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Resumo 

As costas africanas do Oceano Índico e do Mar Vermelho possuem um clima 

subtropical e tropical considerado ótimo para o desenvolvimento e proliferação de 

muitos microrganismos incluindo algas nocivas produtoras de toxinas marinhas 

(TM). Paradoxalmente, estudos relacionados com a ocorrência e incidência destas 

algas nocivas e TM são muito limitados, desde África do Sul ao Egipto. Dos poucos 

estudos disponíveis nesta área, as TM mais relatadas incluem ciguatoxinas (CTXs), 

toxinas paralisantes de marisco (TPM) e tetrodotoxinas (TTXs). As TM no pescado 

constituem uma grande ameaça à saúde pública mundial principalmente em países 

do Oceano Índico onde não há um plano de monitorização. Em Moçambique, os 

dados sobre ocorrência de TM são escassos embora haja relatos de intoxicações 

humanas, que em situações extremas conduziram à morte. A presente tese, 

organizada em 5 capítulos, foi desenvolvida com o objetivo de avaliar o risco de TM 

na costa moçambicana através da triagem no pescado de Moçambique das TM 

legisladas na UE e de outras consideradas recentemente como toxinas 

emergentes.  

Foi detetada TTX e os seguintes análogos 4-epiTTX, 4,9-anhydroTTX, 11-

deoxyTTX, e 11-norTTX-6-(R/S)-ol em espécies de peixe-balão (Arothron hispidus 

e Diodon hystrix).  A. hispidus apresentou uma concentração mais elevada de TTX 

(9522.0 μg TTX kg− 1) do que D. hystrix (350.9 μg TTX kg− 1). A distribuição de TTX 

e análogos foi estudada em A. hispidus, tendo sido encontrada a seguinte ordem 

decrescente de TTX nos vários tecidos analisados: intestino > fígado > pele ≫ 

músculo > gónadas. Outras toxinas emergentes como pinnatoxinas G, F and E 

foram encontradas em bivalves (Atrina vexillum, Pintacta imbricata e Anadara 

antiquata). A quantificação de PnTX G revelou os seguintes valores:  7.7 e 14.3 

µg·kg−1 em A. vexillum; 1.6 e 2.4 µg·kg−1 em P. imbricata, e 4.5 e 5.9 µg·kg−1 em A. 

antiquata em extratos hidrolisados e não hidrolisados respectivamente. 

Estes resultados sugerem que os moçambicanos podem estar expostos a TM a 

partir do pescado. Não foram detetadas TM legisladas na UE nestas espécies de 

bivalves, nomeadamente toxinas lipofílicas, nem toxinas PSP ou ASP. Os 
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resultados encontrados nesta tese são os primeiros dados sobre TM no pescado 

de Moçambique e podem evidenciar a existência de uma das grandes ameaças à 

saúde pública. Apesar de os resultados serem ainda limitados, abrem uma 

importante discussão e reflecção sobre implementação dum programa de 

monitorização de TM em Moçambique. As TM mais relevantes que devem ser 

monitorizadas são descritas nesta tese. Técnicas analíticas como LC-MS/MS são 

recomendadas como métodos de determinação e quantificação devido à sua maior 

reprodutibilidade, especificidade, sensibilidade e capacidade de discriminar 

análogos de determinadas toxinas na amostra. 

A monitorização de TM em Moçambique poderá ser atribuída às instituições 

responsáveis pela investigação pesqueira (Instituto Nacional de Investigação 

Pesqueira e Instituto Nacional de Inspeção de Pescado) envolvendo todas as 

delegações provinciais. Numa primeira fase, o laboratório de análise de TM pode 

estar localizado na cidade de Maputo, devido à disponibilidade de equipamentos 

de análises químicas de TM (LC – MS/MS) em comparação com outras delegações 

provinciais e à facilidade logística e troca de experiências com centros universitários 

de investigação como a Estação de Biologia Marinha da Universidade Eduardo 

Mondlane e Laboratório Nacional de Higiene de Águas e Alimentos (Ministério da 

Saúde). O processo de amostragem pode ser realizado sazonalmente em locais 

selecionados, uma no verão (outubro a março) e outra no inverno (abril a setembro) 

para avaliar uma possível sazonalidade da ocorrência de TM.  

O limite máximo de toxinas em mariscos pode ser adotado a partir de outros países 

que Moçambique tem comércio de marisco, como a região da UE, EUA, Japão, 

Austrália, Nova Zelândia e África do Sul. Nesta tese, foi proposto o seguinte limite 

para cada grupo de TM: ácido ocadáico (AO) - 0,16mg (AO) kg-1; CTX (0,01 µg (P-

CTX-1) kg-1); iminas cíclicas - 400 µg [espirolide (SPXs) kg-1]; brevetoxina (PbTX) - 

0,8 mg (PbTX-2) kg-1; yessotoxina (YTX) - 3,75 mg (YTX) kg-1; azaspiracido (AZA) 

- 0,16 mg (AZA) kg-1; ácido domóico (DA) - 20 mg (DA) kg-1; PST - 0,8 mg [saxitoxina 

(STX) kg-1], TTX - 44 µg (TTX) kg-1; palitoxina (PlTX) - 250 µg (PlTX ) kg-1. 
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Para o sucesso da monitorização de TM, é crucial a integração e intercolaboração 

de autoridades ambientais, de saúde pública e universidades de todos os países 

africanos do Oceano Índico e do Mar Vermelho. 
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Abstract 

The African coasts of the Indian Ocean and the Red Sea have a subtropical and 

tropical climate considered optimal for the development and proliferation of 

microorganisms, including harmful algae bloom (HABs) that may produce marine 

toxins (MT) as secondary metabolites. Paradoxically, studies related to the 

occurrence and incidence of HABs and their MT are limited, from South Africa to 

Egypt. The few studies in this area describe ciguatoxins (CTXs), paralytic shellfish 

toxins (PSTs) and tetrodotoxins (TTXs) as the most reported MT. Accumulation of 

MT in shellfish and fish represents one of the greatest threats to public health 

worldwide, especially in Indian Ocean countries where there is no monitoring 

programs. In Mozambique, despite of cases of human intoxications including deaths 

involving marine fish, data on the occurrence of MT are very scarce. Thus, the 

present thesis, organized in five chapters, was developed with the objective of 

evaluating the risk of MT on the Mozambican coast by screening the EU-legislated 

and emerging MT in the local shellfish and fish of Mozambique.  

In this thesis, TTX e analogues 4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, e 11-

norTTX-6-(R/S)-ol were detected in species of pufferfishes (Arothron hispidus and 

Diodon hystrix).  A. Hispidus (9522.0 μg TTX kg− 1) presented high level of TTX than 

D. hystrix (350.9 μg TTX kg− 1). The distribution of TTX and analogues in A. hispidus 

was intestine > liver >skin ≫ muscle > gonads. Emergent toxins such as pinnatoxins 

G, F and E were found in bivalves (Atrina vexillum, Pintacta imbricata and Anadara 

antiquata). Only PnTX G was quantified and the level found was:  7.7 and14.3 

µg·kg−1 in A. Vexillum; 1.6 e 2.4 µg·kg−1 in P. imbricata, and.5 e 5.9 µg·kg−1 in A. 

antiquata in hydrolyzed and non-hydrolyzed extracts respectively. These results 

suggest that Mozambicans may be exposed  to MT from seafood.  No EU legislated 

lipophilic MT were found in these species of bivalves. The data found in this thesis 

are the first data regarding MT in seafood from Mozambique and they may evidence 

the existing of one the great threats to public health. These results, although very 

preliminary due to several aspects such as the reduced number of individuals and 

species analyzed, collection in one point and one period, may be an indicative for 
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implementation of monitoring program in Mozambique. In Mozambique, the relevant 

MTs that must be monitored in shellfish are described in this thesis. Analytical 

techniques such as LC-MS/MS are recommended as determination and 

quantification methods due to their higher reproducibility, specificity, sensitivity and 

capacity to discriminate analogs of given toxins in the sample.   

The monitoring of MT in Mozambique can be attributed to institutions responsible 

for fishery research (Instituto Nacional de Investigação Pesqueira and Instituto 

Nacional de Inspeção de Pescado) involving all provincial delegations. In the first 

phase, the laboratory of MT analysis may be in Maputo city, due to the availability 

of the chemical analysis equipaments for MT (LC – MS/MS) compared to other 

provincial delegation and the easy logistic and experience changes with university 

research centers such as Estação de biologia marinha da Universidade Eduardo 

Mondlane, Laboratório Nacional de Higiene de Águas e Alimentos (Ministry of 

Health). The sampling process must carry out seasonally in selected sites, one in 

the summer (October to March) and another in the winter (April to September) in 

order to assess a possible seasonality of the MT. The permitted limit of toxins in 

shellfish can be adopted from other countries which Mozambique has seafood 

trading such as the EU region, USA, Japan, Australia, New Zealand, and South 

Africa. The proposal of permitted limit for each group of MT to be adopted is: okadaic 

acid (AO) - 0.16mg (AO)Kg-1;  CTX (0.01 µg (P-CTX-1)kg-1); cyclic imines - 400 µg 

[spirolide (SPXs)kg-1]; brevetoxin (PbTX) - 0.8 mg (PbTX-2)Kg-1; pectenotoxin (PTX 

) - 0.16mg (AO)Kg-1; yessotoxin (YTX) - 1 mg(YTX)kg-1;  azaspiracid (AZA) - 0.16 

mg(YTX)kg-1;  domoic acid (DA) - (20 mg(DA)kg-1; PST - 0.8 mg[saxitoxin (STX)kg-

1], TTX - 44 µg(TTX)Kg-1; palytoxin (PlTX) - 250 µg (PlTX)kg-1. 

For the success of the MT monitoring programs, the integration and 

intercollaboration of environmental and public health authorities including 

universities of all African Countries of the Indian Ocean and the Red Sea is crucial. 
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I. INTRODUCTION OF THE THESIS  

Highlights of the chapter 

 Three parts of the thesis: state of the art, screening, and monitoring 

proposal of marine toxins in Mozambique 

 The thesis is organized in 5 chapters composed by two review, one 

manuscript and two research articles 

Marine toxins (MT) in seafood constitute one of the great threats to public health 

worldwide and more specifically in countries of the Indian Ocean where there is 

no monitoring program. In Mozambique, occurrence data survey studies of MT are 

very limited [1,2] although cases of human intoxications with some fatalities 

involving marine fishes are reported [3-8]. So, this thesis was developed in order 

to perform a risk assessment of MT in the Mozambican coast by screening the EU 

legislated and emerging MT in the most consumed seafood.  

Objectives of the thesis 

For the present thesis, three parts were outlined: 

1. State of the art of marine toxins and their producers in the Indian Ocean 

and the Red Sea. 

2. Screening of marine toxins in seafood (fishes and shellfishes) from 

Mozambican coast; and  

3. Proposal for the implantation of the marine toxins monitoring plan in 

Mozambique. 

For preparation of this thesis, the candidate participated on the acquisition and 

analysis of the samples, results discussion, and preparation of the works for 

publication. The sample collections works were done by the candidate in the 

Mozambican coast with collaboration of Marine Biology Station of Inhaca of the 

Faculty of Sciences (Eduardo Mondlane University, Mozambique). MT analyses 

were carried out in Center of Marine and Environmental Research - University of 

Porto (CIIMAR - UP) and Portuguese Institute of the Sea and Atmosphere (IPMA). 
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Structure of the thesis 

This thesis is organized in 5 chapters. The Chapter I describes a general 

introduction of the thesis focusing on the thesis structure, research lines as well 

as the content of other chapters. Chapter II contains information used to 

understand the state of the art of the MT in the Indian Ocean and the Red Sea as 

a response to research line 1. This chapter is composed by two reviews published 

in Toxins and Marine Drugs. The occurrence of MT and their producers along the 

African Indian and the Red Sea coasts (from coast of Egypt to South Africa) and 

associated human poisoning episodes were discussed as a contribution to public 

health and monitoring programs are discussed in this chapter. The existence of 

monitoring programs of MT was highlighted and suggestions for the control and 

prevention of marine toxins in this area were added.  Chapter III describes the 

screening of MT in pufferfish (Diodon hystrix and Arothron hispidus) and bivalves 

(Atrina vexillum, Pinctada imbricata, Anadara antiquata, and Saccostrea 

cucculata) from Mozambique. Determination of MT was carried out via liquid 

chromatography with tandem mass spectrometry detection following the method 

proposed by EULRMB 2017 and 2015 for TTXs and PnTXs respectively. The 

chapter III was developed as response of the research line 2. Two research papers 

were published on this subject, one communication related to TTXs and another 

to PnTXs. The papers were published in Toxicon and Journal of Marine Science 

and Engineering respectively. Chapter IV evaluates the risk of MT in Mozambique 

basing on the experiences of other African countries of the Indian Ocean and the 

Red Sea and unclarified human intoxication cases reported in the coastal area of 

Mozambique. In this chapter, detailed suggestions are present to authorities of 

Mozambique for implementation of MT monitoring program. For that, a review 

article was accept in the Mozambican journal of Applied Science. The structure of 

the manuscripts and research articles used as chapters in this thesis are according 

to the journals guidelines in which they were published or submitted. All submitted 

manuscripts and published paper were written by the candidate with the 

contribution of other authors that are described in each paper. Finally, the chapter 
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V describes general discussion, conclusions and final considerations of the thesis 

and perspectives for further works regarding MT in Mozambican coast. 

References 

1. Tamele, I.J.; Silva, M.; Vasconcelos, V. The Incidence of Tetrodotoxin and Its 

Analogs in the Indian Ocean and the Red Sea. Marine Drugs 2019, 17. 

2. Tamele, I.J.; Silva, M.; Vasconcelos, V. The incidence of marine toxins and the 

associated seafood poisoning episodes in the African countries of the Indian Ocean 

and the Red Sea. Toxins 2019, 11, 58. 

3. WHO. 1998 - food poisoning in northern Mozambique. World Health 

Organization 04 December 1998. 

4. Marcos, J. Menor de 10 anos morre por intoxicação alimentar na Zambézia. O 

País 18 de Outubro de 2018. 

5. Maputo, F.d. Menor morre por intoxicação alimentar na Zambézia. Folha de 

Maputo October 15, 2018. 

6. Fonseca, M.L. Quatro mortos por intoxicação alimentar no norte de 

Moçambique. Lusa September 23 2021. 

7. (Dakar), P.N.A. Mozambique: Death Toll From Suspected Fish Poisoning Rises 

To 91. Panafrican News Agency (Dakar) November 24 1998. 

8. Mosse, M. Doze pessoas morreram por intoxicação alimentar em Nampula. 

Carta de Moçambique July 3, 2020. 

 

 

 

 

 

 

 

 



 

Marine toxins in Mozambique: The first approach to public health risk assessment, PhD 

Thesis – ISIDRO TAMELE 

- 4 - 
 

II. STATE OF THE ART OF MARINE TOXINS AND THEIR 

PRODUCERS IN THE INDIAN OCEAN AND THE RED SEA 

Highlights of the chapter 

 Data regarding MT are limited in the Indian Ocean and the few available data 

report cases of human intoxications (including deaths) involving CTXs, PSTs 

and TTXs. 

 To date, in African countries of the Indian Ocean and the Red Sea, to date, only 

South Africa has a specific monitoring program for marine toxins. And some 

other countries count only with centers of seafood poisoning control.  

 In Mozambique, there is no monitoring program neither research regarding MT.  

 The specific monitoring program and further studies regarding MT are strongly 

needed in the African countries of the Indian Ocean. 
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Abstract  

The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the 

great threats to public health due to their ability to produce marine toxins (MTs). 

The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish 

toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins 

(CTXs), azaspiracids (AZAs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their 

analogs, some of them leading to fatal outcomes. MTs have been reported in several 

marine organisms causing human poisoning incidents since these organisms 

constitute the food basis of coastal human populations. In African countries of the 

Indian Ocean and the Red Sea, to date, only South Africa has a specific 

monitoring program for MTs and some other countries count only with respect to 

centers of seafood poisoning control. Therefore, the aim of this review is to 

evaluate the occurrence of MTs and associated poisoning episodes as a 

contribution to public health and monitoring programs as an MT risk assessment 

tool for this geographic region. 

Keywords: Indian Ocean; marine toxins; harmful algal bloom 

Key Contribution: The scarcity of MT data along African countries of the Indian 

Ocean and the Red Sea suggests the need for further studies and the creation of 

specific monitoring programs of MTs, particularly for dinoflagellates and diatoms 

since these constitute the phytoplankton that produces fatal MTs. 

 
Introduction 

The occurrence of Harmful Algal Blooms (HABs) in marine ecosystems can 

be one of the great threats to public health due to their capacity to produce 

marine toxins (MTs) as secondary metabolites [1–14]. MTs can be accumulated 

by distinct marine organisms such as fish, mollusks and crustaceans [15–24] 

which are the basic diet of coastal human populations. Suspected or confirmed 

episodes of human poisoning caused by MTs have been reported worldwide 

in the last century [20,21,25–48]. The occurrence of episodes of human 

poisoning occurs via ingestion of contaminated marine food due to the lack of 
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monitoring programs in some countries or violations of national health 

authorities’ regulations imposing the closure of harvesting areas and seafood 

commercialization [18,20,26,35,39,45,47,49]. Despite the ideal environmental 

conditions for the formation of blooms in this geographical area, there are insufficient 

data related to their occurrence and toxin production [50]. This review analyses 

the occurrence of MTs and their producers along the African Indian and the Red 

Sea coasts (from Egypt to South Africa) and associated human poisoning 

episodes. The existence of monitoring programs of MTs will be also highlighted and 

finally, some suggestions for the control and prevention of marine toxins in this 

area will be presented. 

Marine Toxins and Their Producers 

Chemically, toxins can be grouped according to their polarity, lipophilic and 

hydrophilic. Concerning MT monitoring, analysis and quantification methods in 

seafood are described in Table II.1, including bioassays, immunoassays, and 

analytical chemistry methods. The bioassay methods (Mouse Bioassay (MBA), 

Rat Bioassay (RBA)) are no longer in use due to ethical reasons according to 

Directive 86/609/EEC [51] and procedural variation [52] (e.g., use of different 

extraction solvents and consequently shortcomings). Chemical methods, mainly 

liquid chromatography coupled to mass spectrometry, are considered as the most 

promising since they are fully validated and standardized to replace bioassays in 

many organizations worldwide. Further information related to each toxin group such 

as syndromes, producers, common vectors, symptoms, detections methods in 

seafood, limit of detection (LOD) and quantification (LOQ) and permitted limit used in 

some parts of the world is also described in Table II.1
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Table II.1. Marine toxins and their symptoms, producers, permitted limit, detection methods, limit of detection/limit of 

quantification [LOD/LOQ] and toxicity equivalency factors [TEF] according to the European Food Safety Authority [EFSA]. 

Toxin 
(Syndrome) 

Symptoms 
Detection 

Permitted Limit Toxin (TEF) Producer  
Methods 

LOD, 
ɛgKgī1 

LOQ, 
ɛgKgī1 

OA and 
analogs 
(DSP) 

diarrhea, nausea, 
vomiting, 
abdominal 

pain and tumor 
formation 

in the digestive 
system [50] 

BA [180,181] 160   

0.16mg OA 
equivalents /Kg 
shellfish meat 
in EU region 

[182] 

OA [1.0] 

Dinoflagellates: 
Prorocentrum spp. 
[8], Dinophysis spp. 
[2,6,9,10,15,53,54] 
and Phalacroma 
rotundatum[55] 

DTX1 [1.0] 
EIA [183–

186] 
10–26  3–41 

DTX2 [0.6] 

LC-MS [183], 
-UVD [187] 

15–30 1–50 DTX3 [1.0; 1; 
0.6] 

CTXs and 
analogs 

(CFP) 

vomiting, diarrhea, 
nausea, 

tingling, itching, 
hypotension, 

bradycardia. In 
extreme cases, 

death through 
respiratory 

failure in 30 min 
and 48 h after 

fish consumption 
[50] 

BA [188,189] 
0.16–0.560 

P-CTX 
[190] 

 

0.01 μg P-CTX-1 
equivalents/kg 
of fish in USA 

[191] 

P-CTX-1[1.0] 

Dinoflagellates: 
Gambierdiscus 

toxicus, Ostreopsis 
siamensis and 

Prorocentrum lima 
[59] 

CTA [192–
194] 

~106 - 
0.039 C-

CTX 
 

P-CTX-2[0.3] 

2,3-dihydroxy P-
CTX-3C[1.0] 

 

EIA 
[72,189,195

–199] 

-0.032 P-
CTX 

 

LC-MS/MS   C-CTX-1[0.1] 
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[67,70,71,74,
200], -UVD 

[62,201,202] 

CIs 

non-specific 
symptoms such 

as gastric 
distress and 

tachycardia in 
humans[82] 

BA 
5.6–77 
PnTXE  

 

Not regulated  
13-desmethyl 

SPX C[1.0] 

Dinoflagellates: SPXs: 
Alexandrium spp. 
[351,76], GYMs: 

Gymnodium spp.[77], 
PnTXs: 

Vulcanodinium 
rugosum [78]and 

PtTXs: 
biotransformation 
from PnTXs via 
metabolic and 

hydrolytic 
transformation in 
shellfish [5,77–

79,351] 

FPA [203] 
80–85 13-

SPXC  
 

LC-MS/MS 
[79,204], -  
UVD [205] 

0.8–20 13-
SPXC/GY

MA  
 

PbTxs and 
analogs 
(NSP) 

nausea, vomiting, 
diarrhea, 

paresthesia, 
cramps, 

bronchoconstricti
on, paralysis, 
seizures in 30 
min to 3 h [87] 

BA [206]   
800 μg BTX-2 
equivalents/kg 

shellfish in 
USA[98], New 
Zealand, and 

Australia 
[99,100] 

BTX-2, BTX-3, 
BTX2-B2 and 
S-deoxy-BTX-
B2 [same TEF] 

Dinoflagellate: Karenia 
spp.[4,16,87] 

CTA [192] 250 BTX-1   

RB [108] 30BTX-3   

EIA [207,208] 1 BTXs and  25 BTXs 

LC – MS/MS 
[209] 

0.2 – 2 
BTXs  

 

PTX and 
analogs 

No specific 
symptoms 

MBA -  160 µg OA 
equivalents./kg 

PTX [1,2,3,4,6 
and 11][1.0] EIA[207] -  
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 shellfish meat 
in EU region 

[210] 

PTX [7,8,9 and 
2SA] and 7-
epiPTX2 SA 

[<<10] 

Dinoflagellate: 
Dinophysis acuta 

[101] 
LC – MS/MS 

[211,212] 
1  

YTX and 
analogs 

No specific 
symptoms 

BA   

3.75 mg YTX 
equivalents/Kg 
shellfish meat 
in EU region 

[124] 

YTX[1.0] Dinoflagellate: 
Protoceratium 

reticuatum [4,109], 
Lingulodinium 

polyedrum [4]and 
Gonyaulax 

polyhedral [4] 

EIA [213]   
1a-homoYTX[1.0] 

45-
hydroxyYTX[1.0

] LC-MS/MS 
[111] 

0.017  45-hydroxy-1a-
homoYTX[0.5] 

AZA and 
analogs 

(AZP) 

nausea, vomiting, 
diarrhea and 
decreased 
reaction to 

stomach cramps, 
deep pain, 
dizziness, 

hallucinations, 
confusion, short-

term memory 
loss, seizure[214] 

BA [181] 

0.05   

0.16 mg 
AZA1equivalen
ts/Kg shellfish 
in EU region 

[210] 

AZA1[1.0] 

Dinoflagellates: 
Azadinium spinosum 

[117]and  
Protoperidinum 
crassipes [118] 

AZA2[1.8] 

LC-MS/MS 

AZA3[1.4] 

AZA4[0.4] 

AZA5[0.2] 

STX and 
analogs 

(PSP) 

Numbness 
in the face and 

neck;  
headache, 

dizziness, nausea, 
vomiting, 
diarrhea, 

BA [216,217]   

0.8 mg STX 
equivalent/Kg 
shellfish in EU 
region [210] 

   STX[1.0] Dinoflagellates: 
Alexandrium 
spp.[2,3,7], 

Gymnodinium 
catenatum[3], 
Pyrodinium 

bahamense [3] 

NSTX[1.0] 

SBA [218]   

GTX1[1.0] 

GTX2[0.4] 

GTX3[0.6] 

CTA 
[192,219] 

  
GTX4[0.7] 

GTX5[0.1] 
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muscular 
paralysis; 

pronounced 
respiratory 

difficulty; 
death through 

respiratory 
paralysis [215] 

Antibodies 
Assay [220–

224] 
  

GTX[0.1] andcyanobacteriaTric
hodesmium 

erythraeum [131] 
C2[0.1] 

Eletrophoresi
s [225] 

  
C4[0.1] 

de-STX[1.0] 

LC-MS/MS 
[226–229] 

23–42 STX  

de-GTX3[0.2] 

de-NSTX2[0.2] 

de-GTX3[0.4] 

11-hydroxy-
STX[0.3] 

DA and 
analogs 
(ASP) 

nausea, vomiting, 
diarrhea or 
abdominal 

cramps] within 24 
h of consuming 

DA contaminated 
shellfish and/or 

neurological 
symptoms or 

signs [confusion, 
loss of memory 
or other serious 
signs such as 

seizure or coma] 
occurring within 

48 h  

BA [230] 40   

20 mg DA 
equivalents/Kg 
shellfish in EU 
region [210] 

 

Diatoms: Pseudo-
nitzschia spp. [126] 

and red algae: 
Chondria armata 

[127]. 

(a) ASP- 
EIA[184,231

] 
0.003  0.01 

SPR[232] 20   

RB[233–235] 20   

Capillary 
electrophore

sis [236–
238] 

0.15 -1   

LC -MS/MS 
[211,239,24

0], UVD 
[241,242] 

0.015   

TLC [243] 10   
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TTX and 
analogs  

Vomiting, strong 
headache, 

muscle 
weakness, 
respiratory 

failure, 
hypotension and 

even death in 
hours[244] 

BA [144,245–
247] 

1.1[247]  

2 mg TTX 
equivalents/Kg 

shellfish in 
Japan [248] 

S/R 11-norTTX-
[6]-ol[0.19/0.17] 

Bacteria: Serratia 
marcescens, Vibrio 

spp. [83], V. 
Aeromonas sp. [138], 

Microbacterium, 
arabinogalactanolytic

um [139], 
Pseudomonas 

sp.[140], Shewanella 
putrefaciens [141], 

Alteromonas 
sp.[142], 

Pseudoalteromonas 
sp.[143], and 
Nocardiopsis 

dassonvillei [144] 

RB [249] 
2–4.10-

3TTX  
 

4-epiTTX[0.16] EIA [245–
247,250–

256] 

0.002/mL 
[255], 

0.0001/mL
[253] 

 

TLC 
[139,257] 

2 [257]  4,9-
anhydroTTX[0.0

2] GC-MS 
[28,258,259] 

500  
1000 
[258] 

5,6,11-
deoxyTTX[0.01] 

LC-MS/MS 
[260–264] – 
FLD [265] 

0.00009?-
24.5 [260–

264] 

40 [265] 
– 100 
[265] 

PlTX 

Vasoconstriction, 
hemorrhage, 

myalgia, ataxia, 
muscle 

weakness, 
ventricular 
fibrillation, 

ischemia and 
death [266,267] 

and 
rhabdomyolysis[2

68] 

BA   

Not regulated 
toxin but 

proposed value 
is 0.25mg PlTX 
equivalent/Kg 
shellfish in EU 
region [269] 

PlTX[1.0] Zoanthids: Palythoa 
spp.anddinoflagellate
s: Ostreopsis ovata. 

[153–155]and 
possibly 

cyanobacteria: 
Trichodesmium sp. 

[156] 

Hemolysis 
assay [270] 

1.6   

CTA [107] 50   

streocin-D[0.4ï
1.0] 

EIA [254] 1/mL  

LC-MS/MS 
[204,271]–

2,5.10−5–0, 
50.10−5 
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FLD and–
UVD [272] 

MC  

liver hemorrhage 
within a few 

hours of an acute 
dose and death 

[273] 

LC-MS 
[167,274–
276] and 
EIA [277] 

  

Tolerable daily 
intake: 0.04 
μg/kg of MC 

body 
weight/day 

[278] 

 

Cyanobacteriaof 
genus: 

Pseudoanabaena, 
Phormidium, Spirilia 
[164], Leptolyngbya, 

Oscillatoria, 
Geitlerinema [165], 

Trichodesmium[166]
and Synechococcus 

[167] 

ANTX and 
HANTX 

Hypersalivation, 
diarrhea, shaking 
and nasal mucus 
discharge [279], 
respiratory arrest 
and death [280] 

RB and 
GC/MS 

[281,282] 
    

Cyanobacteria: 
Hydrocoleum 

lyngbyaceum[177] 

AT and DAT  

Contact dermal: 
dermatitis 

initiating with 
erythema 

and burning 
sensations, 

appearing a few 
hours after 
exposure, 

gave way to blister 
formation and 

LC-MS/MS 
[286] 

    

Algae Gracilaria 
coronopifolia [172] 
and cyanobacteria 
Lyngbya majuscula 
[171] 

LA, LB, and 
LC 

    
Cyanobacteria 

Lyngbya majuscule 
[174] 
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Toxins: DA—domoic acid, DTX, CTX -ciuatoxin, AZA—azaspiracid, CI—cyclic imines, PTX—pectenotoxin, YTX—yessotoxin, STX—
saxitoxin, OA—okadaic acid, BTX—revetoxin, PlTX—palytoxin, TTX -tetrodotoxin, MC—microcystin, ANTX—anatoxin, HANTX—
homoanatoxin, LA, LB and LC—lyngbyatoxins A, B and C respectively. ATX—antillatoxin, KTX—kalkitoxin, CYN—cylindrospermopsins 
AT—aplysiatoxin, DAT—debromoaplysiatoxin, JCD—jamaicamides, Syndrome: PSP—Paralyc Poisoning, DSP—Diarrheic Shellfish 

deep 
desquamation, 
lasting up to 
several days 

[283,284] and 
consumption of 
contaminated 

seafood; burning 
sensation in the 
mouth and throat, 

vomiting and 
diarrhea [285] 

ATX and 
analogs 

No specific 
symptoms 

LC [287]     
Cyanobacteria: 

Lyngbya majuscula 
[179] 

JCD and 
analogs 

No specific 
symptoms 

LC, TLC and 
[288] 

    
Cyanobacteria: 

Lyngbya majuscula 
[176] 

KTX and 
analogs 

No specific 
symptoms 

LC [173]     
Cyanobacteria: 

Lyngbya majuscula 
[173] 

CYN and 
analogs 

Gastroenteritis 
[289] 

LC-MS/MS 
[290],–

PDAD [291] 

1[292]–200 
[293] 

 
  

Cyanobacteria: 
Cylindrospermopsis 

raciborskii [175] 
EIA[294]   
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Poisoning, ASP—Amnesic Shellfish Poisoning, AZP—Azaspiracid Shellfish Poisoning, CFP—Ciguatera Shellfish Poisoning, NSP—
Neurologic Shellfish Poisoning, Detection methods: CTA—Cytotoxicity assay, EIA—Enzyme-ImmunoAssay, SPR—Surface Plasmon 
Resonance, RB—Receptor-based, GC—Gas Chromatography, BA—Bioassay; UVD—Ultra Violet Detection; LC—Liquid 
Chromatography and MS—Mass Spectroscopy, FPA—Fluorescence Polarization Assay, TLC—Thin Layer Chromatography, SBA—
Saxitoxin Binding Assay, PDAD—photo diode array detection.
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Lipophilic Toxins 

Lipophilic toxins are lipid soluble toxins and this group comprises okadaic acid (OA), 

ciguatoxins (CTX), cyclic imines (CIs) [spirolides (SPXs), gymnodimines (GYMs), 

pinnatoxins (PnTXs) and pteriatoxins (PtTXs)], brevetoxins (PbTxs), pectenotoxins 

(PTXs), yessotoxins (YTXs) and azaspiracids [AZAs], Table II.1. 

Okadaic Acid and Analogs 

Okadaic acid (OA)and their analogs, dinophysistoxins-1, -2 and -3 (DTXs) 

(Figure II.1), are polyethers produced by dinoflagellates: Prorocentrum spp. [8], 

Dinophysis spp. [2,6,9,10,15,53,54] and Phalacroma rotundatum [55] (Table 

II.1).These polyethers are frost-resistant and heat-stable and consequently, their 

toxicity is not affected by the cooking procedures in water (they are stable at 

<150 ◦C) [56]. The OA group is responsible for the diarrheic shellfish poisoning 

syndrome (DSP), with OA being the main representative of DSP toxins. Okadaic 

acid (OA) and its analogs act as inhibitors of the serine/threonine phosphoprotein 

phosphatases 1,22B,4,5 types that are involved in modeling the functions of certain 

proteins crucial for synaptic transmission, transport and neutromissors release 

[57,58]. 

 

Analog R1 R2 R3 R4 

OA CH3 H H H 
DTX1 CH3 CH3 H H 
DTX2 H H CH3 H 
DTX3 H/CH3 H/CH3 H/CH3 Acyl 

Figure II.1 Chemical structure of OA and main derivatives [DTX1, DTX2, and 
DTX3]. 
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Ciguatoxins 

Ciguatoxins (CTXs) (Figure II.2A) are a group of toxins produced by tropical and 

subtropical dinoflagellates species: Gambierdiscus toxicus and Fukuyoa spp. [59,60] 

(Table 1) mainly found in the Pacific, Caribbean and the Indian Ocean regions [P-

CTX, C-CTX and I-CTX, respectively]. CTXs are lipid-soluble polyethers with 13-

14 rings fused by ether linkages into a rigid ladder-like structure [60]. To date, the 

structures of20 P-CTXs, 10 C-CTXSand 4 I-CTXs analogs have been fully 

identified and the most reported include P-CTX-1, P-CTX-2, P-CTX-3, P-CTX-3C 

[61–67], gambiertoxin [GbTXs, namely, P-CTX-4A and P-CTX-4B] [68], C-CTX-

1, C-CTX-2 [67,69], I-CTX-1, I-CTX-2, I-CTX-3 and I-CTX-4 [70,71] mostly in 

predatory fish and gastropods [20,21,23,66,69,72–74]. The major analog of each 

group of CTXsis P-CTX-1.  C-CTX-1, C-CTX-2, I-CTX1, and I-CTX-2.  The 

chemical structure of the last two (I-CTXs) have the same molecular weight and 

similar structures as C-CTX-1 [62,67,70,71]. CTXs are odorless and tasteless 

heat-stable molecules and are not affected when subjected to water cooking, 

freezing and acid or basic conditions, though they suffer structural alterations by 

oxidation [60]. CTXs and Maitotoxin (MTX) (Figure II.2B) (produced by 

Gambierdiscus spp. [68]) were the first group of toxins reported to be 

responsible for ciguatera shellfish poisoning (CFP) [23]. The mechanism of 

action of CTX and analogs is to elevate calcium ion concentration and activate 

non-selective cation channels in cells causing neurologic effects in humans [75]. 
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Order Structure Toxin R1 R2 R3 R4 

(a) 

 P-CTX-1 CH2OHCHOH OH   
P-CTX-2 and P-CTX-3 CH2OHCHOH H   

GbTX [P-CTX-4A and P-CTX-4B] CH2CH3 H   

(b) 

 

C-CTX-1 and C-CTX-2 
 

CH3 H 

 

P-CTX-3C 
 

H CH3 

 

(c) 

 

P-CTXs 
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Figure II.2. Chemical structure of major CTXs analogs from Pacific (P-CTXs) (a) and Caribbean (C-CTXs) (b) regions. The 

major CTXs from Indian region (I-CTXs) have a similar structure with C-CTX-1. (c) Chemical structure of maitotoxin (MTX). 
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Cyclic Imines 

Cyclic imines (CI) (Figure II.3) are toxins produced by dinoflagellates: SPXs: 

Alexandrium spp. [1,76], GYMs: Gymnodium spp. [77], PnTXs: Vulcanodinium 

rugosum [78] and PtTXs: biotransformation from PnTXs via metabolic and 

hydrolytic transformation in shellfish [1,5,77–79] (Table II.1). CIs are a 

heterogenous group composed ofspirolides (SPXs), gymnodimines (GYMs), 

pinnatoxins (PnTXs) and pteriatoxins (PtTXs) and more than 24 structural analogs 

have been described to date [80]. 

Regarding chemical properties, these toxins are a group of macrocyclic compounds 

that have in common an imine functional group and spiro-linked ether moieties in their 

structure [80]. They are colorless amorphous solid macrocyclic compounds with 

imine and spiro-linked ether moieties [80], considerably soluble in organic solvents 

such as methanol, acetone, chloroform and ethyl acetate [5,80]. CIs are neurotoxins 

and actby inhibiting the nicotinic and muscarinic acetylcholine receptors (mAChR and 

nAChR, respectively) in the nervous system and at the neuromuscular junction [81]. 

CI bioactivity seems to depend on the imine functional group since the hydrolysis of 

spirolides A–D produce spirolide E and F with a keto-amine structure that is fully 

inactive [81]. To date, there are no regulations for CIs and no common symptoms 

can be recognized as specific for CI [82]. 
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Order Structure Toxin R1 R2 R3 R4 

(a) 
 

 Spirolides 

SPX A H CH3 CH3 H 

SPX B H CH3 CH3 H 

SPX C CH3 CH3 CH3 H 

SPX D CH3 CH3 CH3 H 

13-desmethyl SPX C CH3 H CH3 H 

13, 19-desmethyl SPX C CH3 H H H 

13-desmethyl SPX D CH3 H CH3 H 

27-Hydroyx-13-didesmethyl SPX C CH3 H H CH3 

(b) 
 

 Gymnodimines 

GYM A H H   

GYM B H OH   

GYM C H H   

(c) 
 

Pteriatoxins 

PtTX A 
 

OH H H 
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Order Structure Toxin R1 R2 R3 R4 

 

PtTX B 
 

OH H H 

Pinnatoxins 

PnTX A  OH H H 

PnTX B and C 
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Figure II.3. Chemical structures of CI (SPXs (a), GYMs (b), PnTXs (c), and PtTXs (c),) and Silva et al. [79,83–86].
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Brevetoxins 

Brevetoxins (PbTxs) (Figure I I . 4) are cyclic polyethers produced by 

dinoflagellates:  Karenia spp. [4,16,87] (Table II.1). There are two known types of 

BTXs, named type A and type B (also called type 1(PbTx-1) and type 2 (PbTx-2), 

respectively). The difference between two types of PbTxs consists in a few transfused 

rings that are ten for PbTx-1 and eleven for PbTx-2. The main analogs include PbTx-

3, PbTx-6, PbTx-9, PbTx-B1, PbTx-B2, S-desoxy-PbTx-B2, PbTx-B3, PbTx-B4, 

and PbTx-B5 [44,88–94]. PbTxs are lipid-soluble cyclic polyether consisting of 10 to 

11 transfused rings [95], stable and resistant to heat and steam autoclaving [96]. 

PbTxs cause neurotoxic shellfish poisoning (NSP) and actby binding with high affinity 

to receptor site 5 of the voltage-gated sodium channels (NaV) in cell membranes, 

and lactone is important for the toxin activity [97]. PbTxs are regulated in USA 

[98], New Zealand, and Australia [99,100] (Table II.1). 
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Figure II.4. Chemical structures of the main group of PbTxs (PbTxs-A and PbTxs-

B). The capital letter A in first ring indicates type A and type B (also called type 

1and type 2, respectively [4]). These rings contain lactone group that is most 

important for the toxin activity. 

Figure II.4. continued. 
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Toxin Type R1 R2 

PbTx-1 2 H CH2C[CH2]CHO 
PbTx-7 2 H CH2C[CH3]CH2OH 

PbTx-10 2 H CH2CH[CH3]CH2OH 

 

Pectenotoxin Group 

Pectenotoxins (PTXs) (Figure II.5) are lipophilic polyethers produced by several 

dinoflagellate species [101] (Table II.1). They contain spiroketal, bicyclic ketal, 

cyclic hemiketals, and oxolanes in their structure. To date, more than 15 PTX 

analogs have been documented and many are derived through biotransformation 

of PTX2 in marine organism metabolism such as bivalve mollusks [102]. The most 

reported analogs include PTX1, epi-PTX1, PTX2, PTX2 seco acid (PTX2 SA), 7-

epi-PTX2 seco acid (7-epi-PTX2 SA), PTX3, PTX4, PTX6, epi-PTX6, PTX7, PTX11 

(34S-hydroxy-PTX2) [6,101,103–105]. PTXs are heat-stable and unstable under 

alkaline conditions [103]. PTX and analogs alter actin-based structures [103,106] 

causing cell death and apoptosis [107]. PTXs co-occur with the OA—group and 
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contribute to DSP in humans [108]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.5. Chemical structures of main pectenotoxins. 

 

Yessotoxins 

Yessotoxins (YTXs) (Figure II.6) are produced by dinoflagellates species: 

Protoceratium reticulatum [4,109], Lingulodinium polyhedral [4] and  Gonyaulax 

polyhedra [4]  (Table  II.1).   They are a heat-stable   polyether,  with   eleven   

transfused   ether   rings,   an   unsaturated   side chain,  and  two  sulfate  esters  

[110].   To date,  more  than  90  YTX  analogues  have  been isolated [102] and only 

YTX, 45-hydroxyYTX, carboxylic, 1a-homoYTX, 45,46,47-trinorYTX, ketoYTX, 40-epi-
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homoYTX, carboxy-1a-homoYTX [111] have been fully identified [111]. The 

mechanism of action of YTX and their analogs is not fully understood; however, they 

are involved in phosphodiesterase activation [112] and modulation of calcium 

migration at several levels [113], alteration of protein disposal [114], cell change shape 

[115], apoptosis and cell death [116]. To date, there are no reports of human illness 

associated with YTXs [111] 
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Figure II.6. Chemical structures of YTXs n corresponds to the number of methyl 

groups in the molecule. 

 

Azaspiracids 

Azaspiracids (AZAs) (Figure II.7) are toxins produced by dinoflagellates: Azadinium 

spinosum [117] and Protoperidinum crassipes [118] (Table II.1). They are 

colorless, odorless and amorphous solids of toxins containing a heterocyclic 
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amine, a unique tri-spiro-assembly and an aliphatic carboxylic acid in their 

structures [117,119–124]. Around 21 compounds of AZAs are well known and 

documented [117,119–124] of which AZA, AZA2, AZA3, AZA4, and AZA5 are the 

most prevalent ones based on occurrence and toxicity in humans. AZAs are 

responsible for the AZP syndrome (Table II.1) and their mechanism of action is 

the inhibition of hERG voltage-gated potassium channels [125]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure II.7. Chemical structure of AZAs. 

Hydrophilic Toxins 

Hydrophilic Toxins are polar soluble compounds, and they include domoic acid (DA) 

and analogs, Paralytic Shellfish Toxins (PSTs), tetrodotoxins (TTXs) and palytoxins 

(PlTXs). 

Domoic Acid and Analogs 

Domoic acid (DA) (Figure II.8) and analogs are polar cyclic amino acid toxins of 
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diatom origin Pseudo-nitzschia spp. [126] and red algae: Chondria armata [127] 

(Table II.1). They present three carboxylic acid groups and the most reported DA 

analogs include epi-domoic acid (epi-DA), domoic acid C5′-diastereomer and 

isodomoic acids A, B, C, D, E, F, G and H [iso-DA A-H] [128,129]. DA is the 

representative molecule of the DA-group that is responsible for amnesic shellfish 

poisoning (ASP) syndrome [130]. The characteristic symptomology of ASP is 

detailed in Table II.1. 
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Figure II.8. Chemical structure of DA and analogs. 

Paralytic Shellfish Toxins 

Paralytic shellfish toxins (PSTs) (Figure II.9) are water-soluble tetrahydropurine 

toxins produced mainly by dinoflagellates Alexandrium spp. [2,3,7], Gymnodinium 

catenatum [3], Pyrodinium bahamense [3] and by cyanobacteria Trichodesmium 

erythraeum [131] except M (Figure II.9) toxins that are Mytilus spp. metabolism 

products [132]. This group is composed of several analogs and they are prone to 
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various conversions depending on pH (Figure II.9), being divided into several groups: 

carbamoyl (saxitoxin (STX), neosaxitoxin (NeoSTX) and gonyautoxins (GTX1-4)) 

decarbamoyl [dc-](dcSTX, dcNeoSTX, dcGTX1-4), Nsulfo-carbamoyl [GTX5-6, C1-

4], hydroxylated saxitoxins [M1-4] [133–135] and benzoyl toxins (GC1-3) [135]. 

Their heat stability is pH dependent (except for Nsulfo-carbamoyl components) [136]. 

STX and analogs act by binding to Nav and consequently blocking ion 

conductance in nerves and muscles fibers leading to paralysis [137]. Symptoms 

resulting from PSTs poisoning are described in Table II.1. 

 

Figure II.9. Chemical structures of STX group. 

Tetrodotoxins 

Tetrodotoxins (TTXs) (Figure II.10) are toxins produced by bacteria in marine 

environments: Serratia marcescens, Vibrio spp. [83], Aeromonas sp. [138], 

Microbacterium arabinogalactanolyticum [139], Pseudomonas sp. [140], Shewanella 

putrefaciens [141], Alteromonas sp. [142], Pseudoalteromonas ssp. [143], and 
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Nocardiopsis dassonvillei [144] (Table II.1). They are colorless, crystalline-weak 

basic compounds with one positively charged guanidinium group and a pyrimidine 

ring [145,146]. TTX poisoning has been recognized since ancient Egyptian times 

[42]. To date, TTX is considered an extremely potent emergent toxin in the Atlantic 

Ocean [83] and acts by binding to Nav (neuron navigators – cytoskeletal associated 

proteins important for neuro migration, neurite growth,  an axon guidance but they 

also function more widely in other tissues) on the surface of nerve cell membranes 

blocking the cellular communication and causing death by cardio-respiratory 

paralysis [147].  

Several poisoning incidents have reported in Asia [Japan is the most affected 

country] [148], the Mediterranean Sea and the Indian Ocean [35]. TTX is usually 

concentrated in the ovaries, liver, intestines, and skin ofits principal vector [puffer 

fish] [42]. To date, the structures of 26 analogs of TTX have been fully elucidated 

but their relative toxicity and occurrence are not yet fully known [145,146] except 

for 12compounds, namely, TTX, 11-oxoTTX, 11-deoxyTTX, 11-norTTX-6[R]-ol, 11-

norTTX-6[S]-ol, 4-epiTTX, 4,9-anhydroTTX, 5,6,11-trideoxyTTX. [131], 4-CysTTX, 5-

deoxyTTX, 5,11-dideoxyTTX, and 6,11-dideoxyTTX [149–152]. 
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Structure Toxin R1 R2 R3 R4 R5 Title 
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11-nor TTX-6[R]-ol  H OH H OH OH  
11-norTTX-6[R]-ol  H OH H OH OH  
11-norTTX-6[S]-ol  H OH OH H OH  

 

5-deoxyTTX OH CH2OH H H OH  
5,11-dideoxyTTX  OH CH3 H H OH  

5,6,11-trideoxyTTX  H CH3 H H OH 

 

 
Figure II.10. Chemical structure of TTX and their main analogues. 
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Palytoxin 

Palytoxin (PlTX) and its derivatives (Figure II.11) are toxins produced by marine 

zoanthids Palythoa spp., dinoflagellates: Ostreopsis ovata. [153–155] and possibly 

by cyanobacteria: Trichodesmium sp. [156] (Table II.1). These polyhydroxylated 

toxins have both lipophilic and hydrophilic properties [157] with a partial unsaturated 

aliphatic backbone containing cyclic ethers, 64 chiral centers, 40–42 hydroxyl and 

2 amide groups [157]. Among PlTX analogs, known are: isobaric PlTX, ostreocin-D, 

ovatoxin [a to f], mascarenotoxins, ostreotoxin-1 and 2, homopalytoxin, 

bishomopalytoxin, neopalytoxin, deopalytoxin and 42-hydroxypalytoxin and their 

molecular weights range from 2659 to 2680 DA [158–160]. PlTX and analogs act on 

Na+, K+ -ATPase pumps molecules in the cell membrane [161] and the loss of 

intracellular contents into the blood plasma and consequent injury causing 

rhabdomyolysis, among other signs, are the most reported as signs of PlTX 

poisoning [161]. 

 

Toxin R1 R2 R3 R4 R5 

Palytoxin CH3 OH CH3 OH OH 
Ostreocin-D H H H OH H 

Figure II.11. Chemical Structure of PlTXs [PTX and Ostreocin-D]. 

Marine Cyanotoxins 

Most marine toxins reported are produced mainly by microalgae (composed basically 
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by dinoflagellates, diatoms, and marine bacteria), while cyanobacteria are reported 

as toxin producers in fresh, brackish waters and terrestrial habitats. Recently, 

cyanotoxins typical from freshwater have been identified in the marine environment 

[162]. Thus, this section will be focused on the description of the most reported 

marine cyanotoxins involved in seafood poisoning, their producers and mode of 

action (Table II.1). 

One of the most relevant groups of marine cyanotoxins is themicrocystin group (MCs) 

[163] (Figure II.12). MCs are produced by cyanobacteria of genus Pseudoanabaena, 

Phormidium, Spirilia [164], Leptolyngbya, Oscillatoria, Geitlerinema [165], 

Trichodesmium [166] and Synechococcus [167] and their occurrence have been 

reported in many parts of the world, namely: the central Atlantic coast of Portugal 

[168], Canary Islands Archipelago [166], Brazilian coast [169], Amvrakikos Gulf 

(Greece) [167] and Indian Ocean [170]. To date, MCs is regulated in freshwater 

habitats but should be extended to the marine environments since there are reports 

of these hepatotoxins in marine environments [162]. 

 

 

Figure II.12. Chemical structure of MC. 

Other reported marine cyanotoxins [in parenthesis is indicated their producers] 

(Figure II.13) are aplysiatoxin (AT) [171] (Figure II.13a), debromoaplysiatoxin (DAT) 
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[171] (Figure II.13) (algae Gracilaria coronopifolia [172] and cyanobacteria Lyngbya 

majuscule [171]), kalkitoxin (KTX) (cyanobacteria Lyngbyamajuscula [173]) (Figure 

II.13b), lyngbyatoxins (LA, LB and LC) (cyanobacteria Lyngbya majuscule [174]) 

[Figure II.13c], cylindrospermopsins (CYNs) (cyanobacteria Cylindrospermopsis 

raciborskii [175]) (Figure II.13d), jamaicamides (JCDs) (Cyanobacteria Lyngbya 

majuscule [176]) (Figure 13e), anatoxins (ANTX) (cyanobacteria Hydrocoleum 

lyngbyaceum [177]) [178] (Figure II.13f) andantillatoxins (ATX) (cyanobacteria 

Lyngbya majuscule [179]) (Figure II.13g). The mechanism of action anddetection 

methods are presented in Table II.1. 

Order Structure Toxin R 

(a) 

 

AT Br 

DAT H 

(b) 

 

  

(c) 

 7-
epiCYN 

OH, epimer at C7 

CYN] OH 

do-CYN H 

file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark158
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark159
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark158
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark160
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark161
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark162
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark163
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark164
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark165
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark166
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark12
file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark13


 

Marine toxins in Mozambique: The first approach to public health risk assessment, PhD 

Thesis – ISIDRO TAMELE 

- 37 - 
 

Order Structure Toxin R 

(d) 

 

LA 
 

LB 
 

LC 
 

(e) 

 

 

 

JCD A  

JCD B  

JCD C  

(f) 

 

ANTX-a CH3 

HANTX - 
a 

CH2CH3 

(g) ATX A 
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Order Structure Toxin R 

 

ATX B 
 

 
Figure II.13. Chemical structures of Aplysiatoxin (AT) and Debromoaplysiatoxin 

(DAT) (a); kalkitoxins (KTX) (b); lyngbyatoxins A, B and C (LA, LB and LC) (c); 

cylindrospermopsins (CYN) (d); jamaicadimes (JCD) (e); anatoxin-a (ANTX) and 

homoanatoxin-a (HANTX) (f) and antillatoxins (ATX) (g). 

 
Recent studies indicate Homoanatoxin-a (HANTX, a derivative of anatoxin-a) 

produced by the cyanobacteria Hydrocoleum sp. and Trichodesmium sp. which 

co-occur with G. toxicus, may be the causative toxin of CFP [43] (rather than CTXs). 

This evidence suggests further studies to clarify marine cyanotoxins responsible for 

CFP and their mechanism of action [178]. The reports of seafood poisoning involving 

marine cyanotoxins are very scarce and consequently, there is no specific 

symptomology that can be related to marine cyanotoxin human poisoning. 

 

Incidence of Harmful Algal Blooms Marine Toxins and Consequent Poisoning 

Incidents along African Indian and the Red Sea Coasts 

The main geographical focus of this review is the African Indian and the Red Sea 

coasts, including surrounding islands (Figure II.14). The marine environment of this 

area is understudied due to a lack of monitoring infrastructure. There is a high rate of 

poverty in local communities, and the local population is vulnerable to natural 

disasters [including HABs, tropical storms]. The exponential increase in 

population accompanied by industrialization and climate change contributes to 

eutrophication in coastal areas and it is of the main causes of the HABs proliferation 

in the marine in environment [295,296]. This study area is characterized as 
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subtropical to tropical climate with a water temperature above 20 ◦C [297]. 

Eutrophication and the transportation of cysts [through maritime traffic] are 

considered the main factors contributing to large phytoplankton blooms, including 

those comprised of HAB species and/or pathogenic bacteria [295,296]. Countries 

with monitoring programs of marine environments related to control of seafood 

poisoning are listed in Table II.2. A few of these programs have noted the presence 

of MTs (Figure II.14) and HAB species [dinoflagellates, cyanobacteria, diatoms], 

some of which [HAB species] were detected/confirmed by microscopic techniques 

and some confirmed by partial 16 S rRNA genes analysis [12,13,298–323]. 

 

Table II.2. MT monitoring scenario of the African countries of the Indian Ocean and 
the Red Sea. 

 

Country 
Monitore

d MT 

Permitte
d Limit, 
mgKgī1 

Shellfish 

Detection 
Laboratorie
s for Toxin 
Analysis 

Referenc
e 

South Africa 

PST 0.8 STX  

Research 
centers and 
Universities 

[324] 

OA, 
DTX1-2, 
PTX1-2 

0.16 mg 
OA 

LC-MS/MS 

YTX, 45 
OH YTX, 

homo 
YTX, and 

45 OH 
homo YTX 

8 mg YTX LC-MS/MS 

AST 20 mg DA  

AZA1-3 
0.16 mg 

OA 
LC-MS/MS 

Mozambiqu
e 

N.D. N.D: N.D. N.D. N.D. 

Tanzania 
CTX, TTX, 

AST 
N.D. 

Symptomolog
y and vectors 

N.D. [325] 

Kenya 
MT 

producers 
[HAB] 

N.D. N.D. 
Mombasa 
Research 

Center 
[326] 
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Country 
Monitore

d MT 

Permitte
d Limit, 
mgKgī1 

Shellfish 

Detection 
Laboratorie
s for Toxin 
Analysis 

Referenc
e 

Madagascar N.D. N.D. 
Educational 
programmes 

Research 
centers and 
Universities 

[327] 

French 
Islands 

N.D. N.D. N.D. 
Researches 

centers 
[35,328] 

Mauritius N.D. N.D. N.D.  333] 

Comoros N.D. N.D. N.D. N.D.  

Somalia and 
Seychelles 

N.D. N.D. N.D. N.D.  

Eygpt N.D. N.D. N.D. 

Poison 
Control 

Center, Ain 
Shams 

University  

[329,330] 

Djibouti N.D. N.D. N.D. N.D.  

Eritrea N.D. N.D. N.D. N.D.  

Sudan N.D. N.D. N.D. N.D.  

 
N.D  -  No data 
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Figure II.14. Map of the incidence of marine toxins (MT) along African countries of the 

Indian Ocean and the Red Sea, from EgypttoSouth Africa and nearby islands. Red 
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circles [ ]—confirmed or suspected seafood poisoning episodes caused by MT; green 

circles [ ]—MT or Harmful Algal Blooms monitoring programmes or Centers of 

seafood poisonings; —Saxitoxins group; —Okadaic Acid group; —Ciguatoxin 

group; —Palytoxin group; —Domoic Acid group and —Tetrodotoxin group. 

South Africa 

The occurrence of species of phytoplankton including MTs-producing HABs has been 

reported in coastal waters of South Africa through scientific reports and 

environmental monitoring programmes since 2011 [324]. Reported producer species 

include cyanobacteria (Microcystisaeruginosa, Oscillatoria sp., Trichodesmium sp.), 

dinoflagellates (Dinophysisacuminata, D. rotundata, Alexandrium catenella, A. 

minutum, Gymnodinium sp., Prorocentrum sp., Gambierdiscustoxicus, Ostreopsis 

siamensis, O. ovata, P. lima, P. concavum), diatoms (Pseudo-nitzschia multiseries) 

[19,305,309,315,331–333] and bacteria (Vibrio parahaemolyticus) [298]. Seafood 

poisoning cases were also reported in South Africa caused by PSTs, DSPs, PlTXs 

and GYM [19,216,309,334] (Table II.3) after the consumption of mussels (Donax 

serra, Perna perna and Chloromytilus meridionalis) (Table II.4) [37]. To minimize 

seafood poisoning by MTs, South Africa has implemented, through the 

Department of Agriculture, a program for MT monitoring in molluscan shellfish 

on all coasts (South African Molluscan Shellfish Monitoring and Control 

Programme) [324] (Table II.2). This program was created based on the 

regulations of the European Commission (EC) Regulation, namely: Commission 

Regulation (EC) No 2074/2005, No 853/2004 and No 15/2011 where limit values are 

described for MTs and analytical techniques are advised to monitor shellfish [324]. 

Due to the absence of legislation regarding CTXs, currently, there is an absence 

of monitoring programs regarding this group in South Africa since the Indian Ocean 

is considered an endemic site of CTXs, this is a matter of major importance. 

Mozambique 

Studies related to HAB occurrence in Mozambique are very scarce and the few 

published works indicate the occurrence of dinoflagellates of the genus Alexandrium 
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[313] and species of cyanobacteria (Phormidium ambiguum, Lyngbya majuscula, and 

Lyngbya cf. putealis) [307]. To date, due to the absence of a Monitoring Program 

and trained health staff to recognize specific symptoms of seafood poisoning in 

humans, there are no records of published data of MT occurrence or reports of 

seafood poisoning cases in this country. 

Tanzania 

Published studies indicate the occurrence of cyanobacteria, namely: 

Pseudanabaena sp., Spirulina labyrinthiformis, Spirulina sp., Leptolyngbya sp., 

Phormidium sp., Oscillatoria sp., Lyngbyaaestuarii, Lyngbya sp., Lyngbya majuscula, 

Nodularia sp., Synechococcus sp., Microcystis sp.; Dinoflagellates: Gambierdiscus 

toxicus, Procentrum sp. and diatoms: Pseudo-nitzschia sp., Pseudo-nitzschia 

pungens, P. seriata and P. cuspidate [335–341]. Data related to MTs and 

seafood poisoning episodes are very scarce in Tanzania. In 2003, the Tanzanian 

government created guidelines for investigation and control of foodborne 

diseases and the regulatory institution is the Tanzania Food and Drugs Authority 

(TFDA) (Table II.2) [325]. The main objective of TFDA is to regulate matters related 

to food quality and safety for consumers through the dissemination of the 

information related to causative agents, latency period [duration], principal 

symptoms, typical vectors, and prevention of poisoning as measures of public 

health protection [325]. Among several foodborne disease sources, MTs such as 

CTXs, TTXs, DA, and PSTs are described by TFDA. The creation of alert and 

monitoring programs is an effective way to prevent poisoning episodes caused 

by MT-contaminated seafood. 

Kenya 

In order to reduce the cases of seafood poisoning caused by MTs, the Kenya Marine 

and Fisheries Research has carried out projects funded by governmental and 

non-governmental institutions for monitoring levels of HABs and their toxins 

(Table I I . 2) in coastal waters and shellfish as well as the possible transfer in 

the trophic food web [326].Since October 2017, there is an ongoing project 

(BIOTOXINS Research Project) funded by National Commission for Science, 
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Technology and Innovation (NACOSTI) at Mombasa Research Center [326]. This 

project will cover a period of 2 years, which is not enough for long-termmonitoring. 

In these coastal waters were reported to occur several species of diatoms: 

Nitzschia sp., N. closterium, N. longisigma, N. sigma, Pseudo-nitzschia sp. 

Guinardia sp., G. striata, G.delicatula, Skeletonema sp, Leptocylindrus sp., 

Rhizosolenia sp., Cerataulina sp., Coscinodiscus sp., Thalassiosira sp., Corethron 

sp., C. criopilum, C. cenofemus and Chaetoceros sp.; dinoflagellates: Alexandrium sp., 

Dinophysis sp., D. caudata, Gambierdiscus sp., G. toxicus, Gonyaulax sp., 

Gymnodinium sp., Gyrodinium sp., Ostreopsis sp., Peridinium sp., Prorocentrum 

sp., Ceratium sp., C. fusus, C. furca, Noctiluca sp., N. scintillans, Protoperidinium 

sp., Scrippsiella sp. and S. trochoidea [301,310]. Cyanobacteria were also reported: 

Lyngbya sp., Oscillatoria sp., Fischerella epiphytica, Anabaena sp., Nodularia 

spumigena, Umezakia natans, Aphanizomenon flos-aquae, Microcystis aeruginosa 

and Trichodesmium sp. [342]. 

Madagascar 

Madagascar is the country with more records of published data regarding MT 

occurrence (Figure II.14) and consequently, many reported cases of seafood 

poisoning [36,47,49,343]. The seafood poisoning cases in Madagascar have been 

registered since 1930 mainly after the consumption of fish of the family 

Sphyrnidae, Cacharinidae, Clupeidae (herrings, sardines), and marine turtles 

species (Eretmochelys imbricata and Chelonia mydas) [36,47,49,343]. The main 

marine poisoning causative agents reported are CTXs, TTXs, and PlTXs [18,344] 

(Table II.4). To reduce the number of seafood poisoning events, the 

MadagascarMinistry of Health has created a Seafood Poisoning National Control 

Program (Table I I .2) based on the setting of an epidemiological surveillance 

network, prevention of the communities through educational programs and the 

development of research on marine eco-environment [327]. 

Indian Ocean French Islands 

Mayotte, Europa, Banc du Geyser, Bassas da India, Glorioso, Juan de Nova, 

Reunion and Tromelin islands administratively make part in the French government 
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but since they are in the Indian Ocean, were considered for the present study. In 

these islands, there are reports of the occurrence of HABs and cases of seafood 

poisoning linked to MTs. The reported HAB forming species include: dinoflagellates 

(Prorocentrum lima, P. convacum, Ostreopsis ovata, Gambierdiscus toxicus, Alexandrium 

spp.), cyanobacteria (Hydrocoleum sp., Lyngbya majuscula, Phormidium sp., 

Leptolyngbya sp. and Oscillatoria sp.) [70,300,317,319,345]. The recorded human 

intoxications were due to DSTs and TTXs [35,328] (Table II.4). Centers of Disease 

for control and Preventing is the organization responsible for National Biomonitoring 

Program of toxins (PSTs) in these islands [35,328] (Table II.2). 

Mauritius 

In Mauritius there are registered cases of seafood poisoning caused mainly by CTXs 

[346] after the consumption of reeffish (Lutjanus sebae) [70,71,71] (Table II.4). The 

Ministry of Ocean Economy, Marine Resources, Fisheries and Shipping of Mauritius 

is the institute responsible for themonitoring of HABs (Table II.2) [347,348], 

developing several activities and reporting the principal vectors species involved in 

seafood poisoning, namely: fish (Variola louti, Plectroponus maculatus, ceragidae, 

Vieille loutre, V. plate, V. cuisinier, Lutjanus gibbus, L. sebae, L. monostigmus, L. 

bohar, Anyperodon leucogramnicus, Harengula ovalis, Sphyraena barracuda, 

Synancela verrucose, Remora remora, Lactoria carnuta, Diodon hystrix), turtles 

(Eretmochelys imbricate), crabs (Carpillus maculatus), sea-urchins (Echinothrix sp.) 

and bivalves (Tridaena sp.) [348]. 

HAB producers recorded in Mauritius include several dinoflagellates species 

(Ostreopsis mascarenensis, Gambierdiscus toxicus Adachi & Fukuyo, Ostreopsis 

ovata Fukuyo, Ostreopsis siamensis, O. mascarenensis, Prorocentrum lima, P. 

concavum, P. hoffmanianum, Amphidinium sp., A. carterae, Coolia sp., Sinophysis 

sp., Gymnodinium sp., Gonyaulax sp., and Alexandrium sp.), diatoms (Pseudo-

nitzschia sp.) and cyanobacteria (Phormidium sp., Oscillatoria sp. and Lyngbya sp., 

Phormidium sp., Oscillatoria sp. and 

Lyngbya sp.) [308]. 
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The Archipelago of Comoros 

Published data of the archipelago of Comoros indicate the occurrence of 

Gambierdiscus toxicus, G. yasumotoi, G. belizeanus, Prorocentrum arenarium, P. 

maculosum, P. belizeanum, P. lima, P. mexicanum, P. hoffmanianum, P. concavum, 

P. emarginatum, P. elegans, P. sp., Ostreopsis caribbeanus, O. mascarenensis, O. 

ovata O. heptagona, O. labens, O. siamensis, O. lenticularis, O. marinus, 

Cooliamonotis, C. tropicalis, Sinophysis microcephalus, S. canaliculate and 

Amphidiniopsis sp. [10,300]. Suspected seafood poisoning episodes linked to MTs 

were registered in the archipelago of Comoros after the consumption of turtle 

Eretmochelys imbricate with symptomatology similar to CFP [26], suggesting the 

presence of CTXs (Table II.4). 

Somalia and Seychelles 

There are no published studies related to the occurrence of HABs and MTs in 

Somalia and Seychelles. While there are no published reports of HABs or MTs in 

Somalia and Seychelles waters, the proximity to other countries with such reports 

and currents in the area suggest that investigations are necessary to avoid potential 

seafood poisoning events [62].
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Table II.3. Geographic occurrence MT per country, MT producer, and MT vector along African countries of the Indian ocean and 
red sea coasts. TX - toxin. 

Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

 
PSTs 

1999 South Africa Alexandrium catenella 
AOAC mouse 

bioassay 
Haliotis midae 0.01609 STX  [22] 

1998–
2002 

South Africa: 
Yzerfontein,  

Alexandrium catenella 

HPLC-FLD - - 

4.8 pg STX 
eq cell−1 

[334] 
Alexandrium 
tamiyavanichi 

0.14 pg STX 
eq cell−1 

2003–
2004 

South Africa: 
Cape Town  

Alexandrium minutum 
LC-FD and HILIC-

MS/MS 
- - 

0.65 pg 
GTX cell−1 

[309] 

2012 
–2014 

Central 
Red Sea 

Pyrodinium 
bahamense,Ceratium 
sp, Alexandrium sp. 
and Protoperidinium 

spp. 

ELISA  - - 
>> 0.4 ng 

mL1 
 

[349] 

 
 

DSTs 
 

2000 

Europa Island 
Mozambic 
channel, 
France] 

Prorocentrum 
arenarium 

FR3T3 fibroblast  - - 

IC50 = 0,1 
µg OA ml−1 
and 50 µg 

extract 
ml−1 

[11] 
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Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

PPIA  
 

HPLC-FD 

HPLC-MS 
22 ng 

OA/mg of 
extract 

2001 

Lagoons of La 
Reunion 

Mayotte and 
Mauritius 
Islands 

Prorocentrum 
lima 

PPIA - 
 
- 

IC50 1.3–25 
mg/mL on 

on 
fibroblast; 
6261.3 ± 
156.5 − 

128.3±17.2 
ng eq 

OA/mg 
crude 

extract 

[328] 

2002–
2018 

South 
Africa:Abalgold 

- - Haliotis asinina - - [324] 

2008 Dinophysis acuminata LC-MS/MS 
Crassostrea 

gigas 
0.267 OA    
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Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

South Africa: 
Saldanha Bay 

and 
Lambert’s Bay  

Choromytilus 
meridionalis 

0.012 OA  

CTXs 
 

2001 

Mauritius: 
Nazareth, 

Saya de Malha 
and Soudan 

- 

HPLC-MS/RLB, 
Mongoose 

feeding test, and 
MBA 

Lutjanus sebae 
and  

Lutjanus  
Lab 

Qualitative 
analysis 

- [71] 

2002 

North of the 
Republic 

of Mauritius, 
Banks fishery   

- HPLC-MS/RLB Lutjanus sebae  - [70] 

2012–
2013 

Central Red 
Sea 

Gambierdiscus 
belizeanus and 

Ostreopsis spp. 

Mouse 
neuroblastoma 

cell-based assay 
- - 

6,50–
1,14.10 −5 

pg P-
CTX−1 eq. 

cell−1 

[350] 

2013 

Madagascar: 
district of 
Fenoarivo 

Atsinanana  

Gambierdiscus spp. 
CBA  

Carcharhinus 
leucas 

0.083  
P-CTX-1  

- 
[20] 

MBA  
0.09272 P-CTX-

1  
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Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

LC-ESI-HRMS 
0.01628 P-CTX-

1 

MBA 752 MU/g 

PlTXs 1994 
Madagascar:  

Antalaha District 
Ostreopsis siamensis 

MBA 

Herklotsichthys 
quadrimaculatus 

 

0.00045 PTXs/ 
fish [head and 

esophagus] 

 [18] 
Hemolysis assays 

0.00002 
PTXs/fish 
[head and 

esophagus] 

Cytotoxicity tests 
0.00000005 /fish 

[head and 
esophagus] 

MS  

 1996 
Mauritius: 
Rodrigues 

Island 

Ostreopsis 
mascarenensis 

HPLC-diode array 
detector, 

Nanoelectrospray 
ionization 

quadrupole time-
of-flight and 

- -  [14,160] 
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Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

HPLC-ESI-
MS/MS analysis  

Hemolysis assays  
8.00 ± 0.01 

ng PTX 
mL−1 

Cytotoxicity Assay 

IC50 = 10 
μM against 

human 
H460 lung 

cancer 
cells 

 2008 

South Africa: 
Saldanha Bay 

and 
Lambert’s Bay  

Dinophysis acuminata LC-MS/MS 

Crassostrea 
gigas 

0.267 OA  
  

Choromytilus 
meridionalis 

0.012 OA  

DA 
cultures  

2012 
South Africa: 

Algoa Bay 
Pseudo-nitzschia 

multiseries 

ELISA 
- - 

0.076 pg DA 
cell−1–

0.098 pg 
DA cell–1 

[12] 

LC/MS–MS 
0.086 pg DA 

cell–1–
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Toxin Date Location Toxin Producer 
Determination 

Method 
Toxin Vector 

TX 
Concentration, 

(mg TX 
Equivalents 

per Kg 
Shellfish Meat) 

Cell/Extract 
Toxicity 

Reference 

0.086 pg 
DA cell–1 

TTXs  

1990–
1991 

Egypt: Suez 
City, in the 

northwestern 
part of the Red 

Sea 

 

 TLC, 
electrophoresis, 

UV, GC–MS 
 

Pleuranacanthus 
sceleratus 

 

 [316] 
752 MU/g 

MBA 

1998 
Madagascar: 
Nosy Be Island 

- 
- MBA  16 MU/g  [41] 

 2002–
2003 

Egypt: Gulf of 
Suez  

 MBA 
Lagocephalus 

sceleratus 
3950 
MU/g 

 [351] 

2013 Reunion Island  
MBA and LC-

MS/MS 
Lagocephalus 

sceleratus 
17 TTX - [35] 
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The Red Sea (Djibouti, Eritrea, Sudan, Egypt) 

Several research works related to MTs are carried out in the Red Sea but are very 

limited on the African coast. Saudi Arabia is the country with the most published 

studies related to the occurrence of HABs along the Red Sea 

[13,308,311,316,321,322,352,353]. The Dinoflagellates (Alexandrium sp., 

Dinophysis sp., Prorocentrum sp., Pyrodinium sp., Gymnodinium sp.), 

cyanobacteria (Lyngbya sp., Oscillatoria sp., Trichodesmium sp.) and diatoms 

(Pseudonitzschia spp.) are the most reported marine producer species 

[13,308,311,316,321,322,352,353]. The bacteria Vibrio paraehemolyticus, producer 

of TTX, was detected in shrimp (Penaeus latisulcatus) in the Suez Gulf [299]. 

MTs reported in the Red Sea, mainly the Egyptian coast, described in Tables II.3 

and II.4, include CTXs, TTXs, PSTs detected in puffer fish such as 

Pleuranacanthus sceleratus and Lagocephalus sceleratus [13,316,349–353]. 

Cases of seafood poisoning caused by CTXs and TTXs were reported, and 

according to the Poison Control Center, affiliated with Ain Shams University (Cairo, 

Egypt), CTXs are the third most responsible agents that induce food poisoning in 

Egypt [354]. Puffer fish poisoning has been recorded since ancient Egyptian 

times [42]. In Egypt, there is monitoring of HABs in aquatic ecosystems since 

1994 when Egypt became a member of the Convention on Biological Diversity 

although the Nature Conservation Sector, Egyptian Environment Affairs Agency 

and the Ministry of State for Environmental Affairs (Table II.2) are focal points 

[330]. There are no reports of HABs and MT occurrence in coastal areas of  

Djibouti, Eritrea, and Sudan. 
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Table II.4. Seafood poisoning episodes caused by MTs, observed effects/Symptoms, fish or shellfish consumed and victim 
number affected along African countries of   the Indian Ocean and Red Sea coasts. TX – Toxin 

Local Date Seafood 
Observed 

Effects/Symptoms 
TX 

Detectio
n 

Method 

TX 
Concentratio

n, (mg TX 
Equivalents/
Kg Shellfish 

Meat) 

Victim 
Number 

Reference 

Comoros 
islands: 

Ndrondroni 
 

24 
Decembe

r 2012 

Eretmochelys 
imbricata 
(turtle) 

Itching, Asthenia, 
Vomiting, Abdominal 
pain, Rash Myalgia 

Shortness of breath, 
Nausea 

Itching of the 
mouth/throat, Fever, 

Diarrhea Vertigo, 
Paresthesia, Dysphagia 

Mouth burn Sore throat, 
Erectile dysfunction 

- - - 

49 suspected 
cases and 8 

probable 
cases, age 
range [0-40 

years], 1 
death 

[26] 

North-
eastern 
coast of 

Madagasc
ar 

December 
1994 

Turtle 
Nausea, vomiting, 
dysphagia, acute 

stomatitis 
- - - 

60 persons 
with 

poisoning 
attack rate 
were 48% 

with a 
lethality of 

7.7% 

[47] 

Madagascar
: district of 

November 
2013 

CTXs MBA 
0.083  

P-CTX-1 
124 people, 
9% deaths 

[20] 
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Local Date Seafood 
Observed 

Effects/Symptoms 
TX 

Detectio
n 

Method 

TX 
Concentratio

n, (mg TX 
Equivalents/
Kg Shellfish 

Meat) 

Victim 
Number 

Reference 

Fenoarivo 
Atsinanan

a Carcharhinus 
leucas 
(shark) 

Paresthesia of the 
extremities, 
dysesthesia,  

, dizziness, and arthralgia 
between 2 and 12h after 

ingestion 
 

 

CBA 
0.09272 P-

CTX-1 

Madagascar
: 

Antalaha 
District 

January 
1994 

Herklotsichth
ys 

quadrimacul
atus(Fish) 

Malaise, uncontrollable 
vomiting, diarrhea, 

tinglings of extremities, 
delirium and death 

PlTXs 

MBA 

0.00045 PTXs/ 
fish [head 

and 
esophagus] 

Death of one 
adult 

[18] 

Hemolysi
s 

assays 

0.00002 
PTXs/fish 
(head and 

esophagus) 

Cytotoxici
ty tests 

0.00000005 
/fish (head 

and 
esophagus) 

 
Mass 

spectros
copy 

- 
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Local Date Seafood 
Observed 

Effects/Symptoms 
TX 

Detectio
n 

Method 

TX 
Concentratio

n, (mg TX 
Equivalents/
Kg Shellfish 

Meat) 

Victim 
Number 

Reference 

Madagascar
: Nosy Be 

Island 
July 1998 - - TTXs MBA 

16 MU/g (no 
data to covert  

to mg/Kg) 

4 people, one 
death 

[41] 

Madagascar
: 

Manakara 
district 

 

November 
1993 

Carcharhinus 
amboinensi

s[shark] 
 

Deep coma and death, 
body rigidity due to loss 

of 
cerebral function, 
myosis, mydriasis, 

convulsions, Respiratory 
distress due to 

acute pulmonary edema, 
cardiovascular collapse, 

bradycardia, 
gengivorrhagia 

Dehydration, paresthesia 
on fingertips and toes, 

dizziness, 
pruritus, narcosis, 

faintness, hyperthermia, 
ataxia asthenia, 

dehydration, 
cephalalgia, diarrhea, 

epigastralgia, laryngeal 
distress 

CTXs 

Ciguatera 
poisonin

g 
Sympto
mology 

- 
500 people, 
20% deaths 

[21] 
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Local Date Seafood 
Observed 

Effects/Symptoms 
TX 

Detectio
n 

Method 

TX 
Concentratio

n, (mg TX 
Equivalents/
Kg Shellfish 

Meat) 

Victim 
Number 

Reference 

South 
Africa: 
Cape 
Town 

May 1978 
Choromytilus 

meridionlis[
Mussel] 

Paraesthesia of en 
fingers/hands, Circumoral 

paresthesia, 
paranesthesia of 
toes/feet, Vertigo, 

Floating sensation, 
Ataxia, Weakness of 
upper, Weakness of 

lower 
limbs and Dysarthria 

A headache 

PSTs MBA 72.83 STX 
17 people, no 

deaths 
[39] 

South 
Africa: 
Natal 
coast 

December 
1957 

Mytilus 
meridionalis 

[Mussel] 

peculiar 
lightness of the body, 
with a tingling around 

mouth, finger, and toes; 
no moving; feeble 
inarticulate noise; 

PSTs MBA 0.04 STX 
5 people and 

one cat 
[40] 

South 
Africa: 

Table and 
False Bays 

1888 
Donax serra 

[Mussel] 
- - - - - 

[37] 

South 
Africa: 

April 1948 
Donax 

serra[Musse
l] and 

- - - - One death 
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Local Date Seafood 
Observed 

Effects/Symptoms 
TX 

Detectio
n 

Method 

TX 
Concentratio

n, (mg TX 
Equivalents/
Kg Shellfish 

Meat) 

Victim 
Number 

Reference 

Cape 
Town 

Chloromytilu
s 

Meridionalis 
[Mussel] 

South 
Africa: 
Natal 
coast 

December 
1957 

Perna perna 
[Mussel] 

- - - - 
5 people, one 

death 

South 
Africa: 
Cape 
Town  

May 1958 
Chloromytilus 

meridionalis 
[Mussel] 

- -  - One death 

Reunion 
Island 

September 
10th, 
2013 

Lagocephalu
s 

sceleratus[fi
sh] 

peri-oral paresthesia, 
weakness of both lower 
limbs, paresthesia all 

over the body, 
headache, dyspnea, 

nausea and vomiting, 
blurring of vision, and 

vertigo 

TTX MBA 
Liver: 17 TTX  
Flesh: 5 TTX  

10 people [35] 
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Final Considerations and Recommendations 

African Indian Ocean and the Red Sea coasts have a subtropical and tropical 

climate, considered optimal for the development and transportation of several 

HAB-forming species, and consequently, the production of MTs. Paradoxically, 

studiesrelated to the occurrence and incidence of HABs and MTs are very limited, 

from South Africa to Egypt. From a few data available in this zone, most describe 

only the genus and not the full species, making it very difficult to evaluate the 

occurrence of the toxic species. The most reported HAB phytoplanktons in this 

region are cyanobacteria, followed by dinoflagellates, and diatoms as potential 

MT producers. Relative to MTs, the most reported and involved in seafood 

poisoning episodes include CTXs, PSTs, and TTXs. The scarcity of the data related 

to MTs suggests the need for further studies and the creation of specific 

monitoring programs of HABs, particularly for dinoflagellates and diatoms since 

these constitute the phytoplankton that produces more fatal MTs, though in recent 

years several genera of bacteria have been described as producers of a potent 

group of marine toxins, TTXs, which have already been detected on the African 

coasts of the Indian Ocean and Red Sea. The main MTs that must be monitored 

in shellfish are presented in Table II.5. Analytical techniques such as LC-MS/MS 

are advised and recommended as determination and quantification methods due 

to their higher reproducibility, specificity, sensitivity and capacity to discriminate 

analogs of given toxins in the sample. The permitted limit of a toxin in shellfish 

can be adopted from other countries as an example to follow such as the EU 

region, USA, Japan, Australia, and New Zealand. 

Table II.5. Recommended marine toxins to be monitored and suggestion of 

permitted limit to be used. 

Toxin Syndrome Permitted Limit, mgKgī1 To be adopted from 

STX PSP 0.8 STXeq EU region 
CTX CFP 0.00001 P-CTX-1eq USA 

file:///C:/Users/Utilizador/Downloads/SodaPDF-converted-toxins-11-00058%20(13).docx%23_bookmark18
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Toxin Syndrome Permitted Limit, mgKgī1 To be adopted from 
YTX - 3.75 YTXeq EU region 
PTX - 0.16 OAeq EU region 
TTX - 2 TTeq Japan 
DA ASP 20 DAeq EU region 
OA DSP 0.16 OAeq EU region 
AZA AZP 0.16 AZAeq EU region 
PlTX - 0.25 PlTXeq [*] EU region 
PbTx NSP 0.8 TX-2 eq USA, New Zealand, and Australia 

 

* This toxin is not monitored and 0.25 PlTXeq was proposed in the first meeting 

(Cesenatico, Italy, 24–25 October 2005) of the working group on Toxicology 

of the national reference laboratories [NRLs] for Marine Biotoxins. 

 

For the success of the MT monitoring programs, the integration and 

intercollaboration of environmental, public health and researches institutions and 

universities of the all African Countries of the Indian Ocean and the Red Sea is 

crucial. 
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Abstract 

Tetrodotoxin (TTX) is a potent marine neurotoxin with bacterial origin. To date, around 

28 analogs of TTX are known, but only 12 were detected in marine organisms, namely 

TTX, 11-oxoTTX, 11-deoxyTTX, 11-norTTX-6(R)-ol, 11-norTTX-6(S)-ol, 4-epiTTX, 

4,9-anhydroTTX, 5,6,11-trideoxyTTX, 4-CysTTX, 5-deoxyTTX, 5,11-dideoxyTTX, and 

6,11-dideoxyTTX. TTX and its derivatives are involved in many cases of seafood 

poisoning in many parts of the world due to their occurrence in different marine species 

of human consumption such as fish, gastropods, and bivalves. Currently, this 

neurotoxin group is not monitored in many parts of the world including in the Indian 

Ocean area, even with reported outbreaks of seafood poisoning involving puffer fish, 

which is one of the principal TTX vectors know since Egyptian times. Thus, the main 

objective of this review was to assess the incidence of TTXs in seafood and associated 

seafood poisonings in the Indian Ocean and the Red Sea. Most reported data in this 

geographical area are associated with seafood poisoning caused by different species 

of puffer fish through the recognition of TTX poisoning symptoms and not by TTX 
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detection techniques. This scenario shows the need of data regarding TTX 

prevalence, geographical distribution, and its vectors in this area to better assess 

human health risk and build effective monitoring programs to protect the health of 

consumers in Indian Ocean area. 

Keywords: Indian Ocean; Red Sea; tetrodotoxin; pufferfish poisoning 

Introduction 

The tropical and subtropical climates predominant in the Indian Ocean zone, 

accompanied by industrialization and population increase, are pointed to as the main 

factors that, together with eutrophication, contribute to the development of toxic 

phytoplankton blooms—harmful algal blooms (HABs) and bacteria [1]. HABs and 

some bacteria are marine toxin (MT) producers, turning the Indian Ocean zone 

vulnerable to this phenomenon [2–5]. One of the main Indian Ocean MTs is 

tetrodotoxin (a neurotoxin) and its analogs (TTXs), of which the main producers were 

reported to belong to different bacteria genera [6–15]. Cases of human poisoning are 

recurrent, especially after consumption of TTX-contaminated fish, with the puffer fish 

as the most common vector reported since Egyptian times [16–29]. Due to the lack of 

TTX monitoring programs, the episodes of human seafood poisoning are still common 

in the Indian Ocean area, since seafood is the most common food for many people 

living along coastal zones [16–22,24,26,28–38]. Thus, the objective of this paper was 

to review the incidence of TTX in the Indian Ocean and the Red Sea zones and 

associated human seafood poisoning incidents. The monitoring of TTXs in this 

geographic zone is also recommended. 

Tetrodotoxin 

TTX (Figure II.15) is a potent neurotoxin group [39] that can provoke severe poisoning 

after consumption of contaminated seafood. Several species of distinct marine 

organisms of human consumption were identified as TTX vectors: puffer fish [16–29], 

gastropods [40], crustaceans [41–44], and bivalves [45]. Also, the occurrence of TTXs 

in terrestrial vertebrates such as Polypedates sp., Atelopus sp., Taricha granulosa, 

[46] and Cynops ensicauda popei [47] was reported [48,49]. TTX is an alkaloid isolated 

for the first time in 1909 by Tahara and Hirata from the ovaries of globefish [50]. In the 
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marine environment, bacteria are pointed to as the main producers of this group of 

toxins, namely Serratia marcescens [51], Vibrio alginolyticus, V. parahaemolyticus, 

Aeromonas sp. [52], Microbacterium arabinogalactanolyticum [13], Pseudomonas sp. 

[14], Shewanella putrefaciens [6], Alteromonas sp. [8], Pseudoalteromonas sp. [10], 

and Nocardiopsis dassonvillei [12]. Physicochemically, TTXs are colorless, crystalline 

weak heterocyclic basic compounds (Figure II.15 and Table II.6), highly hydro-soluble 

and also heat-stable [45]; thus, the toxin is not destroyed by cooking procedures. 

   

A B C 

 

  

D E F 

   

G H I 

 

Figure II.15. Tetrodotoxin (TTX) and analogs modified from European Food Safety 

Authority (EFSA) 2017 [45] and Yotsu-Yamasshita et al. (2007) [15,53,54]. (*) 

indicates TTX analogs that occur in marine organisms with known relative toxicity. (A) 

4-cysTTX(*), (B) tetrodonic acid, (C) 4,9-anhydroTTX(*), (D) 1-hydroxy-5,11-
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dideoxyTTX, (E) TTX and 12 analogs, (F) 5-deoxyTTX(*) and three analogs, (G) 

trideoxyTTX and two analogs, (H) 4-epi-5,6,11-trideoxyTTX and another analog, and 

(I) 4,4a-anhydro-5,6,11-trideoxyTTX and 1-hydroy-4,4a-anhydro-8-epi-5,5,11-

trideooxyTTX (see radicals of the analogs in the Table II.6). 

Table II.6. Tetrodotoxin (TTX) and analogs shown in Figure II.15 and modified from 

European Food Safety Authority (EFSA) 2017 [45] and Yotsu-Yamasshita et al. (2007) 

[15,53]. 

E R1 R2 R3 R4 R5  

TTX (*) H OH OH CH2OH OH  
4-epiTTX (*) OH H OH CH2OH OH  

6-epiTTX (*) H OH 
CH2O

H 
OH OH 

 

11-deoxyTTX (*) H OH OH CH3 OH  
6,11-dideoxyTTX H OH H CH3 OH  
8,11-dideoxyTTX H OH OH CH3 H  
11-oxoTTX (*) H OH OH CH(OH)2 OH  
11-norTTX-6,6-diol H OH OH OH OH  
11-norTTX-6(R)-ol (*) H OH H OH OH  
11-norTTX-6(S)-ol (*) H OH OH H OH  

Chiriquitoxin H OH OH 
CH(OH)CH(NH3

+)
COO− 

OH 
 

TTX-8-O-hemisuccinate H OH OH CH2OH 
OOC(CH2)2C

OO− 
 

TTX-11-carboxylic acid H OH OH COO− OH  
TTX (*) H OH OH CH2OH OH  

       

F R1 R2 R3 R4 R5 R6 

5-deoxyTTX(*) OH 
CH2O

H 
H H OH H 

5,11-dideoxyTTX (*) OH CH3 H H OH H 
5,6,11-trideoxyTTX (*) H CH3 H H OH H 
8-epi-5,6,11-

trideoxyTTX 
H CH3 H H H OH 

       

G R1 R2     

4,9-anhydro-5,6,11-
trideoxyTTX 

H OH     

4.9-anhydro-8-epi-
5,6,11-trideoxyTTX 

OH H     

       

H R1 R2 R3 R4 R5 
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1-hydroxy-8-epi-5,6,11-
trideoxyTTX 

OH H OH OH H  

4-epi-5,6,11-
trideoxyTTX 

H OH H H OH  

       

I R1 R2 R3    

4,4a-anhydro-5,6,11-
trideoxyTTX 

H OH H    

1-hydroxy-4,4a-
anhydro-8-epi-5,5,11-
trideooxyTTX 

OH H OH 
   

To date, around 28 analogs of TTX were described (Figure II.15 and Table II.6) and 

some of them were detected in marine organisms [53], with their relative toxicity well 

known [45] (chemical structures pointed with asterisks in Figure 1): TTX, 11-oxoTTX, 

11-deoxyTTX, 11-norTTX-6(R)-ol, 11-norTTX-6(S)-ol, 4-epiTTX, 4,9-anhydroTTX, 

5,6,11-trideoxyTTX [45], 4-CysTTX, 5-deoxyTTX, 5,11-dideoxyTTX, and 6,11-

dideoxyTTX [54–57] (Table 1). Their relative toxicity ranges from 0.01 to 1.0, with 

5,6,11-trideoxyTTX and TTX as the least and most toxic, respectively [45], and there 

are still no available data regarding the toxicity for 4-CysTTX and 5,11-dideoxyTTX. 

Chemical abstract numbers (CAS) are also listed in Table II.7. 

Table II.7. Chemical abstract numbers (CAS) and relative toxicity of TTX analogs 

[58,59]. 

TTX Analogs TEF CAS Number 

TTX 1.0 4368-28-9 
11-oxoTTX 0.75 123665-88-3 

11-deoxyTTX 0.14 - 
11-norTTX-6(R)-ol 0.17 - 
11-norTTX-6(S)-ol 0.19 - 

4-epiTTX 0.16 98242-82-1 
4,9-anhydroTTX 0.02 13072-89-4 
6,11-dideoxyTTX 0.02 - 

5-deoxyTTX 0.01 - 
5,6,11-trideoxyTTX 0.01 - 

4-CysTTX - - 
5,11-dideoxyTTX - - 

* TEF—toxic equivalency factor. 
 

The action mechanism of TTXs occurs through the occlusion of the external pore of 

site 1 of voltage-gated sodium channels on the surface of nerve membranes, blocking 
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cellular communication and causing death by cardio-respiratory paralysis [60]. 

Paralysis occurs by affecting the respiratory system, the diaphragm, skeletal muscles, 

and tissues in the digestive tract in humans [39]. TTXs normally accumulate in skin, 

intestines, liver, muscle, gonads, viscera, and ovaries in different species of puffer fish 

[16,21,22,29,33–37,61–65]. The symptoms that can be used partially as an indication 

of TTX human poisoning (wt = 50 kg and TTX amount = 2 mg) were grouped into four 

levels depending on the amount ingested [66] and are described in Table II.8. These 

symptoms normally appear 40 min after consumption of contaminated food and, in 

some cases, even six hours after [67]. 

Table II.8. Characteristic symptoms of TTX human poisoning modified from Noguchi 

and Ebesu (2001) [66]. 

Level Affected System Specific Symptoms 

1 

Neuromuscular 
Paresthesia of lips, tongue, and pharynx, 

taste disturbance, dizziness, headache, 
diaphoresis, pupillary constriction 

Gastrointestinal 
Salivation, hypersalivation, nausea, 
vomiting, hyperemesis, hematemesis, 
hypermotility, diarrhea, abdominal pain 

2 Neuromuscular 
Advanced general paresthesia, paralysis 

of phalanges and extremities, pupillary 
dilatation, reflex changes 

3 

Neuromuscular 

Dysarthria, dysphagia, aphagia, lethargy, 
incoordination, ataxia, floating 

sensation, cranial nerve palsies, 
muscular 

fasciculation 

Cardiovascular/pulmonary 

Hypotension or hypertension, vasomotor 
blockade, cardiac arrhythmias, 

atrioventricular node conduction 
abnormalities, cyanosis, pallor, dyspnea 

Dermatologic 
Exfoliative dermatitis, petechiae, and 

blistering 

4 
Respiratory failure, impaired mental faculties, extreme hypotension, 

seizures, loss of deep tendon and spinal reflexes 

Currently, there is no antidote for TTX; however, some studies indicate that the 

application of activated charcoal could help in reversing the clinical stage of poisoning 

victims since it reduces the toxin free amount [68]. Also, alkaline gastric lavage with 

sodium bicarbonate (2%) is indicated as a treatment within the first hour of the incident, 

due to TTX instability in alkaline media [69]. Another clinical intervention 
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recommendation is the use of cholinesterase inhibitors such as neostigmine [28], and 

mechanical respiratory help may reduce mortality probability by muscle paralysis [38]. 

TTX Detection Methods 

Several methodologies were developed to analyze TTXs and, in recent years, 

chemical methods became more popular due to their sensitivity with limits of detection 

(LODs) ranging from 0.9 ng to 0.063 μg. Liquid chromatography with tandem mass 

spectrometry (LC–MS/MS) techniques, the first choice compared to mouse bioassays 

(MBAs) and enzymatic methods due to their greater sensitivity and specificity, have 

the capacity to detect and determine TTXs in complex matrices [70]. Also, due to 

ethical reasons and lack of specificity, MBA fell into disuse, with the latter reason also 

attributed to the enzymatic methods. When a poisoning case occurs, it is 

recommended, when available, to screen the liver, muscle, skin, gonads, and ovaries 

of the suspected poisoning marine vector samples [28,36,40–42,53,54–56,62,70–88]. 

Human urine and plasma should also be analyzed for TTX in these cases [80].  

Methods for TTX analysis and their respective limits of quantification (LOQs) and 

detection (LODs) are described in Table II.9 and include the mouse bioassay 

[12,36,52,89], receptor-based assay [90], immunoassay [31,36,52,73,77,82,89,91–

93], thin-layer chromatography [13,72], high-performance liquid chromatography 

[84,94,95], gas chromatography–mass spectrometry [76,84,95], liquid 

chromatography coupled to mass spectrometry [33,40,96–98], surface plasmon 

resonance [30], and liquid chromatography with fluorescence detection (FLD) 

[15,32,89].  

Table II.9. TTX detection methods, their limits of quantification (LOQs), limits of 

detection (LODs), and toxicity equivalency factors (TEFs) according to the European 

Food Safety Authority (EFSA). MBA—mouse bioassay; FLD—fluorescence detection; 

RB—receptor-based; LC—liquid chromatography; MS—mass spectrometry; HPLC—

high-performance liquid chromatography; UVD—ultraviolet detection; SPR—surface 

plasmon resonance; TLC—thin-layer chromatography; GC—gas chromatography. 

Analysis Method LOD LOQ 

MBA [12,36,52,89] 1.1 μg·g−1 [89] - 
Enzymatic assays 

[31,36,52,73,77,82,89,91–93] 
2 ng·mL−1 [92] - 

TLC–MS [13,72] 0.1 μg [72] - 
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HPLC–FLD [84,94,95] 1.27 μg·g−1 [94]  
GC–MS [76,84,95] 0.5 μg·g−1 [76] 1.0 μg·g−1 [76] 

LC–MS/MS/UPLC–MS/MS [33,40,96–
98] 

0.09–16 ng·mL−1 
[33,40,96–98] 

5–63 ng·mL−1 
[40] 

SPR [30] 0.3–20 ng·mL−1 [30] - 
HPLC–FLD [15,32,99] 40-100 ng·g−1 [15] - 

Geographic Occurrence and Incidence of TTXs in the Indian Ocean and the 

Red Sea 

As described in the introduction section, TTXs were reported in several marine  

organisms [71], regarding poisoning incidents [71]; the main TTX vectors involved in 

the Indian Ocean and the Red Sea (Table 10) belong to the Tetraodontidae family: 

Arothron hispidus in India [65], Takifugu oblongus in Bangladesh [16,33] and India 

[35,62], Lageocephalus scitalleratus in Singapure [20], Pleuranacanthus sceleratus in 

Egypt [21,34,37], Reunion Island [29], and Australia [23,24], Chelonodon pataca, 

Sphaeroides oblongus, Lagocephalus inermis, and Lagocephalus lunaris in India 

[35,62], Xenopterus naritus in Malaysia [63], Arothron stellatus in India [64], 

Tetractenos hamiltoni in Australia [80,100], and Tetroadon sp. [17], Tetraodon 

nigroviridis, and Arothron reticularis in Thailand [99]. The records of TTX occurrence 

in other marine species such as mollusks are scarce in the Indian Ocean. Gastropods 

were reported as TTX vectors in other locations: Charonia lampas [85], Gibbula 

umbilicalis, and Monodonta lineata on the Portuguese coast [40], Nassarius spp. in 

China [94], Polinices didyma, Natica lineata [84,101], Oliva miniacea, O. mustelina, 

and O. nirasei [95] in Taiwan, Charonia sauliae [102], Babylonia japonica [86], Niotha 

spp. [75,81], and Tutufa lissostoma [103] in Japanese crabs, Demania cultripes, 

Demania toxica, Demania reynaudi, Lophozozymus incises, Lophozozymus pictor, 

Atergatis floridus [104], and Atergatopsis germaini [83], highlightinh these organisms 

as potential indicator species [11]. Data on these groups are scarce in the Indian 

Ocean area, suggesting that further studies and monitoring programs for TTXs are 

needed. Available data regarding this geographic region are displayed in Table II.10.
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Table II.10. The incidence of TTXs in the Indian Ocean. NPI—no poisoning incidents, MBA—mouse bioassay; FLD—fluorescence 

detection; LC—liquid chromatography; MS—mass spectrometry; HPLC—high-performance liquid chromatography; UVD—

ultraviolet detection; TLC—thin-layer chromatography; GC—gas chromatography. 

Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Australia 

Unknown 
Puffer fish 
Lagocephal
us scleratus 

 
Close to 
Fremantle 
Hospital 

Australia 
13 May 

1996 
TTX 

Symptomatolo
gy 

- 3 people [23] 

Unknown 
Puffer fish 
Lagocephal
us scleratus 

 Port Hedland Australia 1998 TTX 
Symptomatolo

gy 
- 1 person [24] 

Unknown 
Toad fish 

Tetractenos 
hamiltoni 

 
New South 

Wales 
Australia 

1 January 
2001 to 
13 April 

2002 

TTX 
Symptomatolo

gy 
- 11 people [100] 

Unknown 
Toad fish 

Tetractenos 
hamiltoni 

Urine 
 Australia 2004 TTX HPLC–UVD 

5 ng/mL 
7 people [80] 

Serum 20 ng/mL 

Asian countries 

Unknown Puffer fish  Khulna 
Banglades

h 
April 18 

2002 
TTX 

Symptomatolo
gy 

- 45 people [27] 

Unknown 
Puffer fish 

Takifugu 
oblongus 

Skin 

Khulna 
Banglades

h 
18 May 

2002 
TTX MBA 

18.9 MU/g 

36 people, 
7 deaths 

[16] 
Muscle 4.4 MU 

Liver 4.9 MU/g 

Gonads 
132.0 
MU/g 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Viscera 
categori

es 
 37.0 MU/g 

 
Natore 

- 
Dhaka 

Unknown Puffer fish Liver Khulna 
Banglades

h 
24 July 

2005 
TTX 

Symptomatolo
gy 

- 6 people [22] 

Unknown  

Skin 

Khulna 
Banglades

h 
25 March 

2006 

TTX 

LC–MS/MS 

25.35 
μg·g−1 

NPI [33] 

Anhydro 7.71 μg·g−1 

11-
Deoxy 

1.12 μg·g−1 

Trideoxy 
15.31 
μg·g−1 

Muscle 

TTX 1.64 μg·g−1 

Anhydro - 

11-
Deoxy 

- 

Trideoxy - 

Liver 

TTX 
45.71 
μg·g−1 

Anhydro 
29.17 
μg·g−1 

11-
Deoxy 

- 

Trideoxy 9.09 μg·g−1 

Ovary TTX 
356.00 
μg·g−1 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Anhydro 
85.87 
μg·g−1 

11-
Deoxy 

26.00 
μg·g−1 

Trideoxy  
2,929.70 

μg·g−1 

Unknown Puffer fish  Dhaka 
Banglades

h 
2008 TTX 

Symptomatolo
gy 

- 11 people [25] 

Unknown Puffer Fish  

Narshingdi 
Banglades

h 

April and 
June 
2008 

TTX 
Symptomatolo

gy 
- 

95 people, 
14 deaths 

[26] Natore 

Dhaka 

Unknown Puffer Fish  Dhaka City 
Banglades

h 
October 

2014 
TTX 

Symptomatolo
gy 

- 
11 people, 

4 deaths 
[18] 

Unknown Puffer fish - Khulna 
Banglades

h 
- TTX 

Symptomatolo
gy 

- 
37 people, 

8 deaths 
[28] 

Unknown 

Puffer fish 
Chelonodon 

patoca 

Liver 

Bay of Bengal India 

June 
1998 to 

March 
2001 

TTX MBA 

25.9 MU/g 

NPI [61] 

Ovary 183 MU/g 

Sphaeroides 
oblongus 

Liver 16 MU/g 

Ovary 7.9 MU/g 

Lagocephalu
s inermis 

Liver 5.5 MU/g 

Ovary 28.9 MU/g 

Lagocephalu
s lunaris 

Liver 5.9 MU/g 

Ovary 16.6 MU/g 

Unknown 
Puffer fish 
Chelenodon 

potoca 

Liver 
Bengal coast India 

June 2000 
– March 

2001 
TTX MBA 

27.8 MU/g 
NPI [35] 

Ovary 
156.7 
MU/g 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Takifugu 
oblongus 

Liver 
11.75 
MU/g 

Ovary 29.1 MU/g 

Lagocephalu
s lunaris 

Liver 9 MU/g 

Ovary 30.1 MU/g 

Lagocephalu
s inermis 

Liver 5.7 MU/g 

Ovary 9.64 MU/g 

Kytococc
us 

sedenta
rius 

Puffer fish 
Arothron 
hispidus 

Skin 

Annankil fish 
landings at 

Parangipetta
i 

India 2010 TTX MBA 

- 

NPI [65] 

Intestine - 

Liver - 

Cellulom
onas 
fimi 

Muscle 4.4 MU 

Liver 4.9 MU/g 

Gonads 
132.0 
MU/g 

Bacillus 
lentimor

bus 

Viscera 
categori

es 
37.0 MU/g 

 Natore - 

 Dhaka - 

Unknown 
Puffer fish 

Arothron 
stellatus 

Muscles 

Parangipettai India 2016 

TTX 
HPLC–FLD, 

TLC–UVD 
Qualitative NPI [64] Gonads 4-epi 

Liver anhydro 

Unknown 
Puffer fish 

Takifugu 
oblongus 

Skin 

Kasimedu 

fishing 

harbor, 

India 2016 TTX 

MBA 
75.88 
MU/g 

NPI [62] 
GC–MS 16.5 MU/g 

HPLC 18 MU/g 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Liver 

Chennai, 

Tamil Nadu 
MBA 

143.33 
MU/g 

GC–MS 32.5 MU/g 

HPLC 48 MU/g 

Ovary 

MBA 163 MU/g 

GC–MS 34.5 μg 

HPLC 51 μg 

Unknown Puffer fish - Johor Malaysia May 2008 TTX 
Symptomatolo

gy 
- 34 people [68] 

Unknown 

Carcinoscorpi
us 

rotundicaud
a 

Urine Kota Marudu Malaysia 
June–
August 
2011 

TTX GC–MS 
1.3–602 

ng/mL 
30 people [88] 

Unknown 
Puffer fish 
Xenopterus 

naritus 
Muscle 

Manggut 
Malaysia 

February 
and July 

2013 
TTX LC–MS/MS 

27.19 μg/g 
NPI [63] 

Kaong 16.09 μg/g 

Unknown 

Puffer fish 
Lageocepha

lus 
scitalleratus 

 
Alexandra 

Hospital 
Singapore 2013 TTX 

Symptomatolo
gy 

 1 person [20] 

Unknown 
Tetraodon 
nigroviridis 

Reproduc 
tive 

tissue 

Satun Thailand 
April to 

July 2010 
TTX 

LC–MS/MS, 
MBA 

63.57 
MU/g 

NPI [36] 
Liver 

97.08 
MU/g 

Digestive 
tissue 

43.33 
MU/g 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

Muscle 
22.12 
MU/g 

Arothron 
reticularis 

Reproduc
tive 

tissue 
- 

Liver 2.08 MU/g 

Digestive 
tissue 

3.16 MU/g 

Muscle 4.02 MU/g 

African countries 

Unknown 
Puffer fish 
Lagocephal
us lunaris 

Gonads 
National 
Research 
Center, 
Dokki, 
Cairo, 

Egypt 

September 
1990 

through 
May 1991 

TTX 
TLC–UVD, 

MBA 

752 MU/g 

NPI [34] 

Liver 246 MU/g 

Muscles 127 MU/g 

Digestive 
tract 

221 MU/g 

Skin 119 MU/g 

Unknown 

Puffer fish 
Lagocephal

us 
sceleratus 

Gonads 
Attaka fishing 

harbor 
Egypt 

October 
2002 and 

June 
2003 

TTX MBA 3950 MU/g NPI [37] 

Unknown 
Puffer fish 
Lagocephul
us scleratus 

Muscle Suez Gulf Egypt 
23 

Decembe
r 2004 

TTX   7 people [21] 

Unknown Puffer fish  
Nosy Be 

Island 
Madagasc

ar 
July 1998 TTX MBA 16 UM/g 

3 people, 1 
death 

[19] 

Unknown 
Puffer fish 
Lagocephal

Liver Reunion 
Island 

Reunion 
Island 

10 
Septemb

TTX 
MBA, LC–

MS/MS 
95 MU/g 

10 people [29] 
Flesh 5 MU/g 
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Producin
g 

Species 
Vector 

Sample 
Tissue 

Location Country 
Poisoning 

Date 
TTX Detection 

Maximum 
Concentr

ation 

Poisoning 
Victims 

Refer
enc

e 

us 
sceleratus 

er 10 
2013 

Unknown 
Puffer fish, 
Tetraodontid

ae family 
 Zanzibar Tanzania  TTX 

Symptomatolo
gy 

- 1 death [17] 
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Final Considerations 

TTX data in the Indian Ocean and Red Sea are usually related to fatal outbreaks 

due to seafood poisoning and not to scientific research, indicating the lack of MT 

monitoring programs. The symptomatology reports and MBA are used to identify 

seafood poisoning caused by TTX and analogs, indicating the need for analytical 

methods such as liquid chromatography to obtain better quantitative data. Both 

symptomatology and MBA in isolation are not enough to conclude that TTXs are 

the causative agent of seafood poisoning, since there are other toxins (PSTs) 

with similar action mechanism  that overlap in symptomatology with TTX 

poisoning. Additionally, MBA cannot discriminate between the different TTX 

analogs. MBA and symptomatology are used in countries of the Indian Ocean 

and the Red Sea to identify TTX poisoning due to the lack of availability and 

accessibility to chemical methods and the absence of TTX monitoring programs.  

Thus, the implementation of monitoring programs using chemical analytical 

methods such as LC–MS/MS instead of MBA in the Indian Ocean and the Red 

Sea is urgently needed in different species of shellfish and puffer fish, including 

Arothron hispidus, Takifugu oblongus, Lageocephalus scitalleratus, 

Pleuranacanthus sceleratus, Chelonodon patoca, Sphaeroides oblongus, 

Lagocephalus inermis, Lagocephalus lunaris, Xenopterus naritus, Arothron 

stellatus, Tetractenos hamiltoni, Tetraodon nigroviridis, Arothron reticularisand, 

Charonia sauliae, Babylonia japonica, Niotha spp., and Tutufa lissostoma, since 

they are most consumed and are already confirmed to be vectors of TTX in the 

Indian Ocean and the Red Sea. These species can be used as indicators for 

monitoring programs using the maximum limit permitted of 2 mg·kg−1 (from 

Japan). 
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III. SCREENING OF MARINE TOXINS IN SEAFOOD FROM 

MOZAMBIQUE 

Highlights of the chapter 

 First report of TTTX, 4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, 

and 11-norTTX-6-(R/S)-ol in pufferfish species (Diodon hystrix and 

Arothron hispidus) from Mozambican coast.  

 Pufferfish presented Tetrodotoxins levels in the muscle above 

(274.3 μg kg−1) recommended limit stated by EFSA (44 μg TTX equiv 

kg−1). 

 First data of PnTX G, E and F in local shellfish (Atrina vexillum, 

Pinctada imbricata, and Anadara antiquata) from Mozambique. 

 Shellfish presented PnTX G levels (2.4 - 14.3 µgkg−1) bellow the 

LD50 (36.3- 208 μg kg−1) observed in other previous studies in mice.  

 Need of setting-up a program for Tetrodotoxins and PnTXs 

surveillance in seafood from Mozambique. 
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Abstract 

Tetrodotoxins (TTXs) were investigated in two local pufferfish species, Diodon 

hystrix and Arothron hispidus, from Mozambican coast. TTX and analogues 4-

epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, and 11-norTTX-6-(R/S)-ol were found in 

both species and high level of TTX was found in A. hispidus (9522.0 µg TTX kg−1) 

than in D. hystrix (350.9 µg TTX kg−1). The distribution of TTX and their analogues 

in A. hispidus was intestine>liver>skin>>muscle>gonads. This is the first report 

of TTXs in Mozambican coast. 
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Highlights 

 First report of Tetrodotoxins occurrence in the local pufferfish 

species from Mozambique. 

 Pufferfishes presented Tetrodotoxins level above recommended 

limit in Europe and Japan. 

 Need of setting-up a program for Tetrodotoxins surveillance in 

seafood from Mozambique 

Human acute intoxications involving pufferfishes are known from Egyptian times 

but the toxin responsible (TTX) was isolated for the first time in 1909 from the 

globefish ovaries (Suehiro, 1994) and its structure was elucidated in 1964 

(Mosher et al., 1964). First data confirming that TTXs are the poisoning agent in 

the pufferfish were most reported in East Asia but currently, TTXs have been 

detected in other marine organisms (also in terrestrial animals) in other parts of 

the world, including some African countries of the Indian Ocean (Tamele et al., 

2019a, b). Despite the reports of human intoxications involving seafood and  

awareness in terms of high toxicity and increasing occurrence of TTX in many 

African countries on the Indian Ocean coast, including Mozambique, the 

screening of this group of toxins is still not carried out (Dakar), 1998; dos Santos, 

2020; Fonseca, 2021; Maputo, 2018).  

In this study, TTX and analogues were screened using LC-MS/MS in two local 

pufferfish species, Diodon hystrix (n=4) and Arothron hispidus (n=1), collected in 

the South coast of Mozambique (26°03'28.9"S 32°57'20.7"E) in January and April 

2020 by fishery net. The samples were frozen and transported to Portugal for 

extraction and quantification of TTX in the National Reference Laboratory for 

Marine Biotoxins at IPMA (Lisbon). Total length and body weight were 13-17 cm 

and 117.5 -250.5 g for D. hystrix and 14 cm and 120.4 g for A. hispidus. TTX and 

analogs were extracted with HOAc according to the method proposed by 

EURLMB 2017 (EULRMB, 2017). The LC-MS/MS equipment consisted of an 

Agilent 1290 Infinity coupled to a triple quadrupole mass spectrometer Agilent 

6470. All LC conditions were also according with EURLMB 2017(EULRMB, 

2017), including the multiple-reaction-monitoring (MRM) transitions from the 

protonated ions of TTX and TTX derivatives. The system was calibrated with the 

certified reference material CRM-03-TTXs from Cifga (Lugo, Spain) which 
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contains TTX and 4,9-anhTTX (certified) and 4-epiTTX and 11-deoxyTTX (non-

certified). A five-point calibration curve with a correlation >0.995 was set up for 

quantification purposes. The limits of detection (LOD) and quantification (LOQ) 

were evaluated based on the signal-to-noise ratios for TTX with external standard 

addition. The equivalent toxicity of both pufferfish species was estimated using 

relative potencies of each analogue of TTX, as reported by the European Food 

Safety Authority (EFSA) (EFSA, 2017).  

TTX was detected in the liver of each pufferfish specimen analyzed. However, 

much higher concentrations were found in Arothron hispidus, 5549.0 µg kg-1, than 

in Diodon hystrix, which varied only from 33.0 to 138.8 µg kg-1 (Table III.1). 

Table III.1. Concentration (µg kg-1) of TTXs and their analogues (4-epiTXX, 4,9-

anhydroTTX, 11-deoxyTTX) detected in the selected tissues of both pufferfish 

species collected in Maputo Bay - South of Mozambique.  

Species Organ 
µg kg-1 Equivalent 

toxicity, µg 
TTX eq kg-1 

TTX 
4-

epiTTX 
4,9-

anhydroTTX 
11-

deoxyTTX 

Diodon 
hystrix 

Liver 36.8 6.5 nd  nd  37.8 

Liver 138.8 9.8 202.3 nd  144.4 

Liver 97.5 10.3 nd   nd  99.1 

Liver 33.0 nd  nd  nd 33.0 

Arothron 
hispidus 

 

Liver 5549.0 248.5 3538.8 186.5 5685.6 

Intestine 15164.5 60.8 5646.5 nd 15287.2 

Skin 3575.9 12.4  1165.2 nd  3601.2 

Muscle 274.3 nd  1138.5 nd  297.1 

Gonads 222.2 nd  1978.6 nd  261.8 

nd – not detected 

After verifying that Arothron hispidus liver presented notably higher content of 

TTX than all Diodon hystrix specimens analysed, this species was selected to 

assess the toxin distribution between organs (gonads, muscle, skin, and 

intestine). TTX and the following analogues 4,9-anhydroTTX, 4-epiTTX, 11-

deoxyTTX, and 11-norTTX-6(R/S)-ol were detected in the liver of A. hispidus. 

These toxins were confirmed by matching sample results with the standard, 

except for 11-norTTX-6(R/S)-ol, which its identity was deduced from spectral data 

available in literature (Shoji et al., 2001) (Fig. III.1). 
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Figure III.1. Chromatograms of the standards used in this study and 

correspondent toxins found in the samples and spectral data of 11-nor-6(R/S)-ol. 

The chromatograms correspond to 320>162, 304>162, 302>162 and 290>162 

transitions for TTX and 4-epiTTX, 11-deoxyTTX, 4,9-anhydroTTX and 11-nor-

6(R/S)-ol respectively. 

The present study brings interesting results regarding TTX occurrence in 

consumed fishes from Mozambique. These results constitute the first data 

reporting the TTX occurrence in two local species (Diodon hystrix and Arothron 

hispidus). Both species Diodon hystrix and Arothron hispidus are known to 

bioaccumulate TTXs from other parts of the world. TTX level up to 20800 µg kg-

1 was found in the liver of D. hystrix from Sabah and Sarawak Waters, Malaysia, 

but no TTX was detected in the muscle (Azman et al., 2014). TTX was also 

reported in eyes, skin, liver, intestine, and gonads of D. hystrix from India for 

evaluating of genotoxicity in zebra fish(Lokesh et al., 2016). The weak ability of 

D. hystrix for TTX bioaccumulation was also reported in previous studies in which 

distribution of TTX was evaluated in flesh, skin, liver, gonad, and intestine of 
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several pufferfish including A. hispudis. In that study, no significant TTX level was 

found in any organs of D. hystrix(Khora, 1991). High levels of TTX were found in 

the liver of Arothron hispidus (5549.0 µg kg-1), which may suggest the ability of 

this species to bioaccumulate more TTX and consequently to be more toxic than 

Diodon hystrix (33.0 – 350.9 µg kg-1). 

Among organs of A. hispudis, high levels of TTX and 4,9-anhydroTTX were found 

in the intestine and liver suggesting pufferfish accumulates TTX via dietary route. 

The skin was the third organ with highest levels of TTX (3575.9 µg kg-1) indicating 

that pufferfish may allocate TTX and use it as defensive substance to predators, 

as also suggested from previous studies (Noguchi et al., 2006; Saito et al., 1985). 

Some studies have highlighted that TTX in some pufferfish species such as 

Takifugu rubripes is being transferred and accumulated from the connective 

tissue to the basal cells in the skin with young fishes accumulating higher levels 

than adults fish (Gao et al., 2020). 

 Lower TTX levels were detected in muscle (274.3 µg kg-1) and gonads (222.2 µg 

kg-1). The bioaccumulation mechanism in these organs is not well understood. 

TTX, 4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX and 11-norTTX-6(R/S)-ol found 

in the present study, have been also reported in the same species from the 

Solomon Islands and Okinawa, Japan although with a different distribution 

among organs. In that study, contrarily to present study, high levels of TTXs were 

found in the skin (4260 to 51000 µg kg-1) and relatively lower in the intestine and 

liver(Puilingi et al., 2015). In the present study, 11-deoxyTTX was detected only 

in the liver at 186 µg kg-1 and these results seem similar to those found in the 

same species from Solomon Islands and Okinawa (Puilingi et al., 2015). In 3 

specimens of A. hispidus from both Solomon Island and Okinawa, 11-deoxyTTX 

was found only in the skin at extremely lower levels in some specimens (Puilingi 

et al., 2015). The lower levels of 11-deoxyTTX found in these studies may 

suggest that this toxin occurs normally in lower level in A. hispidus. Other studies 

reported also TTX (91µg L-1), 4-epiTTX (12 µg L-1) and 4,9-anhydroTTX (15 µg 

L-1) in the plasma of A. hispidus from Okinawa, Japan (Yotsu-Yamashita et al., 

2018).  
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Regarding to 11-norTTX-6(R/S)-ol, it was not possible to quantify this toxin in the 

present study because there is no standards available. However, this analogue 

was already reported in the skin, liver, ovary, testis, stomach, intestine and flesh 

of A. hispidus collected in Solomon Islands and Okinawa (Japan), at levels 

ranging from < LOQ (30 µg kg-1) to 2230 µg kg-1(Yotsu-Yamashita et al., 2018). 

Several previous studies reported occurrence of TTX and analogues in different 

species of the genus Arothron worldwide. TTX and analogues were reported in 

the different organs of A. diadematus (Red Sea(Fouda, 2005)), A. nigropunctatus 

(Japan (Puilingi et al., 2015; Yotsu-Yamashita et al., 2018), Philippines (Sato et 

al., 2000)); A. manilensis (Japan(Yotsu-Yamashita et al., 2018), Philippines (Sato 

et al., 2000)),  A. immaculatus (India (Saha et al., 2015)); A. firmamentum (Bungo 

Channel(Nakashima et al., 2004)); A. mappa (Philippines(Sato et al., 2000)), A. 

stellatus (Philippines(Sato et al., 2000), India(Joseph et al., 2021)), and A. 

reticularis (Philippines(Sato et al., 2000)). High levels of TTXs in all these 

Arothron species were found in the liver, intestine and skin suggesting that these 

organs have more affinity to TTXs. TTX levels found in the muscle (274.3 µg kg-

1), despite being low compared to other organs, except gonads (222.2 µg kg-1), 

was higher than the recommended limit stated by EFSA (44 µg TTX equiv kg-

1)(EFSA, 2017), constituting a potential threat to public health. Regarding to 

human poisoning involving species of the genera Diodon and Arothron, it is 

estimated that 4.1 and 0.6% human cases of TTX poisoning after seafood 

consumption are caused by fish of the genera Arothron and Diodon 

respectively(Guardone et al., 2020). These data of human poisoning involving 

TTXs from Diodon and Arothron spp. are very important for TTXs risk assessment 

in Mozambique since pufferfish species used in the present study are for the 

human consumption in Mozambique. Despite there are no confirmed cases of 

human intoxication/poisoning involving TTX, other cases involving fish have 

already been reported in coastal areas of Mozambique namely in Cabo Delgado, 

Nampula((Dakar), 1998; Mosse, 2020), and Zambezi (Fonseca, 2021; Maputo, 

2018). On another side, TTXs seafood poisoning episodes have already been 

confirmed in countries of the Channel of Mozambique, in the south of the Indian 

Ocean, such as Tanzania(Chopra, 1967), Reunion Island(Puech et al., 2014), 

and Madagascar(Ravaonindrina et al., 2001). These data of human 
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intoxication/poisoning, some with fatalities, from fishes may suggest involvement 

of MT including TTXs since this group of toxins was reported in other countries 

near to Mozambique. The present research reports new data, which although 

very preliminary due to several aspects such as the reduced number of 

individuals and species analyzed, species were collected in one point and one 

period, points out the need to improve knowledge on TTX occurrence in other 

marine organism of human consumption in Mozambique. More data are needed 

in order to provide more relevant information for implementation of monitoring 

program in Mozambique. As reported in this study, consumption of pufferfishes 

represents a great risk to public health and danger awareness campaigns 

regarding to consumption of pufferfishes are strongly recommended in 

Mozambique. 
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Abstract:  

The objective of this work was to screen the EU-regulated lipophilic and cyclic 

iminetoxins in four bivalve species (Atrina vexillum, Pinctada imbricata, Anadara 

antiquata, and Saccostrea cucculata) from the Mozambican coast in the Indian 

Ocean. Toxins were extracted and analyzed according to the EU reference 

method for the determination of lipophilic toxins in shellfish via LC–MS/MS, but 

no regulated toxins were found in the analyzed species. However, pinnatoxins 
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(PnTX G, E, and F) were detected in A. vexillum, P. imbricata, and A. antiquata. 

Higher levels of the PnTX G were determined for A. vexillum (7.7 and 14.3 

µg·kg−1) than for P. imbricata (1.6 and 2.4 µg·kg−1), and for A. antiquata (4.5 and 

5.9 µg·kg−1) with both hydrolyzed and non-hydrolyzed extracts, respectively. The 

higher levels of PnTX G determined in the hydrolyzed extracts indicate the high 

potential of this species to esterify pinnatoxins, in particular PnTX G. 

Keywords: pinnatoxins; bivalves; Mozambican coast; marine toxins monitoring; 

human seafood poisoning; Indian Ocean 

Introduction 

Lipophilic marine toxins (LMTs) are produced by several harmful algae species 

that proliferate in marine environments worldwide [1,2]. They constitute one of 

the great threats to public health since they can be accumulated in marine 

organisms for human consumption such as bivalves, crustaceans, and 

pufferfishes [2]. The most reported LMTs include okadaic acid (OA), 

dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and 

azaspiracids (AZAs). Currently, at least 1000 metabolites from marine 

microorganisms are LMTs, including the class of cyclic imines (CIs), such as 

pinnatoxins (PnTXs), pteriatoxins (PtTXs), gymnodimines (GYMs), spirolides 

(SPXs), prorocentrolides, spiro-prorocentrimine, and portimine [3]. CIs are an 

interesting group of LMTs (emerging toxins group), with its toxicological profile 

being poorly understood [4]. They are macrocyclic compounds with imine and 

spiro-linked ether moieties and are produced by several species of dinoflagellates 

(Alexandrium spp., Gymnodium spp., Vulcanodinium rugosum), except PtTXs, 

which are products of biotransformation from PnTXs via shellfish metabolic and 

hydrolytic transformation [2,4,5]. Among CIs, PnTXs (Figure III.2), which were 

discovered in 1990 in extracts of the bivalve mollusk Pinna attenuate, have 

received special attention due to their increased occurrence worldwide overtime 

[6]. PnTXs are emerging toxins, and their toxicological data are very limited; 

however, they act as potent neurotoxins inhibiting both the nicotinic and 

muscarinic acetylcholine receptors in the central and peripheral nervous system 

and at the neuromuscular junction [4,7], which are kept even after cooking 

procedures [2]. There are no reports of PnTXs in humans yet, but the symptoms 
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observed in animals (mice) include respiratory arrest, mobility decreasing, hind 

limb paralysis, breathing difficulties, tremors, and jumps [8]. 

 

Figure III.2. Chemical structure of pinnatoxins. 

The prevalence and occurrence of LMTs were already reported in several species 

of marine organisms for human consumption as well as human intoxication 

worldwide. Fortunately, some LMTs are already monitored, and a maximum limit 

in seafood was fixed in many parts of the world depending on the prevalence and 

incidence of a given toxin group [2]. Although harvesting restrictions are imposed 

when shellfish present levels of toxins above the safety limit, cases of human 

intoxication are still reported nowadays, possibly due to the lack of monitoring 

programs in some regions (mainly African countries) or due to disrespecting of 

the health authorities’ regulations [1,2]. In African countries of the Indian Ocean, 

including Mozambique, where this study was focused, data regarding LMTare 

very limited. Few studies reported the occurrence of OA in Haliotis asinine, 

Crassostrea gigas, and Choromytilus meridionalis from Europa Island, Mayotte, 

and Reunion Island, South Africa, Mauritius [2,9,10]. Cases of human intoxication 

caused by ciguatoxins (CTXs), another class of algal toxins, were already 

recorded in Madagascar involving 124 (2 deaths) and 500 (100 deaths) people in 

2013 and 1993, respectively [11,12]. On the other hand, cases of human 

intoxication may be attributed to non-legislated LMTs (emerging toxins) in 

countries where traditional toxins are already monitored [13,14]. In Mozambique, 

due to the lack of marine toxin monitoring programs coupled with the increasing 

demand for shellfish for human consumption, further investigations to guarantee 

the consumption of safe bivalve mollusks are required. This study aims to 
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investigate the presence of both EU-legislated (okadaic acid, azaspiracid, and 

yessotoxin group toxins[15]) and non-legislated (toxins whose maximum limit has 

not yet been set in the EU) lipophilic toxins in four bivalve species—Atrina 

vexillum, Pinctada imbricata, Anadara antiquata, and Saccostrea cucullate—

collected in the Inhaca Island, south Mozambique. 

Material and Methods 

Sampling 

Four local bivalve species—Atrina vexillum, Pinctada imbricata, Anadara 

antiquata, and Saccostrea cucculata (Table III.2)—were collected in Inhaca 

Island, south of Mozambique (26°03'28.9"S 32°57'20.7"E) (Figure III.3) which is 

the growing area of these species. 

Table III.2. Number of individuals and weights of the sample used in this study. 

Species Individuals Weigh (g) 

Atrina vexillum 5 17.2–43.1 
Pinctada imbricata 28 30.9–51.4 
Anadara antiquata 3 23.5–27.4 

Saccostrea cucculata 40 34.4–63.8 

The sampling was carried out in January and April 2020, which corresponds to 

the summer season in this region. According to the local population, these 

species are among the most consumed bivalves locally. The species were 

dissected and stored at −20°C in the laboratory of the chemistry department of 

Eduardo Mondlane University (Maputo, MZ) and later were transported to 

Portugal for toxins analysis in the National Reference Laboratory for Marine 

Biotoxins Monitoring at IPMA. 
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Figure III.3. Map of Maputo Bay, Mozambique. Black circle indicates the 

location site in the Inhaca Island. 

 Chemicals 

Ammonium formate (LC–MS grade, Fluka Analytical, Steinheim, Germany), 

acetonitrile (LC–MS grade, Merck, Darmstadt, Germany), water (LC–MS grade, 

J.T. Baker, Center Valley, PA, USA), formic acid (LC–MS grade), methanol (LC–

MS grade). OA, AZA1-3, YTX, PTX and related reference standard solutions 

were purchased from CIFGA (Lugo, Spain). PnTXG, GYM, and SPX1 reference 

standard solutions were purchased from the Certified Reference Materials 

Program of the Institute for Marine Biosciences, National Research Council 

(NRC, Canada). 

Extraction of the Toxins 

The extraction of EU-regulated and cyclic imines toxins was carried out according 

to the method proposed by the European Union Reference Laboratory for Marine 

Biotoxins (EURLMB) [15]. Two g of homogenized tissues of pooled samples 

(Table 1) were mixed with 9 mL of absolute methanol using vortex (Vortex Genie 

2) for 3 min at the maximum speed level. The resultant mixture was centrifuged 

for 10 min at 2000 g, 20°C, and the supernatant was transferred to a 20 mL 

volumetric flask. This procedure was repeated by adding another 9.0 mL of 
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methanol to the remaining tissue pellet, and it was subsequently vortexed for 1 

min and then centrifuged under the same conditions while combining both 

supernatants, and the final volume was made up to 20 mL with methanol. An 

aliquot was filtered through a 0.2 μm syringe filter, and 5 μL was injected into the 

LC–MS/MS system. 

An alkaline hydrolysis step was carried out to convert acylated compounds, which 

may result from shellfish metabolism, into their respective parental toxin. The 

hydrolysis was started by adding 313 μL of 2.5 M NaOH to a 2.5 mL aliquot of 

the sample extract in a test tube, which was homogenized for 30 s in the vortex 

and heated at 76°C for 40 min in a heating block. The sample was allowed to cool 

down until reaching room temperature and neutralized with 313 μL of 2.5 M HCl. 

The sample was vortexed for 30 s, and an aliquot was filtered through a 0.2 μm 

syringe filter, and 5 μL was injected into the LC–MS/MS system. 

LCïMSMS Analysis 

Determination of lipophilic toxins in both hydrolyzed and non-hydrolyzed extracts 

was carried out via liquid chromatography with tandem mass spectrometry (LC–

MS/MS) detection following the standardized operating procedure (SOP) for the 

determination of marine lipophilic biotoxins in bivalve mollusks of the EURLMB 

[15]. The LC–MS/MS equipment consisted of an Agilent 1290 Infinity 

chromatograph coupled to a triple quadrupole mass spectrometer Agilent 6470 

(Agilent Technologies, Germany). The chromatographic separation was 

conducted with a Zorbax SB-C8 RRHT column (2.1 × 50 mm, 1.8 μm) protected 

with a guard column (2.1 × 5 mm,1.8 μm). Mobile phase A was water with 2 mM 

ammonium formate and 50 mM formic acid, and mobile phase B was 95% 

acetonitrile with 2 mM ammonium formate and 50 mM formic acid. An elution 

gradient at a flow rate of 0.4 mL min−1 was used as follows: 0–3 minutes, gradient 

from 88 to 50% eluent A; 3–6.5 minutes, gradient 50 to 10, 183% eluent A; 6.5–

8.9 minutes, 10% eluent A; 8.9–10 minutes, gradient 10 to 88% eluent A. The 

detection was carried out in Multiple Reaction Monitoring (MRM) acquisition 

mode. Two MRM transitions were monitored, one being used for quantification 

and the other for confirmation (supplementary material). 
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For PnTX G quantification, a six-point calibration curve (Signal = 2330.8927C − 

24.6694; R2 = 0.9993) with a concentration of PnTX G ranging from 0.5 to 24.0 

ng·mL−1 was set up for quantification purposes. The lowest calibration point was 

considered as the quantification limit. The level of esterification was calculated 

using the formula % esterified = 100 × (1−NH/H), where NH and H mean 

concentration of the PnTX G in non-hydrolyzed and hydrolyzed extracts, 

respectively. 

Results 

The screening of EU-legislated lipophilic toxins did not reveal the presence of 

these toxins in any of the analyzed species. These results may not be conclusive 

for risk assessments of lipophilic toxins since the samples were collected in a 

single location and in one time frame period. Regarding non-EU legislated 

lipophilic toxins, PnTX G, E, and F were found in Atrina vexillum, Pinctada 

imbricata, and Anadara antiquata. 

PnTXG was confirmed using commercial standards available in the lab. PnTX E 

and F were deduced by comparing spectral data of the ion product of m/z 784.6 

and m/z 766.3, respectively, with available data in the literature [16]. Figure III.4 

shows chromatograms of the PnTX E and F in the samples and PnTX G both 

standard and in the samples. The spectral data of the PnTX E and F are illustrated 

in Figure III.5, with the fragments [M+H]+, [M+H-H2O]+, [M+H-2H2O]+, [M+H-

3H2O]+, and diagnostic fragments at m/z 164.1 and 446.0. 
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Figure III.3. Multiple reaction monitoring (MRM) chromatograms of the PnTX G 

(a,b), PnTX E (c), and PnTX F (d) found in this study. All chromatograms of the 

samples were obtained from the nonhydrolyzed extract of bivalve Atrina vexillum 

from Inhaca Island (South of Mozambique). 
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Figure III.4. Product ion spectra of (a) m/z 784.6 of PnTX E from the hydrolyzed 

extract, and (b) m/z 766.3 of PnTX F from the non-hydrolyzed extract. * indicates 

the molecular mass of the toxin.  

The highest levels of PnTX G were observed in the hydrolyzed extracts, and this 

suggests that these species easily esterify PnTX G. Among species, Atrina 

vexillum presented higher levels of PnTX G in both non-hydrolyzed and 

hydrolyzed extracts (7.7 and 14.3 µg·kg−1) followed by Anadara cucculata (4.5 

and 5.9 µg·kg−1) and Pinctada imbrica (1.6 and 2.4 µg·kg−1). Regarding 

esterification levels, Atrina vexillum showed 46% of the compounds in the 

esterified form, and contrarily to the levels of PnTX G in the extracts, Pinctada 

imbrica (33%) presented higher levels of esterification than Anadara cucculata 

(24%). PnTX G was detected in both hydrolyzed and non-hydrolyzed extracts, 

while PnTX A and E were found in non-hydrolyzed and hydrolyzed extracts, 

respectively. 
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Discussion 

Reports of PnTXs date since 1990 and were discovered in the extracts of the 

bivalve mollusk Pinna attenuata by Chinese investigators [6]. Nowadays, there 

have been reports of PnTXs in other species of bivalves for human consumption 

[16-25], putting at risk public health. In this study, three PnTXs were detected, 

PnTX G, E, and F, in three species Anadara antiquata, Pinctada imbricata, and 

Atrina vexillum. As proposed in the previous studies, all PnTXs are formed from 

PnTX G and F as precursors since they are primary toxins produced by 

Vulcanodinium rugosum [16]. PnTX E is formed readily from PnTX F, in which 

the lactone ring of PnTX F is opened by hydrolysis forming PnTX E via metabolic 

and hydrolytic transformations in shellfish and water, and they are also available 

to be taken by bivalve species [26-29]. This means that the PnTX E detected in 

this study could be formed from PnTX F produced by an algae species present 

in seawater or by shellfish metabolism, or both. The rate of conversion of PnTX 

F to E may vary from species to species. In this study, it was not possible to 

quantify PnTX F and E due to the lack of reference standards. However, their 

detection was deduced from product ion spectral data analysis by the screening 

of m/z 784.7, which corresponds to PnTX E, and m/z 766.3, which was attributed 

to PnTX F, and their spectral data were similar to data available in the literature 

[16,29]. 

PnTXs below quantification limits found in Saccostrea cucullata may suggest a 

very low ability or even inability to bioaccumulate PnTXs. For PnTX G, the high 

level found in Atrina vexillum when compared with other species, suggests that 

this species could be considered very suitable to be used as bio-indicator of 

PnTXs, among the three analyzed species, on the Mozambican coast, but further 

study is required. 

A higher content of PnTX G in hydrolyzed extracts appears to be in agreement 

with findings reported from extracts of mussel (Mytilus edulis) samples from 

Eastern Canada, in which higher levels of PnTX G were found in hydrolyzed (0.7 

to 108 µg·kg−1) than in non-hydrolyzed samples (0.3 to 3 µg·kg−1) [19]. The 

notable difference in PnTX G levels between the hydrolyzed and non-hydrolyzed 

samples suggests that these species may contain considerable amounts of 

esters of PnTX G. 
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PnTXs are emerging toxins that are not regulated yet worldwide, [5] and this 

complicates the associated risk assessment for public health based on the PnTX 

G levels found in this study. Previous studies focused on PnTXs in species used 

in this study are very limited. However, the occurrence of PnTXs in Atrina vexillum 

was expected since Atrina sp. are closely related to Pinna sp. [30], for which 

PnTXs were reported for the first time (P. attenuate, P. murica, and P. biclor) in 

China, Japan, and Australia [31-36]. Comparing this study with others, the levels 

of PnTX G found in this study are not different from those found in previous 

studies in other species in some parts of the world. Similar levels were reported 

in 35% of European commercial seafood (flat oyster: Ostrea edulis, clams: 

Ruditapes decussatus, mussels: Mytilus galloprovincialis, blue mussels: Mytilus 

edulis) collected in Spain, Slovenia, Italy, Ireland, and Norway, which were 

contaminated by PnTX G at levels up to 12 µg·kg−1) [23]. In Chile, one of the 

major mussel producers worldwide, PnTX G at concentrations ranging from 2.9 

to 5.2 µg·kg−1 was found in the cooked mussel Mytilus chilensis [18]. Samples of 

Mytilus edulis from six locations in Eastern Canada were also contaminated by 

both PnTX G and A, with levels varying from 0.6 to 108 and 0.3 to 2.5 μg·kg−1, 

respectively, with PnTX G being the major toxin in all locations studied [19]. 

Contrary to this study, high levels of PnTX G were recorded in mussels (Mytilus 

galloprovincialis) and clams (Venerupis decussata) from In Ingril, a French 

Mediterranean lagoon, during a period between 2009 and 2012 [21]. In that study, 

the concentration of PnTX G varied from 40 to 1200 µg·kg−1 and 17 to 95 µg·kg−1 

for Mytilus galloprovincialis and Venerupis decussata, respectively, and in a 

recurring way during the study period. The higher levels of PnTX G found in 

Mytilus galloprovincialis (than Venerupis decussata, with the ratio of 

mussels/clams varying from 3 to 16 during all 4 years of the study) may suggest 

this species as a good candidate to act as a sentinel species for PnTX G. Based 

on these findings, the French Agency for Food Safety (ANSES) recommend the 

implementation of a monitoring program for PnTXs [37]. Blue mussels (Mytilus 

galloprovincialis) and Pacific oysters (Crassostrea gigas) from the shellfish 

harvesting areas of Catalonia, Spain (NW Mediterranean Sea) were tested for 

PnTX G at concentration ranging from 2 to 60 μg·kg−1 [17]. In Mozambique, to 

date, there are no reports of PnTX occurrence in bivalves, neither are there 

confirmed cases of human intoxication involving PnTXs. This is the first study of 



Marine toxins in Mozambique: The first approach to public health risk assessment, PhD 

Thesis – ISIDRO TAMELE  

- 145 - 
 

PnTXs in bivalve species from Mozambique, although it is very preliminary due 

to the reduced number of specimens analyzed, and sampling was performed at 

a single point. 

Conclusions  

PnTX G, E, and F were found in the local Atrina vexillum, Pinctada imbricata, and 

Anadara antiquata collected in the Mozambican coast in the Indian Ocean. No 

EU-regulated lipophilic marine toxins were found in all analyzed species, and no 

PnTXs were found in Saccostrea cucculata. On the other hand, PnTX G was 

determined to be at considerably high levels in Atrina vexillum, followed by 

Pinctada imbricata and Anadara antiquata in both hydrolyzed and non-

hydrolyzed extracts, respectively. In addition, PnTX E and PnTX F were also 

detected. The high level of PnTX G found in Atrina vexillum, when compared with 

other species, suggests that this species could be used as a bio-indicator of 

PnTXs, among the three analyzed species, on the Mozambican coast, but further 

study is required. This is the first study showing PnTXs in bivalve species from 

the Mozambican coast. 
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IV. PROPOSAL FOR A MARINE TOXINS MONITORING PLAN 

IN MOZAMBIQUE 

Highlights of the chapter 

 The Ministério do Mar, Águas Interiores e Pescas may be 

responsible institution for MT monitoring in Mozambique through one of its 

fishery institutes namely Instituto Nacional de Investigação Pesqueira and 

Instituto Nacional de Inspecção do Pescado. 

 The sampling process may be carried out seasonally in selected 

sites along Mozambican coast, one in summer (October to March) and 

another in winter (April to September) in order to assess a possible 

seasonality of the MT.  

 Permitted limit of MT in seafood can be adopted from countries that 

Mozambique keeps seafood trading such as EU region, China, South 

Africa, among other. 
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Abstract 

Accumulation of marine toxins (MT) in seafood constitutes a great threat to public 

health and the local economies of coastal countries, such as Mozambique. 

Considering the concerns raised by the global climate change where MT are 

expected to become increasingly frequent and abundant, implementing effective 

operational measures to control the risk posed by MT is timely needed. A 

synthesis of up-to-date information on the risk associated with toxic algal blooms, 

MT occurrence data in seafood and human poisoning cases involving marine fish 

in Mozambique is presented as an opinion paper with the final goal of 

recommending the implementation of a Marine Toxins Monitoring Program 

(MTMP) to protect public health and improve the safety of marine products.  

Keywords: Mozambique; marine toxins monitoring; public health; fishery 

industry; economy, seafood poisoning.  

Significance: This work will help the Mozambican authorities for implementation 

of marine toxins monitoring plans to protect public health in Mozambique and 

secure exports of marine products. 

Introduction 

The Fishery Industry is one of the main sectors for development in Mozambique. 

It constitutes one of the main food sources for Mozambican population and 

relevant for the national economy. Mozambique (Figure IV.1) has a coastline of 

2700 km, and 30 million habitants in which seafood consumption per capita was 

approximately 16.4 kg/year in 2020[1] 
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Figure IV.1. Green circles indicate the institutions where can be allocated the 

labs for marine toxins. 1 - Instituto Nacional de Investigação Pesqueira, 2 - 

Laboratório Nacional de Higiene de Águas e Alimentos 3 – Instituto Nacional de 

Inspecção de Pescado, 4 - Estação de biologia marinha da Universidade 

Eduardo Mondlane, 4 –. Red color indicates the sites where human poisoning 

cases involving marine fish or MT were reported. 

In 2020, the annual production of seafood in Mozambique was 434 569 tons (431 

257 from fishery and 3 312 aquaculture), being 9 229 tons exported, to Europa 

(2 790 tons), Asia (3 997 tons), USA (86 tons), Southern Africa (2 344 tons), and 

other countries (9 229 ton) [1]. The contribution to public finances was 

approximately 29 376 494 000 Mozambican metical (USD 500 million) from 



Marine toxins in Mozambique: The first approach to public health risk assessment, PhD 

Thesis – ISIDRO TAMELE  

- 153 - 
 

fishing licenses and fish inspection [1]. However, one of the great threats to the 

fishery industry is the presence of marine toxins (MT) in seafood that may lead to 

acute intoxications or/and poisoning in humans, which in the most severe cases 

may cause fatalities [2, 3] 

MT are secondary metabolites produced by different microalgae species that 

under certain favorable environmental conditions may suddenly increase their 

cell concentration and affect other marine organisms. This phenomena is widely 

designated as harmful algal blooms (HAB) [4] and the most reported HAB species 

include dinoflagellates (Prorocentrum spp. [5], Dinophysis spp. [3], Phalacroma 

rotundatum [6], Gambierdiscus toxicus, Ostreopsis siamensis and Prorocentrum 

lima [7], Alexandrium spp. [8, 9], Gymnodium spp.[10], Vulcanodinium rugosum 

[11], Karenia spp. [12] Protoceratium reticuatum [12], Lingulodinium polyedrum 

[12] and Gonyaulax polyhedral [12], Dinophysis acuta [13], Azadinium spinosum 

[14] and Protoperidinum crassipes [15], Alexandrium spp. [16], Gymnodinium 

catenatum [16], Pyrodinium bahamense [16], and cyanobacteria Trichodesmium 

erythraeum [17]), diatoms (Pseudo-nitzschia spp. [18]), cyanobacteria and some 

species of bacteria (Serratia marcescens, Vibrio spp., V. Aeromonas, 

Microbacterium arabinogalactanolyticum [19], Pseudomonas sp. [20]. 

Shewanella putrefaciens, Alteromonas sp. [21], Pseudoalteromonas sp. [22] and 

Nocardiopsis dassonvillei) the most reported causative species [3].  

Some MT are biotransformation products from other MT via metabolic and 

hydrolytic transformation in shellfish [3, 23]. Chemically MT can be grouped as 

lipophilic or hydrophilic according to their solubility. The lipophilic toxins that are 

regulated in several countries around the world, such as the EU, Chile, Australia 

& New Zealand, include the okadaic acid (OA), dinophysistoxins (DTX), 

pectenotoxins (PTXs), yessotoxins (YTXs) and azaspiracids AZAs. Other 

lipophilic toxins, such as ciguatoxins (CTX), cyclic imines (CIs) [spirolides (SPXs), 

gymnodimines (GYMs), pinnatoxins (PnTXs) and pteriatoxins (PtTXs)] and 

brevetoxins (PbTxs) although not consistently regulated by countries directives, 

may noticeably accumulate in seafood and affect their consumers. Hydrophilic 

toxins comprise domoic acid (DA) and analogs, paralytic shellfish toxins (PSTs), 

tetrodotoxins (TTXs) and palytoxins (PlTXs) [3]. Each group of toxins has a 

specific mechanism of action, symptomology and intoxication signals in humans 
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(diarrheic shellfish poisoning – OAs,  ciguatera shellfish poisoning – CTXs, 

neurologic shellfish poisoning – PbTXs, Amnesic Shellfish Poisoning - DAs,  

paralytic shellfish poisoning – PSTs, azaspiracid shellfish poisoning – AZAs, 

tetrodotoxin shellfish poisoning -TTXs [3]. These toxins can be detected by 

several methods (Table IV.1) such as chemical (liquid and gas chromatography), 

enzymatic, and cytotoxic being the chemical methods most recommended for 

monitoring in seafood 

Table IV.1: Marine toxins and their permitted limit in some countries where they 

are monitored. PSP—paralytic poisoning, DSP—diarrheic shellfish poisoning, 

ASP—amnesic shellfish poisoning, AZP—azaspiracid shellfish poisoning, CFP—

ciguatera fish poisoning, NSP—neurologic shellfish poisoning, TSP – 

tetrodotoxin shellfish poisoning, OA – okadaic acid, CTX – ciguatoxins, SPXs – 

spiralizes, PbTX – brevetoxins, PTX – pectenotoxins, YTX– yessotoxins, AZA – 

azaspiracids, DA – domoic acid, TTX – tetrodotoxins, PlTX – palytoxins LC – 

Liquid Chromatography, FL – Fluorescence detection. UV – Ultraviolet detection, 

EU – European Union region, USA – United States of America, NZ – New 

Zealand, SA – South Africa 

Syndrome Toxin Detection  Permitted limit 

DSP OA LC-FL[24] 160 µg OA eq. kg-1 in EUNZ, SA 

- YTX (*)LC-MS/MS[25] 
3,75 mg YTX eq. kg-1 shellfish in 

EU[25, 26] 

AZP AZA (*)LC-MS/MS[27] 
160 µg AZA eq. kg-1 shellfish in 

EU[27] 

PSP STX LC-FL[28] 
800 µg STX eq. kg-1 fish in EU, USA, 

SA, ZN [28] 

ASP DA HPLC-UV[29-31] 
20 mg DA kg-1 shellfish in EU, 
Canada, USA[32, 33], SA, NZ, 

Australia[34, 35] 

CFP 
P/C-

CTX-1 
LC-MS/MS[36, 

37] 
0.01 µg (P-CTX-1) kg-1 fish and 0.1 

µg (C-CTX-1) kg-1 in USA [37] 

- SPX LC-MS/MS[38] 400 µg SPX kg-1 shellfish in EU[38] 

NSP BTX-2 
LC -MS/MS[34, 

35] 
800 µg BTX-2 kg-1 shellfish in 

USA[39], NZ and Australia [34, 35] 

- PTX LC-MS/MS[40] 
160 µg OA eq. kg-1 shellfish in 
EU[40], NZ, Australia [34, 35] 

TSP TTX LC-MS/MS[41] 
44 µg TTX eq. kg-1 shellfish in 

EU[17], 2 mg TTX kg-1 in Japan[41] 

- PlTX 
LC-MS/MS, LC- 
FL, LC - UV[42] 

250 µg (PlTX) kg-1 shellfish in 
EU[42] 
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Many cases of seafood poisoning, some with fatalities, have been reported 

worldwide, including African countries of the Indian Ocean and the Red Sea. 

Several of these cases have been associated with seafood contamination with 

CTXs, PlTXs, TTXs, and PSTs [2, 3]. Intoxication cases occurred after the 

consumption of marine animals such as turtles, sharks, fishes, and mussels, both 

in restaurants and at home. Currently, some MT are monitored in countries such 

as South Africa, Japan, New Zealand, the USA, and the European Union, among 

other parts of the world (Table IV.1) [3]. In Mozambique, however, MT are not 

monitored, and this scenario puts all the 30 million Mozambicans and tourists 

vulnerable to seafood intoxication or poisoning cases. Additionally, MT in 

significant concentrations (above the permitted limit in many parts of the world) 

can negatively affect the national economy of Mozambique since the exports of 

seafood can be severely impacted and interdicted if validated hazards controls 

are not in place. The food security and safety of seafood will also be affected. 

The main goal of this study is to elucidate and recommend the Mozambique 

authorities with responsibilities at food safety level for the implementation of an 

effective Marine Toxins Monitoring Program (MTMP) to protect public health and 

improve the fishery industry. Aspects such as bioindicators species, permitted 

concentration of MT in seafood, and detection methods are suggested. The work 

is based on collecting data regarding both MT occurrence and human poisoning 

cases involving marine fish in Mozambique.  

Risk assessment of marine toxins in the Mozambican Public Health 

The presence of MT in seafood is barely considered a threat to public health in 

many countries of the Indian Ocean such as Mozambique. A recent literature 

review concluded that only South Africa has a specific monitoring plan [2, 3]. MT 

poisoning cases on the Indian African coast are reported from Egyptian times 

involving TTX after consumption of Lagocephalus sceleratus, which are one of 

the main TTX vectors in the Indian Ocean [43]. Over time, several human 

poisoning cases have been reported in African countries such as South Africa, 

Tanzania, Madagascar, and Comoros, among others.  

In Mozambique, there are no confirmed cases of human poisoning involving MT. 

However, according to the WHO, more than 500 000 cases of diarrhea were 
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reported, of which 100 cases correspond to dysentery and 7 to cholera [44] and 

others are unknown. These data indicate that many people of Mozambique 

consume unsafety food including seafood. Unclarified fish poisoning cases have 

ever been reported in Mozambique by health authorities (Figure IV.1 and Table 

IV.2). 

Table IV.2: Cases of human poisoning involving marine seafood in Mozambique. 

Data obtained from national and international media and local health authorities. 

Local Date Victims 
Marine 
seafood 

Symptoms Reference 

Cabo 
Delgado 
and 
Nampula 

November 
1998 

700 people 
(100 
deaths) 

Fish 

Diarrhea 
(with and 
without 
vomiting) 

[45] 

Cabo 
Delgado 
and 
Nampula 

November 
1998 

91 deaths  Fish Diarrhea [46] 

Zambeze 
October 
2018 

5 people (1 
death) 

Fish No data [47, 48] 

Nampula   July 2020 12 deaths Turtle No data [49] 

Nampula 
September 
2021 

4 deaths Fish No data [50] 

 

100 deaths and about 600 cases of illness in Cabo Delgado and Nampula 

provinces have been reported by health authorities in November 1998 after the 

consumption of marine fish [45]. It was suspected that the fish was contaminated 

by pesticides, but no scientific study was conducted to confirm it, suggesting that 

other chemical agents such as MT may be also responsible.  

On 15 october 2018, health authorities of Zambeze province confirmed the death 

of one child and hospitalization of 4 adults, and on 23 september 2021 the death 

of 4 people after consumption of marine fish [48, 50].  According to health staff, 

these cases are associated with fish poisoning. Unfortunately, the source of the 

fish was not identified, and no food remains were available for subsequent 

biological and chemical analyses [47]. There are no data on symptoms presented 
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by victims. Other cases were reported in the northern provinces of Cabo Delgado 

and Nampula, on 24 november 1998, where at least 91 people died from diarrhea 

and related ailments attributed to the consumption of poisoned fish [46]. Once 

again, there are no details of the species of fish, local of acquisition, and autopsy 

results in all reported episodes. 12 people of the same family died after 

consumption of unknown marine turtle species was reported in the Nampula 

province on 3 july 2020 [49]. Some marine turtles of the Indian Ocean, such as 

Eretmochelys imbricata [51], among others, are well known as MT vectors [52]. 

The main food in these provinces is seafood since they are bathed by the Indian 

Ocean. Their relationship with sea suggests that the consumed fish may be 

cached locally by fishermen.  

The possible involvement of MT in any of these cases may be emphasized by 

confirmed MT human poisoning in Mozambican adjacent countries. In South 

Africa, many fatalities were reported in 1837 [53], 1888, April 1948, December 

1957 [54], May 1958, and May 1978 [55] after consumption of different marine 

species of fish and mussels (Donax serra, Chloromytilus meridionalis, Perna 

perna [53], Choromytilus meridionlis and Mytilus meridionalis). In the cases cited 

above, PSTs were at least suspected of being the causative agent, and 

concentrations up to 72.8 mg kg-1 were determined [54, 55]. In Tanzania, fatalities 

were confirmed after the consumption of pufferfish, a well-known TTX vector [56], 

and other cases were reported (June and August 2015) involving a toxic blue-

green alga on the seaweed farms that caused dermatological problems [57]. In 

Madagascar, several human poisoning including deaths were reported, and the 

marine organism species involved include sharks Carcharhinus amboinensis and 

Carcharhinus leucas harboring CTXs, and the fish Herklotsichthys 

quadrimaculatus that acted as vector of PlTXs and TTXs [2, 3]. Human deaths 

involving TTX (up to 95 Mug-1) after consumption of turtle Eretmochelys imbricate 

and fish Lagocephalus sceleratus were also recorded in Comoros (December 

2012) [51] and Reunion Islands (September 2013) [58].  

MT can also affect the marine ecosystem, killing marine animals such as 

seabirds, fishes, marine mammals putting in risk their survival [59-61]. For 

example, in the South Africa coast, several marine animal poisoning cases 

involving MT have been reported. Dead seabird’s black oystercatcher 
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(Haematopus moquini), southern blackbacked gull (Larus dominiccus) and 

hartlaub’s gull (Larus hartlaubii) were found in the Lambert’s Bay and 

Bloubergstrand. It was suspected the seabirds consumed black mussels 

(Choromytilus meridionalis) and wedge clams (Donax serra) contaminated by 

PSTs and YTXs since considerable density of their producers respectively 

Alexandrium catenella and Protoceratium reticulatum were found in the local [60, 

61]. In 2017, several million animals deaths in the abalone farms were reported 

in Cape Town and the causative agent was YTX produced by Lingulodinium 

polyedra [62]. Many other cases have been reported in Madagascar [63] and 

Reunion Island [59]. All these cases in these African countries of the Indian 

Ocean suggest, undoubtedly that Mozambique should be also highly vulnerable 

to MT. 

Recently, studies carried out by Tamele et al. (2022) confirmed the presence of 

TTX, 4-epiTTX, 11-deoxyTTX, 4,9anydroTTX, and 11-norTTX(R/S)-ol in two 

pufferfish species (Diodon hystrix and Arothron hispidus) from the Mozambican 

coast. Moreover, pinnatoxins, namely PnTX G, F and E, were recently 

determined for the first time in Mozambique in local shellfish species: Atrina 

vexillum, Pintacta imbricata and Anadara antiquata [64]. Trace amounts of PST 

including dcSTX, GTX2+3, and STX were also detected in Atrina vexillum. The 

species were collected in January and April 2020 on Inhaca Island, frozen and 

transported to Portugal (IPMA - National Laboratory of Marine Biotoxins 

Monitoring) for toxins analysis [64, 65]. TTXs were found in the liver of Diodon 

hystrix (33 to 138.8 µg TTX kg-1; 6.5 to 10.3 µg 4-epiTTX kg-1; 202.3 µg 4,9-

anhydroTTX kg-1) and Arthron hyspidus (5559.9; 248.5; 186.5; and 3538,8 for 

TTX, 4-epiTTX, 11-deoxyTTX and anhydroTTX kg-1, respectively) [64, 65].  

Other organs of Arthron hyspidus also presenting high amounts of  TTXs were 

the skin (3575.9 µg TTX kg-1; 12.5 µg 4-epi TTX kg-1; 1165.2 µg 4,9-anhydroTTX 

kg-1), the intestine (15164.5 µgTTX kg-1; 60.8 µg 4-epiTTX kg-1; 5646.5 µg 4,9-

anhydroTTX kg-1), the gonads (222.2 µgTTX kg-1; 1978.6 µg 4,9-anhydroTTX kg-

1) and the muscle (274.3 µgTTX kg-1; 1138.5 µg 4,9-anhydroTTX kg-1) [64]. Toxin 

content in these species is higher compared to the permitted limit used for 

monitoring in countries where these toxins are regulated such as Japan (2 mg kg-

1) [41] or the EU region (44 µg TTX kg-1) [17, 64, 65]. The total levels of free 
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PnTXs were 14.3, 5.9, and 2.4, µg of PnTX G kg-1 for Atrina vexillum, Anadara 

antiquata, and Pintacta imbricata, respectively [64]. PnTX E and F were detected 

but not quantified due to the lack of certified reference material [64]. PnTX G is 

considered an emerging MT since its occurrence was just discovered in 2008 in 

the digestive glands of Pacific oysters Magellana gigas from South Australia and 

their structures were elucidated by NMR spectroscopy and mass spectrometry 

[23].   

Other studies confirmed the presence of Domoic acid and Pseudo-nitzchia spp. 

blooms in the waters of Praia do Tofo – Inhambane province, southern 

Mozambique, from January 2017 to August 2018. The maximum DA 

concentration determined was 50 pg L-1 of filtered seawater in June [66]. From 

this study, it was concluded that between May 22 and June 10, 2017, DA 

concentration and coastal Chl-a significantly increased with the decrease of the 

sea surface temperature, suggesting potential coastal upwelling within the region 

[66].  

These results (TTXs, PnTX G, and DA) and others reported in South Africa, 

Madagascar, Tanzania, Comoros, and Reunion highlights that MT poisoning 

cases may have occurred/occur in Mozambique. The lack of trained health and 

environment staff to recognize MT symptoms and the absence of MT monitoring 

become Mozambicans vulnerable to MT poisoning. MT may affect both security 

and safe seafood in Mozambique since many coastal communities, and tourists 

in coastal provinces such as Maputo, Gaza, Inhambane, Sofala, Zambeze, 

Nampula, and Cabo Delgado, consume fish and shellfish as the main food due 

to their high nutritional value. 

Risk assessment of marine toxins in the Mozambican Economy 

The presence of MT in seafood may negatively affect the Mozambican economy. 

The fishery industry significantly contributes to the GDP and is the income source 

of most of all the people living along the coast. However, data regarding this issue 

are very limited, which can be caused by several aspects including the lack of 

consistent data on market sectors, sporadic frequency of HABs, difficulty to know 

the number and dimension of the area affected, lack of MT data in poor coastal 

countries, among other reasons [67]. On the another hand, the impact of MT on 
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the economy is very complex because takes several transversal areas such as 

public health (medical and hospitalization expenses including cost of transport to 

hospital and loss of productivity due to the dead or sick people), fishery industry 

(fish and shellfish mortality, price increasing and demand reduction), tourism 

(tourism income reduction) and impact monitoring and management (water and 

marine animal sampling and staff training for recognizing MT poisoning[68, 69] 

Even with the limitations described above, MT negative impacts were observed 

in some African countries of the Indian ocean that have coastal interaction with 

Mozambique. In South Africa, MT caused the reduction in 80% of month sales in 

1994 [70], the loss of 2000 tons (corresponding to US 50 million dollars) of rock 

lobster in 1997, not estimated loss of oysters Crassostrea meridionalis in 2008 

[71], close of 12 farms [72] and the loss of 250 ton of abalone species in 2017 

[62]. An economic loss of 415 tons of rock lobster Jasus lalandii corresponding 

to 6 US dollars million was also registered in 2015 due the presence of the 

dinoflagellate Prorocentrum triestinum [73]. Economic loses were also reported 

in Tanzania in the third most important employing people with. 20,000 farmers 

and annual production of 15,087 tons. In this farmer, considerable amounts of 

seaweed Eucheuma denticulatum died and the farmers became ill in 2012 – 2013 

[57, 74]. This case caused considerable economic losses due to the seaweed 

mortalities and farmer's medical expenses. The suspected causative agents were 

Gymnodinium spp. toxins [57, 74] 

In Mozambique, there are no data regarding economic losses related to HABs 

and/or MT. However, according to economic losses experiences from South 

Africa, Tanzania, and other countries, Mozambique may or will also suffer 

considerable future economic losses due to the algal bloom and MT. The 

occurrence of HABs and MT is increased by climate change worldwide mainly in 

tropical and subtropical environments such as the Indian Ocean including the 

Mozambican coast. The Indian coast is considered an endemic area for MT such 

as CTX which is responsible for many poisoning cases.  This scenario threatens 

the Mozambican fishery and tourism industry and consequently the Mozambican 

economy. Currently, the fishery industry contributes 10.3% to GDP in 

Mozambique and most of the seafood catches include crab, fish, shrimp, tuna 

fish (Sofala and Maputo), among other [75]. The fishery industry revenues come 
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from national fleet (64%), foreign tuna fleet (26.5%), fish inspection fees (4.6%) 

and own recipes (4.8%) [76]. Other fishery industry socio-economical contribution 

including tourism (in coastal areas) and creation of jobs in areas of 

accommodation, restaurants, travel agencies and other tourist activities. In 2018, 

the tourism sector in Mozambique raised US 41.8 million dollars of which a 

portion is an indirect revenue from the fish industry [77]. These fishery industry 

economic contributions may reduce and negatively affect the Mozambican 

economy if an effective MTMP is not implemented. 

Final considerations and recommendations  

The adequate intervention to avoid, minimize and manage intoxication and 

poisoning cases caused by MT in Mozambique is to implement an MTMP 

following the example of many coastal countries. Countries with specific MTMP 

are described in table 1, including the regulatory limit of each group of toxins. 

Implementation of the MTMP is not difficult, but it may be complex because it 

needs the collaboration of many parts of the regions to be monitored 

(Mozambican and Indian coast in general). The detection and sampling methods, 

the regulatory limit of MT in fish and shellfish, sampling seasonality, and specific 

MT legislation must be detailed because they are crucial aspects of the MTMP 

success. Since 2.12% of fish and fishery products are exported (according with 

2020 data) to Europa (30.20%), Asia (43.33%), Southern Africa (25.40%), and 

America (0.93 %) [1], the regulator limit of MT in seafood can be adopted from 

these countries as it descried in the in table IV.1  

Since in Mozambique, there are two institutions responsible for fishery research 

(Instituto Nacional de Investigação Pesqueira and Instituto Nacional de 

Inspenção de Pescado) (Figure 1) with provincial delegations in all provinces, the 

MTMP can be delegated to one of them, or sharing competences. In the first 

phase, the laboratory of MT analysis may be in Maputo city, due to the availability 

of the chemical analysis of MT (LC-MS/MS) compared to other provincial 

delegations and the easy logistic and experience changes with university 

research centres such as Estação de Biologia Marinha da Universidade Eduardo 

Mondlane (Eduardo Mondlane University), Laboratório Nacional de Higiene de 

Águas e Alimentos (Ministry of Health). The sampling process must carry out 
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seasonally in selected sites, one in summer (October to March) and another in 

winter (April to September) to assess the possible seasonality of the MT. The full 

and detailed sampling process may be discussed specifically by the selected 

institution for MTMP. The recommended chemical method for MT analysis is LC-

MS/MS(EFSA), and there are alternative methods such as cytotoxicity, enzyme 

techniques, and thin layer chromatography, among others, that can be used by 

seafood producers to carry out their auto-control of MT variability in their 

area/production [2, 3]. 
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V. GENERAL DISCUSSION, CONCLUSIONS AND FINAL 

CONSIDERATIONS 

Highlights of the chapter 

 Emerging marine toxins (TTXs and PnTXs) were detected in seafood from 

the Mozambican coast. 

 The Ministério do Mar, Águas Interiores e Pescas may be delegated for MT 

monitoring in Mozambique. 

 Permitted limit of MT in seafood can be adopted from countries that 

Mozambique keeps seafood trading. 

 

African Indian Ocean and the Red Sea coasts have a subtropical and tropical climate, 

considered optimal for the development and transportation of several MT producers, and 

consequently, the production of MTs [1,2]. The few data available for this geographic 

region, most of which describing only the genus and not identifying the potential harmful 

algae at the species level, makes it very difficult to evaluate the occurrence of the toxic 

species. The most reported HAB species in this region are cyanobacteria, followed by 

dinoflagellates, and diatoms as potential MT producers. Relative to MTs, the most 

commonly reported and associated with seafood poisoning episodes are the CTXs, PSTs, 

and TTXs [1]. In this thesis, TTXs and PnTXs were found in pufferfish (Arothron hispidus 

and Diodon hystrix) and shellfish (Atrina vexillum, Pintacta imbricata, and Anadara 

antiquata) from Inhaca island – South of Mozambican coast indicating that Mozambican 

are vulnerable to MT from seafood. No EU legislated lipophilic MT were found in these 

species of bivalves.  The results found in this thesis are the first data regarding MT in 

seafood from Mozambique and they point out a threat to public health. Further studies 

are needed to provide more relevant information in order to improve knowledge on TTX 

and PnTXs as well as other MT such as PST, CTX, DA, OA, PlTXs which were already 

reported in the other African countries of the Indian Ocean [1,2].  

In Mozambique, the most relevant MTs that must be monitored in shellfish were 

discussed in the table V.1. including the permitted limits of toxins in shellfish. The 
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detection methods are already discussed in this thesis and include LC -MS/MS which are 

recommended [3-7]. Other methods such as cytotoxicity, enzyme techniques, thin layer 

chromatography, among other [1,8]) may be used alternatively. 

Table V.1. Proposal of permitted limit of MT in seafood from Mozambique. 

Toxin Permitted limit 

OA 160 µg OA eq. kg-1  

YTX 3,75 mg YTX eq. kg-1 shellfish  

AZA 160 µg AZA eq. kg-1 shellfish  

STX 800 µg STX eq. kg-1 fish  

DA 20 mg DA kg-1 shellfish  

CTX 0.01 µg (CTX-1) kg-1  

SPX 400 µg SPX kg-1 shellfish  

BTX 800 µg BTX-2 kg-1 shellfish  

PTX 160 µg OA eq. kg-1 shellfish  

TTX 44 µg TTX eq. kg-1 shellfish  

PlTX 250 µg PlTX kg-1 shellfish  

The Mozambican authorities that may be delegated for MT monitoring were also 

described including sampling strategies 
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