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ABSTRACT 

ADAPTIVE WINDOWED SINC FILTER FOR IMAGE INTERPOLATION 

by Dang Nguyen 

 In this thesis, an image interpolation scheme using an adaptive windowed sinc, which 

varies in length and frequency response guided by the Laplacian operator, is proposed to 

improve quality and accuracy. First, an optimization is performed to minimize the squared 

error for each sliding window by sweeping a range of windowed sinc filters with varying 

filter lengths. The relationship between the windows, filter length, and edge intensity is 

analyzed to determine the optimal beta value and filter length. This analysis inspires an 

image interpolation approach that uses the Laplacian of each sliding window to choose the 

optimal beta and filter length. The performance of the proposed approach is compared with 

the optimized result, as well as traditional interpolation methods such as bilinear and bicubic, 

in terms of PSNR, SSIM, and a subjective visual test. The findings demonstrate the 

effectiveness of the proposed method in enhancing the resolution of images, contributing to a 

deeper understanding of adaptive windowed sinc filters and their potential applications in 

image interpolation.  

 



 

v 

ACKNOWLEDGEMENTS 

 I am deeply grateful for the guidance, patience, and support of Professor Choo 

throughout my thesis. His unwavering trust in my work helped me stay motivated and on 

track, even when my confidence wavered.  

 Secondly, I would like to express my sincere thanks to my family, especially my mother, 

for their unwavering support throughout my academic journey. My mother's sacrifices and 

encouragement played a crucial role in my accomplishments, and I will always be grateful 

for her selflessness.  

 And lastly, I would like to extend my heartfelt gratitude to my partner, Junelle, who has 

been my unwavering source of support since the beginning of this journey. Her patience, 

encouragement, and trust in me have been instrumental in helping me achieve this fulfilling 

conclusion to my thesis. While the completion of this thesis is a personal accomplishment, it 

was truly a team effort throughout, and I couldn't have done it without her by my side. 

 



 

vi 

TABLE OF CONTENTS 

List of Tables ............................................................................................................. vii 

List of Figures ............................................................................................................ viii 

List of Abbreviations ................................................................................................. x 

1 Introduction .......................................................................................................... 1 
1.1    Background and Motivation ....................................................................... 1 
1.2    Traditional Interpolation Methods .............................................................. 2 
1.3    Nearest Neighbor ........................................................................................ 4 
1.4    Bilinear Image Interpolation ....................................................................... 5 
1.5    Bicubic Image Interpolation ....................................................................... 6 
1.6    Windowed Sinc ........................................................................................... 7 
1.7    Windowed Sinc Filter Length ..................................................................... 9 
1.8    Kaiser Window ........................................................................................... 9 

2 Literature Review................................................................................................. 12 

3 Methodology ........................................................................................................ 14 
3.1    Overview ..................................................................................................... 14 
3.2    Image Interpolation Operation .................................................................... 14 
3.3    Filter Bank .................................................................................................. 15 
3.4    Image Interpolation Operation .................................................................... 16 
3.5    Performance Metrics ................................................................................... 17 

4 Results .................................................................................................................. 19 
4.1    Interpolated Image Result ........................................................................... 19 
4.2    Optimal Beta Map ....................................................................................... 21 
4.3    Optimal Filter Length Map ......................................................................... 22 
4.4    Optimal Beta and Filter Length vs Laplacian Operator .............................. 23 

5 Adaptive Filter Guided by Laplacian Operator ................................................... 24 

6 Conclusion ........................................................................................................... 25 

7 Further Work ........................................................................................................ 26 

Literature Cited .......................................................................................................... 27 
 

 



 

vii 

LIST OF TABLES 

Table 1.   Results Comparison between Bilinear, Bicubic, and Optimization for 
Least Squared Error in Terms of PSNR and SSIM .............................. 20 

 



 

viii 

LIST OF FIGURES 

Fig. 1.   Sinc function in time domain from [-3,3] and its frequency 
representation. ....................................................................................... 3 

Fig. 2.   Truncated sinc function and its compromised Fourier transform.  
The passband is no longer flat, transition band is not infinitely steep,  
and the stopband attenuation is not ideal. ............................................. 3 

Fig. 3.   Nearest neighbor kernel in time domain and magnitude of Fourier 
transform [2]. ........................................................................................ 4 

Fig. 4.   Bilinear kernel and magnitude of fourier transform with comparison  
to the truncatded Sinc and nearest neighbor. ........................................ 5 

Fig. 5.   Bicubic time domain approximation of the sinc function and  
magnitude response............................................................................... 7 

Fig. 6.   Popular windowing function such as Blackman-Harris, Hamming,  
and Hanning. ......................................................................................... 8 

Fig. 7.   Frequency response of Blackman-Harris, Hamming, and Hann 
windowing function. ............................................................................. 8 

Fig. 8.   Frequency of Blackman-Harris window for different length. .............. 9 

Fig. 9.   The frequency response for the Kaiser window for beta = 0 to 15 at 
increments of 5. As beta increases, the passband and stopband  
transition less steep and the cut off frequency increases. ..................... 10 

Fig. 10.   The Kaiser window for beta zero to 15 in increment of 5. At beta = 0, 
the Kaiser window is a rectangular window. The main lobe increases  
as the beta increases. ............................................................................. 11 

Fig. 11.   Image convolution operation for a scale of 2. Cells A, B, and C are  
the interpolated pixel values while gray X is the replicated sampled 
pixel. N0 is a windowed sinc 1xN kernel with displacement in X  
axis and zero displacement in Y. .......................................................... 15 

Fig. 12.   Filter bank illustration for filter max parameter of 11, the max value  
not being inclusive. ............................................................................... 16 

Fig. 13.   Code excerpt for image interpolation. The center of each sliding 
window is calculated based upon the upscaled location. ...................... 17 



 

ix 

Fig. 14.   Image interpolation of Lena image for scale of 2. Bicubic, Bilinear,  
and Optimization from filter bank sweep. ............................................ 19 

Fig. 15.   Lena image downsampled by scale of 2. Noticable pixelation that  
has transpired to the upsampled image. ................................................ 20 

Fig. 16.   Optimal beta map of Lena at scale of 2 and its distribution with  
respect to total image pixel. A visual trend of low beta near edge 
features is observed. .............................................................................. 21 

Fig. 17.   Filter length value which leads to the least error for scale factor of 2.  
It is evident that lower filter sizes near edge features leads to lower 
error. ...................................................................................................... 22 

Fig. 18.   Plot of absolute Laplacian output, binarized image when  
thresholding for values 9 and above, and the locations of 3x3 filters  
in the optimal window sinc sweep for scale factor of 2........................ 23 

Fig. 19.   Implementation flow of an adaptive window sinc filter which  
varies in frequency response and filter size guided by the  
Laplacian Operator. .............................................................................. 24 

 



 

x 

LIST OF ABBREVIATIONS 

LSE – Least Squared Error 
PSNR – Peak Signal-to-Noise Ratio 
SSIM – Structural Similarity Index Measure 
 



 

1 

1 INTRODUCTION 

1.1    Background and Motivation 

 The increasing demand for high-resolution images is prevalent in today’s usage of digital 

photography in social media, computer graphic in videos games, video processing in 

cinematography, and medical imaging for diagnosis. Image interpolation plays a crucial role 

in fulfilling these demands by resizing, resampling, or manipulation of low-resolution images 

to higher resolution formats while maintaining visual clarity. Traditionally these operations 

are performed by generalized approaches such as Bilinear, Bicubic, or edge guided 

algorithms. However recent works in neural network has outclassed traditional approaches in 

reconstructing super resolution images while preserving fine details and textures. Neural 

networks can discern the intricate relationships between low-resolution and high-resolution 

using multiple layers of interconnected neurons. Whereas generalized and deterministic 

algorithms are computationally simple compared to substantial number of multiply and add 

operations in neural networks. The tradeoff in visual quality and computation complexity 

between neural network and generalized algorithms does not make them exclusive to each 

other. Image interpolation approaches comprising of traditional approach to produce the 

initial high resolution and neural network to refine the finer details has been shown [1]. And 

while recent advancements in hardware are addressing the limitations of neural networks and 

subsequently decreased tradeoff of computation complexities and cost to image quality, 

traditional image interpolation approaches will continue to be applicable in energy and 

hardware resource limited use cases. In this thesis, an image interpolation scheme using an 

adaptive windowed sinc, which varies in length and frequency response guided by the 
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Laplacian operator, is proposed to improve quality and accuracy. First, an optimization is 

performed to minimize the squared error for each sliding window by sweeping a range of 

windowed sinc filters with varying filter lengths. The relationship between the windows, 

filter length, and edge intensity is analyzed to determine the optimal beta value and filter 

length. This analysis inspires an image interpolation approach that uses the Laplacian of each 

sliding window to choose the optimal beta and filter length. The performance of the proposed 

approach is compared with the optimized result, as well as traditional interpolation methods 

such as bilinear and bicubic, in terms of PSNR, SSIM, and a subjective visual test. 

1.2    Traditional Interpolation Methods 

 Image interpolation traditionally is viewed as the reconstruction of a continuous-time 

signal from its sampled values. Following the Nyquist-Shannon sampling theorem, the 

continuous signal, S(t), can be perfectly recovered if the sampling frequency is twice the 

highest frequency component of the continuous signal. By multiplying the frequency 

response of the sampled signal, S[k], with an ideal rectangular low-pass filter or equivalently 

convoluting the, S[n], with the sinc function in the time domain, S(t) can be perfectly 

synthesized. The time plot and magnitude of the frequency response of the sinc in time and 

its ideal rectangular low pass frequency response is shown in Fig. 1. 

 In the case where the sampling rate is insufficient and the continuous signal is not 

properly band-limited, the reconstructed signal will have aliasing or distortions due to 

overlap of signal frequencies. In addition, the sinc function is not practical as an interpolator 

due to its unbounded nature. Attempting to limit sinc function in the time domain will 
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Fig. 1. Sinc function in time domain from [-3,3] and its frequency representation. 

compromise the ideal cut off and stop band attenuation in the frequency domain as seen in 

Fig. 2. Traditional image interpolation techniques have been developed to approximate the 

sinc function while leveraging tradeoffs between the pass band roll off and high frequency 

attenuation.  

 
Fig. 2. Truncated sinc function and its compromised Fourier transform. The 
passband is no longer flat, transition band is not infinitely steep, and the 
stopband attenuation is not ideal. 
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1.3    Nearest Neighbor 

 Nearest neighbor image interpolation is a simple yet widely used method for increasing 

the size of an image. In this method, each pixel in the original image is simply replicated to 

create a larger image. As a result, nearest neighbor interpolation is fast and requires minimal 

computational resources. However, nearest neighbor interpolation produces images with low 

visual qualities such as blocky or pixelated and blurriness. The pixelated artifacts are 

evidence of poor high frequency attenuation and blurriness is a result of gradual frequency 

cut off. The resulting images can appear blocky or pixelated, with visible artifacts around 

sharp edges and transitions. Fig. 3 displays the time domain and frequency response 

comparison of the nearest neighbor to the truncated sinc. The time domain plot of the nearest 

neighbor is a poor approximation of the truncated sinc function. Thus the frequency response 

of the nearest neighbor has a undesirable stopband attenuation and wide transition band. 

Despite its limitations, nearest neighbor interpolation remains popular due to its simplicity 

and computational efficiency. It is often used in real-time applications where speed is critical, 

such as in video games or live video streaming.  

 
Fig. 1. Nearest neighbor kernel in time domain and magnitude of Fourier transform [2]. 
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1.4    Bilinear Image Interpolation 

 Bilinear image interpolation is a more sophisticated method of increasing the size of an 

image compared to nearest neighbor interpolation. In this method, a new pixel is calculated 

as a weighted average of the nearest four pixels in the original image. The weight of each 

pixel is determined by its distance from the location of the new pixel. Bilinear interpolation 

can produce higher-quality images compared to nearest neighbor interpolation, but it still has 

limitations. The resulting images can still appear blurry or have jagged edges around sharp 

transitions. Fig. 4 displays the bilinear in comparison to the nearest neighbor and truncated 

sinc function in the time domain and frequency domain. With an extra degree in the 

polynomial, it is closer to a sinc approximation than the nearest neighbor. The frequency plot 

shows greater stopband attenuation than the bilinear yet still worse than the truncated sinc. 

Equation 1 describes the time domain function to calculate the weighted coefficients for each 

2x2 neighboring pixels given their distance in X and Y. 

 

                                       (1) 

 
Fig. 4. Bilinear kernel and magnitude of fourier transform with comparison to the truncatded 
Sinc and nearest neighbor. 
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 Bilinear interpolation is commonly used in applications such as image resizing, computer 

graphics, and image processing. Its relatively low computational complexity and improved 

image quality make it a popular choice for many practical applications. 

1.5    Bicubic Image Interpolation 

 Bicubic image interpolation is a more complex method of increasing the size of an image 

compared to bilinear or nearest neighbor interpolation. In this method, a new pixel is 

calculated as a weighted average of the nearest 16 pixels in the original image, using a 

bicubic interpolation function. The weighted average for the 1-D interpolation is described in 

Equation 2. The time and frequency domain are plotted in Fig. 5 in comparison with the 

truncated sinc and bilinear functions. It is evident that the bicubic approximates the sinc 

function much better than the bilinear in the time domain. And this can be seen in the 

frequency plot that the stopband attenuation is better than the truncated sinc function. This 

leads to less distortions around the edges and overall smoothening of the entire image. 

              (2) 

 The additional complexity allows it to approximate the sinc function more closely and 

minimizes the abrupt discontinuity. The computational complexity of bicubic interpolation is 

higher than that of bilinear or nearest neighbor interpolation because it requires more 

calculations to determine the weighted average of the nearest 16 pixels. However, modern 

computing systems can process the additional computations required for bicubic interpolation 

quickly.  
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Fig. 5. Bicubic time domain approximation of the sinc function and magnitude response. 

 Bicubic interpolation can produce higher-quality images compared to bilinear or nearest 

neighbor interpolation, with smoother transitions and reduced artifacts. Bicubic interpolation 

is commonly used in applications such as image resizing, digital photography, and video 

processing. Its improved image quality makes it a popular choice for many practical 

applications, even though it is slower than other interpolation methods. Overall, bicubic 

interpolation strikes a balance between image quality and computation time, making it a 

popular choice for many image processing tasks. 

1.6    Windowed Sinc  

 Similar to the previous approaches in obtaining a spatially finite sinc approximation, 

window functions are used to bound the sinc function in a gradual manner relative to the 

rectangular truncation. The lack of abrupt truncation reduces the high frequency content 

which contributes to the overshoot from Gibbs phenomenon in approximating signals with 

discontinuity or sharp edges.  Many well-known window functions have been presented to 

taper the discontinuity, each with its own frequency responses tradeoff in term of passband 

ripple, and stopband attenuation. Shown in Fig. 6 and Fig. 7 are well known windows are the  
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Fig. 6. Popular windowing function such as 
Blackman-Harris, Hamming, and Hanning. 

 
Fig. 7. Frequency response of Blackman-Harris, 
Hamming, and Hann windowing function. 

Blackman-Harris, Hamming, and Hanning windows in time and frequency domain. The 

Blackman-Harris has a narrower main lobe in the time domain thus it has a larger cut off 

frequency and slower passband to stopband transition than the Hamming and Hanning. 
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1.7    Windowed Sinc Filter Length 

 The filter length is an important parameter in designing the windowed sinc filters as it 

affects the passband and stopband transition. Fig. 8 shows the frequency magnitude in 

logarithmic scale of the Blackman-Harris windowed sinc filter at lengths 51, 81, 111, and 

141. It is evident that longer filter lengths lead to sharper transition of the passband to 

stopband and higher stopband attenuation. And subsequently lower filter lengths may not 

adequately suppress higher frequencies, leading to aliasing in the interpolated image. Overall, 

the filter length is another parameter where the tradeoff of image quality and computational 

complexities occurs.  

 
Fig. 8. Frequency of Blackman-Harris window for different 
length. 

1.8    Kaiser Window 

 The Kaiser Window is a popular choice due to its adjustable properties, which allow for 

the fine-tuning of the trade-off between frequency resolution and side lobe attenuation. The 
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Kaiser window is a parameterized window function that depends on a single parameter, 

known as the beta parameter (β). This parameter controls the trade-off between the main lobe 

width and the side lobe level of the window function. A larger value of β results in a 

narrower main lobe but higher side lobe levels, while a smaller value of β results in a wider 

main lobe and lower side lobe levels as seen in Fig. 9. Fig. 10 shows the Kaiser window at 

beta 0 to 15 at increments of 5. At β equal to zero, the windowing function is a rectangular 

window or truncation operation. As β increases, the main lobe in the time domain become 

narrower and the tapering has greater effect. This in turns leads to a wider transition band in 

the frequency domain and higher stopband attenuation. The flexibility of the Kaiser window 

allows the optimization of least squared error detailed later in the thesis.  

 
Fig. 9. The frequency response for the Kaiser window for 
beta = 0 to 15 at increments of 5. As beta increases, the 
passband and stopband transition less steep and the cut off 
frequency increases. 
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Fig. 10. The Kaiser window for beta zero to 15 in 
increment of 5. At beta = 0, the Kaiser window is a 
rectangular window. The main lobe increases as the beta 
increases. 
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2 LITERATURE REVIEW 

 In recent years, various image interpolation techniques have been proposed to address the 

challenge of preserving image structures and minimizing artifacts. This literature review 

focuses on three significant works in this field, presenting different approaches to adaptive 

image interpolation. 

 Zhang and Wu [3] introduce a novel edge-guided image interpolation algorithm that 

significantly improves image quality by preserving edges and texture details. The algorithm 

utilizes directional filtering and data fusion techniques, starting with a directional decision 

process to identify the dominant orientation of local image structures. It then interpolates the 

image based on this orientation and employs data fusion to merge the results from different 

directions. Experimental results demonstrate that this edge-guided interpolation method 

outperforms other popular techniques in both objective and subjective image quality 

assessments. 

 The EpicFlow method [4] consists of two main steps. First, it establishes sparse 

correspondences between images using a feature-matching algorithm, such as SIFT or 

DeepMatching. This sparse correspondence is then used as input for an edge-preserving 

interpolation step, which computes a dense flow field while considering the underlying 

image structures. By leveraging edge information from the input images, EpicFlow ensures 

that interpolated flow values align with the edges and structures of the scene, resulting in a 

more accurate and coherent flow field. 

 Tai et al. [5] propose a super-resolution algorithm that enhances the quality of low-

resolution images by leveraging edge information and single-image detail synthesis. The 
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algorithm consists of two main steps. First, an edge-prior-based interpolation is applied to 

estimate high-resolution edge structures from the low-resolution input image. This step 

focuses on preserving crucial edge information in the image. Second, single-image detail 

synthesis is employed to recover high-frequency texture details, using both the low-

resolution input image and the interpolated high-resolution edge structures as inputs. 

 In conclusion, these three works focus on improving the quality of images by preserving 

crucial edge information and recovering high-frequency details. Each method presents a 

unique approach to improve interpolation performance by adapting to local image features, 

preserving edge structures, and minimizing artifacts.  
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3 METHODOLOGY 

3.1    Overview 

 This section of the thesis describes the methodology of obtaining the optimal Kaiser 

windowed sinc filter and filter length for each sliding window in an image interpolation. First 

a filter bank is created based upon the beta parameters and maximum filter length. Based 

upon the Fourier analysis of windowed sinc, the filter bank contains filters which ranges in 

cut off frequency, stopband transition, and steepness of the roll off. To obtain the optimal 

windowed Kaiser window and filter length for each sliding window, each filter is used with 

the sliding window of appropriate size centered at ILR(x, y). The optimal beta value and filter 

length of the filter, which corresponds in the least squared error to the reference image pixel, 

IHR(x,y), is returned. Each beta value and filter length are placed within its respective image 

sized array. A subjective visual analysis based upon the 2D plot is conducted followed by a 

statistical analysis to confirm the observed visual trend. Based on the confirmed trends of 

beta values and filter lengths, a generalized image interpolation technique guided by the 

Laplacian operator can be applied to a wider range of images. 

3.2    Image Interpolation Operation 

 For each interpolating pixel, a different kernel is applied based on its distance from the 

center pixel of the sliding window. Shown in Fig. 11 is an illustration of operation broken 

down into two 1-D convolution steps. First an intermediate pixel along the x-axis is 

interpolated using a 1xN kernel dependent upon the lateral distance or the result of pixel 

window * 1xN0 in the figure for cell A. Then the intermediate results are convoluted with a 

1xN1 dependent upon the vertical distance for the final pixel value.  
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Fig. 11. Image convolution operation for a scale of 2. Cells A, B, and C are 
the interpolated pixel values while gray X is the replicated sampled pixel. N0 
is a windowed sinc 1xN kernel with displacement in X axis and zero 
displacement in Y. 

 These steps can be combined by matrix multiplication of the two 1xN0 and (1xN1)T 

kernels to obtain an NxN kernel. An element-wise dot product the NxN sliding window with 

the NxN kernel to obtain the resulting interpolated pixel. 

3.3    Filter Bank 

 The filter bank is generated using three parameters, a maximum beta βmax, the 

incremental step of the beta values βincr, and a filter length maximum value. The minimum 

beta value, βmin, is set to zero and the number of beta values is shown in Equation 3. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑒𝑡𝑎 𝑉𝑎𝑙𝑢𝑒𝑠 ൌ  
ஒ೘ೌೣ

ஒ೔೙೎ೝ
                                             (3) 

 The minimum filter value is set to 3, the incremental value is set to 2, and the number of 

filter values is shown in Equation 4. The numbers of filters within a filter bank are the 

products of unique beta and filter values.  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒𝑠 ൌ  
୊೘ೌೣିଵ

ଶ
                                      (4) 

 The python implementation of the filter bank is constructed as a 2-dimensional array of 

class objects. The first dimension of the array holds the filters of a unique beta value. The 
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second dimension holds all the filters of the same filter size. Within each element of the array 

are a list of shifted windowed sinc of a beta value, β, and filter size for a specified scaling 

factor. An illustratio nof the filter bank with the maximum length parameter of 11 is shown 

in Fig. 12. 

 
Fig. 12. Filter bank illustration for filter max 
parameter of 11, the max value not being inclusive. 

3.4    Image Interpolation Operation 

 The image interpolation procedure consists of two loops which traverses through the 

upscaled image array size row and column as shown in Fig. 13. For each corresponding row 

and col value in the upscaled image, IHR, the nearest pixel in ILR is calculated on line 4 and 6. 

The x_floor and y_floor paired values indicate the center of the sliding window and line 9 

samples an Fmax x Fmax sliding window from ILR. The code then calls a function called 

optimal_sinc_wind() and passes the sliding window, the row and column pair within the IHR, 

reference pixel value, and the filter bank. Within the optimal_sinc_wind function, two loops  
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Fig. 13. Code excerpt for image interpolation. The center of each sliding window is 
calculated based upon the upscaled location. 

traverse through the beta value and filter size, respectively. Upon achieving an error which is 

less than the current least error value, it will update the optimal beta, filter length, and pixel 

value and return at the end of both loops. 

3.5    Performance Metrics 

 To evaluate the performance of the filter bank optimization approach against other image 

interpolations methods, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) will be used as the performance metrics. PSNR is widely used for measuring the 

quality of image construction. The arithmetic operation is described in Equation 5. The MSE 

is calculated by taking the average of the squared differences between each pixel in IHR and 

in the reconstructed image. The PSNR is then calculated as the ratio of maximum possible 

pixel value, 255, to the square root of the MSE. Typically, PSNR is expressed in decibels 

(dB), thus a higher PSNR indicates a good measure of image similarity. 

PSNR ൌ 10 logଵ଴ ቀ
ଶହହమ

MSE
ቁ                                                (5) 

 SSIM measures the similarity between two images by considering their luminance, 

contrast, and structural similarity. The luminance comparison is based on the mean 

brightness of the two images, while contrast is based on the standard deviation of the pixel 
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intensities. The structural comparison is based on the correlation between local pixel 

neighborhoods in the two images. The index ranges from -1 to 1, with the value of 1 

indicating perfect structural similarity between the reference image, IHR, to the reconstructed 

image. Equation 6 describes the measurement for image ‘x’ and image ‘y’.  

SSIMሺ𝑥,𝑦ሻ ൌ
൫ଶஜೣஜ೤ା௖భ൯൫ଶ஢ೣ೤ା௖మ൯

൫ஜೣ
మାஜ೤

మା௖భ൯൫஢ೣ
మା஢೤

మା௖మ൯ାஔ
                                           (6) 

 Both metrics are widely used for image interpolation quantitative measurements, but they 

should be used in conjunction with subjective evaluations. PSNR does not consider 

perceptual quality of the image as it is the difference in terms of pixel values. Both metrics 

are global and provide a single score for the entire image. PSNR and SSIM do not provide 

qualitative conclusions to local variations in image quality. 
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4  RESULTS 

4.1    Interpolated Image Result 

 The reconstructed image using the optimal windowed sinc filters showed comparable 

PSNR and comparable SSIM to both bicubic and bilinear interpolation methods, when 

evaluated against the original image. Shown in Fig. 14 is the result of the Lena image 

interpolated by scale of 2 using Bicubic, Bilinear, and the Optimization for least squared 

error from the filter bank. The Bicubic has the highest PSNR at 32.22 dB and 0.7614. Table 1 

displays the PSNR and SSIM for the optimal windowed sinc sweep, bicubic, and bilinear 

approaches with scale factors of 2, 4, 5, and 10. The performance in terms of PSNR and 

SSIM is of the optimal window sinc sweep is comparable to the Bicubic and better than the 

Bilinear across scaling factors.  

 
Fig. 14. Image interpolation of Lena image for scale of 2. Bicubic, Bilinear, and 
Optimization from filter bank sweep. 

 However, it is evident there are high pixelated artifacts in the optimal windowed sinc 

sweep result. This is an artifact from the highly pixelated downscaled image, ILR, as shown in 

Fig. 15. It is absent in the Bicubic and Bilinear and it is suspected that post processing 

blurring occurred. The obstacle is not fully addressed in this thesis, it presents an opportunity 

for further investigations.  
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Table 1 
Results Comparison between Bilinear, Bicubic, and Optimization for Least Squared Error in 

Terms of PSNR and SSIM 

Scale PSNR 
 

SSIM 
 

Bilinear Bicubic Optimization LSE 
 

Bilinear Bicubic Optimization LSE 
2 35.22 36.19 35.85 

 
0.9126 0.932 0.926 

4 33.06 33.63 33.32 
 

0.809 0.835 0.838 
5 32.02 32.22 32.10 

 
0.745 0.761 0.729 

10 30.81 31.15 31.08 
 

0.64 0.66 0.68 
 

 
Fig. 15. Lena image downsampled by 
scale of 2. Noticable pixelation that has 
transpired to the upsampled image. 

 Despite the pixelated artifacts, further subjective analysis at the optimal windowed sinc 

sweep shows highly refined details that is absent from Bilinear and Bicubic result. Within the 

enlarged area of Lena’s eyes in Bicubic, Bilinear, and the optimization of least squared error 

approach for scale of 10. The bicubic and bilinear results are noticeably blurred and lacked 

details such as her pupils.  
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4.2    Optimal Beta Map 

 Based upon the 2-D plot of optimal beta image sized array, a visual trend of low beta 

values corresponding to edge features is observed. Fig. 16 is the 2D plot of the optimal beta 

value and its distribution from interpolating the Lena image at scale of 2, beta value ranges 

from 0 to 15 at steps of 1, and the filter max length parameter is 13. The colorbar depicts low 

beta values as dark blue color and large beta values as bright green. A visual trend of non-

zero beta values as the optimal value near edge features can be seen. This indicates that using 

rectangular windows of the sinc function leads to accurate interpolation for smooth surfaces. 

For sliding window with high edge content, a wide bandwidth window of the sinc function 

leads to the least squared error. This conclusion leads to a hypothesis of edge detection 

kernels are able to guide the filter bank to an optimal filter for each sliding window. 

 
Fig. 16. Optimal beta map of Lena at scale of 2 and its distribution with respect to total 
image pixel. A visual trend of low beta near edge features is observed. 
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4.3    Optimal Filter Length Map 

 A subjective observation of the optimal filter 2D plot indicates a strong relationship of 

high filter length and sliding windows with large constrasts. Fig. 17 is the 2D plot of the 

optimal length of Lena at scale of 2 and filter max parameter at 13. For accurate 

interpolation, this plot indicates filter sizes larger than 3x3 on edge features and 3x3 filter 

size on smooth surfaces should be used. Low filter length leads to slow transition of the 

passband and high attenuation of the stopband. The distribution of filter sizes with respect to 

the total number of pixels within the image as shown in Fig. 17. Roughly half of the 

distribution uses 3x3 filter and 15% of the total image uses 5x5. And this distribution will 

vary from image but the trend of lower filter length at smooth surfaces and high filter length 

on high contrast area will lead to least squared error in the interpolated result. 

 
Fig. 17. Filter length value which leads to the least error for scale factor of 
2. It is evident that lower filter sizes near edge features leads to lower 
error. 
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4.4    Optimal Beta and Filter Length vs Laplacian Operator 

 The visual trend of 3x3 filters with low beta values near edge features is strongly 

correlated with the second derivative of the image. The Laplacian operator is a second-order 

differential operator that computes the rapid intensity changes of an image. Fig. 18 displays 

the Laplacian result after an absolute operation, the binarized image after thresholding the 

absolute result to 9 and greater, and the locations of filter size greater than 3x3, respectively. 

The strong correlation observed between the filter size greater than 3x3 and specific 

thresholding of the Laplacian image indicates that the Laplacian serves as an excellent guide 

for choosing the optimal filter size for each sliding window. By leveraging this relationship, a 

more efficient and adaptive image interpolation scheme can be developed, resulting in 

improved image quality and accuracy.  

 
Fig. 18. Plot of absolute Laplacian output, binarized image when thresholding for values 9 
and above, and the locations of 3x3 filters in the optimal window sinc sweep for scale 
factor of 2. 
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5 ADAPTIVE FILTER GUIDED BY LAPLACIAN OPERATOR 

 The strong correlation observed between the low filter size and specific thresholding of 

the Laplacian image indicates that the Laplacian serves as an excellent guide for choosing the 

optimal filter size for each sliding window. By leveraging this relationship, a more efficient 

and adaptive image interpolation scheme can be developed, resulting in a practical 

implementation of an adaptive window sinc filter which varies in frequency response and 

filter size according to the Laplacian value. Fig. 19 illustrates the implementation of the 

adaptive filter where a sliding window undergoes a Laplacian operation and subsequently a 

binarize thresholding. Based upon the threshold, the correlating filter with an optimal beta 

and filter size is selected for the element-wise dot product. The buffer allows the sliding 

window to wait for the optimal filter to be selected.  

 
Fig. 19. Implementation flow of an adaptive window sinc filter which 
varies in frequency response and filter size guided by the Laplacian 
Operator.  
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6 CONCLUSION 

 By optimizing for the least squared error using a range of Windowed Sinc filters with 

varying filter sizes, a clear trend emerged that favored using Kaiser windows and filter 

lengths that were strongly correlated with the Laplacian output of the image. This correlation 

allowed for the generalization of choosing the window function and filter size that resulted in 

the least squared error to the original image. The interpolation, guided by the Laplacian filter, 

achieved results comparable to other traditional methods. While the resulting image did 

contain pixelation artifacts, it also exhibited fine details that were absent in Bicubic and 

Bilinear methods. The findings of this work are valuable for applications that prioritize 

intricate details of local areas within an image with limited computational hardware 

resources. 
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7 FURTHER WORK 

 Although this thesis has demonstrated the effectiveness of using varying Kaiser windows 

and filter lengths strongly correlated with the Laplacian output of the image, there are still 

opportunities for further work. One possible direction is to explore the implementation of this 

method on an FPGA platform. FPGA implementation has been shown to have advantages 

over traditional CPU or GPU implementations in terms of parallelism and power efficiency. 

Therefore, developing an FPGA-based implementation could significantly speed up the 

processing time and improve the energy efficiency of this method. 

 Another avenue for further research is the application of AI neural networks for the task 

of selecting the optimal windowed sinc filter and filter size for a sliding window input. The 

neural network could learn the more intricate relationships of a sliding window to the optimal 

parameters given the large amount of sliding window as training inputs per image. This 

solution of using both neural network and generalized approach could possibly lead to better 

trade-off of computational complexities and image quality. 
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