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Abstract: The use of SCC in Europe began in the 1990s and was mainly promoted by the precast
industry. Precast companies generally prefer high early-strength concrete mixtures to accelerate
their production rate, reducing the demoulding time. From a materials science point of view,
self-compacting and high early-strength concrete mixes may be challenging because they present
contradicting mixture design requirements. For example, a low water/binder ratio (w/b) is key to
achieving high early strength. However, it may impact the self-compacting ability, which is very
sensitive to Vw/Vp. As such, the mixture design can be complex. The design of the experimental
approach is a powerful tool for designing, predicting, and optimising advanced cement-based
materials when several constituent materials are employed and multi-performance requirements
are targeted. The current work aimed at fitting models to mathematically describe the flow ability,
viscosity, and mechanical strength properties of high-performance self-compacting cement-based
mortars based on a central composite design. The statistical fitted models revealed that Vs/Vm
exhibited the strongest (negative) effect on the slump-flow diameter and T-funnel time. Vw/Vp
showed the most significant effect on mechanical strength. Models were then used for mortar
optimisation. The proposed optimal mixture represents the best compromise between self-compacting
ability—a flow diameter of 250 mm and funnel time equal to 10 s—and compressive strength higher
than 50 MPa at 24 h without any special curing treatment.

Keywords: self-compacting concrete; high early strength; mixture design; design of experiments;
response model

1. Introduction

The building and construction industries have a heavy environmental impact. They
account for 40% of natural resources, consume 70% of electrical power and 12% of potable
water, and produce 45–65% of landfilled waste and 48% of GHG emissions [1]. In Europe,
construction is the most significant economic sector, employing 18 million people directly
and creating close to 10% of the European Union Gross Domestic Product. Thus, construc-
tion is an essential pillar in the context of the 2030 Agenda since it impacts the economic,
environmental, and social spheres.

Concrete is a massively used construction material and the second most-consumed
material worldwide, just after water [2]. This is mainly because the basic constituents,
cement, aggregates, and water, are widely available worldwide; thus, concrete can be
produced locally and consequently, it is inexpensive. Moreover, it hardens quickly and in
all habitable environments, including underwater.

Over recent decades, efforts have been made to improve the behaviour of concrete
materials. It took more than 150 years from the patenting of Portland cement (in 1824)
until the discovery and development of self-compactable concrete (SCC) in the 1980s
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in Japan [3,4]. The development of superplasticisers allowed the efficient dispersal of
cementitious particles and the emergence of SCC. According to the European standard EN
206-1 (specification, performance, production, and conformity of concrete), the constituent
raw materials of SCC are similar to ordinary vibrated concrete (OVC). The main differences
between OVC and SCC are due to the constituents’ proportions. Figure 1 presents the
indicative volumetric proportions of SCC and OVC [5]. As can be seen, the main difference
between SCC and OVC is a higher dosage of fine materials, i.e., cement and supplementary
cementitious materials (SCM), and a smaller amount of coarse aggregate and smaller
particle size distribution [6].
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As such, the design of more advanced cement-based materials such as SCC can be
complex since several requirements must co-exist, such as (i) engineering properties, (ii) ar-
chitecture, (iii) cost, and (iv) eco-efficiency, among others. Even though the selection of
the material should try to improve robustness, making the mixture more tolerant to raw
material variability, for economic reasons, depends significantly on local availability; hence,
there is no fixed rule for the amount/type of aggregates, cement, additions, and admix-
tures [6]. Therefore, a decisive factor for designing advanced cementitious materials, such
as self-compacting concrete (SCC), is a clear understanding of each constituent raw mate-
rial’s effect and interactions on the final product properties [7]. Additionally, the design and
optimisation of such mixtures require intensive laboratory testing, particularly if new and
unconventional supplementary cementitious materials or aggregates are incorporated [8],
such as agricultural or industrial by-products [9]. Thus, a more scientific and multi-scale
approach to mix-design is needed in which key mixture design variables can explain the
composite properties [10].

The Design of Experiments (DoE) is a systematic approach to understanding how
process and product parameters affect response variables, such as processability, physical
properties, or product performance. DoE uses statistical methodology to analyse data
and predict product property performance under all possible conditions within limits
selected for the experimental design [10]. From a literature survey, the DoE approach [11]
has shown promise for aiding the understanding of the effect of mixture parameters on
key fresh and hardened SCC properties. It can also facilitate the test protocol required
to optimise SCC [12] or quantify SCC mixtures’ robustness [6] to develop a more eco-
friendly SCC that incorporates different types of SCM and meets multiple performance
requirements [3,13–21].

Research Significance and Objectives

Previous research shows that statistical models and numerical optimisation techniques
allow for finding the best combination of self-compacting high-strength concrete (SCHPC)
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constituents which (i) reduce the risk of cracking during the first days, ensuring a more
impermeable concrete in the final structure [3]; (ii) study the influence of mixture parame-
ters and their coupled effects on deformability, viscosity, compressive strength, resistivity
and resistance to carbonation [15]; (iii) optimise chloride permeability and the strength of
concrete containing metakaolin [22]; (iv) optimise the durability and service life of self-
consolidating concrete containing metakaolin [19]; (v) optimise the mixture proportions
and analyse the fresh and hardened properties [20]; and (vi) minimise the cost of the most
unsustainable concrete components [21], including cost and sustainability indicators, in a
reduced time [3,14,21,23]. These models and counterplot charts are beneficial for predict-
ing and selecting the optimum mixture proportions for a given application simply and
accurately.

From a materials science point of view, self-compacting and high early-strength con-
crete mixes may be challenging because they contradict mixture design requirements and
fresh-state properties. For example, a low water/binder ratio (w/b) is key to achieving
high early strength [24]. However, it may also impact self-compacting ability, which is very
sensitive to Vw/Vp.

Maia [25] carried out a full central composite design on self-compacting high early-
strength cement-based mortars (SCHSCM) based on key mixture design parameters and
described the target engineering properties, namely, self-compacting ability and high early-
age strength. The key five SCHSM mixture parameters chosen were [25]: (i) Vw/Vc—water
to cement volume ratio; (ii) Sp/p—superplasticiser to powder mass ratio; (iii) Vw/Vp—
water to powder volume ratio; (iv) Vs/Vm—sand to mortar volume ratio; and (v) Vfs/Vs—
fine sand to total sand volume ratio to produce a total of 50 SCHSM mixtures. The current
work aims at statistical analysis, model fitting, validation, and optimisation of the data
experiments carried out by Maia [25]. As such, combining the statistical design methods
and regression analysis allowed for creating a model to mathematically describe the flow
ability, viscosity, and flexural and compressive strength of SCHSCM. The models obtained
were validated and used to optimise self-compacting mixtures with additional high early-
age strength. The goal was to develop SCHSM with a minimum slump flow of 250 mm,
flow time of 10 s, and compressive strength of at least 50 MPa at 24 h without any special
curing treatment.

The current work starts with a brief explanation of the data obtained by Maia [25] in
Section 2. The model’s fitting and adequacy are detailed in Section 3, and Section 4 presents
the optimisation of SCHSCM, considering the performance requirements established by
the authors. Finally, Section 5 presents the main conclusions.

2. Central Composite Design

In general, the DoE involves the following key steps: (i) a choice of factors (mixture
parameters), levels, and ranges; (ii) a selection of response variable(s); (iii) a choice of
experimental design; (iv) performing the experiments; (v) a statistical analysis of the data
(fitting a model); and (vi) other computations with response models. The current work
focused on steps (iv) and (v). A brief explanation of the design adopted is presented in
Section 2.1, and the output properties are discussed in Section 2.2.

2.1. Experiment Definition and Planning

The present work sought to analyse 50 mortar mixes published by Maia [25] using
DoE, the statistical methodology to analyse data and predict properties. It was necessary
to integrate simple and conventional statistical methods into the experimental design
methodology to draw statistically sound conclusions from the experiment. Subsequently,
the commercial software Design-Expert was employed in the current study to develop a
polynomial regression model.

Maia’s data set [25] corresponds to a full central 25 composite design augmented by
10 axial runs plus 8 central runs. It allows for the development of a polynomial regression
model for each response variable as a function of the five design variables considered in that
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study (key factors): (i) Vw/Vc—water to cement volume ratio; (ii) Sp/p—superplasticiser
to powder mass ratio; (iii) Vw/Vp—water to powder volume ratio; (iv) Vs/Vm—sand to
mortar volume ratio; and (v) Vfs/Vs—fine sand to total sand volume ratio. In addition to
the 50 mixes previously described, 14 extra mixes were produced to allow for comparing
and validating the results of the response models. The effect of each key factor was
evaluated at five levels −α, −1, 0, +1, and +α, as shown in Table 1. To make the design
rotatable, the value of α was equal to nF

1/4, where nF is the number of points in the factorial
part of the design. In the current study, this corresponds to α equal to 2.378.

Table 1. Correspondence between the coded values and actual values of the design variables.

Design Variables −2.378 −1 0 +1 +2.378

X1: Vw/Vc 0.682 0.805 0.895 0.894 1.108
X2: Sp/p 0.019 0.022 0.024 0.025 0.029

X3: Vw/Vp 0.434 0.513 0.570 0.627 0.706
X4: Vs/Vm 0.366 0.432 0.480 0.528 0.594
X5: Vfs/Vs 0.043 0.250 0.400 0.550 0.757

The self-compacting mortars were produced with the following commercial materials
available (in Portugal): (i) cement CEM I 42.5 R with a specific gravity of 3100 g/m3,
(ii) limestone filler with a specific gravity of 2680 kg/m3, (iii) siliceous natural sands with a
maximum particle size of 4 mm, specific gravity of 2620 kg/m3, and water absorption of
0.40%, (iv) fine siliceous sand with a maximum particle size of 2 mm, specific gravity of
2630 kg/m3, and water absorption of 0.20%, and (v) a polycarboxylate based superplasti-
ciser with a specific gravity of 1080 kg/m3 and solid content of 40% [25].

Four dependent variables (i.e., response variables) were considered: (i) slump-flow
diameter (D-flow); (ii) the time in the V-funnel (T-funnel); (iii) flexural strength at 24 h,
determined by the three-point loading method (F,24 h); and (iv) uniaxial compressive
strength at 24 h (Rc,24 h). Table 2 summarises the response variables and is followed by a
brief explanation of the measurement procedures to access the dependent variables.

Table 2. Response variable summary.

Response Variables Units Measurement Method

Y1: D-flow mm EFNARC
Y2: T-funnel s EFNARC

Y3: F,24 h MPa EN 196-1
Y4: Rc,24 h MPa EN-196-1

Immediately after production, the (mini) slump flow was assessed following the
procedures of EFNARC [26]. The procedure consists, in brief, in filling the mini cone with
the fresh composite and then taking the cone off and observing the flow capacity on a
plane surface. When the fresh composite stops moving, two perpendicular diameters are
measured, and the average value is considered the flow diameter (D-flow) in mm.

Additionally, the V-funnel test was performed to assess the viscosity and passing
ability using the mini funnel according to EFNARC [26]. In brief, the fresh composite was
poured into the funnel after production. Then, the trap door was opened, allowing the
fresh composite to flow out under gravity, and the time for the discharge to complete (the
flow time), i.e., when light is seen from above through the funnel, was recorded. These
results showed a typical trend of an increase in slump-flow diameter with a reduction in
flow time. After fresh tests, three specimens 40 × 40 × 160 {mm3} were moulded. The
specimens were demoulded at 24 h, and the mechanical strength was assessed following
EN 196-1 [27].
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2.2. Results

The experimental results obtained by Maia concerning the D-flow, T-funnel, F,24 h,
and Rc,24 h response variables used for model fitting (Section 3.2) are presented in Table 3,
as well as 14 validation points (Vi). The D-flow results presented in Table 3 correspond to
the average of the two results obtained by Maia [25]. The F,24 h corresponds to an average
of three results for each CCD mortar point, and the Rc,24 h is the average of six results,
based on Maia [25].
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Table 3. The mixture proportion (coded values) and experimental results obtained by Maia [25] and
used for model fitting and validation points.

CCD Point

Coded Values Results

Vw/Vc Sp/p Vw/Vp Vs/Vm Vfs/Vs D-Flow T-Funnel F,24 h Rc,24 h
(mm) (s) (MPa) (MPa)

C1 0.00 0.00 0.00 0.00 0.00 346.50 14.98 11.77 59.89
C2 0.00 0.00 0.00 0.00 0.00 346.00 13.77 12.29 62.10
C3 0.00 0.00 0.00 0.00 0.00 339.50 14.15 11.28 59.31
C4 0.00 0.00 0.00 0.00 0.00 348.00 14.74 12.08 60.90
C5 0.00 0.00 0.00 0.00 0.00 339.50 14.53 11.96 60.00
C6 0.00 0.00 0.00 0.00 0.00 341.00 14.38 11.89 62.17
C7 0.00 0.00 0.00 0.00 0.00 345.00 13.56 11.05 60.18
C8 0.00 0.00 0.00 0.00 0.00 344.50 14.23 11.03 59.63

F1 −1.00 −1.00 −1.00 −1.00 −1.00 330.00 18.89 11.60 72.54
F2 1.00 −1.00 −1.00 −1.00 −1.00 349.00 12.26 11.05 57.80
F3 −1.00 1.00 −1.00 −1.00 −1.00 338.50 16.70 12.64 70.09
F4 1.00 1.00 −1.00 −1.00 −1.00 354.50 11.32 10.50 56.06
F5 −1.00 −1.00 1.00 −1.00 −1.00 375.00 9.24 11.26 67.05
F6 1.00 −1.00 1.00 −1.00 −1.00 369.50 7.08 9.43 55.72
F7 −1.00 1.00 1.00 −1.00 −1.00 376.00 7.80 10.60 68.47
F8 1.00 1.00 1.00 −1.00 −1.00 375.00 6.91 10.18 53.40
F9 −1.00 −1.00 −1.00 1.00 −1.00 253.00 114.06 11.68 73.13

F10 1.00 −1.00 −1.00 1.00 −1.00 289.50 38.91 11.64 58.49
F11 −1.00 1.00 −1.00 1.00 −1.00 260.50 74.32 10.48 71.81
F12 1.00 1.00 −1.00 1.00 −1.00 289.50 33.03 10.91 59.30
F13 −1.00 −1.00 1.00 1.00 −1.00 295.00 25.40 11.83 67.80
F14 1.00 −1.00 1.00 1.00 −1.00 313.50 17.53 11.41 55.93
F15 −1.00 1.00 1.00 1.00 −1.00 303.50 26.33 11.41 68.43
F16 1.00 1.00 1.00 1.00 −1.00 320.00 14.15 10.93 56.48
F17 −1.00 −1.00 −1.00 −1.00 1.00 300.00 28.43 11.06 66.54
F18 1.00 −1.00 −1.00 −1.00 1.00 351.50 12.89 10.69 55.93
F19 −1.00 1.00 −1.00 −1.00 1.00 334.50 17.67 11.57 69.59
F20 1.00 1.00 −1.00 −1.00 1.00 349.50 11.73 10.73 55.10
F21 −1.00 −1.00 1.00 −1.00 1.00 378.00 9.90 11.20 65.92
F22 1.00 −1.00 1.00 −1.00 1.00 379.50 7.16 9.93 54.52
F23 −1.00 1.00 1.00 −1.00 1.00 385.50 8.54 10.71 64.39
F24 1.00 1.00 1.00 −1.00 1.00 382.00 6.94 10.26 53.64
F25 −1.00 −1.00 −1.00 1.00 1.00 233.00 * 12.10 67.34
F26 1.00 −1.00 −1.00 1.00 1.00 275.00 52.64 11.42 55.30
F27 −1.00 1.00 −1.00 1.00 1.00 265.50 67.34 12.79 68.54
F28 1.00 1.00 −1.00 1.00 1.00 285.00 33.30 10.48 56.02
F29 −1.00 −1.00 1.00 1.00 1.00 289.50 26.20 11.98 65.12
F30 1.00 −1.00 1.00 1.00 1.00 315.00 16.51 10.98 53.39
F31 −1.00 1.00 1.00 1.00 1.00 309.00 18.57 11.88 60.96
F32 1.00 1.00 1.00 1.00 1.00 314.00 17.07 10.66 53.41

CC1 −2.38 0.00 0.00 0.00 0.00 168.00 * 11.91 78.42
CC2 2.38 0.00 0.00 0.00 0.00 342.00 11.55 10.25 48.92
CC3 0.00 −2.38 0.00 0.00 0.00 330.50 17.64 11.45 62.44
CC4 0.00 2.38 0.00 0.00 0.00 337.00 12.71 11.22 58.89
CC5 0.00 0.00 −2.38 0.00 0.00 295.00 79.63 12.11 64.13
CC6 0.00 0.00 2.38 0.00 0.00 368.50 7.27 10.18 63.04
CC7 0.00 0.00 0.00 −2.38 0.00 398.00 7.49 9.43 59.77
CC8 0.00 0.00 0.00 2.38 0.00 169.50 * 10.32 62.62
CC9 0.00 0.00 0.00 0.00 −2.38 338.00 16.55 Na 62.21
CC10 0.00 0.00 0.00 0.00 2.38 330.50 16.14 Na 57.75

V1 0.63 3.05 0.21 0.52 −2 16.17 320.50 11.70 58.45
V2 0.63 1.5 0.21 0.52 −2 16.58 327.00 11.09 60.53
V3 0.63 1.5 0.21 0.52 −2.67 18.33 310.50 11.17 61.54
V4 −0.13 0.21 −0.66 −0.62 0.00 12.96 353.00 12.02 61.33
V5 1.08 −0.42 −1.13 −0.62 0.00 14.09 337.50 11.47 56.70
V6 −1.34 0.52 −0.14 −0.62 0.00 14.15 347.00 10.35 70.59
V7 −0.82 0.58 −0.39 −0.62 0.00 13.64 338.50 9.68 65.96
V8 0.57 −0.15 −0.92 −0.62 0.00 13.02 335.00 11.16 59.11
V9 −0.13 −0.42 −0.66 −0.62 0.00 14.76 350.00 13.29 63.51
V10 −0.13 −0.42 −0.66 −0.62 0.00 15.01 344.50 11.14 65.16
V11 1.08 −0.42 −1.13 −0.62 0.00 14.32 346.50 11.76 57.25
V12 −1.34 0.52 −0.14 −0.62 0.00 15.65 344.50 13.97 72.63
V13 −0.82 0.58 −0.39 −0.62 0.00 15.26 345.50 13.12 68.96
V14 0.57 −0.15 −0.92 −0.62 0.00 15.08 347.50 Na 59.54

* impossible to measure; Na—non-available result.

3. Response Models
3.1. Test Results Analysis

Table 4 presents the statistical summaries of all the experimental results obtained
(Table 3) and the eight central point’s results only. The perception of the coefficient of
variation on the central points (Ci) and all CCD points (all Ci, Fi, and CCi) predicts a good
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fit for the D-flow, T-funnel, and Rc,24 h. On the other hand, good fits are not expected for
F,24 h given that the coefficient of variation evaluated on the central points (4.16%) is close
to the coefficient of variation assessed on the 50 points of the CCD (6.93%).

Table 4. The main statistics for all CCD points and central points.

D-Flow (mm) T-Funnel (s) F,24 h (MPa) Rc,24 h (MPa)

All 50 mixtures

Minimum 168.00 6.91 9.43 48.92
Maximum 398.00 114.06 12.79 78.42

Mean 323.31 22.39 11.17 61.61
Standard deviation 48.97 21.63 0.77 6.24

Coefficient of variation (%) 15.15 96.62 6.93 10.14

Central points (Ci)

Minimum 339.50 13.56 11.03 59.31
Maximum 348.00 14.98 12.29 62.17

Mean 343.75 14.29 11.67 60.52
Standard deviation 3.31 0.47 0.48 1.10

Coefficient of variation (%) 0.96 3.31 4.16 1.81

3.2. Model Fitting

Design-Expert software was used to assist in analysing the results for each response
variable by examining summary plots of the data; fitting a model using regression analysis
and ANOVA; validating the model by examining the residuals for trends and outliers,
leverage points, autocorrelation, and violation of statistical assumptions, in general; and
interpreting the model graphically. A significance level of 5% was used throughout. A
detailed description of this procedure is presented in Section 3.2 to Section 3.5. The central
composite design adopted allows for estimating a full quadratic model, as shown in
Equation (1) [28,29].

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i + ∑

i<j
∑ βijXiXj + ε (1)

where Y represents the response variable; Xi corresponds to the design variables considered;
β is used for model parameters (β0 is the independent term, βi represents the linear effect of
Xi, βii represents the quadratic effect of Xi, and βij represents the linear-by-linear interaction
between Xi and Xj); and ε is the fitting error. The model parameters (β0, βi, and βij) can be
estimated through multilinear regression analysis. In the course of the analysis, some of the
terms in Equation (1) may not be significant. The results of the fitting procedure for the four
response variables are summarised in Tables 5–12. The model generated with all observed
values for D-flow and T-funnel resulted in a significant lack of fit. This fact led to the
withdrawal of the axial runs for the D-flow results and also the inclusion of one term (Sp/p)
× (Vfs/Vs) in the model because the term was considered the most significant among those
excluded, due to its low p-value (0.0574). In the case of the T-funnel model, in addition
to applying the inverse transformation as a recommended Box–Cox transformation to the
response, one observation was removed (F15 = 26.33, see Table 3). The F,24 h and Rc,24 h
fitting considered all runs and resulted in a non-significant lack of fit.

3.3. D-Flow Model

For the D-flow model, the authors decided not to include the axial points (CC1, CC2,
CC3, CC4, CC5, CC6, CC7, CC8, CC9, and CC10) because the D-flow values contained a
wide range of spread flow diameters, as presented in Section 2.2, from 168 to 398 mm. The
attempt to fit a quadratic model led to a significant lack of fit when axial runs were included,
due essentially to non-linearities that a quadratic model is not able to explain. Moreover,
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axial points are associated with high Cook’s distances and leverage points. Further research
should be put into finding a non-linear model for D-flow response.

Table 5 presents the ANOVA for D-flow data considering the aforementioned con-
ditions. The reduced quadratic model is significant. Examining the magnitude of the
effects, it can be perceived that Vs/Vm (factor X4) and Vw/Vp (factor X3) are dominant
compared to Sp/p (factor X2), Vw/Vc (factor X1), and Vfs/Vs (factor X5). The analysis of
variance confirms the previous interpretation. In this case, Vw/Vc, Sp/p, Vw/Vp, and
Vs/Vm are significant terms of the model, i.e., the main effects Vw/Vc, Sp/p, Vw/Vp,
and Vs/Vm, and the second order effects, (Vw/Vc) × (Vw/Vp), (Vw/Vp) × (Vfs/Vs),
and (Vw/Vc)2, are those that most significantly influence the response Y1: D-flow. The
predicted R2 of 0.9683 is in reasonable agreement with the adjusted R2 of 0.9802 (i.e., the
difference is less than 0.2). The coefficients of the estimated regression model for D-flow (in
coded values) are presented in the second column of Table 6. Since the second-order effect
(Vw/Vp) × (Vfs/Vs) is considered a significant factor, Vfs/Vs was added to the model.
Furthermore, (Sp/p) × (Vfs/Vs) was forced to enter the model to avoid a significant lack
of fit. Table 6 presents the model’s coefficients’ standard error and confidence intervals.

Table 5. ANOVA for the D-flow response.

Test for Source Sum of Squares Degrees of Freedom Mean of Square F-Value p-Value

Significance of
Regression

Model 59,008.65 11 5364.42 176.44 <0.0001
Residual 851.29 28 30.4

Total 59,859.94 39

Lack of Fit
Lack of Fit 774.79 21 36.89 3.38 0.0523
Pure Error 76.5 7 10.93

Partial significance of
each predictor

variable

Vw/Vc 2547.2 1 2547.2 83.78 <0.0001
Sp/p 670.7 1 670.7 22.06 <0.0001

Vw/Vp 12,070.7 1 12,070.7 397.02 <0.0001
Vs/Vm 39,025.2 1 39,025.2 1283.59 <0.0001
Vfs/Vs 64.7 1 64.7 2.13 0.1558

(Vw/Vc) × (Sp/p) 267.38 1 267.38 8.79 0.0061
(Vw/Vc) × (Vw/Vp) 919.13 1 919.13 30.23 <0.0001
(Vw/Vc) × (Vs/Vm) 309.38 1 309.38 10.18 0.0035

(Sp/p) × (Vfs/Vs) 114.38 1 114.38 3.76 0.0626
(Vw/Vp) × (Vfs/Vs) 285.01 1 285.01 9.37 0.0048

(Vw/Vc)2 2734.89 1 2734.89 89.95 <0.0001

The three most significant parameters are typed in bold, and the most significant term is also underlined.

Table 6. D-flow model coefficients in terms of coded values.

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High

Intercept 343.75 1.95 339.76 347.74
Vw/Vc 8.92 0.9747 6.93 10.92
Sp/p 4.58 0.9747 2.58 6.57

Vw/Vp 19.42 0.9747 17.43 21.42
Vs/Vm −34.92 0.9747 −36.92 −32.93
Vfs/Vs −1.42 0.9747 −3.42 0.5748

Vw/Vc × Sp/p −2.89 0.9747 −4.89 −0.894
Vw/Vc × Vw/Vp −5.36 0.9747 −7.36 −3.36
Vw/Vc × Vs/Vm 3.11 0.9747 1.11 5.11

Sp/p × Vfs/Vs 1.89 0.9747 −0.106 3.89
Vw/Vp × Vfs/Vs 2.98 0.9747 0.9877 4.98

(Vw/Vc)2 −20.67 2.18 −25.14 −16.21

The three most significant parameters are typed in bold, and the most significant term is also underlined.

Figure 2a presents the normal probability plot of the model’s residuals. It is reasonable
to consider that there are no relevant normality issues in the data. The plot of externally
studentised residuals is presented in Figure 2b. One can notice an observation falls outside
the −2 to +2 band, corresponding to the spreading diameter measurement of F5 with a
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value of 375 mm. It was decided to keep this observation since it did not constitute a
leverage point, and the Cook’s distance was well below 50%.
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3.4. T-Funnel Model

Regarding the T-funnel data, attempts to fit a quadratic model to all points lead to
a severe lack of fit, potentially due to strong non-linearities. F15 exhibits an abnormal
residual which compromises the fit; the following modelling steps exclude this point (see
Figure 3).
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The inverse transformation was applied to the T-funnel response, as found in previous
works [3,14]. Examining the magnitude of the effects, it can be perceived that Vs/Vm
(factor X4) and Vw/Vp (factor X3) are dominant compared to Sp/p (factor X2), Vw/Vc
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(factor X1), and Vfs/Vs (factor X5), as obtained in the D-flow response (see Table 7). All five
factors are significant, as well as three of the interactions and the other three s-order terms.
The predicted R2 of 0.9827 is in reasonable agreement with the adjusted R2 of 0.9897, i.e.,
the difference is negligible.

Table 7. ANOVA results for the T-funnel response.

Test for Source Sum of Squares Degrees of Freedom Mean of Square F-Value p-Value

Significance of
Regression

Model 0.0640 11 0.0058 394.23 <0.0001
Residual 0.0005 34 0

Total 0.0645 45

Lack of Fit
Lack of Fit 0.0005 27 0 3.14 0.0607
Pure Error 0 7 5.457 × 10−6

Partial significance of
each predictor

variable

Vw/Vc 0.0041 1 0.0039 305.22 <0.0001
Sp/p 0.0010 1 0.0011 82.2 <0.0001

Vw/Vp 0.0251 1 0.0243 1895.62 <0.0001
Vs/Vm 0.0317 1 0.0271 2113.06 <0.0001
Vfs/Vs 0.0001 1 0.0001 6.9 0.0131

(Vw/Vc) × (Sp/p) 0.0001 1 0.0001 11.61 0.0018
(Vw/Vc) × (Vs/Vm) 0.0004 1 0.0003 23.66 <0.0001
(Vw/Vp) × (Vs/Vm) 0.0011 1 0.0009 73.86 <0.0001

(Vw/Vc)2 0.0001 1 0.0001 6.79 0.0138
(Vw/Vp)2 0.0001 1 0.0001 4.84 0.0351
(Vfs/Vs)2 0.0001 1 0.0001 8.39 0.0067

The three most significant parameters are typed bold and the most significant term is also underlined.

The estimated coefficients of the regression model for the T-funnel (in coded values)
are presented in the second column of Table 8. Additionally, Table 8 presents standard
errors and confidence intervals. To check the regression assumptions on the residuals,
a normal probability plot was examined in Figure 4a and other plots such as the one in
Figure 4b. No outliers were detected, although F15 has been considered a leverage point. In
the author’s view, this point does not considerably compromise the fitted model’s quality.
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Table 8. T-funnel model coefficients (coded values).

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High

Intercept 0.0688 0.0011 0.0667 0.071
Vw/Vc 0.0115 0.0007 0.0101 0.0129
Sp/p 0.005 0.0006 0.0038 0.0062

Vw/Vp 0.0248 0.0006 0.0236 0.026
Vs/Vm −0.0302 0.0007 −0.0315 −0.0289
Vfs/Vs −0.0016 0.0006 −0.0028 −0.0004

(Vw/Vc) × (Sp/p) −0.002 0.0007 −0.0035 −0.0006
(Vw/Vc) × (Vs/Vm) −0.0037 0.0007 −0.0051 −0.0022
(Vw/Vp) × (Vs/Vm) −0.0061 0.0007 −0.0076 −0.0047

(Vw/Vc)2 −0.0017 0.0007 −0.0031 −0.0003
(Vw/Vp)2 0.0011 0.0005 0.0001 0.0021
(Vfs/Vs)2 −0.0014 0.0005 −0.0024 −0.0003

The three most significant parameters are typed bold and the most significant term is also underlined.

3.5. Flexural Strength: F,24 h Model

No leverage points were found for the F,24 h model and the Cook’s distance was below
60%. Table 9 presents the ANOVA results for the F,24 h model. Examining the magnitude
of the effects, it can be perceived that Vw/Vc (factor X1), Vw/Vp (factor X3), and Vs/Vm
(factor X4) are dominant compared to Sp/p (factor X2) and Vfs/Vs (factor X5). The analysis
of variance confirms the previous interpretation. The quadratic model is significant. In
this case, Vw/Vc, Vw/Vp, and Vs/Vm are significant terms of the model, i.e., the main
effects Vw/Vc, Vw/Vp, and Vs/Vm, and the second order effects (Vw/Vp) × (Vs/Vm)
and (Vs/Vm)2 are those that most significantly influence the F,24 h response. The predicted
R2 of 0.5671 is in reasonable agreement with the adjusted R2 of 0.6216 (i.e., the difference is
less than 10%). Although R2 did not reach a value close to 1, the model was considered
useful for navigating the design space.

Table 9. ANOVA results for the F,24 h response.

Test for Source Sum of Squares Degrees of Freedom Mean of Square F-Value p-Value

Significance of
Regression

Model 18.65 5 3.73 16.44 <0.0008
Residual 9.53 42 0.2269

Total 28.18 47

Lack of Fit
Lack of Fit 7.88 35 0.2252 0.9574 0.5812
Pure Error 1.65 7 0.2352

Partial
significance of
each predictor

variable

Vw/Vc 7.11 1 7.11 31.36 <0.0001
Vw/Vp 2.95 1 2.95 13.01 0.0008
Vs/Vm 2.95 1 2.95 12.98 0.0008

(Vw/Vp) × (Vs/Vm) 1.07 1 1.07 4.70 0.0358
(Vs/Vm)2 4.57 1 4.57 20.16 <0.0001

The three most significant parameters are typed in bold, and the most significant term is also underlined.

The estimated values of the regression model coefficients in the coded values are
presented in the second column of Table 10. Additionally, Table 10 presents standard errors
and confidence intervals. Figure 5a presents the normal probability plot of the residuals of
the observed values of flexural strength. The externally studentised residuals are presented
in Figure 5b and show no strong evidence of violating the white noise assumptions of
the remaining error in the regression model. It is reasonable to consider that there are no
normality issues in the data.
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Table 10. F,24 h model coefficients in terms of coded values.

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High

Intercept 11.43 0.0893 11.25 11.61
Vw/Vc −0.4053 0.0724 −0.5513 −0.2592
Vw/Vp −0.261 0.0724 −0.4071 −0.115
Vs/Vm 0.2608 0.0724 0.1147 0.4068

(Vw/Vp) × (Vs/Vm) 0.1826 0.0842 0.0127 0.3525
(Vs/Vm)2 −0.2834 0.0631 −0.4108 −0.156

3.6. Compressive Strength: Rc,24 h Model

Table 11 presents the ANOVA results for Rc,24 h. Examining the magnitude of the
effects, it can be perceived that Vw/Vc (factor X1), Vw/Vp (factor X3), and Vfs/Vs (factor
X5) are dominant compared to Sp/p (factor X2). The reduced quadratic model is significant
(p < 0.0001) and there is no lack of fit. The analysis of variance confirms the previous
interpretation: Vw/Vc, Vw/Vp, and Vfs/Vs are significant terms of the model, i.e., the
main effects Vw/Vc, Vw/Vp, and Vfs/Vs, the second order effects (Vs/Vm) × (Vfs/Vs),
(Vw/Vc)2, and (Vw/Vp)2, are those that most significantly influence the response Rc,24 h.
In addition, the predicted R2 of 0.9326 is reasonably close to the adjusted R2.
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Table 11. ANOVA results for the Rc,24 h response.

Test for Source Sum of Squares Degrees of Freedom Mean of Square F-Value p-Value

Significance of
Regression

Model 1850.32 10 185.03 119.74 <0.0001
Residual 60.26 39 1.35
Cor Total 1910.58 49

Lack of Fit
Lack of Fit 51.87 32 1.62 1.35 0.3599
Pure Error 8.40 7 1.20

Partial
significance of
each predictor

variable

Vw/Vc 1650.75 1 1650.75 879.84 <0.0001
Sp/p 5.37 1 5.37 3.48 0.698

Vw/Vp 61.35 1 61.35 39.70 <0.0001
Vs/Vm 3.05 1 3.05 1.98 0.1677
Vfs/Vs 76.06 1 76.06 49.22 <0.0001

(Vw/Vc) × (Vw/Vp) 6.08 1 6.08 3.93 0.0545
(Vw/Vc) × (Vfs/Vs) 7.09 1 7.09 4.59 0.0385
(Vs/Vm) × (Vfs/Vs) 7.79 1 7.79 5.04 0.0305

(Vw/Vc)2 18.43 1 18.43 11.93 0.0013
(Vw/Vp)2 17.44 1 17.44 11.29 0.0018

The three most significant parameters are typed in bold, and the most significant term is also underlined.

The estimated values of the coefficients of the regression model that will be used
to predict Rc,24 h in the coded values are presented in the second column of Table 12.
Additionally, Table 12 shows the standard errors and confidence intervals. Figure 6a
illustrates the normal probability plot of the residuals of the observed compressive strength
values. It is reasonable to consider that there are no normality issues in the data. An
example plot of the residuals against the predicted values is presented in Figure 6b. There
is no evidence of assumption violation regarding the regression model fit.
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The subsequent diagnostics include the identification of possible outliers in the regres-
sion or observations that could be leverage points. Points with a Cook’s distance higher
than 1.0 or high leverage were not found (see Figure 7).
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Table 12. Rc,24 h model coefficients in terms of coded values.

Factor Coefficient Estimate Standard Error 95% CI Low 95% CI High

Intercept 60.65 0.2733 60.09 61.2
Vw/Vc −6.17 0.1889 −6.56 −5.79
Sp/p −0.3522 0.1889 −0.7342 0.0299

Vw/Vp −1.19 0.1889 −1.57 −0.8081
Vs/Vm 0.2655 0.1889 −0.1165 0.6476
Vfs/Vs −1.33 0.1889 −1.71 −0.9431

(Vw/Vc) × (Vw/Vp) 0.4357 0.2197 −0.0088 0.8802
(Vw/Vc) × (Vfs/Vs) 0.4706 0.2197 0.0261 0.9151
(Vs/Vm) × (Vfs/Vs) −0.4934 0.2197 −0.9379 −0.049

(Vw/Vc)2 0.5639 0.1633 0.2336 0.8941
(Vw/Vp)2 0.5486 0.1633 0.2183 0.8788
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3.7. Significant Individual and Interaction Effects

The final models (in terms of coded factors) are illustrated in Figure 8 regarding
the relative impact of each factor by comparing the corresponding coefficient with the
remaining (higher values of the estimated coefficient indicate the higher influence of the
design variable in the response). The sign (positive or negative) of the estimated coefficient
is marked on each bar’s label. We recall that a positive coefficient means that the response
(or transformed response) variable will increase if the given mixture parameter increases
and vice-versa.
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Table 13. Final equations in terms of actual factors: estimated coefficients.

Model Terms D-Flow (mm) 1/(T-Funnel) (s) F,24 h (MPa) Rc,24 h (MPa)

Independent −2154.81 −1.3582 5.400 293.77
Vw/Vc 5375.51 1.2092 −4.529 −257.75
Sp/p 15,060.05 13.4743 - −186.47

Vw/Vp 1141.35 1.1255 −36.616 −289.80
Vs/Vm −1375.32 1.4119 85.487 32.94
Vfs/Vs −365.99 0.0374 - −7.31

(Vw/Vc) × (Vw/Vp) −1050.80 - - 85.43
(Vw/Vc) × (Sp/p) −17,105.24 −12.0954 - -

(Vw/Vc) × (Vs/Vm) 723.96 −0.8550 - -
(Vw/Vp) × (Vs/Vm) - −2.2390 66.741 -
(Vw/Vp) × (Vfs/Vs) 349.05 - - 35.06

(Sp/p) × (Vfs/Vs) 6673.75 - - -
(Vs/Vm) × (Vfs/Vs) - - - −68.53

(Vw/Vc)2 −2581.92 −0.2148 - 70.43
(Vw/Vp)2 - 0.3375 - 168.84
(Vs/Vm)2 - - −123.018 -
(Vfs/Vs)2 - −0.0602 - -

The response surfaces corresponding to the two main effects for each response of the
mixtures are illustrated in Figure 9. For the D-flow and the T-funnel variation, the most
significant factor is the volume of sand concerning the mortar (Vs/Vm) and the content of
water/fines factors (Vw/Vp). In addition, it was possible to confirm the great influence
of the water/cement factor (Vw/Vc) on the flexural (F,24 h) and compressive strength
(Rc,24 h) of the mortars. In the order of inversely proportional influence, there is the fine
sand concerning medium sand (Vfs/Vs) and the content of water/fines factors (Vw/Vp).
The other factors have a smaller influence on the responses, exhibiting smaller estimated
coded coefficients.
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The equations in terms of actual factors can be used to predict the response for the
given levels of each factor (Table 13 and Figure 10). Uncertainty in the fitted models
(confidence interval in Tables 6, 8, 10 and 12) is provided for a 95% confidence level.
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3.8. Models Validation

In order to validate the statistical models presented in Table 13, Maia [25] produced
more than 14 SCHSCM mixtures and performed the experiments described in Section 2.
The mixture proportion (in coded values) for these mixtures is presented in the last 14
lines of Table 3. The experimental results obtained and the estimated results given by the
regression models are illustrated in Figure 11, including the x = y diagonals. The ratio
between the predicted-to-measured values ranges from 0.84 to 1.20. The most accurate
predictions are given by the Rc,24 h and D-flow models, where predicted-to-measured
values range from 0.96 to 1.02 and 0.92 to 1.05, respectively. In addition, as expected, the
flexural strength obtained results that exhibited higher dispersions when compared to the
other results.
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4. Optimisation

The empirical models obtained for modelling and predicting the relevant SCHSM
properties were also used for mixture optimisation purposes. The optimisation module
in Design-Expert studied in this paper searches for a combination of factor levels that
simultaneously satisfy the goals established for each response and factor (see Table 14).
The procedure uses the desirability function (D), and the solutions with D ≥ 0.995 were
considered optimal. The optimisation was developed in two different scenarios, as follows
in Sections 4.1 and 4.2.
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Table 14. Optimisation criteria.

Self-Compacting Ability Self-Compacting Ability and High Early Strength

Constraints for optimisation

Mixture parameters:

Vw/Vc In CCD range In CCD range
Sp/p In CCD range In CCD range

Vw/Vp In CCD range In CCD range
Vs/Vm In CCD range In CCD range
Vfs/Vs In CCD range In CCD range

Response Variables:

D-flow (mm) Target 260 In range {259, 261}
T-funnel (s) Target 10 In range {9.8, 10.2}
F,24 h (MPa) None None

Rc,24 h (MPa) None >50

4.1. Self-Compacting Ability

The first optimisation scenario was to find mortar mixtures with self-compacting
ability. The self-compacting ability was translated by targeting optimisation restrictions
of a D-flow = 260 mm and a T-funnel = 10 s. This optimisation problem is defined in the
second column of Table 14 and is entitled “self-compacting ability”. The importance level
for all constraints, both mixture parameters and response variables, was kept the same. The
optimisation aimed only to obtain solutions within the CCD region. Thus, the constraint
conditions for mixture parameters were “In CCD range”.

In total, 68 mixture SCHSM solutions were found with D ≥ 0.995 in the region
1.069 ≤ Vw/Vc ≤ 1.108; 0.019 ≤ Sp/p ≤ 0.029; 0.446 ≤ Vs/Vm ≤ 0.525; 0.540 ≤ Vw/
Vp ≤ 0.706; and 0.088 ≤ Vsf/Vs ≤ 0.731.

4.2. SCC with High Early Strength

The second optimisation scenario was intended to discover self-compacting and high
early strength mixtures simultaneously (see the third column of Table 14, entitled “self-
compacting ability and high early strength”). For that, the optimisation conditions were:
D-flow in the range from 259 to 261 mm, T-funnel in the range from 9.8 to 10.2 s, and
compressive strength higher than 50 MPa at 24 h. The importance level for all constraints,
both mixture parameters and response variables were kept the same. The optimisation
aimed only to obtain solutions within the CCD region; thus, the constraint conditions for
mixture parameters were “In CCD range”.

The best combination of SCHSM mixture parameters was: Vc/Vp = 1.098; sp/p = 0.0243;
Vw/Vp = 0.607; Vs/Vm = 0.478; and Vfs/vs = 0.047. The corresponding estimated proper-
ties and their 95% confidence interval are presented in Table 15.

Table 15. Estimated SCHSM properties of the optimised mixture.

Response Predicted Results 95% CI Low 95% CI High

D-flow 259.15 237.78 280.51
T-funnel 9.87 9.1 10.79

F,24 h 10.31 9.93 10.7
Rc,24 h 50.00 46.86 53.14

5. Conclusions

The current study investigates the effect of SCHSCM mixture design variables. It
selects the best combination of powder materials (in a binary mixture of Portland cement
+ MTCK), water/binder ratio, superplasticiser dosage, and aggregates to reach optimum
values of self-compactability and high early-age strength. As such, the DoE approach
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was followed to obtain regression models that could describe and predict the relevant
engineering properties. In addition, regression models were used for optimisation purposes.
The following main conclusions were drawn:

- Regression models were found to be adequate to describe SCHSCM properties over
the experimental region, namely, slump-flow diameter, T-funnel time, and flexural
and compressive strength at 24 h;

- The Vs/Vm factor exhibited the strongest (negative) effect on the slump-flow diameter
and T-funnel time;

- The Vw/Vp factor was found to have the most significant effect on mechanical
strength, corresponding to response variables F,24 h and Rc,24 h;

- Vw/Vc was the second most influencing factor, with a positive effect on the slump-
flow diameter and T-funnel time and a negative effect on F,24 h and Rc,24 h;

- The variation of Sp/p used in the current CCD was small compared to the remaining
factors. As such, Sp/p exhibited the lowest influence on SCHSCM properties when
compared to other mixture parameters;

- The proposed optimal mixture represented the best compromise between self-compacting
ability—a flow diameter of 250 mm and funnel time equal to 10 s—and a compressive
strength higher than 50 MPa at 24 h without any special curing treatment and was
found for Vc/Vp = 1.098; sp/p = 0.0243; Vw/Vp = 0.607; Vs/Vm = 0.478; and
Vfs/vs = 0.047.

Even though transposing the mortar study into SCC is out of the scope of the manuscript,
SCC mixtures can be obtained by fixing the mortar mix proportions given in Section 4.2
and adding a coarse aggregate. However, tests on the concrete level are needed to optimise
the aggregate skeleton. Moreover, based on regression models, contour plots or interaction
diagrams can be computed and simplify the test protocol required to optimise a given
SCC mixture, namely, to select the combination of powder materials with admixtures. In
particular, they can help to compare the efficiency of different admixtures and alternative
SCM. Optimised mortar mixtures can serve as reference mixtures in a quality control plan
to detect variations in different deliveries of constituent materials, such as cement, filler, or
superplasticiser. The derived models can also be useful to predict mortar properties when
the material properties change, such as the cement source.

The procedure presented in this work can easily be implemented in any concrete
laboratory of a production centre since it involves mortar tests which are easy to carry out
with simple tests and equipment.
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Abbreviations

ANOVA Analysis Of Variance
CCD Central Composite Design
Ci Central points of CCD
CCi Axial points of CCD
d Days
D Desirability function
D-flow Flow Diameter (mm)
DoE Design of Experiments
F,24 h Flexure strength at 24 h (MPa)
Fi Factorial points of CCD
GDP Gross Domestic Product
GHG Greenhouse Gas
h Hours
LF Limestone Filler
p Powder Mass
PC Portland Cement
PSD Particle Size Distribution
Rc,24 h Compressive strength at 24 h (MPa)
SCC Self-Compacting Concrete
SCHSCM Self-Compacting High early Strength Cement-based Mortars
SCM Supplementary Cementitious Materials
SDG Sustainable Development Goals
Sp Superplasticizer
Sp/p Superplasticiser to powder mass ratio
RH Relative Humidity (%)
T-funnel Funnel Time
Vc Cement Volume
VC Vibrated Concrete
Vi Validation points
Vfs Fine Sand Volume
VIF Value of the Inflammation Factor
Vm Mortar Volume
Vp Powder Volume
Vs Sand Volume
Vw Water Volume
Vw/Vc Water to cement volume ratio
Vw/Vp Water to powder volume ratio
Vs/Vm Sand to mortar volume ratio
Vfs/Vs Fine sand to total sand volume ratio
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