
UNIVERSIDADE FEDERAL DO PARANÁ

ALANE MARIE DE LIMA

APPROXIMATION ALGORITHMS IN GRAPHS VIA SAMPLE COMPLEXITY

CURITIBA PR

2022



ALANE MARIE DE LIMA

APPROXIMATION ALGORITHMS IN GRAPHS VIA SAMPLE COMPLEXITY

Tese apresentada como requisito parcial à obtenção

do grau de Doutor em Ciência da Computação no

Programa de Pós-Graduação em Informática, Se-

tor de Ciências Exatas, da Universidade Federal do

Paraná.

Área de concentração: Ciência da Computação.

Orientador: André L. Vignatti.

Coorientador: Murilo V. G. da Silva.

CURITIBA PR

2022





MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da tese de Doutorado de ALANE MARIE DE LIMA intitulada:

Approximation Algorithms in Graphs via Sample Complexity, sob orientação do Prof. Dr. ANDRÉ LUÍS VIGNATTI, que após

terem inquirido a aluna e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito de defesa.

A outorga do título de doutora está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 28 de Outubro de 2022.

Assinatura Eletrônica
31/10/2022 12:00:02.0

ANDRÉ LUÍS VIGNATTI
 Presidente da Banca Examinadora

Assinatura Eletrônica
01/11/2022 17:15:10.0

GUILHERME ALEX DERENIEVICZ
 Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica
03/11/2022 19:20:45.0

MURILO VICENTE GONÇALVES DA SILVA
 Coorientador(a)

Assinatura Eletrônica
01/11/2022 14:14:41.0

LEANDRO MIRANDA ZATESKO
 Avaliador Externo (UNIVERSIDADE TECNOLÓGICA FEDERAL DO

PARANÁ)

Assinatura Eletrônica
31/10/2022 09:24:04.0

EDUARDO SANY LABER
 Avaliador Externo (PONTIFICIA UNIVERSIDADE CATÓLICA -

PUC/RIO)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 231464

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 231464



To my beloved family and to all the

ones that fight for science and edu-

cation.



ACKNOWLEDGEMENTS

I could not forget to thank those who stretched out a hand to help me climb each step

in the course of this journey, and that made me evolve not only professionally but also

personally.

• Firstly, to God, the alpha and the omega;

• to my parents, Luiz and Raquel, and to my brother, Pedro Paulo, for all the affec-
tion, support, and unconditional love. Thank you for your understanding, for

always encourage me to study, and for always believe in me. This achievement

is for you!

• To my grandmother, Inocência, for the prayers;

• to my relatives of families Wolochatyi and Lima, for the support;

• to my advisors, André Vignatti, PhD and Murilo da Silva, PhD, for sparing

no effort and dedication in advising me, and for trusting in my potential. I

also thank you for the friendship that has grown in the past years. You are

role-models that I want to follow in my prospective teaching and researching

career!

• To the Federal University of Paraná (UFPR), for accepting me as contributor in

the advance of science in our country;

• to my colleagues and friends from the research labs of UFPR, specially the

Teoria da Computação, Otimização e Combinatória (TEORIA) research group,

for the moments in the University Restaurant, for the coffee and chatting, for

the “rolês”, and for all the shared experiences, pains and joys;

• to the friends that I made in Guarapuava and Curitiba, for all the shared

livelihood;

• to the invited professors of the qualification and the final examination board,

Eduardo Laber, PhD, Leandro Zatesko, PhD, Guilherme Derenievicz, PhD, and

David Menotti, PhD, for the words of support, and for the careful reading and

valuable suggestions for the improvement of the quality of the work;

• to all my teachers, from school to graduate program, for all the lessons learned;

• to the Coordination for the Improvement of Higher Education Personnel

(CAPES) for the scholarship (Proc. 88882.461738/2019-01), and for the Na-

tional Council for Scientific and Technological Development (CNPq) for provid-

ing financial support at some conferences I have attended (Proc. 428941/2016-8

and 420079/2021-1);

• to the Center for Mathematical Modelling, for funding my attendance at XV

Escuela de Verano en Matemáticas Discretas (Valparaiso, Chile), and to the

University of Bonn, for funding my attendance at the Algorithmic Data Analysis

School (Bonn, Germany).



“Although this may seen a paradox,

all exact science is dominated by

the idea of approximation.”

— Bertrand Russell



RESUMO

Grafos de grande porte advém de diversos contextos em fenômenos naturais e sociais.

Contudo, algoritmos que escalam em complexidade de tempo cúbica e até mesmo

quadrática, quando executados nesses grafos, podem ser computacionalmente custosos

na prática. Neste trabalho, apresentamos esquemas de aproximação aleatorizados de

tempo próximo de linear para dois problemas em grafos onde não se tem algoritmo

conhecido de tempo estritamente subcúbico no número de vértices. Adicionalmente,

para um terceiro problema, também apresentamos um esquema de aproximação alea-

torizado de tempo próximo de linear, mas para o caso em que o grafo de entrada tem

diâmetro logarítmico. Os algoritmos propostos foram projetados utilizando análise

de complexidade de amostra, teoria de dimensão Vapnik–Chervonenkis e médias de

Rademacher. Seja G = (V ,E) um grafo com n = |V | e m = |E|. O primeiro problema

tratado neste trabalho é o de centralidade de percolação em um grafo G direcionado

com pesos reais não-negativos. Tal medida quantifica a importância de um vértice em

um grafo que está passando por um processo de contágio. Neste trabalho, apresen-

tamos um algorimo de aproximação de tempo O(m logn logdiamV (G)) para estimar a

centralidade de percolação de cada vértice de V , onde diamV (G) é número máximo de

vértices em um caminho mínimo em G. O segundo problema é uma versão relaxada do

problema de computar todos os caminhos mínimos entre todos os pares de vértices (APSP).

Nesta versão, iremos computar todos os caminhos de G que tenham “centralidade” pelo

menos ε, para 0 < ε < 1 constante, medida esta que está relacionada a uma genera-

lização da centralidade de intermediação. O algoritmo proposto executa em tempo

O(m logn+ (diamV (G))
2). O terceiro problema é o de coeficiente de agrupamento local de

cada vértice de um grafo G. Neste trabalho propomos um algoritmo para este problema

que roda em tempo O(Δ lgΔ+m), onde Δ é o grau máximo de um vértice de um grafo.

Finalmente, neste trabalho também apresentamos algoritmos de aproximação para

os problemas do conjunto dominante mínimo (MDS) e da cobertura por vértices mínima

(MVC). Em ambos aplicamos técnicas probabilísticas, contudo não utilizamos análise

de complexidade de amostra nestes casos. Para estes problemas, obtivemos limitantes

mais justos lidando com o problema diretamente em um modelo específico de grafo

aleatório lei de potência. Em particular, mostramos que o fator de aproximação esperado

para o problema MDS é assintoticamente no máximo 9.14, e para o problema MVC, o

fator é assintoticamente menor do que 2. Tais valores superam os limitantes conhecidos

da literatura.

Palavras-chave: Complexidade de amostra e limitantes de generalização (ACM-2012

10010072). Algoritmos de aproximação (ACM-2012 10010918). Teoria dos grafos

(ACM-2012 10003633).



ABSTRACT

Very large graphs arise in many contexts in natural and social phenomena. Algorithms

with time complexity that scales in cubic or even in quadratic time in such graphs,

although polynomial, can be computationally expensive in practice. In this thesis

we present near-linear time randomized approximation schemes for two problems in

graphs that are not known to admit algorithms that are truly subcubic in the number

of vertices. Additionally, for a third problem, we also present a near-linear time

randomized approximation scheme, but under the assumption that the input graph has

logarithmic diameter, which is a very common scenario for large graphs in real-world

applications. Our algorithms have been built using tools from sample complexity

analysis, theory of Vapnik–Chervonenkis dimension, and Rademacher Averages. Let

G = (V ,E) be a graph with n = |V | and m = |E|. The first problem we deal with is the

percolation centrality in a directed weighted graph G, a measure that quantifies the

importance of a vertex in a graph that is going through a contagious process. In this

work we present an expected O(m logn logDiamV (G)) time approximation algorithm

for the estimation of the percolation centrality for all vertices of G, wherein DiamV (G)
is the maximum number of vertices in a shortest path in G. The second problem

is a relaxed version of the all-pairs shortest paths (APSP) where we are interested in

computing all shortest paths with “centrality” at least ε, where 0 < ε < 1 is a constant.

This centrality measure is a certain generalization of the betweenness centrality. We

propose an algorithm for this relaxed problem that runs in O(m logn+ (DiamV (G))
2)

time. The third problem corresponds to the computation of the local clustering coefficient

of each vertex in a graph G, a measure that quantifies the degree in which a vertex is a

part of a cluster in G. The algorithm that estimates the local clustering of each vertex in

G runs in O(Δ lgΔ+m), wherein Δ is the maximum degree of a vertex in a graph. Finally,

we also propose approximation algorithms for the minimum dominating set (MDS) and

the minimum vertex cover (MVC). However, for both problems we apply probabilistic

techniques that are not related to sample complexity analysis, since we found tighter

bounds for the approximation factor for these problems by attacking them directly

using a particular random graph model for power-law graphs. In particular, we show

that the expected approximation factor for the MDS problem is assymtotically at most

9.14, and for the MVC problem, the factor is assymptotically smaller than two. Such

values outperforms the known bounds of the literature.

Keywords: Sample complexity and generalization bounds (ACM-2012 10010072). Ap-

proximation algorithms (ACM-2012 10010918). Graph theory (ACM-2012 10003633).
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1 INTRODUCTION

Real-world applications where the amount of data is extremely large demand a large

amount of processing time, even for algorithms that scale in cubic or quadratic time.

However, some problems may not admit truly subcubic-time algorithms (i.e. O(n3−c)
algorithms, for some constant c > 0) for computing exact solutions (Williams and

Williams, 2010). That is the case for problems related to the computation of certain

centrality measures in networks, so the investigation of faster algorithms that return

approximated solutions for such problems is a natural path to pursue.

One usual approach for the design of efficient approximation algorithms is

the use of sampling strategies, where only a small part of the input is inspected. In

such strategies, the intrinsic trade-off between the size of the sample and the quality

and confidence of the approximation obtained by the algorithm can be studied using

standard deviation bounds from probability theory. For instance, we can estimate

a single value of a certain quantity of interest (e.g. the estimation of a measure of

centrality of a given vertex in a graph) using, for example, Hoeffding, Chernoff, or
Azuma bounds. However, when the problem requires the analysis of multiple values

of interest simultaneously in the sample space, say, the estimation of the centrality of

every vertex of a given graph, techniques based on these standard bounds along with

the union bound become extremely loose. The referred issue can be dealt with the use

of sample complexity analysis, which aims to capture the combinatorial structure of

the problem. The idea is that one can find out the minimum size of a random sample

required to the estimation of a certain quantity, consistent with the desired parameters

of quality and confidence, taking into account some property of the input instance.

These techniques produce tighter bounds, and hence, more efficient algorithms. More

concretely, we show that the sample size for the estimation of certain measures of

graphs depends on properties such as the number of edges, or the diameter of an input

graph. Since typically real-world graphs are characterized for being sparse and having

logarithmic diameter (Chung, 2010), one can benefit from these features to obtain an

algorithm that has its time complexity reduced on these graphs.

The use of sample complexity tools — Rademacher averages, the Vapnik-

Chervonenkis (VC) dimension and pseudo-dimension theories, the ε-net and ε-sample

theorems — on the design of sampling-based algorithms, which are at the core of

the theory of statistical learning, are of theoretical and practical interest when one is

dealing with large real-world graphs in a variety of contexts (Abraham et al., 2011;

Riondato and Kornaropoulos, 2016; Riondato and Upfal, 2018; Ducoffe et al., 2020).

In the work of Riondato et al. the authors showed that these techniques are promising

and practical for real-world graphs. In addition, Ducoffe et al. (2020) showed that

algorithms based on these techniques lead to truly subquadratic-time algorithms for

computing the diameter of some classes of unweighted graphs. We show how such

techniques from sample complexity theory can be used in three problems in graphs,

namely the percolation centrality problem, the all-pairs shortest path (APSP) problem in a

relaxed version, and the local clustering coefficient problem.

The percolation centrality of a vertex is a measure related to a contagious process

going through a network (Piraveenan et al., 2013). The intuition behind such centrality,

roughly speaking, is to quantify the probability a vertex has to spread the contamination
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among the network if such vertex gets infected. It has relevant applications related to

epidemics – e.g. the COVID-19 disease transmission – and misinformation spreading.

Computing this measure for every vertex of a graph using exact algorithms is a problem

that is computationally expensive, since it generalizes the betweenness centrality (An-

thonisse, 1971; Freeman, 1977), a measure whose computation is known to be reducible

to the APSP (Abboud et al., 2014). This later problem may not admit a truly subcubic

algorithm, as suggested by results on fine-grained complexity (Williams and Williams,

2010). In this work, we present an O(m logn logdiamV (G)) approximation algorithm

that returns, with probability at least 1− δ, the estimation for the percolation centrality

of every vertex in G within ε error, for constant 0 < ε,δ < 1, where diamV (G) denotes
the vertex-diameter of G. Note that the percolation centrality is guaranteed to be within

ε error for every single vertex, not only for the average case. We use pseudo-dimension

theory to show a bound for the sample size that depends on diamV (G). Notice that in

common real-world applications, the graph is sparse and it has logarithmic diameter

and, thus, the time complexity of our approach becomes simply O(n logn loglogn). We

also show a progressive sampling algorithm for the problem using Rademacher averages

that, in the worst case, create a sample with the same size bound as the one for the

fixed-size sample approach. To the best of our knowledge, our algorithms are the first

sampling-based algorithms for approximating percolation centrality.

In a relaxed version of the APSP problem, we are asked, for every pair of vertices

(u,v), to output, with high probability, the length of a shortest path between u and v.
This depends on a certain measure of the “importance” of such shortest path, which

we call shortest path centrality. In an application of computing optimal routes in a map,

for instance, the intuition is to find the routes that appear as subroutes in the largest

amount of other routes in such map. One of our main results regarding this problem is a

bound on the sample size that depends only on the parameters of quality and confidence

(i.e. ε and δ, respectively) of the desired solution, and not on the size of the graph or on

any of its topological properties. This is due to the constant VC dimension of the range

space that models the version of the APSP that we are approaching. The total running

time of the proposed algorithm is O(m+n logn+ (diamV (G))
2), for constant 0 < ε,δ < 1.

In the case of sparse graphs with logarithmic diameter, this time complexity is reduced

to O(n logn).
The clustering coefficient of a vertex, called the local clustering coefficient, mea-

sures the degree in which such vertex is part of a cluster in a graph. It is related to the

ratio of the number of triangles existing in the neighborhood of the target vertex to the

total number of pair of nodes in the neighborhood. Consider a graph that represents a

social network where each vertex is a person and each edge represents a relationship

between two people. Intuitively, the local clustering coefficient measures the probability

that a person has to form communities on the network by estimating the probability

that a pair of friends of such person also become friends between each other. The

measure was originally proposed by Watts and Strogatz (1998) in order to determine if

a graph has the property of being small-world. In particular, we can say that the local

clustering coefficient is a variant of the local triangle counting problem, and the exact

computation of this task can be done by a matrix multiplication based algorithm that

runs in time O(m2w/(w+1)), where w is around 2.373, which is associated with the cost of

performing a matrix multiplication (Alon et al., 1997). In Chiba and Nishizeki (1985),

the authors proposed a O(α(G)m) algorithm, where α(G) is the arboricity of graph G,
that does not use matrix multiplication. We present, in this work, an algorithm that
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estimates within ε error, with probability at least 1−δ, the local clustering coefficient of

each vertex of a graph in time O(Δ lgΔ+m), where Δ is the maximum degree of a vertex

in graph G. Besides the previously mentioned characteristics that real-world graphs

typically have, many of them also have power-law vertex degree distribution, as shown

by empirical studies from the late 1990’s and early 2000’s (Barabási and Albert, 1999;

Kleinberg et al., 1999; Kumar et al., 2000; Kleinberg and Lawrence, 2001; Guelzim

et al., 2002; Siganos et al., 2003; Eubank et al., 2004; Faloutsos et al., 2011). Thus, for

power-law graphs such as the one described in the model of Aiello et al. (2001), if we

assume Δ = o(
√
n), then our algorithm has complexity time O(

√
n lg
√
n) in this case. We

also show that the algorithm runs in time O(Δ) if the input is a planar graph. In the

case of bounded-degree graphs the running time is O(1) if a bound for the value of Δ is

given as a part of the input, and O(n) otherwise.

We also present approximation algorithms for twoNP -hard problems, namely,

the minimum dominating set (MDS) and the minimum vertex cover (MVC) problems

in power-law graphs. The minimum dominating set problem corresponds to find the

minimum set of vertices D ⊆ V in a graph G = (V ,E) such that each v ∈ V is either in

D or has at least one neighbor in D. The minimum vertex cover problem consists of

finding the minimum set C ⊆ V such that each e ∈ E has at least one endpoint in C.
The proposed approaches for both problems also rely on probabilistic tech-

niques, but not particularly on sample complexity analysis. We aimed to solve the

problem for the case of power-law graphs, obtaining better approximation factors by at-

tacking the problem directly instead of considering a sample complexity approach such

as the one presented in the work of Brönnimann and Goodrich (1995). In their work,

the authors showed a deterministic polynomial-time method for the approximation

factor of the minimum set cover of a graph G within at most O(d log(d OPT)), where d
is the VC dimension of the set system that models the problem and OPT is the optimal

size of the solution, and within O(log OPT) if d is constant.

Consider a domain U and a set I of subsets of U . The set cover is the problem of

finding the minimum number of sets in I such that the union of such sets corresponds

to U . In particular, the problems of the minimum set cover and the hitting set are

equivalent. The hitting set problem consists of finding the smallest subset of U such that

the elements inU intersect at least one subset in I . The definition of ε-net is a relaxation
of the definition of a hitting set, so when dealing with sample complexity analysis in the

design of algorithms forNP -Hard problems, it is natural first establishing reductions

to/from the hitting set problem. In our case, we have that MVC is a special case of the

hitting set, and MVC can be reduced to MDS.

The MDS problem does not admit a polynomial-time approximation algorithm

with a strictly sublogarithmic factor unless P =NP (Raz and Safra, 1997). It is con-

jectured that the MVC problem does not admit a polynomial-time approximation

algorithm with a factor smaller than 2 (Khot and Regev, 2008; Garey and Johnson,

1979). However, these bounds can be overcome when the input is a power-law graph.

We present upper bounds φ and ψ for the expected approximation factors of

the MDS and the MVC problems, respectively, in power-law graphs modelled by a

generalized random graph with expected degree distribution as the one presented in

the work of Aiello et al. (2001). We show that a combination of a preprocessing on

the neighborhood of vertices of degree one with a 2-approximation on the remaining

part of the graph leads to bounds that outperform previous results from literature. In

particular, we show that φ is asymptotically at most 9.14, a tighter bound than the
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one of Gast et al. (2015). For the value of ψ, we show that ψ is asymptotically strictly

smaller than 2, improving the previous results of Gast et al. (2015) and Vignatti and

Silva (2016). We show in Figures 6.1 and 6.2, in Chapter 6, the comparative results

between our bounds and the ones presented by the aforementioned authors.

The text is organized as follows: in Chapter 2 we establish the notation and

provide the graph theoretical definitions used in this work (Section 2.1) as well as

the main concepts of sample complexity theory which are the groundwork of our

algorithms (Section 2.2); in Chapters 3, 4, and 5 we present our analytical results on the

percolation centrality, the relaxed APSP, and the local clustering coefficient problems,

respectively; in Chapter 6 we show our analytical results on the minimum dominating

set and the minimum vertex cover problems; in Chapter 7 we present the final remarks

with directions for future work.

The contents of Chapter 3 are published in a conference paper (Lima et al.,

2020) and a journal article (Lima et al., 2022a), and the contents of Chapter 5 are

published in a conference paper (Lima et al., 2022b). A previous version of the contents

of Chapter 4 is published in a conference paper (Lima et al., 2021b), and an updated

version is under review in a journal. The contents of Chapter 6 are also under review

in a journal. Other results related to the main theme of this thesis are published in

journals (Lima et al., 2019, 2021a).
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2 THEORETICAL FOUNDATIONS

In this chapter, we present the main definitions and notation used in this work with

respect to graphs (Section 2.1) and with respect to sample complexity theory (Section

2.2).

2.1 GRAPH PRELIMINARIES

In this section, we present the main concepts of graph theory which are common for

the problems that we are approaching in this work. An in-depth exposition of such

concepts can be found in the book of Bondy and Murty (1976).

Let G = (V ,E) be a (directed or undirected) graph and let ω be a function from

E to an enumerable subset of R≥0. Without loss of generality, we assume that G is

(strongly) connected, since all results in this document can be applied to the connected

components of the graph if it is disconnected. We also assume that the edges weights

can be represented in linear size on G. A path is a sequence of vertices P = (v1, v2, . . . , vk)
such that vi � vi+1 and (vi ,vi+1) ∈ E, for 1 ≤ i < k. If u = v1 and v = vk , such path is

referred to as a (u,v)-path. We define EP as the set of edges of P. The shortest path

from u to v in G is the (u,v)-path such that the sum of the weights of the edges in EP is

minimized.

The set of all shortest paths from u to v in G is denoted Cuv . For a given path

P ∈ Cuv , let Inn(P) be the set of inner vertices of P, that is, Inn(P) = {w ∈ P :w � {u,v}}.
Consider a shortest (u,v)-path P, and let u′ and v′ be two vertices of P, with u′ closer
to u and v′ closer to v. The subpath of P starting in u′ and ending in v′ is called a

(u′, v′)-subpath of P. The (immediate) predecessor of v in a shortest (u,v)-path P, denoted
predP(v), is the vertex w ∈ Inn(P) such that (w,v) ∈ EP . The diameter of G, denoted
diamG, is the size of the largest shortest path in G. The vertex-diameter, denoted

diamV (G), is the maximum number of vertices in a shortest path of G.

2.2 SAMPLE COMPLEXITY THEORY

We present in this section the main definitions, examples, and results related to sample

complexity theory that we use in this work. In Section 2.2.1 we introduce the Vapnik-

Chervonenkis dimension (VC dimension) and pseudo-dimension theories; in Section

2.2.3 we present the ε-net and ε-sample theorems; in Section 2.2.4 we introduce the

Rademacher averages and their relation with the progressive sampling; in Section 2.2.5

we present a brief overview of the applications of sample complexity theory in a variety

of problems.

An in-depth exposition on VC Dimension, pseudo-dimension theories, ε-
sample, ε-net theorems, and Rademacher averages can be found in the books of Anthony

and Bartlett (2009), Mohri et al. (2012), Shalev-Shwartz and Ben-David (2014), and

Mitzenmacher and Upfal (2017).
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2.2.1 VC dimension

The VC dimension theory, introduced in 1971 by Vladmir Vapnik and Alexey Chervo-

nenkis (Vapnik and Chervonenkis, 1971), is a measure of the expressiveness of a space

of functions, and it was central to relate the size of a sample with the convergence of

empirical averages to their true expectations. It was firstly introduced in learnability by

Haussler and Welzl (1986) and Blumer et al. (1989), being in the core of the Probably

Approximately Correct (PAC) Framework of Kearns et al. (1994). It has applications that

extend the context of learning algorithms, such as computational geometry, database

management, and graph algorithms (see Section 2.2.5).

Definition 1 (Range space). A range space is a pairR = (X,I ), where X is a domain (finite

or infinite) and I is a collection of subsets of X, called ranges.

For a given S ⊆ X, the projection of I on S is the set IS = {S ∩ I : I ∈ I}. If

|IS | = 2|S | then we say S is shattered by I . The VC dimension of a range space is the

size of the largest subset S that can be shattered by I , as presented by the following

definition.

Definition 2 (VC dimension). The VC dimension of a range space R = (X,I ), denoted by

VCDim(R), is VCDim(R) = max{d :∃S ⊆ X such that |S | = d and |IS | = 2d}.

The definition above does not imply that every set of cardinality d is shattered

by I , but it implies that if one shows that every set of cardinality at least d + 1 is

not shattered by I , then VCDim(R) is no larger than d. In fact, computing the VC

dimension of a range space over a finite domain, in general, is ΣP3 -Complete (Schaefer,

1999).

Consider the following example. Let X = R and I = {[a,b] : a,b ∈ R} such that

[a,b] = {x ∈ R : a ≤ x ≤ b}. A classical result transcribed in Theorem 1 states that this

range space has bounded VC dimension although it has infinite set of elements and

infinite set of ranges.

Theorem 1. LetR = (X,I ) be a range space with X = R and I = {[a,b] :x ∈ R and a ≤ x ≤ b}.
Then VCDim(R) = 2.

Proof. First we show that VCDim(R) ≥ 2 by demonstrating that there exists a set of

cardinality 2 which is shattered by I . Consider the set S = {2,4}. Then |IS | = 22 = 4

since every subset of S can be generated as follows:

• S ∩ [0,1] = ∅;

• S ∩ [1,3] = {2};

• S ∩ [3,5] = {4};

• S ∩ [1,5] = {2,4}.

Now we show that VCDim(R) < 3. Consider a set S = {a,b,c} such that a,b,c ∈ R
and a < b < c. Assume, for the sake of contradiction, that S is shattered by I . By

definition, {a,c} ∈ IS , and then for x,y ∈ R, a range [x,y] ∈ I must exist so that S∩[x,y] =
{a,c}, x < a, and y ≥ c (otherwise, a,c � ([x,y]∩S). Hence, x < a < b < c and b ∈ {[x,y]∩S},
a contradiction since we have supposed [x,y]∩ S = {a,c}. Therefore, S is not shattered

by I and VCDim(R) = 2.
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Consider the range space R = (X,I ) wherein X = R
d and I is the set of half-

spaces in d dimensions. Theorem 3 states that VCDim(R) = d+1, for d ∈ N. To illustrate

the idea, we first present the classical result stated in Theorem 2 that VCDim(R) = 3 for

X = R
2.

Theorem 2. Let R = (X,I ) be a range space with X = R
2 where I is the set of linear

half-spaces in R
2. Then VCDim(R) = 3.

Proof (sketch). We first show VCDim(R) ≥ 3 by depicting in Figure 2.1 a set of three

non-colinear points that is shattered by I .

Figure 2.1: Possible configurations of linear half-spaces which shatter the set of red points

To show that VCDim(R) < 4, we have to consider three cases:

a) a set of three colinear points, which cannot be shattered, since there is no way

to separate the middle point from the other two by any half-space;

b) a point that lies inside the convex hull defined by the other three points, which

cannot be shattered since there is no way to separate it from the other points by

any half-space;

c) a set of four points that define a convex hull which cannot be shattered since

there is no way to separate the red points from the blue points by any half-space

as demonstrated in Figure 2.2.

Figure 2.2: No set of four points can be shattered by any half-space.

Therefore, VCDim(R) = 3.

Theorem 3. Let R = (X,I ) be a range space with X = R
d where I is the set of half-spaces

with dimension d, for d ∈ N. Then VCDim(R) = d +1.

Proof. Let fw,b(x) = sgn(wTx + b) be a function that defines a half-space in R
d for some

w,x ∈ Rd and b ∈ R, where sgn is the sign function. We will first show that VCDim(R) ≥
d +1 by defining a set of points X that is shattered by I .
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Let X = {0,x1,x2, . . . ,xd} be such set, where 0 is the origin of R
d and each

xi , for i ∈ {1, . . . ,d}, are the vectors of the standard basis of Rd (i.e. x1 = (1,0, . . . ,0),
x2 = (0,1,0, . . . ,0) and so on). Consider a labeling of the points in X in 1′s and −1′s
defined as y0, y1, . . . , yd where y0 is the label of 0 and yi is the label of xi , for i ∈ {1, . . . ,d}.

Let b = 0.5y0 and consider the vector w = (w1, . . . ,wd), where wi = yi for i ∈
{1, . . . ,d}. Note that the inner product of wT by xi is equal to wi . Then, fw,b(xi) =
sgn(wi +0.5y0). We have the following cases:

a) wi = 1 and y0 = 1, and fw,b(xi) = sgn(1+ 0.5) = 1

b) wi = −1 and y0 = 1, and fw,b(xi) = sgn(−1+0.5) = −1

c) wi = 1 and y0 = −1, and fw,b(xi) = sgn(1− 0.5) = 1

d) wi = −1 and y0 = −1, and fw,b(xi) = sgn(−1− 0.5) = −1

The function fw,b(xi) always correctly computes the label of xi , and therefore,

any half-space defined by this function shatters the set X. So VCDim(R) ≥ d +1.

To show that VCDim(R) < d +2, recall Radon’s Theorem (Radon, 1921), which

states that any set S ⊆ R
d of size d +2 can be partitioned in two disjoint sets S1 and S2

such that the convex hull of S1 intersects with the convex hull of S2.
Consider a set X = {x1, . . . ,xd+2} of d +2 points of Rd and a partition of X in two

disjoint sets X1 and X2. Without loss of generality, give a labelling to the points in X
such that every point in X1 has the label 1 and every point in X2 has the label −1. If
there is a half-space that separates X1 from X2, then the space that contains X1 is convex

(and so does the space of X2), and consequently, the points in the convex hull of X1 have

label 1 and correspondingly, the points in the convex hull of X2 have label −1.
However, by Radon’s Theorem, there is a partition of X in two disjoint sets X ′1

and X ′2 such that the convex hull of X ′1 intersects with the convex hull of X ′2. Hence, if

X1 = X
′
1 and X2 = X

′
2, then we have a contradiction that X can be separated by the given

labeling. Therefore, X cannot be always separated in two disjoint sets with no intersect-

ing convex hulls, and then X cannot be shattered by I , which gives VCDim(R) < d +2.

Finally, then, VCDim(R) = d +1.

In this work, we are usually interested in range spaces defined over discrete

and finite sets. In Chapter 14.2.1 of the book of Mitzenmacher and Upfal (2017) the

authors give such an example, whose we present in Theorem 4. Let a monotone Boolean

conjunction be defined as a Boolean conjunction that has only non-negated variables.

Consider a set of n Boolean variables Y = {y1, y2, . . . , yn} and the set U = {0,1}n of all

possible true assignments to the variables in the natural way. Let M = {fY ′ : Y ′ ⊆ Y },
where fY ′ is a monotone conjunction function defined for Y ′, and IY ′ is the set of

assignments that satisfy fY ′ , i.e. IY ′ = {x ∈U : fY ′ ∈M and fY ′ (x) = 1}.
Let R = (U,I ) be a range space with X = U and I = {IY ′ : fY ′ ∈ M}. Then

VCDim(R) = n. Before presenting the idea of the proof described in Mitzenmacher

and Upfal (2017), consider the following example for a set of three Boolean variables

Y = {y1, y2, y3} and the set S ⊆ U such that S = {(0,1,1), (1,0,1), (1,1,0)}, where the ∅
is associated to a formula that has no variables (empty conjunction). Then S can be

shattered as follows:

• S ∩Iy1,y2,y3 = ∅;
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• S ∩Iy2,y3 = {(0,1,1)};

• S ∩Iy3 = {(0,1,1), (1,0,1)};

• S ∩Iy1,y3 = {(1,0,1)};

• S ∩Iy2 = {(0,1,1), (1,1,0)};

• S ∩Iy1,y2 = {(1,1,0)};

• S ∩Iy1 = {(1,0,1), (1,1,0)};

• S ∩∅ = {(0,1,1), (1,0,1), (1,1,0)}.
Theorem 4. For the range space R = (X,I ) where X = U and I = {IY ′ : fY ′ ∈ M},
VCDim(R) = n.
Proof. We will show that VCDim(R) = n for a subset S ⊆ X of size n where each

assignment in S has exactly one zero and S has no repeated assignments. That is,

S = {(0,1, . . . ,1), (1,0,1, . . . ,1), . . . , (1,1, . . . ,1,0)}.

Then each subset S ′ ⊆ S can be generated by the intersection of S with If such

that f = yi1 ∧ yi2 ∧ . . .∧ yij , where yi1 , yi2 , . . . , yij are the variables that have value 1 in all

x ∈ S ′. The whole set S can be generated with the intersection of the empty conjunction,

which by definition is always true. Hence, S is shattered by I , and then VCDim(R) ≥ n.
Now observe that 2n intersections of S with each IY ′ ∈ I are necessary to shatter

S , and the size of I is 2n. If the size of S was n+1, then 2n+1 intersections in the form

S ∩IY ′ would be necessary to shatter S . But |I | = 2n, which is a contradiction.

Therefore, VCDim(R) < n+1 and finally, VCDim(R) = n.

2.2.2 Pseudo-dimension

In a range space R = (X,I ), let fI : X→ {0,1} be the indicator function associated to the

range I ∈ I , i.e. for a given x ∈ X, the function fI either returns 1 if x is inside the range
I or it returns 0.

Let F = {fI : I ∈ I}. When modeling the problem that we have at hand in terms

of a range space R = (X,F ) such that F contains functions with codomain in the range

[0,1], then we need to use pseudo-dimension theory, which is a generalization of the VC

dimension theory. We have to create a new range spaceR′ = (D,F +) whereD = X×[0,1],
and for each f ∈ F , we create a set Rf = {(x, t) : x ∈ X and t ≤ f (x)}.
Definition 3 (Pseudo-dimension). LetR = (X,F ) andR′ = (D,F +) be range spaces, where

F + = {Rf : f ∈ F }. The pseudo-dimension of R, denoted by PD(R), corresponds to the VC
dimension of R′, i.e. PD(R) = VCDim(R′).

Definition 3 implies that pseudo-dimension is a generalization of VC dimension.

The next two lemmas, proved by Riondato and Upfal (2018), present constraints

on the sets that can be shattered by a range set F +.

Lemma 1 (Riondato and Upfal (2018), Lemma 3.7). Let B ⊆D be a set that is shattered by

F +. Then, B can contain at most one (d,y) ∈D, for each d ∈ X.
Lemma 2 (Riondato and Upfal (2018), Lemma 3.8). Let B ⊆D be a set that is shattered by

F +. Then, B does not contain any element in the form (d,0) ∈D, for each d ∈ X.
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2.2.3 ε-nets, ε-samples, empirical averages, and ε-representative samples

Consider a range space R = (X,I ). The following combinatorial object, called ε-net,
is useful when one wants to find a sample S ⊆ U that intersects every range in I of a

sufficiently large size.

Definition 4 (ε-net). Given 0 < ε < 1, a set S is called ε-net w.r.t. a range space R = (X,I )
and a probability distribution π on X if

∀I ∈ I , Pr
π
(I ) ≥ ε⇒ |I ∩ S | ≥ 1.

Consider, for example, the unit squareQ in [0,1]×[0,1]. In Example 1 we depict,

in Figure 2.3, a set of eight points inside Q which is an ε-net for Q, where ε = 1/4.

Example 1. Consider a range space R = (X,I ) where X = R
2, I is the set of closed filled

rectangles (there is one range for each product of closed intervals), and consider the unit

squareQ in [0,1]× [0,1]. Then a setN of eight points insideQ with the configuration showed

in Figure 2.3 is an 1/4-net of Q.

Figure 2.3: A configuration of eight points inside Q = [0,1]× [0,1] that is an ε-net of Q, where ε = 1/4.

Consider a rectangle P that covers at least 1/4 of the area of Q. Then N is an

1/4-net of the unit square Q, since P has a non-empty intersection with at least one of

the points in N .

The definition of ε-sample is a stronger notion, as it not only intersects ranges

of a sufficiently large size but it also guarantees the right relative frequency of each

range in I within the sample S .

Definition 5 (ε-sample). Given 0 < ε < 1, a set S is called ε-sample w.r.t. a range space

R = (X,I ) and a probability distribution π on X if

∀I ∈ I ,
∣∣∣∣∣Prπ (I )− |S ∩ I ||S |

∣∣∣∣∣ ≤ ε.
A polling about presidential election is an example of ε-sample, where X is the

set of the electorate from the country and there is one range I ∈ I for each one of the

candidates, where each range contains people who vote on the candidate represented by

such set. If the previous polling done on a group of people S observed that the percent

of votes in the polling for each candidate I , i.e. |S ∩ I |/ |S |, differs from at most 0.01
from the original percent given by the results of the election, then S is a 0.01-sample

for the range space defined by R = (X,I ). If the ranges I ∈ I are all disjoint, then the

0.01-sample returns an accurate approximation to the results of an usual election. On

the other hand, if we allow intersections between the ranges, then the approximations
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would be related to the results of an unusual election where each person can vote in

more than one candidate.

When computing ε-samples for a given range space R = (X,I ), we typically

build a sample S from elements of X. IfR has the uniform convergence property, defined

below, then a goal is to find the minimum size that S must have to be an ε-sample, with

high probability, with respect to such range space.

Definition 6 (Mitzenmacher and Upfal (2017), Definition 14.8). Consider a range space
R = (X,I ). We say that R has the uniform convergence property if for every ε,δ > 0 there

is a sample size r = r(ε,δ) such that, for every distribution π over X, a sample S of r elements

of X sampled with respect to π is a ε-sample. This holds with probability at least 1− δ.
One can obtain lower bounds for the size of S via the probabilistic method.

However, these bounds can be improved if the VC dimension of the range space that

models the problem at hand, denoted d, is finite (Theorem 7 states bounds that are

based on d).
A more general definition of ε-sample, called ε-representative set, is given

below for the context where, for a given domain X, there is a family of functions F from

X to R>0 such that F = {fI : I ∈ I}. Let S be a collection of r elements from X sampled

with respect to a probability distribution π.

Definition 7. For each f ∈ F , we define the expectation of f and its empirical average as LX
and LS , respectively, i.e.

LX(f ) = Ex∼π[f (x)]

and

LS (f ) =
1

r

∑
s∈S

f (s).

Definition 8. Given 0 < ε < 1, a set S is called ε-representative w.r.t. some domain X, a
family of functions F , and a probability distribution π if for all f ∈ F ,

|LS (f )−LX(f )| ≤ ε.

As observed by Riondato and Upfal (2018), by the linearity of expectation

we have that the expected value of the empirical average LS(f ) is equal to LX(f ). By
the law of large numbers, LS(f ) converges to its true expectation as r goes to infinity,

since LS (f ) is the empirical average of r random variables sampled independently and

identically with respect to π. However, this law provides no information about the

value |LS (f )−LX(f )| for any sample size. Thus, the results from the VC dimension and

pseudo-dimension theories become important to provide bounds on the size of the

sample that guarantees that the maximum deviation of |LS (f )−LX(f )| is within ε with

probability at least 1− δ, for given 0 < ε,δ < 1.

Estimating the bound that guarantees that for a single f ∈ F the value of

|LS(f ) − LX(f )| is within ε with probability at least 1 − δ can be done by the use of

Hoeffding’s bound (Theorem 5).

Theorem 5 (Mitzenmacher and Upfal (2017), Theorem 4.12). Let X1, . . . ,Xr be r indepen-
dent random variables such that for all 1 ≤ i ≤ r, E[Xi] = μ, and Pr(a ≤ Xi ≤ b) = 1, where

a,b ∈ R. Then

Pr

⎛⎜⎜⎜⎜⎝
∣∣∣∣∣∣∣1r

r∑
i=1

Xi −μ
∣∣∣∣∣∣∣ ≥ ε

⎞⎟⎟⎟⎟⎠ ≤ 2e−2rε
2/(b−a)2 .
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If each Xi is the random variable for the value of f to a point in X such that

Pr(a ≤ Xi ≤ b) = 1, then LX(f ) = Ex∼π[f (x)] = μ and LS (f ) =
1
r

∑r
i=1Xi , and

Pr(|LS (f )−LX(f )| ≥ ε) ≤ 2e−2rε
2/(b−a)2 .

Consider, for example, a function f : X→ [0,1]. Then

Pr(|LS (f )−LX(f )| ≥ ε) ≤ 2e−2rε
2 ≤ δ .

The minimum sample size r which guarantees that the estimations will be

within the desired parameters ε and δ is obtained by applying Boole’s Inequality

(Theorem 6), known as union bound, to all functions in F .

Theorem 6 (Mitzenmacher and Upfal (2017), Lemma 1.2). For any finite or countably
infinite sequence of events E1,E2, . . .

Pr

(⋃
i≥1

Ei

)
≤
∞∑
i≥1

Pr(Ei) .

If the size of F in our example is n, then using the union bound,

n · 2e−2rε2 ≤ δ
2rε2 ≤ lnδ − ln(2n)

r ≥ ln2+ lnn− lnδ
ε2

.

Note that the bound above depends on the size of F . This bound can be

improved if we take into consideration the combinatorial structure of the range space

defined for the problem that we are dealing with. An upper bound to the pseudo-

dimension of a range space allows us to build an ε-representative set (or ε-net) and to

guarantee the uniform convergence property. This is stated in Theorem 7.

Theorem 7 (Har-Peled and Sharir (2011), Theorem 2.12). Given 0 < ε,δ < 1, letR = (X,F )

be a range space with VCDim(R) ≤ d, a probability distribution π on the domain X, and let

c be a universal positive constant.

1. A collection S ⊆ X sampled w.r.t. π with |S | = c
ε2

(
d + ln 1

δ

)
is ε-representative with

probability at least 1− δ.

2. A collection S ⊆ X sampled w.r.t. π with |S | = c
ε

(
d ln 1

ε + ln 1
δ

)
is an ε-net with

probability at least 1− δ.

In the work of Löffler and Phillips (2009), it has been proven that the constant

c is approximately 1/2.
The following combinatorial object, called a relative (p,ε)-approximation, is

useful in the context when one wants to find a sample S ⊆ X that estimates the size of
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ranges in I , with respect to an adjustable parameter p, within εPrπ(I ), for 0 < ε,p,δ < 1.

This holds with probability at least 1− δ, for 0 < δ < 1, where π is a distribution on X
and Prπ(I ) is the probability of a sample from π belongs to I .

Definition 9 (relative (p,ε)-approximation, (Riondato and Kornaropoulos (2016), Def-

inition 5)). Given 0 < p,ε < 1, a set S is called a (p,ε)-approximation w.r.t. a range space

R = (X,I ), and a distribution π on X if for all I ∈ I ,

(i)
∣∣∣∣Prπ(I )− |S∩I ||S | ∣∣∣∣ ≤ εPrπ(I ), if Prπ(I ) ≥ p,

(ii) |S∩I ||S | ≤ (1 + ε)p, otherwise.

An upper bound to the VC dimension of a range space allows to build a sample

S that is a (p,ε)-approximation set.

Theorem 8 (Har-Peled and Sharir (2011), Theorem 5). Given 0 < ε,δ,p < 1, let R = (X,I )
be a range space with VCDim(R) ≤ d, a given distribution π on X, and let c be a universal
positive constant. A collection S ⊆ X sampled w.r.t. π with

|S | ≥ c

ε2p

(
d log

1

p
+ log

1

δ

)

is a relative (p,ε)-approximation with probability at least 1−δ, where c is an absolute positive

constant.

2.2.4 Progressive Sampling and Rademacher Averages

Finding a bound on the sample size that is tight may be a complicated task depending

on the problem that we have at hand. Hence, making use of progressive sampling

becomes an alternative to this issue (Provost et al., 1999). In this approach, the process

starts with a small sample that progressively increases until the desired accuracy of

the solution is achieved. The combination of an appropriate scheduling for the sample

increase with an efficient-to-evaluate stopping condition (i.e. knowing when the sample

is large enough) leads to an improvement in time for the estimation of the value of

interest in comparison to a fixed-size sample approach (Riondato and Upfal, 2018).

The VC dimension and pseudo-dimension theories measure the range space

independently of the probability distribution on the input space. The use of Rademacher

averages, however, leads to a stopping condition for the progressive sampling approach

that takes into consideration the input distribution on the range set. This theory lies in

the core of statistical learning theory, although their applications extend beyond the

context of learning algorithms.

Before describing the formal definition of the main concepts and definitions on

Rademacher averages, we will consider the following application. Let A be a classifier

algorithm and X a set of objects to be classified. The function c : X→ {−1,1} labels each
object in X as positive (label with value 1) or negative (labels with value -1) according

to the given classification problem. The algorithm receives as input a training set

(x1, c(x1)), ..., (xm,c(xm)), with size m, where xi is chosen according to the distribution π,
and c(xi) is the correct classification of xi . Let C be the set of possible classifications

of the objects, called hypotheses. The algorithm returns a hypothesis h ∈ C which is a

function h : X→ {−1,1}. Each h represents a partition of X.
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We say that the training error of a hypothesis h is the fraction of examples

incorrectly classified by h. Formally,

ˆerr(h) =
1

m
|{i : h(xi) � c(xi),1 ≤ i ≤m}| .

Since h and c are functions with codomain in {−1,1}, then

1− c(xi)h(xi)
2

=

{
0, if c(xi) = h(xi)

1, if c(xi) � h(xi)

and we can rewrite

ˆerr(h) =
1

m

m∑
i=1

1− c(xi)h(xi)
2

=
1

2m

m∑
i=1

1

2
(1− c(xi)h(xi))

=
m
2m
− 1

2m

m∑
i=1

c(xi)h(xi) =
1

2
− 1

2m

m∑
i=1

c(xi)h(xi) .

The value 1
m

∑m
i=1 c(xi)h(xi) represents the correlation between h and c. That is,

if both always return the same value, then the correlation between them is 1. Otherwise,

if they always have different answers, then the value of the correlation is −1. Hence, the

hypothesis which minimizes the error is the one that maximizes the correlation.

A way of creating a random partition of X is creating Rademacher variables,

that is, the set σ = (σ1, ...,σm) with Pr(σ = 1) = Pr(σ = −1) = 1/2. The hypothesis h which

maximizes

Eσ = E

⎡⎢⎢⎢⎢⎢⎣max
h∈C

1

m

m∑
i=1

σih(xi)

⎤⎥⎥⎥⎥⎥⎦ ,
for a random set of Rademacher variables is the one that aligns best with σ .

We will consider the extreme cases to bound the values of Eσ . If |C| = 1, then

Eσ = E

⎡⎢⎢⎢⎢⎢⎣ 1m
m∑
i=1

σih(xi)

⎤⎥⎥⎥⎥⎥⎦
and in this case 1

m

∑m
i=1h(xi)E[σi] =

1
m

∑m
i=1h(xi)0 = 0. If C shatters {x1, ...,xm}, that is,

|C| = 2m, then the value of Eσ is 1, since C always contains a hypothesis such that

h(xi) = σi , for all 1 ≤ i ≤m and for any set of Rademacher variables σ . Hence, 0 ≤ Eσ ≤ 1,

and then the most expressive hypotheses are the ones where Eσ is close to 1.

Being more general, consider a set of real-valued functions F (that in the

problem on learning, played the role as the set of hypotheses). Consider that each point

of the input is defined to a probability space with distribution π. Consider a sample S
and the computation of the maximum deviation of LS (f ) from the true expectation of f ,
for all f ∈ F . That is, supf ∈F |LS (f )−LX(f )|.

Suppose that the expressiveness of F will be measured by only looking on set

S . We will split set S into two sets S1 and S2 such that, for σ = (σ1, ...,σm) ∈ {±1}m, we

have S1 = {xi : σi = 1} and S2 = {xj : σi = −1}. Then we will measure

sup
f ∈F

(LS1(f )−LS2(f )) .
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We have that

LS1(f )−LS2(f ) =
1

|S1|
∑
xi∈S1

f (xi)−
1

|S2|
∑
xj∈S2

f (xj ) .

On average, |S1| = |S2| ≈ |S |/2, then

LS1(f )−LS2(f ) ≈
2

m

⎛⎜⎜⎜⎜⎝∑
xi∈S1

f (xi)−
∑
xj∈S2

f (xj )

⎞⎟⎟⎟⎟⎠ = 2

m

⎛⎜⎜⎜⎜⎝∑
i

σif (xi)

⎞⎟⎟⎟⎟⎠ .
The empirical Rademacher average of F is defined as follows.

Definition 10. Consider a sample S = {z1, . . . , zr} and a distribution of r Rademacher random

variables σ = (σ1, . . . ,σr), i.e. Pr(σi = 1) = Pr(σi = −1) = 1/2 for 1 ≤ i ≤ r. The empirical

Rademacher average of a family of functions F w.r.t. to S is defined as

R̃r(F ,S) = E

⎡⎢⎢⎢⎢⎢⎣sup
f ∈F

1

r

r∑
i=1

σif (zi)

⎤⎥⎥⎥⎥⎥⎦ .
At the heart of the algorithm for the problem presented in Chapter 3, the

stopping condition for the progressive sampling depends on the Rademacher average

of the sample. For the connection of the empirical Rademacher average with the value

of supf ∈F |LS(f )− LX(f )|, we use the bound of Boucheron et al. (2005) and the bound

previously introduced by Riondato and Upfal (2018), which extended the bound of

Oneto et al. (2013) to the supremum of its absolute value to functions with codomain in

[0,1] and uniform probability distribution on the input.

Theorem 9 (Boucheron et al. (2005), Theorem 3.2). With probability at least 1− δ,

sup
f ∈F
|LS (f )−LX(f )| ≤ 2R̃r(F ,S) +

√
2ln(2/δ)

r
.

Theorem 10 (Oneto et al. (2013), Theorem 3.11). With probability at least 1− δ,

sup
f ∈F
|LS (f )−LX(f )| ≤ 2R̃r(F ,S) +

ln 3
δ +

√
(ln 3

δ +4rR̃r(F ,S)) ln 3
δ

r
+

√
3
δ

2r
.

The exact computation of R̃r(F ,S) depends on an extreme value, i.e. the supre-

mum of deviations for all functions in F , which can be expensive and not straightfor-

ward to compute over a large (or infinite) set of functions (Mitzenmacher and Upfal,

2017). For this reason, we use the bound described in Theorem 11, which is a variant

of the Massart’s Lemma (Theorem 14.22 from Mitzenmacher and Upfal (2017)). It is

a function that is convex, continuous in R≥0, and that can be efficiently minimized by

standard convex optimization methods.

Consider the vector vf = (f (z1), . . . , f (zr)) for a given sample of r elements,

denoted by S = {z1, . . . , zr}, and let VS = {vf : f ∈ F }.
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Theorem 11 (Riondato and Upfal (2018), Theorem 3.4). Let w : R≥0 → R≥0 be the

function

w(s) =
1

s
ln

∑
vf ∈VS

exp

⎛⎜⎜⎜⎜⎝s2‖vf ‖222r2

⎞⎟⎟⎟⎟⎠ .
Then R̃r(F ,S) ≤mins∈R≥0w(s).

2.2.5 Related Work on Applications of Sample Complexity, VC dimension, and

Rademacher averages

In this section we present a brief overview of results of the contents presented in this

section applied to a variety of scenarios.

RegardingNP -Hard problems, the work of Brönnimann and Goodrich (1995)

provided approximation algorithms for the hitting set and set cover problems on sys-

tems with bounded VC dimension. In the context of learning, Sontag (1998) obtained

results on the VC dimension of neural network architectures. In the context of communi-

cation complexity, Bhattacharya et al. (2022) used VC dimension on the communication

measure of a set system.

There are some work related to database applications. Benedikt and Libkin

(2002) used VC dimension in the context of constraint query languages to get ap-

proximations for volume operators. Gross-Amblard (2003) worked on the problem of

watermarking of databases or XML documents while preserving queries on a language

L. They showed that no watermarking scheme can be obtained if the VC dimension of

a range space defined on sets in L is maximal but not bounded. Riondato et al. (2011)

bounded the VC dimension of a range space defined on outcomes of a collection of SQL

queries. Riondato and Upfal (2014) designed an approximation algorithm using VC

dimension bounds on frequent itemset mining. They were pioneers on using VC dimen-

sion in knowledge discovery. They extended these results by using Rademacher averages

into a progressive sampling approach (Riondato and Upfal, 2015), being pioneers on

using these techniques on a pattern mining problem. Santoro et al. (2020) used VC

dimension and Rademacher averages in the modeling of an approximation algorithm

to the frequent sequential patterns on massive datasets. Riondato and Vandin (2020)

were the first authors to use pseudodimension theory in the field of subgroup discovery.

More specifically, in this work they approximate the most interesting subgroups from a

random sample of a transactional dataset.

In the context of graph problems, Kranakis et al. (1997) proved results on VC

dimension for a variety of problems in range spaces where the domain is the set of

vertices of a graph and the ranges are induced by paths, neighborhoods and stars, and

connected sets of edges. The work of Kleinberg (2004), Kleinberg et al. (2004), and

Gandhi et al. (2010) contains results on the use of VC dimension theory and the ε-net
theorem in problems related to security in networks. More specifically, Gandhi et al.

(2010) applied these techniques on monitoring sensor networks, and Kleinberg (2004)

and Kleinberg et al. (2004) treated the problem of detecting edge failures of a given

network. Abraham et al. (2011) bounded the VC dimension of a range space R = (X,I )
where X is the set of vertices of a graph and each range on I represents an unique

shortest path, so the vertices inside in a range are the vertices from its respective shortest

path. The authors proved that VCDim(R) ≤ 2. The work by Bousquet et al. (2015) uses
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VC dimension to bound the size of identifying codes, i.e. subset of vertices C such that

every vertex of the graph is uniquely identified by the set of its neighbors within the C.
Riondato and Kornaropoulos (2016) provided an approximation to the betweenness

centrality using VC dimension and ε-sample theorem in the modeling of the problem.

They also designed a progressive sampling algorithm to the betweenness centrality

using pseudo-dimension and Rademacher averages (Riondato and Upfal, 2018), being

pioneers on using these techniques in graph mining. Ducoffe et al. (2020) obtained a

truly subquadratic time algorithm for the computation of the diameter of some classes

of unweighted graphs. They generalize these classes as the graphs with constant distance

VC dimension, that is, the VC dimension of the ball hypergraph from a graph G. They
proposed a randomized algorithm using ε-net construction that either computes the

diameter of graph G, if its distance VC dimension is at most d, or concludes that it is
larger than a fixed value k.
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3 PERCOLATION CENTRALITY PROBLEM

The importance of a vertex in a graph can be quantified using centrality measures. In

this chapter we deal with the percolation centrality, a measure relevant in applications

where graphs are used to model a contagious process in a network (e.g. disease trans-

mission or misinformation spreading). Centrality measures can be defined in terms of

local properties, such as the vertex degree, or global properties, such as the between-

ness centrality or the percolation centrality. The betweenness centrality of a vertex v
(Freeman, 1977), roughly speaking, is the fraction of shortest paths containing v as an

intermediate vertex. The percolation centrality generalizes the betweenness centrality

by allowing weights on the shortest paths, and the weight of a shortest path depends on

the disparity between the degree of contamination of the two ending vertices of such

path (Figure 3.1).

(a) Betweenness centrality (b) Percolation centrality

Figure 3.1: Comparison between the values of betweenness and percolation centralities of the Alberta

network (Piraveenan et al., 2013). The vertices sizes match the centrality values. In b), the red vertex

corresponds to an infected vertex.

The study of the percolation phenomenon in a physical system was introduced

by Broadbent and Hammersley (1957) in the context of the passage of a fluid in a

medium. In graphs, percolation centrality was proposed by Piraveenan et al. (2013),

where the medium are the vertices of a graph G and each vertex v in G has a percolation

state (reflecting the degree of contamination of v). The percolation centrality of v is a

function that depends on the topological connectivity and the states of the vertices

of G. The best-known algorithms that exactly compute the betweenness centrality

for all vertices of a graph depends on computing all its shortest paths (Riondato

and Kornaropoulos, 2016) and, consequently, the same applies in the computation of

percolation centrality. The fastest algorithm for this task for weighted graphs, proposed

by Williams (2014), runs in O
(
n3/2c

√
logn

)
time, for some constant c. Currently it is a

central open problem in graph theory whether this problem can be solved in O(n3−c),
for some c > 0, and the hypothesis that there is no such algorithm is used in hardness

arguments in some works (Abboud and Williams, 2014; Abboud et al., 2018). In

the particular case of sparse graphs, which are common in many applications, the

complexity of the exact computation for the betweenness centrality can be improved to

O(n2). However, the same is not known to be the true for percolation centrality and no

subcubic-time algorithm is known even in such restricted scenario.
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The main contributions of this chapter are approximation algorithms to esti-

mate the percolation centrality of all vertices of a graph. A main theme we deal with is

the fact that for large scale graphs, even algorithms with time complexity that scales in

quadratic-time are inefficient in practice, and high-quality approximations obtained

with high confidence are usually sufficient in real-world applications. Riondato and

Upfal (2018) observed that keeping track of the exact centrality values, which may

change continuously, provides little information gain. So, the idea is to sample a subset

of all shortest paths in the graph so that, for any fixed constants 0 < ε,δ < 1, they obtain

values within ε from the exact value with probability 1− δ.
In this chapter we describe techniques based on Pseudo-dimension theory

applied to percolation centrality (Lima et al., 2022a) and on Rademacher Averages

applied to betweenness centrality (Riondato and Upfal, 2018). We show that this

combination can be further developed for giving an approximation algorithm for the

percolation centrality based on a progressive sampling strategy. The idea is that the

algorithm iteratively increases the size of a sample of shortest paths used for estimating

the percolation centrality until the desired accuracy is achieved. The stop condition

depends on the Rademacher Averages of the current sample of shortest paths. One of

the consequences of the approach based on Rademacher Averages is that such technique

is sensitive to the input distribution, so it can provide tighter bounds for certain inputs.

Additionally, even if no assumption is made on the input distribution, we show that with

the use of pseudo-dimension theory on the sample analysis we can obtain a sample size

that is tighter than the one given by standard Hoeffding and union-bound techniques,

and never worse than the sample size given by the fixed-size sample algorithm.

We have in mind both a theoretical and a practical perspective. More pre-

cisely, we show that the estimation of the percolation centrality can be computed in

O(m logn logdiamV (G)) expected time, where diamV (G) is the maximum number of

vertices in a shortest path of G. Note that since many real-world graphs are sparse and

have logarithmic diameter, the time complexity of the algorithm for such graphs is

O(n logn loglogn). In the practical front, in Section 3.5, we give the relation between

the quality and confidence constants and the sample size required for meeting the

approximation guarantee and, in fact, our experimental evaluation shows that our

algorithms produce results that are orders of magnitude better than the guarantees

given by the referred theoretical analysis.

We note that Riondato and Upfal (2018) use pseudo-dimension theory for

the betweenness problem in order to make use of Rademacher averages. In both of

our approximation algorithms to the percolation centrality (the one using a fixed-size

sample and the one using progressive sampling), we need pseudo-dimension theory

by the very nature of the problem, since percolation functions are real-valued and VC

dimension does not apply in our scenario.

This chapter is organized as follows: Section 3.1 states the definitions and

notation used; in Section 3.2 we model the problem in terms of a range space; in Section

3.3 we compute the bound for its pseudo-dimension and we describe the fixed-size

sample and the progressive sampling algorithms to estimate the percolation centrality

of every vertex v ∈ G; in Section 3.4 we prove the correctness and running time of

our proposed algorithms; in Section 3.5 we present the results of the experimental

evaluation of our algorithms.
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3.1 PRELIMINARIES

Given a directed weighted graph G = (V ,E) and the percolation states 0 ≤ xv ≤ 1 for

each v ∈ V , we say a vertex v is fully percolated if xv = 1, non-percolated if xv = 0, and

partially percolated if 0 < x < 1. We say that a path from u to w is percolated if xu − xw > 0.

Let σuw = |Cuw|, recalling that Cuw is the set of all shortest paths from u to w. We denote

σuw(v) as the number of shortest paths from u to w that a vertex v is internal to. The

percolation centrality is defined below.

Definition 11 (Percolation Centrality). Let R(x) = max{x,0}. Given a graph G = (V ,E)
and percolation states xv,∀v ∈ V , the percolation centrality of a vertex v ∈ V is defined as

p(v) =
1

n(n− 1)
∑

(u,w)∈V 2

u�v�w

σuw(v)

σuw

R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
.

The definition originally presented by Piraveenan et al. (2013) does not have

the normalization factor 1
n(n−1) , introduced in this thesis with the purpose of defining a

proper probability distribution in Section 3.2. This normalization preserves the original

relation among the vertices centralities.

3.2 PSEUDO–DIMENSION AND PERCOLATED SHORTEST PATHS

In this section we model the percolation centrality estimation problem in terms of a

range set of the percolated shortest paths. We first describe the range space defined

for the fixed-size sample algorithm (Section 3.2.1), where the points of the domain are

shortest paths. Next, we present a range space where the domain corresponds to the

pairs of vertices of G (Section 3.2.2). This modification is necessary in the progressive

sampling algorithm.

3.2.1 Range Space defined for the Fixed-Size Sample Algorithm

In this section we model the percolation centrality in terms of a range space of the

percolated shortest paths. For a given graph G = (V ,E) and the percolation states xv for
each v ∈ V , let X = SG, with n = |V |, where

SG =
⋃

(u,w)∈V 2

u�w

Cuw .

For each v ∈ V , there is a set τv = {p ∈ X : v ∈ Inn(p)}. For a pair (u,w) ∈ V 2 and a path

puw ∈ X, let fv :X→ [0,1] be the function

fv(puw) =
R(xu − xw)∑

(f ,d)∈V 2

f �v�d

R(xf − xd)
1τv (puw) ,

where 1τv (puw) is the indicator function that returns 1 if v ∈ Inn(puw) — and hence, puw
is in the interval τv of vertex v — and 0 otherwise. The function fv gives the proportion
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of the percolation between u and w to the total percolation in the graph if v ∈ Inn(puw).
We define F = {fv : v ∈ V }.

Let D = X × [0,1]. For each fv ∈ F , there is a range

Rv = Rfv = {(puw, t) : puw ∈ X and t ≤ fv(puw) .}

Note that each range Rv contains the pairs (puw, t), where 0 < t ≤ 1 such that v ∈ Inn(puw)
and

t ≤ R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
.

We define F + = {Rv : fv ∈ F }.
Each puw ∈ X is sampled according to the function π(puw) =

1
n(n−1)

1
σuw

. In order

to see that this is a valid probability distribution, note that

∑
puw∈U

π(puw) =
∑
puw∈U

1

n(n− 1)
1

σuw
=
∑
u∈V

∑
w∈V
w�u

∑
p∈Cuw

1

n(n− 1)
1

σuw
=
∑
u∈V

∑
w∈V
w�u

1

n(n− 1)
σuw
σuw

=
1

n(n− 1)
∑
u∈V

∑
w∈V
w�u

1 =
1

n(n− 1)
∑
u∈V

(n− 1) = 1 .

We state in the next theorem that E[fv(puw)] = p(v) for all v ∈ V .

Theorem 12. For fv ∈ F and for all puw ∈ X, such that each puw is sampled according to the

probability function π(puw), we have E[fv(puw)] = p(v).

Proof. For a given graph G = (V ,E) and for all v ∈ V , we have from Definition 7

LX(fv) = Epuw∼π[fv(puw)] =
∑
puw∈X

π(puw)fv(puw)

=
∑
puw∈X

1

n(n− 1)
1

σuw

R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
1τv (puw)

=
1

n(n− 1)
∑
u∈V
u�v

∑
w∈V
w�v�u

∑
p∈Cuw

1

σuw

R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
1τv (p)

=
1

n(n− 1)
∑
u∈V
u�v

∑
w∈V
w�v�u

σuw(v)

σuw

R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)

=
1

n(n− 1)
∑

(u,w)∈V 2

u�v�w

σuw(v)

σuw

R(xu − xw)∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
= p(v) .

Let S = {pu1w1
, . . . ,purwr } be a collection of r shortest paths sampled indepen-

dently from X. Next, we define p̃(v), the estimation to be computed, as the empirical

average from Definition 7:
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p̃(v) = LS (fv) =
1

r

∑
puiwi∈S

fv(puiwi ) =
1

r

∑
puiwi∈S

R(xui − xwi )∑
(f ,d)∈V 2

f �v�d

R(xf − xd)
1τv (puiwi ) .

3.2.2 Range Space defined for the Progressive Sampling Algorithm

In this section we describe a modification in the range space so that we can use the

bound of Riondato and Upfal (2018) in our progressive sampling algorithm, since an

uniform probability distribution in the points of the domain is required in this case.

For a given graph G = (V ,E) and the percolation states xv , for each v ∈ V , let

X ′ = V ×V . Let fv : X
′ → [0,1] be the function

fv(u,w) =
R(xu − xw)∑

(f ,d)∈V×V
u�w

R(xf − xd)
σuw(v)

σuw
.

We define F ′ = {fv : v ∈ V }. There is one range

Rv = {((u,w), t) : (u,w) ∈ X ′ and t ≤ fv(u,w)}

for each fv ∈ F ′. We define F ′+ = {Rv : fv ∈ F ′}. Each (u,w) ∈ X ′ is sampled with

probability π(u,w) = 1
n(n−1) , which is a valid probability distribution.

For a collection S ′ = {u1w1, . . . ,urwr} of r pairs of vertices sampled indepen-

dently and identically from X ′, the estimation p̃(v) to be computed is the empirical

average of fv , according to Definition 7:

p̃(v) = LS ′ (fv) =
1

r

∑
(ui ,wi )∈S ′

fv(ui,wi) =
1

r

∑
(ui ,wi )∈S ′

R(xui − xwi )∑
(f ,d)∈V×V
f �v�d

R(xf − xd)
σuw(v)

σuw
.

For each v ∈ V , the value p̃(v) can be defined as ‖vv‖/r, where

vv = (fv(u1,w1), . . . , fv(ur,wr)) .

We denote the set V = {vv : v ∈ V }. Note that |V | ≤ |V |, since there may be different
vertices u′ and v′ with vu′ = vv′ .

3.3 APPROXIMATION TO THE PERCOLATION CENTRALITY

In this section we present sampling algorithms for approximating the percolation

centrality of every vertex of a graph using either a fixed-size sample approach (Section

3.3.1) or a progressive sampling approach (Section 3.3.2). The correctness and running

time of the algorithms rely on the sample size given by Theorems 7 and 9. We prove

an upper bound to the VC dimension of the range space R in Theorem 13 in order to

bound the sample size. We are aware that the main idea in the proof is similar to the

proof of a result for a different range space on the shortest paths obtained in the work
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of Riondato and Kornaropoulos (2016) using VC dimension. For the sake of clarity,

instead of trying to fit their definition to our model and use their result, we found it

easier stating and proving the theorem directly for our range space.

Theorem 13. Let R = (X,F ) and R′ = (D,F +) be the corresponding range spaces for the

domain and range sets defined in Section 3.2, and let diamV (G) be the vertex-diameter of G.
We have

PD(R) = VCDim(R′) ≤ �lg(diamV (G)− 2)�+1.

Proof. Let VCDim(R′) = k. Recall that VCDim(R′) must be finite, i.e. k ∈ N, because
X and F are finite. Then, there is S ⊆ D such that |S | = k and S is shattered by F +.

From Lemmas 1 and 2, we know that for each puw ∈ X, there is at most one pair (puw, t)
in S for some t ∈ (0,1] and there is no pair in the form (puw,0). By the definition of

shattering, each (puw, t) ∈ S must appear in 2k−1 different ranges in F +. On the other

hand, each pair (puw, t) is in at most |puw| − 2 ranges in F +, since (puw, t) � Rv either

when t > fv(puw) or v � Inn(puw). Considering that |puw| − 2 ≤ diamV (G)− 2, we have

2k−1 ≤ |puw| − 2 ≤ diamV (G)− 2
k − 1 ≤ lg(diamV (G)− 2).

Since k must be integer, k ≤ �lg(diamV (G)− 2)�+1 ≤ lg(diamV (G)− 2) + 1. Finally,

PD(F ) = VCDim(F +) = k ≤ �lg(diamV (G)− 2)�+1 .

By Theorem 12 and Definition 7, LX(fv) = p(v) and LS(fv) = p̃(v), respectively,
for each v ∈ V and fv ∈ F . Thus, |LS(fv) − LX(fv)| = |p̃(v) − p(v)|, and by Theorems 7

and 13, a sample of size
⌈
c
ε2

(
�lg(diamV (G)− 2)�+1+ ln 1

δ

)⌉
suffices to our algorithm, for

given constants 0 < ε,δ < 1.

If we had used a Hoeffding bound, we would have

Pr(|p̃(v)− p(v)| ≥ ε) ≤ 2exp(−2rε2)

for a sample of size r and for each v ∈ V . Applying the union bound for all v ∈ V , the

value of r must satisfy 2exp(−2r2ε2)n ≥ δ, which leads to r ≤ 1
2ε2

(ln2 + lnn + ln(1/δ)).
Even though diamV (G) might be as large as n, we note that the bound given in Theorem

13 is tighter since it depends on the combinatorial structure of G, which gives a sample

size tailored for it. For instance, if diamV (G) = lnn (which is common in many real-

world graphs, in particular power-law graphs), we have that VCDim(R) ≤ �lg(lnn−2)�+
1.

In particular, the problem of computing the diameter of G is not known to be

easier than the problem of computing all of its shortest paths (Aingworth et al., 1996),

so obtaining an exact value for the diameter would defeat the whole purpose of using

a sampling strategy that avoids computing all shortest paths. However, a bound on

diamV (G) given by a folklore 2–approximation on unidrected graphs is enough and it

can be efficiently computed (Riondato and Upfal, 2018). If G is directed, we use this

strategy in the underlying undirected graph. Note that this method does not guarantee

the desired approximation factor in the directed case, however, in practice the algorithm

gives very tight bounds as we show in our experimental evaluation in Section 3.5. We

also observe that the diameter can be approximated within smaller factors, but even for

a (32 ,
3
2)-approximation algorithm (Aingworth et al., 1996), i.e. an algorithm that outputs
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a solution of size at most 3
2 ·diam(G) + 3

2, the complexity is Õ(m
√
n+ n2), what would

also be a bottleneck to our algorithm. Furthermore, since in our case we do not need

the largest shortest path, but simply the value of the diameter, and we take logarithm

of this value, the 2-approximation is sufficient.

3.3.1 Fixed–size sample algorithm

Given a directed weighted graph G = (V ,E) and the percolation states xv , for each v ∈ V ,

as well as the quality and confidence parameters 0 < ε,δ < 1, assumed to be constants

(they do not depend on the size of G, respectively), Algorithm 2 works as follows. At the

beginning of the execution the approximated value diamV (G) for the vertex-diameter

of G is obtained, in line 1, by a folklore 2-approximation described by Riondato and

Kornaropoulos (2016), if the graph is undirected, as previously mentioned. If the input

graph is directed, we can use the same approximation algorithm, ignoring the edges

directions. According to Theorem 13, this value is used to determine the sample size,

denoted by r, in line 2.

The value minus_sum[v] =
∑

(f ,d)∈V 2:f �v�d R(xf − xd), for each vertex v ∈ V ,

which is necessary to compute p̃(v), is obtained in line 4 by the linear-time dynamic

programming strategy presented in Algorithm 1. The correctness of Algorithm 1 is not

self-evident, so we provide a proof of its correctness in Theorem 14.

A pair (u,w) ∈ V 2 is sampled uniformly and independently, and then a shortest

path puw between u and w is sampled independently in Cuw in lines 11–15. For a vertex

z ∈ Inn(puw), the value (1/r) · (R(xu − xw)/minus_sum[z]) is added to p̃(z).

Algorithm 1 getPercolationDifferences(A,n)

Input: Array A, sorted in non-decreasing order, and n = |A|.
Output: The value sum =

∑n
i=1

∑n
j=1R(A[j]−A[i]) and the array{

minus_sum[k] =
∑n
i=1,i�k

∑n
j=1,j�k R(A[j]−A[i]) : k ∈ {1, ...,n

}
, such that R(z) = max{z,0}.

1: sum← 0

2: minus_sum[i]← 0,∀i ∈ {1, . . . ,n}
3: svp← (0,0, . . . ,0)
4: for i← 2 to n do
5: svp[i]← svp[i − 1] +A[i − 1]
6: sum← sum+ (i − 1)A[i]− svp[i]
7: svp[n+1]← svp[n] +A[n]
8: for i← 1 to n do
9: minus_sum[i]← sum−A[i](2i −n− 2)− svp[n+1] + 2svp[i]

10: return sum, minus_sum

Theorem 14. For an arrayA of size n, sorted in non-decreasing order, Algorithm 1 returns for

sum and minus_sum[k], respectively, the values
n∑
i=1

n∑
j=1
R(A[j]−A[i]) and

n∑
i=1
i�k

n∑
j=1
j�k

R(A[j]−A[i]),

for each k ∈ {1, . . . ,n}.
Proof. By the definition of sum, we have that

sum =

n∑
i=1

n∑
j=1

R(A[i]−A[j]) =
n∑
i=1

n∑
j=1

R(A[j]−A[i]) =
n∑
i=1

n∑
j=1

max{A[j]−A[i],0}.
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Since A is sorted, then max{A[j]−A[i],0} = 0 if j < i. Hence, if we consider only

the values j ≥ i, then sum =
∑n
i=1

∑n
j=i(A[j]−A[i]).

A similar step can be applied to the values of the array minus_sum, and then

for all indices k ∈ {1, ...,n},

minus_sum[k] =
n∑
i=1
i�k

n∑
j=1
j�k

max{A[j]−A[i],0} =
n∑
i=1
i�k

n∑
j=i
j�k

(A[j]−A[i]) .

The recurrences below follow directly from lines 5 and 6, where sumk denotes

the value of sum at the beginning of the k–th iteration of the algorithm.

svp[k] =

⎧⎪⎪⎨⎪⎪⎩0, if k = 1

svp[k − 1] +A[k − 1], otherwise.

sumk =

⎧⎪⎪⎨⎪⎪⎩0, if k = 1

sumk−1 + (k − 1)A[k]− svp[k], otherwise.

The solutions to the above recurrences are, respectively,

svp[k] =
k−1∑
i=1

A[i] and sumk =

k∑
i=1

((i − 1)A[i]− svp[i]) .

The value sum is then correctly computed in lines 4–6, since

sum =

n∑
i=1

n∑
j=i

(A[j]−A[i]) =
n∑
i=1

n∑
j=i

A[j]−
n∑
i=1

n∑
j=i

A[i]

=

n∑
i=1

n∑
j=i

A[j]−
n∑
i=1

(n− i +1)A[i]

=

n∑
j=1

j∑
i=1

A[j]−
n∑
i=1

(n− i +1)A[i]

=

n∑
j=1

jA[j]−
n∑
i=1

(n− i +1)A[i] =
n∑
i=1

iA[i]−
n∑
i=1

(n− i +1)A[i]

=

n∑
i=1

(i − 1)A[i]−
n∑
i=1

(n− i)A[i] =
n∑
i=1

(i − 1)A[i]−
n∑
i=1

i−1∑
j=1

A[j]

=

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝(i − 1)A[i]−
i−1∑
j=1

A[j]

⎞⎟⎟⎟⎟⎟⎟⎠ =
n∑
i=1

((i − 1)A[i]− svp[i]) .

Finally, minus_sum is also correctly computed in lines 8 and 9, since
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minus_sum[k] =
n∑
i=1
i�k

n∑
j=i
j�k

(A[j]−A[i]) =
n∑
i=1

n∑
j=i

(A[j]−A[i])

−

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑
j=1

(A[k]−A[j]) +
n∑

j=k+1

(A[j]−A[k])

⎞⎟⎟⎟⎟⎟⎟⎠
= sum−

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑
j=1

A[k]−
n∑

j=k+1

A[k]−
k−1∑
j=1

A[j] +
n∑

j=k+1

A[j]

⎞⎟⎟⎟⎟⎟⎟⎠
= sum−

⎛⎜⎜⎜⎜⎝(k − 1)A[k]− (n− (k +1) + 1)A[k]−
k−1∑
j=1

A[j] +
n∑

j=k+1

A[j]

⎞⎟⎟⎟⎟⎠
= sum−

⎛⎜⎜⎜⎜⎜⎜⎝(2k −n− 1)A[k] +
n∑
j=1

A[j]−
k−1∑
j=1

A[j]−A[k]−
k−1∑
j=1

A[j]

⎞⎟⎟⎟⎟⎟⎟⎠
= sum−

⎛⎜⎜⎜⎜⎜⎜⎝(2k −n− 2)A[k] +
n∑
j=1

A[j]− 2
k−1∑
j=1

A[j]

⎞⎟⎟⎟⎟⎟⎟⎠
= sum− (2k −n− 2)A[k]− svp[n+1] + 2svp[k].

The main idea of the fixed-size sample algorithm described in Algorithm 2 is

shown below.

step 1. Sample a pair of vertices (u,w) ∈ V × V uniformly and independently (with

replacement) at random;

step 2. Compute the set Cuw of shortest paths from u to w;

step 3. Sample a shortest path puw ∈ Cuw independently with probability 1/σuw. In this

step, start a backward traversing from w as follows. Do t← w, and while t � u,
sample a predecessor z of t with probability σuz/σut ; increase the estimation for

the percolation centrality p̃(z) by 1
r

R(xu−xw)∑
(f ,d)∈V×V :f �v�d R(xd−xf )

, and do t← z;

step 4. Repeat the steps above r times, where r = c
ε2

(
�lg(diamV (G)− 2)�+1+ ln 1

δ

)
;

step 5. Return the set {p̃(v) :∀v ∈ V }.
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Algorithm 2 PercolationCentralityApproximation(G,x,ε,δ)

Input: Graph G = (V ,E) with n = |V |, percolation states x, accuracy constant 0 < ε < 1, confi-

dence constant 0 < δ < 1.

Output: Approximation p̃(v) for the percolation centrality of all vertices v ∈ V .

1: diamV (G)← getVertexDiameter(G)
2: r← � cε2 (�lgdiamV (G)− 2�+1− lnδ)�
3: sort x // after sorted, x = (x1,x2, . . . ,xn)
4: minus_sum← getPercolationDifferences(x,n)
5: for i← 1 to r do
6: sample u ∈ V with probability 1/n
7: sample w ∈ V with probability 1/(n− 1)
8: Cuw← allShortestPaths(u,w)
9: if Cuw � ∅ then

10: t← w
11: while t � u do
12: sample z ∈ Pu(t) with probability

σuz
σut

13: if z � u then
14: p̃[z]← p̃[z] + 1

r
R(xu−xw)

minus_sum[z]
15: t← z

return p̃[v],∀v ∈ V

3.3.2 Progressive Sampling Algorithm

When comparing the fixed-size sample algorithm with a progressive sampling approach,

we can build an algorithm using the range space defined by R = (X,F ) in Section 3.2

and the bound in Theorem 3.2 of Boucheron et al. (2005) as the stopping condition

for sampling. However, the corresponding initial size to the sample schedule obtained

by this bound is greater than the value given by Theorems 7 and 13 for a fixed-size

sample approach, so we use the range space defined by R′ = (X ′,F ′) in Section 3.2.2,

which has an uniform probability distribution on the domain X ′. We note that if

there is only one shortest path between any pair of vertices, then we can guarantee

PD(R′) ≤ �lg(diamV (G)−2)�+1; otherwise, the Pseudo–dimension of D is the same as

the one obtained by Hoeffding and union bounds (as proven in Lemma 4.5 of Riondato

and Upfal (2018)). Despite this issue, we show in the experimental evaluation that

in practice, this range space can lead to improvements on the running time of an

approximation algorithm that uses a progressive sampling schedule.

The schedule is defined as follows. Let S1 be the initial sample size and δ1 = δ/2.
At this point, the only information available about the empirical Rademacher average

of S1 is that R̃r(F ′,S1) ≥ 0. Plugging this with the r.h.s. of the bound in Theorem 10,

which has to be at most ε, we have

2ln(6/δ)

|S1|
+

√
ln(6/δ)

2|S1|
≤ ε

4ln2(6/δ)

|S1|2
− 4ln(6/δ)ε

|S1|
+ ε2 ≤ ln(6/δ)

2|S1|
,
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giving

|S1| ≥
(1 + 8ε +

√
1+16ε) ln(6/δ)

4ε2
.

There is no fixed strategy for scheduling. Provost et al. (1999) conjecture that a

geometric sampling schedule is optimal (although we do not need such assumption),

i.e. the one that Si = g
iS1, for each i ≥ 1 and for constant g > 1. In our algorithm we

follow this result, as previously indicated in (Riondato and Upfal, 2018).

Given 0 < ε,δ < 1, let (|Si |)i≥1 be a geometric sampling schedule with starting

sample size defined above. We present the outline of the progressive sampling algorithm

for estimating the percolation centrality with probability 1− δ. Consider the table p̃
with the centrality estimation.

The following steps are repeated for each i ≥ 1, summarizing the behavior of

Algorithm 3. For the sake of clarity, S0 = ∅.

step 1. Create a sample of k = |Si | − |Si−1| elements of V × V chosen uniformly and

independently (with replacement) at random;

step 2. For each pair of vertices (u,w) ∈ {Si−Si−1}, compute the set Cuw of shortest paths

from u to w. Let z be an inner vertex of some shortest path between u and w.

Increase the value p̃(z) by R(xu−xw)∑
(f ,d)∈V×V
f �v�d

R(xd−xf )
σuw(z)
σuw

;

step 3. Compute the bound to R̃r(F ′,Si) by minimizing the function defined in Theo-

rem 11. If it satisfies the stopping condition defined in Theorem 9, then return

the set {p̃(v)/ |Si | : ∀v ∈ V }. Otherwise, increase the size of Si until it has size
|Si+1|, increase i, and return to step 1.

Step 1 is trivial. Step 2 requires the computation and update of inner ver-

tices to some shortest path from u to w and the computation of minus_sum[v] =∑
(f ,d)∈V 2:f �v�d

R(xf − xd) for each v ∈ V . The former task can be computed in time

O(m+n logn) following the steps of Riondato and Upfal (2018): an adaptation on Dijk-

stra’s algorithm in G = (V ,E), for each sampled pair of vertices (u,w), is executed for

the computation of shortest paths. The adaptation, discussed in Lemma 3 of Brandes

(2001), works as follows. Let z be an inner vertex of some shortest path from u to w.
The modified Dijkstra stores the distance d(u,z) from u to z in a shortest path from u
to w. After Cuw is computed, the set of inner vertices in some path p ∈ Cuw is sorted in

inverse order of d(u,z). The value σuw(z) corresponds to σuzσzw, where σuz is returned
by the modified Dijkstra’s algorithm and σzw =

∑
y:z∈Pu(y)σyw, where Pu(w) is the set of

immediate predecessors of u in a shortest path from u to w.
In the calculation of minus_sum[v] =

∑
(f ,d)∈V 2:f �v�d

R(xf − xd), for each v ∈ V ,

which are necessary to compute p̃(v), we perform the linear-time dynamic programming

strategy presented in Algorithm 1.

On Step 3, let Si = {(u1,w1), . . . , (uj ,wj )} be the sample of size j obtained after the

execution of the i-th iteration of the progressive sampling algorithm and let vv be the
vector vv =

(
fv(u1,w1), . . . , fv(uj ,wj )

)
, for all v ∈ V . The �1 and �2 norms of each vv are

stored on the hash tables V1 and V2, respectively. The set V , represented as a hash table,
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keeps the values of V2 with no repetition to the computation of ωs in line 21, which is

the bound for the empirical Rademacher average of Si obtained by the function defined

in Theorem 11. For each inner vertex v to be updated, Algorithm 4 checks if the value

associated to V2[v] in V is greater than zero. If yes, the value in V [V2[v]] is increased by

one; otherwise, a new key with V2[v] is created in V . The value of p̃(v) corresponds to
V1[v]/ |Si |.

Algorithm 4, in line 19, stores each value in V in a sparse way and without

repetition. It also updates the map v[v], for each v ∈ V .

Algorithm 3 PercolationCentralityApproximation(G,x,ε,δ)

Input: Graph G = (V ,E) with n = |V |, percolation states x, accuracy constant 0 < ε < 1, confi-

dence constant 0 < δ < 1, sample scheduling (Si )i≥1.
Output: Approximation p̃(v) for the percolation centrality of all vertices v ∈ V .

1: V ,V1,V2← hash tables

2: V1[v]← 0,V2[v]← 0,minus_sum[v]← 0, ∀v ∈ V
3: sort x // after sorted, x = (x1,x2, . . . ,xn)
4: minus_sum← getPercolationDifferences(x,n)
5: |S0| ← 0

6: i← 0

7: repeat
8: i← i +1

9: for l← 1 to |Si | − |Si+1| do
10: sample u ∈ V with probability 1/n
11: sample w ∈ V with probability 1/(n− 1)
12: Cuw← allShortestPaths(u,w)
13: if Cuw � ∅ then
14: for z ∈ Pu(w) do
15: σzw← 1

16: for each z inner to some shortest path from u to w in inverse order of d(u,w) do
17: σuw(z)← σuzσzw
18: updateSetV

(
V , z,V1,V2, R(xu−xw)

minus_sum[z]
σuw(z)
σuw

)
19: for y ∈ Pu(z) do
20: σyw← σyz +σzw

21: ωs←mins∈R≥0
1
s ln

∑
q∈V exp

s2q
2|Si |2

22: δi ← δ/2i

23: η← 2ωs +
ln(3/δi )+

√
(ln(3/δi )+4|Si |ωs) ln(3/δi )

|Si | +

√
ln(3/δi )
2|Si |

24: until η > ε
25: p̃[v]←V1[v]/ |Si |,∀v ∈ V
26: return p̃[v],∀v ∈ V

3.4 CORRECTNESS AND RUNNING TIME ANALYSIS

In Theorems 15 and 16 we prove the correctness and running time of Algorithm 3,

which can be extended to the fixed size sample Algorithm 2.

Theorem 15. Algorithm 3 returns with probability at least 1− δ an approximation p̃(v) to
p(v), for each v ∈ V , such that p̃(v) is within ε error.
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Algorithm 4 UpdateSetV(V ,z,V1,V2,rz)
Input: Table V , vertex z, table V1, table V2, real value rz.
1: v←V2[z]
2: v′ ← v + r2z
3: if v′ � V then
4: V [v′]← 1

5: else
6: V [v′]←V [v′] + 1

7: if v > 0 and V [v] ≥ 1 then
8: V [v]←V [v]− 1
9: if v > 0 and V [v] = 0 then

10: remove V [v]
11: V1[z]←V1[z] + rz
12: V2[z]←V2[z] + r2z

Proof. Let l be the number of iterations of the loop in lines 7–24 of Algorithm 3.

Consider the sample Sl = {(u1,w1), . . . , (ur,wr)} of size r obtained after the last iteration

of such loop where the stopping condition is satisfied, where each (uj ,wj ) is a pair in
V ×V , for 1 ≤ j ≤ r. Let ηi be the value obtained in line 23 on the i-th iteration, where

1 ≤ i ≤ l, and let ωs be the optimum value of the function defined in Theorem 11, which

is an upper bound to the empirical Rademacher average of the sample Sl and which is

computed by a linear-time procedure of Johnson (2014). Then

ηl = 2ωs +
ln(3/δl) +

√
(ln(3/δl) + 4|Sl |ωs) ln(3/δl)

|Sl |
+

√
ln(3/δl)

2|Sl |

is the value such that ηl ≤ ε for the input graph G = (V ,E) and for fixed constants

0 < ε,δ < 1.

Let Ei be the event where supv∈V |p̃(v) − p(v)| > ηi in iteration i. We need the

event Ei occurring with probability at most δ for some iteration i. That is, we need

Pr(∃i ≥ 1 s.t. Ei occurs) ≤
∞∑
i=1

Pr(Ei) ≤ δ ,

where the inequality comes from union bound. Setting Pr(Ei) = δ/2
i , we have

∞∑
i=1

Pr(Ei) = δ
∞∑
i=1

1

2i
= δ.

For each iteration i in 7–24, the pair (uj ,wj ) is sampled with probability 1
n(n−1)

in lines 10 and 11, for 1 ≤ j ≤ r, and the set Cujwj is computed by Dijkstra’s algorithm

(line 12).

The value of
R(xuj−xwj )

minus_sum[z]

σujwj (z)

σujwj
, for each inner vertex z of a shortest path p ∈

Cujwj found on the backtracking procedure (lines 16–20) is added to V1[z] by Algorithm

4 in line 18. The correctness of the procedure in lines 19–20 can be checked in Lemma

3 of Brandes (2001).
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The value of minus_sum[z] is correctly computed in line 4 as shown in Theorem

14. Then, at the end of Algorithm 3,

p̃(z) =
1

r

∑
(u,w)∈Sl

R(xu − xw)∑
(f ,d)∈V×V
f �z�d

R(xf − xd)
σuw(z)

σuw

which corresponds to p̃(z) = 1
r

∑
puw∈Sl

fz((u,w)).

Since ηl ≤ ε, LSl (fv) = p̃(v), and LX ′ (fv) = p(v) (Theorem 12) for all v ∈ V , and

fv ∈ F , then Pr(|p̃(v)− p(v)| ≤ ε) ≥ 1− δ (Theorem 10).

Theorem 16. Given a weighted graph G = (V ,E) with n = |V | and m = |E|, and a sample of

size r = c
ε2
(�lgdiamV (G)−2�+1)− lnδ), Algorithm 3 has expected running time O(m log2n).

Proof. We sample the vertices u and w in lines 10 and 11, respectively, in linear time.

Sorting the percolation states array x (line 3) can be done in O(n logn) time

and the execution of Algorithm 1 on the sorted array x (line 4) has running time O(n).
Before the loop in lines 16–20 start, the vertices in G are sorted according to d(u,w)
in reverse order, which takes O(n logn). The complexity analysis of the procedure in

16–20 proceeds as follows. Once |Pu(z)| ≤ dG(z), where dG(z) denotes the degree of z
in G and Pu(z) is the set of predecessors of z in the shortest paths from u to w, and
since this loop is executed at most n times if all the vertices of G are inner to some

shortest path between u and w, the total running time of these steps corresponds to∑
v∈V dG(v) = 2m = O(m).

The execution of Algorithm 4 in line 18 has O(1) expected running time, since

the sets V , V1, and V2 are stored as hash tables and operations of insertion, deletion, and

search on these structures takeO(1) time in average. Line 21 is executed by an algorithm

that is linear in the size of the sample (Johnson, 2014). The loop in lines 7–24 runs at

most r times, since |p̃(v)−p(v)| ≤ ε for all v ∈ V , with probability 1−δ, when the sample

has size r (Theorem 7). The Dijkstra algorithm which is executed in line 12 has running

time O(m+ n logn) = O(m logn), so the total expected running time of Algorithm 3 is

O(n logn+ rmax(m,m logn)) = O(n logn+ r(m logn)) = O(r(m logn)) = O(m log2n).

Corollary 1. Given an unweighted graph G = (V ,E), with n = |V | and m = |E|, and a

sample of size r = c
ε2
(�lgdiamV (G)− 2�+1)− lnδ), Algorithm 3 has expected running time

O((m+n) logn).

Proof. The proof is analogous to the one of Theorem 16, with the difference that the

shortest paths between a sampled pair (u,w) ∈ V ×V will be computed by the breadth-

first search (BFS) algorithm, which has running time O(m+n).

We observe that, even though it is an open problem whether there is a O(n3−c)
algorithm for computing all shortest paths in weighted graphs, in the unweighted

case there is a O(n2.38) (non-combinatorial) algorithm for this problem (Seidel, 1995).

However, even if this algorithm could be adapted to compute betweenness/percolation

centrality (what is not clear), our algorithm obtained in Corollary 1 is still faster.
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3.5 EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation on the percolation centrality

problem on the fixed-size sample and the progressive sampling algorithms. Since,

as far as we know, our algorithms are the first estimation algorithms for percolation

centrality, we compare our results with the best known algorithm for computing the

same measure in the exact case. As expected, our algorithms are many times faster than

the exact algorithm, since the exact computation of the percolation centrality takes

O(n3) time, which is extremely time consuming. Additionally, a main advantage of

our algorithms is that they output an estimation with a very small error. In fact, for

every one of the networks used in our experiment, the average estimation error are kept

below the quality parameter ε by many orders of magnitude. For instance, even for

ε = 0.1 (the largest in our experiments), the average estimation error is in the order of

10−11, and maximum estimation error of any one of the centrality measure is in the

order of 10−9. We also compare the running time and the accuracy of our progressive

sampling algorithm with the fixed-size sample approach. Our results show that the

impacts of the improvements on the sample size obtained by the former approach are

better observed in particular for smaller values of ε.

3.5.1 Real-world graphs

We perform our experimental evaluation on publicly available real-world graph datasets

from Stanford Large Network Dataset Collection (Leskovec and Krevl, 2014) and

Network Repository (Rossi and Ahmed, 2015), described in Tables 3.1 and 3.3. These

graphs spam from social, peer-to-peer, and citations networks. Our implementation

uses Python 3.7 language, the NetworkX library for graph manipulation, and the NLOpt

library for computing the minimization function in Theorem 11. The NetworkX library

provides an exact algorithm for the percolation centrality which we use to compare

with our approximation algorithms. The experiments were performed on a 2.6 MHz

Intel Xeon E5-2650v2 octa core with 48GB of RAM and Ubuntu 14.04 64-bit operating

system.

Graph Type |V| |E|
Approximated
diamV (G)

Exact Algorithm
Running Time (in secs.)

wiki–Vote Directed 7115 103689 11 214.2481
p2p–Gnutella08 Directed 6301 20777 14 111.894
oregon1–010331 Undirected 10670 22002 14 1050.589
ca–CondMat Undirected 23133 93497 21 6256.0498
asas20000102 Undirected 6474 13895 14 338.276

Table 3.1: Datasets details for the real-world graphs of the experiments of the fixed-size sample algorithm.

exact/approx. time average ratio
Graph ε = 0.04 ε = 0.06 ε = 0.08 ε = 0.1

wiki–Vote 10.36 22.17 36.93 52.71
p2p–Gnutella 9.92 19.59 33.91 53.21

oregon1–010331 17.66 39.7 70.14 108.71
ca–CondMat 30.25 67.32 120.98 191.1
as20000102 9.61 20.67 38.81 55.4

Table 3.2: Ratio for average running time after five runs of the percolation centrality estimation algorithm

and the exact algorithm.
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Graph Type |V| |E|
Approximated
diamV (G)

Exact Algorithm
Running Time (in secs.)

p2p–Gnutella04 Directed 10876 39994 39 257.8975
Cit–HepPh Directed 34546 421578 42 4455.429

p2p–Gnutella31 Directed 62586 147892 42 9692.5041
socfb–Berkeley13 Undirected 22900 852419 33 15271.9312

Table 3.3: Dataset details for the real-world graphs of the experiments of the progressive sampling

algorithm

In all experiments in graphs of Tables 3.1 and 3.3, we set the percolation state

xv , for each v ∈ V , as a random number between 0 and 1 and the weights of each

edge e ∈ E as an integer random number between 1 and 100. In both fixed-size and

progressive sampling algorithms, we set the parameters δ = 0.1 and c = 0.5 (as suggested

by Löffler and Phillips (2009)), and the accuracy parameter as ε = {0.1,0.08,0.06,0.04}.
In the progressive sampling algorithm, we also set ε = 0.01, and the constant for the

geometric sampling schedule g = {1.2,1.5,2.0}.
We run the fixed-size sample algorithm five times for the graphs in Table 3.1

for each value of ε. Them maximum error is taken among all five runs. These results are

shown in Figures 3.2, 3.3, and 3.4. In Table 3.2 we show how many times our algorithm

is faster than the exact method in the average of the five runs. We compute this factor

by dividing the running time of the exact method by the running time of our algorithm.

Note that for the largest graph our algorithm is around 30 times faster, on average, than

the exact method.
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Figure 3.2: Percolation centrality absolute maximum error estimation.

In the progressive sampling algorithm, we report results for the graphs in Table

3.3, for five experiments in the combination of parameters ε and g . We report the results

of the running time and the size of the sample attained by the progressive sampling

schedule in Tables 3.4, 3.5, 3.6, and 3.7, where each table is associated to one of the

real–world graphs described in Table 3.3.

The highlighted entries in the tables are the cases where the progressive sam-

pling schedule achieved smaller samples in comparison with the fixed-size sample

approach. In all graphs and all values of ε, the improvement on the sample size were
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ε
Schedule
constant

Sample Size
(Initial Sample
Final Sample)

ε−η Final η

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample
Size

0.1

1.2
350 -0.00001166

0.098426091 11.76664

10.62395 416

420 0.001573909

1.5
350 -0.000012202

0.0858796514 13.38731
524 0.0141203486

2
350 -0.00000943

0.0722524692 17.53773
699 0.027747531

0.08

1.2 504 -0.000009637
0.078772866 15.04645

16.61353 649

605 0.001227134

1.5
504 -0.00000974

0.068962175 21.94075
756 0.011037825

2
504 -0.000009834

0.058254291 25.03958
1008 0.021745709

0.06

1.2 819 -0.000009936
0.059110204 27.16701

29.54515 1154

983 0.000889796

1.5
819 -0.000009997

0.051950778 31.63912
1229 0.008049222

2
819 -0.000010057

0.044087666 43.98850
1628 0.015912334

0.04

1.2 1664 -0.000010195
0.039432553 53.29527

65.21671 2595

1997 0.000567447

1.5 1664 -0.000010281
0.034817851 61.234282496 0.00518215

2
1664 -0.00001037

0.029709455 82.76411
3328 0.010290545

0.02

1.2 5909 -0.000010685
0.019735529 176.70750

257.03656 10379

7091 0.000264471

1.5 5909 -0.000010748
0.017525662 219.015378863 0.002474338

2
5909 -0.000010807

0.015053813 300.53190
11817 0.004946187

Table 3.4: p2p–Gnutella04 Graph
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ε
Schedule
constant

Sample Size
(Initial Sample
Final Sample)

ε−η Final η

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample
Size

0.1

1.2
350 -0.000011661

0.098426093 77.43216

80.69897 416

420 0.001573908

1.5
350 -0.000012194

0.0858766471 91.91335
524 0.014123353

2
350 -0.000009476

0.072252502 125.93146
699 0.027747498

0.08

1.2 504 -0.000009677
0.078772906 111.36629

129.91781 649

605 0.001227094

1.5
504 -0.000009769

0.068962197 159.96246
756 0.011037804

2
504 -0.000009847

0.058254314 188.53688
1008 0.021745687

0.06

1.2 819 -0.000009956
0.059110223 183.27423

222.75616 1154

983 0.000889777

1.5
819 -0.000010018

0.0519508002 245.29033
1229 0.0080492

2
819 -0.000010088

0.044087705 302.89113
1628 0.015912295

0.04

1.2 1664 -0.000010235
0.039432599 360.51697

493.08546 2595

1997 0.000567401

1.5 1664 -0.000010337
0.034817915 486.701752496 0.005182085

2
1664 -0.000010431

0.029709528 616.52572
3328 0.010290473

0.02

1.2 5909 -0.000010808
0.019735656 1327.98216

2029.62927 10379

7091 0.000264345

1.5 5909 -0.000010883
0.017525804 1734.406818863 0.002474196

2
5909 -0.000010954

0.015053971 2192.27154
11817 0.004946029

Table 3.5: Cit–HepPh graph
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ε
Schedule
constant

Sample Size
(Initial Sample
Final Sample)

ε - η Final η

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample
Size

0.1

1.2
350 -0.000011326

0.098425800 35.22300

40.36586 416

420 0.001574200

1.5
350 -0.000012007

0.085879468 44.06515
524 0.014120532

2
350 -0.000012293

0.072252366 55.88123
699 0.027747634

0.08

1.2 504 -0.000009545
0.078772784 54.85581

55.63046 649

605 0.001227216

1.5
504 -0.000009653

0.068962101 63.78716
756 0.011037899

2
504 -0.000009766

0.058254225 86.09895
1008 0.021745775

0.06

1.2 819 -0.000009873
0.059110143 2.28515

101.97880 1154

983 0.000889857

1.5
819 -0.000009939

0.051950735 100.22565
1229 0.008049265

2
819 -0.000010012

0.044087614 141.78238
1628 0.015912386

0.04

1.2 1664 -0.000010155
0.039432526 182.54564

225.51281 2595

1997 0.000567474

1.5 1664 -0.000010273
0.034817854 209.054932496 0.005182146

2
1664 -0.000010379

0.029709490 288.22010
3328 0.010290510

0.02

1.2 5909 -0.000010795
0.019735643 614.76785

903.45608 10379

7091 0.000264357

1.5 5909 -0.000010875
0.017525799 772.128818863 0.002474201

2
5909 -0.000010956

0.015053977 1037.35445
11817 0.004946023

Table 3.6: p2p–Gnutella31 Graph
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ε
Schedule
constant

Sample Size
(Initial Sample
Final Sample)

ε−η Final η

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample
Size

0.1

1.2
350 -0.000012282

0.098423630 790.94315

695.12026 366

420 0.001576370

1.5
350 -0.000009636

0.085877056 979.45032
524 0.014122944

2
350 -0.000009850

0.072252865 1315.06880
699 0.027747135

0.08

1.2
504 -0.000010015

0.078773241 1150.53222

1064.03995 571

605 0.001226759

1.5
504 -0.000010129

0.068962575 1429.07482
756 0.011037425

2
504 -0.000010262

0.058254753 1854.15828
1008 0.021745247

0.06

1.2 819 -0.000010430
0.059110701 1832.42449

1876.60577 1015

983 0.000889299

1.5
819 -0.000010541

0.051951331 2279.52619
1229 0.008048669

2
819 -0.000010637

0.044088247 3063.31744
1628 0.015911753

0.04

1.2 1664 -0.000010767
0.039433126 3668.25732

4222.63659 2283

1997 0.000566874

1.5
1664 -0.000010851

0.034818420 4573.80160
2496 0.005181580

2
1664 -0.000010931

0.029710017 6170.42000
3328 0.010289983

0.02

1.2 5909 -0.000011230
0.019736074 13529.57006

16781.54561 9129

7091 0.000263926

1.5
5909 -0.000011290

0.017526204 16329.16631
8863 0.002473796

2
5909 -0.000011347

0.015054351 21674.77987
11817 0.004945649

Table 3.7: socfb–Berkeley13 Graph
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obtained by the smallest geometric schedule constant, which is g = 1.2. For ε = 0.02
and ε = 0.04, the progressive sampling algorithm also acquired smaller samples for

g = 1.5, except for the socfb-Berkeley13 graph, which is the most dense graph among

the dataset. The main reason that the fixed-size sample algorithm outperforms the

progressive sampling one when g = 2.0 is that much more pairs of vertices are sampled

than necessary, leading to a value of η that is much smaller than the desired ε.
In both approaches, the error of the estimation is within ε for all vertices of

every graph even though this guarantee could possibly fail with probability δ = 0.1.
However, in addition to the better confidence results than the theoretical guarantee,

the most surprising fact is that for all graphs used in the experiments the maximum

error among the estimation error of each vertex is around 10−10 and the average error

among all vertices is around 10−11, even when we set the quality guarantee to ε = 0.1.
We observe that the differences between the error obtained in the progressive sampling

approach and the fixed-size sample approach are within 10−14. These results are shown

in Figures 3.5 and 3.6.
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Figure 3.5: Percolation centrality absolute maximum error estimation for g = 1.2.

3.5.2 Synthetic graphs

We run experiments using synthetic graphs in order to validate the scalability of our

algorithm, since for this task we need a battery of similar graphs of increasing size. We

use power-law graphs generated by the Barabási-Albert model (Barabási and Albert,

1999) for such experiments, with each vertex creating two edges, obtaining undirected

unweighted power-law graphs with average degree of 2. We use a sequence of synthetic

graphs increasing in size and compared the execution time of our progressive sampling

algorithm with the exact algorithm provided by NetworkX library and with the fixed-

size sample algorithm. We set the percolation states of each vertex as a random number

between 0 and 1.
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Figure 3.6: Percolation centrality average error estimation for g = 1.2

In the experiments we use graphs with the number of vertices n in

{2000,4000,8000,16000,32000,64000}. The values of ε and g are fixed at 0.03
and 1.2, respectively. The results are shown in Figure 3.7.

3.6 CONCLUDING REMARKS

We presented a sampling-based algorithm to accurately estimate the percolation cen-

trality of all vertices of a directed weighted graph with high probability. The proposed

algorithm has expected running time O(m log2n), and the estimation is within ε of the
exact value with probability 1− δ, for fixed constants 0 < ε,δ < 1. The running time of

the algorithm is reduced to O((m+n) logn) if the input graph is unweighted. Since many

large scale graphs, in practical applications, are sparse and have small vertex-diameter

(typically of size logn), our algorithm provides a fast approximation for such graphs

(more precisely running in O(n logn loglogn) time).

Our results indicate that the proposed approach is practical in real-world

graphs, as validated by our experimental evaluation. The returned estimation errors are

many orders of magnitude smaller than the theoretical worst case guarantee for graphs

of a variety of sizes. As expected, the fixed-size sample and the progressive sampling al-

gorithms are much faster than the exact algorithm. The progressive sampling approach

is around 14 times faster for the largest real-world graph and 42 times faster for the

largest synthetic graph. Furthermore, the progressive sampling algorithm returned

good quality estimations using a smaller sample set in comparison to the one obtained

by the fixed-size sample algorithm, leading to improvements on the running time.
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4 ALL-PAIRS SHORTEST PATH (APSP) PROBLEM

The All-Pairs Shortest Path (APSP) is the problem of computing the distance between

every pair of vertices in a weighted graph. The APSP problem is very well studied

and there has been recent results for a variety of assumptions for the input graph

(directed/undirected, integer/real edge weights, etc) (Williams, 2014; Chan, 2012;

Eirinakis et al., 2017; Brodnik and Grgurovič, 2017). In this chapter we assume that the

input is an undirected graph G with n vertices and m edges with non-negative weights.

In our scenario, the fastest known exact algorithms are the algorithm proposed

by Williams (2014), which runs in O
(

n3

2c
√
logn

)
time, for some constant c > 0, and by Pettie

and Ramachandran (2002) for the case of sparse graphs, which runs in O(nm logα(m,n))
time, where α(m,n) is the Tarjan’s inverse-Ackermann function. If no assumption is

taken about the sparsity of the graph, then it is an open question whether the APSP

problem can be solved in strictly subcubic time, i.e. O(n3−c), for some c > 0, even when

the edge weights are natural numbers.

Recent results in fine-grained complexity indicate that the cubic-time complex-

ity for the APSP is tight (Roditty and Vassilevska Williams, 2013; Abboud andWilliams,

2014; Abboud et al., 2018), reinforcing the hypothesis that there is no strictly subcubic

algorithm for such task (Vassilevska Williams, 2015). Since the exact computation of

this version is expensive for large graphs, especially the dense ones, it is natural dealing

with alternative versions of the problem, whether they are approximate (Dor et al., 2000;

Roditty and Shapira, 2011) or applied to restricted scenarios (Shoshan and Zwick, 1999).

In this chapter, we follow this line of work, dealing with a relaxation of the problem in

the sense that the classical APSP is a special case for a given adjustable parameter. More

specifically, we aim to compute, with high probability, all the lengths of shortest paths

that meet a certain centrality requirement. The idea is that the centrality of a shortest

path P is higher when a large number of shortest paths has P as a subpath. The precise

definition of this centrality measure is given in Section 4.1.

In this relaxed version of the APSP, given constant parameters 0 < ε,δ < 1, we

propose a sampling algorithm that outputs, with probability at least 1− δ, the (exact)
distance between every pair of vertices that admits a shortest path with centrality at

least ε. The central idea of the algorithm is to sample roots of shortest paths trees. In

order to give a bound for the sample size that is sufficient to meet the input parameters,

we use sample complexity tools, namely, Vapnik–Chervonenkis (VC) dimension theory

and the ε-net theorem. We define a range space associated with a set of canonical shortest

paths in G between every pair of distinct vertices. One of the main results that we prove

is that the VC dimension of such range space is 2 and that the bound for the sample

size is r =
⌈
c
ε

(
2ln(1ε ) + ln 1

δ

)⌉
, where c is a constant around 1

2 (Löffler and Phillips, 2009).

This result is interesting, since it does not depend neither on the size of the input n,
which is the case if one uses standard techniques based on union-bound, nor on the

topological structure of the graph that may vary with n in many cases. As a consequence

of this bound for the sample size, we obtain a sampling algorithm for our problem with

running time O(m+ n logn+ (diamV (G))
2), where diamV (G) is the vertex-diameter of

the input graph.
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If one sets ε as a function of n, in the limit case, when ε(n) = 1
n(n−1) , the algorithm

solves – with high probability – the classical APSP problem, but with time complexity

exceeding the running time of the exact algorithms from the literature (Williams, 2018;

Pettie and Ramachandran, 2002). However, it is still an interesting problem to know for

which functions ε(n) we still have a strictly subcubic sampling algorithm. We show that

to obtain a O(n3−c) time algorithm using our strategy, ε(n) must be Ω
(
W0(n

′)
n′

)
, where

n′ = n1−c (for a constant c > 0) and W0(n
′) is the branch 0 of the Lambert-W function

defined for n′ ≥ 0, a non-algebraic value such that W0(n
′) = lnn′ − lnlnn′ +Θ

(
lnlnn′
lnn′

)
,

which holds for n′ ≥ e.
This chapter is organized as follows: Section 4.1 states the definitions and

notations; in Section 4.1.1 we present the main results of this work regarding canonical

paths; in Section 4.2 we present the range space that models our problem and then we

compute the bound for its VC dimension; in Section 4.3 we present the algorithm for

the version of the APSP that we are tackling and the corresponding modifications on

Dijkstra’s algorithm that we consider in our algorithm; in Section 4.4 we present the

adaptation of the main algorithm for the problem of estimating the centrality of each

vertex in a graph, and Section 4.5 contains the conclusion and final remarks.

4.1 SHORTEST PATHS, CANONICAL PATHS, AND SHORTEST PATHS TREES

Let G = (V ,E) be an undirected graph, with n = |V | and m = |E|. Even though G is

undirected, for convenience we use the notation (u,v) for an edge of G.
Let λ : V → {1, . . . ,n} be an arbitrary vertex ordering of G. Consider the

set of shortest paths Luv = {P ∈ Cuv : λ(predP(v)) is minimum}, recalling that Cuv
is the set of all shortest paths from u to v and predP(v) is the predecessor of v in

a shortest path P. Note that there is only one vertex w that satisfies the property

“λ(predP(v)) is minimum”, so even if there are several paths in Luv , the last edge (w,v)
is the same for all of them. Next, we introduce the definition of a canonical path with

respect to λ.

Definition 12 (Canonical path (CP)). Consider a pair of vertices (u,v) ∈ V 2 in G. The
canonical path (CP) from u to v, denoted P, is recursively defined as the shortest path in

Cuv such that

case 1: |Luv | = 1. Then P ∈ Luv is the canonical path from u to v.

case 2: |Luv | > 1. Let w be the (unique) predecessor of v in the shortest paths of Luv . Then,
the canonical path P from u to v corresponds to the canonical path from u to w plus

the edge (w,v).

Proposition 1. Given a pair of vertices (u,v) ∈ V 2, the CP from u to v exists and it is

unique.

To see that Proposition 1 holds, note that at each recursive step, there is only

one vertex w satisfying the property that defines Luv , and there is only one canonical

path from u to w. Besides, the recursion presented above always stop in the base case,

since the distance between a pair of vertices in a recursive step is smaller than the

distance of a pair of vertices analyzed in the previous step. The base is the one where

there is only one (u,u′)-subpath which is the shortest path from u to u′, for u′ ∈ Inn(P).
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Another important observation about canonical paths is that the canonical path from u
to v is not necessarily the same as the canonical path from v to u.

A shortest paths tree (SPT) of a vertex u is a spanning tree of G such that the

path from u to every other vertex of this tree is a shortest path in G. There might be

many SPTs for a given vertex. In this chapter we are interested in fixing one canonical

SPT Tu , for every vertex u of G. More precisely, for the given (arbitrary) vertex ordering

λ, each shortest path in Tu is a canonical path. In Section 4.3.1 we give more details on

the computation of Tu by a modification on Dijkstra’s algorithm where, briefly speaking,

λ is used as a tie-breaking criterion. We also call Tu the Dijkstra tree of u.
A shortest path that starts at the root of a Dijkstra tree is called a branch of

G. More formally, given Tu , for every v � u, the shortest path from u to v is a branch,

denoted Buv .In addition, every subpath of Buv is also a shortest path in G, and we

denote such set of subpaths (including Buv) as S(Buv).
We introduce the shortest path centrality of a pair of vertices (u,v). The idea,

intuitively, is that a shortest path is central if several other shortest paths pass through

it. This same idea is used in the well-known betweenness metric for a vertex (Freeman,

1977), where a vertex has high betweenness if many shortest paths pass through it.

In order to formally define the shortest path centrality we first need the follow-

ing. Let tuv be the number of canonical paths that contain a shortest path from u to v as

subpath, defined as

tuv =
∑

(a,b)∈V 2:a�b

1uv(Bab),

where 1uv(Bab) is the indicator function that returns 1 if there is some shortest path

from u to v as subpath of the branch Bab (and 0 otherwise).

Definition 13 (Shortest Path Centrality). Given a pair (u,v) ∈ V 2, the shortest path

centrality of (u,v) is defined as

c(u,v) =
tuv

n(n− 1) , where n = |V |.

4.1.1 Key Results on Canonical Paths

Before we present the main results of this chapter in Section 4.2, we need first a key

technical result concerning canonical paths. We show in Theorem 17 that any subpath

of a canonical path is also a canonical path.

Lemma 3. Given a pair of vertices (u,v) ∈ V 2, let P be the CP from u to v in G. If |Luv | = 1,

then every subpath of P is also a CP.

Proof. Let P ′ be a (u′, v′)-subpath of P. Suppose by contradiction that P ′ is not a CP.

Let Q′ � P ′ be the shortest path Q′ = (u′, . . . , v′) in G which is the CP from u′ to v′.
Case 1: v′ � v. Let S1 be a (u,u′)-subpath and S2 be a (v′, v)-subpath, both from

P. Let Q be the concatenation of S1, Q
′, and S2. Note that P ′ and Q′ have the same

length (since both are shortest paths), and so does P and Q. Since P and Q have the

same vertices from v′ to v, then the predecessor of v in both paths is the same. Hence,

P and Q are in Luv . But then |Luv | > 1, a contradiction.

Case 2: v′ = v. Let w and w′ be the predecessors of v in P ′ and Q′, respectively.
Note that w � w′. Thus, since (w′, v) is the last edge of the Q′, by the definition of CP,
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Figure 4.1: Illustration of vertex vk−i in the shortest paths P (depicted in black color) and Z (depicted in

red color).

λ(w′) < λ(w). But then in the edge (w,v) of P, vertex w does not have the minimum

index among all possible predecessors of v, contradicting the fact that P is a CP.

Lemma 4. Given a pair of vertices (u,v) ∈ V 2, let P be the CP from u to v in G. Let w be the

predecessor of v in P. Then the (u,w)-subpath of P is the CP from u to w.

Proof. Let P ′ be the (u,w)-subpath of P. In the case of |Luv | = 1, then from Lemma 3 we

have P ′ is the CP from u to w. Otherwise, by Definition 12 (case 2) applied to P, it must

hold that P ′ is the CP from u to w.

Lemma 5. Given a pair of vertices (u,v) ∈ V 2, let P be the CP from u to v in G. Then for

each z ∈ Inn(P), the (u,z)-subpath of P is the CP from u to z.

Proof. Let P ′ be the (u,z)-subpath of P and w be the predecessor of v in P. We prove

our claim by induction on the number of edges from z to v. The base case is the one
where z = w (i.e. P ′ is the (u,w)-subpath of P). This holds from Lemma 4.

Let z′ be the predecessor of z in P and let P ′′ be the (u,z′)-subpath of P. For the
induction step, we show that if P ′ is the CP from u to z, then P ′′ is the CP from u to z′.

By Definition 12 applied to P ′, there are two cases to consider: |Luz | = 1 (case 1)

and |Luz | > 1 (case 2). In case 1, by Lemma 3 applied to P ′, the shortest path P ′′ must be

the CP from u to z′. In case 2, by Definition 12 (case 2) applied to P ′, the CP from u to

z′ is P ′′.

Lemma 6. Given a pair of vertices (u,v) ∈ V 2, let P be the CP from u to v in G. Then for

each z ∈ Inn(P), the (z,v)-subpath of P is the CP from z to v.

Proof. Let Q be the (z,v)-subpath of P. We prove by contradiction supposing that Q is

not the CP from z to v in G. Then there is a shortest path Y which is the CP from z to
v in G. Consider the subpath of P from u to z concatenated with Y , and denote such

concatenation as Z . Note that, even though the number of vertices of Q and Y may be

different, the length of Q and Y is the same, since both are shortest paths. The same

applies to P and Z .
Denote the vertices in P and Z as P = (u = v1, . . . , v = vk) and Z = (u = w1, . . . , v =

wl). Let vk−i be the vertex of P such that i is maximum, 0 ≤ i < k, and such that the

following holds: for all 1 ≤ j ≤ i, the vertex vk−j in P is the same as the vertex wl−j in
Z (Figure 4.1). For simplicity, denote vk−i as q, vk−i−1 as q

′, and wl−i−1 as y
′. Note that

the edges in the (q,v)-subpaths of P and Z are the same, but (q′, q) and (y′, q) is not the
same edge.

Let Q′ and Y ′ be the (z,q)-subpaths of P and Y , respectively (Figure 4.2). Since

we are assuming that Y is the CP from z to v in G, then by Lemma 5, Y ′ is the CP from

z to q in G. Note that Q′ � Y ′ (since Q � Y ), and hence, Q′ is not the CP from z to q in G.
Thus, λ(q′) > λ(y′).

From Lemma 5 applied to P, the (u,q)-subpath of P is a CP. But this path is

a shortest path such that q′ is not the vertex with minimum index among all possible

predecessors of q (recall that λ(q′) > λ(y′)), a contradiction.
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Figure 4.2: Illustration of the shortest path from z to q (in orange), denoted Q′ , in the proof of Lemma 6.

Theorem 17. Given a pair of vertices (u,v) ∈ V 2, let P be the CP from u to v in G. Then for

each (u′, v′) ∈ V 2, the (u′, v′)-subpath of P is the CP from u′ to v′ in G.

Proof. Let P ′ be the (u′, v′)-subpath of P. From Lemma 6, the (u′, v)-subpath of P,
denoted Q, is a CP. From Lemma 5, since Q is the CP from u′ to v in G, then P ′ is the
CP from u′ to v′ in G.

4.2 RANGE SPACE AND VC DIMENSION RESULTS

In this section, we first define the problem in terms of a range space, and then we show

that its VC dimension is constant, which directly impacts in the size of the sample to

be used by our algorithms. In fact, we show that this sample size only depends on the

parameters of quality and confidence, ε and δ, respectively.
Let n = |V | and T be the set of n Dijkstra trees of G. Recall that such trees are,

by definition, composed by canonical paths. The universe X is defined for the set of all

branches of Dijkstra trees, i.e.

X =
⋃

(a,b)∈V 2:b�a

Bab.

For each pair (u,v) ∈ V 2, let puv be the canonical path from u to v, according to

Definition 12. Each range τuv is defined as τuv = {Bab ∈ X : puv ∈ S(Bab)}. In other words,

we can say that Bab is in the range of (u,v) if Bab passes through a canonical path between

u and v. Let I = {τuv : (u,v) ∈ V 2} be the range set. So, R = (X,I ) is the range space

defined for our problem.

Now we show how to plug our range space R with Definition 4 so we can use

Theorem 7 to bound the sample size that is tight enough for the task that we are tackling.

We first show in Theorem 18 that c(u,v) = Prπ(τuv). For this result, we have that each

tree Ta ∈ T is sampled with probability π(Ta) =
1
n and each branch Bab ∈ Ta is sampled

with probability 1
n−1, leading to the probability distribution π(Bab) = 1

n(n−1) (which is a

proper distribution as the sum is equal to 1). Let 1uv(Bab) be the indicator function that

returns 1 if there is some canonical path from u to v as subpath of Bab, i.e. Bab ∈ τuv ,
and 0 otherwise.

Theorem 18. For (u,v) ∈ V 2, Prπ(τuv) = c(u,v).
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Proof. For fixed (u,v) ∈ V 2 and considering that a branch Bab ∈ X is sampled with

probability π(Bab) = 1
n(n−1) , we have

Pr
π
(τuv) =

∑
Ta∈T

∑
Bab∈Ta

π(Bab)1uv(Bab)

=
1

n(n− 1)
∑
Ta∈T

∑
Bab∈Ta

1uv(Bab)

=
1

n(n− 1)
∑
a∈V

∑
b∈V :b�a

1uv(Bab)

=
tuv

n(n− 1) = c(u,v) .

The first equality follows from the fact that the probability that a branch lies on the

range τuv is equal to counting the individual probabilities of each branch that is in

τuv .

For problems involving shortest paths, such as the ones presented in the work

of Riondato and Kornaropoulos (2016) and Lima et al. (2022a), a bound for the sample

size using VC dimension can be obtained. The referred work typically apply the same

proof structure, having a bound based on the vertex-diameter of a graph G, denoted
diamV (G), as in Theorem 19 (we present such proof for the sake of completeness). Even

though diamV (G) might be as large as n, in particular, this bound is exponentially

smaller for graphs with logarithmic vertex-diameter, which are common in practice.

Although the bound presented in Theorem 19 depends on a combinatorial

structure of G, in this chapter we present in Theorems 20 and 21 a bound that depends

only on the desired quality and confidence parameters of the solution. More specifically,

for these two theorems we have that VCDim(G) = 2 for a given graph G with respect

to a fixed vertex ordering λ, where VCDim(G) denotes the VC dimension of the range

space R = (X,I ) related to a graph G.

Theorem 19. For a given graph G = (V ,E),

VCDim(G) ≤ �2lgdiamV (G) + 1�.

Proof. Let VCDim(G) = k, where k ∈ N, because VCDim(G) is finite. Then, there is

S ⊆ U such that |S | = k and S is shattered by I . Each Bab ∈ S must appear in 2k−1

different ranges in I , from the definition of shattering. On the other hand, Bab has
length at most diamV (G). Then the maximum number of subpaths of Bab, denoted
|S(Bab)|, is diamV (G) ·(diamV (G)−1). Thus, the branch Bab lies in at most |S(Bab)| ranges,
and therefore,

2k−1 ≤ |S(Bab)| ≤ diamV (G) · (diamV (G)− 1) ≤ (diamV (G))
2.

Solving for k, VCDim(G) = k ≤ �2lgdiamV (G) + 1�.

For Theorems 20 and 21, we introduce the definition of meeting path between

two canonical paths P1 and P2, and in Lemma 7 we prove that there is only one such

path between P1 and P2. We use this fact to prove that VCDim(G) ≤ 2 in Theorem 20.
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Figure 4.3: Case where τxw ∩ S = {P1,P2,P3}, for P1 = (u, . . . ,v), P2 = (u′ , . . . , v′), and P3 = (u′′ , . . . , v′′).

Definition 14. Consider two different canonical paths P1 and P2. We say that a canonical

path Z = (z, . . . , z′) is a meeting path between P1 and P2 if Z is a maximal (z,z′)-subpath of

P1 and P2.

Lemma 7. Consider two different canonical paths P1 and P2 having a meeting path Z =

(z, . . . , z′). Then Z is the only meeting path between P1 and P2 in G.

Proof. Let P1 = (x, . . . ,x′) and P2 = (y, . . . ,y′). Suppose by contradiction that P1 and

P2 have two disjoint meeting paths A′ = (a, . . . , a′) and B′ = (b, . . . , b′) in G. Without

losing of generality, A′ is contained in the (x,a′) and (y,a′)-subpaths of P1 and P2,
respectively. Correspondingly, B′ is contained in the (b,x′) and (b,y′)-subpaths of P1
and P2, respectively.

Suppose that the (a′, b)-subpaths of P1 and P2 are not the same. Denote such

paths as C ′ and C ′′, respectively. By Theorem 17, we have that C ′ and C ′′ are CPs, since
P1 and P2 are CPs. But there is only one CP for each pair of vertices of V . Denote the

CP from a′ to b in G as D. Thus, C ′ and C ′′ must correspond to D. Denote by Z the

concatenation of A′, D, and B′. Then it is a contradiction that A′ and B′ are maximal,

since both paths are contained in Z . Thus, Z is the only meeting path between P1 and
P2 and it is maximal.

Theorem 20. Consider a graph G = (V ,E). For any fixed ordering λ over V ,

VCDim(G) ≤ 2.

Proof. Suppose that VCDim(G) > 2. Then there is a set of canonical paths S = {P1,P2,P3}
that is shattered by I . These paths are described as P1 = {u, . . . ,v}, P2 = {u′, . . . , v′}, and
P3 = {u′′, . . . , v′′}. LetW be the (w,w′)-subpath of P1 that is also contained in P2 and P3.
From the definition of shattering, this path must exist so that τww′ ∩ S = {P1,P2,P3}. Let
x be the farthest predecessor of w in P1 such that, w.l.o.g. , the (x,w)-subpath of P1,
denoted X, is also contained in P2 (but not in P3). Let y be the farthest successor of P1
such that a (q′, y)-subpath of P1, denoted Y , is also contained in P3 (but not in P2). Note

that X and Y must exist so that τxw ∩ S = {P1,P2} and τq′y ∩ S = {P1,P3}.
Suppose that there is a (q,x)-subpath of P2 that is contained in P3 but not in P1,

as depicted in Figure 4.3. Since the CP from u′ to v′ is not the same as the one from v′

to u′ (and correspondingly for u′′ and v′′), and P2 and P3 must pass throughW , then q
is not contained in X. From Lemma 7, all the vertices from q to w′ must be the same in

P2 and P3. Hence, P3 goes through x, and from our initial assumption, P2 does not have
any intersection with a vertex that comes before x in P1. Besides, P3 goes through q

′ and
Y . Therefore, any subpath of P2 starting in q is also a subpath of P3. This contradicts
that τxw ∩ S = {P1,P2} since τxw ∩ S = {P1,P2,P3}.

Consider now the (q′, v′)-subpath of P2, denoted P
′
2. Suppose that P3 has an

intersection with a (r, r ′)-subpath of P ′2 (Figure 4.4). From our initial assumption, P3
goes throughW and Y , so it passes through q′, and q′ reaches r. Hence, from Lemma
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Figure 4.4: Case where τq′y ∩ S = {P1}, for P1 = (u, . . . ,v), P2 = (u′ , . . . , v′), and P3 = (u′′ , . . . , v′′). The red

dashed path correspond to a shortest path that cannot happen.

Figure 4.5: Graph with VCdim(G) ≥ 2.

7, all the vertices from q′ to r ′ must be the same in P2 and P3. In this case, P3 does not
contain a (r ′,w)-subpath, otherwise P1 and P3 would form a cycle starting and ending in

r ′. Besides, P3 does not have a (r ′, y)-subpath or a (r ′, y′)-subpath, for any y′ ∈ Inn(Y ),
otherwise that would be two different CPs from r ′ to y′. Hence, P3 does not pass through
the (q′, y)-subpath of P1, contradicting that τq′y ∩ S = {P1,P3} since τq′y ∩ S = {P1}.

Theorem 21. Consider a graph G = (V ,E). For any fixed ordering λ over V ,

VCDim(G) ≥ 2.

Proof. Consider the graph as in Figure 4.5. Then, for P1 = (a,b,c,d, e, f ), P2 =

(g,b,c,d, e,h), and S = {P1,P2}, we have: τac = {P1}, τgc = {P2}, τcd = {P1,P2}, and

τaj = ∅.

4.3 ALGORITHMS

For an undirected graph G = (V ,E) with non-negative edges weights, with n = |V | and
m = |E|, we first present in Section 4.3.1 a modified version of Dijkstra’s algorithm

which takes into consideration a given vertex ordering λ, and then we show that this

algorithm correctly computes the canonical paths in the corresponding Dijkstra tree

it returns. Then, in Section 4.3.2 we present the relaxed APSP algorithm that returns,

with probability at least 1− δ, the computation of shortest paths with centrality least ε.

4.3.1 Modified Dijkstra

We describe the modified Dijkstra’s algorithm with respect to a given vertex ordering λ,
and then we show the correctness of this modification.

The algorithm returns canonical paths that are uniquely defined for each pair

of vertices of a graph G = (V ,E). Let s be the root of the Dijkstra tree Ts returned by the

algorithm. Then s is the source of every shortest path in Ts. The main difference between

the modified Dijkstra’s algorithm and the classical one is the tie-breaking criterion on

the selection of edges to be added in a shortest path. More specifically, recall that

Dijkstra’s algorithm maintains in every step a set S of vertices that have its estimated

distance from s determined. The vertex v in V \ S with minimum distance from s is
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selected to be added in S . An edge (u,w) ∈ E is relaxed if the minimum distance from s
to u plus the weight of (u,w) improves the minimum distance from s to w.

In a given step of the modified Dijkstra, if more than one vertex in V \S have the

same value of the minimum distance estimation, then the one with minimum index in

λ is chosen to be added in S . In the case of edges relaxation, consider a vertex y ∈ V \ S
and its predecessor y′ in some shortest path from s to y. An edge (u,y) ∈ E is relaxed

also considering the case where the minimum distance from s to u plus the weight

of (u,y) has the same value as the minimum distance estimation from s to y′ plus the
weight of (y′, y). In this case, the tie-breaking depends on which vertex between u and

y′ has the minimum index in λ.
Theorem 22 shows that the modified Dijkstra’s algorithm correctly computes

all the canonical paths from a source s to any other vertex in V with respect to λ. Note

that S is a priority queue that is also modified to give higher priority to vertices with

lowest indexes in λ in the case of ties in the vertices minimum distance estimations.

We observe, however, that these modifications do not increase the running time of the

priority queue operations.

Theorem 22. All shortest paths computed by a modified Dijkstra’s algorithm with respect to

a given vertex ordering λ are CP.

Proof (Sketch). Similar to the proof of correctness of the original Dijkstra’s algorithm

presented in Theorem 22.6 of Cormen et al. (2022), the proof is by induction on the size

of S .
Let s be the source vertex. For each u ∈ V , let d̃(s,u) the estimated minimum

distance from s to u in a given step of the algorithm, and let d(s,u) be the exact

minimum distance from s to u. For |S | = 0, the set S is empty and then this base is

trivially true. For the base where |S | = 1, we have S = {s}, and then d̃(s, s) = d(s, s) = 0.

Besides, s does not have a predecessor, since it is the source, so the base is also true for

this case. For the inductive step, we have the following hypothesis: for all v ∈ S , we

have that d̃(s,v) = d(s,v) and the predecessor of v in the Dijkstra tree of s is the one

with minimum index in λ. Proving that d̃(s,v) = d(s,v) follow the same arguments of

the proof of correctness presented by Cormen et al. (2022) for the original Dijkstra’s

algorithm.

To prove that the predecessor of v in the Dijkstra tree of s, denoted v′, is the one
with minimum index in λ among all possible predecessors of v, we prove that all edges

(z,v) where d̃(s,v) = d̃(s, z) +ω(z,v) were examined when the edge (v′, v) were relaxed.

Consider, by contradiction, that there is some vertex u′ that has the minimum index in

λ among all possible predecessors of v, but that the edge (u′, v) was not examined before

vertex v is added to S . If the edge (u′, v) was not examined, then v was added in S before

u′. In this case, this happened either because d̃(s,v) < d̃(s,u′) or because d̃(s,v) = d̃(s,u′)
and λ(v) < λ(u′). However, in both cases, then u′ could not be the predecessor of v, since
d̃(s,u′) should be strictly smaller than d̃(s,v) to be considered as a possible predecessor

of v. Hence, all y ∈ S with d̃(s,y) < d̃(s,v) should have been examined before v, and
hence, v′ is the predecessor of v with minimum index in λ among all such vertices. This

value never changes again once v is added in S .

4.3.2 Computing Shortest Paths with High Centrality

Given constant 0 < ε,δ < 1, Algorithm 5 computes, with probability 1− δ, the distances
between pair of vertices with centrality at least ε. We also briefly describe the necessary
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modifications on the algorithm so that the shortest path associated to such distances be

also computed.

Algorithm 5 ProbabilisticAllPairsShortestPaths(G,ε,δ)

Input: weighted graph G = (V ,E) with n = |V |, constant parameters 0 < ε,δ < 1.

Output: distance duv , for each (u,v) ∈ V 2 s.t. c(u,v) > ε, with probability 1− δ.
1: for i← 1 to

⌈
c
ε

(
2ln 1

ε + ln 1
δ

)⌉
do

2: sample a ∈ V with probability 1/n
3: Ta← singleSourceShortestPaths(a) // modified Dijkstra

4: sample b ∈ V \ {a} with probability 1/(n− 1)
5: Bab← shortest path from a to b in Ta
6: for each (u,v) ∈ Bab ×Bab do // u closer to a, v closer to b
7: duv ← dav − dau // dau and dav come from Ta
8: return each duv in the distances table

Theorem 23. Consider a (u,v)-path such that c(u,v) ≥ ε. Algorithm 5 computes the exact

distance between u and v with probability 1− δ.

Proof. Algorithm 5 samples several branches and we first assume that such samples are

an ε-net (we show later that this is indeed true). Recalling the range space modeling

(Section 4.3.2), the sample of branches is denoted by S , and the (u,v)-path is related to

a range τuv .
As, by lines 2 and 4, the branch is sampled with probability 1/n(n− 1), then by

Theorem 18, we have that c(u,v) = Pr(τuv). Thus, as c(u,v) ≥ ε, so Pr(τuv) ≥ ε. As we

are assuming that the sample is an ε-net, by Definition 4, then |τuv ∩ S | ≥ 1 for all τuv
such that Pr(τuv) ≥ ε. That is, since c(u,v) ≥ ε then at least one branch of the sample S
contains the (u,v)-path. If a branch Bab in S contains the (u,v)-path, then in line 3 the

exact distance between u and v is computed, since the (u,v)-path which is a subpath of

the shortest path from a to b is also minimal, so its distance duv can be computed as

dav − dau .
Now it remains to prove that the sample S is indeed an ε-net. Note that in

lines 1–7, the loop is executed r =
⌈
c
ε

(
2ln 1

ε + ln 1
δ

)⌉
times, so our sample has at least size

r. By Theorems 7, 20, and 21, this sample size is sufficient for it to be an ε-net with

probability at least 1− δ.

Theorem 24. Algorithm 5 runs in O(m+n logn+ (diamV (G))
2) time.

Proof. Lines 2, 4, and 5 takes linear time. Line 3 (the modified Dijkstra) runs in

O(m + n logn), as the modifications do not change the running time of the original

Dijkstra’s algorithm. Each iteration of the loop in line 6 takes time O((diamV (G))
2) since

the length of Bab cannot be greater than the vertex diameter of the graph. The distances

returned by Dijkstra’s algorithm in line 3 are stored in a table d. Since operations of
insertion, deletion, and search on this data structure take time O(1), then updating

table d takes O(1) time. Assuming constant ε and δ, the number of loop iterations in

lines 1–7 is constant, and the result follows.

As it is common to APSP and search algorithms, Algorithm 5 also constructs

a data structure from which, for all vertices (u,w), a shortest path from u to w can

be retrieved. We can store the predecessors of each vertex that is in Bab so that a
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(u,v)-subpath of Bab can be retrieved by a backward traversing from v to u on these

predecessors. This modification does not change the execution time of the original

algorithm.

It is interesting to consider what is the smallest value of ε for which our al-

gorithm would still perform faster than the best conjectured time in literature for

any algorithm for the APSP problem. To analyze this, the ε value must reflect on the

execution time, and can no longer be a constant. Therefore, we now consider that ε is a
function of n, denoted ε(n).

Let k be the sample size (which impacts on the number of times line 1 of

Algorithm 5 is executed). Since ε is no longer considered constant, so k = O
(

1
ε(n) ln

1
ε(n)

)
.

Thus, our algorithm performs in O(k · (m + n logn + (diamV (G))
2)). To simplify the

analysis, we assume the worst case of our algorithm (m = O(n2)), whose time is O(k ·n2).
As the best conjectured time is O(n3−c), for a constant c > 0 (Williams, 2018),

then we are looking for the value of ε(n) such that the time of our algorithm is upper

bounded by O(n3−c), i.e. O(k ·n2) = O(n3−c). Thus, k = n1−c, and then

1

ε(n)
ln

1

ε(n)
= n1−c.

Solving for ε(n), we have ε(n) = W0(n
1−c)

n1−c , whereW0(n
1−c) is the branch 0 of the Lambert-W

function (Weisstein, 2013). To simplify the notation, let n′ = n1−c. If n′ ≥ e, then a known

bound (Hoorfar and Hassani, 2008) for W0(n
′) is W0(n

′) = lnn′ − lnlnn′ +Θ
(
lnlnn′
lnn′

)
.

Therefore ε(n) =
lnn′−lnlnn′+Θ

(
lnlnn′
lnn′

)
n′ .

The smallest value for the centrality is 1/n(n−1), which is the case for a path in

which only itself is contained in it. So, to compute the distance of paths with such small

centrality, we have to use ε so small that the execution time exceeds that of the best

existing algorithms (Williams, 2018; Pettie and Ramachandran, 2002). On the other

hand, by the reasoning above, we can use ε as small as lnn
n . Intuitively and crudely,

this means that almost all distances are computed, and the execution time is still kept

below the best conjectured time. Finally, it is worth noting that the few non-computed

paths are not arbitrary. In fact, they have low centrality, i.e. they are neither central nor

considered important.

4.4 ESTIMATING THE SHORTEST PATH CENTRALITY

The main objective of this chapter is the computation of the distance of shortest paths

that have high centrality. However, one might be interested in computing the value of

the centrality of such shortest paths. In this section we give the outline of how to adapt

our algorithm so that the centrality of each (u,v) ∈ V 2 can be estimated within ε error,
with probability at least 1− δ, for 0 < ε,δ < 1. For this task we can use the more general

result of Theorem 7 applied to the notion of ε-sample, which states that a collection of

elements S ⊆ U sampled with respect to π with |S | = c
ε2

(
k + ln 1

δ

)
is an ε-sample with

probability at least 1− δ, where k is the VC dimension of the range space that models

the problem. More precisely, an ε-sample generalizes an ε-net in the sense that it not

only intersects ranges of a sufficiently large size but it also guarantees the right relative

frequency of each range in I within the sample S .
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The idea is that after building a sample of size r = � c
ε2
(2 + ln 1

δ )�, we build a

counting table t̃ to estimate the number of branches that contain a certain canonical path

as a subpath. More specifically, the entry t̃uv estimates the value tuv (recall Definition

13 in Section 4.1) for the pair of vertices (u,v). For this, the value t̃uv is incremented by

1/r in lines 6 and 7 if the branch Bab contains the canonical path between u and v as

subpath. At the end of the algorithm, if a pair of vertices (u,v) is not included in the

table, the estimation for the centrality is assumed to be zero. This modification does

not change the asymptotic running time of Algorithm 5. We state that in Corollary 2.

Corollary 2. Given an undirected graph G = (V ,E) with non-negative edge weights, with

n = |V |, and a sample of size r = � c
ε2
(2+ ln 1

δ )�, Algorithm 5 has running time O(m+n logn+

(diamV (G))
2) for computing a table from which the centrality estimation of each u,v ∈ V 2

can be retrieved.

4.5 CONCLUDING REMARKS

In this chapter we presented a range space having the domain composed by the shortest

paths of a graph G where there is one shortest path for each pair of vertices in G. This
shortest path is canonical, i.e. it is fixed according to a given vertex ordering. We

show that the VC dimension of such range space is 2. We show that this result can be

applied to bound the sample size required for an approximation algorithm for a relaxed

version of the All-Pairs Shortest Path problem (APSP). In this version, we compute, with

probability at least 1− δ, the distance of shortest paths of G having centrality at least ε,
for 0 < ε,δ < 1. We present a O(m+ n logn+ (diamV (G))

2) running time algorithm for

this task. We show that a sample of shortest paths of size � cε
(
2ln 1

ε + ln 1
δ

)
� is sufficient

for achieving the desired result. So, in an application where one might be interested

only in computing central shortest paths the algorithm is rather efficient and it depends

only on the parameters ε and δ (classical approaches in literature based in union bound,

for example, typical require sample sizes that depend on the size of the input).

An open question that we are particularly interested is the connection between

ε and n or diamV (G) for specific input distributions. For the general case, trivially

setting ε = 1
n(n−1) , by Theorem 7 (ii), we have a guarantee that distance of every shortest

path in G is computed with probability 1− δ, but that would increase the algorithm

complexity to Õ(n3). This may not be a surprise since APSP may not admit a strictly

subcubic algorithm. In fact, we show that ε must be at least
lnn′−lnlnn′+Θ

(
lnlnn′
lnn′

)
n′ , where

n′ = 1− c, so that the running time of our algorithm be O(n3−c), for some c > 0.
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5 LOCAL CLUSTERING COEFFICIENT

The occurrence of clusters in networks is a central field of investigation in the area of

network theory (Holland and Leinhardt, 1971; Watts and Strogatz, 1998). The existence

of such phenomena motivated the creation of a variety of measures in order to quantify

its prevalence; the clustering coefficient (Easley and Kleinberg, 2010; Barabási and Pósfai,

2016; Newman, 2010) is one of the most popular of these measures.

There are global and local versions of the clustering coefficient. Given a graph,

its global clustering coefficient is a value that quantifies the overall clustering of the graph

in terms of the number of existing triangles. If the objective, however, is to analyze

features of complex networks such as modularity, community structure, assortativity,

and hierarchical structure, then the concept of local clustering coefficient is a better

fit. This measure quantifies the degree in which a vertex is a part of a cluster in a

graph. Simply speaking, the measure is related to the ratio of the number of triangles

existing in the neighborhood of the target vertex to the total number of pair of nodes

in the neighborhood (Figure 5.1). A precise definition for this measure is provided in

Definition 15.

Figure 5.1: Example of a graph representing a social network (each vertex is a person and each edge

represents that two people are friends). On this example, the local clustering coefficient of person A is

equal to 1/6.

The local clustering coefficient was originally proposed by Watts and Strogatz

(1998) in order to determine if a graph has the property of being small-world. Intuitively,

this coefficient measures how close the neighborhood of a vertex is to being a clique.

Over the years, many variants of this measure have been proposed, making it somewhat

difficult to provide a unified comparison between all these approaches under the light

of algorithmic complexity.

One of these variations is the study of Soffer and Vazquez (2005) on the influ-

ence of the degree of a vertex on the local clustering computation, a modification on the

original measure where the degree-correlation is filtered out. The work of Li et al. (2018)

provides a measure combining the local clustering coefficient and the local degree

sum of a vertex, but focused on a specific application of influence spreading. Other

extensions of the measure and their applications in particular scenarios include link

prediction (Gupta and Sardana, 2015; Wu et al., 2016) and community detection (Nasci-

mento, 2014; Zhang et al., 2014; Pan et al., 2019; Ji et al., 2020; Liu and Xia, 2020). In the

theoretical front, working on random graphs, Kartun-Giles and Bianconi (2019) gives

a statistical analysis of the topology of nodes in networks from different application
scenarios. There are also many recent bounds for the average clustering of power-law
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graphs (Fronczak et al., 2003; Bloznelis, 2013; Krot and Ostroumova Prokhorenkova,

2015; Iskhakov et al., 2020), a graph model that represents many social and natural

phenomena.

The algorithmic complexity of the exact computation of the local clustering co-

efficient of each vertex of a graph is typically associated with the local triangle counting

problem, since the second problem can be translated to the first (Becchetti et al., 2010).

A brute-force algorithm that lists all vertex triples to check how many of them are

triangles runs in cubic time. These running time can be improved to O(m2w/(w+1)) (Alon

et al., 1997), where w is 2.373 is the exponent of matrix multiplication, or to O(α(G) ·m)

(Chiba and Nishizeki, 1985), where α(G) is the arboricity of graph G, without using

matrix multiplication in this case. Since α(G) = O(
√
m), then this later algorithm runs

in O(m3/2) in the worst case.

In this chapter, however, we are interested in faster approximation algorithms

for obtaining good quality estimations. Let n = |V | and m = |E| in a graph G. In the work

of Kutzkov and Pagh (2013), the authors show an ε-approximation streaming algorithm

to estimate, with probability 1−δ, the local clustering coefficient of each vertex of degree

at least d in expected time O( m
αε2

log 1
ε log

n
δ ), where α is the local clustering coefficient

of such vertex. In this case, ε and δ are not treated as constants. The work of Buriol

et al. (2007) also proposed a streaming algorithm to obtain a (1± ε)-approximation for

the global clustering coefficient of a graph. Their algorithm requires one pass over the

stream of edges of such graph. In the work of Zhang et al. (2017), the authors propose

an ε-approximation MapReduce-based algorithm for the local clustering coefficient, and

empirically compare its performance with other approximation algorithms designed

using this type of approach (Kolda et al., 2014; Seshadhri et al., 2013).

For the local triangle counting problem, the work of Becchetti et al. (2010)

presents semi-streaming algorithms to compute a relative-error approximation to the

number of triangles of each vertex of a graph in time O(m · k), where k is the number of

passes over the data in the algorithms. In fact, approximation algorithms for triangle

counting are usually based on random-walk, streaming-based methods, graph spar-

sification, triple sampling, vertex/edge sampling, and linear-algebra based methods.

Al Hasan and Dave (2018) provide a nice survey on such methods, including exact and

approximation algorithms for the global triangle counting problem.

Results for computing the top k vertices with the highest local clustering co-

efficient were also proposed (Brautbar and Kearns, 2010; Zhang et al., 2015; Li et al.,

2017). In particular, Zhang et al. (2015) use VC dimension and the ε-sample theorem

on their algorithm analysis, but in a different sample space than the one that we are

facing here, and for a scenario which is not exactly the one that we are tackling. In fact,

sample complexity analysis has been shown to be an effective tool in the design of some

graph algorithms, e.g. the computation of betweenness (Riondato and Kornaropoulos,

2016; Riondato and Upfal, 2018) and percolation centralities (Lima et al., 2020, 2022a).

In this chapter we present an algorithm that samples edges from an input

graph G and, for fixed constants 0 < ε,δ,p < 1, outputs an estimation l̃(v) for the

exact value l(v) of the local clustering coefficient of each vertex v ∈ V . The results

respect |l(v)−l̃(v)| ≤ εl(v), with probability at least 1−δ whenever l(v) is at least pm/
(δv
2

)
,

where δv is the degree of v. The main theme in this chapter is that, by using Vapnik–

Chervonenkis (VC) dimension theory, we can obtain an upper bound for the sample size

that is tighter than the ones given by standard Hoeffding and union-bound sampling
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techniques. In particular, we show that the sample size does not depend on the size of

G, but on a specific property of it, more precisely, its maximum degree Δ.
In Section 5.1 we give a definition for the VC dimension of the range space

related to a graph and show in Theorem 25 that, for any graph, the VC dimension is at

most �lg(Δ− 1)�+1. The sample size used in the algorithm depends, roughly speaking,

on this value. In Corollary 3, we show that our analysis is tight by presenting an explicit

construction of a class of graphs for which the VC dimension reaches this upper bound.

Even so, we also provide a tighter analysis for the case in which the input graph belongs

to certain graph classes. In the class of bounded-degree graphs the VC dimension is

bounded by a constant. In the case of planar graphs, we show, in Corollary 4, that the

VC dimension is at most 2. We also describe, in this section, the proposed algorithm

that estimates the local clustering coefficient of each vertex using VC dimension theory

(Algorithm 6).

In Section 5.2, we show that the running time for the general case of our

algorithm is O(Δ lgΔ +m). In Corollaries 5 and 6 we present an analysis for planar

graphs and for bounded-degree graphs, cases where the running time drops to, possibly,

sublinear time. In the case of planar graphs, the Algorithm 6 has running time O(Δ). In
the case of bounded-degree graphs the running time is O(1) if a bound for the value of

Δ is given as a part of the input, and O(n) otherwise.

5.1 ESTIMATION FOR THE LOCAL CLUSTERING COEFFICIENT

In this section, we first formally present the definition of local clustering coefficient,

and then we define the range space associated to a graph G and its corresponding

VC dimension. At the end of this section, we describe the proposed approximation

algorithm.

5.1.1 Preliminaries

Let G = (V ,E) be a graph where V is the set of vertices and E the set of edges. For each

vertex v ∈ V , let δv be the degree of v, and ΔG = maxv∈V {δv} the maximum degree of

the graph G. When the context is clear, we simply use Δ instead of ΔG. We refer to a

triangle as being a complete graph with three vertices. Given v ∈ V , we let Tv be the
number of triangles that contain v.

Definition 15. (Local Clustering Coefficient) Given a graph G = (V ,E), the local clustering
coefficient of a vertex v ∈ V is

l(v) =
2Tv

δv(δv − 1)
.

5.1.2 Range Space and VC dimension

Let G = (V ,E) be a graph. The range space R = (X,I ) associated with G is defined as

follows. The universe X is defined to be the set of edges E. We define a range τv , for
each v ∈ V , as τv = {e ∈ E : both endpoints of e are neighbors of v in G}, and the range

set corresponds to I = {τv : v ∈ V }. For the sake of simplicity, we often use VCDim(G)
– instead of VCDim(R) – to denote the VC dimension of the range space R associated

with G.
Theorem 25 shows an upper bound for VCDim(G).
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Figure 5.2: The first two graphs of the construction of the family G. In the case of G3 (left), the edges of S
are e1 = {a,b}, e2 = {c,d}, and e3 = {e, f }. In the case of G4 (right), the edges of S are e1 = {a,b}. e2 = {c,d},
e3 = {e, f }, and e4 = {(g,h}. Non-indexed vertices are labeled and depicted in black. We depict the indexed

vertices in different colors, depending on the size of its neighborhood in S .

Theorem 25. VCDim(G) ≤ �lg(Δ− 1)�+1.

Proof. By definition, an edge e ∈ E belongs to a range τv if both endpoints of e, say, a
and b, are neighbors of v. That is, the number of ranges that contain e corresponds to
the common neighbors of a and b. The maximum number of common neighbors a pair

of vertices may have is Δ. Therefore, e is contained in at most Δ−1 ranges. Assuming

that VCDim(R) = d, then from Definition 2, the edge e must appear in 2d−1 ranges. We

have

2d−1 ≤ Δ− 1 =⇒ d − 1 ≤ lg(Δ− 1) =⇒ d ≤ �lg(Δ− 1)�+1 .

One may ask when the bound given in Theorem 25 is tight. We now present

an explicit construction of a family of graphs G = (Gd)d≥3 in order to show that this

bound is tight with relation to Δ. A graph Gd , for d ≥ 3, of this family is constructed

as follows. Initially, we create d disjoint edges e1, . . . , ed . The endpoints of these edges
are called non-indexed vertices. For every non-empty subset of k edges ei1 , . . . , eik , for
1 ≤ i1 < i2 < . . . < ik ≤ d, we create a vertex v(i1,i2,...,ik) and connect it to both endpoints of

each edge in the subset. These vertices are called indexed vertices. Figure 5.2 illustrates

G3 and G4.

Claim 1. ΔGd = 2d−1 + 1.

Proof. A vertex v in a graph Gd can be either indexed or non-indexed. We analyze each

case separately.

Let v be a non-indexed vertex that is an endpoint of an edge ej . W.l.o.g., we

may assume that j = 1. The vertex v is adjacent to every indexed vertex with indices

of the form (1, i1, . . . , ik). The first index is fixed, so there are 2d−1 indices of this form.

So v is adjacent to 2d−1 indexed vertices. Also, v is adjacent to the other endpoint of e1.
Therefore, the degree of any non-indexed vertex is 2d−1 + 1.

The degree of an indexed vertex cannot be larger than 2d, since such vertex is

adjacent to, at most, both endpoints of each edge e1, ..., ed . Since 2
d−1 + 1 ≥ 2d, the result

follows.

Theorem 26. For every d ≥ 3, VCDim(Gd) ≥ �lg(ΔGd − 1)�+1.
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Proof. Remember, R = (X,I ), where X = E and I = {τv : v ∈ V } where τv = {e ∈ E :

the endpoints of e are neighbors of v in G}. First, we present a sample S ⊆ X, |S | = d,
which is shattered, i.e. |IS | = 2d , concluding that the VC dimension is at least d. After
that, we show that d = �lg(ΔGd − 1)�+1, which proves the theorem.

Let S = {e1, . . . , ed}. Consider an indexed vertex v′ = v(i1,i2,...,ik). By the construc-

tion of the graph, we have that S ∩ τv′ = {ei1 , . . . , eik }, for all τv′ , i.e. there is a one-to-one
mapping of each v′ to each S ∩ τv′ . Since there are 2d − 1 indexed vertices v′ (there is an
indexed vertex for every subset except for the empty set), then there are 2d − 1 different
intersections. Finally, the intersection that generates the empty set can be obtained by

S ∩ τv′′ , where v′′ is any non-indexed vertex. In other words,

|{S ∩ τv : τv ∈ I}| = |IS | = 2d ,

i.e. VCDim(Gd) ≥ d. Now, using Claim 1, we have that

�lg(ΔGd − 1)�+1 = �lg(2d−1 + 1− 1)�+1 = �d − 1�+1 = d .

Combining Theorems 25 and 26, we conclude that the VC dimension of the

range space is tight, as stated by Corollary 3.

Corollary 3. For every d ≥ 3, there is a graph G such that

VCDim(G) = d = �lg(Δ− 1)�+1 .

Next we define a more general property that holds for a graph Gd .

Property P We say that a graph G = (V ,E) has the Property P if exists S ⊆ E, |S | ≥ 3,

such that:

(i) For each e = {u,v} ∈ S , e has at most one endpoint that is also an endpoint

of other edge in S , i.e. |e∩ (S \ {e})| ≤ 1.

(ii) For each subset S ′ ⊆ S , there is at least one vertex vS ′ that is adjacent to
both endpoints of each edge of S ′.

For every d ≥ 3, Theorem 27 gives conditions based on Property P that a graph

must obey in order to have VC dimension at least d.

Theorem 27. Let G be a graph. If VCdim(G) ≥ 3, then G has Property P.

Proof. We prove the contrapositive of the statement, i.e. we show that if G does not have

Property P, then VCdim(G) < 3. Note that if we assume that G does not have Property P,

then for all S ⊆ E, |S | ≥ 3, we have that either condition (i) or condition (ii) is false.

If it is the case that (ii) is false, then for all S ⊆ E, |S | ≥ 3, there is a set S ′ ⊆ S
such that there is no vS ′ ∈ V which is adjacent to both endpoints of each edge in S ′.
We have that the number of subsets of S is 2|S |, so G must have at least 2|S | vertices so
that IS = 2|S |. From the definition of shattering, if IS < 2|S |, then it is not possible that

VCdim(G) ≥ |S |. Since |S | ≥ 3, it cannot be the case that VCdim(G) ≥ 3.

Now consider the case where (i) is false. In this case, for all S ⊆ E, |S | ≥ 3,

there is an edge e = {u,v} ∈ S where both u and v are endpoints of other edges in S
(i.e. |e∩ (S \ {e})| = 2). We name such edge e2 = {b,c}. Suppose w.l.o.g. that e2 shares its
endpoints with the edges e1 = {a,b} and e3 = {c,d}. Then every triangle containing e1
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and e3 necessarily contains e2. Denote by z the vertex which forms triangles with e1 and
e2. Then z also forms a triangle with e2, since it is adjacent to both b and c, which are

the endpoints of e2. Hence, the subset {e1, e3} cannot be generated from the intersection

of I with e1, e2, and e3. Therefore it cannot be the case that VCdim(G) ≥ 3.

Although Theorem 25 gives a tight bound for the VC dimension, if we have

more information about the type of graph that we are working, we can prove better

results. In Corollary 4, we show that if G is a graph from the class of planar graphs,

then the VC dimension of G is at most 2. Another very common class of graphs where

we can achieve a constant bound for the VC dimension is the class of bounded-degree

graphs, i.e. graphs where Δ is bounded by a constant. For this class, the upper bound

comes immediately from Theorem 25.

Note that, even though planar graphs and bounded-degree graphs are both

classes of sparse graphs, such improved bounds for the VC dimension for these classes

do not come directly from the sparsity of these graphs, since we can construct a (some-

what arbitrary) class of sparse graphs G′ where the VC dimension is as high as the one

given by Theorem 25. The idea is that G′ = (G′d)d≥3, where each graph G′d is the union
of Gd with a sufficiently large sparse graph. In the other direction, one should note that

dense graphs can have small VC dimension as well, since complete graphs have VC

dimension at most 2. This comes from the fact that complete graphs do not have the

Property P. In fact, for a Kq, q ≥ 4, the VC dimension is exactly 2, since any set of two

edges that have one endpoint in common can be shattered in this graph.

Corollary 4. If G is a planar graph, then VCDim(G) ≤ 2.

Proof. We prove that the VC dimension of the range space of a planar graph is at most

2 by demonstrating the contrapositive statement. More precisely, from Theorem 27,

we have that if VCDim(G) ≥ 3, then G has Property P. In this case we show that G must

contain a subdivision of a K3,3, concluding that G cannot be planar, according to the

Theorem of Kuratowski (West, 2000).

From Theorem 27, G has a subset of edges {e1, e2, e3} respecting conditions (i)

and (ii) of Property P. Let e1 = {a,b}, e2 = {c,d}, and e3 = {e, f }. Note that these three

edges may have endpoints in common. By condition (i), we may assume that a � c � e.
By symmetry, w.l.o.g. , there are three possibilities for the vertices b, d, and f : (1) they
are all distinct vertices, (2) we have d = f , but b � f , and (3) they are the same vertex,

i.e. b = d = f . In Figure 5.3 we show three graphs, one for each of these three possible

configurations for the arrangement of edges e1, e2, and e3. By condition (ii) there are at

least four vertices, say, u,v,w, and x respecting the following:

• u is adjacent to all vertices of {a,b,c,d, e, f };

• v is adjacent to all vertices of {a,b,c,d} and not adjacent to both e and f ;

• w is adjacent to all vertices of {a,b,e, f } and not adjacent to both c and d;

• x is adjacent to all vertices of {c,d,e, f } and not adjacent to both a and b.

Note that, even though every edge depicted in Figure 5.3 is mandatory in G,
there may be other edges in G that are not shown in the picture.

Since all of {v,c}, {c,x}, and {x,e} are edges in G, then there is a path from v to e
in G. Let E(P) be the edges of this path. Consider A = {a,b,e} and B = {u,v,w}, and let
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Figure 5.3: Three possible arrangements for the edges e1 = {a,b}, e2 = {c,d}, and e3 = {e, f } from the proof

of Corollary 4. The case where b, d, and f are distinct vertices is depicted above. The case where d = f ,
but b � f is shown below in the left. Below in the right, we show the case where b = d = f . In all three

cases, these edges are part of a subgraph H of G that contains a subdivision of a K3,3.

X be the set of edges with one endpoint in A and one endpoint in B. We can obtain a

subgraph H of G that contains a subdivision of a bipartite graph K3,3 with bipartition

(A,B) in the following way. The vertex set of H is A∪B∪ {c,x} and the edge set of H is

X ∪E(P). Therefore G cannot be a planar graph.

5.1.3 Algorithm

The algorithm takes as input a graph G = (V ,E) and the constant parameters

0 < ε,δ,p < 1. It outputs the estimation l̃(v) for the exact value l(v) of the local

clustering coefficient for each vertex v ∈ V , such that

|l(v)− l̃(v)| ≤ εl(v), with probability at least 1− δ whenever l(v) ≥ σv(p) ,

where σv(p) = pm/
(δv
2

)
is an adjustable function, depending on p. The idea, roughly

speaking, is that l(v) ≥ σv(p) holds if the neighborhood of v is not too small.

Next we present Algorithm 6. At the beginning all T̃v are set to zero.
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Algorithm 6 localClusteringEstimation(G,ε,δ,p)

Input: Graph G = (V ,E) with m edges, constant parameters 0 < ε,δ,p < 1 .

Output: Local clustering coefficient estimation l̃(v), ∀v ∈ V such that l(v) ≥ σv(p).
1: r←

⌈
c′

ε2p

(
(�lgΔ− 1�+1)log 1

p + log 1
δ

)⌉
2: for i← 1 to r do
3: sample an edge e = {a,b} ∈ E uniformly at random

4: for all v ∈Na do
5: if v ∈Nb then
6: T̃v ← T̃v +

m
r

7: return l̃(v)← 2T̃v
δv (δv−1) , for each v ∈ V .

5.2 CORRECTNESS AND RUNNING TIME

In Theorems 28 and 29 we prove the correctness and running time of Algorithm 6.

Theorem 28. Given a graph G = (V ,E), let S ⊆ E be a sample of size

r =

⌈
c

ε2p

(
(�lgΔ− 1�+1)log

1

p
+ log

1

δ

)⌉
,

for given constants 0 < p,ε,δ < 1 and c > 0. Algorithm 6 returns with probability at least 1−δ
an approximation l̃(v) to l(v) within ε relative error, for each v ∈ V such that l(v) ≥ σv(p).

Proof. For each v ∈ V , let 1v(e) be the function that returns 1 if e ∈ τv (and 0 otherwise).

Thus, Tv =
∑
e∈E 1v(e). The estimated value T̃v , computed by Algorithm 6, is incremented

by m/r whenever an edge e ∈ S belongs to τv , i.e.

T̃v =
∑
e∈S

m
r
1v(e) .

Note that

T̃v =
∑
e∈S

m
r
1v(e) =

m
r

∑
e∈S

1v(e) =m ·
|S ∩ τv |
|S | .

Thus, assuming that we have a relative (p,ε)-approximation (Definition 9),

|Tv − T̃v |
Tv

=

∣∣∣∣m ·Prπ(τv)−m · |S∩τv ||S |

∣∣∣∣
m ·Prπ(τv)

=

∣∣∣∣Prπ(τv)− |S∩τv ||S |

∣∣∣∣
Prπ(τv)

≤ ε .

Or, simply put, |Tv − T̃v | ≤ εTv . Therefore,

|l(v)− l̃(v)| = 2|Tv − T̃v |
δv(δv − 1)

≤ 2εTv
δv(δv − 1)

= εl(v) .

Combining this with Theorems 8 and 25, and using a sample S with size

r =

⌈
c

ε2p

(
(�lgΔ− 1�+1)log

1

p
+ log

1

δ

)⌉
,
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we have that Algorithm 6 provides an ε-error estimation for l(v) with probability 1− δ
for all v ∈ V such that Pr(τv) ≥ p. But Pr(τv) ≥ p if and only if l(v) ≥ σv(p) since

l(v) =
Tv(δv
2

) = mPr(τv)(δv
2

) .

We remark that T̃v is an unbiased estimator for Tv , since

E[T̃v] = E

⎡⎢⎢⎢⎢⎢⎣∑
e∈S

m
r
1v(e)

⎤⎥⎥⎥⎥⎥⎦ = m
r

∑
e∈S

Pr(e ∈ τv) =
m
r

∑
e∈S

|τv |
m

= Tv .

Theorem 29. Given a graph G = (V ,E) and a sample of size

r =

⌈
c

ε2p

(
(�lgΔ− 1�+1)log

1

p
+ log

1

δ

)⌉
,

Algorithm 6 has running time O(Δ lgΔ+m).

Proof. In line 1, the value of Δ can be computed in time Θ(m). Given an edge {a,b} we

first store the neighbors of b in a directed address table. Then, lines 4, 5, and 6 take

time O(Δ) by checking, for each v ∈ Na, if v is in the table. Hence, the total running

time of Algorithm 6 is O(r ·Δ+m) = O(Δ lgΔ+m).

As mentioned before, for specific graph classes, the running time proved in

Theorem 29 can be reduced. We can achieve this either by proving that graphs in such

classes have a smaller VC dimension, or by looking more carefully at the algorithm

analysis for such classes. In Corollaries 5 and 6 we present results for two such classes.

Corollary 5. If G is a planar graph, then Algorithm 6 has running time O(Δ).

Proof. By Corollary 4, VCDim(G) ≤ 2. So, the sample size in the Algorithm 6 changes

from a function of Δ to a constant. Note that, in particular, since we do not need to find

the value of Δ, line 1 can be computed in time O(1). As with the proof of Theorem 29,

lines 4, 5, and 6 still take time O(Δ). Since r is constant, line 2 takes constant time. So,

the total running time of Algorithm 6 is O(r ·Δ) = O(Δ).

Another case where we can provide a better running time for the algorithm is

the case for bounded-degree graphs, i.e. the case where the maximum degree of any graph

in the class is bounded by a constant.

Corollary 6. Let G be a bounded-degree graph, where d is such bound. Algorithm 6 has

running time O(1) or O(n), respectively, depending on whether d is part of the input or not.

Proof. If d is part of the input, then the number of samples r in line 1 can be computed

in time O(1). Line 2 is executed O(1) times, and the remaining of the algorithm, in

lines 4, 5, and 6, takes O(1) time, since the size of the neighborhood of every vertex is

bounded by a constant.

On the other hand, if d is not part of the input, then Δ must be computed

for executing line 1. In this case we check the degree of every vertex by traversing

its adjacency list. All these adjacency lists have constant size. Performing this for all

vertices takes time O(n). The other steps of the algorithm take constant time.
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5.3 CONCLUDING REMARKS

We present a sampling algorithm for the local clustering problem. In our analysis we

define a range space associated to the input graph, and show how the sample size of the

algorithm relates to the VC dimension of this range space. This kind of analysis takes

into consideration the combinatorial structure of the graph, so the size of the sample of

edges used by the algorithm depends on the maximum degree of the input graph.

Our algorithm executes in time O(Δ lgΔ+m) in the general case and guarantees,

for given parameters ε,δ, and p, that the approximation value has relative error ε with

probability at least 1 − δ, for every node whose clustering coefficient is greater than

a certain function adjusted by the parameter p. For planar graphs we show that the

sample size can be bounded by a constant, and the running time in this case is O(Δ). In
the case of bounded-degree graphs, where there is also a constant bound on the sample

size, the running time drops to O(1) or O(n), depending on whether the bound on the

degree is part of the input or not.
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6 THE DOMINATING SET AND THE VERTEX COVER PROBLEMS

Empirical studies from the late 1990’s and early 2000’s (Faloutsos et al., 2011; Barabási

and Albert, 1999; Kleinberg et al., 1999; Broder et al., 2011; Kumar et al., 2000; Klein-

berg and Lawrence, 2001; Guelzim et al., 2002; Siganos et al., 2003; Eubank et al.,

2004) pointed out that a number of large real-world networks — also commonly called

complex networks — from social, biological, and technological applications follow a

power law on their vertex degree distribution. We can informally describe a power law

as a function that decreases in the vertex degree i as i grows large for a fixed exponent

β > 0 and a proportionality constant α, i.e. f (i) = αi−β . Random graph models for such

complex networks are referred as power-law graphs. There is evidence that optimization

problems might be easier for power-law graphs than for graphs in general (Park and Lee,

2001; Gkantsidis et al., 2003; Eubank et al., 2004; Da Silva et al., 2013; Demaine et al.,

2019). More precisely, if one assumes that the input graph is drawn from a distribution

where the expected degree distribution follows a power law, then several problems

admit approximation algorithms with expected factors that may not be achievable for

general graphs (Gast et al., 2012; Gast and Hauptmann, 2014; Gast et al., 2015; Vignatti

and Silva, 2016).

Random graph models with arbitrary degree distributions have been studied

since at least the late 1970’s (Bender and Canfield, 1978; Wormald, 1980; Bollobás,

1998; Molloy and Reed, 1995, 1998; Chung and Lu, 2002, 2004; Britton et al., 2006). In

this chapter we use the generalized random graph (GRG) model, introduced by Britton

et al. (2006), which is a generalization of the well-known Erdős–Rényi random graph

model with weights assigned to the vertices of the graph. These weights are used for

obtaining an arbitrary expected distribution for the vertex degrees. One advantage of

this model is that the edges of the graph are created independently. In order to have an

expected power-law distribution, we use the sequence of weights given by the formula

described in the work of Aiello et al. (2001). The authors propose a random graph

model known as ACL(α,β), which is also a model for power-law graphs, but it does not

have the convenience of having independent edge probabilities.

We refer to the random graph model used in this chapter as GRG(α,β) (the
precise definitions are given in Section 6.1). We note that the well-known Chung–Lu

model (Chung and Lu, 2002, 2004) also uses a sequence of weights for the vertices,

so that the expected degree of each vertex corresponds to its weight. In the work of

Vignatti and Silva (2016), the authors show that the edge probabilities of the Chung–Lu

model and the GRG(α,β) are asymptotically the same for the particular degree sequence

that we are using considering. As a consequence, every result presented in this chapter

also holds for the Chung–Lu model.

The main result we prove is a lower bound for the expected size of the neigh-

borhood of vertices of degree one. As a consequence, we obtain tighter bounds for the

approximability of both the minimum dominating set and the vertex cover problems,

improving the previous results from Gast et al. (2015) and Vignatti and Silva (2016),

respectively. The minimum dominating set (MDS) problem consists of finding the

minimum set of vertices D ⊆ V in a graph G = (V ,E) such that each v ∈ V is either

in D or has at least one neighbor in D. The minimum vertex cover (MVC) problem

corresponds to finding the minimum set C ⊆ V such that each e ∈ E has at least one
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endpoint in C (Garey and Johnson, 1979). Both problems are NP -Hard (Garey and

Johnson, 1979) and have applications in a variety of contexts and scenarios (Wang et al.,

2009; Wu et al., 2006; Xu and Zhou, 2016; Nacher and Akutsu, 2016; Gusev, 2020;

Javad-Kalbasi et al., 2019; Miao et al., 2019). In fact, Ferrante et al. (2008) showed that

these problems remainNP -Hard for the (deterministic) class of graphs respecting the

degree distribution given by the formula described in the ACL(α,β) model (Aiello et al.,

2001).

The minimum dominating set problem is conjectured not to admit a polynomial

time approximation algorithm with a strictly sublogarithmic factor unless P = NP
(Raz and Safra, 1997). Similarly, the vertex cover problem is conjectured not to admit

a polynomial time approximation algorithm with a factor smaller than 2 (Khot and

Regev, 2008). However, when restricted to power-law graphs, both barriers can be

overtaken (Gast and Hauptmann, 2014; Gast et al., 2015; Vignatti and Silva, 2016).

An approximation factor of O(logn) can be achieved for the MDS problem using an

approximation algorithm for graphs in general. Gast et al. (2015) showed that the

expected factor of approximation for this algorithm is constant when the input graph is

a random sample from the ACL(α,β) model. In this chapter we use the GRG(α,β) to
show that for 2 < β ≤ 2.52 and 2.729 < β < 2.85 the expected approximation factor is

significantly smaller than the one obtained by Gast et al. (2015). We note that, in many

power-law graphs that model practical applications, β falls between 2 and 3 (Broder

et al., 2011; Jeong et al., 2001; Liljeros et al., 2001; Redner, 1998). Additionally we show

that our results also imply a significantly better expected approximation factor for the

MVC for graphs in the GRG(α,β) model, for 2 < β < 4, where this factor is near 1 as

β gets closer to 4. It is important to highlight, though, that our bounds for the MDS

cannot be directly compared with the ones of Gast and Hauptmann (2014) and Gast

et al. (2015) since the random graph models are not exactly the same.

At the center of our analysis for both the MDS and MVC problems there is a

proof of a lower bound for the expected size of the neighborhood of the vertices with

degree one. We use this lower bound to estimate the optimal solution obtained by an

approximation algorithm together with a simple preprocessing step. Following the

previous approaches of Gast and Hauptmann (2014), Gast et al. (2015) and Vignatti

and Silva (2016), the idea is that the neighborhood of degree one vertices is included

in the optimal solution — this corresponds to a large portion of the vertices —- and

an approximation algorithm is used in the remaining part of the graph. The expected

approximation factors for the MDS and MVC problems, respectively denoted by φ(β)
and ψ(β), correspond to

φ(β)�
ζ(β) + Liβ−1(1/e)

(
Liβ−1(1/e)
2ζ(β−1) − 1

)
ζ(β)ρ(β)− (Liβ−1(1/e))2

2ζ(β−1)

and

ψ(β)� 2−

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
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where ρ(β) ≈ 1−
Liβ

⎛⎜⎜⎜⎜⎜⎜⎝( 1e )
Liβ−1(1/e)
ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎠
ζ(β) , for 2 < β < 4. The symbols “≈” and “�” denote asymp-

totic approximations for, respectively, equality and upper bound, and the ζ(β) and
Liβ(z) denote the Riemman zeta and the polylogarithmic functions, respectively (see

Section 6.1). The upper bounds of φ(β) and ψ(β) can be better understood from Figures

6.1 and 6.2. As far as we know, the expected approximation factors obtained for both

problems are the best for power-law graphs.

This chapter is organized as follows: in Section 6.1 we provide the definitions

of our random graph model; in Section 6.2 we present the crux of our analysis, which

is a lower bound for the neighborhood of the degree one vertices; in Section 6.3 we

show our strategy for dealing with the approximability of the MDS problem; Section

6.4 describes our new results for approximability of the MVC problem, and Section 6.5

presents the concluding remarks and directions for future work.

(a) (b)

(c)

Figure 6.1: In (c), the graph of our approximation factor for the minimum dominating set problem

2 < β < 4. In (a) and (b), we compare our bound (darker blue line) with the results of Gast et al. (2015)

(lighter orange line).
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Figure 6.2: Comparison of the expected approximation factor between our work and the results of Gast

and Hauptmann (2014) and Vignatti and Silva (2016), for 2 < β < 4.

6.1 PRELIMINARIES

Throughout this chapter, we use ≈ to denote an asymptotic approximation, i.e. given

functions f (n) and g(n), then f (n) ≈ g(n) if limn→∞
f (n)
g(n) = 1. We also use � and �,

respectively, to denote an asymptotic upper and lower bound approximation. Formally, we

have that f (n)� g(n) if limn→∞
f (n)
g(n) ≤ 1, and f (n)� g(n) if limn→∞

f (n)
g(n) ≥ 1. It is worth

mentioning that the lower and upper asymptotic approximations that are used here are

stronger than the Ω and O asymptotic notations.

For the next definitions and throughout the results of this chapter, we denote

ζ(β) =
∑∞
j=1

1
jβ

the Riemann zeta function and Liβ(z) =
∑∞
j=1

zj

jβ
the polylogarithmic

function.

Let G = (V ,E) be a random graph with n = |V | and m = |E|. Consider the vertex
set V = {1,2, . . . , |V |}. In this work we use the GRG model proposed by Britton et al.

(2006), where there is a weight wv associated to each vertex v ∈ V . We denoteWk the

set of vertices having weight k, i.e.Wk = {v ∈ V | wv = k}. Let w be a vector with entries

w1, ...,w|V |. In the GRG model, every edge (i, j) is created independently at random

with probability Pr((i, j) ∈ E) = wiwj
�n+wiwj

, where �n =
∑
v∈V wv . In the literature pij usually

refers to the probability of an edge connecting vertex i and vertex j . For the sake of

convenience, however, we refer to pij as the probability of a vertex having weight i
connects to a vertex having weight j .

Naturally, the vertex degrees depends on w, so we set the weights in such vector

using similar principles of the ones from the work of Aiello et al. (2001) to create a

power-law random graph with exponent β > 2. Consider yj =
⌊
eα

jβ

⌋
, for each j = 1, . . . ,Δ,

where Δ = �eα/β� and α = ln
( |V |
ζ(β)

)
. On the ACL(α,β) model, there are yj vertices of

fixed degree j . Similarly, in our model, we assign weight j to yj vertices. We denote by

GRG(α,β) a GRG random graph having such distribution on its vertex degrees.

Note that, from the definition of α, we have |V | = eαζ(β). Aiello et al. (2001)

observe that we can ignore rounding in the values of yj and Δ. However, some extra

care has to be taken in the values of yj in the ACL(α,β) model, since the vertex degrees

sequence must be a graphic sequence. In the GRG(α,β) model we do not need such

restriction since yj is associated to the weights and not to the degrees.
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Using the y’s values defined above, note that

�n =
∑
v∈V

wv =
Δ∑
j=1

j · yj ≈
Δ∑
j=1

j · e
α

jβ
≈ eαζ(β − 1),

and hence, and edge connecting a vertex of degree i with a vertex of degree j is created

independently at random with probability pij =
ij

eαζ(β−1)+ij . In Lemma 2.1 (Vignatti and

Silva, 2016), the authors show that pij ≈ ij
eαζ(β−1) . On the other hand, using the y’s values

on the Chung–Lu model (Chung and Lu, 2002, 2004), we have pij =
ij

eαζ(β−1) . Thus, we

conclude that GRG(α,β) and Chung–Lu models are asymptotically equivalent for the

power-law weight distribution that we use here, and all results in this chapter hold in

the Chung–Lu model.

We use the notation u→ v to refer to the event where the vertex u is adjacent

to v in the resulting graph G. The degree of v ∈ V is denoted by δv and we denote Vk
the set of vertices of degree k.

Let V − = V \ (V0 ∪ V1). For S ⊆ V , denote G[S] the graph induced by S and

denote N (S) the neighborhood of S in G, i.e. the set of vertices that are adjacent to a

vertex of S . The set N (V1) denotes the neighborhood of V1 in G and it can be expressed

as N (V1) =N (V1)
− ∪N (V1)

(1), where N (V1)
− corresponds to the set of vertices in N (V1)

that have degree greater than one and N (V1)
(1) are vertices of N (V1) that have degree

equal to one.

Lemma 8 (Vignatti and Silva (2016), Lemma 3.1). Let qik = 1− pik . Then

Δ∏
k=1

q
|Wk |
ik ≈

1

ei
.

Lemma 9 (Vignatti and Silva (2016), Lemma 3.2).

Pr(v ∈Wi) =
(eα/iβ)

eαζ(β)
=

1

iβζ(β)
.

Lemma 10 (Vignatti and Silva (2016), Lemma 3.3).

Pr(v ∈ V0 | v ∈Wi) ≈
1

ei
.

Lemma 11 (Vignatti and Silva (2016), Lemmas 3.5 and 3.6).

Pr(v ∈ V0) ≈
Liβ(1/e)

ζ(β)
and Pr(v ∈ V1) ≈

Liβ−1(1/e)

ζ(β)
.
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Lemma 12. Let qjk = 1− pjk , where pjk = jk
eαζ(β−1) . Then

Δ∏
l=1

(qklqil)
|Wl | ≈ 1

ei+k
.

Proof. Trivially from Lemma 8.

6.2 TECHNICAL LEMMAS

The main result of this section is the expected value of |N (V1)| and its corresponding

parts, i.e. |N (V1)
−| and |N (V1)

(1)|. We show these results in Lemmas 16, 20, and 21. The

size of these sets are crucial for the approximation algorithms presented in Sections

6.3 and 6.4. For both algorithms we can run a preprocessing step in the set of vertices

in N (V1)
− and N (V1)

(1). We observe that the vertices in N (V1)
(1) are all in V1 and each

edge between vertices from this set corresponds to an isolated edge.

A first observation is that we are interested in estimating the size of large sets,

such as V1 and N (V1). These sets grow asymptotically with the size of the graph. On the

other hand, for large graphs, probabilities of events related to one particular vertex or

one particular edge are asymptotically negligible, as shown in Lemma 13. We combine

these two facts in Lemmas 14 and 15 in order to show that for a given vertex v, adjacent
to a given vertex w, the asymptotic probability of the event δv = 1 is the same of the

event δv = 0 in the graph induced by V \ {w}.

Lemma 13. Consider j,k ∈ {1, . . . , eα/β} and qjk = 1− pjk , where

pjk =
jk

eαζ(β − 1) .

Then, qjk ≈ 1.

Proof. Using the fact β > 2,

lim
α→∞

jk

eαζ(β − 1) ≤
1

ζ(β − 1) lim
α→∞

e
α
β e

α
β

eα
=

1

ζ(β − 1) lim
α→∞

eα
(
2
β−1

)
= 0 .

Lemma 14. Consider (u,w) ∈ V 2 such that u ∈Wj and w ∈Wi . Then

Pr(u ∈ V1 | u ∈Wj and w ∈Wi and w→ u) ≈ Pr(u ∈ V0 | u ∈Wj ) .

Proof. Let Xv be the binary random variable associated to vertex u such that Xv = 1

if u → v, Xv = 0 otherwise. Note that these binary random variables are mutually

independent, since edges are independently generated in our random graph model. We

now compute the probability of u not being adjacent to any other vertex in V except w.
That is,

Pr(u ∈ V1 | u ∈Wj and w ∈Wi and w→ u)
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= Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
v∈V
v�u�w

Xv = 0

∣∣∣∣∣u ∈Wj and w ∈Wi and w→ u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

∏
v∈V
v�u�w

Pr(Xv = 0 |u ∈Wj and w ∈Wi and w→ u)

=
1

qijqjj

Δ∏
k=1

∏
v∈Wk

qjk =
1

qijqjj

Δ∏
k=1

q
|Wk |
jk ≈

1

ej
1

qijqjj
≈ 1

ej
≈ Pr(u ∈ V0 | u ∈Wj ) ,

where the approximations follow from Lemmas 8, 10, and 13.

Lemma 15. Consider (u,v) ∈ V 2 such that u ∈Wi and v ∈Wj . Then

Pr(u ∈ V1 and v ∈ V1 | u→ v and u ∈Wi and v ∈Wj )

≈Pr(u ∈ V0 | u ∈Wi) ·Pr(v ∈ V0 | v ∈Wj ) .

Proof. Consider the random variable Xzu with respect to u, defined for each z ∈ V , such

that Xzu = 1 if z → u (and Xzu = 0 otherwise). The random variable Xzv is defined

analogously to Xzu .
Note that each Xzu (and Xzv) are mutually independent, since edges are inde-

pendently generated in our random graph model. We now compute the probability of

u not being adjacent to any other vertex in V except v (and vice-versa for v). Then

Pr(u ∈ V1 and v ∈ V1 | u→ v and u ∈Wi and v ∈Wj )

=Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
z∈V
z�u�v

(Xzu = 0) and
⋂
z∈V
z�u�v

(Xzv = 0)

∣∣∣∣∣∣u ∈Wi and v ∈Wj and u→ v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
z∈V
z�u�v

(Xzu = 0)

∣∣∣∣∣∣u ∈Wi and v ∈Wj and u→ v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
z∈V
z�u�v

(Xzv = 0)

∣∣∣∣∣∣u ∈Wi and v ∈Wj and u→ v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
∏
z∈V
z�u�v

Pr(Xzu = 0 |u ∈Wi and v ∈Wj and u→ v)

·
∏
z∈V
z�u�v

Pr(Xzv = 0 | u ∈Wi and v ∈Wj and u→ v)

≈ 1
ei

1

qiiqij

1

ej
1

qijqjj
≈ 1

ej
1

ei
≈ Pr(u ∈ V0 | u ∈Wi)Pr(v ∈ V0 | v ∈Wj ) ,

where the second and third equations follow since the events are mutually independent,

and the approximations follow from Lemmas 8, 10, and 13.
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Lemma 16.

E[|N (V1)
(1)|] ≈

eα(Liβ−1(1/e))
2

ζ(β − 1) .

Proof. Consider the binary random variable Xuv defined as follows:

Xuv =

⎧⎪⎪⎨⎪⎪⎩1, if u ∈ V1 and v ∈ V1 and u→ v

0, otherwise.

Then we have

Pr(u ∈ V1 and v ∈ V1 and u→ v)

=

Δ∑
i=1

Pr(u ∈ V1 and v ∈ V1 and u→ v | u ∈Wi)Pr(u ∈Wi)

=

Δ∑
i=1

Δ∑
j=1

Pr(u ∈ V1 and v ∈ V1 and u→ v | u ∈Wi and v ∈Wj )Pr(v ∈Wj )Pr(u ∈Wi) .

For given events A, B, and C, by the definition of conditional probability we have that

Pr(A and B | C) = Pr(A | B and C)Pr(B | C)Pr(C)
Pr(C)

= Pr(A | B and C)Pr(B | C) .

Therefore,

Pr(u ∈ V1 and v ∈ V1 and u→ v | u ∈Wi and v ∈Wj )

=Pr(u ∈ V1 and v ∈ V1 | u→ v and u ∈Wi and v ∈Wj )Pr(u→ v | u ∈Wi and v ∈Wj )

≈Pr(u ∈ V0 | u ∈Wi) ·Pr(v ∈ V0 | v ∈Wj )Pr(u→ v | u ∈Wi and v ∈Wj )

where the approximation is given by Lemma 15. By Lemmas 9 and 10, we have

E[|N (V1)
(1)|] =

∑
(u,v)∈V 2

Pr(Xuv = 1)

=
∑

(u,v)∈V 2

Δ∑
i=1

Δ∑
j=1

(Pr(Xuv = 1 | u ∈Wi and v ∈Wj ) ·Pr(u ∈Wi) ·Pr(v ∈Wj ))

≈
∑

(u,v)∈V 2

Δ∑
i=1

Δ∑
j=1

(
Pr(u ∈ V0 | u ∈Wi) ·Pr(v ∈ V0 | v ∈Wj )

· Pr(u→ v | u ∈Wi and v ∈Wj )Pr(u ∈Wi)Pr(v ∈Wj )
)

≈
∑

(u,v)∈V 2

Δ∑
i=1

Δ∑
j=1

1

ei+j
ij

eαζ(β − 1)
1

(ij)βζ(β)2
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=
1

eαζ(β − 1)ζ(β)2
∑

(u,v)∈V 2

Δ∑
i=1

i

ei iβ

Δ∑
j=1

j

ej jβ
≈
e2αζ(β)2(Liβ−1(1/e))

2

eαζ(β − 1)ζ(β)2

=
eα(Liβ−1(1/e))

2

ζ(β − 1) .

Given a fixed vertex v of weight j and a set of vertices Y ⊆ V adjacent to v,
we show in Lemma 17 that all events of the type “y is adjacent only to v”, y ∈ Y , are
approximately mutually independent.

Lemma 17. For fixed v ∈ V with weight j , for any u ∈ V with weight i, and for a subset

S ⊆ V , such that u � S ,

Pr

⎛⎜⎜⎜⎜⎜⎜⎝v→ u and u ∈ V1

∣∣∣∣∣⋂
y∈S

(v→ y and y ∈ V1)

⎞⎟⎟⎟⎟⎟⎟⎠ ≈ Pr(v→ u and u ∈ V1) .

Proof. We have that

Pr

⎛⎜⎜⎜⎜⎜⎜⎝u ∈ V1 and v→ u

∣∣∣∣∣∣
⋂
y∈S

(v→ y and y ∈ V1)

⎞⎟⎟⎟⎟⎟⎟⎠
=
Pr
(
u ∈ V1 and v→ u and

⋂
y∈S v→ y and

⋂
y∈S y ∈ V1

)
Pr
(⋂

y∈S v→ y and
⋂
y∈S y ∈ V1

)

=

Pr

(
u ∈ V1 and

⋂
y∈S y ∈ V1

∣∣∣∣∣ v→ u and
⋂
y∈S v→ y

)
Pr

(
v→ u

∣∣∣∣∣⋂y∈S v→ y

)

Pr

(⋂
y∈S y ∈ V1

∣∣∣∣∣⋂y∈S v→ y

)

by the fact that

Pr(A and B | C and D) =
Pr(A and B and C and D)

Pr(C and D)

=
Pr(A and C | B and D) ·Pr(B |D)Pr(D)

Pr(C |D) ·Pr(D)
=
Pr(A and C | B and D) ·Pr(B |D)

Pr(C |D)
.

Consider a vertex w with weight k. Let Xuw be the binary random variable having

Xuw = 1 if w→ u (and Xuw = 0 otherwise). The set of events w→ u, for each w ∈ V , is

mutually independent. Then

Pr

⎛⎜⎜⎜⎜⎜⎜⎝u ∈ V1 and
⋂
y∈S

y ∈ V1

∣∣∣∣∣ v→ u and
⋂
y∈S

v→ y

⎞⎟⎟⎟⎟⎟⎟⎠
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= Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
y∈S

Xyu = 0 and
⋂
y∈S

Xuy = 0
⋂
y∈S

⋂
y′∈S
y�y′

(Xyy′ = 0 and Xy′y = 0)

and
⋂

w∈{V \S}
w�u�v

Xwu = 0 and
⋂
y∈S

⋂
w∈{V \S}
w�u�v

Xwy = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
∏
y∈S

Pr(Xyu = 0 and Xuy = 0)
∏
y∈S

∏
y′∈S
y�y′

Pr(Xyy′ = 0 and Xy′y = 0)

·
∏
w∈V \S
w�u�v

Pr(Xwu = 0)
∏
y∈S

∏
w∈V \S
w�u�v

Pr(Xwy = 0) .

We have that

Pr

⎛⎜⎜⎜⎜⎜⎜⎝
⋂
y∈S

y ∈ V1

∣∣∣∣∣∣
⋂
y∈S

v→ y

⎞⎟⎟⎟⎟⎟⎟⎠

=Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋂
y∈S

⋂
y′∈S
y�y′

(Xyy′ = 0 and Xy′y = 0) and
⋂
y∈S

⋂
w∈{V \S}
w�u�v

Xwy = 0 and
⋂
y∈S

Xuy = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
∏
y∈S

∏
y′∈S
y�y′

Pr(Xyy′ = 0 and Xy′y = 0)
∏
y∈S

∏
w∈V \S
w�u�v

Pr(Xwy = 0)
∏
y∈S

Pr(Xuy = 0)

=
∏
y∈S

∏
y′∈S
y�y′

Pr(Xyy′ = 0 and Xy′y = 0)
∏
y∈S

∏
w∈V \S
w�u�v

Pr(Xwy = 0)

·
∏
y∈S

Pr(Xuy = 0)
∏
y∈S

Pr(Xuy = 0 and Xyu = 0) .

The last equality comes from the fact that∏
y∈S

Pr(Xuy = 0 and Xyu = 0) =
∏
y∈S

Pr(Xyu = 0 | Xuy = 0)Pr(Xuy = 0)

=
∏
y∈S

Pr(Xyu = 0) .

In addition, the event v→ u is independent from
⋂
y∈S v→ y, and hence,

Pr

⎛⎜⎜⎜⎜⎜⎜⎝v→ u

∣∣∣∣∣∣
⋂
y∈S

v→ y

⎞⎟⎟⎟⎟⎟⎟⎠ = Pr(v→ u) ≈ ij

eαζ(β − 1) .
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Therefore,

Pr

⎛⎜⎜⎜⎜⎜⎜⎝v→ u and u ∈ V1

∣∣∣∣∣∣
⋂
y∈S

(v→ y and y ∈ V1)

⎞⎟⎟⎟⎟⎟⎟⎠
=

ij

eαζ(β − 1)
∏
y∈S

Pr(Xyu = 0)
∏
w∈V \S
w�u�v

Pr(Xwu = 0)

=
ij

eαζ(β − 1)
∏
w∈V
w�u�v

Pr(Xwu = 0)

≈ ij

eαζ(β − 1)
1

ei
1

qiiqij
≈ ij

eieαζ(β − 1)

where the approximations in the last line come from Lemmas 12 and 13.

By Lemma 14, this corresponds to

Pr(u ∈ V1 and v→ u) = Pr(u ∈ V1 | u→ v)Pr(u→ v) .

This concludes the proof.

Corollary 7. For fixed v ∈ V with weight j and for any u ∈ V with weight i, the events
“v→ u and u ∈ V1” are approximately mutually independent.

For the lemmas and theorems below, we denote by v −→ S the event of the

vertex v be connected to the set S ⊆ V .

Lemma 18.

Pr(v −→ V1 | v ∈Wj )� 1−
(
1

e

) jLiβ−1(1/e)
ζ(β−1)

.

Proof. Let Xu be the binary random variable associated to u ∈Wi , for 1 ≤ i ≤ Δ, such
that Xu = 1 if v → u and u ∈ V1 (and Xu = 0 otherwise). From De Morgan’s law, from

Corollary 7 and Lemma 17, and the fact that
(
1− a

x

)x ≤ (1e )a, for all a ∈ R, we have

Pr(v −→ V1 | v ∈Wj ) = Pr

⎛⎜⎜⎜⎜⎜⎝⋃
u∈V

(v→ u and u ∈ V1)

∣∣∣∣∣∣ v ∈Wj

⎞⎟⎟⎟⎟⎟⎠
= 1−Pr

⎛⎜⎜⎜⎜⎜⎝⋂
u∈V

(v� u or u � V1)

∣∣∣∣∣∣ v ∈Wj

⎞⎟⎟⎟⎟⎟⎠
= 1−Pr

⎛⎜⎜⎜⎜⎜⎜⎝
Δ⋂
i=1

⋂
u∈Wi

(Xu = 0)

∣∣∣∣∣∣ v ∈Wj

⎞⎟⎟⎟⎟⎟⎟⎠
≈ 1−

Δ∏
i=1

∏
u∈Wi

(
1− ij

eieαζ(β − 1)

)
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= 1−
Δ∏
i=1

(
1− ij

eieαζ(β − 1)

)eα/iβ

� 1−
Δ∏
i=1

(
1

e

) ij

ei ζ(β−1)iβ
= 1−

(
1

e

)∑Δ
i=1

ij

ei ζ(β−1)iβ

≈ 1−
(
1

e

) jLiβ−1(1/e)
ζ(β−1)

.

Let ρ(β) ≈ 1−
Liβ

⎛⎜⎜⎜⎜⎜⎜⎝( 1e )
Liβ−1(1/e)
ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎠
ζ(β) .

Lemma 19.
Pr(v −→ V1)� ρ(β) .

Proof. By Lemmas 9 and 18,

Pr(v −→ V1) =

Δ∑
j=1

Pr(v −→ V1 | v ∈Wj )Pr(v ∈Wj )

�
Δ∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝1−
(
1

e

) jLiβ−1(1/e)
ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎠ 1

jβζ(β)
≈ 1−

Liβ

⎛⎜⎜⎜⎜⎝(1e )
Liβ−1(1/e)
ζ(β−1)

⎞⎟⎟⎟⎟⎠
ζ(β)

.

Lemma 20.
E[|N (V1)|]� eαζ(β)ρ(β) .

Proof. Let Xv be the binary random variable associated to v ∈ V such that Xv = 1 if

v −→ V1 (and Xv = 0 otherwise). Then by Lemma 19,

E[|N (V1)|] =
∑
v∈V

Pr(v −→ V1)� eαζ(β)ρ(β) .

Lemma 21.

E[|N (V1)
−|]� eα

⎛⎜⎜⎜⎜⎝ζ(β)ρ(β)− (Liβ−1(1/e))
2

ζ(β − 1)

⎞⎟⎟⎟⎟⎠ .
Proof. Directly from E[|N (V1)|] = E[|N (V1)

−|]+E[|N (V1)
(1)|], and Lemmas 16 and 20.

6.3 APPROXIMATION FACTOR FOR THE MINIMUM DOMINATING SET PROBLEM

The strategy that we use for finding an approximation is similar to the one of Gast et al.

(2015). We start with a preprocessing step where we include every vertex of N (V1)
−

and half of the vertices of N (V1)
(1) in the solution. Then we apply an approximation

algorithm in the graph induced by V \ (N (V1) ∪ V1). Consider the set N (V1)
(1)′ ⊆

N (V1), where |N (V1)
(1)′ | = |N (V1)

(1)|/2, and denote by R the set R = V \ (N (V1)
− ∪
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V1). In Lemma 22 we prove that the approximation factor φ(β) for the minimum

dominating set problem corresponds to
r |OPT(R)|+|N (V1)

−|+|N (V1)
(1)′ |

|OPT(R)|+|N (V1)−|+|N (V1)(1)
′ | , where OPT(R) is the

optimal dominating set in R. We observe that, as in Lemma 4.1 (Vignatti and Silva,

2016), this holds for any graph G (i.e. no probabilistic argument is used in the proof).

In the next results in this section, with the exception of Lemma 22, we treat the sizes

of OPT(R), N (V1), and R as expected values of random variables. The bounds for the

approximation factor given by Theorem 30 and Corollary 9 are illustrated in Figures

6.1 and 6.3, respectively, where we compare our results with the bounds of Theorem

4 from the work of Gast et al. (2015). Due to the nature of the random graphs the

authors use, they obtained two functions for the approximation factor φ(β), defining
the appropriated ranges for β in each case.

Lemma 22. The approximation factor φ(β) for the minimum dominating set problem is at

most
r |OPT(R)|+ |N (V1)

−|+ |N (V1)
(1)′ |

|OPT(R)|+ |N (V1)
−|+ |N (V1)

(1)′ |
,

where r is the approximation factor of the algorithm applied to set R.

Proof. Consider V ∗ = V1 ∪N (V1). We first prove that the following two conditions hold:

(i) G contains a minimum dominating set D such that (N (V1)
− ∪N (V1)

(1)′ ) ⊆ D,

and

(ii) OPT(V ∗) = |N (V1)
−|+ |N (V1)

(1)′ | .

For each edge (x,y) ∈ E such that x ∈ V1 and y ∈ V −, either x or y (but not both)

must belong to D (otherwise D is not minimum). If x ∈ V1, then (D \ {x})∪ {y} is also a

minimum dominating set, then, using the same exchange argument, there is a minimum

dominating set containing every vertex of N (V1)
−. For each pair of vertices (x,y) ∈ V1

where x→ y, then either x or y (but not both) must belong to D, therefore, half of the

vertices from N (V1)
(1) are in D. We denote such set by N (V1)

(1)′ . So, (i) holds.

From (i), we have that the graph induced by N (V1)
− ∪N (V1)

(1)′ is an optimal

solution for G[V ∗]. Besides, sets N (V1)
− and N (V1)

(1) are disjoint, and hence, (ii) holds.

Now let OPT(V ) denote the size of the optimal solution such that condition (i) holds.

From (ii), we have that

OPT(V ) ≤ |OPT(R)∪N (V1)
−|+ |N (V1)

(1)′ |
= |OPT(R)|+ |N (V1)

−|+ |N (V1)
(1)′ | ,

where the last equality comes from the fact that R∩N (V1)
− = ∅ .

Let OPT(V )′ be the size of the solution obtained by the approximation strategy.

Then

φ(β) ≤ OPT(V )′

OPT(V )
≤ r |OPT(R)|+ |N (V1)

−|+ |N (V1)
(1)′ |

|OPT(R)|+ |N (V1)
−|+ |N (V1)

(1)′ |
,

where the last inequality comes from the fact that za+b
a+b ≤

zc+b
c+b for z,a,b, c ∈ R, where

z > 1 and a ≤ c.
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Corollary 8.

φ(β) ≤ r |OPT(R)|+ |N (V1)
−|+ |N (V1)

(1)′ |+ |V0|
|OPT(R)|+ |N (V1)

−|+ |N (V1)
(1)′ |+ |V0|

where r is the approximation factor of the algorithm applied to set R, and V0 is the set of

vertices that have degree 0.

In Theorem 30 we give a constant upper bound for the expected value of φ(β).
In the proof of our upper bound we use the next result by Gast et al. (2015), adapted to

the random graph model we use. The approximation algorithm has an approximation

factor given by O(logΔ), where Δ = eα/β is the maximum degree of a vertex in G[R].

Lemma 23 (Gast et al. (2015), Section 8)). For 2 < β < 4,

φ(β) = max

⎧⎪⎪⎨⎪⎪⎩r |OPT(R)|+ |N (V1)
−|+ |N (V1)

(1)|/2
|OPT(R)|+ |N (V1)

−|+ |N (V1)
(1)|/2

∣∣∣∣∣∣ |OPT(R)| ≤ |R|,

r =min

{
α
β
,
|R|

|OPT(R)|

}}
≤ |R|+ |N (V1)

−|+ |N (V1)
(1)|/2

β
α |R|+ |N (V1)

−|+ |N (V1)
(1)|/2

.

Theorem 30.

φ(β)�
ζ(β) +Liβ−1(1/e)

(
Liβ−1(1/e)
2ζ(β−1) − 1

)
ζ(β)ρ(β)− (Liβ−1(1/e))2

2ζ(β−1)

,

for non-empty N (V1)
(1), for 2 < β < 4.

Proof. From Lemmas 22 and 23, we have that the upper bound for the approximation

factor φ(β) corresponds to

φ(β) ≤ E[|R|] + E[|N (V1)
−|] + E[|N (V1)

(1)|]/2
β
αE[|R|] + E[|N (V1)

−|] + E[|N (V1)
(1)|]/2

.

By linearity of expectation, E[|R|] = |V | −E[|N (V1)
−|]−E[|V1|], since N (V1)

− and V1 are

disjoint.

Writing E[|N (V1)
−|]� eαa, E[|V1|] ≈ eαζ(β)b, and E[|N (V1)

(1)|] ≈ eαc, where a,b,
and c are the constant parts on the expected size of each set, then

φ(β) ≤
eα(ζ(β)− a− b) + eα(a+ c

2)

β
α e

α(ζ(β)− a− b) + eα(a+ c
2)
≤
ζ(β)− b + c

2

a+ c
2

since
β
α (ζ(β)− a− b) ≥ 0. The result follows from Lemmas 11, 16, and 21.

In our analysis, following the same criteria applied by Gast et al. (2015), we

did not include vertices of degree 0 in the solution. For the more general case, the

approximation factor follows from Corollary 8 and Theorem 30.
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Corollary 9. For non-empty sets N (V1)
(1) and V0 (set of isolated vertices in G), with

2 < β < 4,

φ(β)�
ζ(β) +Liβ−1(1/e)

(
Liβ−1(1/e)
2ζ(β−1) − 1

)
+Liβ(1/e)

ζ(β)ρ(β)− (Liβ−1(1/e))2

2ζ(β−1) +Liβ(1/e)
.

Figure 6.3: Expected approximation factor given by Corollary 9 for 2 < β ≤ 2.729 (graph in the left) and

2.729 < β < 4 (graph in the right). The darker line (blue) corresponds to values obtained by our bounds,

and the lighter line (orange) corresponds to the expected approximation factor described in Theorem 4

in (Gast et al., 2015). In the graph on the left, the function from Gast et al. (2015) is not continuous.

6.4 APPROXIMATION FACTOR FOR THE VERTEX COVER PROBLEM

In this section we show a better factor of approximation for the algorithm for the MVC

problem described by Vignatti and Silva (2016). The algorithm has an approximation

factor strictly smaller than 2 for power-law graphs, what may not be achievable for

graphs in general (Khot and Regev, 2008). The approximation factor from Vignatti and

Silva (2016) is an improvement of a previous result of Gast and Hauptmann (2014)

(although some care should be taken in comparing both results, since the random graph

models are not exactly the same, as we have discussed in the beginning of this chapter).

In this section we show that the results obtained in Section 6.2 imply a better guarantee

for the approximation factor for the algorithm of Vignatti and Silva (2016). We illustrate

such differences in Figures 6.2 and 6.4.

The idea is similar, but not identical to the strategy described in Section 6.3.

For the MVC problem we include all vertices of N (V1) in the solution and then run a

2-approximation algorithm in V \ (N (V1)∪V1). We state Lemma 24 ((Vignatti and Silva,

2016)) and give the proofs for Lemma 25, Corollary 10, and Theorem 31, although

the proofs are similar to the referred section, for the sake of completeness. Similarly

to Section 6.3, OPT(V ), |N (V1)|, and |V −| are treated as expected values of random

variables, except in Lemma 24. For the next lemma, recall that N (V1)
(1)′ is the set

composed by half of the vertices from N (V1)
(1).

Lemma 24 (Vignatti and Silva (2016)), Lemma 4.1). The following three conditions hold:
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Figure 6.4: Expected values of E[|N (V1)|] as a fraction of V .

(i) G contains a minimum vertex cover C such that N (V1)
− ∪N (V1)

(1)′ ⊆ C ,

(ii) OPT(V ∗) = |N (V1)
− ∪N (V1)

(1)′ | , and

(iii) OPT(V ) =OPT(V ∗) +OPT(V \V ∗) ,

where V ∗ = V1 ∪N (V1) .

We observe that Lemma 24 (i) is originally stated as “N (V1) ⊆ C and that

there is no vertex of V1 in C”. However, the proof also holds by noting that N (V1) =

N (V1)
− ∪N (V1)

(1) and that N (V1)
− ∪N (V1)

(1)′ ⊆N (V1)
− ∪N (V1)

(1).

Lemma 25. Let ρ(β) ≈ 1−
Liβ

⎛⎜⎜⎜⎜⎜⎜⎝( 1e )
Liβ−1(1/e)
ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎠
ζ(β) . Then

OPT(V ∗)
OPT(V )

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Proof. By Lemma 24 (i), OPT(V ) ≤ |V −|+ |N (V1)

(1)|/2 . From Lemma 11,

|V −| ≤ |V |
(
1−

Liβ(1/e)

ζ(β)
−
Liβ−1(1/e)

ζ(β)

)
.

From Lemma 16,

|N (V1)
(1)| ≈

eα(Liβ−1(1/e))
2

ζ(β − 1) ≤
eαζ(β)(Liβ−1(1/e))

2

ζ(β − 1) .
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By Lemmas 24 (ii) and 20, OPT(V ∗) = |N (V1)| ≥ |V |ρ(β). Combining the two bounds, we

have

OPT(V ∗)
OPT(V )

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Corollary 10.

OPT(V \V ∗)
OPT(V )

� 1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Proof. By Lemma 24 (iii),

OPT(V ∗)+OPT(V \V ∗)
OPT(V )

= 1. The result holds from Lemma 25.

Theorem 31. The expected approximation factor ψ(β) for the vertex cover problem corre-

sponds to

ψ(β)� 2−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Proof. From Lemma 24 we have that an optimal solution has the set N (V1). Hence,

we apply a 2-approximation algorithm in G[V \V ∗] and return C ∪N (V1) as solution,

where C is the solution given by the 2-approximation algorithm. Since C and N (V1) are

disjoint, by Lemma 24 ((ii) and (iii)) and Corollary 10,

|C ∪N (V1)| = |C |+ |N (V1)| ≤ 2OPT(V \V ∗) +OPT(V ∗)

= 2OPT(V \V ∗) +OPT(V )−OPT(V \V ∗)
= OPT(V \V ∗) +OPT(V )

�OPT(V ) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1− ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠OPT(V )

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2− ρ(β)

1− Liβ(1/e)
ζ(β) −

Liβ−1(1/e)
ζ(β) +

(Liβ−1(1/e))2

2ζ(β−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠OPT(V ) .

6.5 CONCLUDING REMARKS

In this chapter we present an upper bound φ(β) for the expected approximation factor

to the minimum dominating set problem in power-law graphs with 2 < β < 4. We use

the generalized random graph model of Britton et al. (2006) with expected power-law

degree distribution. We show that for 2 < β ≤ 2.52 and 2.729 < β < 2.85 the bound is

tighter than the one of Gast et al. (2015). We show that the same techniques can also be

applied to the vertex cover problem, improving the previous bound of Vignatti and Silva

(2016) for the minimum vertex cover problem. As far as we know, the approximation

factors obtained for both problems are the best known factors for power-law graphs.
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7 CONCLUSION AND FUTURE DIRECTIONS

We have proposed sampling based approximation algorithms for graph problems using

sample complexity tools on their design. We have showed that our algorithms output

high quality solutions, with high probability, and that outperform in running time

their exact approaches counterparts by a large margin. More specifically, we showed

approximation algorithms for the problems of percolation centrality, of a relaxed version

of APSP, and of local clustering coefficient. We also have proposed approximation

algorithms that are not based on sample complexity theory for the problems of the

minimum dominating set and the minimum set cover, both with a particular focus on

power-law graphs. We have proven tight bounds for the approximation factors of such

problems which, as far as we know, are the best known factors for power-law graphs.

The research questions for further work that we enumerate next are possible

lines of research to follow, which can be divided in two branches: in the first, one

may work to obtain algorithms for other problems in graphs using sample complexity

analysis (question Q1); in the second, one can investigate the possibility of using the

techniques that we have studied to obtain results in related areas, such as the field

of fine-grained complexity and the connection between sampling and optimization

(questions Q2, Q3, and Q4).

• Q1: For what other centrality measures can we obtain similar results to the

previous ones of this work using randomized algorithms designed using sample

complexity theory, VC-dimension, and Rademacher averages? The closeness

centrality, for instance, is also exactly computed in O(n3) by an APSP based

algorithm and the best known randomized algorithm that estimates the central-

ities within ε to the original value with probability at least 1− δ, from Wang

and Eppstein (2006), uses standard Hoeffding and union bounds.

• Q2: In Chapter 4 we pointed out that there may be a connection between the

values of ε and the hardness assumption of the APSP problem. An interesting

question that might be worth of investigation is the possibility of computing all

shortest paths in a graph, with high probability, achieving a strictly subcubic

algorithm for some specific input distributions.

• Q3: The computation of the diameter of general unweighted graphs cannot

be computed in truly subquadratic time under the Strong Exponential Time

Hypothesis (Roditty and Vassilevska Williams, 2013). The work of Ducoffe et al.
(2020) prove that for some classes of graphs, however, it is possible to compute

the diameter in truly subquadratic time. They generalize these classes as the

graphs with constant distance VC-dimension. Can we obtain similar results for

other graph problems, like detecting a triangle, detecting negative triangles

in a graph, and finding minimum weight cycles on a graph with non-negative

weights?

• Q4: Is it possible to extract theoretical conclusions from sampling algorithms

such as the ones in this work, typically related to counting problems, that shed

light into corresponding optimization problems?
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