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ABSTRACT

BLOCKCHAIN FOR ONLINE VIDEO GAME INTEGRITY

by Philip Salire

With the growing level competition in video games, especially with regards to

competitively played video games known as ”e-sports,” many players are searching for

methods of gaining competitive advantages. As such, there is growing demand in software

exploits of video games that aim to provide players unfair competitive advantages.

Colloquially, these software exlpoits are referred to as “cheats” or “hacks.” Video game

developers counteract these exploits by implementing “anti-cheat” technologies.

Anti-cheats employ a myriad of complex methods across software, network, and hardware

to detect and prevent cheats. They can be implemented both client-side and server-side

with current research and implementations relying heavily client-side. This is an issue,

however, as client-side implementations are open to inspection and alteration by malicious

users looking to bypass the anti-cheat, who often succeed.

Integrity of players’ actions in online video games cannot be fully maintained with

current client-side anti-cheat technologies. Blockchain, however, by design can ensure

that integrity is maintained across an entire network. This project explores using

blockchain as the core of a server-side anti-cheat implementation. With this method, each

player is a member of the anti-cheat blockchain, ensuring integrity of player actions by

validating player actions upon consensus.
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1 INTRODUCTION

The video game industry is rapidly growing, having reached billions of dollars in

market cap worth since its inception just a few decades ago. “E-sports,” the competitive

playing of video games, has grown heavily in popularity, rivaling traditional sports among

younger generations. As with traditional sports, the e-sport industry faces challenges in

maintaining competitive integrity. Malicious actors develop software exploits in

competitive video games in effort to gain unfair competitive advantages. Often, these

exploits are sold to the public for profit.

This has resulted in an active contention between cheat developers and video game

developers. Cheat developers aim to reverse engineer video games, identify and develop

exploits targeting vulnerable components for the purpose of gaining competitive

advantages, i.e. cheats, and sell said exploits to unscrupulous players wanting to cheat.

Cheats pose a business threat to the video game industry as they ruin the experience of the

majority of players that play video games legitimately. Therefore, leaving cheats

unpenalized is not an option for video game developers as it degrades the experience of

the majority of the player base who does not cheat, potentially risking them to abandon

the game altogether. In addition, a number of professional e-sports players have been

caught using cheats, negatively impacting the reputation and overall trust of the e-sports

industry. Thus, research in anti-cheat techniques has become an active topic in the

e-sports industry. Video game developers are constantly developing new defenses against

cheating in hope to stop cheating altogether.

Blockchain is a relatively new technology that provides an immutable, distributed

ledger that is accessible to all parties in a network. In a blockchain network a record of

transactions is maintained that, due to its inherent immutable design, is guaranteed to be

free of tampering and not have any otherwise illegitimate data. It accomplishes this by

what is known as consensus. Essentially, before updating the blockchain with new data the
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majority of the nodes in the blockchain network must validate and agree on the new data

to be stored. Through this, blockchain provides integrity of data across an entire network.

This research explores applying blockchain to online video games as a method to

prevent cheating. Blockchain is most known for its application as a ledger of financial

transactions, i.e. cryptocurrency. However, as data on a blockchain is constantly validated

and immutable, thus guaranteed to not have been tampered with, it also can be applied as

a general mechanism of data storage and validation. Particularly, it can be applied to

video game data. Video game data can be stored on a blockchain with game specific

consensus mechanisms to ensure that game data generated by players is validated for

correctness to prevent illegitimate game state, i.e. cheating. This research investigates

current methods of cheating in online video games, current mitigations against cheats, and

provides a method of applying blockchain for cheat mitigation.
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2 BACKGROUND

2.1 Online Video Game Cheats

The architectures for online video games typically follow the client-server model. For

example, there exists the game client which players interact with and the game server

which receives data from the game clients. From a threat modeling perspective, malicious

actors may exploit potential vulnerabilities in any of these components. For example,

application-level vulnerabilities in the game client, network vulnerabilities in the

client-server network communications, or infrastructure-level vulnerabilities in the

back-end server. Therefore, the exploitation of a game’s client software, network

communications, logic, or even external exploitation such as real-world collusion with the

goal of granting a player artificially elevated in-game skill or status are referred to as

“cheats.” There are various methods of cheating in online games; Webb and Soh [1]

proposed categorizing cheats as either game-level, application-level, protocol-level, or

infrastructure-level.

Examples of the most popular forms of cheats are “aimbots,” “lag switches,” and

“map hacks” [2], [3]. Respectively, this involves manipulating a player’s mouse input to

grant them perfect accuracy, tampering network packets to negatively affect network

connections of opponents such as introducing latency or disconnecting them from the

game, and tampering the game software to allow a player to see opponents through walls.

More generally, cheats seek to grant unfair advantages to a player by creating fraudulent,

falsified game states through exploitation. Within each cheat category, Webb and Soh [1]

propose specific cheat types as summarized in the list below:

∙ Game level

– “Bug” exploits in which bugs are leveraged for cheating purposes.

∙ Application level

3



– “Information exposure” cheats in which cheaters leverage sensitive information

revealed in game communications. For example, the game client may contain

information about other players’ positions which a cheater can expose by reading

game memory i.e. “map hacks” as discussed in section 2.1.

– “Invalid command” cheats in which a cheater may tamper a game client to send

unexpected commands that allow unintended behavior.

– “Bots/reflex enhancer” cheats in which a cheater tampers a game client to augment

user input for unfair advantages e.g. “aimbots” as discussed in section 2.1.

∙ Protocol level

– “Inconsistency cheats” in which cheaters may tamper with network packets for

cheating purposes such as dropping packets or introducing delay to cause

inconsistent game states.

– Spoofing or replay cheats in which cheaters respectively masquerade as other

players or replay network packets.

∙ Infrastructure level

– “Information exposure” cheats in which cheaters leverage sensitive and tamper

devices that the game relies. Most notably, a cheater may modify display drivers

and augment the display with additional information.

– “Proxy/reflex enhancer” cheats in which cheaters proxy game communications to

augment sent game data to gain unfair advantages.

2.1.1 Game-level Cheats

Game-level cheats are exploits that target flawed game code or logic. For example,

certain game input may inadvertently allow a player an unfair competitive advantage over

other players whether through a bug or a game logic flaw. A cheater may abuse this bug

or logic flaw to consistently gain an unfair advantage. It does not involve tampering with

the game as is the case with other cheat types described in this section.
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2.1.2 Application-level Cheats

Application-level cheats are software exploits that target flaws and security

vulnerabilities in the game client’s code and binaries. This is the main method in which

cheats are developed.

For native applications, these level of cheats entail dynamically tampering with the

game’s running process in the operating system (OS) or statically tampering the game’s

static files that it relies on [4]. Application-level exploits crafted against a video game

typically leverage two subsequent methods that are known as function hooking and DLL

or shared library injection. Furthermore, binary-level exploitation can also be employed

such as memory corruption, heap exploits, return oriented programming (ROP), kernel

exploitation, etc.

Function hooking refers to the method in which an attacker patches a function in an

executable’s binary to jump to a different function upon being called and returning

execution to the original function afterwards, or possibly jumping to another area in code

to change execution flow altogether. From a software developer’s perspective, function

hooking is useful for debugging or modifying a program’s functionality. However, from a

cheat developer’s perspective function hooking is useful for overriding game functions

with arbitrary cheat functions. Fig. 1 and Fig. 2 illustrate respectively the execution flow

of a normal function call and the execution flow of a function call that has been hooked.

Consider the following example C code which applies a typical approach for hooking

a function in Windows:

Listing 1. Function hooking

/ / Get a d d r e s s o f t a r g e t f u n c t i o n

void * t a r g e t F u n c t i o n = ( void *) Ge tP rocAddres s (

GetModuleHandle ( ”someDLL . d l l ” ) ,

” T a r g e t F u n c t i o n ”

5



Fig. 1. Normal function call execution flow.

Fig. 2. Hooked function call execution flow.

) ;

/ / Prepare jump ( jmp 0 x0 ; r e t )

unsigned char jumpBytes [ 5 ] = {

0xE9 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 xC3 } ;

/ / C a l c u l a t e r e l a t i v e a d d r e s s

DWORD r e l a t i v e A d d r e s s = (

(DWORD) hookFunc t ion −(DWORD) t a r g e t F u n c t i o n −5);

/ / W r i t e a d d r e s s t o jmp i n s t r u c t i o n

memcpy(& jumpBytes [ 1 ] ,

&r e l a t i v e A d d r e s s ,

4 / / a d d r e s s i s 4 b y t e s ) ;

6



/ / Make s u r e memory i s w r i t a b l e

/ / and save i n i t i a l memory p r o t e c t i o n

DWORD o l d P r o t e c t ;

V i r t u a l P r o t e c t ( t a r g e t F u n c t i o n ,

6 ,

PAGE EXECUTE READWRITE,

&o l d P r o t e c t ) ;

/ / Patch t a r g e t f u n c t i o n w i t h jump

memcpy ( t a r g e t F u n c t i o n , jumpBytes , 5 ) ;

/ / R e s t o r e i n i t i a l memory p r o t e c t i o n

V i r t u a l P r o t e c t ( t a r g e t F u n c t i o n ,

6 ,

o l d P r o t e c t ,

&o l d P r o t e c t ) ;

In this code, a hook is configured to the function called TargetFunction located

in someDLL.dll. The result is that whenever TargetFunction is called, the hook

will immediately redirect execution to the user-defined hook function hookFunction

via the JMP instruction (byte value 0xE9) that was patched into TargetFunction.

Note that this example assumes that hookFunction has already been injected into the

process’s memory space. Furthermore, after the JMP instruction a RET instruction (byte

value 0xC3) is also patched to the target function. This allows the program to return

execution to the original TargetFunction after the hook function is called. Overall,

this is a generalized approach to function hooking; Other methods exist that all

accomplish the same goal which is to modify execution flow of function calls to redirect

to user-defined hooked functions.
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This allows a cheater to write arbitrary instructions to be executed via the hook

function, making this a powerful method of cheat development. For example, a cheater

may identify a function in a game’s binary that allows a player to walk in the game and

hook this function to alter its intended behavior such as causing the player to teleport, fly,

etc. instead.

Function hooking is often paired with DLL or shared library injection in which the

hooking mechanisms and hook functions are compiled into a DLL or shared library and

then injected into the game’s running process. Injection involves the following generalized

steps:

1) Allocate memory in the target process

2) Load cheat DLL into the target process memory

If done successfully, the functions in the DLL or shared library will be loaded into the

process and accessible by the rest of the program. In addition, it is often the case where

code is executed upon the DLL or shared library being loaded, such as for patching the

target functions to hook to the injected functions.

Furthermore, another client-side cheat approach may involve static files that game

uses may be altered, most notably a cheater may target DLL files containing game

functions and replace the DLL files with his or her own that contains cheats. This is often

referred to as “DLL hijacking.” Another method involves hijacking threads and modifying

them with threads that the cheater controls.

Cheats may target hardware to accomplish cheating. An example of this is Direct

Memory Access (DMA) cheats in which an external hardware device is connected to the

cheater’s PC that is capable of reading and writing arbitrary memory to the PC, i.e. for

writing directly to a game process’s memory [5], [6].
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Similar methods are employed for web browser based games. In this case, rather than

modifying executable binaries, client-side cheat development entails modifying client-side

JavaScript.

2.1.3 Protocol-level Cheats

Protocol-level cheats are network exploits that target security vulnerabilities in the

game’s underlying network communication implementation. This may include exploiting

fundamental network vulnerabilities such as replaying packets to replay in-game actions,

dropping packets to avoid making certain in-game actions, or spoofing packets to

masquerade as other players.

Games also often implement certain network algorithms to improve playability that

may introduce additional vulnerabilities. One example is the “dead-reckoning” algorithm

in which in the event of packets containing a player’s in-game position is lost, the game

may attempt to extrapolate position information from previous packets to calculate the

expected position had the packet loss not occurred and update the player’s position

appropriately. A cheater may purposefully drop packets to trigger and abuse a vulnerable

dead-reckoning implementation [1].

2.1.4 Infrastructure-level Cheats

Infrastructure-level cheats are exploits that target components that the game relies on.

For example, an attacker may monitor network packets, and modify his or her display

drivers to display extra information from the monitored network packets with information

that is not intended to be visible. These cheats leave little to no trace as no actual game

resources are tampered with. Instead, only third-party components that the game uses are

tampered with. This type of cheat is an exploit of information exposure of unnecessary

information.
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2.2 Blockchain

Blockchain refers to the decentralized network technologies which provide users an

immutable ledger of all transactions on the network. Due to its maintaining of an

immutable ledger, it has seen widespread popularity in financial uses. Specifically it has

seen success in its use in digital currencies that are referred to as “cryptocurrency.”

Bitcoin and Ethereum are examples of successful blockchains used as cryptocurrency.

2.2.1 Decentralized Applications

Outside of cryptocurrency, blockchain technologies have increasingly been used in

decentralized applications or commonly referred to as “dApps.” This is made possible by

using what are known as “smart contracts” on the blockchain. Smart contracts are code

compiled to bytecode and stored on the blockchain, which users can interact with by

calling functions on the smart contract. DApps entail hosting applications on a blockchain

rather than a centralized server as is the case in the traditional client-server network

model. In the dApp architecture model, logic and data that is conventionally maintained

by servers and databases is instead stored on and served from smart contracts.
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3 RELATED WORKS

3.1 Cheat Detection

Han, Kwak, and Kim [7] categorize cheat detection as being either client-side,

network-side, or server-side defenses. Each has strengths and weaknesses. As a result,

game developers typically will implement cheat detection in each category, reaping the

benefits of each. Table 1 illustrates different cheat types and the effectiveness of different

anti-cheat architectures. Specifically, three categories of anti-cheats architectures were

evaluated: client-side focused, server-side focused, or peer-to-peer (P2P) focused.

Table 1
Cheat categories and the effectiveness of different anti-cheat architectures [1].

Cheat C/S PB/VAC2 AS SEA RACS P2P RC
Game Level

Bug o x o o o o
Application Level

Information Exposure o x x x o o
Invalid Commands o x x x o o

Bots/Reflex Enchancers x o x x x x
Protocol Level
Inconsistency o x o o o o

Collusion x x x x x x
Spoofing, Replay o x x o o o

Infrastructure Level
Information Exposure o o x x o o

Proxy/Reflex Enhancers x x x x x x

3.1.1 Client-side

Client-side cheats rely on tampering with the game software, the game’s running

process, or network communications. As such, client-side cheat detection relies on

monitoring on the player’s personal computer the game’s software, running processes, and

network communications for integrity and actively taking measures in preventing

tampering. To prevent cheaters from inspecting static files and binaries, obfuscation of all

distributed files is performed. This may include obfuscators that restructure code and

rename variables to hinder code readability, using custom file and network packet formats
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to prevent tampering and reading of files and network packets, or encrypting files to

maintain integrity and confidentiality.

Detecting cheats resulting from tampered game software requires client-side anti-cheat

that monitors running processes, memory, and the filesystem for modified states. This may

even go as far as monitoring kernel-level information. However, this approach of

monitoring player’s personal computers has received criticism due to privacy concerns [2].

3.1.2 Network-side

Network packets can be monitored and analyzed for anomalous behavior i.e., anomaly

detection. This is a type of statistical analysis that leverages the data generated by

network packets. Specifically, normal execution of a game will fall within some range of

behavior, which becomes evident as game data is collected over time. If some user’s

behavior falls out of this expected range of normal behavior, that user can be flagged as

suspicious of cheating. Similarly, machine-learning techniques can be leveraged with the

same data are often trained to classify whether cheating is occurring [8].

3.1.3 Server-side

Game servers collect logs regarding game state. This can include all information

regarding players’ actions in the game including raw user input like mouse movement or

key presses. Like network-side cheat detection, all the game data can be analyzed by

methods such as data mining, machine learning, or statistics to detect cheating. This

typically relies on anomaly detection. That is, normal game playing is expected to fall

within certain patterns and ranges; if a player consistently plays outside of expected

patterns and ranges, it may indicate cheating. Other methods include validating user

actions against expected actions i.e., client-side emulation on the server [4]. This entails

calculating normal game execution with the given parameters and comparing it with the

received execution. Strong server-side cheat detection is important as it is the only method

that is not open to tampering or inspection by cheaters.

12



3.1.4 Combined Methods

Client-side cheat detection is effective as it allows detection at the cheating source but

cannot be considered a complete defense because since it is deployed on the client,

cheaters have full control to inspect and develop bypasses to detection measures.

Server-side cheat detection addresses this limitation as cheaters cannot inspect or tamper

with server code. However, server-side cheat detections have drawbacks in that it there is

a risk that it may impact the business critical server’s performance for processing actual

gameplay by consuming excessive resources for cheat detection, it introduces more

components that developers must maintain and thus more expenses, and they are generally

limited to analyzing player data and logged action. Therefore, combining all types of

anti-cheat — server-side, network-side, and client-side — can reap the best aspects of all

and mitigate the weaknesses of each [9].

For example, Kaiser, Feng, and Schluessler [4] proposed anomaly-based cheat

detection that works by validating game execution against expected game execution

obtained via emulation of the game on the server. First, the game is loaded and analyzed

on the server for dynamic and static properties regarding files, memory usage patterns,

function usage patterns, among other factors. As a result, the server learns how to

efficiently emulate dynamic game data. The server receives dynamic, untrusted game

execution data from the client, which it then validates against the emulated, trusted game

execution. This is an effective approach as it encapsulates both client-side and server-side

cheat detection methods collaboratively.

3.1.5 Peer-to-peer

Most games have relied on the client-server network model, which has inherent

limitations in both performance and its effectiveness in cheat detection. Performance is

limited as having a central server serves as a single point of failure, as well as making it

susceptible to denial-of-service attacks. In addition, cheat detection is adversely affected
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as clients have full reign over the data communicated to the server. This can be addressed

with P2P network architectures.

Webb and Soh [1] propose how P2P game architectures can allow effective cheat

detection. With P2P games, peers can work together to validate game state. That is, since

the majority of players can be trusted to be non-cheaters barring collusion, all players i.e.

peers can perform individual validation of game state and vote to reach an authoritative

majority consensus on the actual game state. Another method includes having peers take

turns to make actions, which can prevent many network-side cheats such as replay attacks.

Additionally, P2P can also be combined with client-server architectures. For example,

dividing a game into many smaller P2P networks, each with a “referee” that validates

game state, similar to how a server validates game state in the client-server model.

3.2 Blockchain in Games

Blockchain is a relatively new technology that has seen wide success in the digital

currency market. Recently, blockchain has been expanding into other industries. This

includes the videogame industry where games are recently seeing development with

blockchain technology rather than traditional client-server technologies. Blockchain has

attracted developers to push to integrate them into their applications, or replace existing

components altogether, as it can effectively replace the client-server architecture that has

inherent issues in performance, maintainability, and user data privacy [10]–[14]. Rather

than a server, a blockchain-based game leverages smart contracts to implement game

logic and stores game data and state on the blockchain [15], [16].

Blockchain games began to emerge in popularity in 2018 and have shown continued

growth over time [17]. Being a relatively new technology, however, consequently means

novel security vulnerabilities are introduced and have been identified in a number of

blockchain games [18], [19].
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Patel et. al [20] use blockchain alongside the client-server model by using Ethereum

smart contracts to maintain game state among players, IPFS to maintain player data, and

servers to handle user authentication and pushing game updates.

3.2.1 Blockchain Cheat Detection

Inherently, blockchain games have strong security due to its design of guaranteeing

data integrity and immutability. This and blockchain’s decentralized design, which

removes the necessity of a central server, have been catalysts for its increased usage in

applications.

Blockchain being used solely for cheat detection and prevention has also seen some

adoption. Kalra, Sanghi, and Dhawan [21] propose an architecture for using blockchain

for real-time cheat prevention in online games. In this method an existing game client is

minimally modified to send and receive game data respectively to and from a Hyperledger

Fabric blockchain. This modification involves automatic instantiation of blockchains for

each session in the game, which includes enabling the client to perform peer discovery

and generating genesis blocks and smart contracts. This approach requires the developer

to predefine a set of rules which the application will read and automatically generate and

deploy smart contracts from. Kalra proposes anti-cheat via peer consensus; game state is

validated via peer consensus which consequently preventing cheats, considering that

cheats are essentially anomalies in individual nodes that cannot possibly reach consensus

outside of collusion. This approach does not require an entire game to be developed on a

blockchain as is the case with blockchain games but is implemented independently to be

integrated into existing games.
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4 SYSTEM DESIGN

4.1 Design Considerations

4.1.1 Blockchain

Blockchain is essentially a distributed network that stores data on a ledger and by

design guarantees its data to be valid and immutable. This is particularly useful in

applications that require data storage, data validation, data immutability, and data logging.

Similarly, the responsibilities of a server-side anti-cheat can be summarized as follows:

∙ Validate player input for expected values and behavior.

∙ Validate game state for expected values and behavior.

∙ Validate player data for expected values.

∙ Log player and game data for future reference.

All player inputs and data are validated for expected values and behavior. In the most

simple case, this may involve validating that a player does not hold any unexpected data

which might easily be checked by conditional if-statements. In more complex cases as

discussed in section 3, analyzing player behavior can be done such as with statistical or

machine-learning models.

It is also important to log all relevant game data for future reference. For example, if a

cheat is not detected by the anti-cheat, game administrators may be able to reference

game logs to manually determine if a player is cheating, or data may be aggregated and

used to train a machine-learning model for cheat detection.

Blockchain fulfills all these use cases with its data validation mechanisms and

maintaining of a ledger of all past records. The only requirement from the specific

blockchain technology to be used is that it must support handling complex logic that an

anti-cheat entails. To this end, any blockchain that supports smart contracts fulfills this

requirement. This research explores the feasibility of applying blockchain in a server-side

anti-cheat implementation.
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4.1.2 Design principles

Despite the advances in decentralized blockchain games as discussed in section 3.2,

the majority of online video games still rely on the centralized client-server model. For an

anti-cheat to be feasible for wide spread adoption in modern online video games, it must

be modular and act as an extension to and not a replacement to existing client-server

game infrastructure to allow seamless adoption. If an anti-cheat implementation requires

significant changes to be implemented into a game’s existing infrastructure, the trade-off

between the cost to integrate and overall benefit may not be worthwhile. Integrating the

decentralized architecture of a blockchain with the centralized architecture of the

client-server model poses a challenge as each rely on very different technologies.

With this in consideration, the overall design decisions of the anti-cheat

implementation in both the code and system design were chosen to follow the

object-oriented design principles known as “SOLID,” which is an acronym that is defined

as follows:

∙ Single-responsibility principle which states that each component or class in a system

should have only one responsibility.

∙ Open-closed principle which states that components or classes should be extendable

but not modifiable.

∙ Liskov substitution principle which states that sub-types of a component or class

should be substitutable for each other.

∙ Interface segregation principle which states that interfaces of components or classes

should be only include methods that are used by the implementing component or

class.

∙ Dependency inversion principle which states that components or classes should

depend on abstractions not concretions.
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The “SOLID” principles ensure that software code and systems are developed in a

modular manner as to allow efficient maintainability in development. As a result, it is

followed by many software developers and likewise was chosen to be followed for this

anti-cheat implementation. This research provides an anti-cheat implementation based on

blockchain which is able to run alongside any existing game infrastructure by acting as an

extension rather than replacement of existing infrastructure.

4.1.3 Latency

Online video games that respond to player input in real-time must have low latency

for optimal player experience. It is necessary that any back-end software and architecture

respond quickly as to not introduce excessive latency. For instance, if a player presses a

button in the game it is expected that the game respond immediately to that button press,

not several seconds later. Therefore, an anti-cheat implementation must not interfere with

or negatively impact actual game communications. Blockchain, however, is not optimized

for fast response times. In fact, response times can be sporadic depending on the overall

usage of the blockchain due to its consensus mechanisms.

To address this, the blockchain anti-cheat implementation was chosen to operate

asynchronously to game communications. This asynchronous design enables the

anti-cheat to consume relevant game data with minimal to no impact on the time to

respond to player requests. The time for the anti-cheat to generate results will not impede

other game communications as it will be done asynchronously; the game is not required

to wait for a response from the anti-cheat as is the case in a synchronous design. Rather,

once a transaction is sent to the anti-cheat a response will be sent once the transaction is

complete, allowing the game to continue execution while the anti-cheat operates

asynchronously. This, however, has a drawback in that cheat detection is not performed in

real-time; There inherently will be a delay from when a player cheats and when it is

detected. The time for a cheat to be detected, however, is not an important metric; the
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important metric to consider the accuracy of cheat detection. As long as a cheater is

eventually detected with high accuracy, then the anti-cheat can be deemed effective. In

addition, it is important that both false negatives and false positives be minimized.

Legitimate players should not be wrongly penalized.

4.1.4 Blockchain facade

In the anti-cheat blockchain implementation of Kalra et. al [21], it is required to

introduce new dependencies that allow communication with the blockchain. However, this

approach has several drawbacks from a development perspecive. Blockchain technology

is relatively new compared to client-server technologies and thus may lack mature

libraries that ease integration to existing code infrastructure. For example, perhaps the

most widely adopted blockchain library for clients is the “web3.js” [22]. However,

“web3.js” is specfic only to Ethereum and only offered in JavaScript. This means that if

the anti-cheat implementation were to use “web3.js,” only Ethereum and JavaScript would

be supported. In addition, it requires additional dependencies to the code that introduce

more complexity. Requiring a specific library and blockchain technology to implement

the anti-cheat would be a violation of the dependency inversion principle of “SOLID,”

which states that components should rely on abstractions and not on concretions. To

alleviate this and provide seamless integration into existing game infrastructure, a facade

to the blockchain can be provided in the form of an API.

4.1.5 Network protocol

The network protocol to be used for this anti-cheat API must likewise be widely

supported to allow seamless integration. For this reason, WebSockets and HTTP were

chosen for the network protocols used by the API. HTTP and WebSockets are virtually

universally supported protocols as both are IETF standardized protocols that the world

wide web rely heavily on. It is important, however, to consider that HTTP traffic is not

optimized for real-time communications so latency will be expected to be high.
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WebSockets in contrast are light-weight and consequently more optimal for real-time

communications and extensively used in web browser based online video games. Still, the

WebSockets protocol is not completely optimal for real-time online games as it runs on

top of the lower level TCP protocol. TCP is inherently less performant due to its

implementation requiring ordered, loss correcting, and error correcting communication.

The other network protocol to consider is UDP which is also widely used in game

development due it to being a light-weight protocol that is optimal for real-time, low

latency communications. Unlike TCP, UDP has no requirements in guaranteeing order,

loss correction, or error correction and is consequently a much faster protocol. Therefore,

UDP is the optimal protocol for online games and is widely used in the real world.

However, UDP is not supported in web browsers and can only be utilized in native

application based games, eliminating support for web browser based games. The

WebSockets protocol in contrast is widely supported both inside and outside of the web

browser and thus chosen for this research implementation to allow widespread support.

4.1.6 Smart contracts

Complex logic can be implemented in a blockchain with smart contracts as discussed

in section 2.2.1. From a high-level overview, an online game can be divided into two

components: players and sessions. Therefore at a minimum, the anti-cheat’s blockchain

must have smart contracts defined for players and sessions.

There are two options to consider for the method of deployment of the smart contracts:

∙ On the public blockchain. This provides the benefit in that game developers do not

have to maintain the anti-cheat infrastructure; it is fully decentralized on the public

blockchain. Most public blockchains are reliable and can be trusted for resiliency

against availabliity issues. In addition, a public blockchain allows full transparency of

game data, which may or may not be desired dependening the desired confidentiality

of the data. The major drawbacks of a public blockhain is that it will be very costly
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as it requires real cryptocurrency to make transactions and that transaction times may

be slow due to necessitating competition with all other transactions.

∙ On a private blockchain. This provides the benefit in that transaction times will be

minimized as the game is the only blockchain user and no actual cryptocurrency is

required which saves on costs. The drawback of a private blockchain is that the game

developers will have to host and maintain it.

4.1.7 Benefits of this implementation

An additional benefit of using an API as a facade to the blockchain, rather than direct

communication from the game server to the blockchain such was done by Kalra et

al. [21], is increased modularity of the blockchain component. That is, any blockchain

technology can be used behind the API facade if implemented correctly. In terms of the

“SOLID” principles, this satisfies the Liskov substitution principle which states that

sub-types of a component should be substitutable of each other and the dependency and

the dependency inversion principle which states that components should rely on

abstractions and not on concretions. Furthermore, a conventional server-side anti-cheat

implementation may require an intertwining of code that handles game logic and code

that performs cheat detection. This is a violation of the “SOLID” single-responsibility

principle, which states that each component should have only one responsibility, and thus

not ideal as it hinders the efficiency of development due to the decrease in modularity.

Instead, the code that handles game logic and the code that performs cheat detection

should be separated into different components to separate responsibilities. Implementing

an anti-cheat as its own component in the game’s back-end infrastructure, rather than as a

part of the game server code, effectively accomplishes this.

4.1.8 Components

With these factors considered, the following components and their responsibilities

were determined:
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∙ “Players” which send inputs to the game server.

∙ “Game server” which processes player input and maintains game state.

∙ “Anti-cheat server” which provides the anti-cheat facade API to maintain anti-cheat

rules and communicate information on cheat detections.

∙ “Blockchain” which validates game state according to the anti-cheat rules.

4.2 System Architecture

The resulting architecture of the blockchain anti-cheat implementation is illustrated in

the component diagram in Fig. 3. Here, the multitude of players communicate with the

game server to update and receive game state. The game server communicates with the

anti-cheat API server to forward the game state and receive information about any cheat

detections. Lastly, the anti-cheat API communicates with the blockchain to update its data

and receive updates on players that were detected to be cheating via smart contract events.

Within the blockchain, several smart contracts are involved as illustrated in the class

diagram in in Fig. 4. There exists a single “Anticheat” smart contract, which owns many

“Player” and “Session” smart contracts. The “Anticheat” smart contract handles all of the

creation of the “Session” and “Player” contracts. The “Session” smart contracts contain

game data on individual game sessions and maintain game session specific data on its

associated “Player” contracts. The “Player” smart contracts contain game data on

individual players. Both the “Session” and “Player” contracts extend the “DataHandler”

contract which is responsible for storing and updating game data.
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Fig. 3. Blockchain anti-cheat component diagram.
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Fig. 4. Blockchain smart contract class diagram.
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5 IMPLEMENTATION AND EVALUATION

5.1 Blockchain

Ethereum was chosen as the blockchain technology due to its widespread usage in

blockchain applications and its support for smart contracts. To create a private Ethereum

blockchain, an Ethereum emulator called “Ganache” was used as it provides a fast, easy

way to locally host a private Ethereum blockchain. Following this, the anti-cheat was

tested on the public Ethereum Sepolia testnet.

5.2 Anti-cheat API

The anti-cheat API was developed and hosted in Python using the following libraries:

∙ “FastAPI” which is a framework for developing web APIs.

∙ “Pydantic” which is a data validator library.

∙ “web3.py” which is a library for interacting with the Ethereum blockchain.

∙ “uvicorn” which is an Asynchronous Server Gateway Interface (ASGI) webserver.

The Python programming language with the FastAPI library were both chosen for

their widespread support and ease of development. The API was developed with a

RESTful architecture. In the API, it is important that user input be validated for expected

formats and values to prevent undefined and potentially insecure behavior resulting from

untrusted user input. Therefore, the Pydantic library was used for defining and enforcing

API schemas, which acts as an input validation mechanism. The API is hosted with the

uvicorn ASGI webserver, mainly due to FastAPI’s built-in support for it.

5.2.1 Rule-based system

As discussed in Section 4 the anti-cheat API acts as a facade to the blockchain to

facilitate widespread support for existing server architectures. Furthermore, it is also

necessary to allow the anti-cheat to be easily customizable so that it can be used to defend

any possible game. To allow this, a rule based system was developed in which the server
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must define specific conditions that game data is expected to conform to. The intention of

this is that if any of these rules or conditions are not met, it can be categorized as cheating.

This allows the added benefit in there are no restrictions as to when anti-cheat rules can

be defined; they can be defined before, during, or after a game session is running.

As illustrated in Fig. 4 and Section 4, the anti-cheat blockchain contains a single

“Anticheat” smart contract which handles the logic of maintaining a multitude of “Session”

and “Player” smart contracts. The server must interact with the “Anticheat” smart contract

to create new “Session” and “Player” smart contracts. These contracts maintain session

and player data and as such are expected to have one-to-one mappings to their server-side

equivalents. The “DataHandler” smart contract that both “Session” and “Player” extend

contain functions on maintaining data and implementing anti-cheat rules. Therefore, it is

possible set anti-cheat rules both session-wide and per individual player.

5.2.2 API Specification

The anti-cheat API supports “CRUD” operations (creating, reading, updating, and

deleting) of rules to enforce by the anti-cheat. For the request and response schemas, the

JSON format is used. Both HTTP and WebSocket network protocols are supported.

5.2.2.1 HTTP: The following HTTP API endpoints and their purposes were

defined as follows:

∙ POST /session/{session_id} - create a game session.

∙ POST /session - create a game session with a random ID.

∙ GET /session/{session_id} - retrieve the game session address.

∙ POST /session/{session_id}/player/{player_id} - create or

update a player in a session.

∙ POST /session/{session_id}/player - create or update a player in a

session with a random ID.
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∙ GET /session/{session_id}/player/{player_id} - retrieve the

player address in a session.

∙ PUT /session/{session_id}/data/{data_type}/{key} - create or

update player data in a session.

∙ GET /session/{session_id}/data/{data_type}/{key} - retrieve

session data in a session.

∙ PUT /session/{session_id}/rule/{data_type}/{key} - create or

update an anti-cheat rule in a session.

∙ GET /session/{session_id}/rule/{data_type}/{key} - retrieve an

anti-cheat rule in a session.

∙ PUT /session/{session_id}/data/{data_type}/{key}/validate

- update session data in a session while validating it against the anti-cheat rules.

∙ PUT

/session/{session_id}/player/{player_id}/data/{data_type}/

{key}/validate - update player data in a session while validating it against the

anti-cheat rules.

∙ GET

/session/{session_id}/player/{player_id}/data/{data_type}/

{key} - retrieve player data in a session.

Session and player data is sent with the following schema:

Listing 2. Session and player data schema

{

‘ ‘ key ’ ’ : ‘ ‘ key ’ ’ ,

‘ ‘ d a t a ’ ’ : [ 0 , 1 , 2 , . . . ]

}
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The “key” field contains a unique string to associate “data” with, i.e. a key-value

mapping. The “data” field is an integer value. Integers were chosen to represent all

possible data types as they can also indirectly represent booleans (with 1 or 0) or floats

(when rounded). They can also represent strings if the string values are expected such as

the case in an Enum type.

5.2.2.2 Anti-cheat rule schema: The anti-cheat rule system follows the following

schema:

Listing 3. Anti-cheat rule schema

{

‘ ‘ key ’ ’ : ‘ ‘ key ’ ’ ,

‘ ‘ d a t a ’ ’ : 0 ,

‘ ‘ ope rand ’ ’ : ‘ ‘ eq ’ ’ | ‘ ‘ ne ’ ’ | ‘ ‘ l t ’ ’ | ‘ ‘ g t ’ ’ | ‘ ‘ l t e ’ ’ | ‘ ‘ g t e ’ ’

}

The “key” field contains the same “key” value of the data that the rule is intended to

be attached to. The “data” field contains the value that input data will be compared to by

the “operand” value. If any input data does causes the condition that is defined by the

“data” and “operand” values to be fulfilled, that input will be flagged as cheating. The

possible “operand” values are defined as follows:

∙ “eq” - equals

∙ “ne” - not equals

∙ “lt” - less than

∙ “gt” - greater than

∙ “lte” - less than or equal to

∙ “gte” - greater than or equal to

As mentioned, rules are defined either for a session or a single player, and within a

session or a player, rules are mapped to key values. Each key can have an indefinite
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amount of rules attached to it. Therefore, multiple rules can be attached to a single key to

create complex rules.

5.2.2.3 WebSockets: HTTP, however, is not optimal for real-time

communications. To this end, a WebSocket endpoint is also provided that offers the same

operations. The WebSocket requests use JSON with the following schema:

Listing 4. WebSocket Request Schema

{

‘ ‘ a c t i o n ’ ’ : ‘ ‘ a c t i o n s t r i n g ’ ’ ,

‘ ‘ msg ’ ’ : { . . . }

}

The fields of the request schema are defined as follows:

∙ The action field determines which operation to perform.

∙ The msg field contains the same request data that is used in the relevant HTTP

request.

5.2.2.4 API Responses: All JSON responses follow the JSend response

specification:

Listing 5. JSend Response Specification

{

‘ ‘ s t a t u s ’ ’ : ‘ ‘ s u c c e s s ’ ’ | ‘ ‘ f a i l ’ ’ ,

‘ ‘ e r r o r ’ ’ : ‘ ‘ e r r o r m e s s a g e ’ ’ | n u l l ,

‘ ‘ d a t a ’ ’ : { . . . }

}

The fields of the JSend response schema are defined as follows:

∙ The status field designates whether the request succeeded or failed.
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∙ The error field contains the error message string if the request failed, or null or

fully omitted if the request was successful.

∙ The data field contains the same relevant response data used in the HTTP

responses.

5.3 Implementation

5.3.1 Online Game

Open-source online games were used to test the effectiveness of the anti-cheat. First,

it was necessary to develop cheats for these games. Then, the games were extended to

communicate with the anti-cheat API to detect cheats and take action when detected.

“example-.io-game” [23] is a simple game that includes only two in-game objects:

players and bullets. The game is played on a two-dimensional plane with players

controlling movement through their mouse. As players move, bullets are emitted from the

players, which if collide with other players decreases the collided players’ health. The

game relies on the “Socket.io” library, which is built on top of the WebSocket protocol, to

handle client-server communications. The server maintains game state, which is then

repeatedly broadcasted to all players over “Socket.io”.

In its original state the “example-.io-game” game had no apparent vulnerabilities that

could be exploited for cheating. Therefore, the game was extended to introduce several

exploitable vulnerabilities for anti-cheat testing purposes. The following features were

added to the game:

∙ Ammo with a limited capacity of thirty rounds

∙ Speed boosts with a limited usage of three times

∙ Walls were modified to end a player’s game upon collision

All three features were intentionally designed to be vulnerable to client-side only

validation. That is, the input validation for each new feature is not implemented on the

server but only on the client. As a result, a cheater may exploit these vulnerabilities by
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Fig. 5. Screenshot of “example-.io-game.”

modifying the game client to remove the client-side validation to gain infinite ammo,

speed boosts, or bypass the loss condition that occurs upon wall collisions.

5.3.2 Execution Sequences

To have the game interact with the anti-cheat it was necessary to extend the code to

communicate with the anti-cheat API. The sequence used to configure the game with the

anti-cheat is illustrated in Fig. 6. To summarize:

1) Game server makes an API request to create a game session.

2) API server makes a transaction and calls the smart contract function to create the

game session.

3) Game server polls the API until the session creation transaction is completed.

4) Game server makes API requests to create anti-cheat rules.

5) API sever makes a transaction and calls the smart contract function to create an

anti-cheat rule for each rule.
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6) Game server polls the API until the rules creation transactions are completed.

7) Game server is ready.

The sequence used to connect a player to the game and anti-cheat is illustrated in

Fig. 7. To summarize:

1) Player connects to the game server.

2) Game server makes an API request to add a player to a session.

3) API server makes a transaction and calls the smart contract function to add a player

to a session.

4) Game server polls API until the player creation transaction is completed.

5) Game server adds player to memory.

The sequence used to update player data to the anti-cheat is illustrated in Fig. 8. To

summarize:

1) Player sends game data to the game server over WebSockets.

2) Game server makes an API request to validate the player data.

3) API server makes a transaction and calls the smart contract function to valdidate the

player data.

4) Smart contract function checks the player data against each rule it has.

5) If a validation rule fails:

a) Smart contract removes the player from the smart contract and revert the

transaction.

b) API server upon receiving a revert sends a response over WebSockets that a player

was flagged for cheating.

c) Game server receives player that was flagged and removes the player from the

game.
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Fig. 6. Sequence diagram of setting up an example-game-io game session.

5.4 Evaluation

The blockchain anti-cheat implementation was effective in preventing most types of

cheats. Webb et. al [1] compared different anti-cheat architectures and their effectiveness.

In terms of this categorization, this research implementation performs as expected from

an server-side anti-cheat. That is, cheats that can be encapsulated in player data and

network communications are mitigated, while cheats that occur client-side only such as
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Fig. 7. Sequence diagram of a player connecting to an example-game-io game session.

reflex enhancers are not mitigated. Client-side only cheats require client-side anti-cheats

such as PunkBuster (PB) or Valve Anti-cheat (VAC2) [1]. Table 1 was extended with this

research anti-cheat implementation to illustrate its effectiveness compared to other past

implementations in Table 2.

With regards to the performance, as discussed in Section 4.1.3 it is worth considering

the time that the anti-cheat takes to detect a cheat. Due to blockchain transaction times,

there exists an inherent and significant duration of time between the act of cheating and

the cheating being detected. Furthermore, it was also evident that introducing more

players in a single game session introduced further increased cheat detection time which

is expected due to the increased amount of transactions that are needed to be processed.

To address this, it was found that batching multiple points of data in a single transaction

improves performance. Table 2 and Fig. 9 summarize these evaluations.
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Fig. 8. Sequence diagram of rule-based data validation.

On the public Sepolia Ethereum testnet, transaction times were significantly greater

than the private blockchain as expected. To address this, gas prices were experimented

with in attempt to prioritize our transactions. However despite increasing gas prices,

transaction times were still excessively long for it to be considered feasible. In addition,

the transaction expenses needed to operate on on a public Ethereum blockchain is not

practical as real cryptocurrency would need to be obtained and spent. Ultimately, using a

public blockchain was not considered a viable option after this evaluation.
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Fig. 9. Mean time differences from cheat occurrence and cheat detection.

Table 2
Mean times to detect cheating

Batch Size Player count Mean Time (ms)
5 1 14333.2
5 3 72213.4
5 5 92680.3
10 1 21858.6
10 3 47688.8
10 5 61606.9

Table 3
Different types of cheats mitigated in each architecture, derived from Webb et. al [1].

Cheat Thesis C/S PB/VAC2 AS SEA RACS P2P RC
Game Level

Bug o o x o o o o
Application Level

Information Exposure o o x x x o o
Invalid Commands o o x x x o o

Bots/Reflex Enchancers x x o x x x x
Protocol Level
Inconsistency o o x o o o o

Collusion x x x x x x x
Spoofing, Replay o o x x o o o

Infrastructure Level
Information Exposure o o o x x o o

Proxy/Reflex Enhancers x x x x x x x
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6 FUTURE WORK

The anti-cheat was developed with the Ethereum blockchain due to its support for

complex logic with smart contracts. However, Ethereum is not optimal for real-time

communication as is necessitated by online games. This is evident in the measured

transaction times which limit the time to detect a cheat after it has occurred as discussed

in Section 5.4. To this end, it is worth exploring other blockchain technologies especially

with regards to comparing the performance differences of each. Solana blockchain may be

more feasible than Ethereum as it boasts transaction times of less than a second.

Furthermore, due to the inherent delays caused by blockchain transaction times, further

evaluation may also include also comparing a blockchain’s performance to a typical

server and database implementation performance.

Currently, the anti-cheat works using a rule-based system in which conditions that

data is expected to conform to must be defined through the API, as discussed in Section 5.

More complex rules can be defined by assigning multiple rules to a single key or defining

rules on-the-fly. However, it is not possible to define logic-based rules in this system. It is

worth exploring methods of developing a system to define logically complex rules.

As discussed in Section 4, a benefit of implementing an anti-cheat with blockchain is

that it maintains a ledger of all past transactions. In the perspective of online games, it

maintains game logs that can be reviewed and evaluated for cheating. It is worth

developing an interface to easily extract game logs from the blockchain. From there, the

collected data can be evaluated and possibly used to train a machine-learning model for

cheat detection.

Lastly, this implementation used “Ganache,” an Ethereum emulator, rather than an

actual Ethereum blockchain. While it was found that deploying to the public Etherum

testnet Sepolia was not practical due to the relatively high transaction times, it is worth

experimenting with an actual private blockchain rather than an emulated one.
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7 CONCLUSIONS

Overall, it was found that blockchain is a viable option for an anti-cheat

implementation. Blockchain is a very different architecture than the traditional

client-server architecture so it is important to facilitate its integration in existing

client-server applications or else it may be too difficult and thus not worthwhile to use. To

this end, the implementation in this research abstracts the blockchain with an API that is

hosted on a conventional server that supports both HTTP and WebSockets. Furthermore,

to allow the anti-cheat to be applied to any game, a rule system was developed in which

arbitrary conditions i.e. rules that game data must fulfill can be defined. These rules are

stored in smart contracts. Then, whenever data is updated it must first satisfy all of the

defined rules, or else the responsible player is flagged as cheating. With both the API

facade and the rule based system, this implementation is very modular and can be

integrated in a wide variety of possible existing games and game infrastructures.
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