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RESUMO

Acredita-se que incompatibilidade esteja no cerne de “estranhezas” quânticas, permi-
tindo, junto com emaranhamento, efeitos quânticos que desafiam nossa percepção da
natureza, como as violações de desigualdades de Bell. Não obstante sua importância,
não há uma única definição e muitas abordagens foram propostas. Ainda sim, algo se
destaca nelas: a dependência na relação entre as medições, sem considerar o estado
que está sendo medido. Como estados essencialmente clássicos quase não são per-
turbados por medições, em contraste com o que ocorre para estados quânticos, parece
negligente desconsiderá-los na definição de incompatibilidade. Assim, recentemente
foi proposta a Incompatibilidade de um Contexto Físico, onde o contexto nada mais
é que o conjunto formado pelas medições a serem realizadas e pelo estado, e é o
conjunto todo que é dito incompatível ou não. Esta nova abordagem, no entanto, foi
feita em uma estrutura estritamente quântica, o que limita seu uso em possíveis futuras
teorias pós-quânticas que podem criar correlações ainda mais fortes que as quânticas.
Nós propomos neste trabalho uma definição para incompatibilidade de contexto que é
inteiramente independente de teoria, baseada apenas em probabilidades e mapas de
medição não seletiva. A definição propõe um par de equações que qualquer contexto
compatível deve satisfazer, onde mostramos então um regime clássico que as satisfa-
zem prontamente e um estudo de caso para o qubit na representação de Bloch para
ilustrar quando contextos quânticos as satisfazem e, consequentemente, quando as
violam. Nós também construimos quantificadores: um baseado na entropia relativa de
von Neumann e um intercambiável baseado na divergência de Kullback-Leibler para
probabilidades. Eles nos permitem comparar o que a definição proposta quantifica
contra o que a definição já existente quantificava, validando nossa abordagem como
comparável mas não igual a ela. Também mostramos que incompatibilidade de medi-
ção está contida na nossa definição como uma escolha específica de contexto, o que
solidifica a proposta apresentada nessa dissertação.

Key-words: mecânica quântica; incompatibilidade; incompatibilidade de contexto; in-
compatibilidade de contexto independente de teoria.



ABSTRACT

Incompatibility is believed to be at the center of quantum “weirdness”. It has been
shown to enable, together with entanglement, quantum effects that challenge our
perception of Nature such as the Bell inequality violation. Notwithstanding its importance,
incompatibility is not unanimously defined, and many different approaches have been
conceptualized. Nevertheless, one thing stands out: many of these approaches rely only
on the role of the measurements, without considering the preparation. Since classically
behaving states are nearly not disturbed by measurements in the way quantum behaving
states are, it seems neglectful to disregard the states in the definition of incompatibility.
Hence the recently proposed Incompatibility of a Physical Context, with the context
being the set of measurements and the state of the system, where now it is a context
that is incompatible or not. This approach, however, is constrained to the quantum
framework, which limits its use in forthcoming notions of post-quantum theories that can
elevate quantum correlations to stronger ones. We propose, then, a new definition for
context incompatibility that is entirely independent on the theory, based on probabilities
and non-selective measurement maps only. The definition poses a set of equations that
any compatible context must obey. We then show a classical regime that readily satisfies
them and a case study for the qubit in the Bloch representation to illustrate when a
quantum context would satisfy them and, consequently, when it would not. We also built
quantifiers: one based on the von Neumann relative entropy and an interchangeable one
based on the Kullback-Leibler divergence for probabilities. They allow us to compare
what our definition quantifies against what the existing context incompatibility definition
quantified, validating our approach as comparable but not equal. We also show that
incompatibility of measurements is contained in our proposed definition as a specific
choice of context, which further solidifies the proposal presented in this dissertation.

Palavras-chaves: quantum mechanics; theory-independent context incompatibility;
incompatibility; context incompatibility.
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INTRODUCTION

Consider a ball in a football game, like the one the Brazilian team lost and
was thus eliminated from the World Cup. A viewer of such a game could always tell
where the ball was, and know roughly its speed – sometimes faster, sometimes slower.
That is, in fact, a very important part of the game. Now, imagine that whenever the
spectator focused on seeing where exactly the ball was in the field, they could not tell
you its speed, or if it was in movement at all. This is what would happen if position and
momentum were incompatible in the classical realm as they are in the quantum realm.
Brazil could have been saved if only that were a quantum game.

But, rather, incompatibility is this odd effect that occurs only in quantum systems
and, as one can tell from this example, can be very counter-intuitive. It has been noticed
in quantum theory at least as early as Heisenberg’s work in 1927 [1] on the uncertainty
relation ΔxΔp � h, where he realized that the wave packets describing the position and
the momentum cannot be arbitrarily small, having a limitation of nearly Planck’s constant
h. Incompatibility appears in some form in many seminal works of quantum mechanics,
such as Bohr’s complementary principle [2], when he speaks of the measurement
disturbing the system; EPR’s paradox [3], where the authors explicitly use position and
momentum and its incompatible quantum nature alongside the entanglement property
of some quantum states to infer that quantum theory was incomplete; and the violation
of Bell inequalities can only be achieved through incompatible measurements [4–6],
which were used in the ultimate loop-hole free experimental test [7], cementing that
quantum mechanics does violate a Bell-type inequality and thus cannot be thoroughly
described by a local theory. The efforts to achieve this Bell test were awarded the 2022
Nobel prize in physics [8].

Clearly, incompatibility is an extraordinary feature. Yet, there is no single defi-
nition, approach, or even interpretation for it. In this dissertation alone there are eight
approaches showcased, and surely others were left out. Historically, the main arguments
for incompatibility rested on commutativity, based on the commutation between observ-
ables [A, B] = AB − BA, and uncertainty relations, which have been generalized from
Heinserberg’s proposal to any two observables [9], where, in this form, the uncertainty
in the statistical dispersion of two observables is related to their commutativity. Because
of this, many textbooks convolute both definitions [10–12].

However, the physical interpretation surrounding the uncertainty relation is very
nuanced and subject to a lot of discussions [13, 14]. One of the possible interpretations
relates the uncertainty to the measurement process, where it is understood that when a
lower bound is present, it is impossible to perform the simultaneous measurements of
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the two observables in the same system without disturbing it. To formally define when
observables can and cannot be simultaneously measurable, it is necessary to define
unsharp observables, which carry intrinsic uncertainty in the form of “fuzziness” [15].

Such unsharp observables form a class of measurements with relaxed re-
strictions called Positive Operator-Valued Measurements (POVMs) [16]. Hence, the
so-called joint measureability definition for incompatibility [17, 18] is formulated based
on if a single device can produce the same outcomes simultaneously as two (or more)
observables would. This definition has close ties to steering, a quantum feature that
allows a distant part of the quantum system to non-locally influence (steer) the other
part [19] – so close that, in fact, it is possible to define that if two observables can be
used to demonstrate steering, they are necessarily not jointly measurable [20, 21].

Besides joint measurability, there has been another formulation for the inter-
pretation of uncertainty arising in the measurement process, but now focused on the
disturbance part of the interpretation: one cannot perform a measurement of an ob-
servable without disturbing the measurement of another incompatible observable on
the same system. This description of incompatibility is called nondisturbance [22], and
requires the concept of a quantum instrument.

Since an instrument implements the measurement of an observable onto an
input state and gives an un-normalized state as the output, this allows for a definition
based on if the measurement of a POVM, implemented through an instrument, can alter
the probability distribution of another POVM. Therefore, one can identify the disturbance,
or lack thereof, caused by the measurement of an observable. This definition is easily
extendable for more than two observables, as long as each measurement implemented
does not alter the probability distribution of the next one.

The definitions mentioned so far have always been stated in terms of incompati-
ble observables, either generalized POVMs or not, implemented through instruments or
not, and thus are accordingly categorized as Measurement Incompatibility and will be
presented in more detail in Part I.

When one speaks of incompatibility, though, the measurements must be per-
formed onto some state. If this state was, for example, heavy bodies submitted to thermal
baths, measurements nearly cannot disturb them, even if they are deemed incompatible.
It is reasonable to infer, then, that the state has an influence on the incompatibility
status of the measurements conducted. This is what is argued in [23] when the authors
propose a new approach to incompatibility: including the state in the definition. Not just
as an input, but as an integral part of the definition. This is achieved through the context
� = {ρ, A, B}, which is the set of the measurements, A = ∑d

i ai Ai = ∑d
i ai |ai〉 〈ai| and

B = ∑d
j bjBj = ∑d

j bj |Bj〉 〈Bj|, and the state ρ. Therefore, now it is the whole context that
is incompatible or not.



12

This new approach was then dutifully followed by the proposal of a generaliza-
tion based on relaxing the measurements to POVMs [24]. This attempt succeeded in
providing a more generalized leakage detection protocol but resulted in the description
now not necessarily claiming compatibility for classically behaving systems (like the
heavy body) described through maximally mixed density operators. Both the original and
the generalized measurement definitions are thus categorized as Context Incompatibility
and will be presented in Part II of this dissertation.

Quantum theory in its “weirdness” has been criticized extensively. Many people
were uncomfortable with the interpretations proposed and state of the art of the theory,
like Einstein himself externalized in the aforementioned EPR paradox paper. Some
proposed different interpretations that have an impact to this day, like the one in Ref. [25].
The experimental success of quantum theory as well as its many open questions (the
measurement problem, quantum gravitation, etc.) have overall led to a search for basing
the quantum theory on fewer postulates and more fundamental notions, modeling after
the relativity theory. In 1994, for example, it was noticed by [26] in a paper focused
on axiomatizing nonlocality that correlations respecting no-signaling theorems (i.e., no
signal can travel faster than light, a desired feature as to not break the experimentally
validated relativity theory) can violate Bell-type inequalities in even greater quantities
than if they were also restricted by quantum mechanics. Such condition of no-signaling
is also sufficient to produce stronger than quantum steering [27] and stronger than
quantum key distribution protocols [28], related to cryptography tasks.

Therefore, other than ever so increasingly generalizing the measurements,
we were compelled to search for a definition of context incompatibility that is entirely
independent of the quantum mechanical framework. Based on probabilities and a simple
idea of non-selective measurements alone, the proposed theory-independent definition
would not only allow to brace for post-quantum theories that resolve quantum mechanics
open questions but could usher the definition of incompatibility to a more fundamental
one. Thus, we present this proposed definition in Part III, followed by the case study of
the qubit (a two-level quantum system) in the Bloch representation and ending with the
construction of quantifiers both for quantum contexts and for generalized probabilistic
theories, but showcasing the evaluations mainly for the qubit.
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1 MATHEMATICAL BACKGROUND

In this chapter, we will go through the mathematical background necessary for
comprehending the details presented in this dissertation. For this purpose, we begin with
the fundamentals of quantum mechanics, starting with the state vector and ending with
the Bloch representation. Then we conclude with the concepts of classical probability
theory that might be useful to bear in mind. This is intended as a short review, mainly to
organize necessary notation and formulae for the future.

1.1 QUANTUM MECHANICS

This portion of the review is based mainly on the references [29–34].

1.1.1 State and Operators

In quantum mechanics, the state of a system is represented as a vector in
the Hilbert space H through a ket, |ψ〉. In this work, we will be using only discrete
d-dimensional Hilbert spaces, which have a one-to-one relation to the d-dimensional
complex number field, i.e., H � Cd, where d > 1 ∈ �. In this representation, a system
will often be best described by a linear combination of vectors, the famous superposition
states, which can be written as

|ψ〉 =
d

∑
i

ci |ψi〉 , (1.1)

where the ci ∈ C must obey ∑d
i |ci|2 = 1, stemming from the orthonormality relation of

the basis1, 〈ψi|ψj〉 = δij.

To describe generally a system that is composed of more than one distinct
physical system, for example, composed of a system A described by a vector in the
basis {|ψi〉} of HA and a system B described by a vector in the basis {|ϕj〉} of HB,
one uses the tensor product:

|φ〉 =
dA

∑
i

dB

∑
j

cij |ψi〉 ⊗ |ϕj〉 ∈ H = HA ⊗HB (1.2)

where dA(B) are the dimensions of the respective Hilbert spaces and cij are coeffi-
cients. The notations suppressing the tensor product |ψi〉 |ϕj〉, |ψi ϕj〉 and variations
like |ψi〉A |ϕj〉B are also used. If cij can be decomposed as cij = cicj, the state is called
separable. If not, the state is entangled.
1 The notation of the inner product in the Hilbert space is called braket and has the form 〈·|·〉, where

〈·| ∈ H∗, H∗ being the dual space of H, is the bra, essentially the transpose conjugate of |·〉.
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Other important elements in the quantum formalism are linear operators A that
act on the Hilbert space transforming the vectors therein, such that

A |ψ〉 = |ψ′〉 , A ∈ L(H), (1.3)

where L(H) is the set of all bounded linear operators acting on H. If this operator is
Hermitian, that is, if its adjoint (or dual) operator A† satisfies A† = A, it admits general
spectral decomposition of the form

A =
d

∑
i

ai |ai〉 〈ai| , (1.4)

where ai ∈ � and |ai〉 ∈ H are the operator’s eigenvalues and eigenvectors, respectively.

An important class of operators is the so-called projective operators, which, as
the name suggests, operationalizes the orthogonal projection of a vector and have the
general form

Bj = |bj〉 〈bj| , (1.5)

so that when they act on a state |ψ〉 they project it to |bj〉:

Bj |ψ〉 = |bj〉 〈bj|ψ〉︸ ︷︷ ︸
number

= 〈bj|ψ〉 |bj〉 . (1.6)

A set of projectors need to satisfy orthogonality, 〈bk|bj〉 = δjk, idempotency, B2
j = Bj,

and completeness, ∑d
j Bj = 1. They are, of course, also Hermitian.

Thereby, we can define a useful operation that acts on operators: the trace.
The trace essentially takes only the diagonal terms of the matrix representation of an
operator, and sums over all of them, that is,

Tr[A] :=
d

∑
k
〈ak| A |ak〉 =

d

∑
ki

ai 〈ak|ai〉 〈ai|ak〉 =
d

∑
ki

aiδki =
d

∑
i

ai, (1.7)

where we conveniently chose the base that diagonalizes A to perform the trace, which
is acceptable because the trace is base invariant. Besides this, another useful property
is that the trace permits cyclic permutation (Tr[ABC] = Tr[BCA] = Tr[CAB]).

Aside from the vector |ψ〉, there is a more generic representation for quantum
systems in the form of density operators. These objects allow us to include our ignorance
of the state itself, in the sense that we can encode a statistical description that accounts
for the probability pi of the system being represented by the specific |ψi〉 to the notation,
which is thus given by

ρ =
d

∑
i

pi |ψi〉 〈ψi|︸ ︷︷ ︸
ρi

=
d

∑
i

piρi ∈ T (H), (1.8)
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where pi ∈ � are classical weights and T (H) ⊆ L(H) is the set of trace-class
operators acting on H, which is thus named because Tr[ρ] = ∑d

i pi = 1. Note that, since
for projective operators Tr[Bj] = 1, Bj ∈ T (H).

The properties that distinguish the density operator from any other operator are:

1. ρ† = ρ (Hermiticity);

2. Tr[ρ] = 1 (unitary trace);

3. 〈ψ| ρ |ψ〉 ≥ 0 ∀ |ψ〉 = 0 (positivity).

If Tr[ρ2] = 1, the density operator is also idempotent and we call it pure, otherwise,
we call it mixed. The reasoning for the names is that for pure operators pi = 1, there-
fore there is no probability distribution of states, ρ being purely described by one |ψ〉.
Whereas for mixed operators we have a convex sum of states to describe the system,
a.k.a. a mixture of states.

Another important aspect of operators that is also valid for density operators is
that one may be able to diagonalize them. The form of the diagonalized density operator
is the spectral decomposition

ρ =
d

∑
k

λk |ϕk〉 〈ϕk| , (1.9)

where λk ∈ � is then the respective eigenvalues of the orthogonal basis |ϕk〉.

The description through density operators also allows for composite systems.
Taking, for example, the composite system (1.2), the correspondent density operator is

ρA,B = |φ〉 〈φ| =
(

∑
ij

cij |ψi〉 |ϕj〉
)(

∑
kl

c∗kl 〈ψk| 〈ϕl|
)

= ∑
ijkl

cijc∗kl |ψi〉 〈ψk| ⊗ |ϕj〉 〈ϕl| ∈ T (H = HA ⊗HB), (1.10)

which is a pure density operator, since ρA,B can be purely described by |φ〉. On the
other hand, a mixed composed density operator can be written as

ρA,B = ∑
ijkl

pijkl |ψi〉 〈ψk| ⊗ |ϕj〉 〈ϕl| , (1.11)

where pijkl cannot be decomposed as cijc∗kl, for example. The trace operation on com-
posite systems also have the properties of base invariance, cyclic permutation and
unitary trace. It is defined as:

Tr[ρA,B ] = ∑
mn

〈am| ⊗ 〈bn| ρA,B |am〉 ⊗ |bn〉 , (1.12)
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where {|am〉}({|bn〉}) are any basis of HA(HB) for the trace.

There is an additional definition for composite systems, though: the partial trace.
The partial trace is defined as taking the trace over only a part of the system. For
example, the partial trace over part A of ρA,B is

TrA[ρA,B ] = ∑
m
〈ψm| ρA,B |ψm〉 = ∑

mijkl
pijkl 〈ψm| (|ψi〉 〈ψk| ⊗ |ϕj〉 〈ϕl|) |ψm〉

= ∑
mijkl

pijkl 〈ψm|ψi〉︸ ︷︷ ︸
δmi

〈ψk|ψm〉︸ ︷︷ ︸
δkm

⊗ |ϕj〉 〈ϕl| = ∑
mjl

pmjml |ϕj〉 〈ϕl|

= ρB, (1.13)

where the basis {|ψi〉} for the trace was chosen for simplicity and the end result of a
partial trace is shown to be a density operator only on part B. Likewise,

TrB [ρA,B ] = ρA. (1.14)

With respect to the partial traces, the total trace can be written as

Tr[ρAB] = TrA[TrB [ρAB]] = TrB [TrA[ρAB]]. (1.15)

1.1.2 Measurement

The measurement process in quantum mechanics is described through the
action of Hermitian operators, then called observables, on states. The only possible
results of a measurement A = ∑d

i ai Ai, where Ai = |ai〉 〈ai| are projectors, upon
the state ρ = ∑k pk |ψk〉 〈ψk| are the eigenvalues of the said observable, and each
eigenvalue occurs with probability given by

pρ(ai) = Tr[Aiρ] = 〈ai| ρ |ai〉 = ∑
k

pk| 〈ai|ψk〉 |2. (1.16)

The state immediately after a measurement is performed collapses to

ρ → ρai =
AiρAi

Tr[Aiρ]
, (1.17)

where the denominator Tr[Aiρ] ensures normalization.

This is the standard presentation of quantum measurements, called Projective-
Valued Measurement (PVM). It is possible, however, to define generalized measure-
ments to require less restrictive operators than the projective ones. Namely, relaxing the
requirement of orthogonality and Hermiticity, the set of operators {Mm} needs only to
have a completeness relation

∑
m

M†
mMm = �. (1.18)
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With these operators, it is possible to describe the probability of obtaining the outcome
m when measuring in a system prepared in the state ρ:

pρ(m) = Tr[MmρM†
m], (1.19)

which collapses the state to

ρ → ρm =
MmρM†

m
Tr[MmρM†

m]
. (1.20)

Through the cyclic property of the trace, it is possible to write the probability as
Tr[M†

mMmρ] and then define
Em = M†

mMm, (1.21)

which are called the effects, clearly satisfying the completeness relation but also be-
ing Hermitian and positive, thus defining the more general Positive Operator-Valued
Measurement (POVM) � = {Em}m∈ΩE , where ΩE is the collection of all possible mea-
surement outcomes. Note that, if one requires that M†

m = Mm, M2
m = Mm, it all reduces

to the projective measurements definitions.

In fact, according to Neumark’s theorem [35], one realizes a POVM through
a projective measurement onto an auxiliary system, also known as ancilla, entangled
with the system. This means that instead of directly measuring the system A, one first
entangles it with an ancilla B and measures the ancilla with a PVM. From A’s point of
view, this is the same as performing a POVM.

Proof (finite case). Consider the system ρA and the ancilla |0〉B 〈0|B. To entangle both
systems, evolve the combined system with a joint unitary transformation UAB as follows

UAB (ρA ⊗ |0〉B 〈0|B)U†
AB = UAB ρ0 U†

AB = ρt, (1.22)

Then, perform a projective measurement K = ∑i kiKi = ∑i ki |ki〉 〈ki| onto the B part
PB

i = �A ⊗ KB
i . The probability of obtaining outcome ki is

pρt(ki) = Tr[PB
i ρt] = Tr

[
�A ⊗ KB

i (UAB ρ0 U†
AB)

]
= Tr

[
�A ⊗ |ki〉B 〈ki|B UAB (ρA ⊗ |0〉B 〈0|B) U†

AB
]

= TrA
[
〈0|B U†

AB |ki〉B 〈ki|B UAB |0〉B ρA
]

, (1.23)

where TrA is the partial trace over A and the cyclic property of the trace was used.
Define Mi = 〈ki|B UAB |0〉B, which implies M†

i = 〈0|B U†
AB |ki〉B, and Ei = M†

i Mi,
operators acting only in B, to get

pρt(ki) = TrA[M†
i MiρA] = TrA[EiρA]. (1.24)
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Since

∑
i

M†
i Mi = ∑

i
〈0|B U†

AB |ki〉B 〈ki|B︸ ︷︷ ︸
�

UAB |0〉B

= ∑
i
〈0|B U†

ABUAB︸ ︷︷ ︸
�

|0〉B = ∑
i
〈0|0〉B = �, (1.25)

this means (1.23) corresponds to the probability (1.19) for a POVM � = {Ei}i∈ΩE

measurement onto the state ρA: pρA(i).

Moreover, after the measurement is done, the state ρt collapses to

PB
i ρtPB

i
pρt(ki)

=
�A ⊗ |ki〉B 〈ki|B UAB (ρA ⊗ |0〉B 〈0|B)U†

AB �A ⊗ |ki〉B 〈ki|B
TrA[ρAM†

i Mi]

=
〈ki|B UAB |0〉B ρA 〈0|B U†

AB |ki〉B
TrA[ρAM†

i Mi]
⊗ |0〉B 〈0|B

=
MiρAM†

i
TrA[ρAM†

i Mi]
⊗ |0〉B 〈0|B , (1.26)

which, for part A, is exactly what is expected after a POVM measurement, as shown in
(1.20), concluding the proof that a projective measurement on an entangled ancilla B
corresponds to a POVM measurement on A. �

The proof given is a simplified version of the theorem’s complete general proof,
but it is enough to illustrate it for the purposes of this work.

1.1.3 Quantum Entropy

Entropy is one of those physical concepts that every physicist asked will answer
a different definition, usually dependent on their field of study. As this work is inserted in
the quantum field, we shall present here the quantum entropy definition, proposed by
von Neumann (from the original article [36], translated book in [37]). It states that the
entropy of a quantum state ρ = ∑d

k λk |ϕk〉 〈ϕk| is

S(ρ) := −Tr[ρ log ρ] = −
d

∑
k

λk log λk, (1.27)

where the λk are the eigenvalues of ρ. Here, it is defined that 0 log 0 ≡ 0, based on the
limit of the entropy for probabilities going to zero for limλk→0 λk log λk = 0.

The quantum entropy (or von Neumann entropy) is interpreted as a measure of
the observer’s ignorance about the quantum state of the system since, when a system
is exactly determined, i.e., it is a pure state, its entropy is S(ρ) = 0, aligning well with
the interpretation that then there is no subjective ignorance regarding the state. On the
other hand, if the system has an equal chance of being in each of the possible states,
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i.e., it is maximally mixed with λk = 1/d, its entropy reaches the maximum value log d,
aligning with the interpretation that the observer has maximum ignorance about which
of the possible states such system is in.

Some very useful properties of this entropy are:

1. Non-negativity: S(ρ) ≥ 0, equality holding iff ρ is a pure state;

2. Upper bound: S(ρ) ≤ log d, equality holding iff ρ is maximally mixed;

3. Invariance under unitary transformations: if UU† = U†U = 1, then S(UρU†) =

S(ρ);

4. Concavity: if ρ = ∑d
k λkρk, then S(∑d

k λkρk) ≥ ∑d
k λkS(ρk), equality holds if all the

ρk are the same.

Another essential definition is the von Neumann relative entropy, which is related
to how distinguishable two quantum states are, given by

S(ρ‖σ) := Tr[ρ log ρ]− Tr[ρ log σ] = −S(ρ)− Tr[ρ log σ] = −S(ρ)−
d

∑
j
〈ϕj| ρ log σ |ϕj〉

= − S(ρ)−
d

∑
j
〈ϕj| ρ |ϕj〉 log sj = −S(ρ)−

d

∑
jk
| 〈σj|ψk〉 |2λk log sj, (1.28)

where ρ = ∑d
k λk |ψk〉 〈ψk| and σ = ∑d

j sj |ϕj〉 〈ϕj| are the spectral decomposition of the
states. The relative entropy is also non-negative, being zero iff ρ = σ.

1.1.4 Non-selective Measurement

An important scenario for this work is in the case where a projective measure-
ment is performed but the outcome of the measurement is not recorded. This can be
understood as performing the measurement but summing for all the possible results,
collapsing the state to

ρ′ =
d

∑
i

AiρAi =
d

∑
i
〈ai| ρ |ai〉 |ai〉 〈ai| =

d

∑
i

Tr[Aiρ]Ai =
d

∑
i

pρ(ai)Ai, (1.29)

which is a non-selective measurement. One can construct this by putting ρ through a
non-selective quantum measurement map of the form

ΦA(ρ) =
d

∑
i

AiρAi. (1.30)

This map is completely positive trace-preserving (CPTP) and unitary, satisfying the
necessary properties for one:
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1. It can be written as ∑d
n Kn(·)K†

n, with Kn being Kraus operators 2 (implying positiv-
ity);

2. ∑d
n K†

nKn = 1 (implying trace preservation);

3. ΦA(�) = � (unitary).

The map clears the state from any quantum coherence (the presence of off-
diagonal terms) in its basis since it transforms the input state ρ into (1.29), which is in
the diagonal basis of A. It characterizes a system where there is no information on the
exact result of the measurement and as such, applying a map to the system can only
increase its entropy:

S(ΦA(ρ)) ≥ S(ρ). (1.31)

Proof. Since S(ρ‖ΦA(ρ)) = −S(ρ)− Tr[ρ log ΦA(ρ)] ≥ 0 and S(ρ) ≥ 0, S(ΦA(ρ)) ≥ 0,
it is enough to prove that −Tr[ρ log ΦA(ρ)] = S(ΦA(ρ)) to satisfy the relation. To do
this, apply the completeness relation ∑i Ai = �, followed by the idempotency Ai = A2

i
and finally the cyclic property of the trace:

−Tr[ρ log ΦA(ρ)] = − Tr
[
∑

i
Aiρ log ΦA(ρ)

]
= −Tr

[
∑

i
Aiρ log ΦA(ρ)Ai︸ ︷︷ ︸

Ai log ΦA(ρ)

]

= − Tr
[
∑

i
AiρAi log ΦA(ρ)

]
= −Tr[ΦA(ρ) log ΦA(ρ)]

= S(ΦA(ρ)), (1.32)

thus completing the proof. �

One can make successive non-selective measurements by applying sequential
maps:

ΦBA(ρ) ≡ ΦB(ΦA(ρ)) =
d

∑
j

BjΦA(ρ)Bj

=
d

∑
ji

Bj AiρAiBj

=
d

∑
ji

Tr[Aiρ]︸ ︷︷ ︸
pρ(ai)

Tr[AiBj]︸ ︷︷ ︸
p(bj|ai)

Bj. (1.33)

This type of non-selective measurement highlights how performing a measure-
ment changes the system in quantum mechanics – even if no outcome is recorded or
read.
2 Kraus operators have a completeness relation (seen in item 2) but are neither idempotent nor

orthogonal, just like the {Mi} operators used to describe POVMs [38].
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1.1.5 Reality

One interesting relation regarding the non-selective measurement map intro-
duced above is the definition of reality proposed by Bilobran and Angelo in [39]. More
specifically, the authors define what it takes for a physical quantity to be an element of
reality of a state:

Definition 1.1. The observable A = ∑i ai Ai = ∑i ai |ai〉 〈ai| ∈ L(H) is an element of
reality for a state ρ ∈ T (H) iff

ΦA(ρ) = ρ. (1.34)

This definition is based on the idea that after a measurement if performed,
regardless of if the outcome is recorded or not, there is an element of reality for the
quantity measured in the system. From this idea, it is straightforward to see that for a
state such as (1.34), A is already an element of reality since a second measurement of A
would not change the state, only reveal this pre-existing reality: ΦA(ρ) = ΦA(ΦA(ρ)) =

∑ij Ai AjρAj Ai = ∑i AiρAi = ΦA(ρ).

A quantifier for the violation of the reality of an observable in a system was
proposed in the form of

IA(ρ) := S(ΦA(ρ))− S(ρ) = S(ρ‖ΦA(ρ)), (1.35)

where the relation Tr[ρ f (ΦA(ρ))] = Tr[ΦA(ρ) f (ΦA(ρ))], with f (·) being any function,
was used [32]. Since the relative entropy is non-negative, being only equal to zero if
the elements being compared are the same, this insures that the only case where no
violation of reality is declared is for ΦA(ρ) = ρ, where we then say that ρ is a state of
A-reality, or that ρ is A-real.

1.1.6 The Bloch Representation

A practical representation for two-dimensional quantum systems is the Bloch
sphere, which allows us to write operators as vectors on a three-dimensional sphere by
parameterizing the state vectors coefficients by the angles θ ∈ [0, π] and φ ∈ [0, 2π].

A two-dimensional pure state, the qubit, can be generally written in the so-called
computational basis as the vector

|ψ〉 = a |0〉+ b |1〉 , (1.36)

where |a|2 + |b|2 = 1 are the normalized coefficients. Therefore, we parameterize them
as a = cos(θ/2) and b = eıφ sin(θ/2) and map the state in a sphere such as the one
shown in Figure 1.
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Figure 1 – Geometrical representation for the qubit, where it is possible to map state vectors as
a vector therein. Illustration adapted from Ref. [34].

Writing (1.36) in the pure density operator format, one gets

ρ = |ψ〉 〈ψ| =
(
|a|2 ab∗

a∗b |b|2

)
=

1
2

(
1 + cos(θ) e−ıφ sin(θ)
eıφ sin(θ) 1 − cos(θ)

)
, (1.37)

where a∗ and b∗ are the complex conjugates of a and b. Since the Pauli matrices
σ = (σ1, σ2, σ3), given by

σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −ı
ı 0

)
, σ3 = σz =

(
1 0
0 −1

)
, (1.38)

alongside the identity matrix form a basis for a two-dimensional system, we can then
write the density operator for a two-dimensional general mixed system as

ρ =
1
2
(1 + r · σ) =

1
2

(
1 + rz rx − ıry

rx + ıry 1 − rz

)
, (1.39)

where r = (r sin[θ] cos[φ], r sin[θ] sin[φ], r cos[θ]) is a vector in the Bloch sphere such
that ‖r‖ =

√
r · r ∈ [0, 1]. It is clear from its form that if ‖r‖ = 0, the state is maximally

mixed corresponding to the central point of the Bloch sphere; if ‖r‖ = 1, the state is
pure (note that in this case, the state given in (1.39) would be equal to the one in (1.37)),
lying on the shell of the sphere; and so any state for which 0 < ‖r‖ < 1 is simply a
mixed state laying somewhere within the sphere.

On this same basis, it is possible to write projectors (1.5) as

Bj =
1
2
( + bj · σ), (1.40)

where the completeness relation fixes b1 + b2 = 0 ⇒ b1 = −b2, so that we can write
bj = (−1)jb̂. A PVM B = ∑j bjBj with null trace (e.g., spin observables) also implies
that the eigenvalues are −1 and 1, so that we can ultimately write the observable as
B = b̂ · σ.
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The projectors of the PVM rest on the shell of the Bloch sphere, thus forming a
line crossing the sphere through the middle (a diameter) that represents the observable.
Measuring in this setting means projecting the state vector on this line.

1.2 GENERIC PROBABILISTIC THEORIES

As the title of this dissertation suggests, we are interested in other not-necessarily
quantum mechanic elements to achieve a theory-independent definition. Here we high-
light the definition of probabilities and a classical version of the relative entropy.

1.2.1 Probabilities

Some notion of classical probability theory is required for this work, albeit
nothing very rigorous. This Subsection is based mainly on the references [29, 32, 40,
41].

We say that a random variable X that can assume i values when measured
in a system E has a sample space S , consisting of all the possible xi results. The
possible values as well as combinations of them are called events, for example, if
X = {1, 2, 3, ..., xi}, each xi is an event, but also, every even result can be an event or
any grouping desired. The probability of a certain xi outcome happening is, then, pE (xi),
satisfying the following conditions

1. 0 ≤ pE (xi) ≤ 1;

2. pE (S) = 1, equivalently written in the discrete case as ∑n
i pE (xi) = 1 or, some-

times, pE ({xi});

3. If the events Ei are mutually exclusive, the probability of at least one of them
occurring is pE (

⋃
i Ei) = ∑i pE (Ei).

These are the axioms of the modern probability theory, but there are some other
important propositions:

1. For any two events A and B, pE (A ∪ B) = pE (A) + pE (B)− pE (A ∩ B). The prob-
ability pE (A ∩ B) is commonly written as pE (A, B), meaning the joint probability
of the events happening together;

2. For three events A, B and C, pE (A ∪ B ∪ C) = pE (A) + pE (B) + pE (C) −
pE (A, B)− pE (A, C)− pE (B, C) + pE (A, B, C), and so on for more events;

3. If the events are independent, pE (A, B) = pE (A)p(B);
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4. The conditional probability of an event A occurring, given that the event B has
occurred, is pE (A|B) := pE (A,B)

pE (B) .

These definitions and the common basic logic of probabilities are enough for
the purpose of this dissertation, for more in-depth information we refer to [40, 41].

1.2.2 Divergence

Sometimes, it is important to describe how distinguishable are two probability
distributions, pE ({xi}) and qE ({xi}), for the same variable. This can be done by means
of the Kullback-Liebler divergence [42], which is the classical version of the relative
entropy (1.28) and is given by

D(pE ({xi})‖qE ({xi})) =
d

∑
i

pE (xi) log
pE (xi)

qE (xi)

=
d

∑
i

pE (xi) log pE (xi)−
d

∑
i

pE (xi) log qE (xi)

= − H(pE {xi})−
d

∑
i

pE (xi) log qE (xi) ≥ 0, (1.41)

where H(p{xi}) = −∑d
i p(xi) log p(xi) ≥ 0 is the Shannon entropy [43], related to the

ignorance about the outcome of a variable, similarly to how the von Neumann entropy
is also related to ignorance. In fact, Shannon entropy is a generalization of the von
Neumann entropy. The divergence is equal to zero iff the two probability distributions
are the same, i.e., pE ({xi}) = qE ({xi}).



Part I

Measurement Incompatibility
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2 INCOMPATIBILITY DEFINITIONS

Many courses in quantum mechanics avoid discussing in depth the concept
of incompatibility, with some textbooks only tip-toeing around the subject without even
using the word “incompatible” [29]. Most of the time, the discussion is taken a step
forward straight to the consequences of the incompatible nature of quantum mechanics.
There is a good reason for that: the definition of incompatibility is not at all unanimous,
the lack of a classical counterpart makes it so that even the interpretation surrounding it
is not on common ground, and the mathematical tools for each definition vary from quite
simple to very tortuous. Owing to that, this chapter is reserved for this pillar of quantum
weirdness and we will approach the subject from a somewhat chronological order but
reserving the right to discuss the simpler forms earlier.

2.1 COMMUTATION

The commutator is a relation between two operators acting on the same Hilbert
space H, A and B ∈ L(H), defined as

[A, B] ≡ AB − BA. (2.1)

We say that A and B commute if [A, B] = 0 and, if two observables commute, we say
they are compatible. Thus, if [A, B] = 0, A and B are incompatible.

This is a straightforward, raw, mathematical definition for the incompatibility of
observables. However, the connection with our physical intuition is subtler, as the relation
(2.1) does not form an observable (it’s not Hermitian) and thus cannot be measured
directly. For this discussion, consider the following theorem [29, 44]:

Theorem 2.1 (Simultaneous Diagonalization). Suppose A and B are two observables.
Then [A, B] = 0 if there exists an orthonormal basis such that both A and B are diagonal
with respect to that basis. We say that A and B are simultaneously diagonalizable in
this case.

Proof. Consider the compatible pair A and B. Now, take the orthonormal basis for which
A is diagonal given by |ai〉. We have 〈aj| [A, B] |ai〉 = 0, but

〈aj| [A, B] |ai〉 = 〈aj| AB |ai〉 − 〈aj| BA |ai〉 = (aj − ai) 〈aj| B |ai〉 = 0,

which implies that, for ai = aj, 〈aj| B |ai〉 = 0. Therefore B is diagonal in the same
orthonormal basis that diagonalizes A. Analogously, the same could be done taking
first the orthonormal basis that diagonalizes B.
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Now, consider that A and B are simultaneously diagonalizable in the basis |ai, bi〉
so that A |ai, bi〉 = ai |ai, bi〉 and B |ai, bi〉 = bi |ai, bi〉. This means that AB |ai, bi〉 =

Abi |ai, bi〉 = aibi |ai, bi〉 but also BA |ai, bi〉 = Bai |ai, bi〉 = aibi |ai, bi〉, and therefore
AB = BA. �

In addition to the simultaneous diagonalization theorem, consider the collapse
postulate of quantum mechanics [30]:

Postulate (Collapse). If the measurement of the observable A = ∑i ai Ai on the system
in a state |ψ〉 gives the result ai, the state of the system immediately after the measure-
ment is the normalized projection |ψ〉 → |ψ′〉 = Ai|ψ〉√

〈ψ|Ai|ψ〉
of |ψ〉 onto the eigensubspace

associated with ai.

Hence, if two observables commute, the shared diagonal basis makes it so that
applying either observable will collapse the state to a basis that allows for the attainment
of the same eigenvalues for both observables. This indicates that the measurement
could be performed regardless of order and simultaneously in the same system without
any formal restriction.

The aforementioned non commutability also has an impact on the acquisition
of information about the system. To enlighten this idea, take now, as an example, the
qubit state |ψ〉 = 1√

2
(|0〉 − |1〉). If one makes a spin measurement in the z direction,

given by Sz =
h̄
2 (|0〉 〈0| − |1〉 〈1|), the state after obtaining the outcome + h̄

2 would simply
become the eigenstate of Sz: |ψ′〉 = |0〉. If then one measures the non-commuting
(incompatible) spin in the x direction, given by Sx = h̄

2 (|+〉x 〈+|x − |−〉x 〈−|x), where
|±〉x = 1√

2
(|0〉 ± |1〉), and obtained −h̄/2 as a result, the state would become |ψ′′〉 =

|−〉x = 1√
2
(|0〉 − |1〉). This is rather odd because the superposition in the z direction has

been restored, indicating that if one tried to measure again in this direction, obtaining
− h̄

2 as a result would be possible (it is, in fact, a possibility of 50%), even though one
had previously obtained + h̄

2 for the same system! We say that measuring the x-spin,
in a way, destroys the information regarding the z-spin, which is then an expression of
measurement incompatibility.

This interpretation of the incompatibility of measurements as information de-
struction is a very common one, as it can be derived from these two very fundamental
elements of quantum mechanics (the Theorem 2.1 and the collapse postulate).

2.2 UNCERTAINTY RELATIONS

Historically, the Uncertainty Principle is derived considering the wave function
of a free particle at t = 0, ψ(x, 0) = 1√

2πh̄

∫
ψ̄(p)eıpx/h̄dp. With the form of the wave
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packet and the Fourier Transform relation with ψ̄(p), it is possible to achieve the relation
between the widths of the wave packet, Δx and Δp:

ΔxΔp � h̄. (2.2)

This relation, commonly known as Heisenberg’s Uncertainty Principle [1], tells us that
there is a limit on the spreading of the wave packet with regard to the position and
momentum. Since Δx and Δp are related to the width of the peak around x0 and p0, the
initial positions and momentum, respectively, as we try to determine the point x0 to a
very narrow uncertainty, Δp needs to then increase in width. Or, as is usually put, one
cannot determine both position and momentum of a particle to an arbitrary degree of
accuracy. It is implied, then, that such a limit on the uncertainties is a physical restriction
(or, at least, pertaining to the physical theories for which these mathematical conditions
applies1) that cannot be overcome.

The uncertainty equation (2.2) can be generalized using the braket formalism
of quantum mechanics [9] for any two observables acting on the same Hilbert space H.
For this, we define the operator

ΔA ≡ A − 〈A〉, (2.3)

where 〈A〉 = 〈ψ| A |ψ〉 = Tr[Aρ] is the expectation value of the observable A. We can
then write the dispersion of A, also known as mean square deviation or variance, given
by

〈(ΔA)2〉 = 〈A2 − 2A〈A〉+ 〈A〉2〉 = 〈A2〉 − 〈A〉2. (2.4)

Using these definitions alongside the Cauchy-Schwarz inequality [45, 46] with another
observable B, we obtain

〈(ΔA)2〉〈(ΔB)2〉 ≥ |〈ΔAΔB〉|2. (2.5)

Noting that

ΔAΔB =
1
2
[ΔA, ΔB] +

1
2
{ΔA, ΔB}, (2.6)

where [ΔA, ΔB] = [A, B] is the commutator (2.1), an anti-Hermitian operator which
always has purely imaginary expectation value, and {ΔA, ΔB} = ΔAΔB + ΔBΔA is the
anti-commutator, which is Hermitian and has purely real expectation value. We have,
then,

|〈ΔAΔB〉|2 =
1
4
|〈[A, B]〉|2 + 1

4
|〈{ΔA, ΔB}〉|2. (2.7)

1 It is possible to derive relations between conjugate variables of this type for the waves in the Elec-
tromagnetic theory. In quantum mechanics, however, these wave functions carry information about
particle behaviors, which makes such uncertainty relations “weirder”, in the sense that classically we
wouldn’t expect material things to have limits on the certainty of position and momentum [30].
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This allows us to write (2.5) as

〈(ΔA)2〉〈(ΔB)2〉 ≥ 1
4
|〈[A, B]〉|2 + 1

4
|〈{ΔA, ΔB}〉|2. (2.8)

Often, though, authors like [44, 47, 48] will omit the term for the anti-commutator, leaving
the relation as

〈(ΔA)2〉〈(ΔB)2〉 ≥ 1
4
|〈[A, B]〉|2. (2.9)

The reasoning for this omission (when provided) is that it can only make the lower bound
stronger, as in order to satisfy (2.8), surely (2.9) would have to be satisfied.

The uncertainty relations are interesting as they provide a lower bound for some-
thing that one can actually measure in the laboratory: the dispersion of the observables,
which is simply the statistical dispersion associated with the several measurements of a
said observable [29], as opposed to the commutator, which is not an observable at all.
Both definitions of incompatibility are related, though, as it is obvious from the right-hand
side of Equation (2.9) that if one has commuting observables, the lower bound is zero
and then quantum states exist implying arbitrarily low dispersion (high determinacy) for
such observables, having no destruction of information.

2.3 JOINT MEASUREABILITY

The physical interpretation of the uncertainty principle is highly debated [13,
14], usually reduced to two possibilities:

1. Uncertainty is related to the preparation of the system, which is the idea that it is
impossible to prepare a state that has sharply localized both position probability
distribution and momentum probability distribution;

2. Uncertainty is related to the measurement process, the idea that one cannot imple-
ment simultaneous measurements without disturbing the probability distributions,
regardless of the state input.

The first interpretation is straightforward and to implement such a verification of the un-
certainty on the preparation, one needs only to perform several rounds of measurement
of each observable on copies of the same state to obtain the variance in the results. The
second interpretation, though, requires the measurement of the observables in the same
state and can be verified through the possibility of obtaining both statistical distributions
with the same apparatus or through comparing the distributions of the results depending
on the order of measurement. In the double-slit experiment, for example, this could
mean comparing the distribution of position found normally with the distribution found if
one tries to detect the passage (a detection of momentum) through one of the slits.
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To explain the impossibility of simultaneous measurement on the second type
of interpretation the idea that the observables themselves carried inherent uncertainty
arose [15]. To represent this uncertainty within observables in the quantum formalism it
is used the concept of unsharp observables, which carry this uncertainty in the form of a
“fuzziness”, having eigenvalues in a range of the interval [0, 1] instead of the dichotomous
0 or 1 of projective observables [33].

For the definition of unsharp observable, consider first the PVM observable
A where A = ∑i∈ΩA

ai Ai, with ΩA being the set of all measurement outcomes of A.
We will, from now on, also refer to this type of projective measurement as a sharp
measurement.

To define an unsharp observable we simply add a noise parameter (μ, for
example) to the sharp observables in the form:

Aμ
i ≡ (1 − μ)

�

d
+ μAi, μ ∈ [0, 1], (2.10)

where d is the dimension of the Hilbert space. Such noisy operator can be counted,
actually, as the i-th effect of the generalized observable, the POVM � ≡ {Aμ

i }i∈ΩA ,
introduced in Subsection 1.1.2.

With the notion of unsharp observable and POVMs, we can define joint measur-
ability [33, 49]:

Definition 2.2. Two POVMs � = {Aμ
i }i∈ΩA and � = {Bν

j }j∈ΩB can be jointly measured
if there exists a third POVM � = {Gμν

i,j } such that

Aμ
i = ∑

j
Gμν

i,j , ∀μ, Bν
j = ∑

i
Gμν

i,j , ∀ν. (2.11)

The POVM � is called a joint observable or parent POVM of � and �.

Incompatible observables here, therefore, would be the set of POVMs that
cannot be jointly measured. The interpretation of this definition resides in the idea that
if observables are incompatible it is impossible to construct a single device that could
implement both measurements simultaneously. In this structure, sharp observables are
simply a special case for μ = 1, and so the projective measurements are not lost.

It is important to notice that this construction allows for observables usually
deemed incompatible to be jointly measured given enough noise is added. To illustrate
this, consider the unsharp spin-z and spin-x observables:

Sμ

i|x =
1
2
(�+ (−1)iμσx), (2.12)

Sμ

j|z =
1
2
(�+ (−1)jμσz), (2.13)
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where 0 < μ ≤ 1 is the noise parameter and i, j ∈ 0, 1. A possible joint observable of
them is

Gμ
i,j =

1
4
(�+ (−1)iμσx + (−1)jμσz), (2.14)

Clearly,

Sμ

i|x = ∑
j

Gμ
i,j, (2.15)

Sμ

j|z = ∑
i

Gμ
i,j. (2.16)

To completely fulfill definition (2.11), Gμ
i,j needs to be a POVM, thus, positive, which only

happens for μ ≤ 1/
√

2. Hence, for noise parameters lower than (or equal to) 1/
√

2, the
noisy spin observables are jointly measureable and therefore compatible! This is also
a good example of how two observables that do not commute can be approximately
compatible (in the sense that their unsharp versions are approximations) according to
this definition.

2.4 NONDISTURBANCE

In order to focus on the interpretation of measurements disturbing quantum
systems, it is possible to formally define nondisturbance. This is also done for POVMs
and includes the idea of sequential measurement, where one compares statistical
distributions for an observable with and without the previous measurement of some
other observable to then conclude on their ability to disturb the system [14].

Besides POVMs, in order to define nondisturbance it is necessary to intro-
duce the concept of instruments [22]. An instrument which implements a POVM � =

{Ax}x∈ΩA is a collection of completely positive linear maps IΛ(ρ) ≡ {Ix(ρ)} ∈ T (H),
where Ix(ρ) is the un-normalized state after obtaining x as the measurement outcome
when the instrument IΛ implements � in the system state ρ. We say that an instrument
IΛ implements � when the condition

I†
x (�) = Ax, ∀x (2.17)

holds. The probability of the outcome x occurring is Tr[Ix(ρ)] = Tr[ρAx]. If one ignores
the measurement outcome, though, the instrument IΛ transforms ρ into

IΛ(ρ) = ∑
x
Ix(ρ). (2.18)

Notice that, since ∑x Ax = �, we have ∑x Tr[Ix(ρ)] = ∑x Tr[ρAx] = 1, and so
Tr[IΛ(ρ)] = 1. Therefore, IΛ(ρ) corresponds to a CPTP map, introduced in Subsection
1.1.4.
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Clear from its formulation, many different instruments correspond to the same
observable. An example of an instrument implementing A is the Lüders instrument [50],
given by

IL
x (ρ) = A1/2

x ρA1/2
x . (2.19)

Now we are able to introduce the definition of nondisturbance.

Definition 2.3. Given two POVMs � = {Ax}x∈ΩA and � = {By}y∈ΩB , we say � can
be measured without disturbing � if there exists an instrument that implements � and
for which

Tr[IΛ(ρ)By] = Tr[ρBy] ∀ρ, y. (2.20)

Equation (2.20) indicates that the measurement statistics of � are unaffected
by the measurement of A, since IΛ(ρ) implements those measurements of � upon
ρ. As an example, consider the commutative pair of observables [Ax, By] = 0 and the
implementation of � via the Lüders Instrument, yielding

Tr[IL
ΛBy] = Tr

[
∑
x

A1/2
x ρA1/2

x By

]
= ∑

x
Tr[AxρBy] = Tr[ρBy], (2.21)

where the cyclic property of the trace and completeness property of Ax were used,
showing that when the observables commute, one cannot disturb the other’s statistics.
In fact, this is true for every pair of observables, meaning that whenever two observables
commute there is no instrument that could lead to a violation of (2.20). The converse is
only true for two-dimensional systems.

The relationship showed between commutativity and nondisturbance can be
explored for other definitions of incompatibility. For example, if an instrument implements
� and does not disturb �, then � and � are jointly measurable, as one could write
a mother-POVM in the form of Gx,y = I†

x (By). Therefore, nondisturbance implies joint
measurability, but the converse is not true.

From these two relationships follows a third one: if commutativity is respected,
so is joint measurability. And lastly, if the measurements are sharp, all three definitions
agree. All of these relationships are illustrated in Figure 2.

Bringing the discussion on nondisturbance to an end, it is straightforward to
see the connection between nondisturbance and loss of information, as a possible
interpretation of what constitutes the disturbance is precisely whether or not there is
loss of information affecting the probability distribution of an observable if first it was
implemented another observable on the state.
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Figure 2 – Figure displaying the relationship between nondisturbance, joint measurability, and
commutativity. The one-sided arrows indicate one-way relationships and the two-
sided arrows indicate two-way relationships and their conditions. Diagram taken from
Ref. [33].

2.5 TAKEAWAY MESSAGE

In this chapter we hope to have made the following points:

• Commutativity is well established as an incompatibility definition for projective
observables. Albeit restrictive, observables that violate commutativity have been
extensively used experimentally, like in the loophole-free Bell test [7];

• All of the definitions presented in this Section have some relationship with com-
mutativity, being it explicit, like the uncertainty relations, or implicit by requiring
restrictions to reduce to commutativity (see Figure 2);

• None of the incompatibility proposals put the state itself in high regard. The
uncertainty relation may be dependent on the state, e.g., for the spin operators
[Si, Sj] = εijkıh̄Sk, where εijk is the Levi-Civita symbol2, which implies that the
uncertainty relation would depend on 〈Sk〉 = Tr[Skρ], but that is not always the
case, as for example, for [X, P] = ıh̄. The nondisturbance definition explicitly
features the state, but the ∀ρ requirement essentially nullifies its effect on the
overall definition.

2 The Levi-Civita symbol is defined as εijk =

⎧⎨
⎩

+1 if (ijk) is an even permutation,
−1 if (ijk) is an odd permutation,

0 otherwise.



Part II

Context Incompatibility
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3 THE MSA CONTEXT COMPATIBILITY

After presenting many incompatibility definitions, the reader may have noticed a
trend: the focus on the measurement, whether it is projective measurements or POVMs.
This focus is understandable considering that early works such as Heisenberg’s [1]
noticed the uncertainty relation between position and momentum – no sight of the state
itself on the final equation. However, works such as [23] have argued that considering
the state may be more intuitive to the construction of an incompatibility notion since it’s
well-known that such an effect vanishes on macroscopic systems, e.g., heavy bodies. It
seems reasonable, then, to require that for the same set of measurements a change
in the system being measured from a quantum regime to a classical one suffices in
making the measurements compatible. Ergo, a definition that included the state itself
and not only the observables was proposed: the Context Incompatibility, which this Part
is reserved for presenting.

3.1 CONTEXT, INFORMATION, AND PROTOCOL

A context is defined as the set � = {ρ, A, B} ⊂ L(H) formed by a state
ρ ∈ T (H) and observables A = ∑d

i ai Ai = ∑d
i ai |ai〉 〈ai|, B = ∑d

j bjBj = ∑d
j bj |bj〉 〈bj| ∈

L(H), all acting on the same Hilbert space. Note that this is initially defined only for
projective observables, instead of the generalized POVMs. This is a choice made by
the authors considering Neumark’s Theorem (original [35], found in English in [51, 52]),
which reads that any POVM can be realized by introducing an auxiliary system (also
known as ancilla), performing a unitary transformation on the combined system and
then making a projective measurement on the ancilla.

Consider now the protocol depicted in Figure 3, where Alice prepares a state ρ

with information content given by

I(ρ) = log d − S(ρ), (3.1)

where S(ρ) is the von Neumann entropy of ρ and log d is the maximum entropy pos-
sible for a d-dimensional state. After measuring A without registering the result, Alice
transforms the state into

ΦA(ρ) =
d

∑
i=1

AiρAi =
d

∑
i=1

pρ(ai)Ai, (3.2)

where pρ(ai) = Tr[ρAi] and ΦA(ρ) is the non-selective measurement map (1.30).
Consequently, Alice reduces the information content to

Ii ≡ I(ΦA(ρ)) = log d − S(ΦA(ρ)) = log d − H({pρ(ai)}), (3.3)
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Figure 3 – Depiction of the leakage detection protocol for a quantum communication channel,
showcasing on the left the non-selective measurement made by Alice ΦA(ρ) with
information content Ii illustrated by the biggest green stripe. This is followed by the
non-selective measurement on the middle that represents the interference of a spy
on the system, Eve, collecting the information amount IC (smallest green stripe) and
sending out the state ΦBA(ρ) with respective information content I f , which Bob will
receive on the right. Adapted figure from Ref. [23].

where H({pρ(ai)}) = −∑d
i pρ(ai) log pρ(ai) is the Shannon entropy of the probability

distribution {pρ(ai)}. Then, Alice sends this state to Bob, who expects to receive
Ii information resource, as prearranged with Alice. That is, of course, if there is no
information leakage.

Suppose now that there may be an eavesdropper in the system, Eve, attempt-
ing to steal information from the communication channel through the non-selective
measurement of B. She might do it through a unitary transformation U ∈ L(H⊗HE )

that entangles her apparatus, E , with the system that left Alice’s laboratory, ΦA(ρ).
Ultimately, the difference between the information content arriving at (Ii) and leaving
(I f ) Eve’s lab, therein defined as the consumed information IC, is

IC := Ii − I f = I(ΦA(ρ))− I(ΦBA(ρ)) = S(ΦA(ρ)‖ΦBA(ρ)), (3.4)

where the relation Tr[ρ f (ΦA(ρ))] = Tr[ΦA(ρ) f (ΦA(ρ))], with f (·) being any function,
was used to validate the relation S(ΦA(ρ))− S(ρ) = S(ρ‖ΦA(ρ)) [32]. Hence, if Bob
analyzed IC, he would discover the status of leakage on the channel. The context
incompatibility definition based on this protocol is then as follows:

Definition 3.1. Context incompatibility is the resource encoded in a context =

{ρ, A, B} that allows one to test the safety of a communication channel against informa-
tion leakage. Quantified via IC = S(ΦA(ρ)‖ΦBA(ρ)), it is operationally related to the
amount of information subtracted from the system upon an external measurement.

If Bob finds IC = 0, the conclusion would be that there was no leakage
on the channel. From the property of the relative entropy, we have that IC = 0 iff
ΦA(ρ) = ΦBA(ρ). In its turn, ΦA(ρ) = ΦBA(ρ) for the following cases:
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1. [A, B] = 0 ∀ρ, meaning that the operators share the same set of eigenstates;

2. ρ = �/d ∀A, B, meaning the state has no off-diagonal terms, i.e., no quantum
probabilities, behaving essentially like a classical state [31];

3. ρ = Bj for A, B forming mutually unbiased bases (MUBs) [53], i.e., | 〈ai|bj〉 |2 = 1
d .

These are the cases for compatible contexts according to this definition, which we will
also refer to, from now on, as Martins-Savi-Angelo (MSA) definition.

In the search for a context that reduces MSA incompatibility definition to a
measurement incompatibility, the authors found that if � = {Ak, A, B}, with ρ being
an eigenstate of A, then the quantifier would lose its dependence on the initial ρ, with
compatibility depending only on the choice of measurements. Ergo, measurement
compatibility is contained in this definition.

3.2 CRITICISM

Following the publication introducing the MSA context incompatibility definition,
some relevant criticism arose, namely Ref. [24]. The main criticism of this reference
is that the definition does not consider generalized measurements. They especially
criticized this as a restriction to the third agent, Eve, who, in the condition of a spy,
should be described as generally as possible. This is, of course, fair. Mainly because
the MSA definition cannot be trivially generalized for POVMs, requiring, as they have
shown, the introduction of instruments – which brings its own array of problems to the
definition, including the loss of compatibility claim for essentially classic systems.

Hence, they formulated a generalization of the MSA definition as follows: now
Alice performs a POVM, �, on a quantum state ρ ∈ T (H) using the �-compatible
instrument I′

�
= {Φ�,x}, such that Λ′

�
= ∑x Φ�,x, generating the ensemble E =

{px, ρx}, where px = Tr[Φ�,x(ρ)] and ρx =
Φ�,x(ρ)

px
. This ensemble has information

content given by the Holevo bound [54]:

χ(ρ, I′
�) = S(Λ′

�(ρ))− ∑
x

pxS(ρx). (3.5)

Similarly, Eve performs I′
�

= {Φ�,y}, such that Λ′
�

= ∑y Φ�,y, generating E� =

{px, Λ′
�
(ρx)}. The information remaining afterward is then

χ(ρ, I′
�, I′

�) = S(Λ′
�(Λ

′
�(ρ)))− ∑

x
pxS(Λ′

�(ρx)). (3.6)

Bob, expecting information χ(ρ, I′
�
), now receives χ(ρ, I′

�
, I′
�
). The information
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leakage is then measured as

IH
C (ρ, I′

�, I′
�) = χ(ρ, I′

�)− χ(ρ, I′
�, I′

�)

= S(Λ′
�(ρ))− S(Λ′

�(Λ
′
�(ρ))) + ∑

x
pxS(Λ′

�(ρx))− ∑
x

pxS(ρx). (3.7)

Considering that Alice, trying to use a communication channel, would give pref-
erence to ensembles with maximally accessible information, a.k.a., maximum χ(ρ, I′

�
);

and that Eve, as a spy, would try to get as much information with as little leakage as
possible to avoid detection, a.k.a., minimum IH

C (ρ, I′
�

, I′
�
), the definition is thus given:

Definition 3.2. Context incompatibility is the resource encoded in a context � =

{ρ,�,�} that allows one to test the safety of the channel against information leak-
age. This resource is quantified via I(�) = IH

C (ρ, I�,max, I�), where I�,max is the
�-compatible instrument that maximizes χ(ρ, I�). Operationally, it is the proper infor-
mation leakage in the channel caused by an external measurement on the state.

For this definition, compatible contexts are the ones for I(�) = 0, which
happens whenever the observables commute, but not for maximally mixed states
ρ = �/d. This differs in a significant way from the MSA definition, especially argument-
wise: the basis for proposing an incompatibility of physical contexts was precisely that
for essentially classical states, like ρ = �/d, there should not be incompatibility.

Furthermore, an additional point of critique worth highlighting is that the MSA
definition and this generalized measurement definition are both proposed entirely in
a quantum mechanical framework. This is not necessarily a problem, but it is another
restriction implied in the definitions.

3.3 TAKEAWAY MESSAGE

Some important remarks on this chapter are:

• The MSA definition is innovative in the manner it included the state in the century-
old conversation around incompatibility;

• The MSA definition of context incompatibility is based on a leakage protocol, which
has the advantage of allowing an easy translation into resource theory, but the
disadvantage of further constraining the framework;

• The definition succeeds in including expected cases for compatibility: commutativ-
ity (which it is also shown that their quantifier reduces to for specific choices of
state), and the essentially classically behaving state;

• It is not free of criticism, especially in its lack of generality.



Part III

The Proposal
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4 THEORY-INDEPENDENT CONTEXT INCOMPATIBILITY PROPOSAL

In the previous chapter, we argued the importance of including the state in the
definition of incompatibility based on how it vanishes for classical states. Moreover,
the definitions presented thus far have all been strictly quantum – quantum states,
quantum observables, quantum entropies, etc. In forethought of post-quantum theories,
like the ones hinted to exist by the open questions of quantum mechanics and by
the realization there exists correlations that respect relativity theory (in the form of
the no-signaling theorem) but are not constrained to quantum theory and still violate
Bell-type inequalities [26], produce steering [27] and could be used to generate better
than quantum key distribution protocols for cryptography tasks [28], we were driven
to search for a context incompatibility definition that is based on more fundamental
elements, entirely independent of any theory’s particular formalism.

In order to do this, we concluded that basing the definition on probabilities was
reasonable, as it also could be applied to the theory we know to present incompatibility
– quantum mechanics. Furthermore, with the focus on a probabilistic approach, it is
sensible to not restrict ourselves to a single realization with a well-defined output,
consequently leading to the use of non-selective measurements, where the exact output
is not specified.

On that account, this Part is reserved for presenting the proposal of a theory-
independent context incompatibility definition, a case study, quantifiers, and further
explorations.

4.1 DEFINITION

There is a concept of probability in many physical theories, with quantum
mechanics itself being regarded by some as strictly probabilistic. As such, an attempt at
a completely general incompatibility statement based on probabilities seems appropriate.
In order to propose the aforementioned statement, we also consider that it is possible to
define non-selective measurements in any theory. In quantum mechanics, for example,
they are given by (1.30), but a definition for a generic theory could be achieved through
the idea of “omitting” or “forgetting” the result of a measurement. In terms of probabilities,
it could look something like measuring the generic measurable physical quantity Y =

{yj} in a state E , which characterizes the preparation of the system, with a probability of
obtaining yj given by pE (yj). If a measurement of another generic measurable physical
quantity X = {xi} had been done in this system, with outcome xi, the probability of
obtaining yi would now be written as pE (yj|xi). The omission or forgetting the result of
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the measurement of X can be accounted for in this system through the multiplication
of pE (yj|xi) by the probability of obtaining the specific xi in the first place, pE (xi), and
summing for all the possible outcomes of X , as Equation (4.1) shows:

pE (yj)
xi−→ pE (yj|xi)

omission−→
d

∑
i

pE (yj|xi)pE (xi) =: pMX (E )(yj). (4.1)

We then call MX (E ) the non-selective measurement map of X onto E .

Notice that if this was a quantum mechanical context, � = {ρ, A, B}, simply
substituting the probabilities given by (1.17) with the quantum mechanical non-selective
map (1.30) and using the cyclic and linear property of the trace would give

pΦA(ρ)
(bj) = Tr[BjΦA(ρ)] = Tr[Bj

d

∑
i

pρ(ai)Ai] =
d

∑
i

pρ(ai)Tr[Bj Ai]︸ ︷︷ ︸
p(bj|ai)

=
d

∑
i

p(bj|ai)pρ(ai), (4.2)

which indicates that (4.1) is a good way to generalize a definition for the probability distri-
bution of a physical quantity on a system that underwent a non-selective measurement
map.

With these elements, we propose that it is reasonable to expect that if a context
is compatible, having performed a measurement without extracting information about
the result from the system should not change the probability distribution of another
measurement. Simply put, we define context compatibility as follows.

Definition 4.1. If the non-selective measurement of Y does not alter the probability
distribution of X , and vice versa, for a given preparation E , that is

pE (xi) = pMY (E )(xi), (4.3a)

pE (yj) = pMX (E )(yj), (4.3b)

then the context � = {E , X , Y } is said to be compatible.

This definition is, indeed, entirely independent of theory inasmuch as it does
not require the specification of any details about interactions, dynamics, and algebraic
structure. On that account, we can check now how it behaves for a classical system in
order to determine if it predicts compatibility, as one would expect.

For this, consider the classical statistical mechanical theory for a one-dimensional
particle, described in the phase space through the coordinates related to position and
momentum, (q, p), and through the probability density �t(q, p), solution to the Liouville
equation [55] ∂t�t = {H, �t}. After measuring the position, Q, and obtaining, say, q̄ as a
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result, we describe the new (normalized) probability density through a Dirac delta as
follows:

�t(q, p)
q̄−→ δ(q − q̄)�t(q̄, p)∫

dq′dp′ δ(q′ − q̄)�t(q̄, p′)
=

δ(q − q̄)�t(q̄, p)∫
dp′ �t(q̄, p′)

=: �t(q, p|q̄), (4.4)

where the denominator corresponds to the probability density �t(q̄) of obtaining q̄ when
measuring Q.

Now, to describe a non-selective map in this scenario we resort to the previously
described process of omission, where we multiply (4.4) by the probability density of
obtaining Q, �t(q̄), and sum (or, in this case, integrate) over all possible outcomes:

MQ (�t(q, p)) :=
∫

dq̄ �t(q, p|q̄)�t(q̄) =
∫

dq̄
δ(q − q̄)�t(q̄, p)∫

dp′ �t(q̄, p′)

∫
dp′′ �t(q̄, p′′)

= �t(q, p). (4.5)

The formulation for the measurement of P is equivalent and would lead to the
same conclusion – applying a non-selective map on this classical description does not
change the probability density, and, according to Definition (4.1), this means there is
always compatibility for such a classical statistical distribution.

As for a quantum mechanical context � = {ρ, A, B}, using the quantum proba-
bilities alongside the non-selective map description, allows us to rewrite Equations (4.3)
from Definition 4.1 as

Tr {Ai [ρ − ΦB(ρ)]} = 0 or Tr {[Ai − ΦB(Ai)] ρ} = 0, (4.6a)

Tr
{

Bj [ρ − ΦA(ρ)]
}
= 0 or Tr

{[
Bj − ΦA(Bj)

]
ρ
}
= 0, (4.6b)

where the relation Tr[AiΦB(ρ)] = Tr[Ai ∑d
j BjρBj] = Tr[∑d

j Bj AiBjρ] = Tr[ΦB(Ai)ρ]

was used to obtain the extra two equations (Heisenberg picture [56]), indicating that
for a context to be compatible it must satisfy one of the (4.6a) equations and one of
the (4.6b) equations simultaneously. It is possible to show that this will only occur if
φA(ρ) = φAB(ρ) and φB(ρ) = φBA(ρ).

Theorem 4.2. Tr[Aiρ] = Tr[AiφB(ρ)] iff φA(ρ) = φAB(ρ), where A = ∑d
i ai Ai and

B = ∑d
l blBl are PVMs.

Proof. Take Tr[Aiρ] = Tr[AiφB(ρ)] and multiply both sides of it by the identity relation

∑d
i Ai = �, obtaining ∑d

i Tr[Aiρ]Ai = ∑d
i Tr[AiφB(ρ)]Ai. From the definition of the non-

selective map, we recognize that this is equal to φA(ρ) = φAB(ρ). On the other hand, if
φA(ρ) = φAB(ρ), we can write it explicitly and multiply both sides by one of the projectors
of A, say Ak, obtaining ∑d

i Tr[Aiρ]Ai Ak = ∑d
i Tr[AiφB(ρ)]Ai Ak. Since Ai Ak = δik Ai, this

is equal to Tr[Aiρ]Ai = Tr[AiφB(ρ)]Ai. Then, taking the trace of both sides knowing
that Tr[Ai] = 1, we finally obtain Tr[Aiρ] = Tr[AiφB(ρ)], which completes the proof. �
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Theorem (4.2) is, of course, also valid for Tr[Bjρ] = Tr[BjΦA(ρ)], and so, in the
quantum framework, we can write (4.6) equivalently as

ΦA(ρ) = ΦAB(ρ), (4.7a)

ΦB(ρ) = ΦBA(ρ). (4.7b)

Observe that ΦA(ρ) = ΦAB(ρ) is curiously similar to what appeared in the MSA
definition, ΦA(ρ) = ΦBA(ρ), even though the path for arriving at (4.7a) is completely
different. Regardless of their similarity, the equations are nonetheless different and we
cannot apply the same steps in order to find the specific cases that satisfy (4.7) exactly
as it is done for the MSA definition. For the purpose of investigating which cases satisfy
compatibility for quantum contexts, we turn to the Bloch representation since it provides
an easier visualization of results.

4.1.1 Case Study

For a two-dimensional qubit acting on H � �
2, we know from Subsection

1.1.6 that the density operator is given by ρr = (1/2)[�+ r · σ] and the observables
projectors are given by Ai = (1/2)[�+ ai · σ] and Bj = (1/2)[�+ bj · σ] . The trace
property of the Pauli matrices Tr[σ] = 0 and the multiplication property (m · σ)(n · σ) =

(m · n)�+ ı(m × n) · σ allow us to then arrive at the expressions for the probabilities:

pρ(ai) = Tr[Aiρ] = Tr

[
1
4
[�+ r · σ][�+ ai · σ]

]

= Tr

[
1
4
[�+ �ai · σ + �r · σ + (r · σ)(ai · σ)︸ ︷︷ ︸

(r·ai)�+ı(r×ai)·σ

]

]

=
1
4
[2 + 2(r · ai)] =

1
2
[1 + (r · ai)], (4.8a)

p(ai|bj) = Tr[AiBj] = Tr

[
1
4
[�+ ai · σ][�+ bj · σ]

]

= Tr

[
1
4
[�+ �ai · σ + �bj · σ + (ai · σ)(bj · σ)]

]

=
1
2
[1 + (ai · bj)], (4.8b)

and similarly, pρ(bj) =
1
2 [1 + (r · bj)].

With these probabilities and considering that we can write the projectors vectors
as ai = (−1)iâ and bj = (−1)jb̂, we can easily write the action of the maps as:

φA(ρ) =
2

∑
i

pρ(ai)Ai =
2

∑
i

1
4
[1 + (r · ai)][�+ (ai · σ)]
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=
2

∑
i

1
4
[ �︸︷︷︸

2�

+(ai · σ) + �(r · ai) + (r · ai)(ai · σ)︸ ︷︷ ︸
(−1)2i(r·â)(â·σ)

]

=
1
2
[�+ (r · â)(â · σ)], (4.9a)

φAB(ρ) =
2

∑
i,j

pρ(bj)p(ai|bj)Ai =
2

∑
i,j

1
8
[1 + (r · bj)][1 + (ai · bj)][�+ (ai · σ)]

=
d

∑
i,j

1
8
[ �︸︷︷︸

4�

+�(ai · bj) + �(r · bj) + �(r · bj)(ai · bj) + (ai · σ)

+(ai · bj)(ai · σ) + (r · bj)(ai · σ) + (r · bj)(ai · bj)(ai · σ)︸ ︷︷ ︸
(−1)2i+2j(r·b̂)(â·b̂)(â·σ)

]

=
1
2
[�+ (r · b̂)(â · b̂)(â · σ)]. (4.9b)

Correspondingly, φB(ρ) =
1
2 [�+ (r · b̂)(b̂ · σ)] and φBA(ρ) =

1
2 [�+ (r · â)(b̂ · â)(b̂ · σ)].

Therefore, the criteria (4.7) for a context compatibility is met when

φA(ρ) = φAB(ρ) =⇒ 1
2
[�+ (r · â)(â · σ)] =

1
2
[�+ (r · b̂)(â · b̂)(â · σ)]

(r · â)(â · σ) = (r · b̂)(â · b̂)(â · σ)

(r · â) = (r · b̂)(â · b̂)

r · [â − b̂(â · b̂)] = 0, (4.10a)

φB(ρ) = φBA(ρ) =⇒ (r · b̂)(b̂ · σ) = (r · â)(b̂ · â)(b̂ · σ)

(r · b̂) = (r · â)(b̂ · â)

r · [b̂ − â(b̂ · â)] = 0. (4.10b)

Rewriting Equations (4.10), we get

r · [â − b̂(â · b̂)]︸ ︷︷ ︸
γ

= 0 =⇒ ‖r‖‖γ‖ cos θr,γ = 0, (4.11a)

r · [b̂ − â(b̂ · â)]︸ ︷︷ ︸
η

= 0 =⇒ ‖r‖‖η‖ cos θr,η = 0, (4.11b)

where θr,γ and θr,η are the angles between the r and γ, and the r and η vectors,
respectively. From these relations it is straightforward to distinguish tree cases for
compatibility:

1. ‖r‖ = 0, which is the maximally mixed density operator ρ = �/d. This translates to
commutativity of ρ with both A and B, as [A, ρ] = ı(â × r) · σ = 0 and equivalently
for [B, ρ].

This is a reasonable result, as density operators of this form are free of any
quantum features (off-diagonal terms are zero in all bases), having only classical
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probabilities and behaving essentially as a classical state would –therefore, no
incompatibility is expected;

2. ‖γ‖ = 0, which happens only when the observables vectors are parallel, (â · b̂) =
1. In this case, ‖η‖ is also automatically zero, ensuring that both (4.11) equations
are simultaneously satisfied. This translates to commuting observables, since
[A, B] = (â · σ)(b̂ · σ)− (b̂ · σ)(â · σ) = 2ı(â × b̂) · σ = 0.

Again, this is a desired result, as it shows that this definition encompasses com-
mutativity. In addition, along with 1, this result shows that our notion of context
compatibility is readily satisfied by the commutativity of any two operators of the
context under scrutiny. In other words, pairwise noncommutativity is necessary for
context incompatibility;

3. cos θr,γ = 0 and cos θr,η = 0. To scrutinize this case, we consider the form of
the vector γ = [â − b̂(â · b̂)]: (â · b̂) is just a number making b̂ smaller, and the
subtraction of â and this smaller vector puts γ perpendicular to b̂. The same can be
said about η, making it perpendicular to â. As cosines are zero for perpendicular
vectors, this means that for both of those terms to be zero simultaneously, r
must be perpendicular to the plane formed by â and b̂. This translates to the
commutativity relation [ρ, [A, B]] = −2(r × (â × b̂)) · σ = 0.

This gives an entire class of contexts that are compatible and elude the expected
cases 1 and 2.

Because of its similarity in form, testing if the MSA definition also encompassed
this seemingly new case for compatibility could be interesting. But since this case does
not appear as effortlessly for the MSA definition, we needed to build a quantifier for our
definition to then be able to compare them.

4.2 QUANTIFICATION OF CONTEXT INCOMPATIBILITY

Besides comparing with previous notions, knowing how much incompatibility a
context possesses is interesting since this proposed definition of context incompatibility
may be explored in the future in a resource theory frame, in the same way as the MSA
incompatibility and the joint measurability have been [57]. To quantify this incompatibility,
then, we tried a similar approach as the one presented in Part II through the entropy,
not only to compare with the MSA incompatibility but also having in sight the connection
of entropy with information and how it is commonly used to interpret incompatibility.

Considering that the relative entropy between two quantum density operators
ρ and σ (1.28) is equal to zero iff ρ = σ, the relative entropy seems like a prime
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candidate for a quantifier, as, from the Definition (4.7), there is no incompatibility
whenever ΦA(ρ) = φAB(ρ) and ΦB(ρ) = φBA(ρ).

However, because the definition is complementary (as in, there is an equation
for ΦA(ρ) and an equation for ΦB(ρ) that have to be simultaneously satisfied), we
consider that a quantifier must contain both equations to truly represent the status of
incompatibility of the context, and not allow for a claim of compatibility when only one
of the equations is zero. Hence, we arrived at the proposed quantifier for the quantum
case:

S(ΦA(ρ)‖ΦAB(ρ)) + S(ΦB(ρ)‖ΦBA(ρ))

2
=: I�. (4.12)

This proposal of a relative entropy-based quantifier was also inspired by the
existence of the analogous probabilistic version given by the Kullback-Liebler divergence
(1.41) that also has the property of only being zero if the things being compared are
equal. This allows us to write a quantifier for the general proposal (4.3) similarly:

D(pE (xi)‖pMY (E )(xi)) + D(pE (yj)‖pMX (E )(yj))

2
=: D�. (4.13)

It is possible to show that Equations (4.12) and (4.13) are equal for quantum contexts:

Proof. Start from S(ΦA(ρ)‖ΦAB(ρ)) = Tr[ΦA(ρ) log ΦA(ρ)] − Tr[ΦA(ρ) log ΦAB(ρ)]

and substitute the maps,

S(ΦA(ρ)‖ΦAB(ρ)) = Tr
[ d

∑
i

pρ(ai)Ai

(
log

d

∑
i′

pρ(ai′)Ai′ − log
d

∑
i′

pΦB(ρ)(ai′)Ai′
)]

=
d

∑
i

pρ(ai) log pρ(ai)−
d

∑
i

pρ(ai) log pΦB(ρ)(ai)

= D(pρ(ai)‖pΦB(ρ)(ai)),

where the property f (A) |a〉 = f (a) |a〉, with f (·) being any function, A an Hermitian
operator with orthonormal base |a〉 and eigenvalue a, was used. �

As such, this form of quantifier suits our much sought-after independence
of theory aspect. The interchangeability is illustrated in Figure 4, made for a two-
dimensional system (qubit) in the Bloch representation, as done in Subsection 4.1.1,
with 106 randomized sets of contexts {r, â, b̂} with logarithm base 2 for the entropy.

One of the goals of this work was to compare the predictions of our definition
to the MSA ones, however, since the MSA definition is not complementary (it has a
statement only regarding the ΦA map and not the ΦB one) and thus clearly the proposed
definition would be stronger, we opted, for fairness’ sake, to add the complementary
term to its quantifier, turning it into

S(ΦA(ρ)‖ΦBA(ρ)) + S(ΦB(ρ)‖ΦAB(ρ))

2
=: IMSA

� , (4.14)
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Figure 4 – Relationship between I , Equation (4.12), and D , Equation (4.13), for the qubit in
the Bloch representation.

where it is possible, as already mentioned previously, to write the relative entropy in this
case as S(ρ‖ΦA(ρ)) = S(ΦA(ρ))− S(ρ) and therefore

IMSA =
S(ΦBA(ρ))− S(ΦA(ρ)) + S(ΦAB(ρ))− S(ΦB(ρ))

2
. (4.15)

It is noteworthy that, unlike what happened for our definition, the quantification
of the MSA incompatibility using the Kullback-Leibler divergence is not equal to the one
based on the relative entropy,

D(pρ(ai)‖pΦBA(ρ)
(ai)) + D(pρ(bj)‖pΦAB(ρ)

(bj))

2
=: DMSA, (4.16)

as the Kullback-Leibler divergence poses only as a lower bound.

Proof. Start from S(ΦA(ρ)‖ΦBA(ρ)) = Tr[ΦA(ρ) log ΦA(ρ)] − Tr[ΦA(ρ) log ΦBA(ρ)]

and write explicitly the map ΦA(ρ), applying the trace:

S(ΦA(ρ)‖ΦBA(ρ)) =
d

∑
i

pρ(ai) log pρ(ai)− Tr
[ d

∑
i

pρ(ai)Ai log ΦBA(ρ)
]

=
d

∑
i

pρ(ai) log pρ(ai)−
d

∑
i

pρ(ai) 〈ai| log ΦBA(ρ) |ai〉 .

Then, add and subtract ∑d
i pρ(ai) log 〈ai|ΦBA(ρ) |ai〉 = ∑d

i pρ(ai) log pΦBA(ρ)
(ai) to ob-

tain

S(ΦA(ρ)‖ΦBA(ρ)) =
d

∑
i

pρ(ai) log pρ(ai)−
d

∑
i

pρ(ai) 〈ai| log ΦBA(ρ) |ai〉
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+
d

∑
i

pρ(ai) log 〈ai|ΦBA(ρ) |ai〉 −
d

∑
i

pρ(ai) log 〈ai|ΦBA(ρ) |ai〉 ,

where one can recognize the Kullback-Liebler divergence so that we have

S(ΦA(ρ)‖ΦBA(ρ)) = D(pρ(ai)‖pΦBA(ρ)
(ai)) −

d

∑
i

pρ(ai) 〈ai| log ΦBA(ρ) |ai〉

+
d

∑
i

pρ(ai) log 〈ai|ΦBA(ρ) |ai〉

= D(pρ(ai)‖pΦBA(ρ)
(ai) +

d

∑
i

pρ(ai)
[
〈ai| − log ΦBA(ρ) |ai〉

−(− log 〈ai|ΦBA(ρ) |ai〉)
]
.

In this form, one can easily use Jensen’s inequality [58] to state that 〈ai|− log ΦBA(ρ) |ai〉 ≥
− log 〈ai|ΦBA(ρ) |ai〉 and therefore

S(ΦA(ρ)‖ΦBA(ρ))− D(pρ(ai)‖pΦBA(ρ)
(ai)) ≥ 0

S(ΦA(ρ)‖ΦBA(ρ)) ≥ D(pρ(ai)‖pΦBA(ρ)
(ai)),

ergo, IMSA
�

≥ DMSA
�

, thus ending the proof. �

This bound can be verified in Figure 5, also built for the qubit in the Bloch
representation with 106 points of randomized contexts � = {r, â, b̂}. This in itself
depicts some differences between our proposal and the existing MSA definition, where
the first has the advantage of allowing a probabilistic approach interchangeably.

Figure 5 – Relationship between the complementary quantum quantifier version for the MSA in-
compatibility IMSA

�
, given by (4.15), and the attempt for a Kullback-Liebler divergence

version DMSA
�

, given by (4.16). Note how the latter is indeed a lower bound.
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Despite this distinction, numerical verification for the qubit in the Bloch scenario
shows that quantifiers I� and IMSA

�
agree, for over a million randomly generated

contexts, whether the context is compatible. That is, there was no occurrence of I� = 0
when IMSA

�
= 0, and vice versa. The behavior of the quantifiers for the same randomly

generated contexts can be seen in Figure 6, created with the same constraints as the
others, showcasing that they detect compatibility equally, but may quantify incompatibility
differently, which indicates that the differences of the quantifiers are limited to how much
incompatibility there is in the incompatible contexts, and not on the central issue of there
being compatibility or not. This type of graph forming a “leaf” shape is not unheard of for
the comparison of different quantifiers and poses no direct problem [59].

Figure 6 – Relationship between I�, given by the Equation (4.12), and IMSA
�

, given by the
Equation (4.15), showing that they are equivalent, albeit not equal.

On closer examination of Figure 6, it is possible to see a prominent line across
the diagonal where I� = IMSA

�
. This line is given, in the Bloch representation following

Subsection 4.1.1, by the contexts for which[
∑d

ε
1+ε|r·â|

2 log 1+ε|(r·b̂)(â·b̂)|
2

]
+

[
∑d

ε
1+ε|r·b̂|

2 log 1+ε|(r·â)(â·b̂)|
2

]
(4.17)

=

[
∑d

ε
1+ε|(r·â)(â·b̂)|

2 log 1+ε|(r·â)(â·b̂)|
2

]
+

[
∑d

ε
1+ε|(r·b̂)(â·b̂)|

2 log 1+ε|(r·b̂)(â·b̂)|
2

]
,

where ε = ±1. This equality holds, distinguishably, if i) (â · b̂) = ±1 and ii) (â · b̂) = 0.
The first case is simply the commutativity [A, B] = 0, with both quantifiers equal to zero
and therefore predicting compatibility. The second case is for perpendicular observables
(MUBs), or maximally incompatible observables. In this case, the choice of the state
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vector r just interferes with how much incompatibility there is in the system, but both
quantifiers give out the same amount.

Recollecting the discussion on the Kullback-Leibler divergence versions of
the quantifiers, Figure 7 comparing DMSA

�
and D�, made with the same constraints

as the others, clearly showcases the relations D� = I� and DMSA
�

≤ IMSA
�

. For
the divergences, we have also found numerically that DMSA

�
quantifies compatibility

for contexts that D� also quantifies compatibility. This suggests that, although the
quantifiers based on entropy and on divergence are not equivalent for the MSA definition,
they seem to agree on which contexts are compatible.

Figure 7 – Relationship between D�, given by (4.13), in the x-axis, and DMSA
�

, given by (4.16), in
the y-axis, accentuating both the inequality DMSA

�
≤ IMSA

�
and the equality D� = I�

when compared to Figure 6.

We can conclude that, when the complementary expression is added to the
MSA definition, both definitions will yield the same result regarding the compatibility of
the quantum context and are valuable in their own sense, the choice between them is
thus more dependent on the objective of the implementer: the MSA definition brings
along a leakage detection protocol and has a ready-to-use formulation in resource
theory, as well as a simpler quantifier in the quantum framework; whereas our model is
based on concepts that any probabilistic physical theory has, allowing for an easy adap-
tation for any description of probability and non-selective measurements (for example,
generalizing the quantum measurements to POVMs), also providing an interchangeable
probability-based quantifier, which can be useful in laboratory implementations.
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4.3 RELATION TO MEASUREMENT INCOMPATIBILITY

When the concept of context incompatibility is introduced as a generalization,
it is natural then to ask if and when it reduces to an incompatibility related to the mea-
surements alone. As an educated guess, based on what was found for the MSA context
incompatibility and that it would be reasonable to expect that for states compatible to
one of the observables, incompatibility should only come from the second measurement
choice, we tested the context in the form � = {Ak, A, B}, where ρ = Ak is an eigenstate
of the observable A = ∑d

i ai Ai.

For such context, the maps required for the quantifier I� are:

ΦA(ρ) =
d

∑
i

AiρAi =
d

∑
i
| 〈ai|ak〉 |2Ai = Ak, (4.18a)

ΦB(ρ) =
d

∑
j

BjρBj =
d

∑
j
| 〈bj|ak〉 |2Bj, (4.18b)

ΦAB(ρ) = ΦA(ΦB(ρ)) =
d

∑
ij
| 〈bj|ak〉 |2| 〈bj|ai〉 |2Ai, (4.18c)

ΦBA(ρ) = ΦB(ΦA(ρ)) =
d

∑
j
| 〈bj|ak〉 |2Bj = ΦB(ρ), (4.18d)

where the eigenvalues for each of the maps are given by

λΦA(ρ)
= | 〈ai|ak〉 |2 = δik, (4.19a)

λΦB(ρ) = | 〈bj|ak〉 |2, (4.19b)

λΦAB(ρ)
=

d

∑
j
| 〈bj|ak〉 |2| 〈bj|ai〉 |2, (4.19c)

λΦBA(ρ)
= | 〈bj|ak〉 |2. (4.19d)

Therefore, we have the relative entropies

S(ΦA(ρ)‖ΦAB(ρ)) =
d

∑
i

δik log δik −
d

∑
i

δik log
[ d

∑
j
| 〈bj|ak〉 |2| 〈bj|ai〉 |2

]

= − log
[ d

∑
j
| 〈bj|ai〉 |4

]
, (4.20a)

S(ΦB(ρ)‖ΦBA(ρ)) = 0, (4.20b)

and the quantifier results in

I{Ak,A,B} = −1
2

log
[ d

∑
j
| 〈bj|ai〉 |4

]
, (4.21)
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which is, in fact, an incompatibility quantifier of the measurements alone. Note that if
A and B form MUB and | 〈bj|ai〉 |2 = 1/d, this yields I{Ak,A,B} = 1

2 log d, which is the
maximum amount found for I� numerically, for over a million contexts with d = 2 in the
Bloch representation.

It follows similarly for ρ = Bl, arriving at I{Bl ,A,B} = − 1
2 log

[
∑d

i | 〈ai|bj〉 |4
]
. As

such, we can conclude that if the state is an eigenstate of one of the observables,
the context incompatibility is reduced to a measurement incompatibility; and if the
observables therein form a MUB, then the incompatibility is maximum, as expected.

As a more general test aligned with this, we inputted a context in which the state
ρ is A-real, i.e., ρ = ΦA(σ) = ∑k 〈ak| σ |ak〉 Ak = ∑k pσ(ak)Ak = ∑k sk Ak, forming the
context � = {ΦA(σ), A, B}. The non-selective maps for such context have the form:

ΦA(ρ) = ∑
i

AiρAi = ∑
i

Ai ∑
k

sk Ak Ai = ∑
k

sk Ak, (4.22a)

ΦB(ρ) = ∑
j

Bj ∑
k

sk AkBj = ∑
jk

sk| 〈bj|ak〉 |2Bj, (4.22b)

ΦAB(ρ) = ∑
i

Ai ∑
jk

sk| 〈bj|ak〉 |2Bj Ai = ∑
ijk

sk| 〈bj|ak〉 |2| 〈bj|ai〉 |2Ai, (4.22c)

ΦBA(ρ) = ∑
j

Bj ∑
k

sk AkBj = ∑
jk

sk| 〈bj|ak〉 |2Bj = Φ(ρ), (4.22d)

where the eigenvalues for each of the maps are given by

λΦA(ρ)
= sk, (4.23a)

λΦB(ρ) = ∑
k

sk| 〈bj|ak〉 |2, (4.23b)

λΦAB(ρ)
= ∑

jk
sk| 〈bj|ak〉 |2| 〈bj|ai〉 |2, (4.23c)

λΦAB(ρ)
= ∑

k
sk| 〈bj|ak〉 |2. (4.23d)

Hence, the relative entropies are

S(ΦA(ρ)‖ΦAB(ρ)) = ∑
k

sk log sk − ∑
lk
〈al| sk Ak log

[
∑

i′ j′k′
sk′ | 〈bj′ |ak′ 〉 |2| 〈bj′ |ai′ 〉 |2Ai′

]
|al〉

= ∑
k

sk log sk − ∑
lk

δlksk log
[

∑
i′ j′k′

δli′sk′ | 〈bj′ |ak′ 〉 |2| 〈bj′ |ai′ 〉 |2
]

= ∑
k

sk log sk − ∑
k

sk log
[
∑
j′k′

sk′ | 〈bj′ |ak′ 〉 |2| 〈bj′ |ak〉 |2
]
, (4.24a)

S(ΦB(ρ)‖ΦBA(ρ)) = 0, (4.24b)

and the quantifier yields

I{ΦA(σ),A,B} =
1
2

[
∑
k

sk log sk − ∑
k

sk log
[
∑
j′k′

sk′ | 〈bj′ |ak′ 〉 |2| 〈bj′ |ak〉 |2
]]

. (4.25)
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This equation has a lasting dependence on sk, which is in turn dependent on the initial
state of the system. Therefore, this shows that having states of A-reality (equivalently,
B-reality) is not enough to reduce the context incompatibility to a measurement-only
incompatibility.

The tests in this Subsection have also been performed in the Bloch represen-
tation, which allows for an easier illustration of the conclusions, and are presented in
Appendix 1.

4.4 TAKEAWAY MESSAGE

The most important points of this chapter are:

• A theory-independent context incompatibility definition proposal was achieved;

• The new definition has tight connections with the MSA definition, but they are not
identical and were not reached through the same premisses;

• When equipped with a corresponding complementary equation, the MSA defini-
tion detects compatibility for the same two-dimensional PVM-based contexts as
the proposed definition, but still quantifies the amount of incompatibility in the
incompatible contexts differently;

• The proposed definition offers an interchangeable probability-based quantifier;

• Even though most of the results showcased are restricted to projective measure-
ments (and some to two dimensions), the definition being theory-independent and
having a probability-based quantifier leaves room for generalizations.
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CONCLUDING REMARKS

The article on the MSA context incompatibility definition [23] brought a novel ap-
proach in its inclusion of the state to the century-old conversation around incompatibility.
Remarkably, it included the expected cases for compatibility, commuting observables
and essentially classically behaving states, and reduced to a measurement incom-
patibility for well-chosen contexts, solidifying the context-based definition as a strong
generalized approach to incompatibility.

Nonetheless, it was clear from the beginning that it had strong constraints, be
it on the strict use of PVM observables, or the entirely quantum framework. The first
constrain was tackled by the authors in [24], but the generalization of measurements
made it so that the definition no longer assessed compatibility for maximally mixed states,
which was a key point of the argument for a context incompatibility in the first place. The
latter constraint was the focus of the work presented in this dissertation, motivated by
the idea that generalizing the definition of context incompatibility to more fundamental
frameworks could allow it to thrive in post-quantum theories, which have been sought
after through the stipulation of more basic postulates to quantum mechanics with the
hope that this would reproduce its accomplishments while resolving some of its open
questions.

Thus, we proposed a theory-independent context incompatibility for arbitrary
probabilistic theories and, as such, we accomplished the raison d’être of allowing the
verification of a context’s incompatibility regardless of its quantum status.

When compared to the MSA definition, we found validation for what our pro-
posed definition quantified, as they agree regarding which contexts are compatible.
Yet, we see that the definitions are not exactly the same, quantifying the amount of
incompatibility differently and each of them has pros and cons in its applications and
frameworks.

The definition proposed in this dissertation shows great potential. In future work,
we intend to focus on the generalization of the case study to an arbitrary dimension, as
well as expanding the definition to multipartite systems. Interestingly, the multipartite
approach opens the possibility of exploring the connections of this definition with other
uncanny quantum effects such as Bell non-locality and steering, which have previously
been tightly linked to some incompatibility notions [18, 19]. There is room for the future
exploration of generalized measurements in this definition as well since they also have
probabilistic formulations.



55

BIBLIOGRAPHY

1 HEISENBERG, W. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift fur Physik, v. 43, n. 3-4, p. 172–198, Mar.
1927. DOI: 10.1007/BF01397280. Cit. on pp. 10, 28, 35.

2 BOHR, N. The Quantum Postulate and the Recent Development of Atomic
Theory1. Nature, v. 121, p. 580–590, Apr. 1928. DOI: 10.1038/121580a0. Cit. on
p. 10.

3 EINSTEIN, A.; PODOLSKY, B.; ROSEN, N. Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete? Phys. Rev., American Physical
Society, v. 47, p. 777–780, 10 May 1935. DOI: 10.1103/PhysRev.47.777. Cit. on
p. 10.

4 FINE, A. Hidden Variables, Joint Probability, and the Bell Inequalities. Phys. Rev.
Lett., American Physical Society, v. 48, p. 291295, 5 Feb. 1982. DOI:
10.1103/PhysRevLett.48.291. Cit. on p. 10.

5 MASANES, L.; ACIN, A.; GISIN, N. General properties of nonsignaling theories.
Phys. Rev. A, American Physical Society, v. 73, p. 012112, 1 Jan. 2006. DOI:
10.1103/PhysRevA.73.012112. Cit. on p. 10.

6 WOLF, M. M.; PEREZ-GARCIA, D.; FERNANDEZ, C. Measurements Incompatible
in Quantum Theory Cannot Be Measured Jointly in Any Other No-Signaling
Theory. Phys. Rev. Lett., American Physical Society, v. 103, p. 230402, 23 Dec.
2009. DOI: 10.1103/PhysRevLett.103.230402. Cit. on p. 10.

7 HENSEN, B. e. a. Loophole-free Bell inequality violation using electron spins
separated by 1.3 kilometres. Nature, v. 526, p. 682–686, 2015. DOI:
10.1038/nature15759. Cit. on pp. 10, 33.

8 THE Nobel Prize in Physics 2022. [S.l.: s.n.].
https://www.nobelprize.org/prizes/physics/2022/summary/. Cit. on p. 10.

9 ROBERTSON, H. P. The Uncertainty Principle. Phys. Rev., American Physical
Society, v. 34, p. 163–164, 1 July 1929. DOI: 10.1103/PhysRev.34.163. Cit. on
pp. 10, 28.



56

10 MANDL, F. Quantum Mechanics. England: Wiley, 1992. Cit. on p. 10.

11 GRIFFITHS, D. J.; SCHROETER, D. F. Introduction to Quantum Mechanics. 3.
ed. [S.l.]: Cambridge University Press, 2018. DOI: 10.1017/9781316995433.
Cit. on p. 10.

12 MÜLLER-KIRSTEN, H. J. W. Introduction to Quantum Mechanics. 2nd. [S.l.]:
WORLD SCIENTIFIC, 2012. DOI: 10.1142/8428. Cit. on p. 10.

13 WERNER, R. F.; FARRELLY, T. Uncertainty from Heisenberg to Today.
Foundations of Physics, v. 49, p. 460–491, 6 June 2019. DOI:
10.1007/s10701-019-00265-z. Cit. on pp. 10, 29.

14 BUSCH, P.; HEINONEN, T.; LAHTI, P. Heisenberg’s uncertainty principle. Physics
Reports, v. 452, n. 6, p. 155–176, 2007. ISSN 0370-1573. DOI:
https://doi.org/10.1016/j.physrep.2007.05.006. Cit. on pp. 10, 29, 31.

15 BUSCH, P. Indeterminacy Relations and Simultaneous Measurements in Quantum
Theory. International Journal of Theoretical Physics, v. 24, n. 1, p. 63–92, Jan.
1985. DOI: 10.1007/BF00670074. Cit. on pp. 11, 30.

16 ALI, S. T.; CARMELI, C.; HEINOSAARI, T.; TOIGO, A. Commutative POVMs and
Fuzzy Observables. Foundations of Physics, v. 39, p. 593–612, 6 June 2009.
DOI: 10.1007/s10701-009-9292-y. Cit. on p. 11.

17 BUSCH, P. Unsharp reality and joint measurements for spin observables. Phys.
Rev. D, American Physical Society, v. 33, p. 2253–2261, 8 Apr. 1986. DOI:
10.1103/PhysRevD.33.2253. Cit. on p. 11.

18 HEINOSAARI, T.; MIYADERA, T.; ZIMAN, M. An invitation to quantum
incompatibility. Journal of Physics A: Mathematical and Theoretical, IOP
Publishing, v. 49, n. 12, p. 123001, Feb. 2016. DOI:
10.1088/1751-8113/49/12/123001. Cit. on pp. 11, 54.

19 UOLA, R.; COSTA, A. C. S.; NGUYEN, H. C.; GÜHNE, O. Quantum steering. Rev.
Mod. Phys., American Physical Society, v. 92, p. 015001, 1 Mar. 2020. DOI:
10.1103/RevModPhys.92.015001. Cit. on pp. 11, 54.



57

20 UOLA, R.; MORODER, T.; GÜHNE, O. Joint Measurability of Generalized
Measurements Implies Classicality. Phys. Rev. Lett., American Physical Society,
v. 113, 16z403, 16 Oct. 2014. DOI: 10.1103/PhysRevLett.113.160403. Cit. on
p. 11.

21 QUINTINO, M. T.; VÉRTESI, T.; BRUNNER, N. Joint Measurability,
Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Phys. Rev. Lett.,
American Physical Society, v. 113, p. 160402, 16 Oct. 2014. DOI:
10.1103/PhysRevLett.113.160402. Cit. on p. 11.

22 HEINOSAARI, T.; WOLF, M. M. Nondisturbing quantum measurements. Journal
of Mathematical Physics, v. 51, n. 9, p. 092201, 2010. DOI: 10.1063/1.3480658.
Cit. on pp. 11, 31.

23 MARTINS, E.; SAVI, M. F.; ANGELO, R. M. Quantum incompatibility of a physical
context. Phys. Rev. A, American Physical Society, v. 102, p. 050201, 5 Nov. 2020.
DOI: 10.1103/PhysRevA.102.050201. Cit. on pp. 11, 35, 36, 54.

24 MITRA, A.; SHARMA, G.; GHOSH, S. Information leak and incompatibility of
physical context: A modified approach. Phys. Rev. A, American Physical Society,
v. 104, p. 032225, 3 Sept. 2021. DOI: 10.1103/PhysRevA.104.032225. Cit. on
pp. 12, 37, 54.

25 BOHM, D. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden"
Variables. I. Phys. Rev., American Physical Society, v. 85, p. 166–179, 2 Jan.
1952. DOI: 10.1103/PhysRev.85.166. Cit. on p. 12.

26 POPESCU, S.; ROHRLICH, D. Quantum nonlocality as an axiom. Foundations of
Physics, v. 24, p. 379–385, 3 Mar. 1994. DOI: 10.1007/BF02058098. Cit. on
pp. 12, 40.

27 CAVALCANTI, P. J.; SELBY, J. H.; SIKORA, J.; GALLEY, T. D.; SAINZ, A. B.
Post-quantum steering is a stronger-than-quantum resource for information
processing. npj Quantum Information, v. 8, 1 June 2022. DOI:
10.1038/s41534-022-00574-8. Cit. on pp. 12, 40.

28 BARRETT, J.; HARDY, L.; KENT, A. No Signaling and Quantum Key Distribution.
Phys. Rev. Lett., American Physical Society, v. 95, p. 010503, 1 June 2005. DOI:



58

10.1103/PhysRevLett.95.010503. Available from:
https://link.aps.org/doi/10.1103/PhysRevLett.95.010503. Cit. on pp. 12, 40.

29 NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum
Information. 10th ed. USA: Cambridge University Press, 2011. ISBN 1107002176.
Cit. on pp. 13, 23, 26, 29.

30 COHEN-TANNOUDJI, C.; DIU, B.; LALOE, F. Quantum mechanics. New York:
Wiley, 1978. v. 1. Cit. on pp. 13, 27, 28.

31 LANDI, G. T. Quantum Information and Quantum Noise. São Paulo: University
of São Paulo, July 2018. Available from:
http://www.fmt.if.usp.br/~gtlandi/lecture-notes-2.pdf. Cit. on pp. 13, 37.

32 MARTINS, E. Quantifying Quantum Incompatibility. 2020. MA thesis – UFPR,
Curitiba, PR. Cit. on pp. 13, 21, 23, 36.

33 SAVI, M. F. Quantum Resource Covariance: Correlations, Coherence, and
Incompatibility. 2021. PhD thesis – UFPR, Curitiba, PR. Cit. on pp. 13, 30, 33.

34 JUNIOR, A. C. O. Non-Classicalities in Quantum Walks and an Axiomatic
Approach to Quantum Realism. 2022. PhD thesis – UFPR, Curitiba, PR. Cit. on
pp. 13, 22.

35 M. A. NEUMARK. Extremal spectral functions of a symmetric operator. Izv. Akad.
Nauk SSSR Ser. Mat., p. 327–344, 4 1947. Available from:
http://mi.mathnet.ru/im3002. Cit. on pp. 17, 35.

36 NEUMANN, J. v. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik.
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch-Physikalische Klasse, v. 1927, p. 245–272, 1927. Available from:
http://eudml.org/doc/59230. Cit. on p. 18.

37 NEUMANN, J. v. Mathematical Foundations of Quantum Mechanics: New
Edition. Ed. by Nicholas A. Wheeler. Trans. by Robert T. Beyer. United States:
Princeton University Press, 2018. Cit. on p. 18.



59

38 GRIFFITHS, R. B. Quantum Channels, Kraus Operators, POVMs. [S.l.]:
Quantum Computation and Quantum Information Theory Course, Spring 2014.
Available from: https://quantum.phys.cmu.edu/QCQI/qitd412.pdf. Cit. on p. 20.

39 BILOBRAN, A. L. O.; ANGELO, R. M. A measure of physical reality. Europhysics
Letters, EDP Sciences, IOP Publishing and Società Italiana di Fisica, v. 112, n. 4,
p. 40005, Nov. 2015. DOI: 10.1209/0295-5075/112/40005. Cit. on p. 21.

40 ROSS, S. M. A First Course in Probability. 5th ed. Upper Saddle River, N.J.:
Prentice Hall, 1998. Available from:
http://julio.staff.ipb.ac.id/files/2015/02/Ross_8th_ed_English.pdf. Cit. on pp. 23, 24.

41 STIRZAKER, D.; GRIMMETT, G. Probability and Random Processes. 2nd ed.
United Kingdom: Clarendon Press, 1992. Cit. on pp. 23, 24.

42 KULLBACK, S.; LEIBLER, R. A. On Information and Sufficiency. The Annals of
Mathematical Statistics, Institute of Mathematical Statistics, v. 22, n. 1, p. 79–86,
1951. DOI: 10.1214/aoms/1177729694. Cit. on p. 24.

43 SHANNON, C. E. A mathematical theory of communication. The Bell System
Technical Journal, v. 27, n. 3, p. 379–423, 1948. DOI:
10.1002/j.1538-7305.1948.tb01338.x. Cit. on p. 24.

44 SAKURAI, J. J. Modern quantum mechanics. Reading, MA: Addison-Wesley,
1994. Available from: https://cds.cern.ch/record/1167961. Cit. on pp. 26, 29.

45 CAUCHY, A.-L. Note II. Sur les formules qui résultent de l’emploi du signe > ou <,
et sur les moyennes entre plusieurs quantités. In: COURS d’analyse de l’École
Royale Polytechnique, Première Partie: Analyse algébrique. Paris: Debure frères,
1821. Cit. on p. 28.

46 SCHWARZ, H. A. Ueber ein die Flächen kleinsten Flächeninhalts betreffendes
Problem der Variationsrechnung. In: GESAMMELTE Mathematische
Abhandlungen: Erster Band. Berlin, Heidelberg: Springer Berlin Heidelberg, 1890.
P. 223–269. DOI: 10.1007/978-3-642-50665-9_11. Cit. on p. 28.

47 SHANKAR, R. The Heisenberg Uncertainty Relations. In: PRINCIPLES of
Quantum Mechanics. New York, NY: Springer US, 1994. P. 237–246. ISBN
978-1-4757-0576-8. DOI: 10.1007/978-1-4757-0576-8_9. Cit. on p. 29.



60

48 KOK, P. Uncertainty Relations. In: A First Introduction to Quantum Physics. Cham:
Springer International Publishing, 2018. P. 171–194. ISBN 978-3-319-92207-2.
DOI: 10.1007/978-3-319-92207-2_9. Cit. on p. 29.

49 HEINOSAARI, T.; REITZNER, D.; STANO, P. Notes on Joint Measurability of
Quantum Observables. Foundations of Physics, v. 38, p. 1133–1147, 12 Dec.
2008. DOI: 10.1007/s10701-008-9256-7. Cit. on p. 30.

50 LÜDERS, G. Concerning the state-change due to the measurement process.
Annalen der Physik, v. 518, n. 9, p. 663–670, Sept. 2006. DOI:
10.1002/andp.2006518090410.1002/andp.200610207. Cit. on p. 32.

51 PERES, A. (Ed.). Information and Thermodynamics. In: Quantum Theory:
Concepts and Methods. Dordrecht: Springer Netherlands, 2002. P. 260–297.
ISBN 978-0-306-47120-9. DOI: 10.1007/0-306-47120-5_9. Cit. on p. 35.

52 STECK, D. A. Measurement and POVMs. Willamette: Recent Developments in
Quantum Mechanics and Quantum Information Lecture Notes, Spring 2009.
Available from: http://atomoptics-
nas.uoregon.edu/~dsteck/teaching/09spring/phys610/notes/povms.pdf. Cit. on
p. 35.

53 DURT, T.; ENGLERT, B.-G.; BENGTSSON, I.; ŻYCZKOWSKI, K. On Mutually
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APPENDIX 1 – BLOCH REPRESENTATION VERSION

The following results were obtained for the two-dimensional Bloch representa-
tion as seen in Subsection 1.1.6.

For contexts � = {Ak, A, B}, we can write the state vector r as r = ak =

(−1)kâ, so that the maps (4.9) become

ΦA(ρ) =
1
2
[�+ (r · â)(â · σ)] =

1
2
[�+ (−1)k(â · σ)] = Ak, (1.1a)

ΦB(ρ) =
1
2
[�+ (r · b̂)(b̂ · σ)] =

1
2
[�+ (−1)k(â · b̂)(b̂ · σ)], (1.1b)

ΦAB(ρ) =
1
2
[�+ (r · b̂)(â · b̂)(â · σ)] =

1
2
[�+ (−1)k(â · b̂)2(â · σ)], (1.1c)

ΦBA(ρ) =
1
2
[�+ (r · â)(b̂ · â)(b̂ · σ)] =

1
2
[�+ (−1)k(â · b̂)(b̂ · σ)] = ΦB(ρ), (1.1d)

with respective eigenvalues

λε
ΦA(ρ)

=
1 + ε‖(−1)kâ‖

2
=

1 + ε1
2

ε = ±1, (1.2a)

λε
ΦB(ρ)

=
1 + ε‖(−1)k(â · b̂)b̂‖

2
=

1 + ε|(â · b̂)|
2

= λε
ΦBA(ρ)

ε = ±1, (1.2b)

λε
ΦAB(ρ)

=
1 + ε‖(−1)k(â · b̂)2â‖

2
=

1 + ε|(â · b̂)2|
2

ε = ±1. (1.2c)

The entropy of the map ΦA(ρ) is S(ΦA(ρ)) = −1 log 1 − 0 log 0 = 0, therefore, the
relative entropies are

S(ΦA(ρ)|ΦAB(ρ)) = − S(ΦA)− ∑
ε

λε
ΦA(ρ)

log λε
ΦAB(ρ)

= − 1 log
1 + |(â · b̂)2|

2
− 0 log

1 − |(â · b̂)2|
2

= − log
1 + |(â · b̂)2|

2
, (1.3a)

S(ΦB(ρ)|ΦBA(ρ)) = 0, (1.3b)

hence, the quantifier yields

I{Ak,A,B} =
S(ΦA(ρ)‖ΦAB(ρ)) + S(ΦB(ρ)‖ΦBA(ρ))

2
= −1

2
log

1 + |(â · b̂)2|
2

. (1.4)

It is now even clearer than from (4.21) that in the contexts where ρ is an eigenstate of
one of the observables the quantifier reduces to a relation between the observables
only. This conclusion is not restricted to the analysis of the quantifier, as applying the
definition’s criteria (4.7) directly with the Equations (1.1) would also entail a measurement
incompatibility.
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For contexts � = {ΦA(σ), A, B}, we write the state as

ρ = ΦA(σ) =
1
2
[�+ (s · â)(â · σ)],

where s refers to the vector that characterizes the state σ. Therefore, the maps (4.9)
become

ΦA(ρ) =
1
2
[�+ (s · â)(â · â)(â · σ)] =

1
2
[�+ (s · â)(â · σ)] = ρ, (1.5a)

ΦB(ρ) =
1
2
[�+ (s · â)(â · b̂)(b̂ · σ)], (1.5b)

ΦAB(ρ) =
1
2
[�+ (s · â)(â · b̂)(â · b̂)(â · σ)] =

1
2
[�+ (s · â)(â · b̂)2(â · σ)], (1.5c)

ΦBA(ρ) =
1
2
[�+ (s · â)(â · â)(b̂ · â)(b̂ · σ)] =

1
2
[�+ (s · â)(b̂ · â)(b̂ · σ)], (1.5d)

with respective eigenvalues

λε
ΦA(ρ)

=
1 + ε‖(s · â)â‖

2
=

1 + ε|(s · â)|
2

ε = ±1, (1.6a)

λε
ΦB(ρ)

=
1 + ε‖(s · â)(â · b̂)b̂‖

2
=

1 + ε|(s · â)(â · b̂)|
2

= λε
ΦBA(ρ)

ε = ±1, (1.6b)

λε
ΦAB(ρ)

=
1 + ε‖(s · â)(â · b̂)2â‖

2
=

1 + ε|(s · â)(â · b̂)2|
2

ε = ±1. (1.6c)

Thus, the relative entropies are

S(ΦA(ρ)|ΦAB(ρ)) =

[
∑
ε

1 + ε|s · â|
2

log
1 + ε|s · â|

2

]

−
[

∑
ε

1 + ε|s · â|
2

log
1 + ε|(s · â)(â · b̂)2|

2

]
, (1.7a)

S(ΦB(ρ)|ΦBA(ρ)) = 0, (1.7b)

and subsequently, the quantifier is

I{ΦA(σ),A,B} =
1
2

{[
∑
ε

1 + ε|s · â|
2

log
1 + ε|s · â|

2

]

−
[

∑
ε

1 + ε|s · â|
2

log
1 + ε|(s · â)(â · b̂)2|

2

]}
. (1.8)

This equation also sheds light on how a context where A is an element of reality for ρ is
not enough to reduce this definition of incompatibility to a measurement incompatibility
alone since there is a lingering dependence on s, which is a vector associated with the
initial state preparation.


