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Resumo

Atualmente, graças à evolução da tecnologia, há uma grande quantidade de dados espácio-temporais
disponível sobre o movimento de objetos como carros ou objetos que mudam de forma ao longo
do tempo como as fronteiras de fogos florestais ou de um tumor, mas o desenvolvimento de soft-
ware capaz de extrair automaticamente informação sobre eventos espácio-temporais não seguiu
esta evolução ao mesmo ritmo. Para fazer progredir o estado da arte nesta área, foi proposta uma
framework conceptual e desenvolvida no contexto de uma dissertação de mestrado. Na base desta
framework encontra-se um algoritmo de Point Set Registration (CPD) usado para detetar mudança,
mas testes realizados no passado mostraram que a escolha do algoritmo para esta tarefa tem um
grande impacto na qualidade dos resultados desta framework.

Tendo em conta que não foi feito um trabalho exaustivo de comparação antes da seleção do
algoritmo de PSR utilizado, esta família de algoritmos foi agora estudada em detalhe, incluindo
novas técnicas baseadas em Deep-Learning, de forma a escolher e testar as técnicas que demon-
stram um maior potencial para melhorar os resultados da framework. Seguindo a metodologia
de testes definida para a framework, os diferentes algoritmos foram comparados entre si e com o
algoritmo já implementado na framework. Implementado na framework, cada algoritmo foi avali-
ado numa série de testes de forma a concluir qual é a melhor técnica a ser usada neste contexto,
ou se, de forma a maximizar os resultados da framework, é necessário usar diferentes técnicas em
tarefas com diferentes características. Para isto, foi desenhado e executado um protocolo de testes
com base em testes e métricas já presentes na framework.

Os resultados mostraram que 2 dos algoritmos (GMMREG e KCREG) apresentam vantagens
em relação ao CPD em alguns casos específicos, apesar de no geral atingirem resultados ligeira-
mente inferiores. O algoritmo baseado em Deep Learning escolhido ficou aquém das espectativas.
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Abstract

Nowadays, thanks to the evolution of technology, there is a huge amount of spatiotemporal data
available about moving objects like cars or shape shifting objects like forest fire boundaries or tu-
mor boundaries, but the development of software capable of automatically extracting information
about spatiotemporal events did not follow this evolution at the same pace. In order to progress the
state-of-the-art in this area, a conceptual framework was proposed and developed in the context
of a masters dissertation. At the core of this framework a Point Set Registration algorithm (CPD)
is used to detect change, but past performed tests showed that the chosen algorithm for this task
greatly impacts the overall performance and quality of results provided by the framework.

Given the fact that no exhaustive comparative work was performed to select the adopted PSR
algorithm, the Point Set Registration family of algorithms will be studied in detail, including
some of the new Deep Learning based techniques, in order to test the algorithms and choose the
techniques that have the greatest potential towards result quality and performance. By following
the testing methodology defined for the framework, the different algorithms will be compared and
also with respect to the algorithm already used by in the framework. Connected to the framework,
each alternative technique will run a set of tests in order to conclude which algorithm is the best
overall to be used in this context, or if in order to maximize the framework’s performance. To do
so, a testing protocol was design and executed, based on tests and metrics already present in the
framework.

Results show that 2 of the algorithms (GMMREG and KCREG) present advantages in partic-
ular use cases when compared to the CPD algorithm, although their results are in general inferior.
The Deep Lerning based algorithm under performed for the expectations.
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Chapter 1

Introduction

Spatiotemporal events regarding a given object consist in a change of state like appearance/ disap-

pearance of the object, change of shape, movement/orientation and other non-physical properties

that the object can suffer and happen at a particular time (or time interval) and location [47]. Ex-

amples of spatiotemporal events are the changes of trajectory, speed and acceleration in a car´s

movement or the changes of shape and location as an iceberg drifts in the ocean and melts over

time, a forest fire boundary lines or the boundaries of a tumor. With the advance of technology

there are currently a considerable number of devices that keep track and record spatiotemporal

data [42]. However, the huge amount of captured spatiotemporal data can only be useful if there

are efficient processes that automatically extract knowledge regarding features, behaviors, trends

and patterns that can be used for a designated purpose.

1.1 Context and Motivation

On the representation and quantification of change in spatiotemporal phenomena [6] it was con-

cluded that there is still a lack of tools that extract spatiotemporal features from raw spatiotemporal

data according to user needs. The authors proposed a conceptual framework with the goal of auto-

matically detecting spatiotemporal features based on raw spatiotemporal data and on user-defined

goals.

The conceptual framework focuses on the detection and quantification of spatiotemporal phe-

nomena based on user input information such as which types of events should be detected, as well

as what scale actually makes them worthy of attention. Different users can define distinct event

types and scales leading to distinct outputs for the same input spatiotemporal dataset.

The raw spatiotemporal input data consists of a sequence of temporal snapshots of a given

object. Each snapshot contains a 2D shape descriptor that defines the contours of the given object.

The output of the framework is the set of spatiotemporal events that match input event types

considered relevant, as well as their quantification and the time intervals for which these events

occurred, in the form of object change representations (representation of a change specifying the

time interval of its occurrence).

1



Introduction 2

The conceptual framework towards automatic detection and quantification of spatiotemporal

phenomena requires at its core a Point Set Registration algorithm (PSR) and it was a conclusion

of the authors that results may heavily depend on the selected PSR algorithm.

Being a work limited in time, the authors could not perform tests using several PSR techniques

with the conceptual framework prototype and measure how distinct techniques affect the quality

of results. Hence, the present work focuses on answering the previous questions concerning the

detection and quantification of change in spatiotemporal phenomena about how results vary ac-

cording of the steps identified to improve the framework in order to contribute to the advancement

of the state-of-the-art in this area and help further improving a tool that is already very valuable.

1.2 Problem

In order to detect and quantify the relevant spatiotemporal phenomena, this framework has imple-

mented in its core a Point Set Registration algorithm (more about this in Chapter 2) that compares

the shape descriptors of two consecutive timestamps and identifies the transformations that hap-

pened between them. During the development of the framework, a PSR algorithm was chosen and

implemented and later tests concluded that the accuracy of the framework as a whole (and, con-

sequently, its usefulness) greatly depends on the ability of the PSR algorithm to correctly detect

the transformations happening between timestamps. But, due to lack of time, no other algorithm

was implemented and tested which left open the question of whether the algorithm being used is

indeed the one that can give the framework the best possible results.

Therefore, this dissertation further researches within the described scope by studying the ap-

plication and effect of Point Set Registration algorithms in more detail, including Deep Learning-

based techniques.

1.3 Hypothesis

Based on the described problem, this work studies different PSR techniques in the central role of

detection and quantification of spatiotemporal data objects that evolve over time. Furthermore,

this work assesses traditional PSR techniques as well as deep-learning PSR techniques.

1.4 Objectives

To answer the questions identified in the previous section this work focuses on the study of alterna-

tive PSR techniques at the core of spatiotemporal feature detection and quantification. Therefore

the research objectives are:

• identify and study existing PSR techniques;

• draw conclusions about what PSR algorithm presents the best results for this context or how

to use more than one technique in order to maximize the accuracy of the framework.
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1.5 Methodology

The task at hand is divided into the following steps:

1. extensively study the state-of-the-art of PSR algorithms, concerning both the traditional

techniques and the more recent deep learning based techniques;

2. after deciding which are the most promising PSR algorithms, implement or adapt imple-

mentations to be used in the framework;

3. design an experimentation protocol: tests, procedures, variables, test execution;

4. perform tests and collect results;

5. analyze results and reach conclusions in light of the written hypothesis.

1.6 Structure

This dissertation is structured as follows. Chapter 2 presents the literature review about PSR

algorithms and how to test them. Chapter 3 describes the proposed solution, mentioning some

implementation details.



Chapter 2

Point Set Registration

This work focuses on Point Set Registration (PSR) techniques. To that end, it is necessary to study

the state-of-the-art literature to identify the main concepts about the field, the characteristics of

the existing and more promising techniques, as well as how these techniques are evaluated and

compared. Therefore, section 2.1 of this chapter exposes the main concepts about PSR. Section

2.2 exposes the general pipeline of PSR techniques using a particular example. After, section

2.3 describes the different ways PSR techniques can be categorized as well as their usual pipeline.

Section 2.4 analyzes the experiments and metrics usually used to test and compare PSR techniques.

Section 2.5 presents the PSR techniques surveyed during this study and tries to expose their main

characteristics, as well as classifying them according to the concepts described in section 2.3 and

commenting on their results recorded by their own authors. Finally, section 2.6 ends the chapter

with its summary.

2.1 Definition

Point Set Registration (or point matching) is the process of calculating the transformation that

aligns two point sets with each other [28]. These point sets simply represent a set of points in

a coordinate system. PSR applications are usually related with computer vision tasks like object

recognition through shape matching [4], face recognition [43] or medical image processing [39].

Figure 2.1, extracted from [31], gives a visual representation of a simple PSR problem.

Figure 2.1: Visual representation of simple PSR problem, extracted from [31].

4



2.2 PSR General Pipeline 5

The biggest threats to the accuracy of these techniques, presented in Figure 2.2, are deforma-

tions and noise that can be originated by, for example, different viewpoints, poses, partial occlusion

or outliers.

Figure 2.2: Threats to the accuracy of PSR algorithms, extracted from [51].

2.2 PSR General Pipeline

PSR techniques tend to follow a general pipeline which is, in most part, common to all of them.

This pipeline is composed of six steps [50]: point selection, point matching, weighting pairs,

outlier rejection, error minimization and motion estimation. Maiseli et al. [28] explain each one

of these steps in the perspective of one of the most well-known PSR algorithms, ICP [36]:

1. Point selection: aims to discard useless data from either point set, and the goal is to boost

the computational speed of the algorithm;

2. Point matching: creates correspondences between point sets;

3. Weighting pairs: assigns appropriate weights to matched pairs of the point sets (closer point,

larger weights, and distant points, smaller weights);

4. Outlier rejection: eliminates matched point pairs that are likely to affect the error minimiza-

tion process;

5. Error minimization: minimizes the error (based on a chosen metric) correspondent to the

difference of the two point sets;

6. Motion estimation: estimates the transformation that aligns the two point sets.

Figure 2.3 presents the pipeline for the ICP algorithm and, although slightly different from the

pipeline presented above, the similarities are clear and the main steps the same.

All techniques surveyed that were proposed prior to 2018 fit one of the categories mentioned

above. But, since 2021, new approaches to solve PSR problems have been proposed which are

based on a change in the computational paradigm towards deep learning and Artificial Intelligence
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Figure 2.3: Pipeline of the ICP algorithm, extracted from [28].

techniques [5]. To distinguish between these two families, the remainder of this document will

refer this last family as Deep Learning Based techniques (addressed in section 2.5) as opposed to

the classic computational paradigm referred as Traditional techniques.

2.3 Classification of PSR Techniques

Pairwise/groupwise

PSR techniques are broadly split into two categories by several articles: pairwise and group-

wise [51] [17]. Pairwise registration algorithms consider only two point sets and calculate the

transformation that better aligns those two sets. According to Zhu et al. [51], pairwise registration

algorithms can be divided into three categories: distance-based, filter-based and probability-based

methods.

• Distance-based methods’ major steps are calculating the distance between the two given

point sets, finding point correspondences between them and minimizing that difference in

the second step based on the correspondences found.

• Filter-based methods make use of a State Space Model (SSM) to solve the registration prob-

lem. According to Patterson et al. [32], SSM is a time-series model that predicts the future

state of a system from its previous states probabilistically. When solving PSR problems

with Filter-based techniques like the one proposed by Li et al. [23], a state is a set of pa-

rameters that represent a transformation. For example, a possible state that represents a

transformation that is the result of the combination of a rotation and a translation can follow

this structure:

x = [x, y, z, tx, ty, tz]

• Finally, probability-based models formulate the registration problem as a maximum

likelihood estimation problem, mostly using Gaussian Mixture Models. Figure 2.4 helps

explain how this concept is applied in a PSR problem, using as example the filter-based

PSR technique proposed by Ma et al. [27].
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Figure 2.4: Formulating PSR as a maximum likelihood problem, extracted
from [27].

In this technique, points from one point set are assigned neighboring points being the closest

points belonging to the other point set. Then, weights are assigned to each neighbor based on the

likelihood of being the correspondent point and the transformation is finally calculated based on

the assigned weights.

While surveying the existent pairwise PSR techniques, we came across a fourth group of

techniques, self-entitled physics-based methods [1]. These methods apply physics concepts to

solve the registration problem like assigning mass and velocity to the points of the point sets.

Figure 2.5 shows a representation of how the technique proposed by Ali et al. [1] aligns two

surfaces of points. The red surface, which can be described as f(x, y) = cos(x).sin(y) induces a

relativistic gravitational force field to attract the blue surface described as f(x, y) = -1.

Figure 2.5: Example of PSR using a gravitational approach to align two surfaces,
from [1].

Groupwise registration algorithms try to register several point sets simultaneously. Group-

wise registration problems can also be solved by using pairwise registration as many times as

needed [8] [20] but this solution has some drawbacks like error propagation throughout the several

pairwise registration steps [11]. Groupwise registration techniques, according to Zhu et al. [51],

can be divided into two subgroups: information theoretic-based [17] methods and probability-

based methods. In information theoretic-based methods, the registration of multiple point sets is

performed based on information theoretic measures, which are a class of measures used for com-

paring clusters [40]. In probability-based methods, the point sets to be registered are formulated

as probability functions. Furthermore, considering the way methods use the mean point set of a
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cluster, there are two opposite approaches to be taken within groupwise registration techniques:

forward and backward [10]. Both approaches involve starting by calculating the mean point set of

the cluster. In the forward approach, the different point sets are assumed to be noisy observations

of the mean point set, while in the backward approach, the mean point set is assumed to be a noisy

observation of all the point sets. Then, it is only necessary to estimate the transformation between

the mean point set and each of the point sets in the cluster.

Parametric/non-parametric

PSR techniques can also be described as parametric or non-parametric. According to Romero

et al. [35], parametric techniques are the ones that try to find a small set of parameters to describe

the transformation that minimizes an error function associated with the alignment of two point

sets. On non-parametric techniques, the transformation cannot be represented as a set of parame-

ters, implying the existence of deformation vectors for each point.

Rigid/non-rigid transformations

Another difference between PSR techniques is the kind of transformations they estimate. Some

techniques estimate only rigid transformations, others estimate only non-rigid transformations

and there are some other techniques that can estimate both. Rigid transformations perverse the

distance between points, like translations and rotations. Non-rigid transformations are all other

transformations that do not perverse the distance between points, with scaling being a very simple

example of this type of transformation. Figure 2.6 gives two simple examples of rigid and non-

rigid transformations.

Figure 2.6: Examples of rigid and non-rigid transformations.

Deep Learning Based Techniques

Deep learning based techniques apply the new computational paradigm of deep learn-
ing to registration problems. According to Zhang et al. [50], Deep Learning Based
techniques can be split into two categories, whether they are correspondences-based or
correspondences-free.

The key pipeline of most correspondences-free methods involves two steps:
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1. identifying the global features (feature descriptors) of the two point sets (this identi-
fication must be sensitive to the pose because different poses have different features)

2. calculating the parameters of the transformation corresponding to the difference of
the two sets of global features.

The performance of these methods is perfect when the point clouds are the same with
different poses but, since the performance greatly depends on the feature extractor net-
work, the major criticism of such correspondence-free approaches is their generalization
capability for real life scenarios.

Correspondences-based methods consist of four major modules (similar to the tradi-
tional methods): feature extraction, matching, outlier rejection and motion estimation.
Most of these deep learning based methods mix traditional modules with deep learning
modules. In each one of these modules, deep learning techniques can be applied in dif-
ferent ways:

• In feature extraction, unlike correspondence-free methods, which extract the global
features per-point set, the correspondences-based methods extract the per-point or
per-patch (subset of a point set) embeddings of the two input point clouds to gener-
ate a mapping and estimate a rigid transformation.

• In the matching phase, the common principle for traditional methods is to search the
most similar points yi in Y to xi in X to form corresponding pairs. There are deep
learning techniques that apply this principle, however, owing to the sparsity and
partiality, two point clouds do not always have a point-to-point correspondence. To
overcome this, the virtual point method is proposed. This method is used to match
points in the matching stage, creating virtual points to correspond to real points.

• For outlier rejection, in traditional methods, RANSAC [12] is the most widely used
robust fitting algorithm, which utilizes the maximum consistency as a supervised
signal to filter out the outlying matching pairs. Deep learning methods here can
be supervised (usually through classification to distinguish inliers from outliers) or
unsupervised (usually using a consensus maximization strategy to maximize the
number of inliers).

• The last module, motion estimation, can be done either through regression, Singular
Value Decomposition (SVD) or weighted SVD that gives a bigger weight to points
with more features.
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2.4 Experiments, Datasets and Metrics

The authors of PSR techniques tend to perform similar experiments on their techniques
and use similar metrics to measure the results of the techniques on those experiments.

Experiments consist in registering several pairs of point sets and calculating the results
of the technique based on the chosen metrics. These experiments can be performed in
either real datasets (usually datasets with real 3D scans of objects or indoor scenes) or
synthetic datasets.

Synthetic datasets allow the authors to have a better control of the registration tasks
they expose their techniques to, especially if the authors create the dataset themselves.
These datasets also allow the authors to know the ground truth of each test case (the exact
transformation the techniques need to identify), which helps to calculate as accurately as
possible the metrics that evaluate the performance of the techniques. Real datasets allow
authors to better assess how a certain PSR technique can perform in real life scenarios.

There are some datasets which tend to be used more frequently by authors to test their
PSR techniques (all the figures from the following listing were extracted from Research-
Gate1:

• ModelNet [44] is a synthetic dataset which contains numerous 3D CAD (computer-
aided designed) models of various different categories like airplanes, plants or lamps;

Figure 2.7: Some examples of the ModelNet dataset.

• FlyingThings3D [29] is a synthetic dataset used particularly for scene flow estima-
tion and consists of everyday objects flying according to randomized 3D trajectories;

Figure 2.8: Example of the FlyingThings3D dataset.

• The Stanford 3D scanning repository 2 makes countless high-quality real 3D scans
of objects available to researchers;

1https://www.researchgate.net/
2https://graphics.stanford.edu

https://www.researchgate.net/
https://graphics.stanford.edu
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Figure 2.9: Example of the Stanford 3D scanning repository dataset.

• CE-Shape-1 [22] consists of 1400 synthetic shapes group into 70 classes, each con-
taining 20 similar objects like guitars, hats or different animals;

Figure 2.10: Some examples of the CE-Shape-1 dataset.

• BU-3DFE [46] is a 3D real dataset consisting of scans of human faces;

Figure 2.11: Some examples of the BU-3DFE dataset.

• GatorBait100 3 has 100 2D shapes representing fishes from 30 different classes;

• The KITTI dataset [30] consists of vision tasks built using an autonomous driving
platform.

Figure 2.12: Example of the KITTI dataset.

Apart from these datasets, PSR techniques are also tested with different kinds of med-
ical scans like real 3D scans of arms in different poses [2] or real scans of human heads
[13].

3https://www.cise.ufl.edu/~anand/publications.html

https://www.cise.ufl.edu/~anand/publications.html
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Just like the experiments and the datasets used across different articles tend to be
similar, so do the metrics used to evaluate the results of the techniques by different articles.

Probably the most used metric is the root mean squared distance or root mean squared
error (RMSD or RMSE) which calculates the difference between the two point sets, mean-
ing that the goal of the techniques is to minimize it. The formula in Figure 2.13 indicates
how RMSE is calculated.

Figure 2.13: Formula to calculate RMSE.

There are other metrics like the end point error (EPE or 3D EPE) that can be used with
flow estimation accuracy (ACC). While EPE and 3DEPE calculate the difference between
two vectors regarding a transformation, ACC calculates the portion of vectors which dif-
ference from the ground truth is below a chosen threshold, making it similar to another
possible metric which is recall (ratio of true-positive correspondences between points of
different point sets after applying the transformation within a pre-specified tolerance).

There are also metrics related to efficiency like the run time or the number of iterations
necessary for a technique to converge to a chosen accuracy/error value.

Testing PSR techniques for the detection of spatiotemporal events

Carneiro et al.[6], responsible for the conceptual framework this work aims to improve
upon, developing their own testing environment which, although using similar experi-
ments and metrics to the ones mentioned above, has its own particularities. They decided
to create their own synthetic 2D dataset using the free software Blender. They also cre-
ated two custom metrics that fit the goal of the framework. The first metric compares the
representation of the 2D object obtained when applying the transformation calculated by
the framework with the ground truth using the ratio between areas of polygons and con-
vex hulls [15]. Figure 2.14 gives a visual representation of the application of this metric,
whose objective is then to evaluate how accurate is the final result given by the framework.

The second metric compares the sequences of transformations identified by the frame-
work with the ground truth sequence of transformations. This sequence of transformations
is a list of frame intervals and the transformations that occur during that interval. Figure
2.15 shows an example of the list outputted by the framework and the expected result,
which this metric compares.
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Figure 2.14: Visual representation of the first metric created by [6].

Figure 2.15: Example of two sequences of transformations that the second metric
created by [6] compares.

2.5 Survey of PSR Techniques

Zhu et al.[51] performed a survey on PSR techniques where it is presented a table summa-
rizing a considerable number of traditional techniques as well as the classification regard-
ing the criteria presented in section 2.3. During the literature review performed for the
current work, we came across several other algorithms which are not present in [51], both
traditional and deep learning based. Fitting newly surveyed techniques in the same clas-
sifications feels relevant to show that the classification system holds and that it is possible
to compare techniques according to similar characteristics.

The following sections address each of the surveyed PSR techniques and present its
main characteristics, details and what tests were performed. The following table summa-
rizes the main characteristics of each surveyed technique. Table 2.1 shows that surveyed
techniques are mostly beyond 2018, are pairwise and parametric.

2.5.1 Schrodinger Distance Transform Method

SDTM [9] is a parametric, pairwise, physics-based PSR technique that supports rigid
as well as non-rigid transformations. It addresses the problem of point cloud matching
as a shape matching problem by transforming each of the given point clouds into a shape
representation called the Schrodinger distance transform (SDT) representation. Based on
this, point-sets are represented as square-root densities placed at unique locations on a
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Table 2.1: Summary of surveyed techniques.

Research Study Year Pairwise/
Groupwise

Method Rigid/Non-
Rigid

Parametric/Non-
Parametric/

SDTM 2014 Pairwise Physics-based Rigid and
Non-rigid

Parametric

Gravitational Ap-
proach for PSR

2016 Pairwise Physics-based Rigid Parametric

NRGA: Gravita-
tional approach for
non-rigid point set
registration

2018 Pairwise Physics-based Non-rigid Parametric

Robust ICP Reg-
istration using Bi-
unique Correspon-
dence

2011 Pairwise Distance-based Rigid Parametric

Globally Optimal
- Iterative Closest
Point

2016 Pairwise Distance-based Rigid Parametric

Non-rigid Iterative
Closest Point

2018 Pairwise Distance-based Non-rigid Parametric

Iterative Closest
Point - Maximum
Corretropy Crite-
rion

2019 Pairwise Distance-based Non-rigid Parametric

Extended Coherent
Point Drift

2016 Pairwise Probability-based Non-rigid Parametric

BCPD++ 2021 Pairwise Probability-based Non-rigid Parametric
Anisotropic Gener-
alized Bayesian Co-
herent Point Drift

2022 Pairwise Probability-based Rigid Parametric

FlowNet3D 2019 Pairwise Correspondences-
free

Rigid Non-Parametric

HPLFlowNet 2019 Pairwise Correspondences-
free

Rigid and
Non-rigid

Non-parametric

Point Net Encod-
ing for Point Cloud
Alignment

2019 Pairwise Correspondences-
free

Rigid Parametric

PR-Net 2019 Pairwise Correspondences-
based

Non-rigid Parametric

PointNetLK 2019 Pairwise Correspondences-
based

Rigid Parametric

TMM 2017 Groupwise Probability-based Rigid Parametric

unit Hilbert sphere: a generalization of the Euclidean space with inner product that does
not need to be restricted to a finite number of dimensions.

To gauge the performance of the algorithms, the authors of SDTM use recall (“defined
as the ratio of true-positive correspondences calculated in a dataset within a pre-specified
tolerance”). SDTM is compared with CPD and GMMReg. The first test was about rigid
registration in the form of rotations. For these tests, the algorithms performed registrations
on shapes from GatorBait100 dataset and, unlike SDTM and GMMReg, CPD was not able
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to find the correct correspondence in all test cases. For non-rigid transformation, tested
on a 2D fish shape dataset subject to various degrees of deformation, noise, outliers, and
occlusion, a fourth algorithm was also tested: RPM-LNS. Results show that SDTM was
clearly superior to the other algorithms overall, with RPM-LNS being the second best and
CPD arguably the worst. Two more tests were performed on real 3D scans datasets of a
toy house and an indoor scene and once again SDTM seems to greatly outperform the
other algorithms, with RPM-LNS being the worst of the four algorithms this time.

2.5.2 Gravitational Approach for PSR

The GAPSR technique, proposed by Golyanik et al. [14], is a parametric, pairwise,
physics-based, towards rigid transformations PSR technique. Formulates point set
registration as a modified N-body problem with additional constraints. A template point
set moves under gravitational forces induced by a reference point set. Every point from
both a reference and a template point set is treated as a particle with its own position, ve-
locity and acceleration. Pose updates are completed by numerically solving the differen-
tial equations of Newtonian mechanics. Particle movements are expressed by differential
equations of Newtonian mechanics.

The authors of GA use mean distance and root-mean-square distance to evaluate the
results. GA was compared with ICP and CPD. The first tests done with a synthetically
created 3D scan of a bunny shows that GA performs better than ICP but slightly worse
than CPD. A second test, which can be visualized with the help of Figure 2.16, was
performed consisting of the registration of a real 3D human body scan and in this case,
GA achieved very good results, while CPD gets trapped in local minima and ICP fails to
get even close to the desired solution.

Figure 2.16: Visualization of the results of the second test performed by the authors
of GAPSR, extracted from [14].

Two more tests were performed with 3D point sets with the addition of a lot of noise
like outliers, and in these two last tests GA proved to be superior to CPD. The authors
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then conclude that GA out-performs ICP overall and can also out-perform CPD in the
presence of very noisy data.

2.5.3 NRGA: Gravitational approach for non-rigid point set registration

NGRA is a parametric, pairwise, physics-based, towards non-rigid transformations
PSR technique based on simulation of gravitational interactions between points, proposed
by Ali et al. [1]. It sees the points as particles with masses interacting inside an isolated
non-empty space according to the universal law of gravitation. The optimal alignment is
referred to as the state of minimum gravitational potential energy between the point sets.
It aligns the gravitational fields produced by both point sets.

The error in each experiment of NRGA is given by the root-mean-squared error cal-
culation. Tests were made using the fish and the line (2D models) and the bunny (3D
model). For each model, five different cases were created with the addition of different
types of noise or perturbations. The NRGA was compared with the NR-ICP, TPS-RPM,
CPD and GMMReg. Figure 2.17 shows the results obtained for each of the techniques
tested with missing data from one of the point sets.

Figure 2.17: Visual representation of the results obtained by the techniques tested,
extracted from [1].

For these tests, NRGA seems to be the second best algorithm overall, behind CPD
but, one a last test where real 3D scans of human faces were used, NRGA seems to
outperform all other algorithms (with CPD being second and NR-ICP being last), which
might suggest that the advantages of the NRGA become more clear when registering more
complex point sets.

2.5.4 Robust ICP Registration using Biunique Correspondence

The BC-ICP technique is parametric, pairwise, distance-based and towards rigid
transformations. This technique tries to improve the original ICP [28]. Bi-unique corre-
spondence is introduced to enhance the performance of ICP by searching multiple closest
points, and forces every point to be part of one single correspondence. Figure 2.18 shows
the difference between ICP and BC-ICP in the step of finding point correspondences.
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Figure 2.18: Difference in the correspondence calculation step between (a) ICP and
(b) BC-ICP, extracted from [49].

It defines a new kind of outlier, called No-Correspondence (NC) Outlier, which is the
point that is not assigned to a bi-unique correspondence. Discarding NC Outliers greatly
improves the robustness in the case that large rotation error and non-overlapping areas
exist.

The BC-ICP was compared against the original ICP and two other variants, PICP and
FICP. The root mean square error (RMSE) was used to calculate accuracy. The first test
consisted in the registration of two point sets formed by the 3D scan of a statue. BC-ICP
was the only technique that could reach the desired solution, while the other three all seem
to get trapped in local minima (with PICP being the second best and the original ICP the
third best). The second experiment was done using the scan of an indoor environment and
the results were very similar. The authors then concluded that the BC-ICP outperforms
the original ICP both in accuracy and runtime.

2.5.5 Globally Optimal - Iterative Closest Point

Go-ICP, based on the original ICP [28], is proposed by Yang et al. [45] and is a paramet-
ric, pairwise, distance-based and towards rigid transformations PSR technique. It is
also based on a branch-and-bound scheme.

The Branch-and-Bound algorithm goes as follows: before enumerating the candidate
solutions of a branch (which, in the context of PSR, is a possible transformation), the
branch is checked against upper and lower estimated bounds on the optimal solution, and
is discarded if it cannot produce a better solution than the best one found so far by the
algorithm. BnB guarantees global optimality regardless of the initialization.

Go-ICP uses iterations of this branch-and-bound scheme intercalated with iterations
of ICP to find the transformation that minimizes an error function.
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Go-ICP technique was tested in the registration on 3D scans of objects and indoor
scenes. Tests used the root mean square error to measure the accuracy of the algorithm.
Figure XX shows the iterative steps taken by Go-ICP in one of the experiments.

Figure 2.19: Iterative steps taken by Go-ICP in a PSR task, extracted from [45].

The authors conclude that when real time performance is not critical or when a good
initialization is not reliably available, the algorithm obtains very good results reaching
nearly perfect solutions. However , the authors did not make any direct comparisons with
other existent algorithms.

2.5.6 Non-rigid Iterative Closest Point

Proposed by Liang et al. [24], and based on the ICP [28] technique, NICPIPCs is a para-
metric, pairwise, distance-based and towards non-rigid transformations PSR tech-
nique. In this technique, the distance between point sets (that needs to be minimized)
is determined based on multiple two-way correspondences rather than single one-way
correspondences.

According to the authors, there are some limitations about this method:

• the computational time is longer than other traditional methods;

• the current version of multiple correspondence search algorithms cannot distinguish
similar patterns. For example, the method may deform two horse legs into one or
swap them.

The authors of NICPs measure the accuracy of the methods by calculating the distance
between the template point set and the target point set. A 3D real dataset of human bone
scans is used. Figure 2.20 is an example of one of the test cases.

Figure 2.20: Example of a registration test performed by NICPs, extracted
from [24].
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The algorithm was compared with the original ICP and three other algorithms (An-
dresen2001, Pauly2005 and Jian2011). The results of the first set of tests (vertebrae scans)
show that ICP performs better than the other three algorithms but apparently NICPs is able
to achieve even better results than the ICP in all of the 14 tests made. The second set of
tests (femur scans) shows that Jian2011 stands out negatively and NICPs continues to be
the best algorithm considering the average error of all the 23 tests, but this time is only
able to be the best algorithm in 6 of those tests. The authors conclude that even though
their method seems to achieve the best results among the algorithms chosen for compari-
son, it loses to those algorithms in runtime. NICPs’ good results also depend a lot on the
right selection of some parameters based on the point sets characteristics.

2.5.7 Iterative Closest Point - Maximum Correntropy Criterion

ICP-MCC is a parametric, pairwise, distance-based and towards non-rigid trans-
formations PSR technique proposed by Chen et al. [7], and is yet another ICP-based
technique [28]. It substitutes the traditional least squares measure with a maximum cor-
rentropy (another generalized similarity measure) criterion that avoids the influence of
outliers, to build a new registration model. Figure 2.21 helps explain why correntropy is
less affected by outliers than the mean square distance.

Figure 2.21: Visual representation of (a) the mean square distance and (b)
correntropy, extracted from [7].

The mean square distance is not optimal if the error distribution has outliers or is non-
symmetric. Because of the inability of the mean square distance in dealing with outliers
(the samples that are far away from the mean value of the error distribution have a bad
effect), correntropy is introduced to build an alternative objective function (in correntropy,
samples far away from the mean value of the error distribution barely have any effect).

At each iteration, the algorithm sets up the index mapping of two point sets according
to the known transformation, and then computes the closed-form solution of the new
transformation according to the known index mapping.

The authors of ICP-MCC use data from two repositories (CE-Shape-1 and Stanford
3D Scanning Repository) to assess the quality of the results achieved by their algorithm.
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For each point set of the dataset, they transform it randomly and store that random trans-
formation as the ground truth. Then, they make their algorithm calculate the transforma-
tion and calculate the error as the absolute difference between the result and the ground
truth. ICP-MCC is compared with ICP and CPD in these tests. After running some tests
both with 2D and 3D point sets, the authors conclude that ICP-MCC is able to achieve
better accuracy than ICP with only an almost neglectable increase in runtime, while CPD
seems to be the worst of the three algorithms tested.

2.5.8 Extended Coherent Point Drift

ECPD, proposed by Golyanik et al. [14], is a parametric, pairwise, probability-based,
towards non-rigid transformations PSR technique based on the original CPD [31]. It
adopts a coarse-to-fine registration strategy which accelerates the registration process lin-
early by splitting the registration problem into two sub-problems. This is done by, given
two point sets X and Y, after calculating the correspondences between them, a Z point set
is created by subsampling Y (but only the points that do not have correspondences, the
points that have correspondences in Y are guaranteed to be part of the subsample). After
registering Z with X, Y is registered with Z to ensure the number of points of the result
remains unchanged.

ECPD is compared with CPD, ICP and TPS-RPM on a synthetic 2D “Fish” dataset. In
this experience the authors prove that in the presence of structured outliers, ICP and TPS-
RPM show poor results, CPD is an improvement compared to those two algorithms but
ECPD reveals the best results of all of them. In a second experiment, ECPD is compared
with CPD on a real 3D dataset of scans of arms in different poses. The results, visually
presented in Figure 2.22, show that ECPD performs better than CPD and its results are
less affected by the parameters chosen.

Figure 2.22: Results of ECPD and CPD in the registration of 3D scans of an arm,
extracted from [14].

A third experiment was conducted, once again comparing ECPD with CPD on a 3D
real dataset with human faces scans and, once again, the authors show the higher accuracy
and resistance to outliers presented by the ECPD.
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2.5.9 Bayesian Coherent Point Drift ++

Proposed by Hirose et al. [18], BCPD++ is a parametric, pairwise, probability-based,
towards non-rigid transformations PSR technique. Also BCPD-based [19], accelerates
non-rigid registration by dividing it into three steps, which Figure 2.23 tries to represent
visually:

1. downsampling of point sets;

2. non-rigid registration of downsampled point sets;

3. interpolation of shape deformation vectors corresponding to points removed during
downsampling (blank circles in Figure 2.23).

Figure 2.23: Approach followed by BCPD++ to accelerate registration, extracted
from [18].

To register downsampled point sets, it uses a registration algorithm based on a prior
distribution, called motion coherence prior, which represents the uncertainty of, in this
case, a transformation, also enforcing motion coherence between the points.

The experiments were made on a synthetic dataset of 3D scanned shapes (downloaded
from the Stanford 3D scanning repository (https://graphics.stanford.edu)). For each shape
used, a deformed version of it was created to then make the algorithm solve the registra-
tion problem between the original shape and the deformed one. The root mean square
error (RMSE) was used to calculate accuracy. The first experiment was done with large
data (point sets with a large amount of points) and BCPD++ was compared with BCPD.
BCPD achieved slightly better results (0.3 per cent better at best) but BCPD++ was much
faster to reach those results, with a runtime up to 10 times shorter than BCPD for point
sets with one million points. In the performance evaluation with small data (point sets
with at most 1200 points), BCPD++ was compared with BCPD, CPD, GMM-REG and
TPS-RPM. Results show that BCPD++ seems to be only the third best algorithm overall
in this scenario, with BCPD being first and TPS-RPM a close second, while GMM-REG
seems to achieve the worst results. This means that the main advantage of the BCPD++
algorithm is in its time efficiency, which becomes more noticeable in the registration of
massive point sets. Two more experiments were made to compare BCPD++ and BCPD
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in datasets containing 3D scans of human bodies and, once again, it was concluded that
BCPD++ is much faster at solving the registration problem, also achieving very identical
results to the ones achieved by the BCPD algorithm.

2.5.10 Anisotropic Generalized Bayesian Coherent Point Drift

AGBCPD is a parametric, pairwise, probability-based, towards rigid transforma-
tions PSR technique based on the Bayesian Coherent Point Drift (BCPD) technique [19].
Proposed by Zhang et al. [48], generalizes BCPD under the Variational Bayesian Infer-
ence (VBI) framework [19]. It considers both the positional and the normal vectors of
points to find point correspondences more accurately and become more robust to noise
and outliers.

Two variants of the AGBCPD were compared with ICP, CDP and the original BCPD
on two 3D real datasets with scans of human bones. Two types of tests were performed,
one being the alignment of two complete point sets and the other the alignment of a partial
point set with a complete point set.

Figure 2.24: Results of the second experiment performed in [48].

According to the authors, the results showed that both variants of the AGBCPD achieved
better results than the other three algorithms by a good margin. Among the other three
algorithms, ICP and CPD seemed to be at the same level, with BCPD performing slightly
worse than those two methods. The authors then conclude that, even though their method
is slightly slower than the BCPD per iteration, it has a better convergence speed, robust-
ness and registration accuracy than the other algorithms tested against it.

2.5.11 FlowNet3D

The FlowNet3D, proposed by Liu et al. [25] is the first deep learning based algorithm
mentioned in this section. It is a non-parametric, pairwise, correspondences-free and
towards rigid transformations PSR technique. It is composed of three key modules:

• point feature learning: is a PointNet++ [33] architecture that learns hierarchical
features;

• point mixture: is a flow embedding layer It takes a pair of point clouds and for each
point in point set X searches within a radius for a correspondent point in point set
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Y. If it does not find one, it uses a neural layer to aggregate flow votes from all the
neighbor points. The computed flow embeddings are further mixed through a few
more set conv layers to obtain spatial smoothness. This also helps resolve ambigu-
ous cases (for example, points on the surface of a translating table) that require large
receptive fields for flow estimation;

• flow refinement: is a set upconv layer and does the up sampling step by receiving
the source points and a set of target locations to propagate the point features to.

The architecture of the FlowNet3D consists of four set conv layers, one flow em-
bedding layer, four set upconv layers and one linear flow regression layer to output the
prediction. This architecture is summarized by Figure 2.25. The FlowNet3D also makes
it possible to include more point features such as color and Lidar intensity.

Figure 2.25: FlowNet3D architecture, extracted from [25].

The authors of FlowNet3D use 3D end point error (EPE) and flow estimation accu-
racy (ACC) to measure the performance of the algorithms tested. Two tests were made.
FlowNet3D was compared with another deep learning based technique (FlowNet-C), with
three baseline deep models (EM, LM and DM) and with the traditional method ICP.

The first experiment was made on a synthetic FlyingThings3D dataset which con-
sists of stereo and RGB-D images rendered from scenes with multiple randomly moving
objects sampled from ShapeNet. Results of this first experiment show that FlowNet-G
stands out negatively, ICP is able to achieve better results than 2 out of the 3 baseline
models (EM and LM) but FlowNet3D is the best method achieving considerably better
results than all the other methods.

For the second experiment, the KITTI scene flow (real data) dataset was used, and
Figure 2.26 shows acne flow predictions by FlowNet3D on four KITTI scans.

It is designed for evaluations of RGB stereo based methods. In this experiment
FlowNet3D was compared with PRSM and ICP once again. The results once again show
that FlowNet3D can outperform ICP, with PRSM achieving the worst results of the three.
It is also shown that with some fine tuning FlowNet3D can achieve even better results.
The authors conclude then that FlowNet3D showed its competitive or better results to
various baselines and prior arts on both challenging synthetic dataset and real Lidar point
clouds.
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Figure 2.26: FlowNet3D scene flow predictions for four KITTI scans, extracted
from [25].

2.5.12 HPLFlowNet

Proposed by Gu et al. [16], HPLFlowNet is a parametric, pairwise, correspondences-
free and towards rigid and non-rigid transformations PSR technique. Inspired by
Bilateral Convolutional Layers (BCL) and the permutohedral lattice, it proposes three new
layer designs: DownBCL, UpBCL, and CorrBCL. First creates a hourglass-like structure
starting by downsampling the two point patches using several DownBCL layers, the latest
of which intercalated with some CorrBCL layers to fuse information from both point
clouds and ends by up sampling the resultant patch in order to output the scene flow
estimation. Figure 2.27 helps visualize this technique’s architecture.

Figure 2.27: Visual representation of the architecture of HPLFlowNet, extracted
from [16].
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The authors of HPLFlowNet use several metrics to evaluate the results but the main
metric used is the EPE3D. The HPLFlowNet is directly compared with ICP, FlowNet3D,
SPLATFlowNet and the original BCL. The first test is performed on the FlyingThings3D
(large-scale synthetic) dataset, where the model was trained. Results show that HPLFlowNet
is better than any other technique in all 6 metrics used. FlowNet3D seems to be the sec-
ond best algorithm by a small margin against both SPLATFlowNet and BCL. It should be
mentioned that since the code for FlowNet3D is not available, these results were achieved
by an implementation of the FlowNet3D made by the authors of this article. In the sec-
ond test, to study the model’s generalization ability, the KITTI Scene Flow (3D real data)
dataset was used, without any prior fine-tuning given to HPLFlowNet and the results were
exactly the same as the ones obtained in the first test. The last tests also prove that the
model is able to obtain these results without sacrificing performance, on the contrary, ac-
tually being faster than FlowNet3D on both datasets used and for point sets of different
sizes.

2.5.13 Point Net Encoding for Point Cloud Alignment

The Point Net Encoding for Point Cloud Alignment (i-PCRNet) framework proposed by
Sarode et al. [37] is a parametric, pairwise, correspondences-free and towards rigid
transformations PSR technique that can produce approaches that are shape specific or
general to unseen shapes, depending on the prior information about the shape of the object
formed by the point clouds. It does not propose a single registration technique but instead
a framework that generates a number of registration approaches, including some already
known methods.

The performance of the various approaches produced by the framework depends on
factors such as the prior information about the shape of the object, noise in the mea-
surements and computation time. The approach uses PointNet [33] to encode the shape
information of a template and a source point cloud as feature vectors, and estimates the
pose that aligns these two features using data driven techniques. The pose estimation
from the features are carried out either using a number of fully connected (FC) layers
or using classical alignment techniques such as Lucas-Kanade (LK) algorithm (results in
good generalizability, but is not robust to noise). The FC layers are robust to noise, but
are not generalizable to shapes unseen during training. The framework also uses Iterative
Alignment which iteratively improves the calculated transformation. Figure 2.28 visually
represents this Iterative Alignment process.

For the tests of i-PCRNet, the authors used models from ModelNet40 dataset and
compared i-PCRNet, PointNetLK and ICP. The main metric used was the AUC which
expresses the success of registration.
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Figure 2.28: Visual representation of Iterative Alignment performed by i-PCRNet,
extracted from[37].

In the first test, with objects from categories not seen during training and without the
presence of noise, results showed that PointNetLK was the best method and i-PCRNet
was the worst but, on the second test, with objects from the same category as the objects
from the training phase, i-PCRNet registered a massive improvement reaching the same
accuracy as PointNetLK in this test, and both being better than ICP.

Tests performed on partial data show that i-PCRNet gets worse than ICP the more
points are missing from the point set, especially if not trained with partial data.

Tests performed with noisy data show that this is probably the biggest advantage of
i-PCRNet, as it is the one that achieves the better results, unlike PointNetLK which is by
far the worst of the three.

Even if trained without noisy data, i-PCRNet is only slightly worse than ICP. In the last
test, i-PCRNet is compared with PointNetLK, ICP, DCP and Go-ICP in both accuracy and
runtime. In terms of pure accuracy, Go-ICP gets the better results, with i-PCRNet being
a close second. ICP, DCP and PointNetLK come after in this order but all far from the
first two and even far from each other. But, when it comes to runtime, while almost all
methods have similar values, Go-ICP presents a runtime 3 orders of magnitude greater
than all others, which means that considering an accuracy/runtime trade-off, i-PCRNet
seems to be the best method among the ones tested.

2.5.14 Non-Rigid Point Set Registration Network

Proposed by Wang et al. [41], PR-Net is a parametric, pairwise, correspondences-
based and towards non-rigid transformations PSR technique. The architecture of this
technique, which can be visualized with the help of Figure 2.29, can be divided in three
steps:
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• learn the shape descriptors of the point sets which are stored in a grid format;

• calculate the shape correlation between the two grids;

• learn the parameters of the desired transformation based on the shape correlation
grid.

Figure 2.29: Visual representation of the architecture of PR-Net, extracted
from [41].

PR-Net is compared with CPD in a 2D synthetic fish dataset according to accuracy
(measured by the distance between predicted result and ground-truth) and runtime. When
it comes to accuracy, PR-Net presents only slightly a slightly worse value of average
accuracy than CPD but with a smaller standard deviation which suggests it can provide
a more stable registration. The biggest difference between the two techniques is in the
runtime, since PR-Net was able to go through both the training and testing datasets in just
13 minutes while CPD took 24 hours in total, because the CPD treats every new pair of
point sets independently and has to repeatedly register them from the start.

The authors of PR-Net performed more tests to evaluate the performance of the tech-
nique in the presence of different kinds of noise and deformations. PR-Net can still main-
tain a very high accuracy in the presence of noise and it can still achieve very good results
when faced with deformation levels up to 1,0. Above this value, there is a sharp decrease
of the accuracy of PR-Net, but these values already represent very heavy deformations.

2.5.15 PointNetLK

PointNetLK, proposed by Aoki et al. [3], modifies the original and traditional Lukas-
Kanade method [26] and is unrolled as a recurrent neural network from which Point-
Net [33] is then integrated. It is a parametric, pairwise, correspondences-based and
towards rigid transformations PSR technique. Point cloud inputs source and template
received by this technique are passed through a shared MLP (Multi-Layer Perceptron),
and a symmetric pooling function, to compute the global feature vectors. The optimal
transformation parameters are found, which are used to incrementally update the pose
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of the source point cloud and then its global feature vector is recomputed. Figure 2.30
represents the architecture we just described.

Figure 2.30: Visual representation of the architecture of PointNetLK, extracted
from [3].

During training, a loss function is used which is based on the difference in the esti-
mated rigid transform and the ground truth transform. The transformation that turns PS
into PT (template) is calculated iteratively: the nth iteration calculates the transformation
that turns the results of the (n-1)th iteration into PT. The final transformation is calculated
by simply adding the transformations resulting from every iteration.

The tests for PointNetLK are performed on a ModelNet40 dataset containing models
for 40 object categories.

In the first test, PointNetLK is trained with 20 object categories and tested in the same
20 object categories. Comparing it directly with ICP shows that rotation errors from
the PointNetLK are only slightly smaller than ICP but translation errors are considerably
smaller. To assess the generalization capability of PointNetLK, in the second test it is
trained with 20 object categories and tested on the remaining 20 object categories and the
increase in both translation and rotation errors is almost neglectable. Figure 2.31 shows
the results of some of these tests, where the orange points represent ICP’s prediction and
the blue points represent PointNetLK’s prediction.

Figure 2.31: Example results of test cases performed to compare PointNetLK with
ICP, extracted from [3].

It is also tested on the Stanford bunny dataset, once again being better and faster than
ICP. The third test serves to conclude that average pooling is the best way for PointNetLK
to account for noise in data. The fourth test shows that, when registering only partial point
sets, PointNetLK, when trained with full point sets, is only slightly better than ICP but, if
trained with partial point sets, its accuracy improves significantly.
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In the last test, the authors show thatPointNetLK can align even different objects as
long as part of the same category (e.g. two different airplanes) minimizing the error
by making both objects face the same direction and, once again, PointNetLK seems to
achieve better results than ICP on most cases.

2.5.16 Groupwise Registration using T-Mixture Model

TMM is a parametric, groupwise, probability-based and towards rigid transforma-
tions PSR technique proposed by Ravikumar et al. [34]. The technique is based on the
Student’s t-distribution which is much more robust to noise when compared to the Gaus-
sian distribution, as shown in Figure 2.32, and proposes two versions based on a T-Mixture
Model and a multi-resolution extension of the T-Mixture Model.

Figure 2.32: Comparison between Student’s t distribution and Gaussian distribution
in the presence of noise, extracted from [34].

This technique also uses a Forward-Scheme because the point sets are treated as trans-
formed observations sampled from the model. The pipeline of this technique can sum-
marily be described in two steps:

• calculating the mean point set based on all point sets of the group;

• align each point set with the mean point set.

The authors of this technique compared it with several others (namely CPD, SpSSM,
GMM and JRMPC) in several tests including 2D and 3D point sets and different levels of
noise. Figure 2.33 shows two examples of the tests performed and the results achieved by
TMM and mrTMM.

Results showed that mrTMM is a small improvement to TMM in all tests, but both
versions of this technique outperform the remaining tested techniques, particularly in the
presence of a significant amount of outliers, while also being able to tolerate missing data.
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Figure 2.33: Results of TMM (third column) and mrTMM (fourth column) in two
group registration problems, extracted from [34].

2.6 Summary

In this chapter, we focused on the analysis of the literature regarding Point Set Registration
algorithms.

In section 2.1, we exposed the main concepts about PSR techniques, mainly the defini-
tion of PSR and the main challenges faced by these techniques. Section 2.2 described the
usual pipeline of PSR techniques, using the example of ICP [28]. Section 2.3 explained
the categories PSR techniques can be fitted into based on their characteristics. In partic-
ular we explored the difference between pairwise/groupwise techniques, parametric/non-
parametric techniques, rigid/non-rigid transformations and correspondences-based/corres-
pondences-free techniques. Section 2.4 mentioned the type of experiences used to mea-
sure the results of PSR techniques, as well as the most common datasets and metrics
used on those experiences. Lastly, Section 2.5 surveyed the PSR techniques found during
this state-of-the-art review, also categorizing them based on the concepts of section 2.2,
identifying their main characteristics and commenting on the results presented by each
technique’s authors.



Chapter 3

Solution

This chapter starts by addressing the problem already presented in Chapter 1. Section 3.2
presents the techniques chosen to be implemented and tested, as well as why they were
chosen. Section 3.3 exposes the implementation details of our solution for each algorithm
and section 3.4 summarizes this chapter.

3.1 Problem

As already mentioned in Chapter 1, a conceptual framework [6] was previously created
towards a solution for automatic detection of spatiotemporal events. Figure 3.1 shows a
visual representation of the conceptual framework’s pipeline for extracting information
about spatiotemporal events which are relevant according to the user interest.

Figure 3.1: Visual representation of the framework’s pipeline for extracting
information about spatiotemporal events.
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The framework receives as inputs a sequence of snapshots describing the contour
boundaries of a spatiotemporal phenomenon and other inputs given by the user in the
form of a set of thresholds. It starts by extracting the shape of the phenomenon repre-
sented at each temporal snapshot. It then computes the transformations that the shape
of the phenomenon suffers throughout the temporal snapshots using a PSR algorithm.
This is done by having the PSR algorithm calculate the transformations (translation, rota-
tion, scale or immutability) suffered by the shape of the phenomenon between every pair
of consecutive temporal snapshots. By gathering all the transformations calculated, the
framework is able to describe the movement of the shape of the phenomenon for the hole
sequence of temporal snapshots and filter the events of interest based on the thresholds
inputted by the user. In the future, the framework will also be able to compute existen-
tial transformations like splits and merges and movement and temporal derived features.
Lastly, the framework organizes the information to be presented in an easily readable for-
mat.

Events of Interest

The user can define as events of interest the transformations to be detected by the
framework as a set of thresholds, thus allowing the quantification of events that the user
is interested in. For each transformation, when its value surpasses the defined threshold,
an event of interest is considered to be found.

There are four types of thresholds:

• the delta threshold refers to the exceeding of a threshold by a change feature iden-
tified from two sequential temporal snapshots. For example, if the user sets a delta
threshold for a translation of 10 units and, between two consecutive temporal snap-
shots, a translation of 15 units occurs, this translation will be considered an event of
interest by the framework.

• the absolute accumulated threshold refers to the total amount of change accumu-
lated throughout a sequence of timestamps that triggers the detection of an event
of interests. For example, if the user sets an absolute accumulated threshold for a
translation of 10 and, between two consecutive temporal snapshots, a translation of
5 units occurs, it will not be considered an event of interest. But, if between the next
pair of temporal snapshots, a translation of 8 units occurs, the framework will detect
a translation of 13 units as an event of interest.

• the directed accumulated threshold derives from the absolute accumulated thresh-
old, but only takes into account a transformation happening during a sequence of
timestamps if it is consistent in its direction. This means that every time a trans-
formation inverts its direction, the accumulation for this threshold gets reset. For
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example, if the user sets a directed accumulated threshold for a translation of 10
and, between two consecutive temporal snapshots, a translation of 5 units occurs
and, in the next pair of temporal snapshots, a translation of -8 units occurs, no event
of interest will be detected because the two translations have opposing directions.

• the noise epsilon is a noise filtering threshold used to define a value under which
any amount of a transformation is considered to be noise. For example, if the noise
epsilon is set to 0.5 degrees for a change in direction (rotation) and between two
given timestamps the framework detects a 0.02 degrees rotation, it will be ignored
by all other thresholds.

So far, a single PSR technique was tested in the context of the framework, but Carneiro
[6] verified that the PSR technique used may have a great impact on the quality of the
results achieved by the framework.

Carneiro performed a series of tests consisting of a dataset (sequence of snapshots
representing the contour boundary of a phenomenon), multiple thresholds inputted by a
user defining the user is interest in particular types of events, and the expected results
to be used as ground-truth. To evaluate the results of the framework on those tests, two
metrics (section 2.5) ) were used and, according to the results achieved, it was concluded
that the framework achieves very satisfying accuracy values but also that it “is highly
dependent on the accuracy of the point set registration algorithm chosen to compute the
spatial transformations”.

Given the previous context, this study tries to address the following research questions:

RQ1: Why do the results depend on the PSR technique used?

RQ2: How much do the results depend on the PSR technique used?

Considering the existence of some more recent PSR techniques based on Deep-Learning,
a third research question emerges:

RQ3: How do the Deep-Learning based PSR techniques compare to the traditional
PSR techniques in the context of this framework?

3.2 Techniques to be tested

The authors of the framework [6] stated that the PSR technique to be used, in order to
be compatible with the framework, must be pairwise (compares two shapes), parametric
(uses fixed number of parameters) and support affine transformations. Affine transfor-
mations are the most basic non-rigid transformations and preserve collinearity (all points
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lying on a line initially still lie on a line after transformation) and ratios of distances (the
midpoint of a line segment remains the midpoint after transformation).

As the present study stand on top of the described conceptual frame, and based on
the performed state of the art review, two traditional techniques - GMM-REG [21] and
KCReg [38] identified in the survey of [51] - and a Deep Learning based technique -
PR-Net [41] - were selected to be tested with the proposed framework.

The selection of these PSR techniques goes beyond the fact that each presents good
results in the tests performed by their respective authors. They were selected because they
differ from each other in the way they approach PSR problems:

• GMM-REG considers the point sets as Gaussian Mixture Models [21] and tries to
align them;

• KCReg uses the concept of Kernel Correlation [38], a function of point set entropy
which it tries to maximize;

• PR-Net, on the other hand, stands out for adopting the new computational paradigm
that is Deep-Learning [41].

3.3 Implementation details

The latest version of the conceptual framework is described by its authors [6] as a server-
side application utilizing the microservices architectural approach, in which each mi-
croservice represents a module. Figure 3.2 shows a visual representation of the archi-
tecture of the framework.

Figure 3.2: Visual representation of the framework’s architecture, extracted from [6].

The framework exposes two artifacts to the end-user: a web application and an API. It
also has a database and the Core Service which is responsible for data management (e.g.
data storage, attainment of features of interest, etc.). The computation of the spatiotem-
poral change features is done by the PSR service which is the most relevant module for
this study.
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The already implemented algorithm in the PSR Service is the Coherent-Point-Drift
(CPD) [31]. The authors of the conceptual framework used a Python implementation of
the algorithm and decided to build the server using Flask1.

To keep future studies and corresponding prototype developments as compatible as
possible with the current version of the conceptual framework, we decided to created three
micro-services (one for each new PSR technique to be tested) also using Flask. Therefore,
the new PSR service modules fit and extend the original framework in a seamless fashion.

3.3.1 General Procedure

The general procedure adopted was

• to download the source code corresponding to each PSR algorithm from the official
source;

• to download and install the necessary packages/software to run the algorithm;

• to study the algorithm execution and run with the author provided test datasets
(when provided);

• to study the code to define execution features, requirements, starting functions, out-
puts and output structure;

• adapt the code in order to return the necessary information about the transformations
that lead to the alignment of the point sets calculated by the algorithm.

The next sections provide implementation details for each of the selected techniques.

GMM-REG integration

The function in the GMM-REG code that aligns two point sets receives, as input a
parameter, an .ini file with several information such as point set data and thresholds. We
then create that .ini file in runtime so we can use that function in its original format.

This algorithm considers the two input point sets as model and the scene, where the
first, is the point set for which we want to align with the second. Before performing the
alignment, the algorithm normalizes both point sets and, for each, saves the centroid and
the scale factor . Then computes the solution point set which is the “prediction”. When
denormalizing the third point set, the algorithm uses the centroid and the scale factor of
the original scene point set, basically ensuring that the position of the predicted point set
and its scale will be correct.

1https://flask.palletsprojects.com/en/1.1.x/

https://flask.palletsprojects.com/en/1.1.x/


Solution 36

It was identified that this algorithm does not output any resulting transformation matrix
and, in order to evaluate the estimate point set, we calculate the transformations detected
by comparing the model point set (the initial one) with the final point set predicted by the
algorithm. For the translation, we calculate both centroids and then the vector that goes
from one centroid to the other, as presented on Figure 3.3.

Figure 3.3: Visual representation of the vector between the centroids of two point
sets.

This way of calculating translations works well, simultaneously with the translation,
only other affine transformations occur. If the translation occurs at the same time as an
irregular deformation, small errors might be introduced by this calculation.

For the rotation, we treat each side of the polygon described by the final point set as
a vector, as well as the sides of the polygon represented by the initial point set. Then,
for each vector of the final point set, we calculate the angle between it and the respective
vector of the initial point set and lastly the average of all the angles to obtain the rotation
value. Figure 3.4 visually represents the calculation of the rotation angle between one
pair of sides of the polygons that represent the point sets.

Figure 3.4: Visual representation of the calculation of the angle between the vectors
that represent a pair of corresponding sides of two polygons.

Like the calculation of the translation, this method of calculating rotations will in-
troduce errors when happening at the same time as irregular deformations, but, in those
situations, the accuracy of the algorithm itself is expected to be lower.
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For the scale, we use the same method, calculating the ratio between the sizes of each
pair of vectors instead of the angle between them.

Since we do not extract the transformations from the algorithm directly, we might be
introducing small errors resultant from the calculations performed. Still, by using the re-
sultant point set predicted by the algorithm, we are using its ability to adapt the shape of
the point sets to small deformations that will affect the calculation of the transformations.

PR-Net integration

The PR-Net algorithm calculates a transformation matrix but it comes in a shape of
18x1 which does not allow the directly extraction of the transformations required by the
conceptual framework. Furthermore, upon our first attempt at running the algorithm, the
obtained results were extremely underwhelming. So, as a first attempt to improve those
results, before passing the two point sets to the model, inspired by the solution of the
GMMREG algorithm, we allign the center of both point sets with the origin of a two
dimensional axis and we also normalize them, storing their real center and the scaling
factor to revert this operation after receiving the prediction of the algorithm. This way,
the algorithm is not used to calculate translations or scales, but still gives information
about rotations and deformations.

The input for the training process of the algorithm is a single point set, so the point set
that creates the polygon of Figure 3.5 was used.

Figure 3.5: Polygon represented by the point set used to create training and testing
datasets.

The algorithm uses that point set to create the training and testing sets. This is done
as follows:

• starting with a 18x1 transformation matrix that represents immutability, 18 random
values are created and added to the values of the transformation matrix. The range



Solution 38

of the random values can be controlled through a parameter that defines the defor-
mation level that we want to apply to the point set;

• then, the resulting transformation matrix is applied to the original point set and both
the resultant point set and the transformation matrix used to create it are stored.

Figure 3.6 compares two different levels of deformation experimented with. On both
sides of the image, the blue dots represent the original point set and the red crosses rep-
resent the deformed version of the original point set. The right side of the image uses
double the deformation as the left side.

Figure 3.6: Comparison between different levels of deformation.

KCReg integration
The KCReg algorithm is implemented in MATLAB so the python library matlab.engine

is used in order to allow the python code to use the MATLAB functions that compose the
algorithm.

The algorithm is capable of calculating three types of transformations: euclidean,
affine and projective. Euclidean refers to rigid transformations and projective shows how
the perceived objects change when the view point of the observer changes2. Since we
are working in the context of affine transformations, that is the type of transformation we
focused on.

The KCReg algorithm calculates a 3x2 transformation matrix from which the affine
transformations can be extracted, so in this case we can directly extract that matrix and
convert it in the affine transformation’s parameters.

3.4 Summary

This chapter described the proposed solution that we created to achieve the objectives of
this dissertation. It started by characterizing the problem and identifying three research
questions in section 3.1. Then, section 3.2 presented the techniques to be implemented,
as well as the reasons that led us to choose this techniques and section 3.3 detailed the
implementation of each technique.

2https://www.graphicsmill.com/docs/gm5/Transformations.htm

https://www.graphicsmill.com/docs/gm5/Transformations.htm


Chapter 4

Testing Protocol

This chapter documents the testing procedure that led to the extraction of the results later
presented and discussed in chapther 5. Section 4.1 describes the testing pipeline. The
metrics used to evaluate the results are presented in section 4.2. Section 4.3 details every
test and their purpose. Section 4.4 describes the procedure performed to run each test and
section 4.5 summarizes the chapter.

4.1 Testing pipeline

Carneiro et al.[6] already suggested and implemented a testing pipeline. Each experiment
consists of a dataset (2D snapshots of the contour of a spatiotemporal phenomenon), a
set of thresholds (explained in section 3.1) defined by the user, describing its degree of
interest, and the expected result which is used as the ground-truth.

The core service of the framework sends a request with the post method to the service
of one of the PSR algorithms (the services of all the algorithms work in the same way).
As input, the service receives a listing of pairs of point sets. In each pair, "X" represents
the source point set and "Y" the target point set. The output is the list of identified trans-
formations, where an element in the list corresponds to the registration of the element in
the same index in the input list. Figure 4.1, extracted from [6], shows an example of an
input sent by the core service and respective output given by the algorithm’s service.

The next sections address the concepts required to conduct testing of the PSR tech-
nique implementation with the conceptual framework.

4.2 Metrics

The results provided by the framework are then evaluated according to the two metrics
also created for measuring this framework’s ability to correctly identify the transforma-
tions happening to a point set. These metrics are summarily described in section 2.4 but
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Figure 4.1: Example of input sent by the core service and respective output given by
the algorithm’s servicem extracted from [6].

a more detailed explanation follows.

4.2.1 Metric M1

Metric M1 is based on the symmetric difference between two areas which, given two
areas A and B, can be described as:

This value represents the area of A and B that is not part of the union of A and B.
Figure 4.2 shows the area corresponding to A ∆ B when comparing two polygons.

Figure 4.2: Representation of A ∆ B (in orange).

Metric M1 is different from the symmetric difference between two areas. First it uses
the concept of convex hulls. A polygon is convex when all its interior angles are less than
180 degrees and a convex hull is the smallest convex shape that can enclose a polygon.
Figure 4.3 shows the convex hull for the polygon used in Figure 4.2.

When comparing two polygons, the metric M1 is calculated as the ratio between the
area of the smallest convex hull of the two polygons and the area of the convex hull that
encloses both polygons. Using the same example of Figure 4.2, M1 would be the ratio
between the area colored yellow and the area colored both in yellow and blue in Figure
4.4.
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Figure 4.3: Convex hull of a polygon (in blue).

Figure 4.4: Visual representation to help understand the calculation of metric M1.

So both values can be used to calculate the alignment of two polygons, but represent-
ing two different things. The symmetric difference represents an error while metric M1
can be better described as a form of accuracy. This means that aligning the two shapes
minimizes the symmetric difference between them (the best value is 0) but maximizes the
metric M1 (the best value is 1).

There is an advantage in using metric M1 over the symmetric difference in this context.
Unlike metric M1, symmetric difference does not take into account the distance between
the two shapes when they don’t intersect at all. In Figure 4.5, A ∆ B and A ∆ C have
the same value (the maximum value for the symmetric difference which is the sum of the
areas of both polygons) even though polygon B is closer to polygon A than polygon C.

Figure 4.5: Polygon shapes not intersecting.

In the context of this framework this is relevant because if A is the ground-truth and B
and C are two estimates, estimate B is better than C because it is closer to A but both have
the same symmetric difference. Metric M1 does take into account the distance between
the polygons because the further away they are from each other the bigger the area of the
convex hull that encloses both polygons will be, lowering the value of M1 that we want to
maximize, penalizing this way a worse estimate. Figure 4.6 shows a visual representation
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of the effect just mentioned.

Figure 4.6: Visual representation of how metric M1 penalizes worse estimates.

4.2.2 Metric M2

Metric M2 is inspired by the concept of Longest Common Subsequence (LCSS) com-
mon to two sequences. For example, the longest subsequence between the sequences of
characters “abcdef” and “abxdef” is “def”.

But, this metric does more than just finding the longest common subsequence between
two sequences of transformations. It calculates the distance between the calculated results
and the ground truth as the number of insertions or removals of transformations necessary
to fully match the two, comparing to the worst case scenario (which is the removal of all
transformations from the calculated results and the insertion of all transformations from
the ground truth).

According to [6], this metric can me modelled as:

where A and B are arrays of sets of equal size where

∀An ∈ A : Bn ⊆ T ∧∀Bn ∈ B : Bn ⊆ T,

T is the set of possible transformations, and R is an array containing the temporal ranges
duration.

Figure 4.7, extracted from [6], shows an example of the calculation of this metric. In
this figure, the elements inside the square brackets represent transformations, while the
values inside round brackets indicate temporal ranges.
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Figure 4.7: Example of the calculation of metric M2.

The first step in the calculation of this metric is to split the framework’s result and the
expected result into equal intervals when they do not coincide. It the example of figure
4.7, the expected result is divided into two intervals (from 0 to 120 and from 120 to 150)
but the result calculated by the framework is divided into three intervals (from 0 to 100,
from 100 to 120 and from 120 to 150). It is then necessary to divide the first interval of
the expected result into two (from 0 to 100 and from 100 to 120) in order to have the same
intervals as the result calculated by the framework.

Then, for each interval, the distance between the calculated result and the expected
result is calculated. This distance is the number of insertions and removals of elements
from the list of transformations occurring calculated by the framework in order for that
list to be equal to the list of transformations of the expected result from the same time
interval. In this case, in the first interval (from 0 to 100), the distance is 1 because the
removal of the transformation U (uniform scale) is necessary to match the two lists. In
the second interval (from 100 to 120) the distance is also 1 because the insertion of the
transformation R (rotation) is necessary. In the third and final interval (from 120 to 150),
the distance is 0 because the list of transformations calculated by the framework for that
interval is equal to the list of transformations of the expected result for the same time
interval.

The last step is to apply the formula presented above. For each interval, it multiplies
the distance between the lists of transformations by the range of that interval. Then, all
those values are summed and then divided by the sum of the number of temporal intervals
of each result (in this case, this value is 5 because originally, the result calculated by



Testing Protocol 44

the framework had 3 intervals and the expected result 2). The resultant value is then
subtracted to the sum of the number of temporal intervals of each result (once again, 5)
and, finally, the resultant value is divided by the total range of the result (in this case, 150,
or 100 + 20 + 30).

4.3 Test cases

Each PSR algorithm is subjected to eleven tests:

• test 1 consists of a translation of 500 units in the x-axis and 200 units in the y-axis,
during 60 time units;

• test 2 consists of a final rotation of 10º clockwise, composed of a first rotation of
20º counterclockwise, during 30 time units, followed by a second rotation of 30º
counterclockwise, also during 30 time units;

• test 3 consists of a uniform scale with value 2.52, resultant of the accumulation of
three distinct uniform scales: a scaling of 1.4 in the first 20 time units, a scaling of
1.2 in the next 20 time units, and a scaling of 1.5 in the last 20 time units;

• test 4 consists of the phenomenon remaining immutable for 60 time units;

These first four tests serve to evaluate the ability of the framework to detect each
transformation individually when receiving the calculations from a certain PSR algorithm.
In each of these tests the thresholds are set with the exact values of the transformations
occurring. For example, for test 2, the absoluteAcc threshold for the rotation is set to 50.

• test 5 consists of a sequence of transformations occurring non-simultaneously. The
main goal of this test is to evaluate if the framework can detect transformations
when they occur in a sequence, when based on the calculations of a particular PSR
algorithm. For this test, the thresholds were set appropriately, using the directedAcc
threshold for all transformations. The exact transformations happening are: im-
mutability, from time unit 0 to time unit 30; a translation of 1000 units in the x-axis
and minus 400 units in the y-axis, from time unit 30 to time unit 90; a rotation of 50º
counterclockwise, from time unit 90 to time unit 120; a rotation of 50º clockwise,
from time unit 120 to time unit 150; a uniform scaling of 1.3, from time unit 150
to time unit 180; immutability, from time unit 180 to time unit 240; and a uniform
scaling of approximately 0.377, from time unit 240 to time unit 270. Figure 4.8
provides a visual representation of the transformations happening.
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Figure 4.8: Visual representation of the sequence of tranformations happening in
test 5.

• test 6 is formed by the exact same sequence of transformations as test five but with
different thresholds. In this test, the absoluteAcc thresholds are used and, in the
particular case of the rotation, the value of the threshold is set to 50º (instead of
49.5º like in test five). The goal of this test is to evaluate the impact that the choice
of thresholds can have in the result of the framework.

Test 7, 8 and 9 serve two purposes. They evaluate if the framework can detect different
transformations happening simultaneously and also how using different types of thresh-
olds impacts the results of the framework in this context. A detailed characterization of
each one of these tests follows.

• The transformations happening in test 7 are: a translation of minus 200 units in
the x-axis and 40 units in the y-axis, a rotation of 45º clockwise and a uniform
scaling of scaling factor 2, all during 60 time units. For this test, the thresholds
are set for the exact values of each transformation. For example, the threshold
related to the rotation is set to 45. Figure 4.9 provides a visual representation of the
transformations happening.

• test 8 is formed by the exact same sequence of transformations as test 7 but the
thresholds used are slightly less rigid. For example, for the rotation, the threshold is
set to 44.5 instead of 45.

• test 9 is also formed by the exact same sequence of transformations as test seven
with different thresholds. In this case the thresholds are set to very small values
for the framework to be able to detect every single small transformation that might
occur. Once again, for example, the threshold for the rotation is set to 1.
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Figure 4.9: Visual representation of the sequence of tranformations happening in
test 7.

• test 10 consists of the same sequence of transformations as test 5 and uses the same
threshold values. The difference is that this is the only test that does not use noise
filtering. The goal of this test is then to evaluate the impact of the removal of the
noise filtering in the result of the framework;

• test 11 consists of a sequence of transformations in a very unorganized way. The
goal of this final test is to evaluate the ability of the framework to achieve satisfac-
tory results when confronted with very chaotic and complex scenarios. The exact
transformations happening in this test are: a time-consuming translation, of 20 units
in the x-axis and minus 10 units in the y-axis, from time unit 1 to time unit 190;
simultaneous to the described translation, a rotation of 10º clockwise, from time
unit 110 to 120, and a rotation of 10º counterclockwise, from time unit 150 to 160;
immutability, from time unit 190 to time unit 210; a quick-paced change, from time
unit 210 to time unit 225, where a translation of -30 units in the x-axis and 10 units
in the y-axis and a uniform scaling of factor 0.4 co-occur; simultaneously, a transla-
tion of 5 units in the x-axis and a uniform scaling of factor 3, in the temporal range
225 to 255; and, at last, a rotation of 85º counterclockwise, in the temporal range
255 to 275, with a uniform scaling of factor 0.95 also occurring, from time unit 260
to time unit 265. Figure 4.10 provides a visual representation of the transformations
happening.

4.4 Procedure

For each experiment, the following procedure is performed:

• the dataset is loaded into the server;
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Figure 4.10: Visual representation of the sequence of transformations happening in
test 11.

• the Core Service requests the PSR Service to compute the transformations present
in the dataset and receives from it the values of the computed transformations;

• according to the thresholds previously defined, the features of interest are obtained;

• to validate the solution, the features of interest returned by the server are compared
with the expected result (metric M2) and the spatial disposition of the phenomenon
at the end of the ground truth animation is also compared with the one resulting
from the transformations calculated by the framework (metric M1).

Figure 4.11 illustrates the previous pipeline.

Figure 4.11: Diagram about the procedure for each experiment.

Since the Core module calls and receives the spatiotemporal events that occur in the
dataset from the PSR Server, in order to test different PSR techniques, we created a dif-
ferent server for each technique and, by doing so, simply changing which server is used
allows us to use the exact same testing pipeline for all the different implemented tech-
niques with minimum effort.

4.5 Summary

This chapter presented all the aspects related to the testing phase of our solution. It started
by describing the testing pipeline in section 4.1, where its test consists of a dataset, a set
of thresholds defined by a user and the expected result which is used as the ground truth.
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Section 4.2 explained the two metrics used to evaluate the results obtained: metric M1
which is used to compare the area occupied by the contour of the phenomenon calculated
by the framework with the ground truth, and metric M2, used to evaluate the ability of
the framework to identify the transformations happening and the respective time intervals.
Section 4.3 exposed the details of each of the eleven test cases used to evaluate each PSR
algorithm. It was shown that every test focuses on a different aspect, whether it being
a particular transformation or a sequence of simultaneous transformations. Section 4.4
ended the chapter by detailing the procedure executed for each test, which consists in the
loading of the dataset into the server, the computation of the transformations present in
the dataset by the PSR algorithm, the filtering of the events of interest by the user inputted
thresholds and calculation of the two metrics by comparing the result calculated by the
framework with the ground truth.



Chapter 5

Results and Analysis

This chapter presents the results from the testing phase, as well as the corresponding result
analysis. Section 5.1 reports the results of the 11 tests performed and presents a analy-
sis of the three algorithms. Section 5.2 analysis PR-NET in more detail and documents
attempts to improve its results. Section 5.3 explores our the results change with a few
adjustments to the thresholds used in the tests. Section 5.4 studies how the algorithms be-
have when presented with pairs of point sets with different number of points and section
5.5 summarizes the chapter.

5.1 Experiments and Results

The three chosen algorithms were subjected to the eleven tests described in 4.1 and the
values of the metrics M1 and M2 were extracted for each test in order to compare their
performances among themselves and also with the results achieved by the algorithm that
was already part of the framework, CPD. Tables 5.1 and 5.2 show the results achieved.
Table 5.1 presents the results on tests 1 to five, which are the tests where no transforma-
tions happen simultaneously, and table 5.2 presents the results on tests 6 to 11, which are
the tests where transformations happen simultaneously.

Table 5.1: Results of tests 1 to 6.

1 2 3 4 5 6
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

CPD 1 1 1 1 1 1 1 1 1 1 0.476 0.740
GMMREG 1 1 0.916 0 1 1 1 1 0.592 0.889 0.652 0.649

PR-NET 0 0.500 0 0.444 0 0.500 0 0 0.002 0.272 0.002 0.269
KC-REG 1 1 0.916 0 0.157 0 1 1 0.129 0.667 0.339 0.740

These results allow us to make a first evaluation of each algorithm:

49
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Table 5.2: Results of tests 7 to 11.

7 8 9 10 11
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

CPD 0.247 0 0.768 0.685 0.841 0.925 1 0.665 0.558 0.800
GMMREG 0.250 0.142 0.769 0.750 0.667 0.925 0.999 1 0.333 0.800
PR-NET 0 0.932 0 0.872 0 0.990 0.002 0.272 0 0.536
KC-REG 0.247 0 0.769 0.685 0.841 0.925 0.135 0.440 0.002 0.601

• PR-NET greatly under performs to the point that in every single test the value of the
metric M1 is either zero or very close to zero.

• KC-REG manages to achieve results on the level of the CPD algorithm on about
half of the tests (1, 4, 6, 7, 8 and 9) but also under performs on the remaining tests.

• GMMREG is the only algorithm that manages to achieve results comparable to the
CDP algorithm, even besting it in some tests (7, 8 and 10).

The following subsections analyze other aspects of the testing phase.

5.2 PR-NET analysis

Overall, the PR-NET seems to lack the capacity to accurately align the points of two point
sets. It makes moderately good predictions for most points but a small number of points
always ends up getting a terrible estimate which drastically drags down the accuracy of the
hole prediction. Figure 5.1 shows an example of an alignment performed by the PR-NET
algorithm where the problems just mentioned are present.

Figure 5.1: Example of alignment performed by PR-NET.

On the left side of the image, the blue dots represent the initial point set and the red
crosses represent a second point set. The goal of the algorithm is to align the point set
represented by the blue dots with the point set represented by the red crosses. On the right
side of the image, the red crosses represent the same point set as the red crosses on the
left side of the image, and the blue dots represent the original point set after the algorithm
tried to align it with the point set represented by the red crosses.

As we can see on the right side of the image, although with associated error, most
points are well aligned. The exception is the point in the low right corner of the image,
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which is very poorly aligned. Since we take every point into consideration when calcu-
lating the transformations that align the two point sets, a big misalignment of one point
alone is enough to introduce a great error in the calculations and negatively impact the
results of the algorithm in both metrics.

When analysing the behaviour of the algorithm, the first problem noticed was the fact
that the PR-NET cannot detect immutability, as shown in figure 5.2.

Figure 5.2: Demonstration of lack of ability of the PR-NET algorithm to detect
immutability.

It was hypothesized that this happens because the original training and testing datasets
used do not contain cases of immutability. This happens because of how the datasets are
created. This algorithm represents transformations as a 18x1 matrix and only needs to be
given one point set to create the datasets. It creates each element of the datasets by start-
ing with a matrix that represents immutability and then randomly applying noise to that
matrix. It then applies the randomly generated matrix to the point set received and saves
that matrix and the point set resultant of its application. This makes it so immutability
examples are never created because the chances of all the 18 random generated values
being 0 are practically nonexistent.

In order to try and improve the results of this algorithm when it comes to detection
of immutability, we introduced a chance of a training or testing dataset entry to contain
a case of immutability. In order to evaluate the impact that the presence of immutability
in the training and testing datasets could have for this algorithm, we created models with
0%, 10% ad 50% cases of immutability in their respective training and testing datasets,
as well as 10 tests, each one representing a case of immutability. We then calculated the
Root Mean Squared Distance (RMSD) of each model in the 10 tests. The results of this
experiment are presented in table 5.3.

Table 5.3: Results of immutability detection by PR-NET (measured by the RMSD).

% of immutability 1 2 3 4 5 6 7 8 9 10 average
50% 0.67 0.98 0.67 0.25 0.55 1.08 0.73 1.05 0.23 0.88 0.71
10% 0.64 1.46 0.64 0.25 0.35 1.17 0.93 1.14 0.22 1.35 0.82
0% 0.91 1.14 0.91 0.36 0.38 1.44 1.12 1.35 0.32 1.06 0.90

The results show that, even though increasing the amount of immutability in the train-
ing and testing datasets reduces the RMSD when detecting immutability, this reduction is
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not very significant and the values of the RMSD in the best case are still too high to be
considered a good alignment of the point sets. We can then conclude that the inability of
this algorithm to produce accurate alignments in the context of this framework is not due
to the absence of immutability cases in its training and testing datasets.

5.3 Threshold Adjustments

The results presented in tables 5.1 and 5.2 are achieved using the same thresholds used
by [6] when testing CPD. But, Carneiro et al.[6] had already concluded that small adjust-
ments in the values of those thresholds can significantly change the results achieved by
the framework. These small adjustments consist in reducing the value of the threshold by
a small margin to ensure it detects a certain transformation. For example, when trying
to detect a rotation of 50 degrees (test 2), reducing the value of absolute accumulative
threshold of the rotation for this test from 50 to 49.5 allows GMMREG and KCREG to
detect the rotation. Tables 5.4 and 5.5 introduce the results of GMMREG and KCREG
when some very small adjustments like the one just mentioned are performed.

Table 5.4: Results of tests 1 to 6 before and after threshold adjustments.

adjustment 1 2 3 4 5 6
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

CPD 1 1 1 1 1 1 1 1 1 1 0.476 0.740
GMMREG before 1 1 0.916 0 1 1 1 1 0.592 0.889 0.652 0.649
GMMREG after 1 1 1 1 1 1 1 1 1 1 0.652 0.649
KC-REG before 1 1 0.916 0 0.157 0 1 1 0.129 0.667 0.339 0.740
KC-REG after 1 1 1 1 1 1 1 1 0.340 0.733 0.339 0.740

Table 5.5: Results of tests 7 to 11 before and after threshold adjustments.

adjustment 7 8 9 10 11
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

CPD 0.247 0 0.768 0.685 0.841 0.925 1 0.665 0.558 0.800
GMMREG before 0.250 0.142 0.769 0.750 0.667 0.925 0.999 1 0.333 0.800
GMMREG after 0.678 0.740 0.769 0.750 0.667 0.925 0.999 1 0.333 0.800
KC-REG before 0.247 0 0.769 0.685 0.841 0.925 0.135 0.440 0.002 0.601
KC-REG after 0.692 0.657 0.769 0.685 0.841 0.925 0.34 0.522 0.002 0.601

The results of PR-NET are not present in this tables because small adjustments in the
thresholds of the tests do not improve the results of the algorithm.

After the adjustment of the thresholds, both GMMREG and KCREG become much
more comparable to CPD in terms of results. From tests 1 to 5, the 3 algorithms obtain
maximum value for every metric in every test (with the exception of KCREG in test
5). In tests 6 and 10, KCREG under performs when compared to CPD but GMMREG
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over performs. In test 7, both GMMREG and KCREG achieve better results than CPD
and in tests 8 and 9, KCREG achieves similar results to CPD while GMMREG once
again manages to improve. Test 11 becomes the only test where CPD can outperform the
remaining algorithms. We can then conclude that KCREG is the most limited algorithm
of the three and, on the other hand, GMMREG seems to be better than CPD in most
scenarios.

5.4 Different Number of Vertices

The CPD algorithm assumes that the two point sets it is trying to align have the same
number of points. But this might not be the case on a real scenario. It is then an advantage
if an algorithm is able to align two point sets with different number of points.

We studied the three algorithms implemented (GMMREG, KCREG and PR-NET) on
how they react to the alignment of two point sets with different number of points.

PR-NET cannot calculate the alignment of two point sets with different number of
points since, like the CPD algorithm, its code assumes that the two point sets it receives
share the same number of points.

GMMREG can calculate the alignment of two point sets with different number of
points. In order to evaluate the ability of this algorithm to perform in this situation, we
repeated the 11 tests performed before, but we removed one point from one of the point
sets. Figure 5.3 identifies the point removed.

Figure 5.3: Point removed from the point set.

This point was chosen because it has a small effect on the shape of the polygon formed
by the points of the point set when removed.
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Tables 5.8 and 5.9 compare the results achieved by the GMMREG (with the threshold
adjustments previously mentioned) when a point is missing in one of the point sets with
the results it achieved when both point sets were complete.

Table 5.6: Results of tests 1 to 6 with the removal of one vertice.

vertices removed 1 2 3 4 5 6
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

GMMREG 0 1 1 1 1 1 1 1 1 1 1 0.652 0.649
GMMREG 1 0.614 1 0.484 0.467 0.352 0.467 1 0 0.001 0.312 0.001 0.315

Table 5.7: Results of tests 7 to 11 with the removal of one vertice.

vertices removed 7 8 9 10 11
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

GMMREG 0 0.678 0.740 0.769 0.750 0.667 0.925 0.999 1 0.333 0.800
GMMREG 1 0.197 0.732 0.171 0.662 0.216 0.902 0.002 0.324 0 0.534

These results show that, even though the GMMREG can calculate transformations to
align two point sets with different number of points (unlike CPD and PR-NET), its results
are very negatively impacted and it becomes unreliable

KCREG is also able to calculate the alignment of two point sets with different number
of points, so we made the same experiment mentioned above to test if KCREG is more
reliable than GMMREG in this situations. Figure 5.4 shows which points were removed.

Figure 5.4: Points removed from the point set.

Three experiments were performed: in the first one point A was removed; in the
second experiment both points A and B were removed; lastly, on he third experiment,
points A, B and C were removed.
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Tables 5.8 and 5.9 report the results of this experiment, also achieved with the thresh-
old adjustments previously mentioned.

Table 5.8: Results of tests 1 to 5 with the removal of some vertices.

vertices removed 1 2 3 4 5 6
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

KC-REG 0 1 1 1 1 1 1 1 1 0.340 0.733 0.339 0.740
KC-REG 1 1 1 1 1 1 1 1 1 0.444 0.752 0.444 0.752
KC-REG 2 1 1 1 1 1 1 1 1 0.392 0.575 0.443 0.696
KC-REG 3 0.982 1 1 1 1 1 1 1 0.397 0.730 0.397 0.619

Table 5.9: Results of tests 6 to 11 with the removal of some vertices.

vertices removed 7 8 9 10 11
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

KC-REG 0 0.692 0.657 0.769 0.685 0.841 0.925 0.34 0.522 0.002 0.601
KC-REG 1 0.702 0.662 0.769 0.685 0.841 0.925 0.498 0.449 0 0.538
KC-REG 2 0.692 0.657 0.770 0.685 0.841 0.925 0.448 0.439 0 0.593
KC-REG 3 0.691 0.657 0.768 0.685 0.841 0.925 0.393 0.520 0.012 0.594

According to these results, KCREG is reliable at dealing with missing points, as the
removal of up to three points in this case barely had any impact in the results of the
algorithm.

5.5 Summary

This chapter presented the results extracted from the testing phase and the respective
analysis. Section 5.1 compared the algorithms on the 11 tests performed and made the
first analysis of those results. It was concluded that PR-NET greatly under performs in
every single test, KC-REG achieves similar results to the CPD algorithm on about half
the tests but under performs on the remaining tests and GMMREG is the only algorithm
that manages to achieve results comparable to the CPD algorithm, but still slightly below
it. Section 5.2 analysed PR-NET with more detail, registering the attempts to improve
its results, namely the introduction of immutability in the training and testing datasets
of the model, which didn’t bring considerable improvements to the algorithm’s results.
Section 5.3 explored how small adjustments to the thresholds used in the 11 tests improve
the results of the KC-REG and the GMMREG algorithms. This adjustments saw the
KC-REG algorithm being able to achieve results much more comparable with the CPD
algorithm, even besting it in some tests. The GMMREG algorithm also improved its
results to values at the same level of the CPD algorithm. Finally, section 5.4 evaluated
the performance of the algorithms when aligning two point sets with different number of
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vertices. It was concluded that, unlike CPD, both GMMREG and KC-REG are able two
align point sets with different number of points. For GMMREG, the removal of a single
point is enough to introduce a considerable amount of error in the results of the algorithm.
On the other hand, KC-REG manages to align point sets with up to 3 points removed with
zero to none error introduced by this factor.



Chapter 6

Conclusions

This chapter finishes this dissertation by drawing the main conclusion of the work as a
hole in section 6.1 and identifying possible future work in section 6.2.

6.1 Conclusions

As spatiotemporal data becomes increasingly more available, the need to have tools able
to automatically extract information about spatiotemporal events also increases. Consid-
ering the lack of tools designed for such tasks, a conceptual framework with the goal of
automatically detecting spatiotemporal features based on raw spatiotemporal data and on
user-defined goals was previously proposed. This framework takes 2D shape descriptors
that define the contours of a given object and calculates the transformations that con-
tour suffers throughout a sequence of snapshots using a Point Set Registration (PSR)
algorithm. It then filters these transformations to extract the events of interest based on
user-defined thresholds.

Point Set Registration is a wide family of algorithms which serve the same purpose but
through very different methods, with different PSR algorithms being more or less limited
then other alternatives. Since only one PSR algorithm was implemented in the original
version of this framework, questions arose whether the results of the framework could be
improved by using a different PSR algorithm, because the algorithm plays a critical role
in detecting transformations as a by-product of the alignment goal.

The main goal of this work was then to review and study PSR algorithms and select
the most promising ones to be integrated into the framework solution prototype and tested
to better understand the impact different PSR algorithms have in results.

The performed literature review, presented on chapter 2, allowed us to define Point
Set Registration and learn its applications. We also learned the general pipeline of a PSR
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algorithm and the different categories this algorithms can fall into, based on their charac-
teristics. More specifically, these algorithms can be pairwise/groupwise, parametric/non-
parametric and rigid/non-rigid, with some of these categories having sub-categories of
their own. It was also noticed the existence of more recent deep learning based algo-
rithms. We also explored the types of experiments, datasets and metrics that are more
commonly used to test these algorithms. In the end of the chapter, we surveyed several
PSR algorithms from all categories to find the ones better suited for our purpose.

Based on that survey, three algorithms were chosen to be implemented and tested in
the framework: GMMREG, KCREG and PR-NET.

The algorithms were implemented in the framework prototype by creating a service
module for each one of them. This architectural decision was based on the service module
already existent in the framework, containing the original PSR algorithm, CPD.

With the implementation done, a testing protocol was created and put into practice,
where we took advantage of the 11 tests already present in the framework, as well as the
2 metrics created by the original creator of the framework, to compare the 3 algorithms
between themselves and with the CPD algorithm. A testing procedure was designed and
repeated for the 3 algorithms, where the results achieved by each algorithm on the 2
metrics were registered for each test.

The results showed that the GMMREG algorithm was the only integrated algorithm
able to achieve results comparable to the CPD algorithm, although still slightly below the
CPD algorithm in general. The KC-REG algorithm managed to achieve results compara-
ble to the CPD algorithm in only half the tests, and the PR-NET algorithm greatly under
performed to the point that in every single test the value of the metric M1 was 0 or close
to 0.

After analysing the PR-NET algorithm, it was concluded that this happened because
the PR-NET model we created simply could not successfully align two point sets, as it
would always introduce great errors in the alignment of some of the points of the point
sets, to the point that the model was not even able to align two equal point sets (when
immutability occurs). It was hypothesized that this happens because there were no cases
of immutability in the training and testing datasets used to create the model but, after
introducing immutability in those datasets, the results of the algorithm barely improved,
leading us to conclude that the inability of this algorithm to produce accurate alignments
is not due to the lack of immutability in its training and testing datasets.

Carneiro et al.[6] had already concluded that small adjustments in the values of the
thresholds can significantly change the results achieved by the framework. With this is
mind, very small adjustments were made to the thresholds used for the 11 tests, and those
tests were repeated with the new thresholds for the GMMREG algorithm and for the
KCREG algorithm. And, in fact, these adjustments led to the improvement of the results
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of both algorithms. Although the KCREG still remained below CPD, GMMREG was
able to achieve results of the same level as the CPD algorithm.

Lastly, the ability of the algorithms to align point sets with different number of points
was tested. CPD is not able to calculate the alignment in this context but both GMMREG
and KCREG are. The results of the GMMREG algorithm lose a lot of accuracy when a
single point is removed from one of the point sets it is trying to align but, on the other
hand, the KCREG algorithm can align point sets with up to 3 points removed (out of 14)
with barely any decrease in accuracy.

We can then conclude that, overall, CPD still seems to be the best algorithm to be used
by this framework. The only weakness it presents is the inability to align point sets with
different number of points, which might prove to be a big limitation when working with
real datasets. In this context, KCREG proved to be the best algorithm by a big margin,
which means that maybe it can be used to complement or substitute CPD in particular
cases when the two point sets have different number of points and the CPD algorithm
cannot be used.

In chapter 3, we proposed 3 research questions that we can answer now:

RQ1: Why do the results depend on the PSR technique used?

The results of the framework depend on the PSR algorithm used because, firstly, it is
the PSR algorithm that calculates the transformations for the framework to filter based on
the user-inputted thresholds. This means that the better the calculation of the transforma-
tions the more accurate the events of interest generated by the framework will be.

RQ2: How much do the results depend on the PSR technique used?

As seen in the results presented in chapter 5, for the same test, the framework can
achieve both maximum and minimum values for the 2 metrics used to evaluate the re-
sults, depending on which algorithm is performing the calculation of the transformations
so, it is safe to conclude that the results of the framework hugely depend on the PSR al-
gorithm used.

RQ3: How do the Deep-Learning based PSR techniques compare to the traditional
PSR techniques in the context of this framework?

Based on the results presented in chapter 5, we could say that Deep-Learning based
PSR algorithms greatly under perform compared to traditional PSR algorithm in the con-
text of this framework. But, we think that the work performed in this dissertation is not
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enough to safely reach that conclusion. Firstly, only one Deep-Learning based PSR al-
gorithm was tested and we cannot assume that every other Deep-Learning based PSR
algorithm would achieve similar results. Also, the training of the models based on this
algorithm might not have been optimized for this context, negatively effecting its results.

The code developed for this dissertation is in the following web address: https:

//gitlab.inesctec.pt/avc/mit-ees-datalab-2023/-/tree/code/

6.2 Future Work

In order to continue the study started by this dissertation, there are some paths that can be
taken:

• creating new tests with real datasets or more irregular synthetic datasets to better
evaluate the ability of the framework to perform with real data;

• integrate at least a second Deep-Learning bases PSR algorithm into the framework
to draw better conclusions about the performance of this type of PSR algorithms in
the context of this framework.

https://gitlab.inesctec.pt/avc/mit-ees-datalab-2023/-/tree/code/
https://gitlab.inesctec.pt/avc/mit-ees-datalab-2023/-/tree/code/
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range scan data.

[3] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey.
Pointnetlk: Robust efficient point cloud registration using pointnet, 2019.

[4] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recog-
nition using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:509–522, 4 2002.

[5] Hamid Reza Boveiri, Raouf Khayami, Reza Javidan, and Alireza Mehdizadeh. Med-
ical image registration using deep neural networks: A comprehensive review. Com-
puters and Electrical Engineering, 87, 10 2020.

[6] Edgar Filipe Amorim Gomes Carneiro, Alexandre Miguel Barbosa Valle de Car-
valho, and Rui Pedro Amaral Rodrigues. Representation and quantification of
change on spatiotemporal phenomena, 2020.

[7] Hongchen Chen, Xie Zhang, Shaoyi Du, Zongze Wu, and Nanning Zheng. A
correntropy-based affine iterative closest point algorithm for robust point set reg-
istration. IEEE/CAA Journal of Automatica Sinica, 6:981–991, 7 2019.

[8] Y. Chen and G. Medioni. Object modelling by registration of multiple range images.
pages 145–155, 10 1992.

[9] Yan Deng, Anand Rangarajan, Stephan Eisenschenk, and Baba C. Vemuri. A rie-
mannian framework for matching point clouds represented by the schrodinger dis-
tance transform. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[10] Stanley Durrleman, Xavier Pennec, Alain Trouvé, and Nicholas Ayache. Statistical
models of sets of curves and surfaces based on currents. Medical Image Analysis,
13:793–808, 10 2009.

[11] Georgios Dimitrios Evangelidis and Radu Horaud. Joint alignment of multiple point
sets with batch and incremental expectation-maximization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40:1397–1410, 6 2018.

61



REFERENCES 62

[12] J D Foley, Martin A Fischler, and Robert C Bolles. Graphics and image processing
random sample consensus: A paradigm for model fitting with apphcatlons to image
analysis and automated cartography, 1981.

[13] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereop-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–
1376, 2010.

[14] Vladislav Golyanik, Sk Aziz Ali, and Didier Stricker. Gravitational approach for
point set registration. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[15] Ronald L Graham and F Frances Yao. Finding the convex hull of a simple polygon.
Journal of Algorithms, 4, 1983.

[16] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang. Hplflownet:
Hierarchical permutohedral lattice flownet for scene flow estimation on large-scale
point clouds, 2019.

[17] Erion Hasanbelliu, Luis Sanchez Giraldo, and Jose C. Principe. Information theo-
retic shape matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36:2436–2451, 12 2014.

[18] Osamu Hirose. Acceleration of non-rigid point set registration with downsampling
and gaussian process regression. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43:2858–2865, 8 2021.

[19] Osamu Hirose. A bayesian formulation of coherent point drift. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43:2269–2286, 7 2021.

[20] Daniel F. Huber and Martial Hebert. Fully automatic registration of multiple 3d data
sets. volume 21, pages 637–650. Elsevier Ltd, 7 2003.

[21] Bing Jian and Baba C. Vemuri. Robust point set registration using gaussian mix-
ture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(8):1633–1645, 2011.

[22] L.J. Latecki, R. Lakamper, and T. Eckhardt. Shape descriptors for non-rigid shapes
with a single closed contour. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), volume 1, pages 424–429
vol.1, 2000.

[23] Liang Li, Ming Yang, Chunxiang Wang, and Bing Wang. Rigid point set registration
based on cubature kalman filter and its application in intelligent vehicles. IEEE
Transactions on Intelligent Transportation Systems, 19:1754–1765, 6 2018.

[24] Luming Liang, Mingqiang Wei, Andrzej Szymczak, Anthony Petrella, Haoran Xie,
Jing Qin, Jun Wang, and Fu Lee Wang. Nonrigid iterative closest points for regis-
tration of 3d biomedical surfaces. Optics and Lasers in Engineering, 100:141–154,
1 2018.

[25] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning scene flow
in 3d point clouds, 2019.



REFERENCES 63

[26] Bruce D Lucas and Takeo Kanade. An Iterative Image Registration Technique with
an Application to Stereo Vision. In IJCAI’81: 7th international joint conference on
Artificial intelligence, volume 2, pages 674–679, Vancouver, Canada, August 1981.

[27] Jiayi Ma, Huabing Zhou, Ji Zhao, Yuan Gao, Junjun Jiang, and Jinwen Tian. Robust
feature matching for remote sensing image registration via locally linear transform-
ing. IEEE Transactions on Geoscience and Remote Sensing, 53:6469–6481, 12
2015.

[28] Baraka Maiseli, Yanfeng Gu, and Huijun Gao. Recent developments and trends in
point set registration methods, 7 2017.

[29] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[30] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation of vehicles and scene flow.
volume 2, pages 427–434. Copernicus GmbH, 8 2015.

[31] Andriy Myronenko and Xubo Song. Point set registration: Coherent point drifts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:2262–2275,
2010.

[32] Toby A. Patterson, Len Thomas, Chris Wilcox, Otso Ovaskainen, and Jason
Matthiopoulos. State-space models of individual animal movement, 2 2008.

[33] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In Advances in Neural Information Processing
Systems, pages 5099–5108, 2017.

[34] Nishant Ravikumar, Ali Gooya, Serkan Çimen, Alejandro F. Frangi, and Zeike A.
Taylor. Group-wise similarity registration of point sets using student’s t-mixture
model for statistical shape models. Medical Image Analysis, 44:156–176, 2 2018.

[35] L. Romero and F Calderón. Scene reconstruction pose estimation and tracking.
2007.

[36] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. Pro-
ceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM,
pages 145–152, 2001.

[37] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Animesh Dhagat, Ran-
gaprasad Arun Srivatsan, Simon Lucey, and Howie Choset. One framework to reg-
ister them all: Pointnet encoding for point cloud alignment. 12 2019.

[38] Kanade T. Tsin, Y. A correlation-based approach to robust point set registration.
2004.

[39] Nazlı Tümer, Aimee C. Kok, Frans M. Vos, Geert J. Streekstra, Christian Askeland,
Gabrielle J.M. Tuijthof, and Amir A. Zadpoor. Three-dimensional registration of
freehand-tracked ultrasound to ct images of the talocrural joint. Sensors (Switzer-
land), 18, 7 2018.



REFERENCES 64

[40] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures
for clusterings comparison: is a correction for chance necessary? page 1073–1080,
6 2009.

[41] Chen J. Li X. Fang Y Wang, L. on-rigid point set registration networks. 2019.

[42] Senzhang Wang, Jiannong Cao, and Philip S. Yu. Deep learning for spatio-temporal
data mining: A survey. IEEE Transactions on Knowledge and Data Engineering,
34:3681–3700, 8 2022.

[43] Renliang Weng, Jiwen Lu, and Yap Peng Tan. Robust point set matching for partial
face recognition. IEEE Transactions on Image Processing, 25:1163–1176, 3 2016.

[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[45] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia. Go-icp: A glob-
ally optimal solution to 3d icp point-set registration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38:2241–2254, 11 2016.

[46] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and M.J. Rosato. A 3d facial ex-
pression database for facial behavior research. In 7th International Conference on
Automatic Face and Gesture Recognition (FGR06), pages 211–216, 2006.

[47] Manzhu Yu, Myra Bambacus, Guido Cervone, Keith Clarke, Daniel Duffy, Qunying
Huang, Jing Li, Wenwen Li, Zhenlong Li, Qian Liu, Bernd Resch, Jingchao Yang,
and Chaowei Yang. Spatiotemporal event detection: a review, 2020.

[48] Ang Zhang, Zhe Min, Zhengyan Zhang, Xing Yang, and Max Q.H. Meng.
Anisotropic generalized bayesian coherent point drift for point set registration. IEEE
Transactions on Automation Science and Engineering, 2022.

[49] Lei Zhang, Sung In Choi, and Soon Yong Park. Robust icp registration using biu-
nique correspondence. pages 80–85, 2011.

[50] Zhiyuan Zhang, Yuchao Dai, and Jiadai Sun. Deep learning based point cloud reg-
istration: an overview, 6 2020.

[51] Hao Zhu, Bin Guo, Ke Zou, Yongfu Li, Ka Veng Yuen, Lyudmila Mihaylova, and
Henry Leung. A review of point set registration: From pairwise registration to
groupwise registration, 3 2019.


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem
	1.3 Hypothesis
	1.4 Objectives
	1.5 Methodology
	1.6 Structure

	2 Point Set Registration
	2.1 Definition
	2.2 PSR General Pipeline
	2.3 Classification of PSR Techniques
	2.4 Experiments, Datasets and Metrics
	2.5 Survey of PSR Techniques
	2.5.1 Schrodinger Distance Transform Method
	2.5.2 Gravitational Approach for PSR
	2.5.3 NRGA: Gravitational approach for non-rigid point set registration
	2.5.4 Robust ICP Registration using Biunique Correspondence
	2.5.5 Globally Optimal - Iterative Closest Point
	2.5.6 Non-rigid Iterative Closest Point
	2.5.7 Iterative Closest Point - Maximum Correntropy Criterion
	2.5.8 Extended Coherent Point Drift
	2.5.9 Bayesian Coherent Point Drift ++
	2.5.10 Anisotropic Generalized Bayesian Coherent Point Drift
	2.5.11 FlowNet3D
	2.5.12 HPLFlowNet
	2.5.13 Point Net Encoding for Point Cloud Alignment
	2.5.14 Non-Rigid Point Set Registration Network
	2.5.15 PointNetLK
	2.5.16 Groupwise Registration using T-Mixture Model

	2.6 Summary

	3 Solution
	3.1 Problem
	3.2 Techniques to be tested
	3.3 Implementation details
	3.3.1 General Procedure

	3.4 Summary

	4 Testing Protocol
	4.1 Testing pipeline
	4.2 Metrics
	4.2.1 Metric M1
	4.2.2 Metric M2

	4.3 Test cases
	4.4 Procedure
	4.5 Summary

	5 Results and Analysis
	5.1 Experiments and Results
	5.2 PR-NET analysis
	5.3 Threshold Adjustments
	5.4 Different Number of Vertices
	5.5 Summary

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	References

