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Resumo

O principal procedimento para o diagnóstico do cancro é a análise das lâminas de tecido histopa-
tológico por um patologista, incluindo a estimativa do conteúdo de células tumorais. Este proced-
imento, para além de demorado, apresenta uma elevada variabilidade entre os patologistas. Com
o aparecimento e a comercialização de scanners de lâminas digitais, foi possível obter a digital-
ização das lâminas inteiras. Consequentemente, a utilização de métodos de análise de imagem
permitem obter resultados robustos, num curto período de tempo, na estimação da percentagem
de células tumorais. Combinando a vantagem destes métodos computarizados com a experiência
dos patologistas, pode-se ainda obter resultados mais precisos.

Neste contexto, e com o intuito de ajudar os patologistas, esta dissertação visa desenvolver
uma metodologia de aprendizagem computacional para prever a percentagem de células tumorais
presentes em imagens de cancro da mama obtidas a partir da digitalização das lâminas. Para tal, foi
investigada a influência de três factores diferentes na previsão da percentagem de células tumorais
realizada por uma ResNet-18. Um destes factores diz respeito à rede (camada classificadora) e
os outros dois ao conjunto de dados (remoção das imagens com celularidade zero dos dados de
treino e normalização da cor). Destes, verificou-se que os dois factores associados ao conjunto
de dados são mais críticos para o desempenho do modelo. Em particular, os melhores resultados
foram obtidos quando as imagens com zero celularidade foram removidas do conjunto de dados
de treino e não foram utilizadas técnicas de normalização de cor.

Adicionalmente, a utilização do pré-treino foi também investigada, visto que a utilização de
conjuntos de dados com um carácter geral para o pré-treino pode melhorar a eficácia e o de-
sempenho do modelo. Para esse efeito, foram consideradas três abordagens: (i) ResNet-18 pré-
treinada com ImageNet (conjunto de dados gerais), (ii) ResNet-18 pré-treinada com PCam (dados
específicos) e (iii) ResNet-18 treinada a partir do zero. Os resultados obtidos demonstram que a
rede pré-treinada com a ImageNet tem um desempenho superior às outras duas abordagens, sendo
a pré-treinada no conjunto de dados PCam a pior.

Finalmente, foi também realizado um estudo preliminar relativo a uma técnica de refinamento.
Esta consiste em descongelar progressivamente os pesos das redes que foram pré-treinadas com os
conjuntos de dados da ImageNet e da PCam. Os resultados obtidos são promissores e demonstram
uma melhoria do modelo pré-treinado com a PCam. Relativamente à rede pré-treinada com a Im-
ageNet, não foi observada uma influência significativa, no entanto, é necessária uma investigação
mais aprofundada.
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Abstract

The main procedure for cancer diagnosis is the analysis of histopathology tissue slides by a pathol-
ogist, comprising the estimation of the tumor cell content. This line of action is time-consuming
and presents high interobserver variability. With the appearance and commercialization of dig-
ital slide scanners, it was possible to obtain the digitalization of entire histology slides. Digital
image analysis methods may be able to produce robust and reproducible results in the estima-
tion. Moreover, by combining the strengths and experience of pathologists with the advantages of
computerized methods, it may be possible to obtain more accurate results.

In this context, this dissertation aims to develop a machine learning methodology to predict the
tumor cells percentage in Whole-Slide Imaging data of breast cancer in order to assist pathologists.
The influence of three different factors on the prediction of the tumor cells done by a ResNet-18
was investigated. One of these factors is directly related to the network (classifier layer), and
the other two are associated to the dataset (removal of the images with zero cellularity from the
training data and color normalization). Of these, it was found that the two factors associated with
the dataset are more critical to the performance of the model. In particular, the best results were
obtained when the images with zero cellularity were removed from the training dataset and no
color normalization techniques were used.

Furthermore, the use of pre-training was also investigated, as it has been questioned if pre-
training with a very general dataset is an effective way of improving the performance of the net-
works. To that end, three approaches were considered: (i) ResNet-18 pre-trained with ImageNet
(general dataset), (ii) ResNet-18 pre-trained with PCam (context specific) and (iii) ResNet-18
trained from Scratch. The results obtained show that the network pre-trained with the ImageNet
outperforms the other two approaches, with the one pre-trained on the PCam dataset being the
worst one.

Finally, a preliminary study concerning a fine-tuning technique was also conducted. This con-
sisted on progressively unfreezing the weights of the networks that were pre-trained with the Im-
ageNet and with the PCam datasets. The results were promising, demonstrating an improvement
of the model pre-trained with the PCam. No significant influence was observed for the network
pre-trained with ImageNet, nevertheless, further investigation is required.
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Chapter 1

Introduction

1.1 Context and Motivation

At the moment, cancer corresponds to the main cause of death worldwide [1]. As stated by the

World Health Organization (WHO) in 2019 (Figure 1.1), cancer was the main cause of death in 57

countries and the second in 55 countries, making a total of 112 countries out of 183 that have to

deal with the mortality of this disease on a daily basis. It is important to notice that the numbers

provided do not possess information on the impact of the virus SARS-CoV-2 responsible for the

coronavirus disease.

Figure 1.1: Cancer as a cause of death for people with less than 70 years in 2019. Source: World
Health Organization (as it appears in [1]).

With the emergence of several new personalized and targeted cancer therapies, there has been

an increase in the development of new molecular tests, making molecular pathology essential

for defining mutation status [2]. Molecular tests sensitivity depends largely on the tumor cell
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2 Introduction

percentage present in a sample compared to the percentage of normal cells. Since the presence of

non-neoplastic cells may dilute the percentage of tumor DNA and lead to false negative results, a

previous step of estimating if the neoplastic cell content is enough to meet the threshold criteria

of the test is required [3]. Estimation of the tumor cell percentage is usually made in hematoxylin

& eosin (H&E) stained Formalin-Fixed Paraffin-Embedded (FFPE) tissue slides by a pathologist.

Macrodissection may be used to enrich the tumor cell content in the sample for posterior molecular

profiling, by eliminating non-neoplastic cells [4].

Studies have shown that estimations of the tumor cell content made by pathologists are sub-

jective, may not be accurate and present high interobserver variability [3]. Pathologists are also

prone to overestimating the neoplastic cell percentage, which in the case of a molecular test, may

result in a false negative result. This may have severe consequences in the treatment of the patient.

Moreover, pathologists are not oblivious to visual and cognitive traps as sources of bias [5]. In

an attempt to minimize the variation of the estimation between pathologists, studies were made to

reach consensus-based recommendations that could lead to more accurate results [2][6].

In the beginning of this century, digital slide scanners started to become widely available [7].

Whole-slide Imaging (WSI) is the most recent and important imaging technique in pathology

nowadays. It allowed the digitization of the entire H&E slides, maintaining a high resolution.

WSI made collaborations between pathologists in different corners of the world possible, without

having to transport slides between places [8]. Furthermore, WSI facilitated digital image analysis

and the implementation of computer-based methods that would be capable to detect important

features.

The development of different image analysis techniques may become an unbiased option that

would help to obtain robust and reproducible results and a viable tool to aid pathologists in esti-

mating the tumor cell content [5].

1.2 Problem Statement and Objectives

Nowadays, the estimation of the tumor cell content in a histopathology tissue slide is made by

a pathologist. Several studies have already demonstrated that this procedure is time-consuming

and presents high interobserver variability [3]. On the other hand, it has been recently shown

that computerized methods are advantageous for aiding pathologists in the clinical diagnosis and

in further treatment planning [9]. Moreover, these methods also allow experts to save time for

tasks where their knowledge is imperative. In addition, these methods have shown good results in

estimating the neoplastic content in the presence of different types of cancer, such as in lung cancer

[4], breast cancer [10] and colorectal cancer [11]. By combining the strengths of digital image

analysis with the strengths of the human pathologist, it is possible to overcome the weaknesses of

each approach, therefore obtaining better results (Figure 1.2).

The main objective for this work is to contribute to the development of an automated approach

based on artificial intelligence (AI) methods to quantify breast cancer that will assist pathologists

in performing an accurate diagnosis and treatment planning. In order to achieve this goal, it
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Figure 1.2: Combination of the capacities of pathologists and computerized methods (adapted
from [5]).

is necessary to optimize a number of parameters that influence the performance of the model

and, therefore, in this work, an investigation regarding the effect of different factors in the tumor

quantification will be conducted.

1.3 Contributions

The following contributions were achieved in this work:

• an assessment of the impact of using color normalization techniques;

• a study on the effect of using transfer learning with a context specific dataset;

• a study on the impact of removing the images with zero cellularity from the training dataset;

• the development of an AI-based method that will be capable of accurately and efficiently

estimating the tumor cell content in a tissue sample of breast cancer;

• a scientific publication with the main results of this work: Sara Alves, Francisco Silva,

Fernando Schmitt, Tânia Pereira and Hélder P. Oliveira, AI-based Methods for Cancer Cells

Quantification using Whole Slide Imaging. npj Breast Cancer (In Preparation).

1.4 Document Structure

The remaining part of this document is organized as follows. Chapter 2 presents an overview

of theoretical aspects required for the understanding of the problem, namely histopathology and

WSI, machine learning and deep learning methods. Then, chapter 3 contains an extensive literature

review addressing automated methods for breast cancer and lung cancer. Chapter 4 presents the
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description of the data that will be used throughout this work, some necessary data preprocessing

steps and the methodology selected in this dissertation. Furthermore, Chapter 5 presents the results

for the cancer cells quantification by using a network that was trained from scratch, one that was

pre-trained on a general dataset, and one that was pre-trained with a context specific dataset.

Finally, Chapter 6 contains the conclusions and future work.



Chapter 2

Background

This chapter presents some fundamental knowledge necessary for this work. It starts with infor-

mation regarding the pathology field and the main steps required to obtain a tissue slide. Then, it

addresses the technique of WSI and its main advantages and disadvantages. Furthermore, a few

images that are representative of histopathology datasets are presented. In addition, the incidence

and mortality of breast cancer are mentioned, as well as other relevant aspects of this disease. The

chapter continues with a review of machine learning and some evaluation metrics. Finally, deep

learning is also introduced, with emphasis given to Convolutional Neural Networks.

2.1 Histopathology

Pathology corresponds to a field of medical science that is dedicated to evaluating the causes of

the disease of the tissues, cells and organs [12]. In addition, histology can be described as the

study of the microscopic anatomy of cells and tissues. Taking these two definitions into account,

it is possible to describe histopathology. Histopathology corresponds to the study of the tissues

in order to localize and classify the disease [13]. Examples of histopathology images of different

types of lung cancer is represented in Figure 2.1.

In terms of cancer, the analysis of the histopathology tissue slides under a microscope is con-

sidered to be the major procedure for diagnosis [5]. As already mentioned, the estimation of the

tumor cells in the histopathology images by pathologists may not be accurate [3]. In Figure 2.2,

annotations were made by two different pathologists, where it is possible to observe the variability

between the experts. Furthermore, a more reproducible and robust approach may be of interest in

order to reduce this variability.

5
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Figure 2.1: Examples of histopathology images of different types of lung cancer. (a) corresponds
to squamous cell carcinoma, (b) to adenocarcinoma, (c) to small cell lung cancer and (d) to normal
tissue (extracted from [14]).

Figure 2.2: Annotations made by 2 different pathologists, where the dotted line corresponds to
one of the pathologists and the solid line to the other. A shows good similarity between the
annotations of both pathologists. B already shows a significant variance between the annotations
made (extracted from [4]).

2.1.1 Tissue slides and WSI

In order to obtain the histopathology slide to be analyzed by the pathologist, it is necessary to

prepare the tissue sample. The steps for the preparation of the slide are described in Figure 2.3.

After obtaining a tissue sample, posterior processing steps, such as fixation and embedding, are of

extreme importance, since it facilitates the cutting of sections with a small thickness (relevant for

microscopy) [13]. The tissue slides are usually FFPE and stained with H&E [15]. Hematoxylin is

responsible for staining the nuclear structures of the cells as dark blue or purple and eosin stains

the cytoplasm of the cells as different shades of pink [13].

With the surfacing of whole-slide scanners [7] and these devices starting to become commer-

cialy available all over the world, digital image analysis methods can be implemented in a more

straightforward way. The main advantage of these scanners is that they provide all characteristics

that normal microscopy already does, such as alternating between different magnifications and

orientations. However, due to the high resolution of the images, the size of a WSI image is very
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Figure 2.3: Preparation of the tissue slides (extracted from [13]).

large, which it can go from about 3.5 GB to 14.5 GB if the image is scanned at 20× magnification

or at 40× magnification, respectively [8]. With this, the need for a great amount of storage space

is necessary, which constitutes a disadvantage of this digitization technique. In fact, the cost of

the storage space for the images can be much higher compared to the actual price of the scanner.

In order to visualize the WSI data at different resolutions, the images are stored in a pyramidal

architecture. In Figure 2.4, each plane in the pyramid represents the image at different resolutions,

where the peak of the pyramid corresponds to the lowest resolution possible. With this strategy, it

is possible to load the image with the intended resolution and even select a particular area without

downloading the entire image.

Figure 2.4: Pyramidal architecture for viewing the images in different resolutions, avoiding the
transfer of the entire image into the computer. Each plane of the image is represented by a discrete
number of tiles (extracted from [8]).

One of the main problems with storing a tissue slide for a long time is that the sample starts to

lose the initial characteristics it presented. An example of this is represented in Figure 2.5, where it

is possible to observe small bubbles in the sample and the colors of the stain in a darker tone [16].

This phenomenon can be avoided if the tissue slide was digitized after obtaining it. With this, even

if the sample is stored and is no longer appropriate for diagnosis, there exists a digital format of

the slide which can still be analyzed. Another advantage of using WSI is in the process of sharing

the digitized slides with different pathologists. Sharing images between the experts is much easier
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than having to transport slides among places.

Figure 2.5: Bubbles in the tissue sample and darker stain color due to long storing time (extracted
from [16]).

The datasets used by machine learning methods for cancer detection consist of digitized

histopathology slides together with the annotations made by a pathologist. There are several

datasets that were already used with this configuration, such as in breast cancer [16], lung can-

cer [17] and colorectal cancer [11]. Examples of such annotations are shown in Figure 2.6 and

Figure 2.7 for the case of breast cancer and lung cancer, respectively. Another dataset configura-

tion that may be used for quantifying cancer cells is having the WSI image only associated with

the tumor cell percentage present in that region [9]. An example of this type of dataset regarding

breast cancer is presented in Figure 2.8. It is easier to find histopathology datasets with this last

configuration, since it only requires pathologists to supply the tumor percentage and not carefully

annotating all cells in the image.

Figure 2.6: Examples of whole-slide images of breast cancer with annotations made by a pathol-
ogist (extracted from [16]).

One common analysis for the histopathology images is the classification of the tissue in benign,

invasive carcinoma, in situ carcinoma and normal tissue (Figure 2.9). Invasive cancer happens

when the tumor cells have proliferated and grown into another location beyond where it developed.

Moreover, in situ cancer corresponds to tumor cells that did not spread from their original place,

although it can still happen. Benign tumors have a slow growth rate and do not spread to other

places than their original place. Another common approach is the division only in tumor or normal

tissue.
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Figure 2.7: Example of a histopathology image of lung cancer with annotations made by a pathol-
ogist (extracted from [18]).

Figure 2.8: At the top, the circles represent diagrams that are used as a reference for manual esti-
mation. At the bottom, the breast cancer WSI patches with their corresponding tumor percentage.
Three yellow windows are also depicted, representing benign epithelial nuclei, lymphocyte, and
malignant epithelial nuclei, respectively from left to right (extracted from [9]).

Figure 2.9: Examples of histopathology images. A corresponds to normal tissue, B to benign
tumor, C to in situ carcinoma and D to invasive carcinoma (extracted from [10]).
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2.2 Breast Cancer

Nowadays, cancer is one of the main causes of death worldwide [1]. In terms of cancer incidence

in males, prostate cancer constitutes the most commonly diagnosed cancer followed by lung can-

cer. As for women, the most frequent diagnosis is breast cancer and cervical cancer. Regarding

mortality, the results differ from cancer incidence. The cancer mortality in men is largely due to

lung cancer and only then followed by prostate cancer, resulting in a switch on the two leading

positions of cancer incidence. However, in women the main causes of cancer death are equivalent

to the most frequently diagnosed types of cancer, with lung cancer only corresponding to the third

cause. Taking into account both sexes, female breast cancer corresponds to the most commonly

diagnosed type of cancer.

Regarding breast cancer, the two most frequently diagnosed types are invasive ductal carci-

noma and invasive lobular carcinoma, where the former corresponds to around 75% of all diag-

nosed cases and the latter to 15% [19]. Examples of histopathology images of invasive ductal car-

cinoma are presented in Figure 2.1. The 5-year survival rate for breast cancer is around 85% [1],

which is much higher than for other types of cancer, such as lung cancer. The survival rate of lung

cancer patients 5 years after diagnosis ranges from 10% to 20%, however if detected early this

number can increase considerably [20]. There are several factors that may contribute to develop-

ing breast cancer, such as age, hormone replacement and genetic factors, where the mutation of

the BRCA1 and BRCA2 genes represent about 10% of all the breast cancer cases [21].

Furthermore, neoadjuvant (preoperative) systemic therapy (NAT) has been considered a valu-

able approach for almost all cancer patients that do not present any evidence for metastases. How-

ever, this therapy is mostly applied in cases where the cancer stage is considered to be locally

advanced and in the presence of inoperable breast cancer, such as inflammatory breast cancer [22].

Effectively, several studies have shown that patients considered to be inoperable when submitted to

therapy prior to surgery could actually become candidates for surgery [23]. Furthermore, patients

who present a tumor size very large compared to the size of the breast are usually considered to be

candidates for mastectomy. Nonetheless, neoadjuvant therapy made it possible that a significant

part of these patients became candidates for breast conserving therapy. Following neoadjuvant

therapy, pathologists are responsible for analysing the tissue and estimating the tumor cellularity

in the tumor bed.

Figure 2.10: Four different examples of invasive ductal carcinoma. (extracted from [19]).
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2.3 Machine learning

In 1956, there was a group of scientists who made the assumption that computers could be pro-

grammed to think, defining this principle as artificial intelligence [24]. The concept of machine

learning was firstly defined in 1959 by Arthur Samuel. Machine learning (ML) is a branch of

artificial intelligence that is capable of learning and gaining experience from training data [25].

Traditional programming differs from machine learning methods (Figure 2.11). Traditional

programming consists in the processing of a previously implemented algorithm by a computer,

when given a dataset, producing certain outputs. On the other hand, machine learning methods

consist in the processing of a dataset and the corresponding outputs by a computer, obtaining an

algorithm that delineates the correlation between the two inputs.

Figure 2.11: Traditional programming versus machine learning. (A) Traditional programming
takes a dataset and an algorithm as an input, hands it to a computer and obtains the corresponding
outputs. (B) Machine learning takes a dataset and the corresponding outputs as an input, hands it
to a computer and obtains the algorithm that relates them (extracted from [24]).

There exist several different types of machine learning, but the most common are supervised

learning, unsupervised learning and reinforcement learning [26].

In supervised learning, the training data comes in pairs, with an input and the correspondent

expected output. This data is said to be labeled. If the prediction is based on labels that are

discrete classes, it corresponds to a classification problem. However, if the label represents a

continuous quantity, it corresponds to a regression problem. Examples of methods that are based

on supervised learning are Support Vector Machines (SVMs) and Neural Networks [25].

Furthermore, in unsupervised learning, the data utilized for training does not present any la-

bels. Some examples of algorithms that represent this type of learning are clustering methods and

procedures for dimensionality reduction.

Finally, reinforcement learning tries to perform several actions, where each action grants a

positive or negative reward, and find an optimal strategy that will concede the highest possible

reward value.
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There are some challenges that can pose as an obstacle for machine learning algorithms to

perform suitably [25], such as:

• the amount of training data is not enough: most machine learning algorithms need great

quantities of data in order to give accurate results.

• nonrepresentative training dataset: if the data used for training is not well representative of

all cases we want the model to be able to generalize, the method will not be able to give

good predictions.

• data with errors and non-relevant features: in the presence of data with errors or outliers

(i.e. data that differs outstandingly from the rest) the model is prone to not give accurate

results. Moreover, feature extraction and selection are important parts of machine learning

algorithms and in the case of the presence of too many irrelevant features, the algorithm will

not be able to perform well.

• overfitting: happens when the machine learning model is too complex and it is too adapted

to the training dataset, giving bad results on a new test set. In addition, overfitting can be

solved by increasing the size of the training dataset, making the model less complex or by

reducing errors that are present in the data, such as outliers.

• underfitting: happens when the machine learning model is too simple and does not give good

predictions in both training and test dataset. It can be solved by increasing the complexity

of the model.

2.4 Deep Learning

Deep learning (DL), which in itself is a part of machine learning, consists of a group of methods

that try to copy the functioning of the human brain by working with artificial neural networks

(ANNs) [27].

Firstly, ANNs were introduced in 1943 by Warren McCulloch and Walter Pitts, where the

model that tried to mimic the functioning of the biological neurons was based on artificial neurons

that worked with propositional logic. In addition, the inputs and the output were always binary

values [25].

Secondly, in 1957 Frank Rosenblatt introduced the perceptron, which consisted in an ANN

with an artificial neuron that differed from the ones presented in 1943. These new artificial neurons

were called Linear Threshold Unit (LTU) and consisted in a set of inputs that are no longer binary

values but numbers associated with weights. Moreover, a term of bias is also added (Figure 2.12).

Several transfer or activation functions can be used, such as the sigmoid function, the hyperbolic

tangent and the step function.

By using several LTUs is possible to obtain a multi-layer perceptron (MLP). This ANN con-

sists of an input layer, a hidden layer of LTUs and an output layer with a single LTU. An ANN

with more than one hidden layer is defined as a deep neural network (DNN).
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Figure 2.12: LTU artificial neuron (adapted from [25]).

Deep Neural Networks are trained using the backpropagation algorithm [25]. The main goal

of this algorithm is to minimize the loss function by changing the values of the weights and the

biases in the neural network. A loss function is described as a relation between the predicted

output and the desired output. This function works as a good measure of the prediction capacity

of the model. The backpropagation algorithm is based on a forward pass through each layer until

reaching the output layer. Moreover, the difference between the obtained output and the desired

output is calculated. It then follows to perform a reverse pass, to try to understand the contribution

for the error of each neuron of the previous layer. In the final step, it tries to adjust the values of

the weights in order to decrease the error.

The main advantage of deep learning methods is that feature extraction from the data is per-

formed automatically, unlike other machine learning algorithms where to extract relevant features

is necessary expertise and domain knowledge [28].

2.4.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) corresponds to a type of DNN where the input to the

network is image data. The basic idea behind CNNs is that when the input is an image, pixels

that are near each other usually share some common information [29]. With this in mind, it is

possible to detect local features by using a sliding window through the image that works with the

convolution operation [26].

There are three main types of layers in a CNN, more concretely:

• Convolutional Layer — In this layer, a filter or kernel slides through the image and per-

forms the convolution operation. This process is done in order to automatically detect rel-

evant features, like edges or gradients. In addition, to convolve the image and the filter,

it is important to define stride and padding. Stride corresponds to the step for sliding the

filter through the image. The bigger the stride, the smaller is the output of the convolution

operation. Moreover, padding corresponds to the width of extra cells added to the image

in order to obtain a bigger output matrix. Convolutional layers are usually followed by an
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active layer, which is responsible for introducing nonlinearities to the network in order to be

able to adapt to more problems [27].

• Pooling Layer — Pooling is responsible for reducing the dimensionality of the features,

by also sliding a filter through the data. This layer usually follows the convolutional layer.

The two most used methods for pooling are maximum pooling and average pooling. The

former selects the pixel that presents the maximum value and the latter performs the average

operation while the filter slides through the input. An example of maximum pooling is

present in Figure 2.13.

Figure 2.13: Maximum pooling using an input matrix with size 4x4, pooling filter of size 2x2 with
a stride of 2 (adapted from [27]).

• Fully Connected Layer — This layer is responsible for the classification task based on

the previously detected features. The fully connected layers can be added sequentially and

usually use the softmax activation function [25] for multiclass classification problems.

CNNs have already been widely used in several different contexts, such as object detection

[30], medical image segmentation [31] and face detection [32].

2.5 Evaluation Metrics

In order to evaluate if an algorithm provides good predictions on a given test set by comparing them

with the expected results, it is necessary to define evaluation metrics. There are several indicators

that are important for evaluating the performance of the developed model in a given test set, such

as accuracy, sensitivity, specificity and precision [33]. These parameters can be calculated with

the results that are usually represented in a confusion matrix (Figure 2.14).

Accuracy corresponds to the number of correct classifications by the model divided by all

samples in the dataset and it can be defined as

Accuracy =
T P+T N

T P+FP+FN +T N
(2.1)

where TP (TN) corresponds to a true positive (negative) and FP (FN) to a false positive (neg-

ative).
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Figure 2.14: Standard Confusion Matrix (adapted from [33]). TP (TN) corresponds to a true
positive (negative) and FP (FN) to a false positive (negative).

Sensitivity corresponds to the ratio between the results that were correctly classified as positive

and the total of results that were actually positive. It can be written as

Sensitivity =
T P

T P+FN
(2.2)

where the variables have the same meaning as in equation 2.1.

Specificity can be described as the ratio between the results that were correctly classified as

negative and the total of samples in the dataset that were actually negative. It can be represented

as

Specificity =
T N

FP+T N
(2.3)

where the variables have the same meaning as in equation 2.1.

Finally, precision corresponds to the ratio between the results that were correctly classified as

positive and all the results that were predicted to be positive. It can be written as

Precision =
T P

T P+FP
(2.4)

where the variables have the same meaning as in equation 2.1.

Another important metric for evaluating the correlation between two regions is the Dice Coef-

ficient (DC) [34]. This coefficient can be calculated as in equation 2.5, where the variables have

the same meaning as in equation 2.1.

DC =
2T P

2T P+FP+FN
(2.5)

In addition, the intraclass correlation coefficient (ICC) [35] is a measure of reliability and it can

be used to evaluate the agreement between measurements. There are different forms to calculate

this metric, but in this work we will consider the form of equation 2.6, where MSR corresponds

to the mean square for rows, MSC for columns, MSE to mean square error, k is the number of

measurements and n is the number of testing samples. The more closer to 1 is this value, the more
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reliable it is. This metric is extremely important in medicine since without a ICC that is close to

1, the results obtained cannot be trusted.

ICC =
MSR −MSE

MSR +(k−1)MSE + k
n(MSC −MSE)

(2.6)

Kendall’s tau-b (τb) metric is a rank correlation coefficient that measures the ordinal correla-

tion between two obtained measurements. This coefficient is considered to be a nonparametric

hypothesis test. This means that it aims to evaluate if the two measurements are correlated or

independent between them and it is not made any kind of assumption on the probabilistic distribu-

tion of the two variables. τb is adjusted for ties and can be calculated as in equation 2.7, where x

represents the cellularity that was estimated with a computerized method, y denotes the reference

values for the estimation, nc is the number of concordant pairs, nd is the number of discordant

pairs, nTx is the number of ties in x, nTy is the number of ties in y and nTxy is the number of ties

in both x and y. The values for τb can go from -1, which represents a negative association, to 1,

which represents a perfect association between the measurements. If the value of this metric is

0, it means that there is no association or correlation between the measurements. The prediction

probability (Pk) metric can be calculated as in equation 2.8, where the variables possess the same

meaning as in equation 2.7 for τb. This metric also evaluates ordinal correlation.

τb =
nc −nd√

(n−nT x −nT xy)(n−nT y −nT xy)
(2.7)

Pk =
nc +

nT x
2

nc +nd −nT x
(2.8)

Moreover, another broadly used metric is the receiver operating characteristic (ROC), which

consists of a plot of the sensitivity against (1- specificity). This graphic is used for binary classifi-

cation and the closer the area under the curve (AUC) is to 1, the better the classifier is (Figure 2.15).

When the ROC curve coincides with the diagonal dotted line, the binary classifier corresponds to

a random classifier.

Figure 2.15: Example of a ROC curve (extracted from [9]).
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2.6 Summary

The estimation of the tumor cell content between pathologists is not accurate enough and a more

robust solution is required, which may rely on computational methods. Therefore, digitized images

of the tissue slides should be obtained. In turn, the digitization of the slides also facilitates sharing

of relevant information between experts and avoids the natural deterioration of the tissue samples.

Nevertheless, since the digitized histopathology slides exhibit a very high resolution, they take up

a considerable amount of storage space. In order to minimize this issue, the images are stored in a

pyramidal architecture, which allows downloading only a specific part of the image.

Machine learning techniques have been used for classification and regression problems. Among

these techniques, deep learning methods distinguish themselves for mimicking the functioning of

the human brain and have the advantage of automatically extracting features, without the need for

domain knowledge. One widely used DL method relies on the implementation of CNNs. These

networks perform the convolution operation, which is particularly interesting since it provides

spatial information about the input image.
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Chapter 3

Literature Review

This chapter includes the literature review of some important methods for this dissertation. It starts

with the review of the algorithms implemented in histopathology images of lung cancer. Moreover,

some color normalization processes are compared. After that, methods that were proposed for

the analysis of breast cancer WSI images are also mentioned. Even though this dissertation is

focused on the analysis of histopathology images of breast cancer, the implemented methods by the

different authors for lung cancer still remain relevant and are also addressed. Furthermore, some

theoretical knowledge regarding the differences between different CNN architectures is presented.

Finally, the results obtained by the different authors are reported.

3.1 Automated methods for Lung Cancer

In the last few years, several automated methods have been applied to the analysis of lung cancer

in histopathology images. These methods are mainly based on CNNs. Some of the proposed

approaches aimed at classifying the images into tumor or normal tissue, whereas others tried to

classify the type of lung cancer.

Coudray et al. [36] proposed a deep learning algorithm to classify the WSI data into 3 differ-

ent classes, more concretely normal tissue, adenocarcinoma and squamous cell carcinoma. The

deep learning algorithm used consists of a Inception-v3 architecture [37], a deeper CNN where

the computational cost is lower than other network models. Moreover, the authors also predicted

the most frequent mutated genes in lung adenocarcinoma. The process of classification was per-

formed with two different approaches. The first consisted in classifying the images into normal

and tumor slides, along with classifying the tumor images into adenocarcinoma and squamous

cell carcinoma. The second approach consisted in directly classifying the images into adenocar-

cinoma, squamous cell carcinoma and normal tissue. The network was also trained with transfer

learning and fully training the model. Transfer learning [38] can be very useful because it applies

knowledge gained from one problem and uses it to another related task. Since this method already

uses knowledge that was previously acquired, it requires less data for training. In this case, the

network was trained on a large-scale dataset known as ImageNet [39]. When training the network

19
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with transfer learning, most of the weights keep their value and the fully connected layer is the

one that is trained. By fully training the model, the network is completely trained by starting

with random weights. The obtained results showed that fully training the network after separating

the normal tissue images gave slightly better results than with transfer learning. Furthermore, the

results also revealed that when separating the normal tissue from tumor in a first stage did not

give better results. In fact, directly classifying the images into the 3 different classes was better,

achieving an AUC of about 0.97.

Pham et al. [40] proposed a two-step deep learning method to detect lymph node metastases

and classify them into three different classes, macrometastases, micrometastases and isolated tu-

mor cells. The purpose of using a two-step approach was that lymphoid follicles were usually

misclassified as tumor and excluding them in an initial phase could potentially lead to better re-

sults and eliminate false positives. Regarding this information, the first classifier differentiated

lymphoid follicles from the rest of the tissue and the second step was responsible for detecting

tumor cells. In Figure 3.1 is shown the comparison between a one-step and a two-step approach.

Figure 3.1: Comparing a one-step approach with a two-step. A two-step approach could poten-
tially eliminate false positives (extracted from [40]).

Two methods were compared for lymphoid follicles detection, a random forest model and a

CNN. The random forest method consists of an ensemble of decision trees classifiers and are usu-

ally trained with the bagging method, which means to train the algorithm with randomly selected

subsets from the training data [25]. For the detection of lymphoid follicles, the CNN gave better

results, achieving an accuracy of 94.5%, while the random forest model achieved an accuracy of

51.7%. The random forest method misclassified a lot of tumor cells as lymphoid follicles, resulting

in a large number of false positives. For that reason, the CNN was chosen as the model to exclude

lymphoid follicles. In the second step, a CNN with the VGG architecture [41] was used to detect

tumor cells and the slides were labeled as containing metastases or not containing metastases. The

algorithm performed extremely well for positive slides, identifying macrometastases, micrometas-

tases and isolated tumor cells with 100% accuracy. As for negative slides, the two-step approach
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gave poor results, since images still contained small points that were identified as isolated tumor

cells or micrometastases, resulting in an overall sensitivity of 100% and specificity of 0%.

Qu et al. [42] proposed a deep learning method that performed both segmentation and classi-

fication in a unified framework (Figure 3.2). The prediction network is responsible for segment-

ing individual nuclei and classifying them into three classes, tumor, lymphocyte and stroma. It

consisted of a U-Net architecture [43], widely used for segmentation in medical image, with a

ResNet [44] as an encoder. The decoder part of U-Net is responsible for upsampling, which re-

stores the feature maps to the size of the original image. ResNet introduces shortcut connections

that skip one or more layers and their outputs are added to the outputs of the stacked layers (Fig-

ure 3.3). The perceptual loss part of the network compares the predicted label with the ground

truth. Transfer learning was also used in order to compensate for the small dimension of the

dataset.

Figure 3.2: Proposed framework (extracted from [42]).

Figure 3.3: Residual Learning Block (extracted from [44]).

Furthermore, data preprocessing was also performed, consisting of color normalization and

data augmentation. In the last 20 years, several color normalization methods of H&E staining in

histopathology images have already been studied. Roy et al. [45] studied the proposed methods

by different authors and evaluated their performances in terms of different metrics. There are three

different types of color normalization methods, more concretely global color normalization [46],

color normalization after stain separation by supervised [47] or unsupervised methods [48][49].
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To test distinct methods, six of the algorithms presented in [45] were evaluated in a dataset of

histopathology images of different cancers, namely liver, kidney, breast and colorectal. The results

showed that a structure-preserving color normalization method [50] performed better than the

other analyzed methods, maintaining the structure and brightness of the source image. It would be

interesting to compare the performance of the method in [50] with others that were not evaluated

in the study by Roy et al [45]. Additionally, data augmentation is extremely important when the

training dataset is small and it is utilized to prevent the machine learning model that is being

developed from overfitting the data. This process is usually done by enlarging the size of the

dataset, by creating somewhat different copies of data that already exists and adding it to the

dataset. The Dice coefficient for the proposed method was 0.876, which shows good concordance

with the ground truth.

He et al. [51] proposed a deep learning model to automate the labelling of the tumor regions. It

was used a DenseNet [52], which was responsible for classifying the image patches into malignant

or benign. DenseNet architecture is based on dense blocks that connect all layers, which the main

goal is to maximize the information that passes through the features from the different layers.

In addition, it was pre-trained on the ImageNet dataset [39]. The annotations generated by the

algorithm were reviewed by a pathologist who made adjustments to the annotation when it was

not accurate. It was obtained a sensitivity of 87.9% and a specificity of 87.2% for image-level

classification. Moreover, 38 images were selected and a comparison between the generated and

reviewed annotations was made, obtaining a mean Dice coefficient for these images of 0.84.

Saric et al. [53] proposed a method that classifies the image patches as tumor or normal. A

patch would be considered as tumor if 75% of the annotated pixels were tumor. Two different

CNNs were implemented, a ResNet-50 and a VGG-16, and the results were compared. Both net-

works were pre-trained on ImageNet [39]. The results showed that VGG was slightly better than

ResNet (Figure 3.4), even though ResNet was better on the ImageNet dataset. An important con-

clusion is that pre-training the networks on the ImageNet dataset in the context of histopathology

images may not be a good practice, since the domains of both datasets differ greatly. A probable

good solution to improve the results might be to pre-train the networks on another histopathology

dataset, even from different types of cancer. The difference in the performance of the 2 networks

might also be explained by the size of the training dataset. Since the quantity of the data is small

and the ResNet architecture used was deeper than the VGG, the size of the training dataset prob-

ably needed to be increased in order to achieve better results. The classification accuracy at patch

level for ResNet and VGG was 72.05% and 75.41%, respectively.

Wang et al. [14] proposed a weakly-supervised approach for classification in squamous cell

carcinoma, adenocarcinoma, small cell lung cancer and normal tissue. The algorithm is divided

into three different parts (Figure 3.5). The first step consists in obtaining a probability map through

a patch-based CNN, more concretely a ScanNet architecture [54]. This architecture does not have

an upsampling step, which is necessary for segmentation, since it is only necessary to perform

classification. It is based on a VGG-16 but instead of having at the end three fully connected

layers, it has three fully convolutional layers. The probability maps of each patch are stitched
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Figure 3.4: ROC curve for VGG-16 and ResNet-50 (extracted from [53]).

together in order to obtain the probability map for the whole image. In order to deal with coarse

annotations, if the CNN misclassifies a region that was annotated by a pathologist, a higher penalty

for that classification is considered. The second step takes into consideration spatial information,

which is extremely relevant. This is the case since histopathology images present a very complex

organization and heterogeneity. If spatial information would not be considered, the possibility

of having patches with high probability but actually corresponding to an outlier is elevated. In

order to deal with this information, a block is considered, which consists of a set of patches with

some overlap. In this case, taking the average probability of a block into account, even if there is an

outlier present in a patch with a high probability, the block will still be considered as normal tissue.

Finally, in the third step, a specific class feature is obtained for each block and feature aggregation

is performed. A random forest classifier uses the global feature descriptor to classify the images.

Some preprocessing was performed, namely data augmentation and background removal by using

the OTSU algorithm [55]. To evaluate the results, different feature selection and aggregation

methods were used and the best result consisted of a 97.3% accuracy.

Li et al. [18] proposed the ACDC@LungHP 2019 challenge, which consisted of the first

challenge of lung cancer detection and classification using histopathology images. The 10 methods

for lung segmentation that performed better are reviewed and briefly explained. The implemented

methods were mainly divided into two different groups, namely methods that only used one single

model and methods that used multiple models. The results have shown that multi-model methods

performed better than single-model methods with a mean Dice coefficient of 0.7966 and 0.7544,

respectively. With respect to the single model methods, 5 different algorithms were described. The

first algorithm used a CNN with a DenseNet architecture to classify images in tumor or normal

tissue and a fully convolutional network (FCN) based on a DenseNet to segment the tumor area.

The mean Dice coefficient for this method was 0.77. The other 4 algorithms based on single-model

gave even inferior results.

However, the 3 methods that performed better in the challenge were all based on multi-model

methods (Figure 3.6). The best performing team proposed a method that consisted of a U-Net
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Figure 3.5: Proposed methodology. (a) Corresponds to the ScanNet architecture, which will be
responsible for obtaining the probability map. (b) Spatial information is taken into account and
features are aggregated. Finally, a random forest classifier is used (extracted from [14]).

combined with dense blocks and dilation blocks. The purpose of the dilation blocks was to obtain

more information and acquire features at multiple scales. The best model was selected by trying

different loss functions and then was ensembled. Color normalization and background removal

by the OTSU algorithm were also performed as a preprocessing step. This algorithm achieved

a mean Dice coefficient of 0.8372. The second best performing algorithm also implemented the

OTSU algorithm to remove the background and data augmentation techniques for preprocessing.

The method was based on a ResNet architecture with some nuances as an encoder. The network

was pre-trained on ImageNet and the ensemble of models was also performed. The obtained mean

Dice coefficient was very close to the best performing team, achieving a 0.8297 as a result. Finally,

the third best performing team implemented a U-Net divided into two groups. The first group used

three models where each one of them received the whole dataset but at different resolutions. The

second group used three models as well but each one received a partition of the original dataset.

The results were then fused with a Conditional Random Field [56] to improve the segmentation

results and a mean Dice coefficient of 0.7968 was obtained. An interesting outcome was that for a

particular image in the training dataset, all teams had a high performance. This is probably due to

the staining process of the slide, which was well prepared, and that the cancer tissue was evident.

Another conclusion was that the teams that pre-trained the models with ImageNet did not perform

better than others. Interestingly, none of the teams used a dataset for pre-training the networks with

similar characteristics to the histopathology images, which could potentially improve the results.

In addition, algorithms using methods to remove the background of the images also presented a

higher Dice coefficient.
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Figure 3.6: Proposed methods by the top 3 winning teams. (a) Rank 1 team. (b) Rank 2. (c) Rank
3 (extracted from [18]).

3.2 Automated methods for Breast Cancer

The analysis of breast cancer histopathology images is extremely relevant and several methods

have already been proposed over the years. These approaches usually classify the images into

healthy tissue or tumor, estimate the cancer cellularity or even segment the tumor area.

Chen et al. [33] proposed a method based on rough set (RS) theory [57] and a SVM for

the classification of images into benign and malignant for breast cancer diagnosis. RS theory is

mainly used for eliminating redundant features, which may lead to better results. In [57], the RS

attribute reduction algorithm was used in a way to select a reduct set of features with the help

of genetic algorithms (GA). To find the optimal feature subsets, the subsets of attributes that are

maintained are the ones that included the most relevant attribute and the least relevant. Moreover,
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a SVM is a method that consists of the representation of each data as a singular point in a space

with n dimensions, where n is given by the number of features [58]. This method then tries to

assign each point to one of two categories for classification (Figure 3.7). This is done by trying

to find an hyperplane that maximizes the margin that separates the two classes. By maximizing

the margin, it is possible to make the model less prone to overfitting and able to generalize better.

Although SVMs were firstly created to only deal with classification problems, they can also be

used for regression problems. In addition, this method can be used in both linear and nonlinear

problems. SVMs have been applied in several fields, such as for pattern recognition [59], object

detection [60] and handwritten digits recognition [61]. While this algorithm works very well for

a small amount of training data, it performs poorly for large training datasets, since the training

time complexity grows with the size of the dataset [25]. The training phase and the test step were

performed taking into account three different divisions of the dataset. The results for the best

performing subset gave an accuracy of 99.41%. Finally, another important outcome was that with

the results obtained, that particular subset can be considered to be the most relevant for breast

cancer classification, therefore containing the most informative features for diagnosis.

Figure 3.7: Graphical representation of an SVM classifier in a 2-dimensional space. The squares
represent the support vectors that define the maximum margin between classes (extracted from
[62]).

Spanhol et al. [63] proposed a method based on a CNN architecture for classifying the images

into malignant or benign. The CNN was trained with patches of the images, in which they were

selected randomly or by a sliding window approach. Different fusion rules were tested in order to

obtain the final classification result. The best results were achieved by an AlexNet [64] architecture

and for a magnification factor of 40x, with an Image Recognition Rate of 85.6%. The Image

Recognition Rate is defined as the ratio between the number of correctly classified tumor images

and the number of tumor images in the test set.

Araújo et al. [10] proposed a CNN based on the AlexNet architecture to classify the images

into four different classes, normal tissue, benign, invasive or in situ carcinoma and posteriorly

into two different classes, cancerous or normal tissue. For preprocessing the images, both color
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normalization [65] (Figure 3.8) and data augmentation were performed. In order to obtain the clas-

sification of the image, two methods were compared, more concretely a patch-based CNN with a

SVM, where the CNN works as a feature extractor and the SVM performs the classification, and

an individual patch-based CNN that performs both feature extraction and classification. The al-

gorithms were trained with three different fusion rules, maximum probability, majority voting and

the sum of the probabilities. With maximum probability, the image will be classified in accordance

to the patch with the maximum probability. In addition, with majority voting, the image class will

be the most frequent class in the image patches. Finally, the sum of the probabilities corresponds

to selecting the class with higher probability, where the sum of the probabilities of the same class

is performed for each class. The obtained results for image classification with majority voting for

4 classes corresponded to an accuracy of 77.8% for both the CNN and the CNN with SVM. As

for the classification with 2 classes, the accuracy with majority voting was 80.6% for the CNN

and 83.3% for the CNN with SVM. Patch results were also evaluated and the accuracy values for

the classification with 2 and 4 classes were lower than for the image classification. The authors

mentioned that this result is probably due to considering the label of the patch image as the label

of the whole image when no information about the location of the tumor was given.

Figure 3.8: Color normalization of histopathology images. A and C correspond to the original
images, while B and D are color normalized (extracted from [10]).

Peikari et al. [66] proposed a method for segmentation of nuclei from post-treated breast can-

cer tissue and classification in 4 classes, normal, low, medium or high residual cancer cellularity.

The small dimension of the training dataset influenced the decision of the authors into using ma-

chine learning techniques and not deep learning methods. To annotate the images, a pathologist

selected the regions of interest and classified the nuclei into 3 different groups, lymphocyte, be-

nign or malignant. In order to perform the classification in the 3 classes, a cascaded classifier

was used to train a SVM to separate in a first step the lymphocyte from benign and malignant

and in a second step to separate the benign from the malignant. The cellularity was calculated as

the ratio between the area of malignant and the total patch area. The results were compared with

two pathologists, obtaining an ICC with a 95% confidence interval (CI) of 0.89 between the two

pathologists, 0.74 between one of the pathologists and the automated method and 0.75 between

the other pathologist and the automated method. The proposed method gave good results when it

was analyzing medium cellularity images, with around 31% to 70% cellularity, and the accuracy

decreased for low cellularity and normal patches.

Cruz-Roa et al. [16] proposed an algorithm based on a CNN for detecting the presence of
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invasive tumor and the extent of it. The images were divided into patches and color normalization

and data augmentation were performed. Patches would be considered as tumor if they presented at

least an 80% overlap with the annotations made by a pathologist (Figure 3.9). CNNs with different

layers were evaluated and the CNN with 3 layers performed the better with an AUC of 0.9021.

The proposed method got a Dice coefficient of 75.86%, a positive predictive value of 71.62%,

which corresponds to the ratio between the TP and the sum of the TP with the FP, and a negative

predictive value of 96.77%, which corresponds to the ratio between the TN and the sum of the TN

with the FN.

Figure 3.9: Example of the results obtained with the CNN. A-C corresponds to the annotations
made by a pathologist, D-F corresponds to the probabilities obtained by the CNN, G-I shows the
CNN results in terms of TP (green), FN (red), FP (yellow) and TN (blue) (extracted from [16]).

Rakhlin et al. [67] proposed a deep learning method for feature extraction with gradient boost-

ing decision trees (GBDTs) for classification into 4 classes, in situ carcinoma, invasive carcinoma,

benign and normal tissue. Results for 2 classes, benign and malignant, were also evaluated. GB-

DTs are based on the principle of boosting [25], which consists in having several elements added

in a sequential form, where each element tries to minimize the loss of the previous elements.

With GBDTs, the elements are represented as decision trees that are combined together, building

a stronger model that has proven several times to be successful in classification. In addition, sev-

eral different architectures of a CNN were evaluated, a ResNet-50, a Inception-v3 and a VGG-16
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without the fully-connected layers. Each image was represented by 20 randomly extracted patches,

which resulted in 20 extracted feature vectors from the CNNs. P-norm pooling [68] was used to

obtain the final feature vector and can be calculated by equation 3.1, where N is the number of

vectors, fi is the feature vector correspondent to the patch i, p is the norm and fpooling is the final

feature vector. In this case, 3-norm pooling was used.

fpooling = (
1
N

N

∑
i=1

f p
i ) 1/p (3.1)

For preprocessing the data, color normalization and data augmentation were performed. The

results obtained for the classification into 4 and 2 different classes corresponded to an accuracy of

87.2% and 93.8%, respectively. For the 2 class classification, an AUC of 0.973 was obtained. A

comparison between the results obtained by Araújo et al. [10] and Rakhlin et al. [67] can be made,

where the obtained accuracy by the latter for both the 4 and 2 class classification was higher.

Pei et al. [9] proposed a framework for estimating the tumor cellularity by using different pre-

trained CNNs, GBDTs and SVMs. Different combinations with the individual components were

performed in order to evaluate which model gave the best results. The proposed method presents

an initial step of preprocessing the data through color normalization and data augmentation (Fig-

ure 3.10). For data augmentation, cropping was not performed, since it could result in the loss of

neoplastic or non-neoplastic cells from the image, leading to a possible incorrect diagnosis. Then,

feature extraction is implemented by three CNNs, VGG-16, ResNet-50 and Inception-v3. Each

patch is rotated and flipped and 8 variations of that patch are obtained, which means 8 feature

vectors are obtained. The 3-norm pooling was performed to obtain the final feature vector. More-

over, for feature selection, minimum redundancy maximum relevance (mRMR) method [69] can

be used. This method selects the set of features that are more relevant to the target class while the

features are the least correlated between them. Principal Component Analysis (PCA) [25] is used

for reducing the features that were selected. The step of feature selection grants the opportunity

of increasing the speed of the training process, by eliminating unimportant data. For classification

and prediction, GBDTs and SVMs can be used to determine tumor cellularity, as described in

Figure 3.10. With this, a GBDT classifier was used and it was possible to separate the data that

presented no neoplastic cells (tumor cell content = 0) from the ones that did contain them (tumor

cell content > 0). This separation was necessary since the dataset was not balanced and contained

a big number of images with zero tumor cellularity. To predict the percentage of tumor cellularity

using GBDT, two different types of losses were optimized. For SVM, two methods were also

proposed for the estimation. In order to evaluate the results, 3 metrics were used, ICC, τb and Pk.

It was found that the best results were obtained for the prediction using SVM based on support

vector regression (SVR) and utilizing a ResNet as a feature extractor. In this case, the values ob-

tained for a 95% CI corresponded to an ICC of 0.95, a τb of 0.83 and a Pk of 0.93. Moreover,

the proposed method exhibited better agreement in terms of ICC with the estimations made by a

pathologist than the estimations between different pathologists.
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Figure 3.10: The proposed method starts with a preprocessing step, feature extraction is performed
and the final feature vector is obtained. After, feature selection and dimensionality reduction are
carried out to train the classification and prediction part (extracted from [9]).

Akbar et al. [70] proposed two different methods to estimate tumor cellularity, one based on

a CNN with an Inception architecture and another based on traditional ML techniques. The pro-

posed methods are presented in Figure 3.11. Two pathologists annotated patches in the histopathol-

ogy images that they considered to be representative enough and classified the tumor cellularity

into 1 of 4 classes, 0%, 1-30%, 31-70% and > 70%. For the training dataset, it was only used the

annotations made by one of the pathologists, whereas for the test dataset both were used. This is

the cause so it is possible to study the variability between the two annotations. The obtained ICC

for a 95% CI between the pathologists was 0.89, demonstrating how the cellularity assessment

between the experts can vary.

Figure 3.11: Proposed methods. The algorithm on top corresponds to the traditional ML tech-
niques that will try to replicate the workflow of the pathologist. The method below corresponds to
the deep learning approach based on CNNs (extracted from [70]).

The ML method that tried to replicate the workflow of the pathologist was the same as in
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Peikari et al. [66], where the ICC for a 95% CI was 0.74 for one pathologist and 0.75 for the other.

For the DL approach, a pre-trained InceptionNet was used to classify the patches into neoplastic

cellularity > 0 or healthy tissue and another was used to estimate cellularity in the non-healthy

patches. The CNN method resulted in an ICC for a 95% CI of 0.83 for one of the pathologists

and 0.81 for the other. The comparison between the traditional ML approach and the DL method

shows that the algorithm based on CNNs estimates the tumor cellularity in a more accurate way.

Moreover, another approach was tested by fusing the 2 proposed methods, where the traditional

ML techniques were used to estimate the cellularity in the cancerous tissue. With this, the ICC for

a 95% CI was 0.76 for one of the pathologists and 0.79 for the other, showing that the replacement

of the second CNN by a traditional ML approach does not provide better results.

3.3 Summary

A meticulous analysis of the histopathology slides by a pathologist is considered extremely rele-

vant for the diagnosis of the patient. Most recently, several automated methods have been applied

to breast cancer classification and segmentation, as well as to other types of cancer, such as lung

cancer. Moreover, the application of DL-based algorithms has proven to be superior to the im-

plementation of traditional ML techniques. In addition, the majority of the algorithms described

rely on deep learning methods that are patch-based, since the WSI data has an extremely large

resolution and analyzing the whole image would be impossible in terms of computational cost. A

grand part of the proposed methods rely on pre-training the networks on large datasets, like the

ImageNet dataset. The results indicated that the pre-training of the networks on this dataset did

not exhibit better results. Therefore, it would be interesting to evaluate the results if the networks

were pre-trained on a dataset that contained images with similar characteristics to the histopathol-

ogy images. In addition, the approaches that removed the background of the images performed

better than the others.
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Chapter 4

Materials and Methods

This chapter presents a detailed description of the materials and methods used in this work. It

starts with a brief description of the ImageNet dataset and its usual applications. Then, some

information regarding the distribution of the PatchCamelyon dataset [71] and the SPIE-AAPM-

NCI BreastPathQ dataset [72] is given. Furthermore, the steps necessary to preprocess the data of

the SPIE-AAPM-NCI BreastPathQ are described and details concerning the ResNet-18 architec-

ture are given. Finally, this chapter presents a detailed overview of the methodology used in this

dissertation.

4.1 Datasets

4.1.1 ImageNet Dataset

As previously mentioned, the ImageNet dataset is a large-scale dataset with millions of images

intended for object classification and detection [39]. The available data contains images with

annotations in the form of binary labels and other images that contain the class label but are also

associated with a bounding box representing the location of the object. Furthermore, a dataset that

includes a large diversity of classes gives the opportunity to understand the effect each object class

has on different algorithms and how to improve them. Examples of images from the ImageNet

dataset are presented in Figure 4.1.

In addition, a very frequent and regular application of this dataset is to use it for transfer

learning. Most datasets present a small number of samples and training a network from scratch,

i.e. with the weights being initialized with random values, may not give the best results. It can be

benefitial to pre-train the network with another dataset that is larger and using the target dataset

just for training some layers. Most libraries that are used to train neural networks already offer the

pre-training of the networks on the ImageNet dataset. This can be a good option to explore, since

it is already implemented and it is not time consuming.

33
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Figure 4.1: Examples of images from the ImageNet dataset (extracted from [39]).

4.1.2 PatchCamelyon Dataset

The PatchCamelyon (PCam) dataset is built using the data from the Camelyon16 challenge [73].

This competition used 399 WSI images stained with H&E of lymph nodes sections with tumor

annotations to detect the presence of metastases in the lymph nodes. The PCam dataset is a large

dataset, containing 327680 images [71]. These images correspond to patches of size 96×96 pixels

extracted from the WSI data of Camelyon16. In addition, each patch is associated with a binary

label corresponding to the presence of metastatic tissue. Positive labels in the PCam dataset mean

that in the center region (32×32 pixels) there is at least 1 pixel that corresponds to tumor. Examples

of images of the dataset are presented in Figure 4.2. Moreover, the dataset was created in order to

be balanced in each split, i.e. each split contains a similar number of positive and negative patches

(with and without metastases). The train/validation/test split is already given and the distribution

is represented in Table 4.1.

Figure 4.2: Examples of images from the PCam Dataset [71].

Furthermore, the mean and standard deviation of all training data was computed and all the
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pixel values from the images were normalized accordingly. This process is done in order to facili-

tate the usage of the model with new images and transfer learning.

Table 4.1: Distribution of the PCam Dataset.

Dataset Data Split No. of Images No. of Images No. of Images
(%) with Metastases without Metastases

Train 80 262144 131072 131072

Validation 10 32768 16399 16369

Test 10 32768 16391 16377

4.1.3 SPIE-AAPM-NCI BreastPathQ Dataset

The SPIE-AAPM-NCI BreastPathQ (BreastPathQ) dataset consists of patches of WSI data of

residual invasive breast cancer of patients that underwent neoadjuvant therapy [72]. It contains

96 WSI images stained with H&E scanned with a magnification of 20× that were collected from

64 patients. The dataset already includes all images divided in patches, where each patch has a

dimension of 512×512 pixels. Examples of images of the BreastPathQ dataset are presented in

Figure 4.3.

Figure 4.3: Examples of images from the BreastPathQ Dataset [72].

Furthermore, each patch was annotated by a pathologist, who gave a score between 0 and 1 rep-

resenting the tumor cellularity for that patch. Additionally, the dataset split of train/validation/test

is already given. However, the test dataset does not contain any labels associated to the patches

since it was a requirement for the challenge to submit the scores given by the algorithms in the

test set. Therefore, the test set will be discarded and the validation dataset will be considered for

evaluation. In Table 4.2 is presented the distribution of the patches by the training and validation

subsets that will be used. On top of that, the number of patches in each subset in relation to the

tumor percentage is represented in Table 4.3. The cancer cellularity of the BreastPathQ dataset
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follows a specific distribution. The tumor cellularity from 0% to 10% and from 90% to 100%

varies in intervals of 1%. However, for values between 10% and 90%, the cellularity varies in

intervals of 5%. It is important to notice that both the training and validation dataset have missing

patches for some of the percentages, and therefore these values are not presented in the table. The

missing tumor percentages are 4%, 6%, 9%, 91%, 94% and 96%.

Table 4.2: Distribution of the BreastPathQ Dataset.

Dataset No. of Images

Train 2394

Validation 185

Table 4.3: Distribution of the images in the BreastPathQ dataset by each percentage value (label).

Label No. of Images No. of Images Label No. of Images No. of Images
(%) (Train) (Validation) (%) (Train) (Validation)

0 670 31 55 13 3

1 4 0 60 102 8

2 5 4 65 41 4

3 14 4 70 68 14

5 88 7 75 30 0

7 25 2 80 62 8

8 3 0 85 21 1

10 190 13 90 60 8

15 130 12 92 1 0

20 131 15 93 2 0

25 100 6 95 59 3

30 85 2 97 19 0

35 32 7 98 21 0

40 171 12 99 22 0

45 19 1 100 55 1

50 151 19

4.1.3.1 Data Preprocessing

As mentioned before, the BreastPathQ presents an uneven distribution regarding tumor cellularity,

which can become an additional difficulty for the selected methodology in equally differentiating
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between classes. To deal with this problem, the labels were artificially changed by forcing them to

have equal distances between them. In Figure 4.4 is presented the old label value with their new

associated value, which is obtained by using equations 4.1 and 4.2. After that, all new label values

are evenly spaced with a distance of 5 between them, resulting in labels ranging from -40 to 140.

Finally, the obtained label values are converted to the range between 0 and 1, by adding 40 to each

label value and dividing the result by 180. These new labels are used to train the model. However,

to calculate the evaluation metrics is necessary to convert them back into the old labels by using

equations 4.1 and 4.2 but solving them in order to old_label. Then, it is only necessary to round

the value to the nearest possible bin.

Figure 4.4: Old label values (bottom) with their corresponding new label values (top).

new_label = 10+5(old_label −10), old_label < 10 (4.1)

new_label = 90+5(old_label −90), old_label > 90 (4.2)

At last, to deal with the problem of stain inconsistency and the usage of different scanners, the

implementation of two different color normalization techniques was performed by using the Stain-

Tools package [74]. This tool offers the implementation of the methods suggested by Macenko

et al. [65] and Vahadane et al. [50]. Macenko et al. [65] proposed a method based on singular

value decomposition and does not make any assumption regarding the fact that the pixel values

cannot be negative. Vahadane et al. [50] proposed a solution based on the method developed by

Macenko et al. [65], but already considered that a stain density for each pixel cannot present a

negative value, since that would mean emitting light. In addition, the authors assumed that for a

given image, the proportions of the stains in relation to a specific biological structure are the same

and that more than one stain can tint the structure. They also assume that for each pixel there

can only be one biological structure. Both methods use a chosen target image as the color base

and change the source image accordingly, but maintaining the initial stain concentrations. In Fig-

ure 4.5 are represented some patches with and without color normalization using the two described

techniques. From the observation of this Figure it is not straightforward to see clear differences

between these two methods. However, a close inspection of this Figure shows that the pink stain

associated with the application of the Macenko et al. [65] approach is slightly more saturated than

in the other method. It is important to notice that both these methods depend greatly on the choice

of the target image.
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Figure 4.5: Effect of color normalization on some patches. On the top left corner is presented the
target image. The top row represents the images without any type of color normalization. In a) is
represented the same images normalized with respect to the target image using the Macenko et al.
[65] approach. In b) images are normalized with the Vahadane et al. [50] approach.

4.2 Network Architecture

As mentioned before, several architectures could be used for the main objective of this work, i.e.

the quantification of the cancer cells in WSI data, such as ResNets, VGGs and Inceptions. The

performance of these 3 different architectures was compared by Pei et al. [9] using the Breast-

PathQ dataset. In that study, it was found that the best performing model was the one that used

a ResNet-50. Therefore, we have selected a ResNet based architecture for this work. Moreover,

in order to investigate the performance when using a simpler version of this type of networks, we

will be using a ResNet-18.

Figure 4.6 presents a diagram that exemplifies the architecture of the ResNet-18 [44]. As

with the others ResNet networks, this network was introduced in the context of the ImageNet

classification task. This network has 18 layers with 4 basic blocks that repeat themselves. It is

possible to calculate the size of the image after each layer by using equation 4.3, in which W stands

for the image width, F for the size of the filter, P to the size of the padding and S to the size of the

stride. In each block the first layer has a stride of 2, except for the first block. Each convolutional

layer is followed by a Rectified Linear Unit (ReLU) activation function. In the end, there is a fully

connected layer with 1000 neurons that represent the 1000 classes of the classification task of the

ImageNet dataset.
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Figure 4.6: Diagram of the ResNet-18 network architeture [44] for images of 224x224 px of the
ImageNet dataset. The letters s and p stand for stride and padding, respectively.

new_width = (W −F +2P)/S+1 (4.3)

4.3 Methodology

Figure 4.7 presents the overview of the workflow that will be followed to investigate the prediction

of the percentage of tumor cells in the BreastPathQ dataset. This pipeline consists in comparing 3

different approaches:

• using the ResNet-18 architecture without any pre-training to predict the percentage, i.e. the

network weights are initially with random values;

• using the ResNet-18 pre-trained on the ImageNet dataset, which is already available within

the utilized framework;

• pre-training the network on the PCam dataset and only then using the ResNet-18 for pre-

dicting the cancer cells in the BreastPathQ patches.

In order to avoid overfitting, two different data augmentation techniques were applied to both

the PCam and the BreastPathQ dataset. Image patches in the training dataset could be vertically

flipped with a probability of 50% and a random perspective with a 0.5 distortion factor with a

50% probability of being applied was also implemented. This random perspective uses a bilinear

interpolation. In Figure 4.8 is represented four possible variants of a patch of the training dataset.

Both the network, the data augmentation process and the training phase were all implemented by

using the PyTorch framework [75].

For the three approaches mentioned above, several tests will be made with different conditions

regarding distinct factors. The training data in the BreastPathQ dataset is heavily unbalanced

as it presented a large number of patches with zero cellularity (670 samples). Regarding this

information, in order to verify the influence of this class during the training phase, tests were

made with and without the presence of these patches in the training dataset. Additionally, it will be

studied the influence of the images not being color normalized, being color normalized according
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Figure 4.7: Overview of the workflow established here to study the prediction of the cancer cells
percentage in the BreastPathQ dataset.

Figure 4.8: Original patch and 4 different variants that are possible to appear in the training dataset.
From left to right: the fourth image was vertically flipped, but it did not undergo any random
perspective transformation. The third and fifth images were not vertically flipped, but a random
perspective was applied. Finally, the second image was both vertically flipped and a random
perspective transformation was applied.

to the Macenko et al. [65] approach and to the Vahadane et al. [50] approach. Furthermore, an

investigation regarding the classifier at the end of the network, i.e. the number of fully connected

layers will be made, with two different scenarios considered: one fully connected layer, from 512

neurons to 1 with a sigmoid at the end, or two fully connected layers, from 512 neurons to 64 to 1

with a sigmoid at the end. The used optimizer for all cases is the Stochastic Gradient Descent.

The combination of all these possibilities results in twelve different tests, which will be applied

to the ResNet-18 trained from scratch and to the ResNet-18 pre-trained with the ImageNet dataset.

Since the training process in the ResNet-18 pre-trained on ImageNet or on PCam consists in

only training the classifier part and having the rest of the network frozen, an initial investigation

concerning unfreezing some convolutional layers will also be conducted. The performance of all

these tests will be compared according to several metrics: τb, Pk and ICC (see Section 2.5).

In order to simplify the analysis of cancer cells quantification using the ResNet-18 pre-trained
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on the PCam dataset, only a selected number of tests were conducted. Therefore, from the results

obtained with the ResNet-18 pre-trained with the ImageNet, the four cases that show the best

performance and one with zero patches in the training dataset will be investigated with the ResNet-

18 pre-trained with the PCam.

Finally, since implementing all twelve tests considered is time-consuming, an attempt to try

to make a first choice of the hyperparameters (learning rate, number of epochs and batch size) of

the model was made. Additionally, to investigate the influence of the loss function, a simple test

considering two different loss functions, the mean squared error (MSE) and the mean absolute

error (MAE), was conducted.

Learning Rate

The choice of an adequate learning rate is very important since it affects the performance of the

model. As an example, the evolution of the training and validation curves, and of the evaluation

metrics on the validation dataset for 300 epochs are represented in Figure 4.9 for three different

learning rates, 0.003, 0.004 and 0.006. These results were obtained using the ResNet-18 pre-

trained on ImageNet when the loss function was the MSE, the classifier consisted in 512 neurons

to 1 with a sigmoid at the end and the batch size during training was 114. Furthermore, the model

was trained by removing the image patches of zero tumor cellularity from the training dataset and

no color normalization technique was employed. Note that the learning rate affects the general

evolution of the represented curves and also the final values at 300 epochs. In particular, an

oscillatory behaviour is visible in Figure 4.9e, hinting that the ideal learning rate is lower than

0.006. Although the loss curves during training and the evolution of the metrics are good for

having a general idea of their progress, it is not always straightforward to select the adequate

learning rate from just the plot of these curves. Therefore, in order to make this selection, one

could easily compare the values of the evaluation metrics at a specific point, for example, at

the point where the validation loss is minimum. Table 4.4 presents the epoch for the minimum

validation loss and the corresponding values of the evaluation metrics for the learning rates of

0.003, 0.004 and 0.006. It is possible to observe that the learning rate that results in higher values

of the evaluation metrics is 0.003. Therefore, from the three values of the learning rates considered,

we should select 0.003. However, the differences between the evaluation metrics corresponding to

each of the three learning rates is not large.

Table 4.4: Evaluation metrics obtained for the smaller value of the validation loss curves for the
learning rates of 0.003, 0.004 and 0.006.

Learning Best Val τb Pk ICC
Rate Epoch Loss
0.003 266 0.0224 0.6762 0.8449 0.8838

0.004 230 0.0252 0.6280 0.8200 0.8640

0.006 158 0.0235 0.6595 0.8352 0.8726
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(a) Training and Validation Curves for the LR of 0.003. (b) Metrics for the Validation Dataset for the LR of 0.003.

(c) Training and Validation Curves for the LR of 0.004. (d) Metrics for the Validation Dataset for the LR of 0.004.

(e) Training and Validation Curves for the LR of 0.006. (f) Metrics for the Validation Dataset for the LR of 0.006.

Figure 4.9: Training and Validation Curves for 300 epochs (left) and Evaluation Metrics on the
Validation Dataset (right) for a Learning Rate (LR) of 0.003 (top), 0.004 (middle) and 0.006 (bot-
tom).

Even though a learning rate of 0.003 would be adequate to study the evolution of the model

under the considered conditions, the distinct scenarios studied in this work, such as, the two loss

functions and the usage of color normalization techniques, influence the behaviour of the model,

resulting in different ideal learning rates. Hence, in all the performed tests, the value of 0.003

was initially used for the learning rate. This value was subsequently adjusted if necessary. For
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example, if the loss curves are decreasing at a very slow rate, the learning rate could be increased,

whereas it should be decreased in case of oscillatory behaviour of the curves.

Number of Epochs

Since 300 epochs was enough for the study in Figure 4.9, the tests that follow consisted in training

the network for 400 epochs most of the times, except for when it was considered to be necessary

more epochs.

Batch Size

The batch size used during training also affects the model behaviour. Figure 4.10 presents the

evolution of the training and validation curves over 300 epochs and the evaluation metrics on the

validation dataset for the same conditions of Figure 4.9a, but with a batch size during training of

228 and not 114. It is possible to observe that in Figure 4.10 the evolution of the curves is slower

than in Figure4.9a and, therefore, every test requires more epochs until reaching a point where the

validation loss is practically steady. Hence, the batch size of 114 during training was selected to

be maintained throughout this work for all tests done.

(a) Training and Validation Curves. (b) Metrics for the Validation Dataset.

Figure 4.10: Training and Validation Curves for 300 epochs (left) and Evaluation Metrics on the
Validation Dataset (right) for a Learning Rate (LR) of 0.003 and a Batch Size of 228.

Loss Function

In order to choose a loss function to use throughout this dissertation, a single test was made by

using two different loss functions, the MSE and the MAE. Table 4.5 presents the values of the

evaluation metrics for the ResNet-18 trained from scratch when using the MSE and MAE loss

function. These results were obtained when the classifier consisted in 512 neurons to 1 with a

sigmoid at the end and the batch size during training was 114. Furthermore, the model was trained

by removing the image patches of zero tumor cellularity from the training dataset and no color

normalization technique was employed. It is possible to observe in Table 4.5 that the values of
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the evaluation metrics are very similar for both loss functions, although slightly higher for the

MSE loss function. Therefore, the MSE loss function was selected as the loss function to be used

throughout this work.

Table 4.5: Evaluation metrics at the epoch for the minimum validation loss for the MSE and MAE
loss function.

τb Pk ICC
MSE 0.640 0.825 0.838

MAE 0.613 0.811 0.802

4.4 Summary

A brief description of the two datasets that will be used throughout this work was given. One of

these datasets is the PCam and will be employed in the pre-training of the network. The images

in this dataset correspond to WSI images with similar characteristics to the images of the dataset

that will be used to train and quantify the cancer cells (BreastPathQ). This chapter also describes

the chosen network architecture and the methodology that was defined to evaluate the influence

of different factors in the performance of this model, such as the removal of the images with zero

cellularity from the training dataset, the usage of color normalization techniques and the classifier.

Preliminary studies were conducted to define the value of the hyperparameters that will be used

in the following chapter, that is, the initial learning rate will be 0.003, the minimum number of

epochs is 400 and the batch size during training is 114. Additionally, an investigation regarding

the loss function was made, and the MSE was selected as the loss function to be used in this work.



Chapter 5

Cancer Cells Quantification

This chapter presents the results obtained with the methodology defined in the previous chapter.

It also includes a discussion of the results and compares the different network and training dataset

configurations.

5.1 ResNet-18 trained from Scratch

This section presents the results obtained with a ResNet-18 network that was trained from scratch

using the BreastPathQ dataset. Several tests are made regarding the presence of zeros in the

training dataset, the number of fully connected layers at the end of the network and the effect of

two different color normalization techniques.

5.1.1 Tests

As previously mentioned in Chapter 4, experiments changing three different parameters will be

made, which results in twelve different tests. In this work, in order to simplify the identification

of a particular test, a numerical code was defined, where each digit has a different meaning. Ta-

ble 5.1 presents the three conditions that will be altered, the position of the digit in the code of

the test (starting from the left), the code numbers that they can have and respective meaning. The

code numbers have three digits, where the first digit corresponds to the zeros code, the second

to the classifier and the third to the color normalization technique used. For example, the digit

corresponding to zeros can have two different values, 0 or 1, where the former means that the

training dataset will not have patches with zero cellularity and the latter to the training with the

full dataset. Thus, the test with the number code 002 means that the training of the network was

with the dataset without zeros, the classifier had 512 neurons to 1 with a sigmoid at the end and

that the color normalization used was the Vahadane approach.

Table 5.2 summarizes all the tests that were performed. In total, twelve tests were imple-

mented. The Table 5.2 contains the total number of epochs for which the model was trained, the

learning rate that was used, the epoch that resulted in the minimum value of the validation loss and

its corresponding value, the value of the three evaluation metrics, τb, Pk and ICC, for the minimum

45
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validation loss epoch and their maximum values. For each one of these six metrics, the highest

value across all cases is highlighted in bold. Finally, the Table 5.2 also contains the equation of

the linear regression that better approximates the estimations of the model concerning the valida-

tion dataset. It also contains the R2 value that measures the level of agreement between the linear

regression and the estimations on the validation dataset. Ideally, if the model was perfect, the

equation of the linear regression would be of the type y = x and the R2 value would be 1. Detailed

plots of the evolution of the training and validation loss, evaluation metrics and scatter plots are

presented in Appendix A.

From the observation of the Table 5.2, it is possible to verify that the maximum values of the

evaluation metrics are similar to the values corresponding to the minimum loss. Therefore, since

the minimum validation loss is considered to be a convenient stopping point, in the following

analysis, the evaluation criteria at this epoch will be used.

Table 5.1: Variable parameters during the tests, their attributed code and meaning.

Variable Position Value Meaning
Parameters

Zeros 1
0 No images with zero cellularity

1 Images with zero cellularity

Classifier 2
0 512→1

1 512→64→1

Color Normalization 3

0 No color normalization

1 Macenko approach [65]

2 Vahadane approach [50]
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5.1.2 Discussion of Results

5.1.2.1 Effect of Image Patches with Zero Cellularity

Although all parameters may impact the performance of the model, removing the patches with

zero cellularity from the training data may alter the results significantly, since the dataset is highly

unbalanced.

Table 5.3 presents the minimum and maximum values of the evaluation metrics corresponding

to the epoch with minimum validation loss for the study of the cases with and without zero patches

for the ResNet-18 trained from scratch. It is possible to observe that the ranges of τb and Pk

are similar in both cases. However, the values of the ICC are significantly larger in the case

where the dataset does not contain images with zero cellularity. The difference in the behaviour

of these metrics could be explained by their nature: both τb and Pk are metrics that evaluate

ordinal correlation, whereas ICC evaluates the level of agreement between measurements. In

effect, since the dataset with zero patches is heavily unbalanced, containing a large amount of

images with zero cellularity, the training will be naturally biased towards the classification of

those images. On the contrary, the dataset without the zero patches is more balanced and allows

to train a model that will perform better for all the classes. This difference in the classification can

be observed in Figure 5.1, which presents the estimations made by the model on the validation

dataset for the tests 000 and 100. For visualisation purposes, in Figure 5.1 each dot corresponds to

an image patch from the validation dataset, where different shades of blue were used to represent

the level of overlapping. Darker colors are related to a higher number of overlapping patches,

i.e., the model classified several images with the same percentage. In Figure 5.1b it is possible to

observe that more patches from the validation dataset are classified with a low tumor percentage

than in Figure 5.1a. Moreover, it is also visible in Figure 5.1b that for images classified by the

pathologist with tumor cellularity around 50% or larger, the patches are more spread, suggesting

a poor capacity of the model in classifying images with large cellularities.

Table 5.3: Minimum and maximum values of the evaluation metrics at the epoch for the minimum
validation loss in relation to the training dataset for the ResNet-18 trained from scratch.

τb Pk ICC
Without zero patches 0.559– 0.640 0.785 – 0.825 0.768 – 0.838

With zero patches 0.583 – 0.616 0.798 – 0.814 0.701 – 0.764

Additionally, it is important to notice that the slopes of the linear regression and the R2 values

in Figure 5.1 are consistent with the model trained without the zero patches performing better.

This behaviour is also visible in all the remaining studied cases, as it can be observed in Table 5.4.

Both the values of the slope and the R2 are always larger for the case where the training dataset

did not contain images with zero cellularity, suggesting that these values have a similar behaviour

to the ICC metric.
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(a) Test 000. (b) Test 100.

Figure 5.1: Scatter Plot showing the level of agreement between the estimations of the model with
the predictions of the pathologist on the validation dataset. A linear regression that better fits the
data is also shown. The different shades of blue dots intend to show the overlapping of patches.

Table 5.4: Minimum and maximum values of the linear regression slope and the R2 value at the
epoch for the minimum validation loss for the ResNet-18 trained from scratch.

Slope R2

Without zero patches 0.69 – 0.82 0.45 – 0.65

With zero patches 0.59 – 0.7 0.24 – 0.44

5.1.2.2 Effect of the Classifier

The classifier at the end of the network can be composed of one or several fully connected layers

and, since in this work we are dealing with a regression problem, it will always end in a single

neuron. Here, the effect of using two different classifiers will be investigated: one from 512

neurons to 1 with a sigmoid at the end, and another that consists in 512 neurons to 64 to 1 neuron

with a sigmoid at the end.

Table 5.5 presents the minimum and maximum values of the metrics for the minimum valida-

tion loss in relation to the classifier. It is possible to observe that the values of the three evaluation

metrics are very similar for both classifiers, suggesting that the addition of a second layer to the

classifier does not improve the performance of the model.

Table 5.5: Minimum and maximum values of the evaluation metrics at the epoch for the minimum
validation loss in relation to the classifier for the ResNet-18 trained from scratch.

Classifier τb Pk ICC

512 → 1 0.567 – 0.640 0.788 – 0.825 0.701 – 0.838

512 → 64 → 1 0.559 – 0.636 0.785 – 0.823 0.712 – 0.830
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5.1.2.3 Effect of the Color Normalization

As previously mentioned, color normalization techniques may be useful to deal with stain in-

consistencies and the usage of different scanners. In order to study the influence of these tech-

niques, two different color normalization approaches were implemented, Macenko et al. [65] and

Vahadane et al. [50], and compared to the case where no normalization was used.

In Table 5.6 the minimum and maximum values of the evaluation metrics in the epoch cor-

responding to the minimum validation loss are presented for the three cases: (i) without color

normalization, (ii) with the Macenko approach and (iii) with the Vahadane approach.

Table 5.6: Minimum and maximum values of the evaluation metrics at the minimum valida-
tion loss epoch for different color normalization approaches and for the ResNet-18 trained from
scratch.

τb Pk ICC
No color normalization 0.583 – 0.640 0.798 – 0.825 0.701 – 0.838

Macenko approach 0.578 – 0.616 0.795 – 0.814 0.717 – 0.802

Vahadane approach 0.559 – 0.607 0.785 – 0.809 0.735 – 0.777

It is possible to observe that the highest values of the three evaluation metrics occur for the

case where no color normalization technique was applied. This could be explained by the choice

of the target image used for the normalization process, i.e., a different target image may yield a

better result.

However, a different conclusion would be obtained if only the results corresponding to the

training dataset containing the images with zero cellularity were used. Effectively, from Table 5.2

it is possible to observe that the evaluation metrics for tests 100, 101 and 102 have a different

behaviour. The metrics have their lower values for the case 100, where no color normalization

was applied, followed by the ones with the Macenko approach (test 101), and, finally, the best

results are obtained for the Vahadane approach (test 102). A similar behaviour is visible when

comparing the cases 110 with 111 and 112, where the value of the metrics is higher for the cases

where color normalization was used, with the Macenko approach outperforming the other two.

5.2 ResNet-18 pre-trained on ImageNet

This section addresses the task of cancer cells quantification using a ResNet-18 network that was

pre-trained on the ImageNet dataset.

5.2.1 Tests

Table 5.7 summarizes all the tests that were performed. Detailed plots of the evolution of the

training and validation loss, evaluation metrics and scatter plots are presented in Appendix A.
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Similarly to what happens with the ResNet-18 trained from scratch, the maximum values of

the evaluation metrics are close to the values corresponding to the minimum loss. Therefore, the

evaluation criteria at this epoch will also be used here.
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5.2.2 Discussion of Results

5.2.2.1 Effect of Image Patches with Zero Cellularity

Table 5.8 presents the minimum and maximum values of the evaluation metrics corresponding to

the epoch with minimum validation loss for the study of the cases with and without zero patches

in the training dataset.

Table 5.8: Minimum and maximum values of the evaluation metrics at the epoch for the minimum
validation loss in relation to the training dataset for the ResNet-18 pre-trained on ImageNet.

τb Pk ICC
Without zero patches 0.628 – 0.703 0.820 – 0.858 0.873 – 0.895

With zero patches 0.534 – 0.666 0.770 – 0.838 0.560 – 0.712

Similarly to what happened with the ResNet-18 trained from scratch, the evaluation metrics

present higher values when the training dataset does not include the images with zero cellularity.

Actually, the difference between the evaluation metrics for the cases with and without zero patches

is considerably more pronounced now than with the ResNet-18 trained from scratch. For example,

the ICC metric for the case of the ResNet-18 trained from scratch ranges between 0.757 - 0.838

(without zero patches) and between 0.701 - 0.764 (with zero patches), whereas for the ResNet-18

pre-trained with ImageNet this metric ranges between 0.873 - 0.895 (without zero patches) and

between 0.560 - 0.712 (with zero patches).

The difference between the network behaviour for the cases with and without the zero patches

in the training dataset can be easily observed in Figure 5.2, which presents the estimations made

by the model on the validation dataset for the tests 000 and 100. Effectively, in Figure 5.2b it is

possible to observe a notorious bias of the estimations towards the lower tumor cellularities. This

bias is not visible in Figure 5.2a. Furthermore, similarly to the ResNet-18 trained from scratch,

the predictions made by the model trained with the zero patches tend to misclassify the larger

cellularities.

The range of values of the linear regression and R2 for all the studied cases are presented in

Table 5.9 and are consistent with the model trained without zero patches performing better.

Table 5.9: Minimum and maximum values of the linear regression slope and the R2 value at the
epoch for the minimum validation loss for the ResNet-18 pre-trained on ImageNet.

Slope R2

Without zero patches 0.87 – 0.93 0.75 – 0.79

With zero patches 0.49 – 0.61 -0.61 – 0.07

Finally, it is important to mention that the comparison of the results in Table 5.8 with those

in Table 5.3 for the training dataset without zero patches suggests that the ResNet-18 pre-trained

with the ImageNet outperforms the one trained from scratch.
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(a) Test 000. (b) Test 100.

Figure 5.2: Scatter Plot showing the level of agreement between the estimations of the model with
the predictions of the pathologist on the validation dataset. A linear regression that better fits the
data is also shown. The different shades of blue dots intend to show the overlapping of patches.

5.2.2.2 Effect of the Classifier

Table 5.10 presents the minimum and maximum values of the metrics for the minimum validation

loss in relation to the classifier. It is possible to observe that the values of the three evaluation

metrics are very similar for both classifiers. An identical conclusion was obtained for the ResNet-

18 trained from scratch.

Table 5.10: Minimum and maximum values of the evaluation metrics at the epoch for the minimum
validation loss in relation to the classifier for the ResNet-18 pre-trained on ImageNet.

Classifier τb Pk ICC

512 → 1 0.534 – 0.703 0.770 – 0.858 0.560 – 0.895

512 → 64 → 1 0.625 – 0.678 0.816 – 0.845 0.690 – 0.890

5.2.2.3 Effect of the Color Normalization

In Table 5.11 the minimum and maximum values of the evaluation metrics in the epoch cor-

responding to the minimum validation loss are presented for the three cases: (i) without color

normalization, (ii) with the Macenko approach and (iii) with the Vahadane approach.

Once again, it is possible to observe that the highest values of the three evaluation metrics

occur for the case where no color normalization technique was applied, which could be explained

by the choice of the target image used for the normalization process.
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Table 5.11: Minimum and maximum values of the evaluation metrics at the minimum validation
loss epoch for different color normalization approaches for the ResNet-18 pre-trained on Ima-
geNet.

τb Pk ICC
No color normalization 0.617 – 0.703 0.811 – 0.858 0.619 – 0.895

Macenko approach 0.587 – 0.666 0.798 – 0.838 0.628 – 0.874

Vahadane approach 0.534 – 0.630 0.770 – 0.821 0.560 – 0.878

5.3 ResNet-18 pre-trained on PCam

This section is dedicated to cancer cells quantification using a network that is pre-trained with

the PCam dataset. It starts with the task of metastases classification in the PCam dataset and the

selection of the model with the best performance. Afterwards, this pre-trained model is used in

the quantification of cancer cells and results are compared with those obtained with the model that

was pre-trained with the general dataset.

5.3.1 Proposed Method

The pipeline implemented to predict the percentage of cancer cells is represented in Figure 5.3.

This method consists in two distinct parts. The first part comprises a binary classification task to

classify image patches of the PCam dataset as containing metastatic tissue or not. This will be done

by using a specific CNN, the ResNet-18 network [44]. This task is used in this pipeline to make

use of transfer learning. As mentioned before, the PCam dataset consists of 96×96 px patches

and contains 262144 images for the training dataset and 32768 for the validation and test dataset,

which is much larger than the 2394 training images of the BreastPathQ dataset. Additionally,

both problems present a lot of similarities in terms of image patches. The second step consists

in a regression task to predict the percentage of cancer cells in the BreastPathQ dataset by using

the pre-trained ResNet-18. Furthermore, results will be compared by using an already pre-trained

ResNet-18 model but in the ImageNet dataset.

5.3.1.1 Lymph Nodes Metastases Classification

The first task of the proposed method consists in using the selected architeture (ResNet-18) for

differentiating between metastatic and non-metastatic tissue in the PCam dataset in order to pre-

train the network. With this, it is necessary to adjust the network for a classification task and

replace the last fully connected layer to contain just 2 neurons and not 1000 neurons. In Figure 5.4

is presented the ResNet-18 adjusted for only 2 classes and with the correct image sizes throughout

the layers given the size of the PCam images.

Finally, it was used the Cross-Entropy loss as the loss function to minimize and the Stochastic

Gradient Descent as the optimizer for training the model. In Table 5.12 are presented the values

of the hyperparameters that were used for training the model. Other attempts with other values
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PatchCamelyon
Dataset

SPIE-AAPM-NCI
BreastPathQ Dataset

Metastatic Tissue

Transfer Learning

Pre-trained Resnet18

Resnet18

Binary Classification

Regression

Non-Metastatic Tissue

Percentage of Cancer
Cells

Figure 5.3: Pipeline developed to predict the percentage of cancer cells in the BreastPathQ dataset,
based on the pre-trained Resnet18 model using whole-slide images from the PCam dataset.

Figure 5.4: Diagram of the ResNet-18 network architeture for images of 96×96 px of the PCam
dataset. The letters s and p stand for stride and padding, respectively.

for the batch size, learning rate and even data augmentation techniques were performed, but since

each epoch was very time consuming, due to the large amount of data, for the small schedule of

this work it was not possible to perform an exhaustive amount of tests.

Results and Discussion

As previously mentioned, data augmentation techniques were used in order to reduce overfitting.

Due to time constraints, it was only possible to test the influence of two approaches. The first

method consisted in applying vertical flips to an image with a 50% probability. The training
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Table 5.12: Selected Hyperparameters for the metastases classification.

Selected Hyperparameters Value

Number of Epochs 70

Learning Rate 0.001

Batch Size 1024

process was run with a learning rate of 0.001 and a batch size of 1024. This process was stopped

after 29 epochs, since at that point the validation loss shows an increasing trend. The obtained

accuracy and loss on the training and validation dataset is presented in Figure 5.5a.

(a) Only vertical flips as data augmentation. (b) Not only vertical flips as data augmentation but also ran-
dom perspectives.

Figure 5.5: Training of the ResNet-18 network for 29 epochs with 2 different approaches regarding
data augmentation.

It is possible to observe that the overfitting happens quickly since that the training loss contin-

ues to decrease and that the validation loss has stagnated or that it even increases. In other words,

it is possible to observe that the distance between the training and validation curves keeps getting

larger. The second approach consisted in not only applying vertical flips with a 50% probability

but also applying random perspectives with a distortion factor of 0.5 and 50% probability. This

was the selected data augmentation technique, as described above, and the model was trained for

70 epochs. However, in Figure 5.5b is presented the training phase for only the first 29 epochs to

directly compare with Figure 5.5a. It is possible to observe that with this approach the overfitting

reduced significantly and that the validation accuracy at epoch 29 is still increasing, which was

not the case in Figure 5.5a. Although these results are better, they could probably be further im-

proved by applying some color normalization technique throughout the dataset and by diminishing

the learning rate when no significant improvement is seen in the validation accuracy after several

epochs.

Furthermore, in Figure 5.6 is presented the selected metrics to evaluate the model during the

training of the network, which correspond to the sensitivity, precision, accuracy and AUC. It is
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possible to observe that the behaviour of the precision, accuracy and AUC curves are much more

stable than the sensitivity curve, which suggests that there is a lot of false negatives, i.e. the

network misclassifies patches with metastases as not having any. Additionally, the oscillation of

the curves suggests that the learning rate might have been too high and that the training could

have benefitted from a lower learning rate. Table 5.13 was created by searching for the maximum

value in each curve and obtaining the corresponding epoch. Then, for each epoch, the metrics

were gathered from all curves and rounded to 2 decimal places. From Table 5.13 is possible to

observe that sensitivity is the metric with the lowest values of them all and that epoch 64 results in

the epoch with the most maximum values for all metrics. Therefore, the chosen model that will be

used for pre-training and in the second task of this work will be the ResNet-18 network trained for

64 epochs. In this case, the model is capable to classify lymph node metastases with a sensitivity

of 0.70, a precision of 0.85, an accuracy of 0.79 and an AUC of 0.88.

Figure 5.6: Obtained metrics for the pre-training of the ResNet-18 for 70 epochs.

Table 5.13: Evaluation metrics for the selected epochs.

Epoch Sensitivity Precision Accuracy AUC

8 0.75 0.8 0.78 0.86

64 0.70 0.85 0.79 0.88

66 0.72 0.84 0.79 0.88

67 0.66 0.85 0.77 0.87

Additionally, in Figure 5.7a is presented the confusion matrix for the model at epoch 64 re-

garding the test dataset. It is possible to observe that the number of false positives is smaller than

the number of false negatives, which is compatible with what was mentioned before regarding the

lower values for the sensitivity. Figure 5.7b refers to the ROC curve on the test dataset for the

lymph nodes metastases classification at epoch 64.
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(a) Confusion matrix. (b) ROC curve for lymph node metastases classification.
The dashed line corresponds to the ROC curve of a random
classifier.

Figure 5.7: Confusion matrix and ROC curve for the ResNet-18 network trained for 64 epochs on
the test dataset.

The PCam dataset was presented in [71], where the authors proposed a model to classify the

image patches as healthy tissue or tumor. They reported an accuracy of 89.8 and an AUC of

96.3. The results obtained in [71] are significantly better than the ones obtained in this work,

which can be explained by two factors. Firstly, the network used was not the same, since the

authors explored the fact that the WSI data exhibits properties of translation, rotation and reflection

symmetry. Therefore, they implemented CNNs that are equivariant to 90º rotations and reflections.

Moreover, due to the large size of the PCam dataset, the hardware and time constraints did not

allow the testing of different data augmentation techniques and the training of our network for

more than 70 epochs, which may not be sufficient.

5.3.2 Tumor Cells Prediction

In order to investigate the usage of the pre-training with the PCam dataset, five different cases were

considered, which correspond to codes 000, 002, 010, 012 and 100. These cases were selected

because four of them exhibit the higher values of the ICC evaluation metric in Table 5.7, and the

other one was included to assess the effect of having images with zero cellularity in the training

dataset. Note that the ICC metric translates the correlation between the estimations made by the

model with the predictions made by the pathologist better than the other two evaluation metrics

considered in this work.

Table 5.14 summarizes all the tests that were performed. The highest value of each one of the

six metrics across all cases is highlighted in bold. Unlike what was obtained with the ResNet-18

trained from scratch or pre-trained with the ImageNet, where the highest value of all the evaluation

metrics occurred for the same case (000), the highest value of the different metrics does not occur

for a single case. Furthermore, for the tests corresponding to the training dataset without zeros,
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the value of the evaluation metrics is quite constant across these cases, suggesting once again that

the effect of classifiers and color normalization are not very relevant.

The results presented in Table 5.14 are in general slightly worst than the corresponding results

in Table 5.7, indicating that the model performs better when it is pre-trained with ImageNet.

It is also interesting to compare the estimations made by the models pre-trained with the Ima-

geNet and with the PCam dataset, which are depicted in Figure 5.8 for cases 000 (top row) and 100

(bottom row). As expected, the 100 case exhibits a biasing in the estimation towards the class zero

in both models. Moreover, the estimations made by the model pre-trained with the PCam (right

column) show a visible gap in the scatter plot, as if the model was trying to classify the images as

0 or 1. This may be explained by the fact that the model was pre-trained on a dataset where it only

learned how to distinguish between healthy tissue and tumor.

Table 5.15 compares the evaluation metrics at the minimum loss epoch for the three approaches

used for the training of the model. It is possible to observe that the results for the model trained

from scratch are slightly better than those of the network pre-trained on the PCam dataset, and that

the network pre-trained on the ImageNet dataset outperforms the other two. Furthermore, it should

be mentioned that for case 100, the ICC value for the ResNet-18 trained from scratch (0.701) is

higher when compared to the one obtained with the pre-training on the ImageNet dataset (0.619)

and the PCam dataset (0.630).

Lastly, Figure 5.9 presents the estimations made by the models for case 100. It is interesting

to notice that the predictions made by the model trained from scratch are somewhat similar to

the ones made by the model pre-trained on the PCam dataset. Indeed, unlike Figure 5.9a, both

Figures 5.9b and 5.9c exhibit a notorious gap in the scatter plots. Although only the 100 case is

represented, this behaviour is also present in the other studied cases. This suggests that the reason

behind the existence of this gap is not the one previously pointed (the pre-training with the PCam

favoured the estimation as being healthy or tumor, that is, 0 or 1), but instead it may be associated

with an insufficient training of the network.
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(a) Test 000 with ImageNet. (b) Test 000 with PCam.

(c) Test 100 with ImageNet. (d) Test 100 with PCam.

Figure 5.8: Scatter Plot showing the level of agreement between the estimations of the model with
the predictions of the pathologist on the validation dataset for the case 000 and 100.
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Table 5.15: Comparison of the evaluation metrics for the three approaches used for the training of
the model.

Training Type Test τb Pk ICC

Trained from Scratch

000 0.640 0.825 0.838

002 0.567 0.788 0.768

010 0.636 0.823 0.830

012 0.559 0.785 0.777

100 0.585 0.799 0.701

Pre-Training with ImageNet

000 0.703 0.858 0.895

002 0.628 0.820 0.878

010 0.678 0.845 0.890

012 0.630 0.821 0.876

100 0.617 0.811 0.619

Pre-Training with PCam

000 0.558 0.783 0.788

002 0.564 0.787 0.775

010 0.576 0.792 0.789

012 0.583 0.797 0.787

100 0.499 0.753 0.630
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(a) Test 100 with ImageNet. (b) Test 100 with PCam.

(c) Test 100 from scratch.

Figure 5.9: Scatter Plot showing the level of agreement between the estimations of the model with
the predictions of the pathologist on the validation dataset for the case 100.
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5.4 Unfreezing the Layers of the ResNet-18

Previous studies have shown that progressively unfreezing the layers of the network is a good

approach for fine-tuning models [76]. In an attempt to improve the results that were previously

obtained when the ResNet-18 was pre-trained with the ImageNet and the PCam dataset, a prelim-

inary study on the influence of this fine-tuning approach is also conducted in this work. For that,

only the case 000 was considered. Ideally, this process would start from the point corresponding

to the minimum validation loss epoch, but since the state of the model was saved every 50 epochs

and not at that point, it was decided that the unfreezing would start at the nearest saved checkpoint.

Each time a certain layer was unfreezed, the model was trained for 25 epochs before unfreezing

the next one. Furthermore, at every 25 epochs the learning rate was decreased by a factor of 1.11,

with the initial value being the one of the saved model.

Figure 5.10 presents the loss curves and the evaluation metrics for test 000 for the pre-trained

ResNet-18 with the ImageNet (left) and the PCam (right) datasets when unfreezing the layers.

The start of the process of unfreezing is represented by the dashed vertical lines. It is possible to

observe that in Figure 5.10b there is a clear decrease in the training and validation loss after the

process of unfreezing the layers started. On the other hand, Figure 5.10a presents no significant

change in the behaviour of the loss curves, suggesting it had no effect for the case where the

network was pre-trained with the ImageNet dataset. As expected, the evaluation metrics for the

model pre-trained with ImageNet do not show a visible modification after unfreezing, whereas the

evaluation metrics for the model pre-trained with PCam slightly increase. In effect, for the model

pre-trained with PCam without unfreezing, the value of τb was 0.558, Pk was 0.783 and ICC was

0.788 and for the model pre-trained with PCam with unfreezing the value of τb was 0.565, Pk was

0.786 and ICC was 0.795 (values at the minimum validation loss epoch).

In this preliminary analysis, the unfreezing of the layers of the network showed promising

results in fine-tuning the model. Nonetheless, a more thorough investigation is required to fully

understand the potential of this approach.

1In some preliminary analyses, it was found that this value performed the best.
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(a) Loss Curves for the Pre-Trained ResNet-18 with
ImageNet.

(b) Loss Curves for the Pre-Trained ResNet-18 with PCam.

(c) Metrics for the Pre-Trained ResNet-18 with ImageNet. (d) Metrics for the Pre-Trained ResNet-18 with PCam.

Figure 5.10: Training and Validation Curves (top) and Evaluation Metrics on the Validation
Dataset (bottom) for the ResNet-18 pre-trained on the ImageNet (left) and the PCam (right)
datasets when unfreezing the layers.
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5.5 Summary

Several tests were performed in order to investigate the influence of different factors in the per-

formance of a ResNet-18: transfer learning, presence of images with zero patches in the training

dataset, classifier at the end of the network and usage of color normalization techniques. The ef-

fect of transfer learning is investigated by comparing the performance of the network trained from

scratch with that of the network pre-trained with a general dataset (ImageNet) or with a context

specific dataset (PCam). The influence of the classifier is addressed by considering two different

classifiiers: one from 512 neurons to 1 with a sigmoid at the end, and another that consists in 512

neurons to 64 to 1 neuron with a sigmoid at the end. Finally, two different color normalization

approaches were implemented, Macenko et al. [65] and Vahadane et al. [50], and the results were

compared to the case where no normalization was used.

In order to pre-train the network on the PCam dataset, the necessary adjustments to the ResNet-

18 are described. A small study concerning two different data augmentation approaches is done

and the usage of random vertical flips and random perspectives is selected. Furthermore, the se-

lected model corresponds to epoch 64, which presents the most maximum values for all evaluation

metrics. The pre-trained model on the PCam dataset obtained a sensitivity of 0.70, a precision of

0.85, an accuracy of 0.79 and an AUC of 0.88. These results might have been further improved,

but it was not possible to train the network for more than 70 epochs due to time constraints, which

may have not been sufficient.

Firstly, the removal of the images with zero cellularity from the training dataset resulted in a

higher overall performance for the three networks, hinting at the importance of removing these

patches prior to training. Also, for the case which corresponds to having the training dataset with

zero patches, the biasing towards the zero class is evident. The two selected classifiers considered

presented similar results, indicating that the addition of the second layer does not improve the

predictions made by the three models. Then, the effect of the color normalization was studied, and

it was found that in general the best results were obtained for the cases where no color normaliza-

tion technique was used. This could be associated to the choice of the target image in the color

normalization techniques, which may not have been ideal.

Overall, the results with the network pre-trained on the PCam dataset are slightly worst than

for the case where the network is trained from scratch, and the best results were obtained with

the network that was pre-trained with the ImageNet. Furthermore, a visual gap is also visible in

the scatter plots corresponding to both the newtwork trained from scratch and pre-trained with the

PCam, which might be linked to a non-existent or insufficient pre-training of the network.

To sum up, a fine-tuning approach based on unfreezing the layers of the pre-trained ResNet-18

was investigated. The preliminary results obtained showed that there was an improvement of the

evaluation metrics for the case where the network was pre-trained on the PCam dataset, whereas

no significant improvement was observed for the pre-trained ResNet-18 on the ImageNet.
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Chapter 6

Conclusions and Future Work

6.1 Main Conclusions

Cancer is one of the main causes of death all over the world. Early detection increases consider-

ably the survival rate of the cancer patients. Nowadays, automated methods used for the detection

of tumor cells already show performances comparable to those obtained by highly trained pathol-

ogists. Among these methods, the ones based on deep learning techniques are the most promising

ones.

This dissertation addresses the development of a methodology based on ML to predict the

tumor cells percentage in WSI data of breast cancer in order to assist pathologists. The literature

review already conducted has shown that most of the algorithms used so far rely on patch-based

DL techniques. CNN algorithms are the DL methods most suitable for this kind of application.

For this work, the influence of three different factors on the cancer cells quantification done by

a ResNet-18 was investigated. One of these factors is directly related to the CNN, i.e., it concerns

the classifier at the end of the CNN. The other two factors are associated with the dataset used

to train and test the developed methodology. One factor is the removal of the images with zero

cellularity from the training dataset, and the other is the usage of color normalization techniques.

Furthermore, in this work, the use of pre-training was also investigated, as it has been questioned

if pre-training with a very general dataset is an effective way of improving the performance of the

networks.

In order to study the effect of the classifier at the end of the network, two different scenarios

were considered. One of them with one fully connected layer, from 512 neurons to 1 with a

sigmoid at the end, and the other one with two fully connected layers, from 512 neurons to 64 to

1 with a sigmoid at the end. The results obtained with the two different classifiers are pretty much

identical, hinting that a classifier with more layers may not be necessary in order to improve the

model performance.

In this work, the dataset used to train and validate the results is the BreastPathQ dataset. This

dataset contains images from 0% to 100% cellularity and is unbalanced, having a large number

of patches of the class zero. In order to investigate the influence of these images, two different
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settings were considered. The first one consists in the removal of the images with zero cellularity

from the training dataset, and in the other one the whole training dataset is used. From the obtained

results, the value of the evaluation metrics is significantly higher for the cases where the training

dataset that was used did not contain images with zero cellularity. Furthermore, the scatter plots

clearly show that there is a bias towards the zero class when the training data contains the images

with zero cellularity. Therefore, the obtained results demonstrate the importance of removing

these patches from the training data.

The effect of using color normalization techniques was investigated by comparing three differ-

ent cases, more specifically the usage of two distinct color normalization approaches, the Macenko

[65] and the Vahadane [50] approach, with that of not using any color normalization technique.

The results obtained showed that when using the training dataset without the zero patches, the

color normalization did not improve the results, and in fact the higher values of the evaluation

metrics are for the cases where no color normalization is used.

In addition, the effect of pre-training the network was addressed by comparing the results ob-

tained in three different scenarios. The first consisted in using a ResNet-18 without pre-training,

that is, the network is trained from scratch. The second involved using the same network archi-

tecture and pre-training it with a general dataset, the Imagenet. The third scenario comprises the

ResNet-18 pre-trained with a context specific dataset, the PCam dataset. Surprisingly, the results

obtained when using the network trained from scratch are slightly better than when using the net-

work pre-trained on the PCam dataset. Nevertheless, they are worst than with the ImageNet, which

outperformed the other two cases. The fact that the network pre-trained with the ImageNet pro-

vides better results points out to the relevance of transfer learning. In effect, although the ImageNet

dataset contains general images, it is a very large dataset and the pre-training of the ResNet-18 was

done for an adequate amount of epochs. On the contrary, even though the pre-training with the

PCam dataset used context specific images, the pre-training procedure did not occur for an exten-

sive amount of epochs due to hardware and time constraints. As a result, the network that was

pre-trained is not sufficiently pre-trained. It is interesting to refer that when comparing the scatter

plots, there are similar visual gaps for the plots of the network pre-trained with the PCam and the

one that was not pre-trained, clearly suggesting that the pre-training with the PCam dataset was

not performed for a sufficient number of epochs.

Finally, a fine-tuning technique based on unfreezing the weights of the pre-trained ResNet-18

was explored. This approach was adopted in an attempt of improving the results obtained with

the network pre-trained with the Imagenet and the PCam datasets. It was observed that while the

unfreezing improved the performance of the model pre-trained with the PCam, it did not show a

significant influence in the results for the model pre-trained with the ImageNet.

6.2 Future Work

As already discussed, the pre-training with the PCam dataset was insufficient and, therefore, it

was not possible to assess the relevance of pre-training the network with a context specific dataset.
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Since this is an important aspect, it is proposed as future work to conduct a longer pre-training of

the ResNet-18 with the PCam dataset. Concerning this pre-training, it would also be interesting

to further investigate the usage of more data augmentation techniques and the influence of using

different hyperparameters, such as the batch size and the learning rate. Furthermore, it would

be worth analyzing the impact of a pre-training with a context specific dataset in other network

architectures.

Additionally, as it was mentioned before, the removal of the images with zero cellularity from

the training dataset improves the performance of the model. These patches were removed manually

prior to training. Therefore, for future work, it would be interesting to develop a pipeline where the

first step would be a CNN to classify images as 0 or 1, that is, in order to separate the zero patches

from the rest of the images and classify them in advance as healthy tissue. Then, the second step

would be to use a CNN for regression and classify the remaining image patches in a scale of 0%

to 100%, which was already implemented.

In the preliminary analysis of the fine-tuning technique based on unfreezing the layers of the

network, promising results were obtained. Nevertheless, a more thorough investigation is required

to fully understand the potential of this approach, namely by studying: (i) the influence of the

learning rate decay, (ii) the number of epochs necessary to train the model after unfreezing a layer,

(iii) the layers that have more impact in the performance of the model, etc.
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Appendix A

Cancer Cells Quantification - Detailed
Results

This Appendix contains the detailed plots for all the tests referred in this dissertation. For each

case, three plots are presented:

• training and validation loss as function of the number of epochs;

• evaluation metrics as a function of the number of epochs;

• scatter plot showing the relation between the estimations made by the model and the predic-

tion of the pathologist.

A.1 ResNet-18 trained from Scratch

Test 000 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 001 - learning rate of 0.004

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 002 - learning rate of 0.004

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 010 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 011 - learning rate of 0.002

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 012 - learning rate of 0.004

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 100 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 101 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 102 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 110 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 111 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 112 - learning rate of 0.001

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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A.2 ResNet-18 pre-trained on ImageNet

Test 000 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 001 - learning rate of 0.006

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 002 - learning rate of 0.006

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 010 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 011 - learning rate of 0.006

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 012 - learning rate of 0.006

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 100 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 101 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 102 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 110 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 111 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 112 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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A.3 ResNet-18 pre-trained on PCam

Test 000 - learning rate of 0.006

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 002 - learning rate of 0.01

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 010 - learning rate of 0.01

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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Test 012 - learning rate of 0.01

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.

Test 100 - learning rate of 0.003

(a) Training and Validation Curves. (b) Metrics for the Validation
Dataset.

(c) Scatter Plot.
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