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Abstract

Since the original IEEE 802.11 (Wi-Fi) standard was released, there have been several improve-
ments, corrections and then addition of new features over the years. With Wi-Fi evolution, it has
become possible to use Wi-Fi for different types of situations. On the one hand, we have situations
where the most favourable Quality-of-Service (QoS) metric is throughput, such as downloading
or uploading files. On the other hand, we have situations where the most favourable QoS metric is
delay, such as controlling drones, autonomous driving and controlling industrial systems.

In the past years, several Machine Learning (ML) approaches have been developed to optimise
the performance of Wi-Fi networks. In most of these approaches, the throughput is the most com-
mon performance metric used to evaluate the developed solutions, leaving open other unexplored
metrics, such as the delay.

This dissertation aimed to develop a Deep Reinforcement Learning (DRL) algorithm that can
optimise the packet delay of a Wi-Fi link by adapting an algorithm developed by INESC TEC. This
dissertation proposes the Smart Latency Aware Rate Adaptation (SLARA) algorithm to optimise
the packet delay by training the algorithm with a delay-oriented reward function developed during
this work. To achieve this reward function, a preliminary study was conducted to study the delay
behaviour in other algorithms and find reference delay values for each MCS to normalise delay in
the reward function. To validate this solution, several simulations of this and other algorithms were
performed to evaluate and validate the improvements introduced by SLARA, as well as to identify
aspects with room for improvement that could be addressed in future work. SLARA overall has
a similar behaviour compared to Data-driven Algorithm for Rate Adaptation (DARA) but has
some improvements such as lower max delay values and delay peaks due to more conservative
Modulation and Coding Scheme (MCS) changes. This improvement makes SLARA an RAA with
reliable delay values, which in the future can be useful for the scenarios mentioned above where
the delay is the most important QoS metric.
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Resumo

Desde que a norma original IEEE 802.11 (Wi-Fi) foi lançada, ao longo dos anos houve várias
melhorias, correções e também a adição de novas características. Com a evolução do Wi-Fi,
tornou-se possível a sua utilização para diferentes tipos de situações. Por um lado, temos situações
em que a métrica de Quality-of-Service (QoS) mais favorável é o throughput, como o download
ou upload de ficheiros. Por outro lado, temos situações em que a métrica de QoS mais favorável
é o atraso, tais como o controlo de drones, condução autónoma e solução de controlo de sistemas
industriais.

Nos últimos anos, foram desenvolvidas várias abordagens de Machine Learning (ML) para
otimizar o desempenho das redes Wi-Fi. Na maioria destas abordagens, o throughput é a métrica
de desempenho mais comum utilizada para avaliar as soluções desenvolvidas, deixando em aberto
outras métricas inexploradas, tais como o atraso.

Esta dissertação tinha como objetivo desenvolver um algoritmo de Deep Reinforcement Learn-
ing (DRL) para otimizar a o atraso de pacotes de uma ligação Wi-Fi, adaptando um algoritmo
desenvolvido pelo INESC TEC. Esta dissertação propõe o algoritmo Smart Latency Aware Rate
Adaptation (SLARA) para optimizar o atraso do pacote através do treino do algoritmo com uma
função de recompensa orientada para o atraso desenvolvida durante este trabalho. Para alcançar
esta função de recompensa, foi realizado um estudo preliminar para estudar o comportamento
do atraso noutros algoritmos e encontrar valores de referência de atraso para cada Modulation
and Coding Scheme (MCS) para normalizar o atraso na função de recompensa. Para validar esta
solução, foram realizadas várias simulações deste e de outros algoritmos para avaliar e validar as
melhorias introduzidas pelo SLARA, bem como para identificar aspetos com margem para melho-
rias que poderiam ser abordados em trabalhos futuros. O SLARA em geral tem um comportamento
semelhante em comparação com o algoritmo Data-driven Algorithm for Rate Adaptation (DARA),
mas apresenta alguns melhoramentos, tais como valores de atraso máximo e picos de atraso mais
baixos, devido a alterações de MCS mais conservadoras. Esta melhoria faz do SLARA um RAA
com valores de atraso fiáveis, que no futuro pode ser útil para os cenários acima mencionados
onde o atraso é a métrica de QoS mais importante.
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Chapter 1

Introduction

1.1 Context

Nowadays, Wi-Fi is the most common wireless local area network. Since the original version,

based on the IEEE 802.11 standard, was first released in 1997, Wi-Fi has continually evolved with

faster speeds and further coverage. Several versions of the IEEE 802.11 standard have emerged

over the years. Currently, Wi-Fi is in its 6th version. On one hand, there are scenarios where

throughput is the most relevant Quality-of-Service (QoS) metric, such as when we download or

upload files. On the other hand, there are scenarios where the delay is the most relevant metric,

such as controlling drones and industrial systems or autonomous driving.

Over the years, rate adaptation algorithms (RAAs) have been determinants in the performance

of Wi-Fi networks. RAAs optimise link performance by allowing data transmission at different

rates depending on network conditions, such as those associated with the scenarios mentioned

above. This matter has been investigated in the past years, and as a result, several algorithms

have been created. The diversity and innovation of some of these new algorithms allow a division

into two groups, as the authors of [3] mentioned: heuristic-based (algorithms with pre-defined

and hard-coded rules, the traditional ones) and Machine Learning (ML)-based algorithms (with

the ability to learn from experience or trial and error, and gradually replacing the traditional algo-

rithms).

1.2 Problem and Motivation

Several adaptation algorithms have been proposed in state of the art, such as in [4], [5], [6], [7],

[8] and [9]. RAAs may be classified according to the metrics used to evaluate the link quality,

such as packet loss, Signal-to-Noise Ratio (SNR), transmission time, throughput or combined

metrics. Typically, these algorithms tend to improve throughput, but they are not validated in

scenarios with low latency requirements. The existence of algorithms that aim for the best delay

performance (such as the heuristic-based algorithm in [4]) is limited. It is important to note that,
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2 Introduction

out of the three types of delay (queuing, propagation or transmission), only the transmission delay

is influenced by rate adaptation.

INESC TEC has been working on an ML-based RAA [10] named DARA. DARA aims to

optimise throughput in a Wi-Fi link and, as a result, presented a higher throughput when compared

to Minstrel High Throughput and equals the performance of Ideal Wi-Fi RA algorithm, from ns-3.

In this work, we seek to adapt DARA to explore this problem and develop a solution to min-

imise the Medium Access Control (MAC) layer transmission delay of a Wi-Fi link compared

to existing algorithms, while maintaining the highest throughput possible. This solution could

be helpful in scenarios such as real-time control of robotic systems over wireless networks and

video streaming for virtual and augmented reality use cases with edge computing. Although IEEE

802.11n is the standard used in this work due to its mature implementation in ns-3, the work

carried out in this dissertation is applicable to all other Wi-Fi variants in which RAA are used,

including the most recent ones. Given this, it is possible to improve the performance of the ex-

isting algorithms or develop algorithms with different approaches. The innovative and noticeably

better results than traditional algorithms could imply that current versions of Wi-Fi can be used

more efficiently, aiming to achieve the full potential of Wi-Fi with better reliability (by focusing

the algorithm on delay, it may be possible to achieve consistent values and reduce the number of

retransmissions and packet loss). This leads to the conclusion that this work is innovative, given

that the existence of similar work that aims to choose an optimal data rate that optimises the MAC

transmission delay is scarce, especially algorithms with the same objective developed using ML.

1.3 Objectives

The main objective of this dissertation is to study, evaluate and validate an algorithm based on

ML that optimises the configuration of a Wi-Fi connection to minimise the packet transmission

delay in the MAC layer. To reach this, the DARA algorithm from INESC TEC will be the reference

for developing this new algorithm, readapting the work to achieve the expected results. With this

in mind, several objectives must be accomplished to reach this goal:

• Creation of a simulation environment to train and test the ML-based algorithm, integrating

ns-3 with ns3-gym to reproduce and replicate specific scenarios where this type of algorithm

fits.

• Development of the proposed solution. Adaptation of the DRL model and the respective

reward function.

• Evaluation of the performance of the solution, in the simulation environment, against other

algorithms available in the state of the art.

1.4 Document Structure

This document is structured in five chapters:
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• Chapter 2 - describes the state of the art, background and related work;

• Chapter 3 - presents the proposed solution, describes the simulation environment and the

preliminary study with the corresponding results and conclusions;

• Chapter 4 - presents the results to validate the solution, compares the solution with algo-

rithms from the state of the art and presents a detailed analysis of the results obtained;

• Chapter 5 - exposes the main conclusions and key ideas to retain in this dissertation, what

was learned in the process and addresses the future work.
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Chapter 2

State of the Art

This chapter covers the topics considered relevant to understanding the problems exposed in Chap-

ter 1. It is divided into the following sections:

• IEEE 802.11 — a brief introduction on the IEEE 802.11, how it all started, the most impor-

tant improvements and functionalities throughout the standard versions and some concepts;

• Machine Learning — introduction to ML and a brief background on the usefulness and

possible applications;

• Software tools and frameworks — brief description of software tools and framerworks;

• Rate adaptation algorithms — background on the RAAs related to this work;

2.1 IEEE 802.11

In 1997, the IEEE 802.11 original standard was released for the first time to the consumers. There

have been several improvements, corrections and new features ever since. The most relevant are

the following:

• IEEE 802.11 - Provided a maximum of 2 Mbit/s of data rate in the 2.4 GHz band Wireless

Local Area Networks (WLANs) using Frequency Hopping Spread Spectrum (FHSS) or

Direct Sequence Spread Spectrum (DSSS);

• IEEE 802.11b - Can be called "Wi-Fi 1", extended data rate up to 11 Mbit/s using only

DSSS in the 2.4GHz band;

• IEEE 802.11a - Also refered as "Wi-Fi 2", Orthogonal Frequency Division Multiplexing

(OFDM) scheme instead of FHSS or DSSS, which allows data rates up to 54 Mbit/s in the

5 GHz band;

• IEEE 802.11g - Also known as "Wi-Fi 3", extended data rate up to 54 Mbit/s in the 2.4 GHz

band;

5



6 State of the Art

• IEEE 802.11n - Also well known as "Wi-Fi 4", this version was released in 2009. The

addition of multiple-input multiple-output antennas (MIMO) technology for separate spatial

streams (four spatial streams), frame aggregation and wider channels (from 20 MHz to 40

MHz) allowed to extend the maximum data rate up to 600 Mbit/s in the 2.4 GHz and 5 GHz

bands;

• IEEE 802.11ac - "Wi-Fi 5" adds support for wider channels (up to 160 MHz), increased

number of spatial streams (up to eight) and the Multi User MIMO (MU-MIMO) for concur-

rent transmissions to different stations in the downlink direction. This allowed to extend the

total data rate up to 1300 Mbit/s, in the 5 GHz band;

• IEEE 802.11ax - "Wi-Fi 6" has a denser modulation, uses up to 1024-QAM and that in-

creases the data rates by 35%. MU-MIMO on the uplink is available, in addition to the MU-

MIMO on the donwlink used in IEEE 802.11ac. There is also an Orthogonal Frequency

Division Multiple Access (OFDMA)-based scheduling to reduce overhead and latency and

a robust high-efficiency signaling for better functioning with the Received Signal Strenght

Indicator (RSSI);

In a Wi-Fi link, there are three main types of delay: propagation, transmission and queuing.

The propagation delay is the time it takes for the last bit of a packet to reach the destination after

the packet is transmitted to the transmission medium. Then it has to pass through the medium to

reach the destination. The transmission delay is the time it takes to transmit a packet from the

host to the transmission medium. The transmission delay depends on metrics such as throughput

(transmission times decrease when throughput is high), packet loss and the number of retransmis-

sions (which increases the transmission time). The queuing delay is the time a packet is queued

and depends on the number of packets in the queue and the rate at which they are being served.

The authors of [4] have shown that queuing and transmission delays may have the biggest impact,

given that they depend on metrics that can be used in the algorithm, indirectly influencing the de-

lay variation. In this work, the focus will be the transmission delay. In Figure 2.1, it is possible to

observe a simple diagram illustrating the types of delay exposed above. It is possible to understand

where and in which order these delays occur.

Figure 2.1: Types of delay in a Wi-Fi link.



2.2 Machine Learning 7

2.2 Machine Learning

ML is a sub-field of Artificial Intelligence (AI) and aims to reproduce human intelligence by learn-

ing from experience and the surrounding environment. ML algorithms use data as input to predict

output values without being programmed to do it. There are four different methods of machine

learning: Reinforcement Learning (RL), Supervised Learning (SL), Unsupervised Learning (UL)

and Semi-Supervised Learning (a combination of SL and UL). ML has several applications, such

as prediction, computer vision or semantic analysis. These different applications are distributed

among the different methods, as shown in Figure 2.2. It is possible to use ML algorithms in several

research areas such as science, technology, engineering and mathematics (STEM), which makes

it a versatile tool.

Figure 2.2: Machine Learning methods scheme from [1].

2.2.1 Deep Learning

Deep Learning (DL) is a sub-field of ML and brings an advanced approach to ML, given its

incapacity to solve more complex tasks. DL uses artificial neural networks (NNs) (an algorithm

inspired by the human brain) to learn from an extensive amount of data. Learning is based on

experience, i.e. the algorithm learns as a task is performed repeatedly. A NN is composed of

different layers of neurons, where there is the input layer (which accepts inputs), the output layer
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(which returns the result) and the remaining layers are hidden layers (which process inputs). The

term "deep" is due to the NNs of this method having various hidden layers (deep NNs) that increase

their level of complexity and abstraction. Deep NNs have different types, such as convolution

NNs, recurrent NNs, multi-layer perceptrons or Q-Learning. DL can be applied to different ML

methods when they face complex problems with larger datasets or a high number of variables, and

it is necessary to build more accurate models. These models can be achieved by more oversized

layers (more neurons) to detect more complex patterns.

2.2.2 Reinforcement Learning

RL is an ML technique that focuses on goal-directed learning from interaction. The algorithm

(agent) evaluates the current state, takes an action and receives a reward from the environment.

The algorithm learns how to make good decisions (actions) by Trial-and-error, performing several

attempts that could lead to better or worse performance. The main goal is to maximise the total

reward. Although the reward policy is defined, there are no rules about how to take the action

that results in the best reward. It is up to the algorithm to understand how it can perform the

task to maximise the reward. The algorithm initially makes arbitrary decisions, and as it learns,

it finds increasingly complex patterns. RL has several applications, such as real-time decisions,

autonomous driving, or optimising video streaming quality. In Figure 2.3 it is possible to observe

a block diagram representing a typical RL model.

Figure 2.3: Reinforcement Learning block diagram.

Deep Reinforcement Learning (DRL) combines RL with DL to solve the limitations of RL in

complex environments with large state spaces or high dimensional inputs.

2.2.3 Supervised Learning

SL is an ML technique that uses labelled datasets to train algorithms to classify data or predict

an output from a given input. This model tends to be mainly applied to problems such as image

classification or market forecasting, as observed in Figure 2.2.
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2.2.4 Unsupervised Learning

UL is an ML technique that aims to analyze and cluster unlabeled datasets. This model discovers

patterns or data grouping without external interference (such as human interventions or labelled

datasets). This model can discover similarities and differences between data and can be used in

image recognition or data analysis.

2.3 Software tools and frameworks

In this work, three software tools and frameworks (ns-3, ns3-gym and TF-Agents) are used, as

shown in Figure 2.4.

Ns-3 [11] is a discrete-event network simulator for research and educational use. It is a highly

realistic and one of the most commonly used, leading wireless network simulators. Ns-3 allows

excellent control over the simulation scenario and accurately measures metrics such as the delay.

Although ns-3 is a simulator, we can use Trace-Based Simulation (TS). TS focuses on capturing

SNR traces of a real experiment and reproducing them by using the traces in ns-3. The TS aims to

improve the simulation accuracy (as the authors mention in [12]).

The ns3-gym framework [13] is the first framework for RL research in networking. Ns3-gym

integrates OpenAI Gym (a toolkit for RL commonly used in research) and ns-3 network simulator.

It allows representing an ns-3 simulation as an environment in the Gym framework for the RL

agent’s learning purposes.

TF-Agents [14] is a RL library in TensorFlow. TF-Agents is easy to implement and deploy

and provides well tested and modular components that can be modified and extended. It enables a

fast code iteration, with good test integration.

Figure 2.4: Software tools and architecture scheme.
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2.4 Rate adaptation algorithms

Several RAAs have been developed. However, the number of algorithms that aim to minimize the

delay or latency is limited. With this, this section exposes ML-based and heuristic-based RAAs

that may be relevant not only for the development of the work but also as a comparison..

2.4.1 Heuristic-based algorithms

There is an approach where a latency-aware rate adaptation algorithm [4] is proposed. In this doc-

ument, the authors show how current rate adaptation solutions work and prove that they work well

for throughput but not for latency. These theorems are duly corroborated and essentially consist

of making rate choices, considering link metrics such as the number of retransmissions, number

of packets in the queue and Packet Error Ratio (PER). Finally, the proposed algorithm showed

a performance improvement in terms of latency compared with algorithms such as Advanced

Rate Adaptation Algorithm (ARA) and MIMO Rate Adaption Algorithm (MiRA) mentioned in

[4], while maintaining a similar throughput. The authors also used Trace-based scenarios, which

forced SNR to values captured in a real experiment.

Minstrel is a heuristic-based algorithm that aims to have the highest throughput. As mentioned

in [15], this algorithm is divided into three parts: retry chain, rate decision and statistic calculation.

The retry chain consists of four rate-count pairs where a packet is transmitted first with the first

pair, and if the number of retries reaches the count, it moves on to the next pair and so on if the

packet is not sent successfully. Next, rate selection is used to choose the retry chain rates and has

two types of transmissions: normal transmission (which occurs 90% of the time) and sampling

transmission (which occurs 10% of the time). In normal transmission, the first two rates are

those with the highest throughput, the rate with the highest probability of success, and the lowest

available rate. In sampling transmission, the data frames are sent with a random rate and the first

rate is set to the higher rate out of the sample rate, the second rate is set to the lower rate out of the

sample rate, and the other remains the same. In the statistic calculation, Minstrel maintains that

the probability of successful transmission is based on the historical success rate at each data rate

and is used to estimate the throughput of each rate and the retry chain is evaluated based on this

estimate every 100 ms.

2.4.2 Machine Learning-based algorithms

The authors of [16] proposed an algorithm that aims to enhance the Robust Rate Adaptation Algo-

rithm with a RL approach. The objective of the algorithm is to find the "best" throughput possible.

Given that, it is defined as action the data rate selected and an action becomes better as the related

packet loss decreases. The reward is the trade-off between the packet loss minimisation and the

throughput maximisation. For each data rate a set of ten packet loss intervals were defined. Since

there are 8 possible actions and each action has a set number from 0 to 7, respectively, from the

lowest to the highest data rate, 80 states are identified. The reward is calculated with the packet
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loss and the rate, and with reduced packet loss and high rate, the higher is the reward. The authors

selected 0.45 to use as trade-off between packet loss minimisation and throughput maximisation,

but do not explain how they achieved that value. The simulations results presented an improve-

ment in the packet loss from 28.016% to 22.599% and in the mean delay from 35.255 ms to 16.122

ms, compared to Robust Rate Adaptation Algorithm.

In [17] the authors proposed a RAA to augment drive-thru internet using RL-based RA that

efficiently selects the rate for every vehicle’s egress frame. The authors defined the overall data

amount that a vehicle can transmit to a roadside access point, and aim to maximise this metric.

They defined as the state a set of the most recent SNR records. The action is the data rate to be

selected and the reward depends on the transmission result (1 if it is successful or 0 if it fails) and

the packet size from that interval.

The authors of [8] proposed the ML-based RA (MLRA) algorithm to identify correlations be-

tween the rate, goodput performance and link quality. The aim of this RAA is to find the rate

with the highest goodput based on the link quality indicators and estimated congestion degrees.

The results shown that MLRA outperforms other RAAs, such as Minstrel, MiRA and lwlwifi by

around 133%-658%.

DARA is a DRL algorithm that aims to optimise throughput in a Wi-Fi link, as the authors

mention in [10]. The authors describe the DRL model and the implementation used for training

and evaluating the algorithm.

In the DARA DRL model, the authors’ goal was to train an agent that learns to choose the

optimal MCS for a fixed time interval based on the SNR of the previous time interval. The action

space is a subset list of MCS values in IEEE 802.11n, considering eight different actions (MCS0

to MCS7). The state is the average SNR value observed in the previous time interval from the

received frames. The reward is the product of the frame success ratio and the normalised MCS of

the previous time interval, as shown in Eq.2.1.

reward =
MCSn

MCS7
×FER,n ∈ [0,1, ...,7] (2.1)

The authors mention that the combination of success ratio and the highest MCS possible avoids

scenarios where the agent chooses either the lowest MCS to preserve the highest frame success

ratio or the highest MCS, even if frames are not delivered.

In the DARA implementation, the authors mention that they use ns-3 (with version 3.35) and

the ns3-gym framework to develop the simulation environment and use the TF-Agents library to

create the RL agent.

For the ns-3 environment, the IEEE 802.11n is the Wi-Fi standard, and the Wi-Fi MAC defined

is Ad-hoc. They defined constant speed as the propagation delay model and Friis as the propaga-

tion loss model. The defined frequency is 5180 MHz with a channel bandwidth of 20 MHz. A user
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can choose between DARA, Ideal or Minstrel for the remote station manager. The traffic protocol

is UDP, and the link is saturated with UDP traffic, so there is always traffic on the link.

For the action, DARA only supports one MCS per time interval, and the new MCS chosen by

the agent is selected at each time interval.

For the observation, DARA tracks the number of the received frames and their SNR. Then

calculates the average SNR for the current time interval. If the selected MCS is high enough that

no frames are delivered, SNR cannot be calculated and then it assumes that in that time interval,

SNR is zero, and in the next time interval, chooses the lowest MCS.

For the reward, its calculation depends on whether the transmitted frame was ACKed or not.

First, the frame is received, and the transmitting node receives this information through ACK /

Block ACK. Next, the frame is not received, and the transmitting node receives this informa-

tion through Block Ack. Finally, none of this information reaches the transmitting node during

the timeout period. FER is calculated based on the scenarios mentioned above, and the MCS is

obtainable through the action taken for that time interval.

DARA is implemented in Python for the agent architecture and uses the Deep Q-Network

(DQN) learning algorithm and the TF-Agents library, as mentioned above. The agent receives the

step of the previous time interval where it gets the observation and the reward and then chooses

the action for the next interval. The DQN learning algorithm has several parameters such as

the Observation space (a one-dimensional float value between 0.0 and 1.0, corresponding to the

division of the final SNR in dB by 100, to stabilise the learning process), the Action space (a

one-dimensional integer value which represents the MCS to select for the next time interval), the

Optimiser (Adam algorithm with a 10−2 learning rate to minimise the network loss function), the

Epsilon greedy (value between 0 and 1, determines the percentage of random actions and starts

at 1 and decreases over a defined period until 0.1 where only 10% of actions are random), the Q-

Network (has 2 layers of interconnected parameters with 32 units each) and the Replay buffer (has

a size of 106 trajectories and with the simulation progresses, trajectories are added to the replay

buffer and for every agent train, it randomly samples a batch of 64 trajectories).

Finally, the agent can run a training session or an evaluation session. In the training session, it

starts to collect the simulation trajectories and fill up the replay buffer. A trajectory is composed

of a time step (environment initial observation), an action step (the action taken considering the

previous time step) and the next time step (the new observation and the reward obtained from

the previous action step). The replay buffer fills up during the simulation until the Game Over

Module informs that the simulation is over. Then, the agent trains randomly by obtaining from the

replay buffer trajectories updating the weights, and increasing the time step counter. The user can

adapt the number of episodes and how epsilon greedy decreases over the training process. At the

end of the training session or when the user wants to pause it, it is possible to save the progress

with a checkpoint, which makes it possible to use this policy later in an evaluation session. In the

evaluation session, the user can load a saved and trained policy and the epsilon greedy changes

to zero to avoid exploratory attempts. It is possible to obtain logs from the throughput at the

application level and, in addition, obtain packet capture files for debugging purposes and track and
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log the reward during the session.
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Chapter 3

SLARA Model and Implementation

In this Chapter, with the knowledge obtained during the study performed in Chapter 2, it is pre-

sented detailed information about the proposed solution. First a preliminary study is described to

learn more about the delay behaviour in order to help to develop a reward function for the DRL

model. Given the conclusions from the preliminary study, it is presented the SLARA model which

describes the DRL model and the developed reward function. Then it is described the implemen-

tation of the ns-3 simulation and the ns-3 gym. Finally the DRL agent architecture is presented

with the respective details.

3.1 Preliminary study

At the beginning of this work, for developing a future reward function focused on delay, there

was doubt about how to normalise it as it is done in DARA to stabilise the learning process with

scaled values. This doubt arises because there is a maximum throughput value associated with

each MCS, which only decreases according to SNR degradation or by switching to a lower MCS.

Regarding the delay, it is implicit that each MCS has a minimum delay and that this delay can

grow indefinitely due to several factors such as SNR degradation, switching to a lower MCS or

retransmissions due to problems in the transmission medium or low link quality. This means

that sometimes a higher MCS has higher delay than a lower MCS because it has more packet

retransmissions. This preliminary study aims to improve our understanding on the delay behaviour

in a Wi-Fi link. Besides that, the study intends to identify the delay limits for each MCS with

the distance variation, normalise delay to formulate a reliable reward function and overcome the

instability around the delay.

The simulation scenario, from Table 3.1, has been prepared to test the behaviour of some of

the algorithms exposed in Section 2.4 (Minstrel and Ideal), where there are two nodes, and the

transmitting node moves over 120 seconds from an initial position, 10 metres away from the other

node, until the 1350 metres distance between nodes is reached. The objective is to plot all the data

obtained from the simulation and obtain two different graphs. The first graph plots the relationship

between the delay of all the packets in the simulation and the distance. For the second graph, the

15
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Parameter Description
Wi-Fi Standard IEEE 802.11n
Propagation Delay Model Constant Speed
Propagation Loss Model Friis
Traffic UDP
Traffic Data Rate 75 Mbit/s
Packet Size Constant (1000 Bytes)
Number Of Nodes 2
Duration 120 seconds
Mobility Model Waypoint (10 meters to 1350 meters) / Constant (variable distance)

Frame Aggregation Disabled
Remote Station Manager Minstrel / Ideal

Table 3.1: Preliminary Study ns-3 Environment Parameters.

"intervalValues" list of the function "MyGymEnv::RxTime" in Listing 3.7 stores and then sorts

the delays of the received packets in a 100ms interval to then obtain the minimum and maximum

delay, the 10th, 50th (median) and 90th percentiles of the delay and that are plotted relative to the

distance.

In Figure 3.1a it is visible that the delay in Minstrel varies a lot. It is possible to observe several

delay peaks mainly caused by packet retransmission. Since Minstrel is an algorithm built always

to maintain the highest throughput possible, it is expected that with its MCS choices, the values

of the delay are not as optimal as those of the throughput since higher throughput does not always

generate a lower delay, and these choices may be wrong from a delay point of view. Figure 3.1b

shows that some of these peaks happen due to the shift to lower MCSs (each step is a different

MCS) and are visible at "P90" and "Max", unlike the peaks mentioned above. This problem might

indicate that the link quality is low at the instant when the MCS change occurs and again indicate

that the MCS change should be sooner, from the delay point of view.

In Figure 3.2 it can be seen that the delay variation is low with only a few peaks. This behaviour

is expected because Ideal is an algorithm only available in ns-3. Its function is to implement an

"ideal" rate control and even with the good results. It is impossible to implement Ideal in a real

context, since it knows the status of the link in the receiver and use this to adjust the data rate. This

algorithm can be used as a reference to analyse the performance of future SLARA results.

The results verified that Minstrel is a greedy algorithm, while Ideal is a more conservative

algorithm when switching MCS. It is possible to conclude that, for greedy algorithms, the delay

analysis is more complex due to the high variation of values that results from its peaks, making

it difficult to find a reference value to formulate a reward to train an algorithm. Concerning con-

servative algorithms, it is concluded that these have more constant delay values and with minor

variations.

Finally, several simulations have been executed (one for each MCS), maintaining the same

simulation scenario from the previous simulations. In Figure 3.3 there are some of these results

and once again the presence of peaks in the delay is observed. These peaks represent the limits
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(a) Minstrel - All packets delay vs distance.

(b) Minstrel - 100ms interval delay stats vs distance.

Figure 3.1: Minstrel delay behaviour over a 120 second simulation.

of each MCS due to the SNR of these instants being lower than the SNR required to maintain the

respective MCS. Until they reach these limits, each of these MCSs has linear and constant delay

values. Given this, the average delay (until the limit, excluding the peak values) for each MCS

was stored to reference the delay for each MCS, as it is already done with the data rate. In Table

3.2 it is possible to consult the obtained values.
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(a) Ideal - All packets delay vs distance.

(b) Ideal - 100ms interval delay stats vs distance.

Figure 3.2: Ideal delay behaviour over a 120 second simulation.

3.2 SLARA Model

The objective of this work is to train a DRL agent to learn the optimal MCS that should be used

for a time interval t based on the SNR of received frames from the previous time interval t + 1,

in order to minimise the delay, as observed in Figure 3.4. The action space A is a subset list of

the MCS values from IEEE 802.11n standard with eight possible actions, as referenced in Section

3.3. The state is the average SNR observed during the time interval t. In the SLARA model, the

preliminary reward is defined in Equation 3.1 and is the product of the FER and the normalised

delay. The normalised delay is given by x
y , where x is the delay reference value and y is a delay
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Figure 3.3: Packet delay vs Distance for each MCS.

value observed in the previous time interval. The goal is to find an optimal reference delay x to use

and develop a strategy so that the y delay represents the state of the delay in the respective time

interval.

reward =
x
y
×FER (3.1)

Figure 3.4: SLARA model scheme.

Given this introduction, as mentioned in Section 3.1, the development of the reward function

would be challenging due to the higher complexity of normalising delay compared to throughput.

The inexistence of delay values that reference each MCS, such as the data rate associated with each

MCS, increases this complexity. Table 3.2 presents the values obtained in the preliminary study

and can be addressed to solve the previous problem. The reward’s goal is to minimise the delay,

and 0.224ms is the delay reference x, corresponding to the MCS7 delay. Equation 3.2 is the new
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MCS Packet Delay (ms)
7 0.224
6 0.248
5 0.272
4 0.352
3 0.508
2 0.664
1 0.976
0 1.912

Table 3.2: Average packet delay for each MCS.

reward function for SLARA, and it is the product between the normalised delay and the packet

success ratio. The normalised delay ( 0.224
y ) is the quotient between the minimum delay (delay

associated with MCS7 - 0.224ms) and y, a flexible input variable around the observed delays in a

time interval.

reward =
0.224

y
×FER (3.2)

The y input variable can take the different percentiles, the minimum delay, maximum delay

or even the average delay of the 100ms interval, as shown in Section 3.1. This reward function

may be used for different purposes and be optimized relative to the version of SLARA trained

with this function. In this version of SLARA, the variable y assumes the 90th percentile, due to

the results in Figure 3.1b, and 85th and 95th percentiles to understand later how the algorithm

behaves with different percentiles. On one hand, it is possible to conclude that for the minimum

delay and the 10th and 50th percentiles, its use would not be the most optimal because as they

present low values, the agents’ actions would not be regularly penalized if there are several delay

peaks, and they could even ignore longer delays because these correspond to higher percentiles.

On the other hand, the maximum delay would also not be optimal because it mostly corresponds

to delay peaks caused by retransmissions and sometimes does not summarize the quality of the

action, since although the maximum value is higher than the maximum value of another action,

it does not mean that globally the delay values of the second action will be better than the first

action. Finally, to penalise high delay values, it was decided that the reward will be null if y is

greater than or equal to 2ms (a value arbitrarily chosen to be close to the 1.912ms associated with

MCS0 in Table 3.2), as presented in Equation 3.3.

reward =

{
0.224

y ×FER, i f y < 2

0, i f y ≥ 2
(3.3)

3.3 Ns-3 simulation

First, to train and test the final solution it was necessary to develop the simulation environment

with adequate characteristics for the development of the solution. As seen in Table 3.3 the Wi-Fi
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standard chosen is IEEE 802.11n since currently, the ns-3 documentation is well consolidated for

IEEE 802.11n, while for IEEE 802.11ac, it is still recent and may be changed, which may lead to

errors or low correlation with reality. The propagation delay and loss models remain the same as in

DARA. For traffic, User Datagram Protocol (UDP) is chosen because it is a simple protocol, and

if packet tracing or labelling is needed, it proves to be more valuable than Transmission Control

Protocol (TCP) since it splits packets into smaller packets and does not allow the mentioned tasks

to be executed. The chosen UDP traffic data rate is 75 Mbit/s because it is supposed to saturate

the link so that packets are always being sent regularly since the maximum data rate of MCSs is

54 Mbit/s. The packets sent in the traffic have a constant size (an arbitrary size of 1000 Bytes) to

simplify the delay analysis since the delay already varies due to several factors, and the irregularity

of the packet size would make its analysis even more difficult.

Parameter Description
Wi-Fi Standard IEEE 802.11n
Propagation Delay Model Constant Speed
Propagation Loss Model Friis
Traffic UDP
Traffic Data Rate 75 Mbit/s
Packet Size Constant (1000 Bytes)
Number Of Nodes 2

Mobility Model Waypoint (10 meters to 1350 meters) / Constant (variable distance) /
Random

Frame Aggregation Disabled
Remote Station Manager DRl (DARA or SLARA) / Minstrel / Ideal

Table 3.3: Ns-3 Environment Parameters.

The mobility model is situational and and it is possible to choose between three different

models:

• The Waypoint model, as presented in Figure 3.5, consists of the transmitting node (des-

ignated "Node 1") starting from an initial position (position a)), with a distance Di (10m)

relative to the receiving node (designated "Node 0"), and reaching the final position (posi-

tion b)) stipulated at the beginning of the simulation, with a distance D f (1350m) relative to

"Node 0", at the end of the simulation with duration of T seconds. The speed (v) associated

to the movement of "Node 1" is given by v = (D f −Di)/T . This is an exploratory model,

since "Node 1" during the simulation goes through every position between 10m and 1350m.

Figure 3.5: Waypoint mobility model.



22 SLARA Model and Implementation

• The Constant model, as presented in Figure 3.6, maintains "Node 1" in a fixed position,

pre-defined at the start of simulation. This model is especially good for debugging and

getting more detail for a specific distance.

Figure 3.6: Constant mobility model.

• The Random model, as presented in Figure 3.7, makes "Node 1" teleport to random posi-

tions as can be seen in sequence a) (starting position), b) (position in the next time interval)

and c) (position in the last time interval). This model can be used mainly to validate the

solution since its teleports are random and decrease predictability.

Figure 3.7: Random mobility model.

Frame aggregation is disabled for the same reasons as constant packet size because with frame

aggregation, their sizes vary and, consequently, the delay, so it is disabled for simplification rea-

sons. To the remote station manager was added a new feature has been added to the remote station

manager to change the DRL reward, so it is possible to switch between DARA and SLARA re-

wards.

In addition, each time the simulation is launched, it is necessary to define a series of parameters

that can change with each simulation. Some of these parameters are passed through the arguments

of the command used to run the program (parameters that vary more regularly), and others are set

manually in the algorithm code (parameters that are more regular and are changed casually). The

most relevant parameters to launch a simulation are the following:

• Port — Designed to define the port to be used by a simulation. It is only possible to run one

simulation per port. If it is intended to run several simulations in parallel, it is necessary to

assign different port numbers for each simulation.

• Mode — Indicates the remote station manager to pick. It can be "drl" (DARA or SLARA

are used), "min" (Minstrel algorithm is used) or "id" (Ideal algorithm, from ns-3, is used).

• Simulation type — Indicates the type of simulation. To launch an evaluation simulation of

any algorithm, the simulation type "eval" is used. For a training session, either "train" or
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"longtrain" are used depending on the type of training desired, and only the "drl" algorithm

can be trained.

• Simulation seed — Indicates the seed for random generator.

• Path — Contains a specific file path for each simulation and it is used to save all logs

generated during a simulation.

• Duration — Defines the simulation duration in seconds.

• Distance — Defines the initial position for the transmitter node. In the constant mobility

model, the node maintains that distance throughout the simulation.

• Enable Pcap — Enables or disables the generation of pcap files used for debugging pur-

poses.

3.4 Ns-3 gym

The ns-3 gym interface runs simultaneously with the ns-3 simulation and the DRL agent and

performs an intermediary role. Initially, this interface is notified by the ns-3 simulation when it

finishes executing a step (a 100ms interval). Then, ns-3 gym collects the state of the environment

and calculates the observation and reward through the collected information and sends the state

and reward to the DRL agent. Finally, the DRL agent chooses the action to execute for the next

step and sends it to the ns-3 gym, which executes the action, and the ns-3 simulation starts the next

step and repeats the process. In order to get the previously highlighted parameters, the following

implementation was done:

• Action — as presented in Table 3.4, there are available eight possible actions (MCS0 to

MCS7), corresponding for the MCS level for 800ns Guard Interval (GI), 20 MHz channel

bandwidth and SISO IEEE 802.11n operation. The agent selects the new MCS for each

time interval, and control and data mode are changed according to the new MCS index, as

exposed in Listing 3.1.

bool MyGymEnv : : E x e c u t e A c t i o n s ( P t r <OpenGymDataContainer > a c t i o n
)

{
P t r < OpenGymDiscre teConta iner > d i s c r e t e = DynamicCast <

OpenGymDiscre teConta iner >( a c t i o n ) ;
u i n t 3 2 _ t d a t a R a t e I d = d i s c r e t e −> GetValue ( ) ;
t h i s −> m_chosenAct ion = d a t a R a t e I d ;

s t d : : s t r i n g d a t a R a t e S t r = d a t a R a t e s . a t ( d a t a R a t e I d ) ;
i f ( DRLmode )
{
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Conf ig : : S e t ( " / NodeLi s t / 1 / D e v i c e L i s t / 0 / $ns3 : :
Wi f iNe tDev ice / RemoteS ta t ionManager / $ns3 : :
C o n s t a n t R a t e W i f i M a n a g e r / DataMode " , S t r i n g V a l u e (
d a t a R a t e S t r ) ) ;

Conf ig : : S e t ( " / NodeLi s t / 1 / D e v i c e L i s t / 0 / $ns3 : :
Wi f iNe tDev ice / RemoteS ta t ionManager / $ns3 : :
C o n s t a n t R a t e W i f i M a n a g e r / ControlMode " , S t r i n g V a l u e (
d a t a R a t e S t r ) ) ;

}
e l s e
{

i f (LOG_ENABLE)
NS_LOG_UNCOND( " I g n o r i n g A c t i o n : " << a c t i o n << " (

u s i n g M i n s t r e l o r I d e a l ) " ) ;
}
re turn true ;

}

Listing 3.1: "MyGymEnv::ExecuteActions function.

MCS Index Modulation Coding
20MHz 40MHz

Data Rate(Mbit/s)
Min. SNR

Data Rate(Mbit/s)
Min. SNR(dB)

800ns GI 400ns GI 800ns GI 400ns GI
0 BPSK 1/2 6.5 7.2 2 13.5 15 5
1 QPSK 1/2 13 14.4 5 27 30 8
2 QPSK 3/4 19.5 21.7 9 40.5 45 12
3 16-QAM 1/2 26 28.9 11 54 60 14
4 16-QAM 3/4 39 43.3 15 81 90 18
5 64-QAM 2/3 52 57.8 18 108 120 21
6 64-QAM 3/4 58.5 65 20 121.5 135 23
7 64-QAM 5/6 65 72.2 25 135 150 28

Table 3.4: MCS Table for SISO IEEE 802.11n, from [2].

• Observation — as exposed in Listing 3.2, the number of received packets and their SNR are

tracked. The average SNR is calculated for current time interval. When the MCS selected

for a given time interval is too high for the SNR of that interval, packets will not be sent

successfully, and there is no observation to send to the agent due to the SNR calculation

depending on the received packets. In order to solve this problem, it is assumed that SNR is

zero for that time interval to force the agent to pick the lowest MCS for the next interval.

P t r <OpenGymDataContainer > MyGymEnv : : G e t O b s e r v a t i o n ( )
{

u i n t 3 2 _ t nodeNum = 1 ;
f l o a t avgSNR ;

s t d : : v e c t o r < u i n t 3 2 _ t > shape = {
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nodeNum ,
} ;
P t r <OpenGymBoxContainer < f l o a t >> box = C r e a t e O b j e c t <

OpenGymBoxContainer < f l o a t > >( shape ) ;
double s n r ;
i f ( t h i s −> n S u c c e s s == 0)
{

s n r = 0 ;

i f ( ! s t d : : i s f i n i t e ( s n r ) )
{

NS_LOG_UNCOND( " s n r : " << s n r ) ;
s n r = 0 ;

}
}
e l s e
{

avgSNR = ( t h i s −>sumSNR / t h i s −>nPacketsRX ) ;
s n r = 10 * log10 ( avgSNR ) ;
s n r = round ( s n r ) / 100 ;

}
box −>AddValue ( s n r ) ;
t h i s −>sumSNR = 0 ;
t h i s −>nPacketsRX = 0 ;

i f (LOG_ENABLE)
NS_LOG_UNCOND( " O b s e r v a t i o n s : " << box ) ;

re turn box ;
}

Listing 3.2: "MyGymEnv::GetObservation function.

• Reward — the reward calculation depends on whether a transmitted packet was ACKed or

not. In order to verify this, two trace sources were implemented, from Listing 3.3, to trigger

when a packet is successfully received ("AckedMpdu" trace source ) and when a packet is

not received ("NAckedMpdu" trace source) and the transmitting node has this information.

When "AckedMpdu" trace source triggers, calls function "MyGymEnv::AckOk", from List-

ing 3.4, which updates the number of received packets and the number of transmission at-

tempts. When "NAckedMpdu" trace source triggers, calls function "MyGymEnv::AckNeg"

which updates the number of attempts. If neither of previous trace sources trigger during

the timeout, here is no information and the number of attempts is updated. There is no in-

formation, and the number of attempts is updated. The FER is calculated using the values
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obtained from the counting done in these functions, the reward is calculated with that result,

and the normalised delay as presented in Section 3.2.

Conf ig : : Connect ( " / NodeLi s t / 1 / D e v i c e L i s t / 0 / $ns3 : :
Wi f iNe tDev ice / Mac / $ns3 : : RegularWif iMac / $ns3 : :
AdhocWifiMac / AckedMpdu " , MakeCal lback (&MyGymEnv : : AckOk ,

t h i s ) ) ;
Conf ig : : Connect ( " / NodeLi s t / 1 / D e v i c e L i s t / 0 / $ns3 : :

Wi f iNe tDev ice / Mac / $ns3 : : RegularWif iMac / $ns3 : :
AdhocWifiMac / NAckedMpdu" , MakeCal lback (&MyGymEnv : :
AckNeg , t h i s ) ) ;

Listing 3.3: Acknowledgment trace sources.

void MyGymEnv : : AckOk ( s t d : : s t r i n g c o n t e x t , P t r < c o n s t
WifiMacQueueItem > mpdu )

{
t h i s −> d a t a R a t e = g e t D a t a R a t e ( mpdu , t h i s −>WRSM) ;
t h i s −>sumDataRate += t h i s −> d a t a R a t e ;

t h i s −> n S u c c e s s ++;
t h i s −> nAt t empt s ++;

}

void MyGymEnv : : AckNeg ( s t d : : s t r i n g c o n t e x t , P t r < c o n s t
WifiMacQueueItem > mpdu )

{
t h i s −> nAt t empt s ++;

}

void MyGymEnv : : MpduTimeout ( s t d : : s t r i n g c o n t e x t , u i n t 8 _ t r ea son
,

P t r < c o n s t WifiMacQueueItem > mpdu ,
c o n s t Wif iTxVec to r &t x V e c t o r )

{
t h i s −> nAt t empt s ++;

}
void MyGymEnv : : PsduTimeout ( s t d : : s t r i n g c o n t e x t , u i n t 8 _ t r ea son

,
P t r < c o n s t WifiPsdu > psdu ,
c o n s t Wif iTxVec to r &t x V e c t o r )

{
t h i s −> nAt t empt s ++;
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}

Listing 3.4: ACK and Block NACK functions.

In addition, it was necessary to add a mechanism to DARA, similar to the one already used for

throughput, to log the delay of each packet. This mechanism was useful for the preliminary study

and it was crucial for the reward calculation. To implement this mechanism, we had to consult the

ns-3.35 documentation and select two trace sources (one to indicate that a packet was transmitted

and the other to indicate that a packet was received) to calculate the time difference between

the trigger of each trace and associate that time interval to the delay of the respective packet. In

Listing 3.5, the first configuration is the PhyTxBegin trace from the "ns3::WifiPhy" library of ns-3

version 3.35, and its function is to trigger whenever a packet has begun transmitting to the channel

medium in the transmitter node (node associated with number 1). The second configuration is the

MacRx trace from the "ns3::WifiMac" library and triggers when a packet has been received by the

receiver node (node associated with number 0), has been through the physical layers and is about

to be forwarded up the local protocol stack.

Conf ig : : C o n n e c t W i t h o u t C o n t e x t ( " / NodeLis t / 1 / D e v i c e L i s t / * / $ns3 : :
Wi f iNe tDev ice / Phy / PhyTxBegin " , MakeCal lback (&MyGymEnv : : TxTime ,
t h i s ) ) ;

Conf ig : : C o n n e c t W i t h o u t C o n t e x t ( " / NodeLis t / 0 / D e v i c e L i s t / * / $ns3 : :
Wi f iNe tDev ice / Mac / MacRx" , MakeCal lback (&MyGymEnv : : RxTime , t h i s )
) ;

Listing 3.5: Trace sources configuration

Whenever a trace source triggers, it makes a callback to its respective function and executes the

code inside it. In Listing 3.5, the trace source PhyTxBegin calls function "MyGymEnv::TxTime"

and the trace source MacRx calls function "MyGymEnv::RxTime" when triggered. The "MyGy-

mEnv::TxTime" function is presented in Listing 3.6 and was created mainly to store the timestamp

of a packet that is transmitted to the channel medium. While developing this function, it was nec-

essary to use the pointer to the packet being transmitted (passed as a parameter of the function

and the only parameter to be used) to get its unique id and a map to store the packet timestamp.

Next, it was necessary to check if the packet already existed on the map. If not, the timestamp is

saved in the map with the respective unique id and the same unique id is saved in another map (to

save the number of retransmissions for each packet) with zero retransmissions. If it exists, it is a

retransmission and increases the number of retransmissions to the respective packet.

void MyGymEnv : : TxTime ( P t r < c o n s t Packe t > packe t , double txPowerW )
{ i f ( t h i s −>packetMap . f i n d ( packe t −>GetUid ( ) ) −> second == Seconds

( 0 ) ) {
t h i s −>packetMap [ packe t −>GetUid ( ) ] = Now ( ) ;
t h i s −> p a c k e t R e t r a n s [ packe t −>GetUid ( ) ] = 0 ;
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} e l s e i f ( t h i s −>packetMap . f i n d ( packe t −>GetUid ( ) ) −> second !=
Seconds ( 0 ) ) {

t h i s −> p a c k e t R e t r a n s [ packe t −>GetUid ( ) ] + + ;
}

}

Listing 3.6: "MyGymEnv::TxTime" function

Listing 3.7 presents the "MyGymEnv::RxTime". This function verifies if the received packet

exists in the map and if its timestamp is non-zero. Next, it calculates the delay of the packet

by taking the difference between the current timestamp and the one stored in the map, stores the

number of retransmissions, deletes the packet information from the timestamps and retransmis-

sions maps, adds the obtained delay value to a list that is used later in the work for statistical

purposes and updates the number of received packets. Finally, the simulation time, delay, number

of retransmissions, data rate and distance associated with the packet are logged into a CSV file.

void MyGymEnv : : RxTime ( P t r < c o n s t Packe t > p a c k e t )
{

double now = S i m u l a t o r : : Now ( ) . GetSeconds ( ) ;
u i n t 6 4 _ t nRT ;
t h i s −> n o d e P o s i t i o n = t h i s −>NodeModel −> G e t P o s i t i o n ( ) ;
i f ( t h i s −>packetMap . f i n d ( packe t −>GetUid ( ) ) −> second != Seconds

( 0 ) )
{

f l o a t d e l a y = (Now ( ) − t h i s −>packetMap . f i n d ( packe t −>
GetUid ( ) ) −> second ) . GetDouble ( ) / 1 0 0 0 0 0 0 ;

nRT = t h i s −> p a c k e t R e t r a n s . f i n d ( packe t −>GetUid ( ) ) −>
second ;

t h i s −>packetMap . e r a s e ( packe t −>GetUid ( ) ) ;
t h i s −> p a c k e t R e t r a n s . e r a s e ( packe t −>GetUid ( ) ) ;
t h i s −> i n t e r v a l V a l u e s . push_back ( d e l a y ) ;
t h i s −>RxCount ++;

t h i s −> o f l o g << now << " ; " << d e l a y << " ; " << nRT << " ; "
<< t h i s −> d a t a R a t e /1000000 << " ; " << t h i s −>

n o d e P o s i t i o n . x << s t d : : e n d l ;
}

}

Listing 3.7: "MyGymEnv::RxTime" function
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3.5 SLARA Agent Architecture

The SLARA agent, as well as the DARA agent, is implemented in Python and uses the TF-Agents

library. The agent function is to receive an observation and a reward from the environment of the

previous time interval, and select the action for the next time interval. The agent implementation

is similar to DARA agent, it uses DQN learning algorithm with the following parameters:

• Observation space — float value between 0.0 and 1.0. The SNR value is scaled by dividing

the SNR value in dB by 100 to improve the learning process.

• Action space — integer value representing the MCS index used to transmit packets for the

next time interval.

• Optimiser — Adam optimiser [18] with a default learning rate of 10−3.

• Epsilon greedy — value between 0 and 1 that determines the percentage of random actions

the agent performs. This value starts at 1 (every action is random) and, through the estab-

lished epsilon decay period (10×T , where T is the simulation duration), decreases over

the simulation until 0.1 (10% of actions are random). The epsilon decay period value is

chosen to ensure that at the end of the simulation, all options have been properly explored

and that the agent, when tested, will choose the optimal actions.

• Q-Network — 2 layers of interconnected parameter with 32 units each.

• Replay Buffer — size of 106 trajectories. During the simulation, trajectories are appended

to the replay buffer. Samples randomly a batch of 64 trajectories from the replay buffer

every time the agent is trained.
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Chapter 4

Evaluation Results

This chapter presents the results of the final solution. This version of SLARA was trained with

a duration (T ) of 6000 seconds with the Waypoint mobility model, as presented in Figure 3.5.

A learning rate of 1× 10−3 was chosen with an epsilon decay period of 10×T . The results of

this SLARA version are compared with three algorithms. First is Minstrel because it is a popular

algorithm in wireless networks, and it is essential to evaluate the performance against a widely

used algorithm. Next is Ideal because it is an ns-3 algorithm and tries to implement an ideal rate

control. Lastly, DARA, because SLARA is an adaptation of this algorithm and it is important to

evaluate the difference between the two algorithms caused by the adaptation.

4.1 SLARA reward variation analysis

In this section, the results for the 85th, 90th and 95th percentiles are shown. In all sections, the

distance range is between 10m and 1150m due to problems in training DARA for distances over

1150m. The distance limitation is done to make the evaluation of all algorithms fairer.

In Figure 4.1a is plotted the delay for every packet throughout a 60 seconds simulation from

an initial distance of 10m to a distance of 1150m. It is visible that the behavior of 85th and

90th percentiles are similar and the 95th percentile tends to be more conservative when changing

MCS because until around a distance of 950m the existence of delay peaks in the 95th percentile

are residual due to the early MCS change. Besides that, for the 95th percentile it earlier MCS

changes are observed compared with the other two percentiles, as observed at 350m and 600m.

That behaviour was expected by higher percentiles due to the added functionality in Equation

3.3, which penalises drastically, assigning a null reward if the delay corresponding to the selected

percentile is higher than 2ms, leading to the fact that the higher the percentile is, the higher the

delay associated to it will be and the more the algorithm tends to avoid these values and be more

conservative. In Figure 4.1b is plotted the Cumulative Distribution Function (CDF) plot from

the previous figure results. It is observed that even with several delay peaks, the 85th and 90th

percentiles in general, have lower delays than the 95th percentile and both tend to perform better

than the 95th percentile.
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(a) SLARA plot for all packets delay.

(b) SLARA CDF plot for all packets delay.

Figure 4.1: SLARA results for all packets delay.

In Figure 4.2a the max delay is plotted for every 100ms interval throughout the simulation

previously mentioned. This graph is similar to the previously analysed but further reinforces each

percentile’s peaks and maximum delay. As observed in Figure 4.2b the 95th percentile max delay

values are lower than the others percentiles. Since the designed reward tends to optimise the

selected percentile, the values above that percentile are not taken into consideration when training

the algorithm. Then, a higher percentile leads to better optimised max delay values with less delay

peaks and more linear delay values. In contrast, lower percentiles present generally lower delays

but with the cost of having high delay peaks leading to higher max values.

In Figure 4.3a the throughput is plotted for every 100ms throughout the previous simulation is.
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(a) SLARA plot for max delay for every 100ms interval.

(b) SLARA CDF plot for max delay for every 100ms interval.

Figure 4.2: SLARA results for max delay for every 100ms interval.

As expected, the 95th percentile is conservative, it lowers the MCS earlier than other percentiles,

as observed at around 150m, 300m, 350m and 600m, and falls at around 1150m distance. The

85th and 90th percentiles have similar behaviour, but the 85th percentile seems greedier than the

90th percentile since, at around 150m, the 85th percentile maintains the MCS, and throughput

lowers drastically due to bad link quality, and the 90th lowers the MCS. Near the 1150m distance,

the 85th percentile throughput falls to zero, and the 90th maintains the throughput at 5 Mbit/s.

In Figure 4.3b the CDF plot proves the previous observations since the 85th and 90th percentiles

have higher throughput than the 95th percentile most of the time, and the 90th percentile never

assumes a throughput of 0 Mbit/s. That leads to the conclusion that the 90th percentile is solid
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compared to other RAAs.

(a) SLARA plot for throughput for every 100ms interval.

(b) SLARA CDF plot throughput for every 100ms interval.

Figure 4.3: SLARA results for throughput for every 100ms interval.

4.2 SLARA vs RAAs

In this section, a comparison is made with some algorithms mentioned in state of the art with

DARA. The purpose is to compare the results of SLARA with these algorithms and verify im-

provements, failures and what to improve to obtain better performance with SLARA. The sim-

ulations were performed only with the waypoint mobility model since, in the current version of

SLARA, there is no functionality to obtain backup data rates. For more unpredictable mobility
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scenarios (such as the random mobility model), SLARA would be at a disadvantage compared to

some RAAs.

4.2.1 SLARA vs DARA

In Figure 4.4a it is verified that SLARA has lower delay peaks than DARA, especially in longer

distances, and near the 400m distance SLARA lowers the MCS earlier than DARA, which result

in lower packet delay than DARA until DARA lowers the MCS. This is expected because DARA

tends to be greedier since it aims to maintain the higher throughput possible instead of directly

being trained to maintain the lowest delay possible, but generally DARA delay for all packets

is lower than SLARA. Nevertheless, the behaviour of both algorithms is similar as Figure 4.4b

proves, by showing the curves closer to each other.

In Figure 4.5a, the peaks in the delay of DARA are evident when compared to the peaks of

SLARA, especially after the 400m distance where SLARA has no delay peaks compared to DARA

when lowering the MCS. This difference is essentially due to DARA’s preference for higher data

rates but also to the percentile used by SLARA, the 90th percentile, which, being high, penalises

very high peaks by making MCS choices that soften these peaks, making the maximum values at

each 100ms more linear. Figure 4.5b reinforces the previous conclusion since the SLARA curve

is above the DARA curve, which means that generally, the max delay for every 100ms interval in

SLARA is lower than the DARA max delay for every 100ms interval.

In the throughput analysis of both algorithms in Figures 4.6a and 4.6b, it is visible that DARA

makes choices that benefit throughput, although the difference between the two is slight, which

is caused by a more conservative choice by SLARA after the 400m distance to avoid delay peaks

caused by packet retransmissions due to poor link quality.

In this comparison between DARA and SLARA, it was found that for the chosen percentile,

the behaviour of SLARA is very close to DARA, optimising mainly the maximum delay for each

100ms interval at the cost of changing earlier to a lower MCS to avoid packet retransmissions to

lower delay peaks.

4.2.2 SLARA vs Minstrel vs Ideal

Figure 4.7a shows that Minstrel shows high delay values with many peaks. In contrast, Ideal

presents more linear values with few delay peaks and changes to a lower MCS earlier than Minstrel

and SLARA, being the more conservative algorithm. SLARA, even though it has more delay

peaks than Ideal, changes to a lower MCS earlier than Minstrel and Ideal after the 400m distance

and appears to have a lower delay at the overall level, having better performance than these two

algorithms. The same is confirmed with the curves observed in Figure 4.7b, where it can be seen

that SLARA’s curve is above the curve of the other two algorithms.

Figure 4.8a shows the massive discrepancy between the maximum delay value at each 100ms

interval of Minstrel and those of SLARA and Ideal (which present linear values with few delay

peaks). There are also some points where SLARA delay is slightly higher than Ideal’s, observed
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(a) SLARA vs DARA plot for all packets delay.

(b) SLARA vs DARA CDF plot for all packets delay.

Figure 4.4: SLARA vs DARA results for all packets delay.

from 700m and 1000m, due to earlier MCS change by Ideal except after 400m distance. This

proximity of SLARA to Ideal, as also observed in the curves of Figure 4.8b, adds value to the

SLARA results since Ideal is an ns-3 algorithm with the purpose of reproducing an "Ideal" rate

control and aims to maximise the physical rate since the frame success ratio is intended to be

above a fixed threshold.

Although SLARA is not designed with the goal of throughput optimisation, in Figure 4.9a

it is visible that the choices made by SLARA lead to better throughput values than Minstrel.

When compared to Ideal, the throughput values are similar, and at specific distances, both Ideal

and SLARA make more conservative decisions when compared to each other, such as around
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(a) SLARA vs DARA plot for max delay for every 100ms interval.

(b) SLARA vs DARA CDF plot for max delay for every 100ms interval.

Figure 4.5: SLARA vs DARA results for max delay for every 100ms interval.

450m where SLARA switches MCS earlier and around 1000m where Ideal switches MCS before

SLARA. Figure 4.9b shows that SLARA’s curve is relatively lower than Ideal’s, indicating that

SLARA’s throughput values are higher than Ideal’s.

4.3 Conclusions

As observed previously, the 90th percentile reward configuration in SLARA proves to be more

balanced concerning the percentiles with which it was compared. Given the complexity of identi-

fying the optimal percentile for the reward configuration, it is possible to conclude that there may
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(a) SLARA vs DARA plot for throughput for every 100ms interval.

(b) SLARA vs DARA CDF plot throughput for every 100ms interval.

Figure 4.6: SLARA vs DARA results for throughput for every 100ms interval.

be a more suitable percentile that can obtain better results compared to those currently obtained.

Nevertheless, with the reward configuration, it was possible to obtain improvements relative to

DARA, although, in general, the behaviour of both algorithms is similar. SLARA led to the lin-

earisation of the maximum delay and the reduction of the delay peaks, leading to greater reliability

in the delay of this algorithm, as intended. Although the comparison was made through simula-

tions, SLARA demonstrated better performance relative to Minstrel with different behaviour in

MCS selection, leading to a lower delay and a higher throughput.
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(a) RAAs plot for all packets delay.

(b) RAAs CDF plot for all packets delay.

Figure 4.7: RAAs results for all packets delay.
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(a) RAAs plot for max delay for every 100ms interval.

(b) RAAs CDF plot for max delay for every 100ms interval.

Figure 4.8: RAAs results for max delay for every 100ms interval.
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(a) RAAs plot for throughput for every 100ms interval.

(b) RAAs CDF plot throughput for every 100ms interval.

Figure 4.9: RAAs results for throughput for every 100ms interval.
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Chapter 5

Conclusion and Future Work

With the work developed throughout this dissertation, it was possible to demonstrate that MAC

transmission delay is a metric that can be considered when developing RAAs. Although SLARA is

a DARA adaptation and in the comparison between both, the differences are reduced with a slight

advantage in the global delay for DARA, SLARA with the 90th percentile reward configuration

allowed a reduction of delay peaks and the linearisation of the maximum delay, allowing greater

reliability in the link, at the cost of a slight disadvantage in throughput compared to DARA. When

compared to Minstrel, SLARA demonstrated great results relative to a popular RAA, although

they were compared through simulation, assuming lower delay and higher throughput values than

Minstrel, closely approximating the "ideal" rate control of Ideal. Even with some positive results,

there is room to optimise SLARA. The 90th percentile choice was based on some tests that were

not representative of all percentiles due to the time required to have that representativeness. That

said, other percentiles or metrics related to the time interval delay may better suit this algorithm

and obtain a lower delay than that of the algorithms compared to SLARA. Therefore, the reward

function was developed to have an input parameter to make the normalisation of the representative

delay of a time interval flexible.

At the beginning of this work, several doubts and difficulties arose. There was great diffi-

culty in finding related work that optimises the delay with RAAs. It was verified that it is a gap.

The existence of related algorithms could contribute to the development of new methods or even

improvement of some already used, but meanwhile, it was necessary to develop a strategy from

scratch. The initial goal was to normalise delay so that the reward was between 0 and 1 to increase

the scalability of its training. For this, conducting a thorough preliminary study was necessary to

understand the behaviour of the delay in the various algorithms and the delays associated with each

MCS. These delays were useful to later use the lowest delay for delay normalisation. Although

one problem was solved, another problem arose, which was to find a delay value that reflected

the quality in choosing an MCS for a given time interval. As already mentioned, the temporary

solution, that is subject to be improved, was to choose the 90th percentile, which represents the

limit between linear and peak delay values.

In the future, there is much that can be improved and added to SLARA. As already mentioned,
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it will be essential to optimise the value reflecting the choice of an MCS for a time interval. Since

the conditions of the simulation scenario have been simplified for the first version by disabling

the frame aggregation, the next step will be to optimise the delay with active frame aggregation,

evolving the algorithm to a link adaptation algorithm. In addition, it would also be important

to add a feature to the algorithm to perform micro actions within the 100ms intervals so that it

is possible to switch to a backup data rate. If there is a high variation in the link quality, the

algorithm could adapt quickly without waiting for the next interval to select another MCS. With

this functionality, it would be interesting to use the random mobility model to test its performance

of this functionality.
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