective trait; CV, coefficient of variation; H2, broad sense heritability 

1
0
8
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Table 4.3. Genetic correlation between five agronomic traits evaluated in 2018-19 

estimated using the BMTME model. Evaluated traits include grain yield (YLD); grain 

protein content (PROT); test weight (TW); plant height (HT); and days to heading (HD). 

Trait YLD PROT TW HT HD 

YLD 1 -0.15 0.29 0.00 -0.13 

PROT -0.15 1 0.35 -0.01 0.09 

TW 0.29 0.35 1 -0.02 0.07 

HT 0.00 -0.01 -0.02 1 -0.01 

HD -0.13 0.09 0.07 -0.01 1 

 

Table 4.4. Genetic correlation between five agronomic traits evaluated in 2019-20 

estimated using the BMTME model. Evaluated traits include grain yield (YLD); grain 

protein content (PROT); test weight (TW); plant height (HT); and days to heading (HD). 

Trait YLD PROT TW HT HD 

YLD 1 -0.44 -0.14 -0.43 -0.18 

PROT -0.44 1 0.25 0.38 -0.14 

TW -0.14 0.25 1 0.39 -0.09 

HT -0.43 0.38 0.39 1 0.18 

HD -0.18 -0.14 -0.09 0.18 1 

 

We further estimated the Pearson correlations among the five environments in 

2018-19 and 2019-20 using data of all five agronomic traits (Figure 4.3). Significantly 

higher correlation values were observed for grain yield among five environments in 
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2019-20 than those in 2018-19. A similar trend was observed for grain protein content, 

test weight, and days to heading; however, correlations were comparable for plant height 

among the two growing seasons (Figure 4.3). Moreover, the principal component analysis 

(PCA) on grain yield validated strong correlations among testing locations, in particular 

between HYS and OND and between DL and WIN, in the 2019-20 growing season 

(Figure 4.4); however, only a weak correlation was observed between DL and BRK in the 

2018-19 growing season. The varying degrees of correlation among locations in different 

growing seasons provide an opportunity to compare the performance of MTME model in 

different growing environments.   

4.4.2 Genetic Relationship Among Lines 

The kinship-based marker relationship matrix was derived using 10,290 SNPs from 151 

lines evaluated in the 2018-19 growing season and 156 lines evaluated in the 2019-20 

growing season (Figure 4.5). The relationship matrix's positive values signify an 

increased likelihood of the allele from one line being detected in the other lines. The 

heatmaps of both the relationship matrices elucidate several small groups of closely 

related individuals over both the growing seasons. Most of the lines seems genetically 

related to several other lines. However, the heatmaps did not reveal any large genetically 

structured sub-populations in either set of 151 or 156 lines, respectively. Thus, the 

absence of a strong structure suggests no advantage of using stratified sampling for the 

cross-validation schemes to estimate the prediction accuracy. Furthermore, the density of 

heatmaps revealed a closer relationship among 156 lines evaluated in 2019-20 (Figure 

4.5A) than among 151 lines evaluated in 2018-19 (Figure 4.5B). 
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Figure 4.3 Correlation coefficients among five environments (Brookings, BRK; Dakota 

Lakes, DL; Hayes, HYS; Onida, OND; and Winner, WIN) for five traits evaluated in (A) 

2018-19 and (B) 2019-20. 
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Figure 4.4 Principal component analysis to determine the association of the observed 

grain yield among five different experimental sites in the 2018-19 growing season (A) 

and the 2019-20 growing season (B). BRK, Brookings; DL, Dakota Lakes; HYS, Hayes; 

OND, Onida; and WIN, Winner. 

 

Figure 4.5 Heatmap of the kinship matrix using 10,294 SNPs (A) for 151 lines evaluated 

in the growing season of 2018-19, and (B) for 156 lines evaluated in the growing season 

of 2019-20. 
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4.4.3 Genomic prediction using 2018-19 and 2019-20 datasets 

We compared the predicted performance of five traits among four different approaches 

using two data sets (2018-19 and 2019-20). The PA of various models for five traits is 

presented in Appendices 4.1 and 4.2. The ST-CV1 model was used as a baseline model to 

compare the performance of different multivariate models. In 2018-19, the mean PA 

using  ST-CV1 was 0.31, 0.35, 0.36, 0.35, and 0.36 for grain yield, grain protein content, 

test weight, plant height, and days to heading (Figure 4.6). Slightly better performance 

was observed in 2019-20 where ST-CV1 yielded an average PA of 0.36, 0.35, 0.54, 0.33, 

and 0.35 for these traits, respectively. The multi-trait model was tested using two 

prediction scenarios, MT-CV1 and MT-CV2. The MT-CV1 model did not show 

improvement in the PA over ST-CV1 for any of the five traits in either growing season 

(Appendices 4.1 and 4.2).  

Multi-trait model, MT-CV2, that includes phenotypic data for secondary 

agronomic traits from individuals to be predicted showed an overall higher prediction 

accuracy for grain yield in both growing seasons. In 2018-19, the PA for grain yield 

using the MT-CV2 model ranged from 0.15 to 0.56, outperforming the single-trait (ST-

CV1) model by an average of 26% (Appendices 4.1 and 4.2). Similarly, the mean PA for 

grain yield in 2019-20 using MT-CV2 was 0.59, showing 63% improvement over the ST-

CV1 model. The best PA for grain yield in 2019-20 was observed in HYS (0.71), 

followed by WIN (0.67) and DL (0.57). The improvement in PA over ST-CV1 reached 

up to 148% in WIN and 80% in BRK in 2019-20.  

Likewise, we observed marginal to moderate improvement in PA for other 

agronomic traits using MT-CV2 model in both the growing seasons (Figures 4.6 and 4.7; 
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Appendices 4.1 and 4.2). In 2018-19, the mean PA using MT-CV2 was 0.40, 0.42, 0.34, 

and 0.38 for grain protein content, test weight, plant height, and days to heading 

exhibiting an improvement of 14%, 19%, 36%, and 8%, respectively. In comparison, the 

PA using MT-CV2 was higher in 2019-20, with average PA of 0.54, 0.59, 0.43, and 0.38 

for grain protein content, test weight, plant height, and days to heading with an 

improvement of 54%, 9%, 30%, and 8%, respectively. Overall, the better performance of 

MT-CV2 model can be attributed to the higher genetic correlation between traits 

evaluated in 2019-20 over the 2018-19 season (Tables 4.3 and 4.4). 

The multi-trait multi-environment MTME model generalizes the multi-trait model 

to consider the correlation between environments on top the genetic correlation between 

traits. In 2018-19, the MTME model did not show significantly different PA over the ST-

CV1 model for grain yield (0.18 – 0.36) and grain protein content (0.13 – 0.46). The 

performance of MTME model for these two traits likely relates to the lower genetic trait-

correlations and lower correlation between environments for these traits in 2018-19 

(Figure 4.3). Analogous to grain yield and grain protein, MTME model resulted in higher 

prediction accuracy than the ST-CV1 model for the test weight, plant height, and days to 

heading in 2018-19 (Figure 4.6). For instance, the average PA using MTME for test 

weight, plant height, and days to heading was 0.42, 0.42, and 0.36, which translates to an 

improvement of 19%, 68%, and 12%, respectively. Furthermore, the PA using MTME 

model outstripped ST-CV1 model in all five environments for test weight (0.32 – 0.52) 

and plant height (0.41 – 0.54), while four environments for days to heading (Figure 4.6). 
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Figure 4.6 The predictive ability (PA) for five agronomic traits evaluated at five 

environments in the growing season of 2018-19. Boxplots compare the PA using a single-

trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait 

prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and a 

Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, 

grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and HD, 

days to heading. 
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Figure 4.7 The predictive ability (PA) for five agronomic traits evaluated at five 

environments in the growing season of 2019-20. Boxplots compare the PA using a single-

trait prediction model with one cross-validation scheme (ST-CV1), a multi-trait 

prediction model with two cross-validation schemes (MT-CV1 and MT-CV2), and a 

Bayesian multi-trait multi-environment prediction model (MTME). Traits include YLD, 

grain yield; PROT, grain protein content; TW, test weight; HT, plant height; and HD, 

days to heading. 
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In contrast 2018-19, we observed higher genetic correlations between five traits 

and higher environmental correlations in 2019-20 (Tables 4.3 and 4.4; Figure 4.3). As a 

result of high correlation values, we observed a consistent improvement in the PA of 

MTME in all the environments for all five traits (Figure 4.7). For grain yield, the MTME 

model also performed better than the single-trait model in most environments, except 

HYS. The average PA for grain yield using MTME model was 0.43, which was 22% 

better than the ST-CV1 model. Further, MTME model appeared to be superior for 

predicting grain protein content and test weight (Figure 4.7). For grain protein content, 

the MTME model performed best in all locations, with PA ranging from 0.52 – 0.67. We 

achieved an improvement in prediction accuracy of up to 100% (OND) using the MTME 

model (0.52) over the single-trait model (0.26) with 71% improvement on average. The 

PA for test weight was higher using the MTME model than other models, ranging from 

0.53 to 0.67, with a mean improvement of 17% over ST-CV1 model. Similarly, the 

average PA of the MTME model was the highest for plant height (0.49) and days to 

heading (0.53), which outstrips the ST-CV1 model by 48% and 51%, respectively. 

4.4.4 Application of MTME model in the breeding program 

Based on the cross-validation results, we evaluated the efficacy of MTME model in 

reducing phenotypic efforts in our breeding program. We used the MTME model in 

estimating GEBV of advanced lines in environments where only elite lines are evaluated. 

In the tested allocation design, we used phenotypic data of EYTs from five environments 

and AYTs from three environments to predict GEBVs of AYTs in remaining 

environments (Figure 4.8). Two environments, OND and WIN, were used as testing 

environments for predicting AYTs. In 2018-19, we predicted the performance of 96 AYT 
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lines, whereas 2019-20 comprised a prediction of 114 AYT lines in two environments. 

Table 4.5 elucidates the predictive ability for five agronomic traits using MTME in an 

independent prediction scenario. Moderate PA was observed for all the traits in both 

environments except for WIN in 2019-20. For OND, results showed better prediction 

accuracy than WIN for grain yield and test weight. Overall, the results suggest that the 

MTME model could be used by evaluating an overlapping set of lines over multiple 

environments and lines in early testing could be tested in fewer environments. 

 

Figure 4.8 Testing design for independent prediction of agronomic traits using the 

MTME model. Each year a set of elite and advanced lines is evaluated over multiple 

locations. The sparse testing design proposes phenotyping of elite lines in all 

environments (five in this scenario) and advanced lines in fewer environments (three in 

this scenario). For independent prediction, the dataset from 2018-19 comprised 55 elite 
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lines with checks and 96 advanced lines. The 2019-20 dataset comprised 42 elite lines 

with checks and 114 advanced lines. Five environments: BRK, Brookings; DL, Dakota 

Lakes; HYS, Hayes; OND, Onida; and WIN, Winner. 

 

Table 4.5 Predictive ability for independent prediction of advanced breeding lines 

(AYTs) in new environments using MTME model. Tables shows Pearson correlation 

between the observed and predictive values of agronomic traits in the AYTs at two 

different environments over two growing seasons. 

Year Enva Predictive abilityb 

Grain 

yield 

Grain 

protein 

Test 

weight 

Plant 

height 

Days to 

heading 

2018-

19 

OND 0.44 0.37 0.43 0.49 0.27 

 WIN 0.30 0.25 0.38 0.30 0.46 

2019-

20 

OND 0.36 0.27 0.44 0.22 0.41 

 WIN 0.15 0.32 0.25 0.18 0.24 

a: Env, refers to different trial location. BRK, Brookings; DL, Dakota Lakes; HYS, 

Hayes; OND, Onida; and WIN, Winner. 
b: The predictive ability for five agronomic traits using MTME model in independent 

prediction of advanced lines. Refer to Figure 4.8 for design of the prediction scheme. 
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4.5 Discussion 

In recent years, genomic prediction has been intensively evaluated in wheat breeding 

programs to select and advance lines for several traits of interest (Haile et al., 2020; 

Juliana et al., 2020; Rutkoski et al., 2016; Rutkoski et al., 2014). However, improving the 

prediction accuracy of complex traits remains a challenge for successfully implementing 

GS in breeding programs. The choice and optimization of the statistical models are 

crucial to improve the performance of GS. Most plant breeding programs currently rely 

on univariate genomic prediction models to target a single trait at a time. An advantage of 

multivariate prediction approaches over single-trait models that have been demonstrated 

in some recent studies is utilizing correlations between multiple traits and environments 

(Ibba et al., 2020; Jia & Jannink, 2012; Lado et al., 2018; Sun et al., 2017; Ward et al., 

2019). This study evaluated the application of multi-trait and multi-environment 

prediction models to predict five key traits of varying genetic architecture across diverse 

environments in a breeding program.   

The ridge-regression best linear unbiased prediction (rrBLUP) is one of the most 

often used single-trait prediction models. The rrBLUP has an advantage over Bayesian 

models in predicting complex traits governed by several loci with small effects (Lorenz et 

al., 2011). We used rrBLUP as a baseline model (ST-CV1) to compare with different 

multivariate approaches. The PA for agronomic traits using ST-CV1 was comparable 

with other studies using the same model (Charmet et al., 2014; He et al., 2016; Maulana 

et al., 2021; Pérez-Rodríguez et al., 2012). For instance, the PA for grain yield were 

between 0.13 – 0.43 for 2018-19 and 0.27 – 0.50 for 2019-20. The PA for test weight in 
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both growing seasons was higher than the PA for other traits due to the highly heritable 

nature of this trait (Figures 4.6 and 4.7). 

We evaluated the multi-trait model using two cross-validation schemes. The first 

scheme (MT-CV1) conducts multi-trait prediction for new un-phenotyped individuals, 

and the testing set has not been phenotyped for any of the traits. In the second cross-

validation scheme (MT-CV2), phenotype information for the predicted trait is missing, 

whereas phenotype information for the secondary traits is available in the testing set 

(Bhatta et al., 2020; Lado et al., 2018). In our study, prediction accuracy of the MT-CV1 

model was comparable to the ST-CV1 model for most of the trait-environment 

combinations in both growing seasons (Appendices 4.1 and 4.2). Several studies have 

reported marginal or no improvement with the MT-CV1, where information from 

secondary traits is limited to the training set (Arojju et al., 2020; Bhatta et al., 2020; 

Calus & Veerkamp, 2011; Lado et al., 2018; Schulthess et al., 2018). However, other 

studies reported an improvement in genomic prediction when the MT-CV1 model 

included secondary traits with moderate-high heritability (Guo et al., 2014; Jia & 

Jannink, 2012; Rutkoski et al., 2012).  Jia and Jannick (2012) suggested that the MT-CV1 

approach might be more useful when the primary trait has very low heritability (H2 < 

0.2). In the current study, similar performance of MT-CV1 and ST-CV1 models might be 

contributed by the moderate to high heritability estimated for most of the traits and the 

small size of the training population. 

In the current study, the MT-CV2 significantly improved the PA for all 

agronomic traits in all the environments, suggesting that inclusion of secondary traits in 

the training and testing sets improves the predictive performance for complex traits 
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(Appendices 4.1 and 4.2). Several studies have reported a similar improvement in the 

prediction using the MT-CV2 model for agronomic and end-use quality traits in wheat 

(Lado et al., 2018; Rutkoski et al., 2016; Sun et al., 2017), rice (X Wang et al., 2017), 

barley (Bhatta et al., 2020), sorghum (Fernandes et al., 2018), and ryegrass (Arojju et al., 

2020). The MT-CV2 model outperformed single-trait model for grain yield prediction in 

all environments. However, the extent of improvement using MT-CV2 model varied with 

traits and environments tested.). As the multi-trait models rely on the genetic correlation 

between traits (Calus & Veerkamp, 2011; Jia & Jannink, 2012), the differences in 

prediction improvements due to the MT-CV2 model can be attributed to the varying 

degrees of genetic correlations observed in different environments. We observed a high 

genetic correlation among traits in 2019-20 that resulted in higher prediction accuracy for 

different traits in this growing season (Figure 4.2; Tables 4.3 and 4.4). Our results suggest 

that MT-CV2 could likely be very useful if we can include data for plant height, days to 

heading, and other spectral indices recorded using a high throughput method for 

predicting grain yield. In addition, MT-CV2 approach could be really useful to predict 

hard to phenotype end-use quality traits by inclusion of already available agronomic data 

for the testing set. 

We also evaluated the BMTME model (referred to as MTME) that generalizes 

multi-trait model to consider the correlations among multiple environments. Recently, 

two studies reported an increase in the prediction accuracy of agronomic and end-use 

quality traits in wheat using the BMTME approach (Guo et al., 2020; Ibba et al., 2020). 

Due to different training process, we did not directly compare the MTME model with the 

MT-CV2 model but compared both against the ST-CV1 model. In 2018-19, the MTME 
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model proved to be better than the ST-CV1 and MT-CV1 models for all traits except 

yield and grain protein. However, the MTME model outperformed the ST-CV1 and MT-

CV1 models in 2019-20 for all traits in all the environments. The mean improvement in 

PA (across five environments) using MTME model over the ST-CV1 reached up to 19%, 

71%, 17%, 48%, and 51% for grain yield, grain protein content, test weight, plant height, 

and days to heading, respectively. The differences in performance of the MTME model in 

2019-20 compared to 2018-19 relate to the observed genetic correlations among traits as 

well as among environments in these growing season. As discussed earlier, the genetic 

correlations between traits and correlation among environments were higher in 2019-20 

as compared to 2018-19 were higher in 2019-20 as compared to 2018-19.Thus, a higher 

PA was observed for the traits showing high correlation among different environments. 

For example, five environments were highly correlated for grain protein content (0.56 -

0.76) compared to grain yield (0.23 – 0.65), explaining the difference in improvement of 

PA for these traits. Overall, our results suggest that the MTME could be successfully 

applied in a program if there is a moderate to high correlation for a trait between 

environments and overcome the effect of a small training population. 

Apart from the statistical model, heritability (H2) of a trait is another crucial factor 

for improving PA (Combs & Bernardo, 2013; Lorenz et al., 2011). Several studies have 

found that low heritability often results in lower prediction accuracy in single-trait 

genomic prediction (Heffner et al., 2009; Jannink et al., 2010). The application of multi-

trait models can improve the prediction accuracy of low-heritability traits by using the 

information from correlated traits with high heritability (Bhatta et al., 2020; Jia & 

Jannink, 2012; Jiang et al., 2015; Lado et al., 2018). The heritability estimates for most of 
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the traits in different environments were moderate to high in our study, with few 

exceptions. The use of MT-CV2 model significantly improved the predictive ability for 

grain protein content in WIN (0.15 to 0.29) and test weight in DL (0.23 to 0.39), where 

highly heritable and moderately correlated traits were included in the model. In contrast, 

the MT-CV2 model did not improve the PA for days to heading in HYS (0.23 to 0.25) as 

the primary trait was weakly correlated to the highly heritable secondary traits in the 

model. The results suggest that the inclusion of highly heritable but weakly correlated 

secondary traits in the multi-trait model may not improve the PA.  

Genomic prediction has been suggested to implement sparse testing in multi-

environment trials  and reduce the resources involved in phenotyping (Jarquin et al., 

2020). Based on the promising cross-validation results using MTME models, we 

evaluated the application of this model in our breeding program to reduce the 

phenotyping resources. At SDSU winter wheat breeding program, we evaluate a set of 

elites (EYTs) and advanced lines (AYTs) each year in multiple environments. However, 

our results suggest GP models developed using phenotypic data from all locations of 

EYTs and limited locations of AYTs can predict AYTs in remaining environments (Table 

2). This strategy could be useful as we evaluate ~40 EYTs and ~110 AYTs each year in 

replicated nurseries and testing the AYT plots at two/three locations instead of five can 

save substantial resources. Though we used this strategy to predict AYTs at two 

locations, further improved GP models assisted with environics data can help to predict 

more environments with better accuracy. Moreover, this strategy can be expanded to 

predict preliminary breeding lines at earlier testing stages.  
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In conclusion, our study evaluated the PA of univariate and multivariate GP 

models for five agronomic traits in advanced winter wheat breeding lines. We compared 

two different cross-validation strategies mocking practical breeding scenarios. Overall, 

our results supported the practical implementation of multivariate GS models in 

predicting complex traits. We found a significant advantage of using MT and MTME 

models when correlated traits and/or environments are included in the models. Our 

results suggest inclusion of correlated traits and environments in the prediction models 

can offset the limitation of a small training population, allowing the use of advanced 

breeding lines to predict preliminary breeding lines in the same year or following year.  It 

will be interesting to further study the inclusion of different combinations of secondary 

traits in the MT model to increase PA of the grain yield. We envision that evaluation of 

secondary traits like plant height, tillers/m2, spike length, and spike density that have high 

correlations with grain yield using unmanned aerial system (UAS) in winter wheat yield 

trials could help predict grain yield. This would permit trials on a large number of 

locations (e.g., > 10) but harvesting only a limited number (e.g., 2-3) of locations. 

Similarly, evaluating secondary traits (grain protein, flour protein, water absorption, 

gluten content, and quality) could facilitate predicting other complex traits such as end-

use quality. Finally, GS holds tremendous potential for improving the selection accuracy 

of complex traits in wheat breeding; however, we believe GEBVs will complement the 

phenotyping efforts rather than replacing them. Future breeding strategies should focus 

on increasing the efficiency of breeding programs by maximizing the genetic gain.   
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5.1 Abstract 

Improvement of end-use quality remains one of the most important goals in hard winter 

wheat (HWW) breeding. Nevertheless, evaluation of end-use quality traits is confined to 

later development generations owing to resource-intensive phenotyping. Genomic 

selection (GS) has shown promise in facilitating selection for end-use quality, however, 

lower prediction accuracy (PA) for complex traits remains a challenge in GS 

implementation. Multi-trait genomic prediction (MTGP) models can improve PA for 

complex traits by incorporating information on correlated secondary traits, but these 

models remain to be optimized in HWW. A set of advanced breeding lines from 2015-

2021 were genotyped with 8,725 SNPs and was employed to evaluate MTGP to predict 

various end-use quality traits that are otherwise impossible to phenotype in earlier 

generations. The MTGP model outperformed the ST model with up to a two-fold increase 

in PA. For instance, PA was improved from 0.38 to 0.75 for bake absorption and from 

0.32 to 0.52 for loaf volume. Further, we compared MTGP models by including different 

combinations of easy-to-score traits as covariates to predict end-use quality traits. 

Incorporation of simple traits such as flour protein (FLRPRO) and sedimentation weight 

value (FLRSDS) substantially improved the PA of MT models. Thus, rapid low-cost 

measurement of traits like FLRPRO and FLRSDS can facilitate the use of GP to predict 

Mixograph and baking traits in earlier generations and provide breeders an opportunity 

for selection on end-use quality traits by culling inferior lines to increase selection 

accuracy and genetic gains.  
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5.2 Introduction 

Hard winter wheat (Triticum aestivum L.; HWW) is the major wheat class grown in the 

US and accounts for about 46 percent of the total wheat production in the country (USDA 

NASS, 2021). This versatile class of wheat exhibits excellent milling and baking 

characteristics suitable for a variety of wheat foods, especially bread. Owing to high 

demand, most of the US-produced HWW is exported. For instance, 52 percent of the total 

HWW produced in 2020 was exported worldwide (USDA ERS, 2022). Throughout the 

wheat supply chain, end-use quality characteristics play an important role in the 

marketing and pricing of HWW (Roberts et al., 2022). Moreover, consumers’ preferences 

for healthier food necessitate an emphasis on the selection for desirable end-use quality 

traits. Thus, wheat breeders must improve end-use quality traits while simultaneously 

breeding for increased yield to meet projected demand.  

The high gluten strength and damaged starch in HWW makes it very suitable for 

baking, and yeast-leavened bread is a major end-use product. Bread quality is an 

important but complex trait that is defined by a combination of many parameters 

(Battenfield et al., 2016). Several important factors including kernel characteristics, the 

milled flour quality, protein and starch strength, and dough properties all play a crucial 

role in determining end-use quality of the final product. Hence, several assays are used to 

profile these factors and inform the selection for end-use quality. Nevertheless, most of 

the assays for evaluation of end-use products are expensive, time-consuming, and require 

large quantities of flour. Therefore, breeders mostly prioritize the selection for agronomic 

traits and disease resistance in earlier generations and for quality traits in advanced 

generations in most breeding programs (Battenfield et al., 2016). Previous studies have 
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shown that end-use quality traits are controlled by a few major genes and large number of 

quantitative trait loci with minor effects (Carter et al., 2012; Jernigan et al., 2018; 

Kiszonas & Morris, 2017; Sandhu et al., 2021). Though available major genes have been 

exploited in breeding programs, the majority of minor genes are highly influenced by the 

environment and remain uncharacterized (Jernigan et al., 2018; Kiszonas & Morris, 

2017). Thus, genomic selection (GS) is a potentially effective tool to assist in the 

selection for end-use quality traits in earlier generations. 

Genomic selection employs whole genome marker information to predict the 

breeding value of an individual (Heffner et al., 2009; Meuwissen et al., 2001).  Genomic 

selection has been shown to increase genetic gain per breeding cycle and improve 

selection accuracy for complex traits (Bassi et al., 2015; Juliana et al., 2019), particularly 

the traits that are expensive and difficult to phenotype and cannot be evaluated at earlier 

stages of the breeding program (Battenfield et al., 2016; Gill et al., 2021). In recent years, 

GS has been evaluated for the prediction of various complex traits in wheat including 

agronomic traits (Gill et al., 2021; Juliana et al., 2020; Rutkoski et al., 2016; Ward et al., 

2019), disease resistance (Juliana et al., 2017; Rutkoski et al., 2012; Zhang et al., 2022), 

and end-use quality (Battenfield et al., 2016; Ibba et al., 2020; Lado et al., 2018; Sandhu 

et al., 2021; Zhang‐Biehn et al., 2021). Most of these studies showed success in GS and 

suggested the possibility for use of GS to predict complex traits in wheat breeding. 

Although numerous studies have evaluated GS for end-use quality in wheat, most 

employed soft wheat germplasm with only one study using HWW from the US Great 

Plains (Zhang‐Biehn et al., 2021). Since the processing methods and end-use objectives 
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are quite different among different classes of wheat, it is necessary to further evaluate the 

usability of GS to predict various milling and baking traits in HWW. 

Most of the GS studies primarily used single-trait genomic prediction (STGP) 

models for predicting individual traits. In recent years, several simulated and empirical 

studies evaluated multi-trait (MT) genomic prediction models that can leverage genetic 

correlations among different traits to improve prediction accuracy (PA) for traits(s) of 

interest (Gaire et al., 2022; Gill et al., 2021; Jia & Jannink, 2012; Lado et al., 2018; 

Zhang et al., 2022). In most of these studies, MTGP models showed superior 

performance to the conventional STGP models. Few studies evaluated the MT models to 

evaluate GS for end-use quality traits in wheat (Hayes et al., 2017; Lado et al., 2018; 

Michel et al., 2018; Sandhu et al., 2022; Zhang‐Biehn et al., 2021).  However, only 

Zhang-Biehn et al. (2021) evaluated MTGP for HWW end-use quality traits and used few 

pre-baking assays as covariates to predict bread quality. Henceforth, further evaluation of 

MTGP to predict end-use quality traits in HWW may facilitate its implementation in 

HWW breeding programs. In addition, several grain quality assays such as hybrid sodium 

dodecyl sulfate-solvent retention capacity (SDS-SRC) and flour characteristics that 

require minimal resources and can be evaluated in early breeding generations show a 

high association with primary end-use quality traits (Seabourn et al., 2012). Evaluating 

the MTGP models that incorporate those traits to predict baking traits may help to predict 

end-use traits in the early stages of breeding programs.  

Depending on the availability of flour and other resources, different types of 

quality tests are used to assess the end-use traits and inform selections in different trials 

in breeding programs including South Dakota State University winter wheat breeding 
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program (Figure 5.1). In early generations, the grain and flour characteristics are assessed 

using a near-infrared reflectance (NIR) based analyzer followed by a rapid and small-

scale hybrid SDS-SRC test to predict breadmaking quality. Additional tests like 

Mixograph analysis for rheological properties, and Glutomatic analysis for gluten 

quantity and quality determination are also included in advanced generations and lastly, 

complete end-use profiling including baking tests are conducted in the final stages of the 

breeding programs (Figure 5.1).  As it is challenging to perform a Mixograph or actual 

baking tests in earlier stages, such as preliminary yield trials (PYT), MTGP could be 

employed to predict baking traits at these stages. The MTGP models can be informed 

with trait measurements from rapid assays in PYTs along with complete data from more 

advanced trials to predict end-use quality traits with higher selection accuracy. This 

necessitates the evaluation of different trait combinations from different assays that can 

help in improving the PA of baking traits using MTGP. In this study, we used a set of 

breeding lines from the advanced breeding trials of the SDSU winter wheat program that 

were evaluated for a variety of quality parameters including milling, processing, and 

baking characteristics, and genotyped using the genotyping-by-sequencing (GBS) 

approach. The objectives of this study were to (i) evaluate GS using single-trait and 

multi-trait models for different end-use traits and (ii) explore the usability of rapid, small-

scale, and NIRS-based traits as covariates to inform muti-trait GP models for baking 

quality. 
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Figure 5.1 Schematic representation of the South Dakota State University winter wheat 

breeding program. The early stage of yield trials is the Preliminary Yield Trial (PYT, 

~700 lines) advanced from Early Observation Trial (EOT) consisting of short rows 

derived from single selected plants. The PYT is followed by Advanced Yield Trial 

(AYT), Elite Yield Trial (EYT), and statewide Crop Performance Testing (CPT) nursery. 

The quality assessment starts from the PYTs, and various quality assays are used at 

different stages of development owing to the availability of flour and other resources. The 

different quality assays performed at various stages of the breeding program are 

elucidated in the figure. 
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5.3 Materials and Methods 

5.3.1 Plant materials and Phenotyping 

In this study, we used a set of lines evaluated in SDSU Elite Yield Trials (EYT) and Crop 

Performance Trials (CPT) nurseries from 2015 to 2021 that were profiled for a variety of 

end-use quality traits including baking tests. During this period, a total of 300 samples 

including checks were evaluated in these nurseries. The EYT and CPT nurseries were 

planted at multiple locations each year in a randomized complete block design with three 

and four replications, respectively, along with a set of check cultivars (‘Alice’, 

‘Expedition’, ‘Lyman’, ‘Overland’, ‘Redfield’ and ‘Winner’). Each year, lines from two 

locations were used for end-use quality profiling including baking. In addition to checks, 

a set of about 15 lines was shared among every two years as these lines were advanced 

from EYT to CPT nurseries. For instance, 18 lines were common between 2015 and 

2016, while 19 lines overlapped between 2016 and 2017. Overall, 176 unique lines were 

evaluated for milling and baking tests from 13 environments (site-year combination) 

from 2015 to 2021. A detailed description of the lines used in this study is provided in 

Table 1. Since the short harvest-to-planting interval of less than one month in SD, the 

quality traits of the lines are analyzed using grain harvested from preceding nursery 

seasons. 

A total of 14 processing and end-use quality traits were assessed using various 

assays. Owing to limited test capacity, grain from replications within locations was 

pooled into a single sample for milling and baking test profiles. Grain protein content 

(GRPROT) was determined using NIR analysis following AACC-approved methods 39-

10.01 (AACC International, 2011) and adjusted to a 13% moisture equivalent. Grain 
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samples were tempered to the required moisture (14%) and milled using a Brabender 

Quadrumat Senior laboratory mill at the USDA Hard Winter Wheat Quality Laboratory 

(HWWQL), in Manhattan, KS. The milled product was weighed to determine fraction 

yield on a total product, thus providing an estimation of flour yield (FLRYLD). Flour 

characteristics including protein (FLRPROT) and ash (FLRASH) were analyzed using 

NIR following AACC methods 39-11.01 and 08-21.01 (AACC International, 2011). 

These traits were further adjusted to 14% moisture content equivalence. Mixograph 

analysis was performed using Mixgraph (National Manufacturing Company, USA) based 

on AACC-approved method 54-40.02 (AACC International, 2011) to estimate the water 

absorption (MIXABS), optimum development time (MIXTIM), and tolerance to 

overmixing (MIXTOL). Glutomatic analysis was performed using a Perten Glutomatic 

2000 system following AACC 38-12.02 (AACC International, 2011) to estimate wet 

gluten content (WGC) and gluten index (GI) as described in AACC method. Further, we 

used WGC and GI to determine another index for wet gluten (WGI) using the formula 

(WGC*GI)/100. These analyses were performed using two replicates per sample. Sodium 

dodecyl sulfate (SDS) sedimentation was performed using the modified hybrid SDS-SRC 

method (Seabourn et al., 2012) at SDSU Crop Quality Lab using the residual flour 

samples for all the entries analyzed for baking. Briefly, the hybrid SDS-SRC method 

combines the sodium dodecyl sulfate (SDS) sedimentation method (AACC 56-70) 

(AACC International, 2000) and solvent retention capacity (SRC) method (AACC 56-11) 

(AACC International, 2000) to estimate flour sedimentation weight value (FLRSDS) in 

percent using the formula described in Seabourn et. al. (2012). To evaluate the end-use 

quality of yeast-leavened bread, a pan-bread was baked as pup loaves following the 
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AACC method 10-10.03 (AACC International, 2011). Optimum water absorption from 

baking tests was recorded as bake absorption (BAKEABS). Loaf volume (LVOL) in cc 

and specific loaf volume (SpLVOL) in cc/g were recorded after baking by using the 

rapeseed displacement method 10-05.01 (AACC International, 2011). Samples were 

baked in two replicates and means were used in the final analysis. 

Table 5.1. Description of trial years for the breeding lines used in the current study. 

Year of 

evaluation 

Nurseriesa Number of 

Entries 

Number of 

locations 

Entries 

overlapping 

with previous 

year 

2015 EYT, CPT 35 1 - 

2016 EYT, CPT 39 2 18 

2017 EYT, CPT 43 2 19 

2018 EYT, CPT 46 2 42 

2019 EYT, CPT 47 2 14 

2020 EYT, CPT 44 2 15 

2021 EYT, CPT 46 2 10 

 Total 300 13 - 

aNurseries: Elite Yield Trial, EYT; Crop Performance Trial, CPT. 

5.3.2 Genotyping 

The set of breeding lines used in this study were genotyped using the GBS approach at 

the USDA Central Small Grain Genotyping Lab, Manhattan, KS as described in Gill et 

al. (2022). Briefly, the DNA was isolated from each line using fresh leaf tissue at the 

three-leaf stage using a modified cetyl-trimethyl ammonium bromide (CTAB) method 

(Bai et al., 1999). The GBS libraries were prepared using double restriction digestion 

with HF-PstI and MspI restriction enzymes (Poland et al., 2012) and sequenced on an Ion 
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Proton sequencer (Thermo Fisher Scientific, Waltham, MA, USA) or NextSeq 500 

(Illumina Inc, USA). Single-nucleotide polymorphism (SNP) variants were called using 

the GBS v2.0 SNP discovery pipeline in TASSEL v5.0 (Bradbury et al., 2007) using the 

Chinese Spring wheat genome reference RefSeq v2.0 (IWGSC, 2018; Zhu et al., 2021). 

For quality control, SNPs were filtered to remove the markers with > 30% missing calls, 

< 5% minor allele frequency (MAF), and > 10% heterozygosity. The remaining SNPs 

were imputed using BEAGLE v4.1 (beagle.27Jan18.7e1.jar; 

https://faculty.washington.edu/browning/beagle/b4_1.html) (Browning & Browning, 

2007) for further analyses. 

5.3.3 Statistical analysis 

The best linear unbiased estimates (BLUE)s of each line for majority of the traits were 

estimated as described by Zhang‐Biehn et al (2021) using the following model:  

𝑌𝑖𝑗  =  µ + 𝐿𝑖𝑛𝑒 𝑖 +  𝐸𝑛𝑣 𝑗 + 𝑒𝑖𝑗 

where Yij is the phenotypic value of the ith line in the jth environment (site-year 

combination), μ is the overall mean, Linei is the fixed effect of the ith line, Envj was the 

random effect of the jth environment, and eij is the residual error for genotype the ith line 

in jth environment. The BLUEs for Glutomatic traits were estimated using the following 

model: 

𝑌𝑖𝑗𝑘  =  µ + 𝐿𝑖𝑛𝑒 𝑖 +  𝐸𝑛𝑣 𝑗 + 𝑅𝑒𝑝(𝐸𝑛𝑣)𝑗𝑘  + 𝑒𝑖𝑗𝑘 

where Yijk is the observed phenotypic, μ is the overall mean, Linei is the fixed effect of ith 

line, Envj was the random effect of jth environment, and Rep(Env)k is the random effect of 

kth replicate within the jth environment, and eij is the residual error term.  
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To extract variance components, best linear unbiased prediction (BLUP), and 

estimate broad-sense heritability, line effects were fitted as random in the above 

equations. Broad-sense heritability was estimated with Cullis’s method (Cullis et al., 

2006) using the following equation: 

𝐻𝐶𝑢𝑙𝑙𝑖𝑠
2 =   1 −

𝑣̅∆..
𝐵𝐿𝑈𝑃

2𝜎𝑔
2

 

where 𝑣̅∆..
𝐵𝐿𝑈𝑃 is the mean-variance of the difference of two BLUPs for the line effect and 

𝜎𝑔
2 is the genotypic variance. The above-described equations were implemented using 

ASReml-R Version 4.0 (Butler et al., 2018) in the R programming language (R Core 

Team, 2018). The summary statistics, pairwise comparisons, and principal component 

analysis (PCA) were performed in R using custom scripts or different packages including 

psych and ggplot2 (Wickham, 2016; William, 2013).  

5.3.4 Genomic prediction models 

5.3.4.1 Single-trait GP models 

Three different ST models were compared to select the best-performing model as a 

baseline for comparison with MTGP model. The first ST model was standard genomic 

best linear unbiased prediction (GBLUP) employing a genomic relationship (G) matrix 

implemented using the following equation: 

𝑦 =  µ +  𝑍𝑔 +  𝑒 

where y is the vector (n × 1) of BLUE values for each trait; µ is the overall mean, Z is the 

incidence matrix for genotype effects; g is a vector of normally distributed marker 

predictor effects with 𝑔 ~ 𝑁(0, G𝜎𝑔
2), where G is the genomic relationship matrix 
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(VanRaden, 2008) 𝜎𝑔
2 is the additive genetic variance; and e is the vector of residual 

errors with 𝑒 ~ 𝑁(0, 𝜎𝑒
2). 

In addition to GBLUP, we used two Bayesian models, Bayes A (BA) and Bayes B 

(BB), which assume different prior distributions for estimating marker effects and 

variances (Pérez & De Los Campos, 2014). The Bayes A model uses the scaled inverse 

chi-squared probability distribution for estimating marker variances. Bayes B is an 

extension of the Bayes A model (Meuwissen et al., 2001) and employs an inverse chi-

square distribution for marker effects and assumes that some markers have no effect. The 

Bayesian models were implemented as follows: 

𝑦𝑖 = µ + ∑ 𝑥𝑖𝑗

𝑗=𝑝

𝑗=1

𝛽𝑗 +  𝑒𝑖 

where y refers to BLUE values for each trait; µ is the overall mean; 𝑥𝑖𝑗 is the identity of 

the SNP marker, 𝛽𝑗 is the marker effect, and 𝑒𝑖 represents the residual error term. The ST 

models were implemented with 5000 burn-ins and 25000 iterations of the Gibbs sampler 

in R package BGLR ( https://github.com/gdlc/BGLR-R/blob/master/inst/md/GBLUP.md; 

Pérez & De Los Campos, 2014). 

5.3.4.2 Multi-trait GP models 

We used a Bayesian Multivariate Gaussian model to implement multivariate GBLUP for 

various traits. The MT model can be expressed using the following equation: 

[

𝑦1

⋮
𝑦𝑛

] =  [
𝐼
⋮
0

    
0
⋮

𝐼𝑛

] [

𝜇1

⋮
𝜇𝑛

] + [
𝑍
⋮
0

    
0
⋮

𝑍𝑛

] [

𝑔1

⋮
𝑔𝑛

] + [

𝑒1

⋮
𝑒𝑛

]   
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where y is the n-dimensional vector of BLUEs for n traits, I and Z are the design 

matrices, 𝜇𝑡,  t = 1 … n, refers to trait intercepts of n traits, [

𝑔1

⋮
𝑔𝑛

] are the predicted genetic 

values assumed to be distributed as ~ 𝑀𝑉𝑁(0, ∑ ⊗ 𝐺) with G representing the genomic 

relationship matrix obtained following VanRaden (2008) and ⊗ refers to the Kronecker 

product of two matrices. The residuals of the MT model were assumed to be distributed 

as [

𝑒1

⋮
𝑒𝑛

] ~ 𝑀𝑉𝑁(0, 𝑅 ⊗ I). The matrices ∑ and R are the variance-covariance matrices for 

the genetic and residual effects between traits, respectively, where ∑ was estimated as an 

unstructured variance-covariance matrix and R as a diagonal variance-covariance matrix. 

The MT GBLUP was implemented in the MTM package in R (de los Campos & 

Grüneberg, 2016) using the Gibbs sample algorithm with 5000 burn-ins and 25,000 

iterations. The abovementioned model was also used to estimate the genetic correlation 

between different traits. 

5.3.4.3 Combination of traits for multi-trait GP models 

The MTGP model was evaluated for prediction of Mixograph and Baking traits using 

various combinations of secondary traits. For the Mixograph predictions, three traits 

including MIXABS, MIXTIM, and MIXTOL were used as primary traits. Similarly, 

three baking traits, namely BAKEABS, LVOL, and SpLVOL, were used as primary 

traits. To predict these primary traits using the MT model, we evaluated the inclusion of 

different sets of secondary traits from different quality assays (Figure 5.2). For instance, 

we compared the incorporation of grain characteristics, flour characteristics, Glutomatic 

assay, flour SDS, or Mixograph traits as secondary traits to predict LVOL. Likewise, 
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these sets of secondary traits were used to assess the PA of the MT model for different 

primary traits. 

 

Figure 5.2 Schematic representation of different combinations of secondary traits used in 

the MT model to predict primary traits of interest. The diagram illustrates a scenario to 

predict LVOL (primary trait) using the MT model. Various combinations of secondary 

traits were selected based on different types of pre-baking assays, such as grain/flour 

characteristics or a flour sedimentation test, performed at various levels in a breeding 

program. The training set had phenotype data for LVOL while the validation set was not 

phenotyped for this trait. Contrarily, phenotype data or secondary trait(s) were available 

for both testing and validation sets. 
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5.3.5 Cross-validation of the GS models 

The PA of the GS models was deduced by calculating the correlation between genome-

estimated breeding values (GEBVs) and the actual phenotypic values of individuals in a 

validation set through a cross-validation approach. We used 100 random sets of five-fold 

CV approach to evaluate the PA of ST and MT models using two different validation 

schemes (CV1 and CV2). These validation schemes were designed based on real 

scenarios observed in plant breeding experiments. The CV1 was used to evaluate the ST 

models, where four of the five folds (80%) were used as the training set (had genotypic 

and phenotypic data) to train the model, and the remaining fold (20%) was used as the 

validation set (only genotypic data) for prediction. The MT model was evaluated using 

the CV2 scheme, in which lines were split into five folds of equal sizes, with four folds as 

the training set, and the remaining fold as the validation set. To train the model, we used 

genotypic data and the phenotypic data of the primary trait for the training set, along with 

phenotypic data of the secondary traits for training as well as the testing set with the 

objective of predicting the primary trait of the testing set. Figure 5.3 illustrates various 

validation schemes used for both models.  
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Figure 5.3 Illustration of the different cross-validation (CV) schemes used in this study. 

The Single trait (ST) Model was evaluated using a CV1 scheme where four sets were 

used to train the model and the remaining set was used as a testing/validation set. The 

training set had phenotypic data and genotypic data while the testing data had only 

genotypic data. The MT model was evaluated using CV2 scheme. In CV2, the training 

set had phenotyped for the primary trait (trait to be predicted) while the validation set was 

not phenotyped for this trait. Contrarily, phenotype data or secondary trait(s) was 

available for both testing and validation sets. 
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5.4 Results 

5.4.1 Phenotypic analyses and trait correlations 

The BLUEs for various end-use quality traits were obtained from multi-environment 

analysis to correct for the environmental effects. An approximate normal distribution of 

obtained BLUEs was observed for most of the traits (Figure 5.4). Broad-sense heritability 

estimates were moderate to high for different traits, ranging from 0.44 to 0.88 (Table 2), 

with low heritability for GRPROT (0.44) and FLRPROT (0.48) and high heritability for 

MIXTOL (0.84) and MIXTM (0.88).  

Significant phenotypic correlations were observed among different quality traits 

(Figure 5.4). A high positive correlation was observed between GRPROT and FLRPROT 

(Figure 5.4). FLRPROT also showed a high positive correlation with MIXABS (0.65; P ≤ 

0.001), BAKEABS (0.53; P ≤ 0.001), and LVOL (0.44; P ≤ 0.001). FLRSDS was the 

only trait that exhibited significant correlations with most of the quality traits including 

LVOL (0.34; P ≤ 0.001). BAKEABS showed a positive correlation with Mixograph traits 

including MIXABS (0.76; P ≤ 0.001), MIXTM (0.47; P ≤ 0.001), and MIXTOL (0.52; P 

≤ 0.001). Similarly, LVOL was positively correlated with MIXABS (0.40; P ≤ 0.001) and 

MIXTM (0.31; P ≤ 0.001).  
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Figure 5.4 Correlation coefficients among investigated traits using the best linear 

unbiased estimates (BLUEs) obtained from a multi-environment analysis. Statistically 

significant differences are denoted by an asterisk (*) where * P ≤ 0.05, ** P ≤ 0.01, and 

*** P ≤ 0.001. GRPROT, grain protein content; FLRPROT, flour protein content; 

FLRSDS, flour sedimentation weight; WGC, wet gluten content; GI, gluten index; 

MIXABS, mixing absorption, MIXTM, optimum mix time; MIXTOL, Mixograph mix 

tolerance; BAKEABS, bake absorption; LVOL, pup loaf volume. 
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Table 5.2  Descriptive statistics and Broad-sense heritability (H2) for different end-use 

quality traits. 

Traita Mean SD H2 

GRPROT 13.19 0.47 0.44 

FLRYLD  68.90 1.29 0.74 

FLRASH  0.42 0.03 0.77 

FLRPROT  11.93 0.49 0.48 

FLRSDS 325.88 43.89 0.70 

MIXABS 62.72 1.06 0.55 

MIXTM 4.24 1.15 0.88 

MIXTOL 3.61 1.27 0.84 

WGC 34.07 4.19 0.71 

GI 90.10 7.48 0.84 

WGI 30.74 2.80 0.72 

BAKEABS 62.66 1.12 0.50 

LVOL 892.71 44.21 0.59 

SpLVOL 5.95 0.30 0.59 

aGRPROT, grain protein content (%); FLRYLD, flour yield (% recovered); FLRASH, flour 

ash (%); FLRPROT, flour protein content (%); FLRSDS, Hybrid SDS-SRC sedimentation 

(weight value %); MIXABS, Mixograph mixing absorption (%), MIXTM, Mixograph mix 

time (min); MIXTOL, Mixograh mix tolerance score; WGC, wet gluten content; GI, gluten 

index; BAKEABS, bake absorption; LVOL, pup loaf volume (cm3); SpLVOL, loaf volume 

by weight (g/cm3). 

Principal component analysis (PCA) using all the trait data also showed similar 

groups of correlated traits (Figure 5.6). The first and second components from PCA 

explained 31.1% and 17.4% of the total phenotypic variance. PCA showed a strong 

association between GRPROT and FLRPROT. The baking traits were found to be 

positively associated with MIXABS while another group included MIXTM, MIXTOL, 

GI, and FLRSDS. Further, we estimated the genetic correlations among different traits 

using the Bayesian Multivariate Gaussian model (Figure 5.5).  Interestingly, FLRSDS 
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exhibited significant genetic correlations with different quality parameters (P ≤ 0.001) 

including GI (0.71), MIXTM (0.49), MIXTOL (0.56), BAKEABS (0.47), and LVOL 

(0.44). Apart from FLRSDS, FLRPROT showed significant genetic correlations with 

MIXABS (0.78), BAKEABS (0.62), and LVOL (0.43) (Figure 5.5). 

 

Figure 5.5 The genetic correlation among various end-use quality traits. GRPROT, grain 

protein content; FLRYLD, flour yield; FLRASH, flour ash content; FLRPROT, flour 

protein content; FLRSDS, flour sedimentation weight; WGC, wet gluten content; GI, 

gluten index; MIXABS, Mixograph mixing absorption (%), MXTIM, Mixograph mix 

time (min); MIXTOL, Mixograph mix tolerance score; BAKEABS, bake absorption; 

LVOL, pup loaf volume. 
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Figure 5.6 Principal component analysis for the studied end-use quality traits based on 

the phenotypic data. GRPROT, grain protein content; FLRYLD, flour yield; FLRASH, 

flour ash content; FLRPROT, flour protein content; FLRSDS, flour sedimentation weight 

value (%); WGC, wet gluten content; GI, gluten index; WGI, wet gluten index; 

MIXABS, Mixograph mixing absorption (%), MIXTM, Mixograph mix time (min); 

MIXTOL, Mixograph mix tolerance score; BAKEABS, bake absorption; LVOL, pup loaf 

volume; SpLVOL, loaf volume by weight, TW, test weight. 
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5.4.2 Genotypic analyses 

The breeding lines were genotyped using the GBS markers. A total of 8,725 high-quality 

single nucleotide polymorphisms (SNP) markers were obtained covering all 21 wheat 

chromosomes. PCA was performed using 8,725 SNPs to investigate relationships among 

studied lines (Figure 5.7). The first and second components explained 6.6% and 5.5% of 

the total variance, respectively. Overall, the absence of strong clustering based on PCA 

suggested close relationships between the lines used in this study indicating the suitability 

of this set of wheat breeding lines for evaluating GP models. 

 

Figure 5.7 Principal component analysis for studied lines based on 8,725 single 

nucleotide polymorphism (SNP) markers. 
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5.4.3 Predictive ability of single trait models 

We used STGP to assess the PA of end-use quality traits using CV1 scheme of cross-

validation (Figure 5.3). Three different single-trait models (GBLUP, BA, and BB) were 

compared to identify the baseline for evaluation of different MT models. Overall, we did 

not observe any difference in the performance of these three ST models as all yielded 

comparable PA for different traits (Figure 5.8). Thus, the univariate GBLUP model (ST-

GBLUP hereafter) was selected as a baseline to compare with the MT models. Prediction 

accuracies using ST-GBLUP varied from 0.23 to 0.54 for different end-use quality traits, 

with the lowest PA for MIXABS (0.26), and the highest PA for  MIXTOL (0.54) (Figure 

5.8). 

 

Figure 5.8 Prediction ability (PA) of different single-trait GP models for 14 end-use 

quality traits in cross-validation. GRPROT, grain protein content; FLRYLD, flour yield; 
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FLRASH, flour ash content; FLRPROT, flour protein content; FLRSDS, flour 

sedimentation weight value (%); WGC, wet gluten content; GI, gluten index; MIXABS, 

Mixograph mixing absorption (%), MIXTM, Mixograph mix time (min); MIXTOL, 

Mixograph mix tolerance score; BAKEABS, bake absorption; LVOL, pup loaf volume; 

SpLVOL, loaf volume by weight 

5.4.4 MT models to predict Mixograph and Glutomatic traits 

We evaluated the ability of MTGP models to predict a primary trait of interest by 

incorporating less resource-intensive secondary traits as covariates in the MTGP model 

and to determine the most effective combinations. The MT model was used to predict 

Mixograph traits, Glutomatic traits, and baking traits, which otherwise are time and 

resource intensive to phenotype. We evaluated the PA for three important Mixograph 

traits (MIXABS, MIXTM, and MIXTOL) using the MT model with secondary traits from 

rapid assays such as FLRPROT. A considerable improvement in PA for MIXABS was 

observed when MT model was used with different combinations of secondary traits 

(Figure 5.9; Appendix 5.1). The PA for MIXABS was 0.61 when FLRPROT was used as 

a secondary trait, and 0.64 when FLRPROT and FLRSDS were used together, which was 

higher than the PA for MIXABS using ST-GBLUP (0.26). For MIXTM, MT model using 

FLRSDS as covariate yielded higher PA (0.51) compared to the ST-GBLUP model 

(0.45). Similarly, the inclusion of FLRSDS in MT model yielded the highest PA (0.61) 

for MIXTOL. Overall, the inclusion of FLRPROT and FLRSDS as the secondary traits in 

MT model was effective to predict different Mixograph traits (Figure 5.9).  
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Figure 5.9 Prediction ability (PA) of the MTGP model for various Mixograph and 

Glutomatic traits using different combinations of secondary traits. The ST-GBLUP refers 

to the baseline single-trait GP model for the respective trait. GRPROT, grain protein 

content; FLRASH, flour ash content; FLRPROT, flour protein content; FLRSDS, flour 

sedimentation weight value (%); WGC, wet gluten content; GI, gluten index; MIXABS, 

Mixograph mixing absorption (%), MIXTM, Mixograph mix time (min); MIXTOL, 

Mixograh mix tolerance score. 

Further, we evaluated different combinations of secondary traits to identify the 

best set of covariates to predict Glutomatic traits. We used three combinations 

(FLRPROT, FLRSDS, or FLRPROT + FLRSDS) of secondary traits to predict WGC and 

GI using the MT model (Figure 5.9; Appendix 5.2). The PA for WGC was the highest 

(0.43) when FLRPROT + FLRSDS were used as the covariates in the MT model, which 

was a substantial improvement over the ST-GBLUP model (0.32). For GI, the inclusion 

of FLRPROT + FLRSDS in the MT model yielded a PA of 0.63 compared to 0.50 for the 

ST-GBLUP model (Figure 5.9). 
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5.4.5 MT models to predict baking traits 

BAKEABS and LVOL are important traits used by breeders to assess the end-use quality 

of yeast-leavened bread. Intending to predict the baking traits (BAKEABS, LVOL, and 

SpLVOL), we evaluated various combinations of secondary traits in the MT model 

(Figure 5.10; Appendix 5.3). These combinations were designed by selecting traits from 

different pre-baking assays performed at various scales. The ST-GBLUP showed a PA of 

0.36 for BAKEABS (Figure 5.8), whereas a high PA (0.75) was observed when the 

MIXABS was included in the MT model (Figure 5.10). Intriguingly, incorporation of two 

easy-to-score traits, FLRPROT and FLRSDS, showed a high PA of 0.61. However, the 

addition of Glutomatic traits did not show any substantial improvement (0.66) in PA for 

BAKEABS (Figure 5.10). 

The PA for LVOL ranged from 0.31 to 0.52 using different combinations of 

covariates in the MT genomic prediction model (Figure 5.10). The highest PA (0.52) for 

LVOL was obtained when both FLRPROT and FLRSDS were included in the MT model, 

which was considerably higher than the ST-GBLUP model (0.32) and also higher than 

the inclusion of only FLRPROT or FLRSDS in the MT model (Figure 5.10). Similar to 

BAKEABS, including Glutomatic traits in the MT model did not improve the PA for 

LVOL (Figure 5.10). For SpLVOL, the PA ranged from 0.30 to 0.45 (Figure 5.10) using 

the MT model with the highest PA from the inclusion of both FLRPROT and FLRSDS.   



 
  

 
 

 

Figure 5.10 Prediction ability of the MT genomic prediction model for various baking traits using different combinations of 

secondary traits. The ST-GBLUP refers to the baseline single-trait GP model for the respective trait. GRPROT, grain protein content; 

FLRASH, flour ash content; FLRPROT, flour protein content; FLRSDS, flour sedimentation weight value (%); WGC, wet gluten 

content; GI, gluten index; WGI, wet gluten index; MIXABS, Mixograph mixing absorption (%), MIXTM, Mixograph mix time (min); 

MIXTOL, Mixograph mix tolerance score; BAKEABS, bake absorption; LVOL, pup loaf volume; SpLVOL, loaf volume by weight. 

1
6
4
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5.5 Discussion 

In HWW breeding, end-use quality and processing traits are important factors in varietal 

development and determining acceptance by the industry. However, intensive selection for these 

traits is restricted to later generations in a breeding program because of expensive and time-

consuming phenotyping requirements. Moreover, a short turnaround time in winter wheat 

breeding program creates another challenge in performing quality evaluations. For instance, 

winter wheat breeders particularly from the northern Great Plains get only a month between the 

harvest and planting to make selections, seed preparation and turn-around the breeding cycle, 

which eliminates the possibility to conduct comprehensive quality analysis on the lines that are 

to be advanced. This limits the selection decisions of quality traits to be made based on some 

easily measured traits or preliminary data obtained from prior year nurseries. Genomic selection 

may provide an alternative strategy to estimate GEBVs for these traits to cull inferior lines in 

earlier generations (Battenfield et al., 2016; Belamkar et al., 2018; Gill et al., 2021; Ward et al., 

2019). However, conventional univariate genomic prediction models have shown a weak PA for 

complex end-use quality traits owing to their complex genetic architecture and low heritabilities 

(Battenfield et al., 2016; Sandhu et al., 2021; Zhang‐Biehn et al., 2021). In recent years, MTGP 

models have been proposed to improve the PA of complex traits when phenotypic data for 

secondary traits are available (Bhatta et al., 2020; Gaire et al., 2022; Jia & Jannink, 2012; Lado 

et al., 2018; Zhang et al., 2022). In this study, we used MTGP models and evaluated their PA for 

various end-use quality traits measured at different stages of the breeding program. Rather than 

limiting to just model comparison, we evaluated several combinations of traits that can be used 

as covariates in the MT models to predict complex traits like BAKEABS and LVOL. 

Furthermore, we restricted the choice of secondary traits for MT models to the traits which are 
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easy to score, inexpensive, and can be assessed on a large number of lines in early generations 

(Figure 5.1). This is the first study in HWW to evaluate MTGP models with these combinations 

of secondary traits for their use in forward prediction. 

We observed significant variation in the phenotypic distribution of all 14 end-use quality 

traits. Broad-sense heritability estimates for most of the traits were moderate, with a few traits 

exhibiting high heritability (Table 2), which corroborated most findings from previous studies 

(Battenfield et al., 2016; Michel et al., 2018; Sandhu et al., 2021; Sandhu et al., 2022; Zhang‐

Biehn et al., 2021). Traits including MIXTM, MIXTOL, GI, and FLRSDS had moderate to high 

heritability, suggesting that most variation associated with these traits can be attributed to genetic 

factors. As expected, all three baking traits showed low to moderate heritability (Table 2). This 

suggests the possibility of leveraging highly heritable traits in the MT models to predict traits 

like BAKEABS and LVOL. Further, we observed significant phenotypic and genetic correlations 

among a few pairs of traits (Figures 5.4 and 5.6). However, varying degrees of correlations 

among different quality tests suggested that no single test can completely substitute for actual 

testing of end-use quality traits (Battenfield et al., 2016; Souza et al., 2002). Intriguingly, a rapid 

flour sedimentation test (FLRSDS) was found to be significantly correlated with various 

Glutomatic, Mixograph, and baking traits. FLRSDS also exhibited the highest positive 

correlation with LVOL (Figure 5.5) in corroboration with Seabourn et. al. (2012). In contrast to 

Seabourn et. al. (2012), the correlation between FLRSDS and FLRPROT was not significant in 

our study which might be due to the fact that hybrid SDS-SRC assay was performed in year 3 

using residual grain stored in the lab. Since rapid tests for FLRSDS can be performed on a large 

scale along with NIR for FLRPROT, the genetic correlation of these traits with LVOL can be 

exploited in multi-trait GP models to select quality traits in early generations. 
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Three univariate genomic prediction models were evaluated for predicting various end-

use quality traits and selecting the best model for comparison with MT models. We did not 

observe significant differences in the performance among the univariate models GBLUP, BA, 

and BB. Previous studies have also reported similar outcomes while predicting complex traits 

(Sandhu, et al., 2021; Zhang et al., 2022). Further, most end-use quality traits had low to 

moderate PA using ST models (Figure 5.8). Interestingly, the Mixograph traits, MIXTM and 

MIXTOL, showed better PA using the ST model when compared with other traits likely because 

of their high broad-sense heritabilities.  

As discussed earlier, breeding programs rely on various types of quality assays during 

different stages of variety development to select lines with desirable end-use quality (Figure 5.1). 

Quality tests including Mixograph, Glutomatic analysis, and baking are resource- and cost-

intensive and can only be conducted in later generations of cultivar development due to limited 

grain quantity available in early generations (Figure 5.1). We used the MT genomic prediction 

model to assess the PA of various traits from these analyses using different combinations of 

secondary traits (FLRPROT and FLRSDS) that can be analyzed rapidly. Overall, the MT model 

outperformed the ST-GBLUP model for all the traits evaluated in this study (Figure 5.10). 

However, the extent of improvement using the MT model varied for different sets of traits. In 

corroboration with previous studies (Arojju et al., 2020; Gill et al., 2021; Rutkoski et al., 2016; 

Sun et al., 2017; Zhang et al., 2022), the improvement in PA using MT model relied on various 

factors including heritability of primary and secondary traits, different combinations of 

secondary traits, and genetic correlation between primary and secondary traits. 

The ST-GBLUP model yielded a PA of 0.26, 0.45, and 0.54 for MIXABS, MIXTM, and 

MIXTOL, respectively (Figure 5.8). We used the MT model using flour characteristics from NIR 
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analysis and FLRSDS from the hybrid SDS-SRC test as secondary traits to predict MIXABS, 

MIXTM, and MIXTOL. For MIXABS, the MT model yielded a PA of 0.64 when FLRPROT 

and FLRSDS were used as the covariates, resulting in more than a two-fold increase in PA over 

the ST-GBLUP model. We also observed an improvement in PA using MT model for MIXTIM 

and MIXTOL and the highest PA was observed while using FLRPROT and FLRSDS as 

secondary traits (Figure 5.9). The improvement in PA for MIXTOL was less than for MIXABS 

and MIXTIM when the MT model was used. This relates to the high heritability observed for 

MIXTOL, suggesting that the MT models are more useful for traits exhibiting low heritability 

and thus lower PA when using the ST models (Gill et al., 2021; Jia & Jannink, 2012; Rutkoski et 

al., 2016; Ward et al., 2019). Similar to Mixograph, the use of MTGP outperformed the ST-

GBLUP model in predicting GI and WGC with both FLRPROT and FLRSDS being the most 

effective combination of covariates.  

The primary end-use product made from HWW is yeast-leavened bread. BAKEABS and 

LVOL are important traits used by breeders to assess end-use quality potential. However, 

evaluation of these traits is restricted to later-generation elite materials only. Thus, GS can be a 

promising approach to inform selection based on these traits in early generations. The MT model 

outperformed ST-GBLUP for predicting all baking traits (Figure 5.10). For BAKEABS, we 

observed a PA of 0.75 when MIXABS was included in the MT model. Nevertheless, inclusion of 

both FLRPROT and FLRSDS yielded a PA of 0.61, which was higher than the ST-GBLUP 

model (0.36). The Mixograph analysis has been a regular practice for assessing dough properties 

of the mid to late-generation samples of the HWW breeding programs. The Mixograph 

procedure requires only a small quantity of flour (10g) and various mixograph parameters are 

used to infer the mixing properties of flour and estimate the breadmaking water absorption and 
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loaf volume without actual baking. However, recent discontinuation of the Mixograph 

instrument and unavailability of alternatives will limit the breeder's capacity to get this 

information in earlier stages. Our results suggest that MTGP can provide an opportunity to 

directly predict BAKEABS and other baking traits using information from simple assays like 

FLRPROT and FLRSDS, and potentially offset the gap created due to the discontinuation of the 

mixograph. Further, inclusion of both FLRPROT and FLRSDS resulted in higher PA for LVOL 

and SpLVOL compared to other combinations of secondary traits (Figure 5.10). Results from 

this study suggest that the MTGP models can effectively predict various end-use quality traits, 

including baking traits. Moreover, a combination of secondary traits (FLRPROT and FLRSDS) 

resulted in substantial improvement in PA for baking traits. A previous HWW study also 

reported that inclusion of GRPROT or FLRPROT improved the PA for Mixograph and baking 

traits while inclusion of other traits as covariates was not useful (Zhang‐Biehn et al., 2021). It is 

also noteworthy that the MT genomic prediction will be useful if it performs better than the 

routine indirect selection of primary trait(s) using highly correlated secondary traits. Except for 

Mixograph traits, we observed that the predictive abilities using MT models were higher than the 

phenotypic correlations between primary and secondary trait(s), especially for important baking 

traits (LVOL and BAKEABS). Additionally, it is expected that further optimization of training 

populations and increased data points will further improve the PA of MT models. Overall, our 

results suggest that the MT genomic prediction for end-use quality traits such as LVOL can be a 

part of the genomic prediction pipeline of the HWW breeding program along with other 

agronomic traits.  

In conclusion, wheat breeding programs can routinely perform rapid assays such as NIR-

based characterization of flour or sedimentation tests in an earlier generation of a breeding 
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program. These assays are cost-effective and do not require intensive resources. For instance, the 

hybrid SDS-SRC for FLRSDS can be performed using 1g of whole wheat flour and 25-30 

samples can be evaluated per hour (Seabourn et al., 2012). Similarly, flour characteristics such as 

FLRPROT can be quickly assayed using NIR-based spectroscopy and some newer NIR also 

provide an estimation of absorption and gluten index which can be further evaluated. Further, the 

availability of low-cost genotyping platforms has made it possible for breeding programs to 

sequence a large number of lines in earlier generations. Thus, the availability of these resources 

can help to implement MTGS for predicting traits like LVOL that are difficult to phenotype and 

exhibit low heritability. The MTGP models can be employed by combining FLRPROT and 

FLRSDS evaluated from earlier generations with a complete quality profile (including baking) 

from the advanced generations to predict baking traits in earlier generations (PYT or EOT). This 

will not only save considerable time and resources but will provide an opportunity for breeders 

to eliminate inferior material in earlier generations. Therefore, MTGS holds great promise in 

improving the selection efficiency of processing and end-use quality traits in hard winter wheat. 
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APPENDICES 

 

Appendix 3.1 Details of all significant marker-trait associations (MTAs) identified by genome-

wide association studies (GWAS) for spike and kernel traits in individual environments (E1, E2, 

E3, and E4) and combined analysis (CEnv). 

 

Traita Envb SNP Chr Positionc P.value MAF FDR-adj (P) -log10(P) 

KL E3 S1A_299864277 1A 299,864,277 2.90E-06 0.07 0.012 5.53 

 E4 S1A_299864277 1A 299,864,277 2.80E-05 0.07 0.112 4.56 

 E1 S2A_17292018 2A 17,292,018 8.30E-07 0.38 0.003 6.08 

 E3 S2B_660658322 2B 660,658,322 4.40E-05 0.18 0.089 4.35 

 E1 S5A_413179144 5A 413,179,144 5.30E-05 0.48 0.107 4.27 

 E1 S5A_413179162 5A 413,179,162 5.30E-05 0.48 0.107 4.27 

 E3 S5A_455648025 5A 455,648,025 6.90E-07 0.15 0.006 6.16 

 E3 S5A_476898590 5A 476,898,590 2.90E-05 0.41 0.079 4.53 

 E1 S7A_717859384 7A 717,859,384 4.50E-08 0.13 4.00E-04 7.35 

  E4 S7A_717859384 7A 717,859,384 4.10E-06 0.13 0.033 5.39 

KW E1 S1A_375151331 1A 375,151,331 3.10E-07 0.28 0.001 6.51 
 

E1 S2A_41083010 2A 41,083,010 6.20E-06 0.42 0.01 5.21 

 E1 S2B_194454645 2B 194,454,645 6.50E-06 0.11 0.01 5.19 

 E1 S2B_64463130 2B 64,463,130 1.20E-05 0.14 0.014 4.92 

 E2 S2D_49291847 2D 49,291,847 1.90E-07 0.06 0.002 6.71 

 E2 S3B_53438124 3B 53,438,124 4.00E-06 0.08 0.011 5.4 

 E2 S4A_289871521 4A 289,871,521 2.40E-05 0.13 0.047 4.63 

 E3 S4A_619197841 4A 619,197,841 3.20E-08 0.31 3.00E-04 7.5 

 E1 S4A_625521699 4A 625,521,699 5.20E-08 0.49 4.00E-04 7.29 

 E1 S5D_554548588 5D 554,548,588 9.00E-06 0.3 0.012 5.04 

 E2 S7B_659759723 7B 659,759,723 1.40E-06 0.07 0.006 5.85 

  E1 S7D_60662020 7D 60,662,020 1.20E-06 0.47 0.003 5.91 

SD E1 S1A_11441837 1A 11,441,837 1.50E-05 0.17 0.121 4.82 

 E2 S1B_571072942 1B 571,072,942 5.20E-07 0.08 0.002 6.28 

 E4 S1B_661583505 1B 661,583,505 1.90E-07 0.32 0.002 6.72 
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 E2 S3B_49841949 3B 49,841,949 7.20E-09 0.06 6.00E-05 8.14 

 E3 S3D_71951480 3D 71,951,480 3.00E-07 0.09 0.002 6.52 

  E4 S7D_51431227 7D 51,431,227 2.20E-06 0.07 0.009 5.66 

SL E2 S1A_13099591 1A 13,099,591 7.20E-06 0.08 0.029 5.14 

 E4 S1A_13099591 1A 13,099,591 4.40E-05 0.08 0.071 4.36 

 CEnv S2B_16305395 2B 16,305,395 4.90E-06 0.07 0.023 5.31 

 E4 S2B_16305395 2B 16,305,395 1.40E-05 0.08 0.038 4.84 

 E4 S4B_593675948 4B 593,675,948 1.30E-06 0.11 0.005 5.88 

 CEnv S5B_432612793 5B 432,612,793 5.80E-06 0.14 0.023 5.24 

 E2 S5B_432612793 5B 432,612,793 1.40E-07 0.14 0.001 6.86 

 E4 S5B_432612793 5B 432,612,793 2.50E-07 0.14 0.002 6.6 

 E1 S6B_619882604 6B 619,882,604 3.60E-06 0.08 0.014 5.45 

 E4 S6B_622447936 6B 622,447,936 2.20E-05 0.25 0.044 4.66 

 CEnv S6B_667230947 6B 667,230,947 6.7504E-05 0.17 0.180 4.17 

 E1 S7A_236941510 7A 236,941,510 1.10E-06 0.35 0.009 5.97 

  E2 S7A_676732614 7A 676,732,614 1.20E-05 0.14 0.033 4.91 

NSPS E2 S2A_95491711 2A 95,491,711 5.70E-07 0.14 9.00E-04 6.25 

 E2 S2B_16305395 2B 16,305,395 6.40E-06 0.07 0.007 5.19 

 E3 S2B_16305395 2B 16,305,395 1.40E-05 0.07 0.029 4.84 

 E4 S3A_647983369 3A 647,983,369 1.50E-05 0.09 0.03 4.83 

 E2 S3A_651040581 3A 651,040,581 2.70E-07 0.06 5.00E-04 6.57 

 E4 S5B_432612793 5B 432,612,793 4.00E-05 0.14 0.065 4.4 

 E2 S5D_551528813 5D 551,528,813 6.10E-06 0.46 0.007 5.21 

 E2 S7A_132414615 7A 132,414,615 6.50E-09 0.22 5.00E-05 8.18 

 CEnv S7A_132597623 7A 132,597,623 5.40E-09 0.26 4.00E-05 8.27 

 E3 S7A_132597623 7A 132,597,623 7.90E-09 0.26 6.00E-05 8.1 

 E4 S7A_132597623 7A 132,597,623 3.30E-08 0.26 3.00E-04 7.48 

 E3 S7A_676621121 7A 676,621,121 1.00E-07 0.15 4.00E-04 6.99 

 E2 S7A_676732614 7A 676,732,614 2.40E-08 0.15 1.00E-04 7.61 

 E4 S7A_676732614 7A 676,732,614 9.60E-06 0.16 0.026 5.02 

 CEnv S7A_682556399 7A 682,556,399 9.20E-08 0.08 4.00E-04 7.04 

 E3 S7B_634580423 7B 634,580,423 6.00E-06 0.23 0.016 5.22 

 E4 S7B_86687472 7B 86,687,472 3.20E-07 0.08 0.001 6.49 

  E2 S7D_532455282 7D 532,455,282 2.70E-07 0.25 5.00E-04 6.57 



181 
  

 
 

TKW CEnv S1A_58837340 1A 58,837,340 1.30E-05 0.15 0.026 4.89 

 E1 S1D_203599718 1D 203,599,718 7.00E-06 0.08 0.028 5.16 

 CEnv S2B_66706142 2B 66,706,142 2.20E-06 0.14 0.009 5.66 

 E2 S3A_60583645 3A 60,583,645 3.60E-06 0.42 0.015 5.44 

 CEnv S5A_476847493 5A 476,847,493 1.20E-05 0.35 0.026 4.93 

 E2 S5A_5185086 5A 5,185,086 8.10E-06 0.16 0.022 5.09 

 CEnv S7D_60662020 7D 60,662,020 7.50E-11 0.48 6.00E-07 10.12 

 E1 S7D_60662020 7D 60,662,020 5.10E-09 0.48 4.00E-05 8.3 

 E2 S7D_60662020 7D 60,662,020 3.00E-09 0.48 2.00E-05 8.52 

  E3 S7D_60662020 7D 60,662,020 3.80E-07 0.48 0.003 6.42 

aSL, spike length; NSPS, spikelet number per spike; SD, spikelet density; TKW, thousand kernel weight; 
KL, kernel length; KW, kernel width; KA, kernel area  
bEnvironments 
cPhysical position is based on IWGSC RefSeq v2.0 (IWGSC, 2018) 
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Appendix 3.2 Allelic distribution for selected MTAs in a set of selected elite winter wheat 

genotypes including released cultivars and breeding lines from the Great Plains region of the US. 

The alleles are coded as ‘0’ for non-favorable allele, ‘1’ for favorable allele, and ‘2’ for missing 

values or heterozygotes. 

 

 

Accession 

Allelic constitution for selected MTAs 

S1A_1

309959

1 

S2B_1

63053

95 

S5B_43

261279

3 

S6B_61

988260

4 

S7A_1

324146

15 

S7A_6

767326

14 

S7D_606

62020 

1863 0 1 0 1 0 1 0 

ALICE 2 1 0 1 0 1 0 

ANTERO 0 1 2 1 0 1 1 

ARAPAHOE 0 1 0 1 1 1 0 

ART 0 1 0 1 1 1 0 

BRYD 0 1 0 1 0 1 1 

CEDER 0 0 0 1 0 1 1 

CO09W040-F1 0 1 0 1 0 1 0 

CO11D1316W 0 1 0 0 0 1 0 

CO11D174 0 1 0 1 0 1 1 

CO11D1767 0 1 0 0 0 0 1 

CO11D346 0 1 0 0 0 1 1 

CO11D446 0 1 2 1 0 1 1 

DECADE 0 1 0 1 0 0 2 

DENALI 0 1 0 0 0 1 1 

EMERSON 0 1 1 2 0 2 1 

EVEREST 0 1 2 1 0 1 1 

EXPEDITION 0 1 0 1 0 1 1 

FLATHEAD 0 1 0 1 0 1 0 

FLOURISH 2 1 1 1 0 0 1 

FREEMAN 0 1 0 1 0 1 1 

GUARDIAN 0 1 0 1 0 1 1 
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HATCHER 0 0 0 1 0 1 1 

IDEAL 0 1 0 0 0 1 1 

JERRY 0 1 0 1 0 1 0 

KELDIN 0 1 2 1 0 1 1 

KS060084-M-4 0 1 0 1 0 1 0 

KS060106-M-11 0 1 0 1 1 0 1 

KS060476-M-6 0 1 0 1 2 1 0 

KS11HW39-5-4 0 1 0 1 0 0 2 

KS11HW39-6 0 1 0 1 0 1 0 

LANGIN 0 1 2 1 0 1 1 

LYMAN 0 1 2 1 0 1 1 

MILLENIUM 0 1 0 1 0 1 1 

MT1090 0 1 0 1 0 1 0 

NE10507 0 1 0 1 0 0 0 

NE10589 0 0 0 1 0 1 0 

NE12444 0 1 0 1 0 2 0 

NH11489 0 1 0 1 0 1 0 

NI9710H 0 0 0 1 0 1 0 

NW09627 0 0 0 1 0 1 0 

OAHE 0 1 1 1 0 1 1 

OK09125 0 1 0 1 0 0 1 

OK10728W 0 1 0 1 0 0 0 

OVERLAND 0 1 0 1 0 1 1 

OVERLANDFH

B1 

0 1 0 1 0 1 0 

REDFIELD 2 1 2 1 0 1 2 

REDHAWK 0 1 0 1 0 1 0 

ROBIDOUX 0 0 0 1 1 1 1 

RUTH 0 0 0 1 0 1 0 

SD08080 0 1 0 1 0 1 1 

SD08200 0 1 0 1 0 1 1 
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SD09113 0 1 0 1 1 1 0 

SD09138 0 1 0 1 1 1 0 

SD09140 0 1 0 1 1 1 1 

SD10026-3-1 0 1 0 1 0 1 1 

SD10135 0 0 0 1 0 1 1 

SD10257-2 0 1 0 1 0 1 2 

SD10W089-3-5 1 1 0 1 0 1 0 

SD10W153 0 1 0 1 1 1 0 

SD11002-2 1 1 0 1 0 1 1 

SD110036-2 0 1 0 1 2 1 0 

SD110036-4 0 1 0 1 1 1 0 

SD110038-3 1 1 0 1 0 0 0 

SD110039-2 0 1 0 1 0 1 1 

SD110040-5 0 1 0 1 0 1 1 

SD110041-4 0 1 0 1 0 1 1 

SD110044-6 0 1 0 1 2 1 2 

SD110044-7 0 2 0 1 0 2 0 

SD110049-7 0 1 0 1 1 1 1 

SD110054-3 0 1 0 1 2 1 2 

SD11005-5 0 1 0 0 0 1 0 

SD110060-10 0 1 0 1 0 1 1 

SD110060-7 0 1 0 1 0 1 1 

SD110060-9 0 1 0 2 0 1 1 

SD110085-1 0 1 0 1 0 1 0 

SD110085-3 0 1 0 1 0 1 0 

SD11009-5 1 1 0 1 1 1 0 

SD11018-7 0 1 0 1 0 1 0 

SD11023-8 1 1 0 1 2 1 0 

SD12DHA00031 0 2 0 1 0 1 2 

SD12DHA00969 0 1 1 1 0 2 0 

SD12DHA01024 2 1 0 2 2 1 0 
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SD12DHA01038 0 1 1 1 0 1 1 

SD12DHA01043 0 1 2 1 2 1 0 

SD12DHA01131 2 1 2 1 2 1 0 

SD12DHA01347 0 1 0 2 2 1 2 

SD12DHA01353 0 2 0 1 2 1 0 

SD12DHA01373 0 1 2 1 0 1 2 

SD12DHA01556 0 1 0 0 2 1 0 

SD12DHA01688 1 0 2 1 0 1 0 

SD12DHA02135 0 1 0 1 0 1 0 

SD12DHA03282 1 1 1 1 0 1 0 

SD12DHA03290 0 1 0 2 0 0 2 

SD12DHA03429 0 1 0 2 0 1 1 

SD12DHA03614 0 1 0 1 0 1 1 

SD13073-1 2 1 0 1 0 1 0 

SD13153-3 0 0 0 1 0 1 1 

SD13DHA02337 1 1 0 2 0 1 1 

SD13DHA02346 0 1 0 2 2 1 0 

SD13DHA02489 1 1 2 0 2 2 0 

SD13DHA02497 0 1 0 2 0 1 0 

SD13DHA02641 2 1 0 1 2 1 0 

SD13W036-3 0 1 0 1 0 0 0 

SD14059-4 0 1 0 1 2 1 0 

SD14074-3 0 1 0 2 2 1 1 

SD14076-1 0 1 2 1 0 1 2 

SD14113-3 1 1 0 1 0 1 1 

SD14115-5 1 1 0 1 0 1 0 

SD14163-2 0 0 0 0 0 1 1 

SD14182-1 0 1 0 1 0 2 0 

SD14208-1 0 1 0 2 0 0 1 

SD14239-2 2 1 2 1 2 1 2 

SD14295-3 0 1 2 1 0 1 0 
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SD14303-3 1 2 0 1 0 1 0 

SD14351-1 0 1 0 1 2 1 0 

SD14355-2 0 1 2 2 1 1 0 

SD14373-5 0 1 0 1 0 1 1 

SD15002-8 0 1 0 0 2 2 2 

SD15004-2 0 1 2 1 0 1 1 

SD15007-11 0 1 0 2 0 1 2 

SD15007-5 0 1 0 0 0 1 1 

SD15009-1 0 2 2 1 1 2 0 

SD15009-2 0 1 2 1 2 2 0 

SD15025-1 0 1 0 1 0 1 0 

SD15035-2 1 1 2 1 0 1 0 

SD15050-2 0 1 2 1 0 1 0 

SD15081-6 0 1 0 1 2 1 2 

SD15083-2 0 1 2 1 0 1 1 

SD15103-6 0 1 0 1 0 2 0 

SD15108-1 0 2 2 2 0 1 1 

SD15164-1 0 1 0 1 0 2 2 

SD15205-1 0 1 0 0 0 0 2 

SD15232-2 0 1 0 1 0 1 2 

SD15240-2 2 1 0 1 0 2 2 

SD16001 0 1 2 1 0 1 0 

SD16006-3 0 2 2 1 0 1 2 

SD16008-7 0 1 2 1 2 1 0 

SD16010 0 1 0 1 1 1 2 

SD17032 0 1 2 1 0 1 1 

SD17078 0 1 0 1 1 1 1 

SD17141 0 1 0 1 1 1 0 

SD17181 0 1 0 1 0 2 0 

SD17210 0 1 0 1 1 0 0 

SD17246 1 1 0 1 0 1 0 
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SD17371 0 1 0 1 1 1 0 

SD17420 0 1 2 1 1 1 1 

SD18001-7 0 1 1 1 1 2 1 

SD18003-11 1 1 1 1 0 1 0 

SD18003-8 0 1 0 1 0 1 0 

SD18005-1 0 1 0 1 0 1 2 

SD18006-4 0 1 2 1 0 1 1 

SD18007-1 1 1 0 1 0 1 0 

SD18009-4 0 1 2 1 0 1 0 

SD18012-5 0 1 2 1 0 1 0 

SD18019-1 0 1 0 1 2 0 1 

SD18020-2 1 1 2 1 1 2 0 

SD18022-5 2 1 2 1 0 2 1 

SD18023-3 0 1 0 1 0 1 0 

SD18023-8 0 1 0 1 0 1 0 

SD18025-8 0 1 1 1 0 2 1 

SD18036-1 0 1 2 1 1 1 0 

SD18037-7 0 1 2 1 2 1 1 

SD18038-2 0 1 0 1 2 1 2 

SD18039-2 0 1 1 1 1 1 1 

SD18042-6 0 1 0 1 0 1 0 

SD18067-9 1 1 0 1 1 1 1 

SD18069-9 0 1 0 0 0 1 1 

SD18072-2 2 1 2 1 0 1 1 

SD18076-1 0 1 2 1 0 1 0 

SD18076-2 0 1 0 1 1 1 2 

SD18080-2 0 1 0 1 0 1 1 

SD18083-8 0 1 0 1 1 1 1 

SD18087-4 0 1 1 1 1 1 0 

SD18113-1 0 1 2 1 0 1 1 

SD18213-6 1 1 0 1 0 1 1 
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SD18231-8 0 1 0 1 1 0 0 

SD18249-3 0 1 1 1 0 2 0 

SD18272-3 0 1 0 1 1 1 1 

SD19002-1 0 1 0 1 1 1 1 

SD19002-2 0 1 0 1 2 1 1 

SD19008-1 0 1 0 1 0 1 1 

SD19011-2 0 1 0 1 2 1 1 

SD19017-5 0 1 2 1 1 0 0 

SD19019-2 0 1 0 1 1 1 0 

SD19020-2 0 1 0 1 1 1 1 

SD19033-2 0 1 0 1 1 1 0 

SD19041-1 0 1 2 1 1 1 1 

SD9140 0 1 0 1 1 1 0 

SMOKY_HILL 0 1 0 1 1 1 0 

T158 0 1 0 1 0 1 1 

T163 0 1 0 1 0 2 1 

THOMPSON 0 1 2 1 1 1 0 

TX08A001249 0 1 0 1 0 1 0 

TX08V7313 0 1 0 1 0 1 1 

TX09A0091194 0 1 0 1 0 1 0 

TX11A001295 0 1 0 1 0 1 1 

TX12M4063 0 1 0 1 0 1 2 

TX12M4065 0 1 0 1 0 2 1 

WESLEY 0 1 0 1 0 1 1 

WINNER 1 1 2 1 0 1 0 

 

  



 
  

 
 

Appendix 3.3 Marker sequences for the SNPs associated with the stable MTAs identified in this study.  

 

SNP  Sequence 

S1A_13099591 CTCGTTCTCCTCCTCCTTCCTCCTGGAGGCACCTTTTTGACCGCGGTTTGGGATCCAGGCCCCTTG

TTCAAAATTCAAGGGCTGAGATCGCTGGCGCGGCAGCCTTGGGTGGACACGCGTCGAGCCTGGA

ATGGCCATCTCTGCAGGTCATGTCAGCGCAGCGCACTAGCCACTCCGCCCGCCACCCTGGGCGC

GCTAC[T/G]CCACTCCGCCCGCGCATACCCGCCACCCTCCCCGCGCGTGGGCCACCCATGTAAGC

GAGCGAGCGTAGGCAGAGTATGATCCATGGACCCACGACACTCGGCCGAAAACCCCGAGGCCA

AAAACCCCGGCTGCCTCCGCCTCCGCCTCCGCCAGCGCAGGCGCTTCACTCCGCTCTAGCCTAGC

CAGGGGAAGGAAGAGA 

S1A_299864277 TTTCGAGGTGTTGGTGAACTTCTCAATTGGGGACGGCACGATCAGACAATTCTGGACCGACCCA

TGGCTGCGGCGCCAAAGTCTATGCACAACTTACCCCGACCTTTTTGGCCAGTGCACCCTCTGACG

CATAACCGTTGCTGCAGCTTTGCATAATGACAAGTGGATGAGACATTTCAAGGCCAACATGACT

GCTGAC[A/G]CGCTTCTCCAGTTCACAAACCTATGGCACGACCTTCAAGCAGTGCACCTCAATCC

GGATCAGCAGGACTCAATCTCATGGAGATGGACGGCCAATGGTGTTTACAACGTAGCCTCTGCG

AACAGAATTCTCTTTGTTGCAACCATCAAGCAGGACTTTGCCAAAATGGCCTGGAACTCTGAGG

CCCGGCCGAAGTGCCAG 

S2B_16305395 CTCGAGGAGTCCCTGCAAGATGTGAGAGACTACATCGTTTTCATCCAGTGGCTTGCCGGTGGCT

GCTAGCTCGTCGGCGATGCTCACCATCTTGGTGTAGTAGGCCGCAGCCGAGAGGTCTCCTTTGC

GGGTATGCTCAATCACGGAGCGAAGCTGAATCACCCTCGCCCTTGACTGTGAGGCAAAGCTCTG

CAGCAGG[G/A]CCTTCCAGAGCATGGTGGCGGTGGTGTGGGAGCTGACCTGTAGCGGAACCTCA

CGAGAAAGAGATGAGATAAAAAACGTGAGGACTTGCTGATCTTGGGTTACCCACATAGCGTGTT

CGGGATTGGGCCTCGATGTGATTTCCTTCTTGCCGGAGATATCCTTCTCCGAGAGGATCACGGCG

GGAGGCTCCTGGATCGAA 

S3A_647983369 TGTACACGCGCGGCGCAGCGAGCGCATGCCTGCCATCCTTCCTGCCTGCCTGCCTGCCTGCTGGC

TGCGATGAGGAGGGTATAGATGGAGTCGTAAATGCATACCGGCCGGGAAGAATGCACCTCGGA

GTCCACGTTTTGACACTACTTCTCGCTCCGCCTGCTGATGATGGATCGATCGATGCTCCTGCATG

GCATGG[T/C]TGACCTGTCCTGTTGAACGGACGAGCAACGTCTACACTGGCCTGTACTGCAGTAG

TACTCCCTCCGGTCCTTTTTACTTCGCACATTAGCTTTGTCTGAAGTCAAAGCTTGCTAAGTTTGA

CCAAATTTGTATTAAAAAATATTAACATCTATAACATCTAATAAATATAATATGAAAATATATTC

TAAGATGGATCTAA 
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S4A_619197841 CAAGGGGCTCGCCGGGTCAGTGCGAAGGCCGGCTGCAGGGAGAATTGGTAGGGGCGGCGAGGG

GATCCGTTCCCGTGAGCGGAAGCCCGGGGAAGGCACCGGAGTTGGCCGGAATCGGGCGGTCAA

TGGAAGGTTGCCGTCGCCGTTGAAGCGAGGGGATCGAAGGTCGGGGAGGCCCGACGTCTAGGA

TCCAGGACCA[A/G]CGCGGACGCAGCGGTGGTGCCCCCAATCTCAGGCGCACCACTGCAGGGCG

GAGGGCCAGGCGGCGGGAGGAATGGCGGGGAGGGTGTGCGTGAGTCATGCGCCGCCGCGGCTG

GAGTTGAGCGTCTGGATAAGATAGAGGAAAGGAGCTCAGGTTGAAATCTAATAAATCCAGGGG

TTAATTTGTAAAACCGAATCGTTT 

S5A_476847493 GCTAGGAAGGAGCAGAGGAAACGATGCCTGAGGTGCGGCATCCTGTACCTGGACGAGGAGAAC

TCCGCTGCTGCCTGCGCCTTCCATGGCCACATCACCGGTAGGTATCGTATCAGCACCACTGACTG

CTGCATCACACTACAGTACACTAGTTGCAAAATATCTTCAGTTTGCGGTTGGGCTTGCGACTCTG

TGCGTG[C/T]TGTGTACCACGAACGTCCTTGCCCATGCATACGACTGAAGCAGCCTATGCAAAAC

TATAGGCCGGAGGAGCTTCCCGAGGCCCGTTTGAGAGTGGACATATGCGTGTTTGTGTTGCAGG

TGAGAAGGGGCTGTTTTCGCTGTCGCCGCCGCACCAAGGGATCGACGGCGAGTGGAGCGACAA

GAGCGGGGTCATCGTCTA 

S5B_432612793 CTACGGAACATCGGTAAGCCTAGTGGATGCATGGATGGGCTATTTCAATTCGGAGAATCTCATT

TTCATTCGGGTTGATCGTGAACGAACGTACTCTATCAATTATTTTAGTTAATCAACGCATCCTTT

GCGTGTTGCAGGCGTACGTGACGCAGGACGACGTGCTGATGACGACGCTGACGGTGCGGGAGG

CGGTGCG[C/G]TACTCGGCGTCGCTGCAGCTGCCGAGCGGCATGTCGTCGGCGGCGAAGCGGGA

GCGGGCGGAGGAGACGCTGCGGGAGATGGGGCTGGAGGGTGCGGCGGACACGCGCATCGGCG

GGTGGATGCACAAGGGGATCAGCGGCGGCCAGCGGCGCCGGGTCAGCATCTGCATGGAGATCC

TCACCCGGCCGGCGCTGCTGTT 

S6B_619882604 GTGTTTTTCATAACGATTCCAACCCTACTAATCAGACACACAATTAAATATATTTTTCCGGAAGG

GTATAAATCTTCTAAATTTCCTCTGAAATTCCTTTGAATCAAAAGAGCTCTGAAGTTCCACTATG

CCTTTTTTCTTCTCCACTGCAGATTGCTGAACCCTTATCAGCACAGGCCATCACAAGTGGGTAGT

GCCT[C/G]ACGAGAAGTTTCCTCGCTCAGTTATACGGATGAGATCGAACATTTTGACTTCCCAAA

ACCGGGGCCATCCGGCCATGCAAAGATGATACTAGACCCACACCAATCTTCAAATGCTCCATAC

TGCCATCCGGTGAACCAGTGAAGGTTGCATCCGAGGGAGGGAGGAAGGGTGGCAGTGATCCGC

TTCTCTGCACCACGAA 

S7A_132414615 GGCCACAGCATTTGCTACATCAAACAGACCCGTATATGATGGTCATCGGCCACTTTAGCCACAC

CCAAAGCTGCTTGAAAATGAGCAGGCTTGTTACATGCTCCGGGCCTATACTGGACACTTTATAT

AACTAGATAAAACTTGTCTCCAGAAGGAATTTGATGTCCCTGGAAAGCTGACCCAGGGCTCGCA

TTATCAT[C/A]CGCAGTGAAGGCGAGGGCCTGTTTGAGTACCAGGCCTCTCAATGCCGTGATGGT

CTGCAGGCTTCACGGAGGGGCGCGGGCAATTGTTCCATCAGCGTGCAAGGCGTCCGCAGCTTCT
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AAAACTACGTCGCCATCGGAGGACATTTATTGTACGATGCAAGGAGGTGAAGGCAGTGTGGCG

AGTCATGGGAACGGAAGCT 

S7A_676732614 TTTGGGGATTTTAAGTAGGCCTTTGATGTCCGTCCTTTCGGCCCTTCCCGCGGCGGCGGGGGTGT

ACAATAAAGTCATCTCCGGTGGCATGTCGTTGATGGTAGTTGATGGTGTCTGCTCGATGAATGAT

TCTTCCTCAAGTCTTCTCATTTTGACAGTGATGTCTGTGGCAGTGTCGATGGTTCACAGTCGTAG

ATCC[A/G]TACCATCCATTCTAGGGTTTGCAGGGTTACTCGGCATGGTGGCGGTGGTTGCTGCAG

TTGGTTCGTCTAGCCTCATCGTTGGTGTTCATCGGCACGTTCAAAGGGGAAGAAGACAGTCAAC

CCCATGGACTGTGGAGTGCTTCTTTGCTCTCGAACGTACACCGCCGCGCCTCCGGCGTGCTAAGC

TGCTGACCCCATCA 

S7A_717859384 TGTGTACTTGTGATCGAGGTATGCATGCACCAGACATCGTCTTGTAACACAGATACGTGCATTGT

AGATTTTGTGGAATCCCTGATGACTCAATCCACACATACAAGTAGGACAAGTTGTCACCTTCTCC

TTTGGAAATGAGGTCACTCCAAGTGCAGGTATTGCCATCCTGCAGTTGGTGAGGTGGGAATCGT

GGGAA[A/G]CTAGGTATTTCTCTATTAGAGGAGAGTGGTTTATGCACTACTTTTGTGTATGTGGA

TGTCCAGCCGTCATACAAGTGGATGAAAACGTTTCCGTGCCGGCAGTCTGTGATGTAGATATTCT

TGCCCTTGTAGGCGTCAAAGCTGAAGTTTGCACGGTGGATGACTGTGCTAAGCTCTGAGGGCAG

CAGCAGATTTGGCAT 

S7D_60662020 GTGTAGGTGACCACGTTCCCCATGTACAGGTCCAGCGCGCCCTCCGACGGCTCCACGCACTTCC

GGCCGTCGACGATCCACGCCATCCGGCAGTTTGGTAACTGCTGGGATATTTTTCTTCTAAAAAAT

AATGATATAAACGCTCTTATATTTTTTTTATCGAGGGAATCGCCGACCGCACGGGCAGTTGGGGT

CGGAG[T/G]CGCCGCCTGCAGTCAAAAGAAAGAAAAAAATAAATAAATAATTAATTTCTTTAAG

AAAGAATGAACTAGTGACATTGGTATTACCTTTAGGAAGAAATTCAAAATAAAAAACCTGCACA

TAACTTTGCACTGAAATGACACTTTATAAATTTGCATGAATAAACATATAATAGTGCAACTTTCA

CACCCTAGTGTGCGAG 
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Appendix 4.1 Prediction accuracy for five traits recorded at five different environments 

in 2018-19 using different genomic prediction models (ST-CV1, single-trait model; MT-

CV1, multi-trait model with CV1 scheme; MT-CV2, multi-trait model with CV2 scheme; 

MTME, multi-trait multi-environment model with CV1 scheme). The value in bold 

indicates the best performing model for given trait at respective location. 

 

Trait Env ST-CV1 MT-CV1 MT-CV2 MTME 

Mean 

PA 

S.E. Mean 

PA 

S.E. Mean 

PA 

S.E. Mean 

PA 

S.E. 

Yield Brookings 0.28 0.005 0.29 0.02 0.56 0.02 0.26 0.03 

Dakota Lakes 0.32 0.004 0.28 0.03 0.40 0.02 0.36 0.02 

Hayes 0.38 0.004 0.35 0.02 0.41 0.02 0.25 0.03 

Onida 0.43 0.004 0.42 0.01 0.43 0.02 0.35 0.03 

Winner 0.13 0.005 0.03 0.02 0.15 0.03 0.18 0.03 

 Average 0.31 - 0.27 - 0.39 - 0.28 - 

Protein 

content 

Brookings 0.40 0.004 0.41 0.02 0.45 0.02 0.33 0.03 

Dakota Lakes 0.50 0.004 0.56 0.02 0.51 0.02 0.45 0.03 

Hayes 0.32 0.004 0.34 0.02 0.38 0.02 0.26 0.03 

Onida 0.39 0.004 0.41 0.01 0.39 0.02 0.46 0.03 

Winner 0.15 0.004 0.20 0.02 0.29 0.02 0.13 0.04 

 Average 0.35 - 0.38 - 0.40 - 0.32 - 

Test 

weight 

Brookings 0.31 0.004 0.31 0.02 0.48 0.02 0.35 0.03 

Dakota Lakes 0.23 0.005 0.23 0.01 0.39 0.02 0.32 0.02 
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Hayes 0.50 0.004 0.49 0.02 0.54 0.02 0.52 0.02 

Onida 0.43 0.005 0.41 0.02 0.40 0.02 0.47 0.03 

Winner 0.35 0.005 0.36 0.02 0.32 0.02 0.43 0.02 

 Average 0.36 - 0.36 - 0.42 - 0.42 - 

Plant 

height 

Brookings 0.26 0.005 0.24 0.02 0.38 0.02 0.44 0.03 

Dakota Lakes 0.16 0.005 0.16 0.02 0.38 0.02 0.41 0.04 

Hayes 0.33 0.004 0.21 0.02 0.31 0.02 0.42 0.03 

Onida 0.16 0.004 0.16 0.02 0.27 0.02 0.45 0.03 

Winner 0.32 0.004 0.30 0.02 0.34 0.02 0.54 0.03 

 Average 0.25 - 0.21 - 0.34 - 0.42 - 

Heading 

date 

Brookings 0.46 0.004 0.46 0.03 0.44 0.03 0.49 0.02 

Dakota Lakes 0.33 0.005 0.32 0.02 0.47 0.02 0.40 0.04 

Hayes 0.23 0.005 0.24 0.02 0.25 0.02 0.16 0.04 

Onida 0.35 0.005 0.39 0.02 0.40 0.01 0.37 0.03 

Winner 0.35 0.005 0.35 0.02 0.37 0.02 0.37 0.03 

 Average 0.34 - 0.35 - 0.38 - 0.36 - 
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Appendix 4.2 Prediction accuracy for five traits recorded at five different environments 

in 2019-20 using different genomic prediction models (ST-CV1, single-trait model; MT-

CV1, multi-trait model with CV1 scheme; MT-CV2, multi-trait model with CV2 scheme; 

MTME, multi-trait multi-environment model with CV1 scheme). The value in bold 

indicates the best performing model for given trait at respective location. 

 

Trait 

 

Env ST-CV1 MT-CV1 MT-CV2 MTME 

Mean 

PA 

S.E. Mean 

PA 

S.E. Mean 

PA 

S.E. Mean 

PA 

S.E. 

Yield Brookings 0.29 0.006 0.27 0.03 0.52 0.02 0.39 0.03 

Dakota Lakes 0.33 0.005 0.33 0.02 0.57 0.02 0.46 0.03 

Hayes 0.50 0.004 0.52 0.02 0.71 0.01 0.44 0.02 

Onida 0.44 0.003 0.41 0.02 0.50 0.02 0.46 0.03 

Winner 0.27 0.005 0.23 0.02 0.67 0.01 0.43 0.02 

 Average 0.36 - 0.35 - 0.59 - 0.43 - 

Protein 

content 

Brookings 0.41 0.005 0.41 0.02 0.58 0.02 0.62 0.02 

Dakota Lakes 0.34 0.004 0.36 0.02 0.59 0.01 0.67 0.02 

Hayes 0.40 0.004 0.40 0.02 0.56 0.02 0.59 0.02 

Onida 0.26 0.005 0.22 0.02 0.31 0.02 0.52 0.03 

Winner 0.34 0.004 0.35 0.02 0.66 0.01 0.58 0.02 

 Average 0.35 - 0.35 - 0.54 - 0.60 - 

Brookings 0.56 0.003 0.57 0.01 0.59 0.01 0.64 0.02 
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Test 

weight 

Dakota Lakes 0.58 0.004 0.58 0.02 0.61 0.01 0.63 0.02 

Hayes 0.58 0.004 0.57 0.02 0.64 0.01 0.67 0.02 

Onida 0.60 0.003 0.60 0.02 0.59 0.02 0.66 0.02 

Winner 0.37 0.005 0.33 0.02 0.50 0.02 0.53 0.02 

 Average 0.54 - 0.53 - 0.59 - 0.63 - 

Plant 

height 

Brookings 0.35 0.004 0.35 0.02 0.40 0.02 0.51 0.02 

Dakota Lakes 0.31 0.005 0.26 0.02 0.43 0.02 0.44 0.02 

Hayes 0.43 0.004 0.41 0.02 0.53 0.02 0.59 0.02 

Onida 0.28 0.005 0.24 0.03 0.43 0.02 0.48 0.02 

Winner 0.28 0.005 0.27 0.02 0.36 0.02 0.41 0.03 

 Average 0.33 - 0.31 - 0.43 - 0.49 - 

Heading 

date 

Brookings 0.37 0.004 0.41 0.02 0.42 0.02 0.58 0.02 

Dakota Lakes 0.29 0.004 0.27 0.02 0.30 0.02 0.54 0.02 

Hayes 0.29 0.005 0.36 0.02 0.32 0.03 0.48 0.04 

Onida 0.44 0.004 0.46 0.02 0.45 0.02 0.56 0.02 

Winner 0.35 0.004 0.31 0.02 0.39 0.02 0.48 0.02 

 Average 0.35 - 0.36 - 0.38 - 0.53 - 
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Appendix 5.1 The mean prediction ability (PA) along with standard error (SE) for 

Mixograph traits using MTGP model. GRPROT, grain protein content; flour ash content; 

FLRPROT, flour protein content; FLRSDS, flour sedimentation weight value; MIXABS, 

Mixograph mixing absorption (%), MXTIM, Mixograph mix time (min); MIXTOL, 

Mixograph mix tolerance score. 

 

Trait Secondary trait(s) PA SE 

MIXABS GRPROT 0.55 0.012 

MIXABS FLRPROT 0.61 0.010 

MIXABS FLRSDS 0.32 0.014 

MIXABS FLRPROT + FLRASH 0.61 0.011 

MIXABS FLRPROT + FLRSDS 0.64 0.008 

MIXTM GRPROT 0.45 0.013 

MIXTM FLRPROT 0.45 0.012 

MIXTM FLRSDS 0.51 0.011 

MIXTM FLRPROT + FLRASH 0.43 0.014 

MIXTM FLRPROT + FLRSDS 0.50 0.011 

MIXTOL GRPROT 0.53 0.011 

MIXTOL FLRPROT 0.53 0.013 

MIXTOL FLRSDS 0.61 0.011 

MIXTOL FLRPROT + FLRASH 0.53 0.011 

MIXTOL FLRPROT + FLRSDS 0.58 0.011 
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Appendix 5.2 The mean prediction ability (PA) along with standard error (SE) for 

Glutomatic traits using MTGP model. FLRPROT, flour protein content; FLRSDS, flour 

sedimentation weight; WGC, wet gluten content; GI, gluten index. 

  

Trait Secondary trait(s) PA SE 

WGC FLRSDS 0.39 0.014 

WGC FLRPRO 0.36 0.016 

WGC FLRPRO + FLRSDS 0.43 0.015 

GI FLRSDS 0.62 0.010 

GI FLRPRO 0.52 0.013 

GI FLRPRO + FLRSDS 0.63 0.012 
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Appendix 5.3 The mean prediction ability (PA) along with standard error (SE) for 

Glutomatic traits using MTGP model. GRPROT, grain protein content; FLRASH, flour 

ash content; FLRPROT, flour protein content; FLRSDS, flour sedimentation weight 

value; WGC, wet gluten content; GI, gluten index; WGI, wet gluten index; MIXABS, 

Mixograph mixing absorption (%), MXTIM, Mixograph mix time (min); MIXTOL, 

Mixograph mix tolerance score; BAKEABS, bake absorption; LVOL, pup loaf volume; 

SpLVOL, loaf volume by weight. 

 

Trait Secondary trait(s) PA SE 

BAKEABS GRPROT 0.51 0.012 

BAKEABS FLRPROT 0.53 0.012 

BAKEABS FLRSDS 0.45 0.013 

BAKEABS GI 0.48 0.012 

BAKEABS WGC 0.39 0.013 

BAKEABS WGI 0.33 0.011 

BAKEABS MIXABS 0.75 0.007 

BAKEABS MIXTM 0.50 0.012 

BAKEABS MIXTOL 0.54 0.010 

BAKEABS FLRPROT + FLRASH 0.56 0.011 

BAKEABS FLRPROT + FLRSDS 0.61 0.010 

BAKEABS FLRPROT + GI 0.66 0.009 

LVOL GRPROT 0.34 0.016 

LVOL FLRPROT 0.46 0.010 
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LVOL FLRSDS 0.44 0.011 

LVOL GI 0.34 0.017 

LVOL WGC 0.33 0.015 

LVOL WGI 0.31 0.013 

LVOL MIXABS 0.44 0.013 

LVOL MIXTM 0.36 0.015 

LVOL MIXTOL 0.37 0.016 

LVOL FLRPROT + FLRASH 0.47 0.010 

LVOL FLRPROT + FLRSDS 0.52 0.010 

LVOL FLRPROT + GI 0.47 0.013 

SpLVOL GRPROT 0.30 0.014 

SpLVOL FLRPROT 0.44 0.011 

SpLVOL FLRSDS 0.36 0.012 

SpLVOL GI 0.35 0.016 

SpLVOL WGC 0.32 0.012 

SpLVOL WGI 0.32 0.014 

SpLVOL MIXABS 0.37 0.013 

SpLVOL MIXTM 0.35 0.013 

SpLVOL MIXTOL 0.32 0.017 

SpLVOL FLRPROT + FLRASH 0.41 0.010 

SpLVOL FLRPROT + FLRSDS 0.45 0.013 

SpLVOL FLRPROT + GI 0.43 0.012 
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