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RESUMO

Nos últimos anos, houve avanços significativos no campo de Reconhecimento de placas

de veículares (LPR, do inglês License Plate Recognition) por meio da integração de técnicas

de aprendizado profundo e do aumento da disponibilidade de dados para treinamento. No

entanto, reconstruir placas veiculares a partir de imagens de sistemas de vigilância em baixa

resolução ainda é um desafio. Para enfrentar essa dificuldade, apresentamos uma abordagem

de Super Resolução de Imagem Única (SISR, do inglês Single-Image Super-Resolution) que

integra módulos de atenção para aprimorar a detecção de característica estruturais e texturais

em imagens de baixa resolução. Nossa abordagem utiliza camadas de convolução sub-pixel

(também conhecidas como PixelShuffle) e uma função de perda que emprega um modelo de

Reconhecimento Óptico de Caracteres (OCR, do inglês Optical Character Recognition) para

extração de características. Treinamos a arquitetura proposta com imagens sintéticas criadas

aplicando ruído gaussiano pesado à imagens de alta resolução de placas veiculares de dois

conjuntos de dados públicos, seguido de redução de sua resolução com interpolação bicúbica.

Como resultado, as imagens geradas têm um Índice de Similaridade Estrutural (SSIM, do inglês

Structural Similarity Index Measure) inferior a 0,10. Nossos resultados experimentais mostram

que a abordagem proposta para reconstruir essas imagens sintéticas de baixa resolução superou

as existentes tanto em medidas quantitativas quanto qualitativas.

Palavras-chave: PixelShuffle, Reconstrução, Super-Resolução.



ABSTRACT

Recent years have seen significant developments in the field of License Plate Recognition (LPR)

through the integration of deep learning techniques and the increasing availability of training data.

Nevertheless, reconstructing license plates (LPs) from low-resolution (LR) surveillance footage

remains challenging. To address this issue, we introduce a Single-Image Super-Resolution (SISR)

approach that integrates attention and transformer modules to enhance the detection of structural

and textural features in LR images. Our approach incorporates sub-pixel convolution layers (also

known as PixelShuffle) and a loss function that uses an Optical Character Recognition (OCR)

model for feature extraction. We trained the proposed architecture on synthetic images created by

applying heavy Gaussian noise to high-resolution LP images from two public datasets, followed

by bicubic downsampling. As a result, the generated images have a Structural Similarity Index

Measure (SSIM) of less than 0.10. Our results show that our approach for reconstructing these

low-resolution synthesized images outperforms existing ones in both quantitative and qualitative

measures.

Keywords: PixelShuffle, Reconstruction, Super-Resolution.
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Chapter 1

Introduction

Super-resolution (SR) is a crucial technology that enhances the quality of images and

videos by increasing their resolution, enabling the retrieval of subtle details and textures from

low-resolution (LR) images to generate their high-resolution (HR) counterparts [10, 11], as shown

in Fig. 1.1. Its importance has grown in fields such as medical imaging and surveillance, where

SR is extensively used [10, 11, 12]. Recent advancements in interpolation-based, example-based,

and deep learning-based SR methods have made it possible to enhance LR images and videos in a

way that was once deemed impossible. This is particularly important in surveillance applications

such as License Plate Recognition (LPR), face, and object recognition, where image quality

improvement is critical but challenging [13]. Moreover, it is desirable to store HR images in LR

format and recover them when necessary [14, 15].

SR is a challenging problem due to its ill-posed nature, where there can be multiple

solutions in the HR space. The difficulty of the problem increases as the upscale factor increases,

and LR images may lack the necessary information to reconstruct the desired details. SR

techniques can be broadly classified into three categories: Single-Image Super-Resolution (SISR),

Multi-Image Super-Resolution (MISR), and Video Super-Resolution (VSR) [11, 16]. In this

study, we focus on SISR for forensic license plate recognition, as low-cost cameras frequently

used in surveillance systems produce LR images that make the characters on license plates barely

recognizable.

As deep learning continues to show remarkable success in computer vision applications,

the integration of Convolutional Neural Networks (CNNs) into SR techniques has become

increasingly prevalent [6, 11, 17]. Although significant advances have been made, most existing

SR approaches rely on very deep architectures, which not only increase overall computation but

also prioritize achieving higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity

Index Measure (SSIM) metrics at the expense of the contextual information of the application at

hand. However, in LPR, this approach falls short as a single model may produce highly realistic

images yet fail to differentiate between visually similar characters (e.g., ’Q’ and ’O’, ’T’ and ’7’,

’Z’ and ’2’, among others) [6, 15, 17, 18, 19, 20]. In the context of LPR, it may not be the best

approach to generate highly realistic images without taking into account the potential confusion

between characters. Therefore, it is essential to consider the particular application at hand when

proposing SR methods [11, 14].

1.1 Motivations
Accurate LPR relies on high-quality images, and while many techniques have been

proposed to enhance image quality, little research has been dedicated to using SR techniques to
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Super-Resolution
Pipeline

Figure 1.1: This figure illustrates the super-resolution pipeline. The left-hand side shows

low-resolution/quality images, which are then super-resolved to the higher resolution images on

the right-hand side. These resulting images were generated using the method proposed in this

work.

improve LPR accuracy [21]. The limited effectiveness of existing interpolation methods, such as

bicubic, is due to their inability to learn and improve over time.

To address this issue, we propose an extension of the Multi-Path Residual Network (MPR-

Net) developed by Mehri et al. [6] and our previous work in [7]. We incorporate sub-pixel

convolution layers (also known as PixelShuffle) introduced by Shi et al. [22] and a Three-Fold

Attention Module that considers not only pixel intensity values but also structural and textural

information. Additionally, we propose a novel loss function that incorporates Optical Char-

acter Recognition (OCR) predictions, perceptual quality metrics, and Generative Adversarial

Network (GAN) techniques to enhance character recognition in low-quality and LR scenarios.

Our research hypothesis is that this improved version will outperform OCR systems that
directly receive LR license plate images. To support our research, we have created a publicly

available synthetic dataset.

1.2 Objectives
This research aims to enhance the perceptual quality and resolution of LR license plate

images by extending the MPRNet architecture with sub-pixel convolution layers [22] and a new

loss function that prioritizes character reconstruction for recognition. Specifically, our objectives

are:
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• Develop a loss function that considers quality metrics and predictions from a pre-trained

OCR model. This will allow us to focus on reconstructing important features in license

plates to improve recognition accuracy.

• Design an encoder module that emphasizes crucial features in the license plate image

by utilizing an autoencoder with sub-pixel convolution layers. This module will enable

us to enhance the image resolution and quality.

• Create an Attention module capable of identifying the most critical aspects within an

image for quality and resolution enhancement;

• Develop a loss function to guide the proposed architecture towards more realistic and

higher-quality super-resolved license plates (LPs) using GAN techniques. This will

ensure that the generated images are of high-resolution/quality with more realism;

• Compare the performance of the original MPRNet with our proposed approaches on

LPR, and evaluate their ability to improve OCR accuracy on the created datasets.

1.3 Contributions
Our work presents the following contributions:

• A super-resolution approach that builds upon MPRNet [6] and the architecture we

proposed in [7] (see Section 1.4) by incorporating subpixel-convolution layers (Pix-
elShuffle (PS) and PixelUnshuffle (PU)) in combination with a Pixelshuffle Three-fold

Attention Module (PTFAM);

• A novel perceptual loss that combines features extracted by an OCR model [23] with L1

loss to reconstruct characters with the most relevant characteristics. Note that this loss

function allows the use of any OCR model for LPR;

• Datasets with paired HR and synthetic LR images generated by applying heavy Gaussian

noise at different SSIM levels;

• The datasets we created for this research are publicly available upon request. 1

1.4 Publications
Our study introduces a new approach to license plate super-resolution, which we first

presented in a preliminary version at the 2022 SIBGRAPI conference titled "Combining Attention

Module and Pixel Shuffle for License Plate Super-Resolution" [7]. Compared to our previous

work, our current approach has several novel features that improve license plate reconstruction.

For instance, we use a three-fold attention module architecture that considers vertical and

horizontal lines to extract more structural and textural details of the license plate font. This

module extends the concepts presented in our previous work [7] and leverages inter-channel

feature relationships to enhance the reconstruction process.

To further enhance our approach, we introduce a new loss function that utilizes a

pre-trained network for license plate recognition to extract features. For training and testing, we

1Interested parties must register by filling out a form and agreeing to the terms of use.
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employed paired low- and high-resolution license plate images, with the low-resolution images

degraded until their structural similarity index measure dropped below 0.10.

Our improvements resulted in better performance than our previous work, as demon-

strated by experiments conducted on two datasets collected in different regions under various

conditions. Unlike our previous work, which only used a single dataset, we tested our approach

on both the RodoSol-ALPR and PKU datasets. The results showed a significant improvement in

license plate recognition rates. In the RodoSol-ALPR dataset, our approach recognized at least

five characters in 74.2% of the license plates, compared to 42.2% by our previous model, which

was trained and evaluated under the same conditions. In the PKU dataset, our approach achieved

a recognition rate of 97.3%, compared to 82.5% achieved by our preliminary approach.

We believe that the improvements we made over the preliminary version in [7] fulfill the

objectives and contributions detailed in Section 1.2 and Section 1.3, respectively. Currently, our

work is under review as a SIBGRAPI 2022 Post-Conference Special Section of the Computers &

Graphics Journal.

1.5 Outline
The remainder of this dissertation is organized as follows. In Chapter 2, we present the

theoretical foundation for the concepts discussed in this work. Additionally, in Chapter 3, we

review related works on general SR techniques, LPR, OCR, and their application in improving

LPR in LR and low-quality scenarios. In Chapter 4, we describe how we extended the MPRNet

architecture proposed by [6] and present our improved loss function. In Chapter 5, we provide

a detailed description of the experiments we conducted to validate our proposed approach,

including the experimental setup, results, and analysis. Finally, in Chapter 6, we present our

conclusions and discuss future work in the field.
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Chapter 2

Theoretical Foundation

In this chapter, we will establish the theoretical foundation for the concepts and methods

utilized in this study. We will begin by outlining the metrics commonly employed for assessing

image quality in Section 2.1. In Section 2.2, we will delve into the details of the CNN layers used

in the context of super resolution image enhancement. Section 2.3 will focus on the Generative

Adversarial Networks (GANs) and their significance to this research. Lastly, in Section 2.4, we

will introduce the Multi-Patch Relational Network (MPRNet) architecture from Mehri et al. [6]

as the baseline for this research.

2.1 Evaluation Metrics
In this section, we will discuss the evaluation metrics commonly used for assessing the

quality of digital images. These metrics are necessary due to the fact that the human perception

of image quality can vary from person to person and is therefore subjective.

Several metrics have been developed in the literature to measure the visual quality of

images. The simplest ones include the Mean Squared Error (MSE) and its variation, the PSNR.

While these metrics are in line with physical principles and are easy to calculate and implement,

they do not take into account the Human Visual System (HVS) [24].

To address this issue, considerable efforts have been made over the last three decades to

develop methods that consider human visual perceptual qualities. One of the most prominent

methods is the Structural SIMilarity index (SSIM) [25, 26, 27, 1].

In this section, we will provide a theoretical foundation for the commonly used

quantitative metrics for image quality assessment, specifically MSE, PSNR, and SSIM. These

metrics are widely used in the literature to quantify the level of quality within an image. For

the following definitions, we consider two non-negative and perfectly aligned images: 𝐺 as the

original high-quality image and its distorted version 𝑃.

2.1.1 Mean Squared Error
The MSE is a commonly used metric for measuring the quality of images. It is always

positive, and higher values indicate the presence of distortion or noise in the distorted image (P)

when compared to the original image (G). As shown in Equation 2.1, it is simple to calculate and

inexpensive to compute as it only involves multiplication and addition operations. Additionally,

MSE has the desirable properties of convexity, symmetry, and differentiability, and its gradients

are easy to compute.
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𝑀𝑆𝐸 (𝐺, 𝑃) =
1

𝑖 𝑗

𝑖−1∑
𝑖 = 0

𝑗−1∑
𝑗 = 0|𝐺 (𝑖, 𝑗) − 𝑃(𝑖, 𝑗) |2 (2.1)

However, the MSE does not take into account the structural information of the image

during its calculation. This means that the value of MSE between two images will remain

unchanged even if the pixels are randomly rearranged. This is illustrated in Figure 2.1.

Despite its limitations, MSE is widely used in the literature due to its simplicity and

ease of computation.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: The comparison shows an original image and its distorted versions with different

types of noise and distortions, all having the same MSE value of 0.210. The original image is

shown in (a), while (b) shows a contrast-stretched version, (c) is a mean-shifted version, (d) is

a JPEG compressed version, (e) is a blurred version, and (f) is a salt-pepper impulsive noise

contaminated version. The image is reproduced from [1].

The PSNR is a metric that quantifies the ratio between the maximum possible signal

value and the value of corrupting noise that affects the quality or fidelity of an image representation.

It is commonly used to measure the quality of reconstructed images subject to distorting noises

such as those caused by compression methods or poor image acquisition devices.

PSNR is typically defined using MSE as in Equation 2.2, where 𝐺 is a ground truth

noise-free image and its degraded counterpart 𝑃 (see Equation 2.1). 𝑀𝐴𝑋𝐺 represents the

maximum possible pixel value in 𝐺 (e.g. for 8-bit samples, this is 255). Since signals have a wide

changeable quantity between the largest 𝑀𝐴𝑋 and the smallest values, PSNR is usually defined

in terms of the logarithmic decibel scale, where higher values are better. For monochrome images

with 8-bit depth, good values range between 30 dB and 50 dB.
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However, it has been shown that although PSNR has an intuitive natural physical definition

in Equation 2.2, its values do not accurately represent human visual perception [28, 29, 1].

𝑃𝑆𝑁𝑅(𝐺, 𝑃) = 10 log10

(
𝑀𝐴𝑋2

𝐺

𝑀𝑆𝐸 (𝐺, 𝑃)

)

= 20 log10

(
𝑀𝐴𝑋𝐺√

𝑀𝑆𝐸 (𝐺, 𝑃)

)

= 20 log10 (𝑀𝐴𝑋𝐺) − 10 log10 (𝑀𝑆𝐸 (𝐺, 𝑃))

(2.2)

2.1.2 Structural Similarity Index Measure
Previous methods have clear physical meanings and simple formulations, but they are

not able to match the human visual system’s (HVS) assessment of perceptual quality. This is

because these methods rely on assumptions and generalizations based on linear or quasi-linear

models from the early days of computer vision, which do not accurately reflect the highly complex

and non-linear nature of the HVS.

The SSIM index, proposed by [1], addresses this limitation by exploiting the structural

nature of image signals. It does this by analyzing local illuminance similarity in terms of

luminance, contrast, and structural similarity within the image. These similarities are expressed

as simple statistics that are easy to compute, which are then combined to form the SSIM index,

as shown in Eq. (2.3) and Fig. 2.2.

𝑆𝑆𝐼𝑀 (𝐺, 𝑃) = 𝑙 (𝐺, 𝑃) · 𝑐(𝐺, 𝑃) · 𝑠(𝐺, 𝑃)

=

(
2𝜇𝐺𝜇𝑃 + 𝐶1

𝜇2
𝐺 + 𝜇2

𝑃 + 𝐶1

)
·

(
2𝜎𝐺𝜎𝑃 + 𝐶2

𝜎2
𝐺 + 𝜎2

𝑃 + 𝐶2

)
·

(
𝜎𝐺𝑃 + 𝐶3

𝜎𝐺𝜎𝑃 + 𝐶3

)
,

(2.3)

where:

𝜇(𝑥) =
1

𝑁

𝑁∑
𝑖=0

𝑥𝑖 and 𝜎(𝑥) =

(
1

𝑁 − 1

𝑁∑
𝑖=0

(𝑥𝑖 − 𝜇𝑥)

) 1
2

(2.4)

𝜇𝐺 stands for the local sample average and 𝜎𝐺 stands for the local standard deviation, while 𝜎𝐺𝑃
is the local sample cross-correlation when removing the averages of 𝐺 and 𝑃.

The values 𝐶1, 𝐶2, and 𝐶3 are small constants added to stabilize the terms, although

even with 𝐶1 = 𝐶2 = 𝐶3 = 0, the SSIM index works relatively well. The SSIM has the property

of symmetry; therefore, it generates the same value regardless of the ordering of 𝐺 and 𝑃:

𝑆𝑆𝐼𝑀 (𝐺, 𝑃) = 𝑆𝑆𝐼𝑀 (𝑃, 𝐺). The resulting SSIM index is bounded between 0 and 1, achieving

1 only when 𝐺 and 𝑃 are identical.

Despite this, the SSIM index performs well across a variety of images 𝑃 generated with

different types of noise and distortions, as shown in [30]. Several experiments were conducted to

compare its performance against the HVS.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Comparison of image fidelity measures for the “Einstein” image altered with different

types of distortions and an MSE of around 0.308. (a) Reference image. (b) Mean contrast stretch.

(c) Luminance shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f)

JPEG compression. The image is reproduced from [2].

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs), also known as ConvNets, are a widely-used

type of neural network architecture in computer vision tasks. These networks are specifically

designed to process data with a grid-like pattern, such as images, and are capable of learning

hierarchical spatial features from low to high levels of abstraction.

The building blocks of a CNNs typically include convolutional and pooling layers to

extract features, an activation function, and fully connected layers (similar to hidden layers of a

Multilayer Perceptron) to map the extracted features to the final output.

Mathematically, a CNN can be described as a sequence of functions that take an image

𝐼𝑖 and a set of weights 𝑊𝑖 as input and produce a vector 𝑂 as output:

𝑓 (𝑥1) = 𝑓𝑙 (· · · 𝑓2( 𝑓1(𝑥1,𝑊1),𝑊2) · · · ),𝑊𝑙)

where 𝑓𝑙 (·) performs a convolution operation, which gives the architecture its name.

For the rest of this section, we will describe in more detail the convolutional layers,

activation functions, and pooling operations that make up a CNNs.

2.2.1 Convolutional Layer
A convolutional neural network (CNN) is primarily composed of convolutional layers.

These layers consist of units that are connected to feature maps from previous layers through sets
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of weights called filter banks. Each unit in a feature map shares the same filter bank, but each

layer has its own unique set of filter banks.

A filter is defined as a matrix of kernel size 𝑛 × 𝑚 that slides over the entire image in

steps of a specific size 𝑠, resulting in a weighted sum. This process is mathematically similar to a

discrete convolution operation [31, 5].

The convolutional layer is designed for two main reasons:

1. In images, nearby pixels often have a strong correlation and form distinct patterns that

can be easily detected.

2. Patterns can appear anywhere in the image. By having units share the same set of

weights, the same pattern can be identified in any part of the image.

As stated in the literature, convolutional layers are not affected by changes in the scale or

position of the image. Therefore, other mechanisms such as non-linear functions (Section 2.2.4)

and pooling operations (Section 2.2.5) are necessary to handle these issues [5, 31].

2.2.2 Deconvolution Layer
Often, CNNs build up HR images from LR feature map descriptors. This allows the

network to extract relevant features from the rough image and fill in the missing details.

CNNs often reconstruct images from low-resolution (LR) feature maps, which allows

the network to extract relevant features from the rough image and fill in missing details. To

achieve this, an operation that goes in the opposite direction of a convolutional layer is needed,

meaning going from an LR space to a higher dimensional one. This is achieved through an

operation known as a Traposed Convolution Layer (TCL).

Figure 2.3: Deconvolution layers can generate checkboard patterns, as shown in the image

reproduced from [3].

The TCL 1 concept was first introduced by[32] and later formalized in [33]. Convolutional

operations are defined in terms of their kernel, but whether they behave as a transposed or

direct convolution is determined by the order in which the forward and backward operations are

performed. These operations can be represented as a sparse matrix 𝑀 and a kernel 𝑘 . In a direct

convolution, the forward and backward passes are defined by multiplying 𝑀 with 𝑘 and 𝑀𝑇 ,

respectively. By swapping the order of this multiplication, we obtain the transposed convolution.

Essentially, TCL allows the model to learn how to generate a set of pixels in high-resolution (HR)

space based on a single pixel from LR space [3, 34].

1Also known as fractionally strided convolutions or deconvolutions (This term is misleading since deconvolution

is mathematically described as the inverse of a convolution which, in fact, is not the operation performed)
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Figure 2.4: Pixel Overlapping in [3]. Image reproduced from [3].

After the success of [32]’s work, TCLs were adopted in many areas, including flow

estimation [35] and generative modeling [36]. Despite their outstanding results, TCL operations

can easily reproduce overlapping pixels, as highlighted in Figure 2.4, leading to checkerboard-like

patterns, as exemplified in Figure 2.3 [37]. Although theoretically, CNNs can learn the correct

weights to avoid such artifacts, in practice, doing so restricts possible filters and reduces the

model’s learning capacity.

2.2.3 Depth-wise Convolution Layer

Figure 2.5: Depthwise-separable convolutional layer pipeline. Image reproduced from [4].

Depthwise-separable convolutional layers (DConvs) are a popular technique used in

many efficient neural networks, such as ShuffleNet [38], MobileNets [39], and Xception [40]. The

main idea of this method is to split a standard Convolution layer into two consecutive operations:

Depth-wise Convolution (Dw) and Point-wise Convolution (Pw), as shown in Figure 2.5.

In the Dw operation, each channel of the input is convolved with a single filter. Then, in

the Pw operation, a 1 × 1 convolution is applied to linearly combine the filtered outputs into new

feature maps [39].
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The following equation describes the Dw operation with one filter per input channel:

�̂�𝑘, 𝑙, 𝑚 =
∑

𝑛 = 𝑖, 𝑗 �̂�𝑖, 𝑗 , 𝑚 · �̂�𝑘 + 𝑖 − 𝑗 , 𝑙 + 𝑗 − 1, 𝑚 (2.5)

Here, �̂� is a Dw kernel of size 𝐷𝑘 × 𝐷𝑘 × 𝑀, with the 𝑚𝑡ℎ kernel applied to the 𝑚𝑡ℎ

channel of �̂� to generate a filtered output feature map �̂�. The filtered outputs are then combined

linearly in the Pw operation.

In comparison, a standard Convolution operation applies both operations in a single

layer, taking into account the effects of all 𝐾 convolutional kernels of size 𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝑁 ,

where 𝐷𝐾 is the spatial dimension with 𝑀 input and 𝑁 output channels. It generates a new

representation 𝐹 by combining the features of 𝐺 as shown in the following equation:

𝐹𝑘,𝑙,𝑛 =
∑
𝑖, 𝑗 ,𝑚

𝐾𝑖, 𝑗 ,𝑚,𝑛 · 𝐺𝑘+𝑖−1,𝑙+ 𝑗−1,𝑚 (2.6)

The standard Convolution operation has a much higher computational cost compared

to the Dw operation, which leads to a reduction in computation cost when using Dw instead.

Specifically, the computational cost of a standard Convolution operation is:

𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹 (2.7)

whereas the computational cost of using Dw and Pw operations is:

𝐷𝐾 · 𝐷𝐾 · 𝑀 · 𝐷𝐹 · 𝐷𝐹 + 𝑀 · 𝑁 · 𝐷𝐹 · 𝐷𝐹 (2.8)

According to Howard et al. [39], their MobileNet architecture uses Dw layers, resulting

in 8 to 9 times less computation with a small reduction in accuracy.

2.2.4 Activation Functions
An activation function is a tool used in Neural Networks (NNs) that helps determine

which values generated by layers should be passed on to the output. These functions act like

gates, deciding which information is useful and which is not. Without activation functions, the

network’s weights and biases would only be able to perform linear transformations, which are

not powerful enough to learn complex patterns and mappings from input data [5]. Activation

functions are typically applied after each layer in a NN, except for pooling layers, which only

down-sample the input data and do not require activation functions.

(a) 𝑡𝑎𝑛ℎ(𝑥)
𝑠

(b) 𝜎(𝑥) = 1
1+𝑒−𝑥

(c) 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (d) 1(𝑥 < 0) (𝛼𝑥) + 1(𝑥 ≥ 0) (𝑥)

Figure 2.6: Activation Functions. (a) Hyperbolic Tangent. (b) Sigmoid. (c)Rectified Linear. (d)

Parametric ReLU. Image reproduced from [5]

One of the most commonly used activation functions is the sigmoid function, which is

named after its "S" shape on the y-axis in the R2 plane. It is a smoothing function that is easy to
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Figure 2.7: Comparative illustration of the (a) Average Pooling and (b) Max Pooling Operations.

derive and implement and has output values that are bounded between 0 and 1. However, the

sigmoid function can slow down the training phase due to its non-zero centered characteristic

and can also cause the vanishing gradient problem [41].

To address the problems with the sigmoid function, other activation functions have

been proposed. The hyperbolic tangent (Tanh) function is zero-centered and gives output values

between -1 and 1, but its output values may saturate. The rectified linear function (ReLU) function

is often used in CNNs and cancels out all negative values, linearizing all positive values [42, 43],

which solves the vanishing gradient problem [44]. Another popular activation function is

the Parametric ReLU (PReLU), which allows a small negative slope and is parametrized by

0 ≤ 𝛼 ≤ 1 [45]. The Leaky ReLU (LReLU) function is similar to PReLU but has a fixed 𝛼 value.

The most common activation functions are illustrated in Fig. 2.6, which includes

hyperbolic tangent, sigmoid, rectified linear unit, and parametric rectified linear unit.

2.2.5 Pooling Layer
Convolutional layers in a NN use learned filters to create feature maps, which summarize

and identify features in an image. By stacking multiple convolutional layers in a deep NN, lower

layers can learn low-level characteristics, such as edges and corners, while deeper layers can learn

more abstract features, such as shapes and patterns. However, one drawback of convolutional

layers is that they may not be able to precisely locate the position of features. This means that

small changes in the input’s position may result in different feature maps, making it harder for the

model to learn spatial relationships between features. This issue is known as the "translation

invariance" problem and can be addressed by using additional layers, such as pooling layers or

spatial transformer networks, that allow the network to adjust to slight variations in the input’s

position [31].

To address this issue, a common approach is to down-sample the feature maps using

pooling operations. Pooling operations summarize semantically important features into one while

preserving essential structural information. This helps the convolutional layers to be less sensitive

to small translations of the input, making them approximately translation-invariant. Pooling

operations are typically specified using a pre-defined function, such as taking the maximum or

average value in a neighborhood, as illustrated in Figure 2 [31, 46]. The process of down-sampling

also results in improved performance and reduced memory requirements for storing parameters.

It is important to note that models used for image-to-image translation, such as super-

resolution models, perform better when the network learns the down or up-sampling methods,

rather than using pooling layers. This finding has been demonstrated in studies such as [22, 5].
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2.2.6 Sub-pixel Convolution Layer
The sub-pixel convolution layer, also known as PS, is a technique used to improve the

results of deep neural networks in image reconstruction. Traditionally, images are upscaled using

handcrafted filters, such as bicubic interpolation, which can lead to suboptimal results and high

computational overhead. The PS layer, introduced by the authors of [22], improves upon this

by learning the filter weights to properly upscale LR images into HR images. This approach

effectively replaces fixed handcrafted filters with filters that are specific to each feature map,

reducing computational complexity.

Figure 2.8: PixelShuffle layer aggregates the feature maps from the LR space and builds their SR

version.

The PS layer rearranges the elements in an image of shape (𝐵, 𝐻,𝑊,𝐶 · 𝑟2) to its

upscaled version with dimensions of (𝐵, 𝐻 × 𝑟,𝑊 × 𝑟, 𝐶), with a scale factor of 𝑟 . By introducing

the PS layer after a convolutional operation, which increases the number of channels using a

set of filters, it is possible to reorganize the resulting pixels into a higher-resolution image. The

PS layer is similar to a normal convolution with fractional stride or transposed convolution (i.e.,

deconvolution) layers. However, as pointed out by [22], the PS layer can learn filters with complex

patterns for different feature maps, resulting in richer and more meaningful representations.

The mathematical operation performed by PS can be described as:
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𝑃𝑆(𝑇)𝑥, 𝑦, 𝑐 = 𝑇 �𝑥/𝑟�, �𝑦/𝑟�, 𝐶 · 𝑟 · 𝑚𝑜𝑑 (𝑦, 𝑟) + 𝐶 · 𝑚𝑜𝑑 (𝑥, 𝑟) + 𝑐 (2.9)

Here, 𝑥 and 𝑦 represent pixel positions, 𝑟 is the scale factor, and 𝐶 represents the number

of channels. The equation rearranges the elements in an LR feature map 𝑇 to produce an SR

feature map by computing the new positions of each pixel in the output based on its position in

the input.

2.3 Generative Adversarial Networks (GAN)
GANs were first introduced by [47]. GAN architectures are capable of generating

new data that resembles the domain of a training set. GANs consist of two sub-models that

work together in an adversarial manner: a Generative model and a Discriminative model. The

Generative model is responsible for creating new data that is similar to the training set, while

the Discriminative model is responsible for determining if the data generated by the Generative

model is real or fake.

During training, both the Generative and Discriminative models engage in a game-like

competition. The Generative model aims to improve its ability to create realistic data that can

deceive the Discriminative model, while the Discriminative model aims to improve its ability

to accurately distinguish between real and fake data. Similar to a game where players compete

against each other, when the Generative model succeeds in deceiving the Discriminative model,

it is rewarded and no updates are needed for the Generative model’s weights. Conversely, if the

Discriminative model fails, its weights are updated as a punishment.

As a result of this competition, both models in the GAN architecture improve with each

other’s help. The Generative model learns to create data that is increasingly similar to real data,

while the Discriminative model becomes better at identifying fake data. A diagram of the GAN

pipeline is shown in Fig. 2.9, where the Generator produces new data and the Discriminator

judges if it is real or fake. If the Discriminator is successful, the Generator’s weights are updated,

otherwise, if the Discriminator fails, its weights are updated instead.

2.4 Multi-Path Residual Network
Adaptive Residual Blocks (ARBs) are a key component of the MPRNet model presented

in [6]. ARBs were designed to address the gradient confusion problem that arises in other works

such as [48] and [49] and to improve performance in single-image SR tasks.

Unlike traditional residual blocks, ARBs introduce multiple learning paths that are each

responsible for extracting different types of information before the aggregation step. This allows

the network to access more expressive spatial context information in noisy LR images. The

different learning pathways and components of ARBs are detailed in Fig. 2.10.

2.4.1 Residual Path
The residual path is a technique that helps to avoid gradient confusion in a neural

network. The basic idea is to bring the gradient flow from high-dimensional representations

instead of narrow feature spaces between pathways. This approach was first proposed in [50]. By

doing this, the network can more easily propagate gradients across multiple layers, which helps
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Figure 2.9: Diagram of the GAN pipeline. The generator produces new data, and the discriminator

judges whether it is real or fake. If the discriminator successfully identifies fake data, the

generator’s weights are updated. On the other hand, if the discriminator fails to identify fake

data, its weights are updated instead.

with optimization during training. This strategy has been shown to improve the performance of

neural networks and make them converge faster.

Figure 2.10: The Two-Fold Attention Module and Adaptive Residual Block are shown in the

image reproduced from [6].

Bottleneck Path

The bottleneck path is a technique designed to extract important information for single-

image SR tasks while avoiding unnecessary computational costs. It is based on three key insights:
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i) High-frequency information and spatial information are key to super-resolution tasks, so the

bottleneck path focuses on extracting these types of information. ii) Wide feature maps with

irrelevant information can slow down the network, so the bottleneck path is designed to prevent

this. iii) To avoid unnecessary computational costs, the bottleneck path uses Dw layers with small

kernels to generate meaningful information, and Pw layers to encode inter-channel information

and reduce computational costs.

Moreover, to enable the path to function with high-dimensional feature spaces in a

low-cost and spatially focused context, the bottleneck path uses Two-Fold Attention Modules

(Two-fold Attention Module (TFAM)) which are incorporated into the bottleneck path. These

modules assist in the efficient and effective extraction and aggregation of crucial features from

high-dimensional feature maps.

Adaptive Path

The adaptive path is a technique that aims to extract important information from the

LR image by using first-order statistics, such as the mean, retrieved through an average pooling

layer. This process eliminates noise present in the LR image and reduces the dimensionality of

feature maps while preserving important information for quality enhancement. Afterward, it uses

a Pw layer to encode the information across the channels. These steps help the network generate

more detailed and sharper super-resolved images. The adaptive path helps extract important

information from the LR image while reducing noise, which can improve the quality of the final

super-resolved image.

2.4.2 Two-Fold Attention Module
The Two-Fold Attention Module (TFAM), as shown in Fig. 2.10, is a crucial component

that addresses the problem of allocating available computational resources to the most important

features and informative regions within an input image for better reconstruction. The TFAM was

proposed in [6] to emphasize the relevant features within the LR input image by focusing on both

channel and spatial information simultaneously.

The architecture of the TFAM has two branches, one of which focuses on the features

present in the channels, using the Channel Unit (CA) mechanism, and the other on the location

of these features, using the Positional Unit (POS). This allows the network to learn "what" and

"where" to focus its attention on, the channel and spatial axes respectively, to emphasize relevant

features and suppress irrelevant ones.

Experiments conducted in [6] have shown that the TFAM outperforms other state-of-

the-art attention mechanisms, such as Squeeze-and-Excitation (SE) [51], Channel Attention (CA)

[52], Residual Attention (RA) [53], and Convolutional Block Attention Module (CBAM) [54], in

terms of both performance and image reconstruction quality.

Channel Unit

The CA unit is a part of the TFAM that focuses on the features present in the channels.

It starts with an average pooling operation to extract first-order statistics of the input, such as

the mean. This step helps to reduce noise in the input image and extract important information.

The CA unit then uses two group-wise convolutional layers. Each layer receives half of the

input channels and outputs half of the feature maps. These feature maps are then concatenated

to generate the final output. By using group-wise convolutional layers, the CA unit is able to

compute a summary of meaningful features while reducing the influence of redundant or useless
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information. This approach allows the CA unit to extract important information in a low-cost

way.

Positional Unit

The POS unit of the TFAM focuses on the location of the features generated by the CA.

The POS unit performs an average pooling operation and a max pooling operation, followed by a

concatenation operation, to generate an efficient feature descriptor that describes the position of

the features.

Next, an up-sampling layer is used to restore the original shape of the feature maps.

Then, a convolutional layer aggregates the resulting information. The output of the POS unit is

concatenated with the output of the CA unit, and this concatenated output is processed by a 1 × 1

convolutional layer, which is activated by a sigmoid function to generate the final mask.

Additionally, a residual connection is used to transfer the input features of the TFAM

to its output. This helps to preserve important information from the input and improve the

performance of the network. Overall, the POS unit improves the quality of the final super-resolved

image by allowing the network to focus on the location of important features.
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Chapter 3

Related Works

In this chapter, we will provide an overview of recent research in the field of sparse-code

and Deep Learning (DL) methods, with a focus on image SR and LPR. In section 3.1, we will

discuss approaches for general image SR, such as those used for landscapes and urban scenes. In

section 3.2, we will delve into the use of deep learning methods for super-resolution of license

plates. Finally, we will conclude this chapter with some final remarks and references to the

papers that have been reviewed. A comprehensive list of SR methods for general images can be

found in Table 3.1, while Table 3.2 lists the LPR-specific SR methods that have been reviewed in

this chapter.

3.1 Single-Image Super-Resolution
SISR has seen significant advancements in recent years, making it applicable to various

domains [10, 55]. Early SISR methods fell into four categories: prediction, edge-based, image

statistical, and example-based [56, 57, 58, 59, 60]. In 2016, Dong et al. [61] introduced

Super-Resolution Convolutional Neural Network (SRCNN), a deep learning-based approach that

outperformed previous methods in terms of both quality and speed.

Dong et al. [61] proposed one of the first deep learning-based methods, called SRCNN,

to tackle the SISR problem. They found that deep CNNs were superior to previous methods,

providing better quality reconstruction without the limitations of prior assumptions. This

approach is also faster and demonstrates superior restoration capabilities compared to previous

example-based methods, with fewer pre- or post-processing steps.

Although SRCNN was successful, some limitations were observed, such as its reliance

on pre-upsampling of LR images, which increased computational complexity without providing

significant additional information for image restoration [62, 63]. To address these limitations,

Dong et al.[64] and Shi et al [22] later incorporated upsampling near the end of the network

architecture, significantly reducing execution time, parameters, and computational cost.

Shi et al. [22] emphasized the significance of learnable upscaling and developed

specialized convolution layers for learning upscaling filters. This technique allows for more

intricate mappings from LR to HR images, leading to improved performance compared to

fixed-size interpolation methods.

Attention mechanisms have been introduced in recent super-resolution research to

improve image reconstruction. Zhang et al. [65] pioneered the use of first-order statistical

attention mechanisms, followed by Dai et al. [66], who presented an improved version using

second-order statistics. Huang et al. [67] proposed an attention network that preserves detail

fidelity using a divide-and-conquer strategy. Mehri et al. [6] introduced MPRNet, which leverages
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information from both inner-channel and spatial features using a TFAM, outperforming multiple

state-of-the-art methods such as those presented in [68, 69, 70].

Recently, Zhang et al. [71] proposed the Dual-Coordinate Direction Perception Atten-

tion (DPCA) mechanism, a structure- and texture-preserving image super-resolution reconstruction

method. This method emphasizes structure and feature details, resulting in improved image

quality compared to previous methods.

In summary, SISR methods based on sparse-code and example-based techniques have

limitations because they rely on prior assumptions about the data model. In contrast, deep

learning-based methods have been shown to be more effective and efficient in image restoration

without these limitations. However, these methods also have their own set of challenges, including

the use of pre-upsampling of LR images and the need for computational efficiency.

To address these challenges, researchers have proposed various solutions, such as

incorporating the upsampling process near the end of the network architecture, using specialized

convolution layers for upscaling, and introducing attention mechanisms for better feature extraction.

These solutions have shown promising results in improving the quality and efficiency of SISR

methods.

3.2 Super-Resolution for License Plate Recognition
The primary objective of an LPR system is to extract information from an image or

series of images, as reported in literature such as Laroca et al. [72] and Du et al. [73]. LPR

systems have a wide range of practical applications in security tasks, such as enforcing traffic

laws, monitoring private areas, and criminal investigations [74]. According to Menotti et al. [75],

LPR typically involves three main stages: license plate detection, character segmentation, and

character recognition. Detection of the LP is the most crucial stage as it sets the foundation

for the success of the next stages. However, not all detected LPs result in high-quality images

for recognition. Despite recent advancements in LPR, as reported in studies such as Laroca

et al. [76], Wang et al. [77], and Silva et al. [78], the datasets used to evaluate these proposed

models often comprise only of HR images where all characters on the LP are clearly legible.

This does not align with the reality of most surveillance scenarios.

The quality of LP images is closely related to several factors, such as the camera’s

distance, motion blur, lighting conditions, and image compression techniques used for storage [79].

While commercial LPR systems tend to capture sharp images with the use of global shutter

cameras, cheaper cameras that employ rolling shutter technology are often used in surveillance

systems, resulting in blurry images [80] with illegible LP characters. In summary, improving LP

character quality is a significant challenge because many factors that cause poor image quality

are often unknown beforehand in real-world scenarios.

The concept of combining SR and LP recognition has been around since the early

2000s [81, 82, 83], but this area of research has gained more attention in recent years with the

advancement of deep learning techniques. One of the earliest works that applied this concept

in actual traffic conditions is presented in [81] using a Maximum a Posteriori (MAP) based

method. While this approach was innovative, it was found to be computationally demanding

and impractical for real-time applications due to its high computational requirements. Tanaka

and Okutomi [82] later proposed a faster MAP version for general SR on images. Yuan et

al. [83] further reduced the computational cost when applied specifically for LP recognition.

However, MAP-based approaches rely on prior information about the desired output, which may

not guarantee the best solution in a problem with insufficient information to uniquely determine

the desired output, such as SR.
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Seibel et al. [84] developed a MISR method that uses projecting and selecting k-nearest

neighboring pixels on a HR grid. Despite achieving impressive results, their SR algorithm relies

on accurately aligning multiple images and correctly selecting the HR-grid size. This method

may not perform well on blurred images, such as those affected by motion blur.

Svoboda et al. [85] demonstrated that CNNs trained on artificially generated blurry

images can provide superior quality enhancement for images with motion blur compared to

traditional blind deconvolution methods. However, as the model was trained for a specific range

of motion blur lengths and directions, the reconstruction quality deteriorates significantly for

blurs that fall outside the range for which the network was trained.

Lin et al. [86] used the high capability of a GAN for LP reconstruction and reported

promising results. However, their experiments were conducted on only 100 images, which may

not be representative of the general performance of the method. Additionally, their approach was

only evaluated in terms of PSNR and SSIM without assessing the LPR performance. Despite

the positive results, the authors filtered out images with poor brightness and contrast from the

Chinese City Parking Dataset (CCPD) dataset [87] as input for testing, and no explicit degradation

methods were used.

Kabiraj et al. [88] proposed to use a Enhanced Super-Resolution Generative Adiversarial

Network (ESRGAN) paired with an OCR to recover character information in LR and poor

quality LPs, building on the promising results from prior work [86]. The experiments suggest

that the OCR used achieved superior results with a small training dataset and minimal pre-

or post-processing after the ESRGAN stage. The model was trained using a dataset of 1000

high-resolution images with their corresponding low-resolution versions, artificially generated,

but evaluated using 182 real-world images.

In the same vein, Hamdi et al. [21] concatenated two GAN models for this task, with

the first one used for denoising and deblurring, and the second for super-resolution. The

authors compared their method to three baselines, but only in terms of PSNR and SSIM as their

evaluation metrics as well. Notably, they acknowledged that higher PSNR and SSIM values do

not necessarily indicate a better reconstruction.

Lee et al. [89] proposed a GAN-based super-resolution model that incorporates a

perceptual loss based on intermediate features extracted from a scene text recognition model[90].

Their method reportedly achieved better results than the same GAN-based model trained with

the original perceptual loss. However, the authors did not make their dataset publicly available,

and the degradation method used was not specified.

Maier et al. [91] introduced a Bayesian neural network for LPR that can express

uncertainty within a single frame. They also incorporated a reliability score that considers

predictive uncertainty, entropy, and prior information, enabling the network to detect and mitigate

unreliable predictions. The findings indicate that their approach outperformed traditional softmax

statistics. Nevertheless, the authors did not make the datasets used in the experiments publicly

available.

Similarly, Moussa et al. [92] proposed a parameter-efficient Transformer model for LPR

and evaluated it on real-world data. They showed that Transformers can be effectively used for

LPR and highlighted the importance of incorporating compression levels as prior knowledge.

Their approach achieved better results than existing LPR methods for low-quality data while

requiring fewer parameters and matching the performance on medium and high-quality data.

Despite the primary objective of enhancing LP images to improve recognition accuracy,

it is surprising that most previous studies have primarily evaluated the quality of the reconstructed

images through subjective visual evaluations or metrics such as PSNR and SSIM. These metrics

have limited correlation with human assessment of visual quality [93, 94]. Furthermore, in



36

most previous studies, private datasets were used in the experiments [85, 89, 21, 91], making it

challenging to accurately assess the reported results.

Table 3.1: Papers for bibliographical review on general super-resolution methods:

Super-Resolution

Citation Number Author Name Year of Publish Topic

[6] Mehri et al. 2021
MPRNet: Multi-path residual network for

lightweight image super-resolution

[95] Dong et al. 2014
Learning a deep convolutional network

for image super-resolution

[22] Shi et al. 2016

Real-time single image and video

super-resolution using an efficient

sub-pixel convolutional neural network

[96] Farsiu et al. 2004
Fast and robust multi-frame super

resolution

[97] Chang et al. 2004
Super-resolution through neighbor

embedding

[98] Vanderwalle et al. 2007

Super-resolution from unregistered and

totally aliased signals using sub-

space methods

[99] Yang et al. 2008
Image super-resolution as sparse repre-

sentation of raw image patches

[100] Yang et al. 2010
Image super-resolution via sparse

representation

[101] Shah et al. 2012 Image super-resolution: a survey

[61] Dong et al. 2016
Image super-resolution using deep

convolutional networks

[102] Chen Y. and Pock T. 2017

Trainable nonlinear reaction diffusion:

A flexible framework for fast and

effective image restoration

[61] Dong et al. 2016
Accelerating the super-resolution

convolutional neural network

[103] Krizhevsky et al. 2012
ImageNet classification with deep

convolutional neural networks

[59] Yang et al. 2013
Fast image super-resolution based on

in-place example regression

[65] Zhang et al. 2018
Image super-resolution using very deep

residual channel attention networks

3.3 Final Remarks
In summary, many papers addressing LPR with SR to improve recognition accuracy

have performed their experiments in controlled noise scenarios and with artificially generated
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Table 3.2: Papers for bibliographical review on super-resolution license plate recognition methods

Super-Resolution for License Plate Recognition

[104] Nasrollani et al. 2014
Super-resolution of license plates

in real traffic videos

[72] Laroca et al. 2018
A robust real-time automatic license plate

recognition based on the YOLO detector

[73] Du et al. 2013
Automatic license plate recognition:

A state-of-the-art review.

[74] Weihong W. and Jiaoyang T. 2020

Research on license plate recognition

algorithms based on deep learning

in complex environment

[75] Menotti et al. 2014
Vehicle license plate recognition with random

convolutional networks

[76] Laroca et al. 2021

An efficient and layout-independent automatic

license plate recognition system based on the

YOLO detector

[77] Wang et al. 2021
Rethinking and designing a high-performing

automatic license plate recognition approach

[78] Silva S. and Jung C. 2022
A flexible approach for automatic license

plate recognition in unconstrained scenarios

[80] Liang et al. 2008 Analysis and compensation of rolling shutter effect

[82] Tanaka M. and Okutomi M. 2006
fast MAP-based super-resolution

algorithm for general motion

[83] Yuan et al. 2008
Fast super-resolution for license plate

image reconstruction

[84] Seibel et al. 2017

Eyes on the target: Super-resolution and

license-plate recognition in low-quality

surveillance videos

[85] Svodoba et al. 2016 CNN for license plate motion deblurring

[86] Lin et al. 2021
License plate image reconstruction based on

generative adversarial networks

[87] Xu et al. 2018
Towards end-to-end license plate detection and

recognition: A large dataset and baseline

[89] Lee et al. 2020
Super-resolution of license plate images via

character-based perceptual loss

[90] Shi et al. 2019
An attentional scene text recognizer with

flexible rectification.

[93] Johnson et al. 2016
Perceptual losses for real-time style

transfer and super-resolution

[94] Zhang et al. 2018
The unreasonable effectiveness of

deep features as a perceptual metric

[88] Kabiraj et al. 2021
Number plate recognition from enhanced super-resolution

using generative adversarial network

[91] Maier et al. 2022 Reliability scoring for the recognition of degraded license plates

[92] Moussa et al. 2022 Forensic license plate recognition with compression-informed transformer

LR images, which do not reflect real-world situations where surveillance cameras are often

of poor quality and affected by environmental conditions. Despite the main objective being

the improvement of recognition results, most related works only evaluate LP reconstruction

qualitatively or quantitatively based on PSNR and SSIM. Additionally, the majority of experiments
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were conducted exclusively on private datasets, and no real LR paired with HR images are

publicly available to the best of our knowledge.

In light of this, we propose to use an OCR as a fundamental part of the LRLP

reconstruction pipeline to create a robust and efficient LPSR network. Additionally, we aim to

build a publicly available dataset composed of real-world scenarios paired LR/HR images.
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Chapter 4

Proposal

In this chapter, we present our super-resolution approach that enhances the extraction

of both structural and textural features from low-resolution LP. Our proposed network is an

extension of the architecture proposed in our previous work [7], which builds on the MPRNet and

TFAM algorithm developed by Mehri et al. [6]. Drawing inspiration from the attention module

proposed in [71], we have further improved our network’s ability to capture both structural and

textural information. We leverage a perceptual loss function that uses an OCR model as a feature

extractor to enhance the performance of our network.

4.1 Network Architecture Modifications
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Figure 4.1: The proposed architecture incorporates an autoencoder consisting of PS and PU layers

for feature compression and expansion, respectively, with the aim of eliminating less significant

features. In addition, the TFAM modules in the original architecture were replaced with PTFAM

modules throughout the network. The legend inside the figure provides explanations for the

acronyms used.

The proposed approach for super-resolution in LPR features a network architecture that

builds upon the work of Mehri et al.[6] and Zhang et al.[71]. As illustrated in Fig. 4.1, the

architecture comprises four key components: an Shallow Feature Extractor (SFE); Residual

Dense Blocks (RDBs) (refer to [105] for more information); an Feature Module (FM) module;

and an Reconstruction Module (RM). The RM combines the output of the FM module with

two long-skip connections, one from the end of the SFE module and the other from the input

image, to produce the final high-resolution output. Our specific modifications are discussed in

the following sections.
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Figure 4.2: Shallow Feature Extractor block: It uses a 7 × 7 kernel depth-wise convolutional

layer, an autoencoder with PU and PS layers, and depth-wise separable convolutional layers. The

resulting mask emphasizes important features for image reconstruction, and a skip connection

prevents the loss of information.

The proposed modifications to the network architecture include a modified Shallow

Feature Extractor block, shown in Figure 4.2. This block consists of a 7 × 7 kernel Depth-wise

convolutional layer and an autoencoder that utilizes PU and PS operations instead of conventional

pooling and upscaling operations. The autoencoder employs PU layers to downscale the image

by a factor of 2 and PS layers to upscale the image by a factor of 2. Following this, Depth-wise

separable convolutional layers are applied to reduce the computational burden by decreasing

the number of parameters and preventing network overfitting. The process of squeezing and

expanding is utilized to highlight the most significant features for image reconstruction and

reduce the irrelevant information through squeezing. The result is a mask that emphasizes

important features for image reconstruction in a specific application. Additionally, to avoid the

loss of information during the autoencoder process, a skip connection is added from the initial

convolutional layer to the output, allowing the rest of the network to benefit from a general feature

map generated by the first convolutional layer and enhanced by the autoencoder mask.

PixelShuffle Three-Fold Attention Module

To obtain super-resolved images that closely resemble the ground truth HR image for

LPR, attention mechanisms can effectively allocate computer resources to the most informative

and relevant input features for a given application [54, 38, 106, 66, 6]. In our approach, we

propose a modified version of the TFAM algorithm in MPRNet[6] that combines an attention

module developed by Nascimento et al. [7], called PTFAM (shown in Fig. 4.3). We rely on the

following insights to design our approach: (i) extracting the relationship between channels is

crucial for proper image restoration; (ii) the positional information of these features from the

channels composing the images is required; (iii) traditional downscale and upscale operations

rely on translational invariance and interpolation techniques, which are not suitable for learning a

customized process for different tasks; and (iv) the module captures salient structure from the

character fonts of the license plate, highlighting both structural and textural features in the image.

The PTFAM is specifically designed to focus on the inter-channel relationship features via the

CA unit, pinpoint the position of these features via POS, and enhance the network’s ability to

retrieve textural and structural information concerned with the character’s shape against the LP

background via Geometrical Perception Unit (GP).

Channel Unit. The purpose of the CA module is to identify and preserve significant

inter-channel relationship features while discarding less important ones. To achieve this, the

module utilizes two parallel convolutional layers, concatenates their outputs, and processes the

concatenated output using a convolutional layer, a PU layer, a PS layer, and a DConv layer. This
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Figure 4.3: Comparison of the (a) Two-Fold Attention Module in MPRNet [6], (b) PixelShuffle

Two-Fold Attention Module in Nascimento et al. [7], and (c) PixelShuffle Three-Fold Attention

Module (ours).

approach effectively summarizes the inter-channel relationship features, leading to improved

image restoration.

Positional Unit. The purpose of the POS module is to enhance the CA module by

identifying the important features’ locations in the image. It achieves this by using average and

max pooling operations to extract first-order statistics of the image, concatenating the outputs,

and then processing them through DConvs and PS layers to restore the original feature map

dimension. By highlighting the positions of the relevant inter-channel relationship features, the

POS module further improves the quality of image restoration.

Geometrical Perception Unit. We incorporated a third branch called GP to enhance

the network’s ability to extract critical characteristics, such as structural, textural, and geometric

features from the LP, which was motivated by the work of [71]. This module utilizes global

average pooling in both the vertical and horizontal directions of the input image. The output from

this layer is then subjected to a point-wise convolutional layer followed by the sigmoid function

to ensure the right channel dimensions. Finally, the results from this layer are aggregated through

an element-wise multiplication to obtain the final output.

Finally, the outputs from the CA, POS and GP units are combined through an element-

wise sum and multiplication to generate the final attention mask, which is then used to enhance

the input to the PTFAM module through a DConv layer and a sigmoid function. This process

effectively emphasizes the key features of the image, including the inter-channel relationships,

positional information, and structural information, resulting in improved image restoration.

Overall Network Architectural Modifications

We modified the original ARBs to improve the network’s performance, as illustrated in

Fig. 4.4. Specifically, we replaced the TFAM with our proposed PTFAM module and substituted

the traditional convolution layers in the bottleneck path with dilated convolution layers. This

modification enables the network to consider a broader context by increasing the receptive field

without introducing extra parameters. Nonetheless, the overall network structure remained similar

to the one described in [6].

Returning to Fig. 4.1, we have incorporated Residual Dense Layers (RDLs) based on the

RDB introduced in Zhang et al. [106] to enhance the network’s representational ability. These

layers leverage both local and global feature fusion to generate texture patterns likely to be

learned from the training data. We added RDLs after the autoencoder to improve the aggregation
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Figure 4.4: Proposed Adaptive Residual Block with Dilated Convolutions along the Bottleneck

Path (𝐵𝑁𝑝𝑎𝑡ℎ) and Pixel-Level Three-Fold Attention Module.

of shallow features and in the reconstruction module to enhance output quality for tasks such

as compression artifact reduction, image deblurring, and Gaussian denoising. Additionally, to

extract hierarchical features and improve the image based on the original LR image, we added

a global skip connection from the input for global residual learning, as proposed by Zhang et

al. [106].

4.2 Perceptual Loss
We propose enhancing the accuracy of our super-resolution approach by incorporating a

perceptual loss function that considers the features expected by an OCR model. The function,

presented in Eq. (4.1), aims to improve the accuracy of the system. 𝐻𝑖 and 𝑆𝑖 represent the

high-resolution and super-resolved LP images, respectively, and 𝑓𝑂𝐶𝑅 (·) represents the feature

extraction process performed by the OCR model. In Eq. (4.1), we calculate the mean of

the squared differences between 𝐻𝑖 and 𝑆𝑖, as well as the absolute differences between the

feature representations of 𝐻𝑖 and 𝑆𝑖 obtained from 𝑓𝑂𝐶𝑅 (·). These two terms are combined and

normalized by the number of images 𝑛 in the dataset.

𝑃𝐿 =
1

𝑛

( 𝑛∑
𝑖=1

(𝐻𝑖 − 𝑆𝑖)
2 +

𝑛∑
𝑖=1

| 𝑓𝑂𝐶𝑅 (𝐻𝑖) − 𝑓𝑂𝐶𝑅 (𝑆𝑖) |
)

(4.1)

It is worth noting that the loss function allows the use of any OCR model for LPR, which

provides flexibility and the ability to incorporate novel models as they become available. In this

work, we explore the multi-task model proposed by Gonçalves et al.[23], which is efficient and

has achieved remarkable outcomes in prior research [79, 7].

In addition, to enhance the overall quality of the image, we use the MSE to compute the

difference between the expected and generated pixel values, penalizing significant errors more

than minor errors. The MSE is effective in preserving the structural information in the image,

which is essential in the super-resolution task. On the other hand, the L1 loss ensures robustness
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to noise and outliers, and helps to preserve sharp edges in the generated images by considering

the expected features. This is particularly important in the early stages of training when there may

be a significant discrepancy between the expected and actual features produced by the network.

Combining MSE and L1 loss provides a more comprehensive evaluation of the generated images,

achieving a balance between preserving structural information and minimizing errors.
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Chapter 5

Experiments

In this section, we detail the steps taken to validate the effectiveness of our proposed

method for LP super-resolution. We first describe our experimental setup and then proceed to

provide a comprehensive analysis of the results obtained.

5.1 Setup
In our experiments, we used LP images obtained from the RodoSol-ALPR [8] and

PKU [9] datasets. To the best of our knowledge, there is currently no public dataset that provides

paired LR and HR images from real-world settings. Hence, we chose these two datasets because

they provide a wide range of scenarios in which the images were acquired.

RodoSol-ALPR is the largest public dataset acquired in Brazil. It comprises 20,000

images, with 10,000 showing vehicles with Brazilian LPs and 10,000 featuring vehicles with

Mercosur LPs1. As shown in Fig. 5.1, the diversity of this dataset with respect to several factors

such as LP colors, lighting conditions, and character fonts is significant. In this work, we follow

the standard protocol (defined in [8]) that involves using 40% of the images for training, 20% for

validation, and 40% for testing.

Figure 5.1: Some LP images from the RodoSol-ALPR dataset [8]. The first two rows show

Brazilian LPs, while the last two rows show Mercosur LPs.

1In accordance with prior literature [107, 108, 78], we use the term “Brazilian” to refer to the layout used in

Brazil prior to the adoption of the Mercosur layout.
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The PKU dataset comprises images categorized into five distinct groups, namely G1

through G5, each representing a specific scenario. For instance, the images in G1 were captured

on highways during the day and depict a single vehicle. On the other hand, the images in

G5 were taken at crosswalk intersections, either during the day or night and have multiple

vehicles. All images were collected in mainland China. We perform experiments using the

2,253 images in groups G1-G3, as they have labels regarding the LP text (these annotations

were provided in [109]). Despite the diverse settings, the LP images have good quality and are

perfectly legible (see some examples in Fig. 5.2). Following [109, 108], we use 60% of the

images for training/validation, while the remaining 40% are used for testing. Laroca et al. [110]

recently revealed that the PKU dataset (as well as other datasets) has multiple images of the same

vehicle/LP. They referred to such images as near-duplicates. Accordingly, to prevent bias in our

experiments, we ensured that all images showing the same LP were grouped in the same subset.

Figure 5.2: Examples of LP images from the PKU dataset [9]. Although the LPs in this dataset

have varying layouts, they all have seven characters.

The HR images used in our experiments were generated as follows. For each image

from the chosen datasets, we first cropped the LP region using the annotations provided by the

authors. Afterward, we used the same annotations to rectify each LP image so that it becomes

more horizontal, tightly bounded, and easier to recognize. The rectified image is the HR image.

Inspired by [106], we generated LR versions of each HR image by simulating the effects

of an optical system with lower resolution. This was achieved by iteratively applying random

Gaussian noise to each HR image until we reached the desired degradation level for a given LR

image (i.e., SSIM < 0.1). To maintain the aspect ratio of the LR and HR images, we performed a

padding prior to resizing them to 20 × 40 pixels, resulting in an output shape of 80 × 160 pixels

for a magnification factor of 4. Fig. 5.3 and Fig. 5.4 show examples of the LP images generated

for the RodoSol-ALPR and PKU datasets, respectively.

Figure 5.3: Some HR-LR image pairs created from the RodoSol-ALPR dataset.
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Figure 5.4: Examples of HR-LR image pairs created from the PKU dataset.

Our experiments were conducted using the PyTorch framework on a high-performance

computer that is equipped with an AMD Ryzen 9 5950X CPU, 128 GB of RAM, and an NVIDIA

Quadro RTX 8000 GPU (48 GB).

We used the Adam optimizer with a learning rate of 10-4, which decreases by a factor

of 0.3 (up to 10-7) when no improvement in the loss function is observed. The training process

stops after 20 epochs without a decrease in the loss function.

5.2 Experimental Results
In the field of LPR, models are typically evaluated based on the ratio of correctly

recognized LPs to the total number of LPs in the test set [76, 111, 78]. A LP is considered

correctly recognized only if all characters on it are recognized accurately. As our focus is on

low-resolution LPs that are commonly used in forensic applications, we also report partial match

results where at least 5 or 6 out of the 7 characters are recognized correctly. These partial matches

may be useful in narrowing down the list of potential LPs by incorporating additional information

such as the make and model of the vehicle.

The results of the LPR experiment are shown in Table 5.1. The table shows the

recognition accuracy of HR and LR license plate images degraded by bicubic downsampling and

recursive Gaussian noise. The difficulty of the task can be seen from the SSIM score, which

ranges from 0 to 0.1, as illustrated in Fig. 5.3, where the LP characters are barely distinguishable.

The proposed super-resolution network achieved superior performance compared to

the two baseline models, as presented in the second section of Table 5.1. The multi-task OCR

model [23] demonstrated remarkable improvement when applied to images reconstructed by

our super-resolution approach in both datasets, particularly in the PKU dataset, with a 14.8%

higher recognition rate compared to the method proposed in our preliminary work [7] and a

26.7% higher accuracy compared to MPRNet [6] for LPs with more than five correct characters.

For completeness, we detail in Table 5.1 the PSNR and SSIM obtained by each approach.

Similar to what was observed in [94, 21, 86], the PSNR metric seems inappropriate for this

particular application, as our approach and the one proposed in [7] reached comparable values,

despite ours leading to significantly better results achieved by the OCR model. The SSIM metric,

on the other hand, seems to better represent the quality of reconstruction of LP images, as the

proposed method achieved considerably better SSIM values in both datasets.

The variation in accuracy between the two datasets can be attributed to the diversity

present in the RodoSol-ALPR dataset, which includes a range of layouts, lighting conditions,

and character fonts, while the PKU dataset largely comprises LPs with a uniform layout and less

variation in the environmental conditions under which the images were collected.

The OCR network demonstrated improved results due to the effective extraction of

textural and structural information by the proposed GP unit, in addition to the CA and POS units.

These units were designed using pyramid and PixelShuffle layers to optimize channel scaling and

reorganization within the image.
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Table 5.1: Recognition rates (%) achieved in our experiments. “All” refers to LPs where all

characters were recognized correctly; ≥ 6 and ≥ 5 refer to LPs where at least 6 or 5 characters

were recognized correctly, respectively.

RodoSol-ALPR PKU

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

OCR [23] – no super-resolution

HR 96.6 98.6 99.0 99.4 99.9 99.9

LR 0.8 4.6 12.7 0.0 0.0 0.0

OCR [23] – with super-resolution

Proposed 39.0 59.9 74.2 72.0 90.3 97.3
Nascimento et al. [7] 10.5 25.4 42.2 35.5 65.3 82.5

Mehri et al. [6] 1.45 7.0 17.4 22.5 49.2 70.6

Average PSNR (dB) and SSIM

PSNR SSIM PSNR SSIM

Proposed 21.2 0.59 18.3 0.61
Nascimento et al. [7] 21.3 0.52 18.1 0.54

Mehri et al. [6] 16.8 0.38 16.4 0.41

Finally, we can further confirm the results of the LPR experiments by visually comparing

the super-resolution images produced by our technique with those generated by the baseline

methods [6, 7]. Fig. 5.5 and Fig. 5.6 depict four LR images along with their corresponding

super-resolution counterparts, and the original HR image is included as a reference. From the

images, it is evident that our proposed approach outperforms both its preliminary version [7] and

MPRNet[6] in terms of perceptual quality.

LR (Input) Mehri et al. [6] Nascimento et al. [7] Proposed HR (GT)

Figure 5.5: Representative examples of the images generated by the proposed approach and

baselines in the RodoSol-ALPR dataset [8].

In general, the images produced by MPRNet [6] exhibit a common issue of blurriness,

where the edges of the characters blend into the LP background, resulting in visible artifacts. This
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LR (Input) Mehri et al. [6] Nascimento et al. [7] Proposed HR (GT)

Figure 5.6: Representative examples of the images generated by the proposed approach and

baselines in the PKU dataset [9].

blurriness can also cause the edges of multiple characters to blend together, leading to further

visual distortions. The architecture proposed in our previous work[7] manages to reconstruct

the characters but distorts them with strong undulations, making them appear as part of the

LP background in some cases (see the first row of Fig. 5.5). Conversely, the proposed model

generates clear character edges and consistently reconstructs the original font, without any

missing characters or incomplete lines.

It is notable that when our model is uncertain about which character to reconstruct, it

tends to hallucinate characters that are more congruent with the LR input, as seen in the last row

of Fig. 5.5 and Fig. 5.6, where the character "3" is reconstructed as "J" and the character "Z" is

reconstructed as "2," respectively. We believe that this issue could be mitigated by incorporating

a lexicon or vocabulary into the network’s learning process to identify the character types (letter,

digit, or either) that can appear at each position on LPRs with specific layouts. Additionally,

the network tends to generate nearly identical background colors for different images, as can be

observed in the third row of Fig. 5.5 and the first row of Fig. 5.6. However, it is noteworthy that,

based on our analysis, this does not significantly impact the recognition results achieved.

5.3 Ablation Study
As the proposed approach integrates multiple concepts into a single architecture, we

conducted an ablation study to validate the contribution of each incorporated unit to the obtained

results. The study involved removing one module at a time, such as the autoencoder, TFAM, PS,

and PU layers, and training the network without the perceptual loss.

Four baselines were established for the experiments. The first baseline replaced the

autoencoder with a DConv layer with a 5× 5 kernel for shallow feature extraction as shown in [6].

The second baseline removed the PTFAM module and adjusted the output of the previous layer to

match the input shape of the following layers. The third baseline replaced the PS and PU layers

with transposed and strided convolution layers, respectively, as they are analogous [22]. Finally,

in the fourth baseline, the perceptual loss was replaced by MSE, which is commonly used in the

super-resolution field [13, 55]. Table 5.2 presents the results.

The results of the experiments on the RodoSol-ALPR dataset demonstrate that each of

the units included in the proposed system significantly contributes to its overall performance.

The complete system attained a recognition rate of 39.0%, while the best version without one

of the components reached a recognition rate of 35.6%. The worst-case scenario was when
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Table 5.2: Recognition rates (%) achieved in the ablation study. “All” refers to LPs where all

characters were recognized correctly; ≥ 6 and ≥ 5 refer to LPs where at least 6 or 5 characters

were recognized correctly, respectively.

Approach
RodoSol-ALPR PKU

All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

Proposed (w/o autoencoder) 32.7 55.0 70.1 73.8 90.2 96.6
Proposed (w/o TFAM) 33.3 55.0 69.6 73.1 90.1 96.6
Proposed (w/o PS and PU layers) 34.3 54.8 68.5 70.4 89.9 96.7
Proposed (w/o perceptual loss) 35.6 57.3 71.9 72.4 91.4 97.1

Proposed 39.0 59.9 74.2 72.0 90.3 97.3

the autoencoder unit was removed, resulting in a recognition rate of 32.7% for all recognized

characters. This is because the autoencoder module plays a vital role in facilitating the extraction

of shallow features. Specifically, the autoencoder generates a mask by squeezing and expanding

the input image, highlighting the most critical areas for reconstruction by the rest of the network.

Without this mask, the network struggles to identify the relevant features, resulting in poor

performance.

In contrast, the recognition rates in the PKU dataset were only enhanced with the

incorporation of PS and PU layers. We conjecture that the other units are not required for this

dataset due to its images being considerably less complex than those in the RodoSol-ALPR (as

evidenced by the images in Fig. 5.1 and Fig. 5.2). This could explain why several authors opted

to conduct ablation studies solely on the largest and most diverse dataset among those used in

their experiments [109, 112, 111].
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Chapter 6

Conclusions

This work proposes a new super-resolution approach to improve the recognition of

low-resolution LPs. Our method adds to the existing MPRNet [6] and the architecture proposed in

our previous work [7] by incorporating subpixel-convolution layers (PS and PU) in combination

with a PTFAM. Moreover, we introduce a novel perceptual loss that combines features extracted

from an OCR model with L1 loss to reconstruct characters with the most relevant characteristics,

while also incorporating MSE to enhance overall image quality.

Our approach capitalizes on both structural and textural features by using the PS and PU

layers for custom scale operations, rather than relying on conventional translational invariance

and interpolation techniques. An autoencoder with PS and PU layers was integrated to extract

shallow features and generate an attention mask that is added to the original input. The output

of the autoencoder is processed by a RDB to identify regions of interest for reconstruction,

optimizing computational resources, and producing super-resolution images that emphasize

relevant information.

We evaluated the proposed method on two publicly available datasets containing a diverse

range of LP images from Brazil and mainland China. The experimental results demonstrate

that our method outperformed the baselines in terms of recognition rates. Specifically, on the

RodoSol-ALPR dataset, our method achieved a recognition rate of 39.0% for the OCR model,

compared to 31.3% and 4.0% for the methods proposed in [7] and [6], respectively. On the PKU

dataset, our approach achieved a recognition rate of 72.0% for the OCR model, compared to

35.5% and 22.5% for [7] and [6], respectively. We have also made the LR-HR image pairs used

in our experiments and the source code publicly available to encourage further research and

development in the field of LPR super-resolution.

In the future, we plan to integrate a lexicon or vocabulary into the network’s learning

process, which would allow the network to learn the character types that can occupy each

position on specific LPs layouts. Additionally, we intend to create a large-scale dataset for LP

super-resolution, consisting of thousands of LR and HR image pairs. Our aim is to collect videos

in which the LP is legible in one frame but not in another, enabling us to evaluate existing

methods in real-world scenarios and develop novel methods.
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