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Resumo 

Os metabolitos secundários encontrados em blooms de cianobactérias têm sido 

relatados em diversos estudos. 

Esses compostos bioativos de cianobactérias podem ter aplicações em muitas áreas 

incluindo cosméticos naturais, antienvelhecimento, abordagens terapêuticas 

anticancerígenas, atividade antibacteriana, obesidade e biofilmes. Neste projeto foram 

abordadas duas hipóteses principais: 1) Podemos construir um banco de dados de 

compostos bioativos de cianobactérias que inclua todas as informações moleculares e 

químicas de diferentes fontes online; 2) Implementação de modelos de aprendizagem 

de maquina usando o banco de dados final para prever alvos de proteínas com 

aplicação em terapêutica humana. Para abordar esta hipótese, os bancos de dados 

online moleculares e químicos mais recentes que incluem compostos de cianobactérias 

foram fundidos em um banco de dados final. As bases de dados foram unidas usando 

como chave primaria as InchIKeys que são uma hash dos InchI (Internacional Chemical 

Identifier). Além disso um algoritmo de aprendizagem de máquina foi implementado 

usando os descritores moleculares e químicos calculados pelos softwares PaDEL-

descriptor, Mordred e DrugTax para cada um dos compostos bioativos de cianobactérias 

armazenados no banco de dados final. 

O banco de dados final contém para cada composto o respetivo SMILES (isomérico), 

InchIKeys, taxonomia, fonte original do banco de dados, bioensaio experimental, IC50 

e alvo. Os descritores químicos foram calculados e adicionados a cada registo de 

composto bioativo usando o descritor PaDEL, Mordred e DrugTax. Esses descritores 

moleculares e químicos permitiram a determinação dos compostos de cianobactérias 

mais relevantes para fins terapêuticos em humanos usando uma implementação de 

aprendizagem de máquina. O banco de dados final está disponível em um servidor 

online em https://cyanobioactivedb.jcresearchteam.com/.  

https://cyanobioactivedb.jcresearchteam.com/
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Abstract 

 

The secondary metabolites found in cyanobacteria blooms have been reported in several 

studies. 

These cyanobacteria bioactive compounds can have applications in many fields, 

including natural antiaging cosmetics, anticancer therapeutic approaches, antibacterial 

activity, obesity, and biofilms. In this project, two main hypotheses were addressed: 1) 

Can we build a cyanobacteria bioactive compounds database that includes all molecular 

and chemical information from different online sources? 2) Can we implement machine 

learning models using the final database to predict protein targets with application in 

human therapeutics? To address this hypothesis, the most recent molecular and 

chemical online databases that include cyanobacteria compounds were merged in a final 

database. The databases were merged using as primary Key the InchIKeys of these 

compounds, which are a hash of the INCHI (International Chemical Identifier). 

Furthermore, a machine learning algorithm was implemented using the molecular and 

chemical descriptors calculated by PaDEL‐descriptor, Mordred and DrugTax software 

for each of the bioactive cyanobacteria compounds stored in the final database. 

The final database contains for each compound the respective SMILES (isomeric), 

InchIKeys, taxonomy, database original source, experimental bioassay, IC50, and target. 

Chemical descriptors were calculated and added to each bioactive compound record 

using the PaDEL-descriptor, Mordred and DrugTax. These molecular and chemical 

descriptors allowed the determination of the most relevant cyanobacteria compounds for 

therapeutic purposes in humans using a machine learning implementation. The final 

database is available on an online webserver at 

https://cyanobioactivedb.jcresearchteam.com/. 

Keywords: Cyanobacteria; Bioactive compounds; Molecular and chemical descriptors; 

Machine learning; Online Database 
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1. Introduction 

1.1. Cyanobacteria 

Cyanobacteria are gram-negative photoautotrophic prokaryotes capable of 

photosynthesis, playing a significant role in providing atmospheric oxygen, fixing nitrogen 

(N2) from the atmosphere and turning it into ammonia (NH3). Being found in a wide array 

of environmental conditions, they inhabit a broad range of habitats all over the world and 

have the adaptability to survive in extreme environments from deserts to thermal springs, 

hypersaline valleys and volcanic substrates (Seckbach, 2007). 

The taxonomy of the cyanobacteria phylum can be established using both 

morphologic and genomic information. Considering the genomic information, a recent 

study used the 16S rRNA gene to determine the order classification. The phylogenetic 

tree based on the 16S rRNA allowed the division of the cyanobacteria phylum into 19 

orders, as shown in the adapted Figure 1 (Strunecký, Ivanova, & Mareš, 2023). 
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Figure 1- The 16S rRNA phylogenetic tree of cyanobacterial families and orders calculated with a maximum 
likelihood algorithm. Adapted from Strunecký et al. 2022. 

Although monophyletic, physical differences exist between them, allowing for this 

group of prokaryotes to be divided into five subsections regarding their morphological 

characteristics. (Table 1). 
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Types of 

Compounds 

Characteristics 

Subsection I 

(Order: 

Chroococcales) 

Single cells or aggregates that reproduce by binary fission. 

Subsection II 

(Order: 

Pleurocapsales) 

Similar to subsection I but can undergo multiple fission 

producing small, dispersed cells named baeocytes. 

Subsection III 

(Order: 

Oscillatoriales) 

Filamentous cyanobacteria of this subsection have only 

vegetative cells. Made up of a chain of cells called trichomes, 

their reproduction is done through these trichome which 

break producing fragments called hormogonia. 

Subsection IV 

(Order: 

Nostocales) 

Have cell differentiation instead of being composed of only 

vegetative cells like subsection III. This specialization allows 

to some of the cells to acquire new functions for example, 

heterocysts are cells specialized in the fixations of N2 but 

without producing O2. Nitrogen fixation is an incompatible 

process with photosynthesis since nitrogenase is inactivated 

by oxygen. Among other types of specialized cells are 

akinetes and hormogonia. 

Subsection V 

(Order: 

Stigonematales) 

Additionally, have cell differentiation instead of being 

composed of only vegetative cells like subsection III. Their 

filaments can form heterocysts, akinetes which are nonmotile 

dormant cells that are resistant to cold and desiccation and 

hormogonia which motile filaments of cells that occur during 

vegetative reproduction. 

Table 1- Different subsections of Cyanobacteria and their characteristics(Kumar, Mella-Herrera, & Golden, 
2010; Melinda L. Micallef, D’Agostino, Sharma, Viswanathan, & Moffitt, 2015; Tomitani, Knoll, Cavanaugh, 
& Ohno, 2006). 

1.2. Cyanobacteria and their secondary metabolites 

Cyanobacteria are one of the most promising groups of microorganisms that could 

play a role in pharmacology or biotechnological applications (Shaden A. M. Khalifa et al., 

2021). Cyanobacterial metabolites can possess antimicrobial, antifungal, antiprotozoal, 

and anti-inflammatory properties that could be used to develop new drugs that could be 

beneficial to humans (R. K. Singh, Tiwari, Rai, & Mohapatra, 2011). The value of the 

discovery of natural compounds that could be used in just oncology drugs of marine 
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cyanobacterial origin is estimated to be anywhere from 37 to 181.5 billion dollars back in 

2010 (Erwin, López-Legentil, & Schuhmann, 2010; Ramos et al., 2018). 

Secondary metabolites produced by cyanobacteria are compounds that are 

produced by the organism but are not necessarily needed for its primary metabolism. 

These natural products are often produced in response to environmental stress, either 

abiotic or biotic, providing them with an advantage over other species. There exists an 

overlap between what is considered a primary and secondary metabolite since some 

compounds are required for primary metabolism, but since they are only synthesized by 

certain species, they are considered secondary metabolites. Since cyanobacteria exist 

in harsh environments and their metabolites originate mostly from environmental stress, 

cyanobacteria represent a rich source of natural products. 

1.3. Types of secondary metabolites and synthesis 

1.3.1. Nonribosomal peptides 

Secondary metabolites that are commonly found in cyanobacteria are nonribosomal 

peptides (NRPs). These NRPs are produced by enzymes with multiple domains that 

create natural products, called nonribosomal peptide synthetases (NRPSs), through 

reactions that allow the assembly of proteinogenic and nonproteinogenic amino acids in 

a modular way. These synthetases are organized into different domains: condensation 

(C), responsible for catalyzing peptide formation and chain elongation; adenylation (A), 

responsible for substrate selection; peptide carrier protein (PCP), responsible for binding 

the substrate to the enzymatic complex; and thioesterase domains. To realize any future 

modifications, since these three domains only synthesize the raw peptide in their 

respective biosynthetic pathways, there can also exist additional domains that are 

activated, providing structural diversity. (Bethan & Carole, 2018; Marahiel, 2009; M. L. 

Micallef, D'Agostino, Al-Sinawi, Neilan, & Moffitt, 2015) 

1.3.2. Polyketides 

Polyketides are secondary metabolites such as NRPS that are produced through 

polyketide synthases (PKS), which utilize acetyl-CoA to produce these natural products. 

Furthermore, similar to NRPS, PKS also has domains including an acyltransferase (AT) 

domain, an acyl carrier protein domain and a ketosynthase (KS) domain as well as other 

domains that allow for further modification. There are three different classes of PKSs 

responsible for biosynthesis. Type I PKSs are more commonly found in cyanobacteria 

and are large multifunctional enzyme complexes that contain noninteractively acting 

domains. Types II and III PKSs are rarely found in cyanobacteria. Type II PKSs contain 
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only a single interactively acting domain, and type III PKSs are homodimeric enzymes 

with interactively acting domains.(M. L. Micallef et al., 2015) 

In addition to these two already described secondary metabolites, they can also be 

NRPS and PKS hybrids, which are composed of the attachment of polyketide utilizing 

PKS to nonribosomal peptides in a combinatory biosynthetic pathway producing different 

chemical structures with specific roles and bioactivity. Various gene clusters that have 

NRPS/PKS and hybrid genes have been identified through whole-genome sequencing. 

For example, the microcystin (mcy) gene cluster encodes two PKSs, three NRPSs and 

a hybrid NRPS/PKS gene, and it has been found in nine Microcystis aeruginosa 

genomes among other species of cyanobacteria. (Bethan & Carole, 2018; Fiore et al., 

2013; M. L. Micallef et al., 2015; Tanabe, Hodoki, Sano, Tada, & Watanabe, 2018) 

1.3.3. Ribosomal products 

Cyanobacteria also produce a group of peptides synthesized in the ribosome that, 

similar to NRPs, can be modified after translation. The natural products resulting from 

this process are named RiPPs, and they are synthesized by the postribosomal peptide 

synthesis (PRPS) pathway. These compounds produced by the PRPS come from a 

precursor peptide that is then posttranslationally altered to create the final RiPP. (Arnison 

et al., 2013; M. L. Micallef et al., 2015). There are various families of RiPPs whose gene 

clusters are reported to be in cyanobacterial genomes. For example, bacteriocins were 

reported to be found in up to 115 genomes of 131 cyanobacterial genomes analysed (M. 

L. Micallef et al., 2015). Microviridins are another family of RiPPS known to be able to 

inhibit proteases that have been found in 26 cyanobacterial genomes, mainly from the 

genera Microcystis and Planktothrix (Arnison et al., 2013; M. L. Micallef et al., 2015; 

Philmus, Christiansen, Yoshida, & Hemscheidt, 2008). Finally, cyanobactins are small 

cyclic RiPPs that are made of proteinogenic amino acids and have been identified in 32 

genomes, although in some cases, they might not be functional. Cyanobactins exhibit a 

wide range of activities, including cytotoxic effects and drug-reversing properties. They 

have demonstrated potential as bioactive compounds with diverse pharmacological 

characteristics. Consequently, cyanobactins are an area of interest in the field of drug 

discovery and development. 

1.3.4. Alkaloids 

Alkaloids are nitrogen-containing compounds that normally have toxic properties. 

There are two major alkaloids produced by cyanobacteria, saxitoxin, which is a 

neurotoxin known for causing paralytic shellfish poisoning. In contrast to NRPS and PKS 

biosynthesis, saxitoxin is created through a series of monofunctional enzymes encoded 
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by its respective gene cluster that build the core of the saxitoxin and allow further tailoring 

reactions. The other major alkaloid group is the hapalindole family, which is a group of 

isoprenoid indole alkaloids that are found exclusively in Stigonematales (subsection V) 

(Bethan & Carole, 2018; M. L. Micallef et al., 2015). 

1.3.5. Isoprenoids 

Additionally, known as terpenoids, isoprenoids represent a large family of 

compounds, including carotenoids, tocopherol, phytol, sterols, and hormones. A large 

variety of terpenoids are produced by cyanobacteria, and these compounds play a role 

in the growth and survival of photosynthetic organisms. They play an important role in 

the conversion of light into chemical energy and in the assembly and function of 

photosynthetic reaction centres such as chlorophylls bacteriochlorophylls, rhodopsins, 

and carotenoids (Bethan & Carole, 2018; Pattanaik & Lindberg, 2015). 

In cyanobacteria, they are produced through the methylerythritol-phosphate (MEP) 

pathway, utilizing glyceradehyde 3-phosphate and pyruvate produced by photosynthesis 

as substrates. This pathway leads to the creation of the five-carbon building blocks of 

isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which represent 

the essential components for the formation of all terpenoids. A variety of these 

compounds have properties that are of interest in the pharmaceutical and nutritional 

fields and potentially as biofuels. 

One group of tetraterpenes of particular importance to cyanobacteria is carotenoid 

pigments, a family of compounds with wide structural diversity. They are formed by two 

C20 geranyl geranyl diphosphate (GGDP) molecules in a head-to-head condensation 

reaction. These natural products play an important role in the synthesis of structural 

components in membranes and are essential in photosynthetic membranes and 

antioxidative effects and provide protection against the negative effects of free radicals, 

stabilizing photosynthetic reaction centers (Pattanaik & Lindberg, 2015). 

 

1.4. Applications of cyanobacterial secondary 

metabolites that are currently in use. 

There already exists a diverse range of cyanobacterial metabolites that serve 

different purposes around the world. They can play a vital role in the sustainability of the 

environment, agriculture, and industry. In the future, with the ever-growing human 

population and the usage of non-renewable energy presenting an ongoing threat, these 

natural products might help reduce the carbon footprint and increase sustainability as 
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well as improve overall human wellbeing (Pathak et al., 2018; J. S. Singh, Kumar, Rai, 

& Singh, 2016). 

Considering the European Union’s project for carbon neutrality by 2050 

(https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-

strategy_en), there are potential applications of cyanobacteria that could help in this goal, 

especially their potential as biofuel, providing another renewable energy source and in 

the creation of biodegradable plastics. The same applies for Portugal’s own goals in the 

search for carbon neutrality and its transition from fossil fuel to other renewable energy 

sources (https://www.portugal.gov.pt/pt/gc23/comunicacao/noticia?i=portugal-esta-em-

condicoes-de-antecipar-neutralidade-carbonica-para-2045). 

1.4.1. Cyanobacteria as bioremediators 

These prokaryotes have the potential to be used as bioremediators since they have 

a few advantages over other microorganisms. In addition to being photoautotrophs and 

being able to capture atmospheric N2, they have a high multiplication rate, making them 

adaptable and self-sufficient in surviving in highly polluted environments (J. S. Singh et 

al., 2016). 

As such, they can be used as a tertiary treatment for agroindustry or urban effluents, 

helping to reduce the eutrophication of such areas. Currently, cyanobacteria are used as 

a low-cost tool in treating residual water from barns since they contain high amounts of 

N2 and phosphorus, allowing for the conversion of these minerals into biomass. Species 

such as Synechococcus elongatus, Anacystis nidulans and Microcystis aeruginosa have 

been shown to be able to degrade many organophosphate-based insecticides and 

organochlorines in aquatic systems. (J. S. Singh et al., 2016; Subramaniyan, 2012) 

1.4.2. Cyanobacteria as biofuel 

Another application of cyanobacteria is as a source of bioenergy, such as biodiesel, 

or as producers of biohydrogen. The latter would be the ideal energy source to replace 

fossil fuels, but it is still not a profitable source of income due to the low rate of production 

of H2. It can also be a source of biogas through the exploration of the anaerobic 

processes of these organisms, such as fermentation(J. S. Singh et al., 2016; Tiwari & 

Pandey, 2012). 

1.4.3. Cyanobacteria as food supplements 

In the form of pills or liquids, cyanobacteria can be used as food supplements due to 

their digestibility and richness in nutrients. In countries such as Mexico, Chile, Peru, and 

the Philippines, certain species are used for human nutrition, such as Nostoc, Anabaena 

https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://www.portugal.gov.pt/pt/gc23/comunicacao/noticia?i=portugal-esta-em-condicoes-de-antecipar-neutralidade-carbonica-para-2045
https://www.portugal.gov.pt/pt/gc23/comunicacao/noticia?i=portugal-esta-em-condicoes-de-antecipar-neutralidade-carbonica-para-2045
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and Spirulina. Arthrospira platensis contains a high level of proteins, ranging over 60%, 

while being very rich in B12 and beta carotenes (Chittora, Meena, Barupal, Swapnil, & 

Sharma, 2020; Prasanna et al., 2010; J. S. Singh et al., 2016). 

1.4.4. Cyanobacteria as an anti-pathogenic agent 

Some cyanobacteria secondary compounds have a variety of potential antibacterial, 

antifungal, antiviral and antialgal properties. The antialgal properties perturb the 

physiological and metabolic activities of pathogens, inhibiting their growth (Dahms, Ying, 

& Pfeiffer, 2006) and allowing them to be used as biocontrol agents. For example, the 

compounds can help inhibit the incidence of Botrytis cinerea, which is a necrotrophic 

fungus that causes “gray mold” in strawberries (J. S. Singh et al., 2016; Swain, 

Paidesetty, & Padhy, 2017). 

1.4.5. A source of bioplastics 

Cyanobacteria have the ability to produce biopolymer polyhydroxyalkanoates (PHAs) 

and other copolymers, such as polyhydroxybutyrate (PHB). This PHB is a material that 

exhibits properties similar to polypropylene, which is commonly derived from fossil fuels 

such as petroleum, but unlike this material, PHB is biodegradable. This material could 

be implemented as an alternative to conventional plastics and reduce the worldwide 

impact of the nonbiodegradability of plastics as well as reduce fossil fuel dependency. 

Certain genera of cyanobacteria are capable of being a bio factory for bioplastics, such 

as Anabaena, Synechocystis, Nostoc muscorum, and Spirulina (Agarwal et al., 2022; A. 

K. Singh, Sharma, Mallick, & Mala, 2017). 

 

1.4.6. Cyanobacteria applications in the medical and 

pharmaceutical field 

The diverse range of compounds produced by cyanobacteria leads to the synthesis 

of powerful toxins as well as compounds that are also very important for their anticancer, 

antibiotic, anti-inflammatory and immunosuppressant effects. Furthermore, 

cyanobacteria have many applications in nanotechnology, either as nanoparticles of 

different types of metals or through the nanobiotechnological processing of their 

bioactive compounds. For example, Anabaena, Calothrix, and Leptolyngbya can modify 

the shape of gold, silver or palladium nanoparticles, allowing them to possess 

antimicrobial effects against various bacteria. In addition, silver nanoparticles also play 

a substantial role in impregnating medical equipment, such as surgical masks and 
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insertable devices, with high antimicrobial effectiveness (S. A. M. Khalifa et al., 2021; 

Patel, Berthold, Puranik, & Gantar, 2015; Rajeshkumar et al., 2013). 

Computational techniques such as virtual screening (VS) and docking can be used 

to find ligand target interactions based on the binding of the system. Docking is used to 

predict the binding of small molecules, called ligands, with a target protein and has been 

previously used on cyanobacterial compounds in search of inhibitors (Sahu, Mishra, 

Kesheri, Kanchan, & Sinha, 2023). Virtual screening is applied to large libraries of 

compounds in search of compounds with drug-like properties and is used to help predict 

the possibility of binding to a target protein, helping in the identification of potential 

compounds for experimental validation. 

1.5. Cyanobacteria compound databases 

The number of available online sources related to cyanobacteria bioactive 

compounds has increased exponentially over the last years. The following databases 

include several pieces of information regarding these compounds. 

1.5.1. CyanoMetDB 

CyanoMetDB is a database developed with the goal of joining disparate information 

regarding cyanobacterial secondary metabolites with bioactivity potential. A freely 

accessible database (https://zenodo.org/record/7922070#.ZHYCbXbMJPY) was 

provided that contained a wide range of compounds and associated them with their 

chemical structure. To complete this objective, it utilized its own in-house libraries as well 

as other public access databases, such as CyanoMetMass (Le Manach et al., 2019), 

The Natural Products Atlas (van Santen et al., 2019), and Microcystins_Miles (Bouaïcha 

et al., 2019; R. Singh et al., 2017). This database is presented in a flat-file database 

containing various fields, including a compound identifier, the compound class, a 

simplified molecular-input line-entry system (SMILES) string and both an Internacional 

Chemical Identifier (InChI) and a hashed version of the InChI called InchIKey. These last 

three entries can be used as a textual identifier of each compound (Heller et al., 2015). 

In addition to these fields, some optional fields were also completed. The field “Nuclear 

magnetic resonance spectroscopy (NMR) used” is meant to indicate which compounds 

were subjected to nuclear magnetic resonance spectroscopy to confirm their structure. 

Fields such as “genus”, “species”, and “strain” have the purpose of providing an overview 

of the type of sample and its origin. “Field sample” refers to compounds that were 

identified in samples from blooms of one or a series of different cyanobacteria species. 

The field “Notes” refers to any additional information regarding the compound’s origin or 

https://zenodo.org/record/7922070#.ZHYCbXbMJPY
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structure. All isomeric SMILES sequences present in the database were also only 

included when proper evidence of the compound stereochemistry was provided. 

1.5.2. Natural Products Atlas 2.0 

The Natural Products Atlas (NPAtlas) 2.0 is a database that continues the work of 

the original NPAtlas database and now contains up to 33 373 different compounds. This 

database can also be downloaded in a csv file format 

(https://www.npatlas.org/download). Each entry in NPAtlas has the chemical structure, 

the original isolation reference, and the organism from which it originated. Since it 

regards all natural products and not only those that come from cyanobacteria, this 

database also contains compounds from different types of bacteria and from fungi (van 

Santen et al., 2019; van Santen et al., 2021). 

1.5.3. Pubchem and Wikidata 

PubChem is a public chemical database that serves as a repository consisting of 

three primary databases regarding substances, compounds, and bioassay information. 

If a description of a chemical substance is submitted to the Substance database, their 

unique chemical structures are then automatically processed through structure 

standardization and saved into the compound database. All the data originated from 

hundreds of contributors and were organized into various collections organized by record 

type. The Substance and Bioassay are data archives, while the Compound collection is 

more similar to a knowledgebase for chemicals. All these data can be accessed 

interactively through their website (https://pubchem.ncbi.nlm.nih.gov/) (Hähnke, Kim, & 

Bolton, 2018; Kim et al., 2020). 

To obtain any missing information that might not be available or extractable from 

PubChem, we utilized Wikidata since it is a common reference for many compounds in 

PubChem (https://pubchem.ncbi.nlm.nih.gov/source/23756). 

1.5.4. ChEMBL 

ChEMBL is an open large-scale bioactivity database 

(https://www.ebi.ac.uk/chembl/) containing information regarding the binding, functional 

and absorption, distribution, metabolism, excretion and toxicity (ADMET) information 

regarding many compounds. This data is obtained by manually extracting them from the 

medical literature and then procedurally curated and standardized. ChEMBL as of 2017 

held approximately 1.6 million different compound structures, and 14 million activity 

values were provided from 1.2 million assays regarding approximately 11 thousand 

targets. (Gaulton et al., 2012; Gaulton et al., 2017) 

https://www.npatlas.org/download
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/source/23756
https://www.ebi.ac.uk/chembl/
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For our work, ChEMBL was used to retrieve bioassay information for the compounds in 

our database. The values we retrieved were related to four different types of bioactivities: 

a) IC50 represents the concentration of the substances required to inhibit 50% of 

the enzyme’s activity; if the value of IC50 is low, the potency of the substance is 

higher. 

b) Ki, which is the inhibition constant, represents the measure of the binding affinity 

of an enzyme and its inhibitor and represents the concentration of the inhibitor 

required to have 50% inhibition of an enzyme’s activity. The lower the Ki value is, 

the stronger the binding between the enzyme and the inhibitor. 

c) INH stands for inhibition presented as a percentage representing a substance 

that can bind to a biological molecule and decrease or inhibit its activity. 

d) MIC is the minimum inhibitory concentration, which means it is the lowest 

concentration at which an antimicrobial agent inhibits the growth of a 

microorganism. 

1.5.5. ChemSpider and Octaparse 

ChemSpider is a completely free, online chemical database that offers its users 

access to different characteristics of its compounds, including its physical and 

chemical properties, its molecular structure and even its nomenclature. It contains 

up to almost 25 million unique chemical compounds that were collected from nearly 

400 different data sources (Pence & Williams, 2010). 

As a possibly important and popular database in the field of chemistry and in 

scientific research in general, the need for compounds to be correctly linked to their 

corresponding webpages across a different database is paramount to help users 

ease of use. 

A way to accomplish such a task may rely on web scraping tools such as 

Octaparse (https://www.octoparse.com/); this tool allows its users to extract data 

from various websites with the benefit of not needing any coding knowledge. Its ease 

of use comes from its point and select system that allows its users to click on the 

information we want to collect and allows for the use of loops through a series of keys 

for mass extraction of data. 

1.6. Molecular descriptors and fingerprints 

1.6.1. Molecular representations and relation to descriptors 

The data stored in the different previously described databases can show several 

features of the chemical cyanobacterial compound molecular structure. In this context, 

https://www.octoparse.com/
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different representations of each molecule can be used. Depending on the 

representation of the molecule, the kind of molecular descriptor produced is different; for 

example, a chemical formula represents the simplest form of representation of a 

molecule; as such, it is referred to as a 0D molecular descriptor. Molecular descriptors 

originating from a substructure list are defined as 1D molecular descriptors; they are 

easy to understand and are normally used for similarity/diversity analysis and virtual 

screening of large chemical databases. 2D molecular descriptors, also known as 

topological descriptors, are the most popular two-dimensional representations that 

contain the atomic composition and information regarding the connection of the atoms in 

the molecule. Another form of descriptors is 3D molecular descriptors that contain spatial 

information regarding the position of the atoms as well as their connection and allow for 

each atom to have a defined position on a three-dimensional scale. 

1.6.2. Molecular descriptors and fingerprints 

Molecular fingerprints are used to represent the structure of a molecule in an 

encoded way, normally represented in a series of binary digits that indicate the presence 

or lack of any structure in the molecule. There are two main categories of molecular 

descriptors: experimental descriptors, which represent all the experimental data, such as 

the octanol-water partition coefficient, polarizability and other physiochemical 

characteristics obtained through the specified experimental procedure. The other 

category is theoretical descriptors obtained by specified molecular algorithms applied to 

a molecular representation. 

1.7. Implementation of PaDEL, Mordred and Drugtax 

descriptor calculators 

1.7.1. PaDEL, an open-source descriptor and fingerprint calculator 

PaDEL-Descriptor is open-source software that can calculate molecular descriptors 

and fingerprints and is able to calculate up to 1875 different descriptors for each 

compound, including 3D descriptors as well as 10 types of fingerprints. These descriptors 

are determined with the aim of providing a model for predicting the biological activity of 

new compounds.(Moriwaki, Tian, Kawashita, & Takagi, 2018; Yap, 2011) 

 This software was developed through Java language and is composed of two 

different components. The library component is self-contained, can function on its own 

and is capable of being integrated into other quantitative structure-activity relationship 

(QSAR) software. There is also the interface component, which provides a graphical user 

interface (GUI) and command line interface allowing the user to select program options 

and even individual types of descriptors and fingerprints to be calculated as required by 
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the library component. For a more specific and detailed description of how the software 

works, check (Yap, 2011). The reasons for selecting PaDEL-Descriptor were that it has 

both an easy-to-use GUI interface that simplifies the work being done and supports 

various platforms and a wide range of molecular file formats. Allowing us to cut the time 

of various conversions of file formats. Other advantages of PaDEL-Descriptor are its 

speed, which is faster than similar descriptor calculators such as the Chemistry 

Development Kit (CDK), and the ability to calculate up to ten different fingerprints more 

than its direct competitors. Finally, the greatest advantage of choosing this software is 

that it is free. 

1.7.2. Mordred descriptor calculator 

Mordred is a descriptor calculator capable of calculating up to 1800 different 

descriptors per compound with the aim of being easily installed, having a high calculation 

speed and including automated tests. To facilitate its own installation, Mordred uses a 

range of libraries that, aside from RDKIT (open-source cheminformatics library written in 

C++ with Python bindings) and Numpy, are coded in Python to simplify its installation, 

and these two libraries, although not coded in Python, are widely used in Python libraries 

and can be easily installed. The high number of base descriptors present in Mordred 

along with the ability to add more through passing parameters for new descriptors makes 

it a valid descriptor calculator to be used as an alternative QSAR study. Regarding 

performance when compared to other similar software tests, Mordred was two times 

faster than PaDEL-Descriptor software and as such was shown to be much more 

efficient.(Moriwaki et al., 2018) 

The basis for picking Mordred software was its easy installation, the flexibility it 

provides and the relative speed at which it calculates its descriptors, allowing for quick 

results when running various tests. 

1.7.3. DrugTax 

DrugTax is a Python package for the characterization of small molecules. Utilizing 

SMILES as an input, we extract the taxonomic information and up to 163 features of the 

compounds. Some of these features will be presented in the form of categorical values 

that refer to different chemical definitions. The determination of whether one compound 

is organic or inorganic depends on it having one carbon atom, which leads to it being 

categorized as an organic compound, although there exists some exceptions to this rule. 

1.8. Machine learning models and Orange software 

Machine learning (ML) methods have been widely used to establish predictive tools 

considering the molecular and chemical characteristics of different types of compounds 



14 
 

(Keith et al., 2021). Furthermore, since the primary hypothesis of this thesis is the 

development of a curated database of cyanobacteria bioactive compounds and a 

complete set of their chemical features to be used in developing ML models. These 

models would serve as a prediction for possible compound-target interactions that could 

prove helpful in developing human therapeutic approaches. 

Machine learning has been previously used in predicting binding affinity utilizing 

biochemical descriptors and targets of compounds in training datasets (D'Souza, Prema, 

& Balaji, 2020; Seko, Togo, & Tanaka, 2018). A series of different ML algorithms can be 

applied utilizing the chemical descriptors. 

In this work, we utilized the KNN, Random Forrest, Gradient Boosting and AdaBoost 

ML algorithms. KNN (K-Nearest-Neighbours) is a machine learning algorithm utilized 

with both classification and regression that utilizes proximity to make its predictions and 

classifications, classifying an instance depending on most of a class of its K nearest 

neighbours. This algorithm can be computationally expensive when utilized on large 

datasets (Taunk, De, Verma, & Swetapadma, 2019; Zhang, 2016). 

Random forest is an ML algorithm that utilizes decision trees to make predictions. 

Each of these trees is trained utilizing a random subset of data and features. Its final 

prediction is an averaging of each individual tree. It is an algorithm that is robust to 

overfitting and is able to handle large datasets but is hard to interpret (Breiman, 2001; 

Cutler, Cutler, & Stevens, 2011). 

Gradient boosting is an ensemble learning method that utilizes decision trees, but in 

this case, they are used as weak learners that are combined to form a strong learner. 

Each new model that is trained is used to reduce the errors made by the previous tree. 

Overfitting more easily occurs, but it also has the potential to be more accurate (Natekin 

& Knoll, 2013; Xuan et al., 2019). 

AdaBoost is also an ensemble learning algorithm working on the same base of 

addition in stages, utilizing several weak learners to obtain a strong learner. It gives 

higher weights to samples that are misclassified and adjusts the weights each time it 

utilizes a weak classifier, giving more emphasis to difficult examples (Gu, Xie, He, & 

Zhang, 2018; Schapire, 2013). 

The implementation of ML algorithms onto calculated biochemical descriptors can be 

done with programs such as Orange (https://orangedatamining.com/), which is a 

machine learning and data mining program built on Python scripting. Similarly with 

Octaparse despite being built on Python it does not need any code writing skills to use 

https://orangedatamining.com/
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and implement. Orange offers a user-friendly design that allows users to complete a 

series of different tasks, including machine learning, by supporting a high number of 

different ML models and allowing for data preprocessing that permits the selection of the 

columns of most interest for our models. Additionally, it also allows us to validate and 

analyse our results through its test, train and validation functions. 

To measure the results obtained from the ML algorithms employed above, we utilized 

a series of different values, including the area under the curve (AUC), classification 

accuracy (CA), F1 score, precision, recall and Mathews correlation coefficient (MCC). 

The AUC value is the value under a receiver operating characteristic (ROC) curve 

and is seen as a good measure for evaluating the performance of classifiers (Melo, 

2013). The classification accuracy represents the percentage of predictions our model 

correctly predicted. The F1 score is a harmonic mean of the precision and recall, allowing 

it to penalize extreme values of both. Precision is the ratio of correctly classified positive 

samples compared to the total number of classified positive samples. Recall is utilized 

to measure how well the model detects positive samples; hence, the higher the recall is, 

the more positive samples were detected. The final evaluation metric is the Matthews 

correlation coefficient; the higher the value is, the better the classification performance. 

It considers true positives, true negatives, false positives, and false negatives to rate the 

model’s performance. 

1.9. Main hypothesis 

In short, the main question we try to answer with this work is whether it is possible to 

create a freely available cyanobacteria compound database that contains their chemical 

descriptors. Additionally, the final database will be accessible, obtainable, and reusable 

for other models and studies, including for example, machine learning applied to the 

descriptors that have been calculated. The two main hypotheses of this project are: 1) 

To build a free online cyanobacteria bioactive compound database that includes all 

chemical information from different online sources and 2) To implement machine learning 

models using the final database to predict protein targets with applications in human 

therapeutics. 
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2. Objectives 

The primary objective of this project was to create an online database that focuses 

on natural cyanobacterial compounds. The database was designed to be curated, 

regularly updated, searchable, downloadable, and aligned with the aim of meeting the 

principles of Findability, Accessibility, Interoperability and Reusability (FAIR). This 

database includes chemical descriptors, fingerprints, and associated bioassay targets. 

Additionally, we have successfully accomplished several other objectives throughout the 

development process, which include: 

1. Establish a curated database specifically dedicated to the most recent 

bioactive compounds derived from cyanobacteria (CBCs). 

2. Develop a semiautomated workflow that utilizes data mining techniques to 

retrieve cyanobacteria-derived compounds from various sources, including 

scientific articles and databases. 

3. Utilize up-to-date software tools to calculate molecular descriptors and 

fingerprints for each CBC. 

4. Create an online database that adheres to FAIR principles by incorporating 

the collected information. 

5. Design and implement a machine learning (ML) algorithm capable of 

predicting potential targets for compounds present in the database, utilizing 

the calculated molecular descriptors. 

The overarching aim of this work is to integrate in a free online final database 

(CyanoBioactiveDB) the existing cyanobacterial databases and their chemical 

descriptors, as well as any cyanobacteria-derived compounds available in publicly 

accessible databases such as PubChem or ChEMBL. By calculating descriptors and 

fingerprints for these compounds, we intend to prepare them for future implementation 

in virtual screening and molecular docking calculations. Our objective is to unify and add 

new molecular and chemical features of each compound by identifying common 

elements and establishing connections that facilitate the merging of relevant information 

between different existing cyanobacteria databases. 

By achieving these objectives, our work aims to contribute to the knowledge and 

research on cyanobacteria natural compounds, facilitate their discovery and exploration, 

and potentially enable the development of new industrial applications and human 

therapeutic approaches. 
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3. Materials and Methods 

3.1. Retrieval of cyanobacteria bioactive compounds 

We initially developed a workflow to retrieve the highest amount of information for 

each already described bioactive compound from different cyanobacteria online 

databases. We used the following databases considering their relevance in the field: 

CyanoMetDB (Jones et al., 2021), PubChem (Kim et al., 2020), NPAtlasDB (van Santen 

et al., 2019; van Santen et al., 2021) and ChEMBL (Mendez et al., 2018). We developed 

a procedure considering the different column fields in each database as follows: 

1) Downloading the CyanoMetDB database file named “CyanoMetDB_v02_2023.csv” 

from the link https://zenodo.org/record/7922070#.ZHYQ5XbMJPZ, the file contains 

2605 different compounds: 

a) To optimize our database structure, we utilize a Python script on a Jupyter 

notebook to curate CyanoMetDB: 

i) The number of references present in the database is not necessary for our 

goals, and some of the columns will not be used, so we remove them with the 

following command: 

cyanodb=cyanodb.drop(["Reference_Text_No1 Title; Journal; Vol,; 

Issue; pages; year; type; DOI; author1; authors2; etc.","Bibtex 

No1","Ref_ID_No2","DOI_No2","Url_No2",                     "Ref-

erence_Text_No2 No Title; Journal; Vol,; Issue; pages; year; 

type; DOI; author1; authors2; etc.","PubMed ID No2" ,"Bibtex 

No2","Ref_ID_No3","DOI_No3", "Url_No3",                     

"Reference_Text_No3 Title; Journal; Vol,; Issue; pages; year; 

type; DOI; author1; authors2; etc.",                      "Pub-

Med ID No3","Bibtex No3","Build block string", "Strain","Spe-

cies","Field sample","PubMed ID No1",                      "Nu-

clear magnetic resonance spectroscopy (NMR) used ","Notes 

","Ref_ID_No1"],axis=1)  

Nevertheless, this information can be recovered using the primary key to 

merge the original source database information. 

ii) We resolved the problem of string values marked as "n.a." by substituting 

them with appropriate missing values. This adjustment avoids any conflicts 

that might arise during future debugging tests or analysis. 

iii) Additionally, we addressed the concern of using a semicolon (";") as a 

separator in the "Genus" column, which could interfere with saving the file in 

CSV format. To overcome this issue, we replaced the semicolon with a slash 

("/") as the separator, ensuring smooth file saving in the desired format. 

To accomplish these modifications (ii and iii), we utilized the following code: 

https://zenodo.org/record/7922070#.ZHYQ5XbMJPZ
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cyanodb=cyanodb.replace("n.a.",np.nan)                  

cyanodb["Genus"]=cyanodb["Genus"].str.replace(";","/") 

cyanodb.to_csv("CyanometDB_Curated.csv",sep=";",index=False)  

2) Download of the Natural Products Atlas Database (NPAtlasDB) file from their website 

(https://www.npatlas.org/download): 

a) Upon acquiring the database, our next step involved curating NPAtlasDB due to 

the presence of 33 372 compounds that were not exclusively derived from 

cyanobacteria: 

i) To accomplish this, we utilized a Python script that specifically selected 

compounds with "Bacterium" listed in the "origin_type" column. This filtering 

process effectively narrowed down the compounds to only those originating 

from bacteria. 

ii) Furthermore, we generated a comprehensive list of cyanobacteria genera 

and employed it to filter the "genus" column in the database. This filtering step 

ensured that only compounds of cyanobacterial origin remained in the 

dataset. As a result, we obtained a final file containing approximately 1965 

distinct compounds. 

 

3) To obtain cyanobacteria compounds, we accessed the PubChem database by 

visiting the PubChem website (https://pubchem.ncbi.nlm.nih.gov/) and conducting a 

search for "cyanobacteria compounds". After retrieving the search results, we 

specifically selected the compounds of interest and proceeded to download the 

corresponding database. 

 

3.2. Merging databases and collecting missing 

information 

1) Before proceeding with merging, we create for each database a column named after 

itself containing a string value “True” to describe if the compound is present in that 

database. 

2) To merge the databases, we utilize the InchIKeys present in a column in each 

database, and as such, it is optimal to rechange the names of the columns to the 

same name, so the merge is done within only this one column. Utilizing the panda 

module merge function, it is important to define the merge to be an “outer” merge, so 

all the information is saved, and the corresponding rows are connected, but we do 

not lose the ones with no corresponding values between databases. The databases 

were merged in the following order: 

https://www.npatlas.org/download
https://pubchem.ncbi.nlm.nih.gov/
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i) CyanoMetDB merges with PubChem to form the Cyano_PubChem table 

containing 2922 compounds and 60 different columns. 

ii) Cyano_PubChemDB then proceeded to merge with NPAtlasDB, creating the 

Cyano_Pubchem_Atlas data frame containing a total of 3537 compounds and 

92 different columns. 

3) At this stage, we create a duplicate of the Cyano_Pubchem_Atlas database called 

"all merges". In this copy, we address the missing values in columns related to 

compound presence across the databases by filling them with the value "False". 

Subsequently, we proceed to generate a series of new columns by merging existing 

columns within the database and filling any missing values with the available 

information. For instance, we combine data from two different columns to populate 

the "Isomeric Smiles" column. If a row already contains a value, we prioritize the 

columns originating from CyanoMetDB as the base column, as it provides the most 

reliable and validated data pertaining to cyanobacteria. 

 

4) Using an Octaparse workflow, we searched the PubChem/Wikidata and ChemSpider 

databases to find information such as the PubChem CID and information regarding 

the genus and isomeric SMILES of the compounds in our database. In addition, we 

utilize a similar workflow for the extraction of compounds that are also present in 

ChemSpider. The workflow loops through the InchIKeys of the compounds in our 

database, making an individual search through these websites retrieving the 

information about each compound. 

a) PubChem information: 

i) Due to the way both Octaparse collects information and the way it is stored 

on PubChem, the resulting file needs to be curated. For that purpose, we 

created a python script that loads the file retrieved from Octaparse and 

curates the data by dividing the file into different tables regarding isomeric 

and canonical SMILES, taxa, and the PubChem compound identifier (CID), 

and then they are joined into one data table under the variable “curated”. The 

code shown below omits certain parts present in the script to help interpret 

the process. 
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ISO1=pubchem_octo.loc[:,"Text2"]=="isomeric SMILES" 

isomeric1=pubchem_octo[ISO1].copy() 
 

isomeric1["Isomeric Smiles"]=isomeric1["Text3"] 

isomeric1["InChI"]=isomeric1["Text12"] 

isomeric1["InChIKey"]=isomeric1["Text14"] 

isomeric1=isomeric1.drop(isomeric1.columns[0:18],axis=1) 
 

 

Curated=pd.concat([isomeric1,isomeric2]) 

Curated=pd.concat([Curated,isomeric3]) 

Curated=pd.concat([Curated,isomeric4]) 

 

 

CID=pubchem_octo.loc[:,"Text15"]=="PubChem CID" 

ID=pubchem_octo[CID].copy() 

ID["InChIKey"]=ID["Text14"] 

ID["PubChem CID"]=ID["Text16"] 

ID=ID.drop(ID.columns[0:18],axis=1) 
 

 

Curated=pd.merge(Curated,ID,on="InChIKey",how="outer") 

 

 
found_taxon1=pubchem_octo.loc[:,"Text6"]=="found in taxon" 

taxon1=pubchem_octo[found_taxon1].copy() 
 

 

taxon1["Genus1"]=taxon1["Text7"] 

taxon1["InChIKey"]=taxon1["Text14"] 

taxon1=taxon1.drop(taxon1.columns[0:18],axis=1) 
 

 

all_taxa=pd.merge(taxon1,taxon2,how="outer",on="InChIKey") 

all_taxa["Genus1"]=all_taxa["Genus1"].fillna(all_taxa["Genus2"]) 

all_taxa=all_taxa.drop(all_taxa.columns[2],axis=1) 

 

 

Curated=pd.merge(Curated,all_taxa,on="InChIKey",how="outer") 

Curated[["Genus","Species"]]=Curated["Genus1"].str.split(" ",1,ex-

pand=True) 

 

 

CAN1=pubchem_octo.loc[:,"Text2"]=="canonical SMILES" 

canonical1=pubchem_octo[ISO1].copy() 

 
 

canonical1["Canonical Smiles"]=canonical1["Text3"] 

canonical1["InChIKey"]=canonical1["Text14"] 

canonical1=canonical1.drop(canonical1.columns[0:18],axis=1) 
 

 
all_canonical=pd.concat([canonical1,canonical2]) 

all_canonical=pd.concat([all_canonical,canonical3]) 

all_canonical=pd.concat([all_canonical,canonical4]) 

all_canonical.drop_duplicates() 

 

Curated=pd.merge(Curated,all_canonical,on="InChIKey",how="outer")  

 

b) ChemSpider Information: 

Regarding the information obtained from ChemSpider, it must be more readily 

obtained than PubChem and allows for a simple concatenation of the obtained 

file from our Octaparse workflow and the compound database. 
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3.3. Collecting the bioactivity information where available 

Considering the importance of discriminating the number of compounds with already 

experimental validation using different methodologies, we updated the database to 

include this information. To obtain the data and merge it with the database, we used 

three different Python scripts: 

1) The first script, “Obtain_Chembl_ID”, obtains the ChEMBL IDs of the compounds 

from our database by utilizing InchIKeys as a search term. To accomplish this, we 

built a function called “inchikey_search” that utilizes the pandas and csv modules as 

well as the “new_client” function from the “chembl_web_resource_client” module that 

is available at https://github.com/chembl/chembl_webresource_client. We utilize this 

function by selecting the “InchIkey_final” column as a variable and running it as a list 

of targets of the function. 

def inchikey_search(targets): 

    mollist = [] 

    df = pd.DataFrame() 

    for target in targets: 

        molecule = new_client.molecule 

        mol = molecule.filter(molecule_structures__standard_inchi_key=target) 

        if len(mol) == 0: 

            new_row = {'molecule_structures': {'standard_inchi_key': target}} 

            new_row = pd.json_normalize(new_row, max_level=2) 

            df = df.append(new_row) 

        else: 

            mollist.append(pd.json_normalize(mol, max_level=2)) 

            df = pd.concat(mollist) 

    df.to_csv("Compound_Chembl_id.csv", sep=";", index=False)  

 

2) The second script, “Obtain_Chembl_Activity”, was created with the goal of utilizing 

newly acquired ChEMBL IDs as a search variable for a custom-built function with the 

goal of obtaining the respective bioactivity information. For this script, we utilized the 

requests, pandas, json and csv modules as well as the URL provided with the 

ChEMBL web services API live documentation 

(https://www.ebi.ac.uk/chembl/api/data/docs). 

https://github.com/chembl/chembl_webresource_client
https://www.ebi.ac.uk/chembl/api/data/docs
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def find_activity_CHEMBL(target_list): 

    mollist = [] 

    df = pd.DataFrame() 

    for target in target_list: 

        print(target) 

        headers = {'accept': 'application/json'} 

        url_stem = "https://www.ebi.ac.uk"  # This is the stem of the url 

        url_full_string = url_stem + "/chembl/api/data/activity/search?q=" + target  

        response = (requests.get(url_full_string,headers=headers)) 

 

        if response.status_code == 404 or response.status_code == 500: 

            return print("url failed") 

 

        else: 

            response_text = response.text 

            response_info = json.loads(response_text) 

            print(response_info.keys()) 

            moleculas = response_info["activities"] 

            mollist.append(pd.json_normalize(moleculas, max_level=2)) 

 

        df = pd.concat(mollist) 

    df.to_csv("Compound_Chembl_Activity.csv", sep=";", index=False)  

3) Finally, with the “Mergin_Chembl_activity” script, we load the 

“Compound_Chembl_Activity” csv file and create a function called 

“create_activity_column” that takes in 2 variables. The first is the name we want our 

new column to have, and the second variable is which type of activity was targeted 

and subsequently creates a column with only data values from that type of activity. 

We created the columns IC50, KI, INH, and MIC. 

def create_activity_column(name_of_column,type_of_activity): 

 

    activities[str(name_of_column)]=activities.query('type= 

    =@type_of_activity')["value"]+activities["units"] 

 

    activities[str(name_of_column)]=activities[str(name_of_column)] 

    .fillna("None") 

 

    activities[str(name_of_column)]=activities[str(name_of_column)] 

    .astype("object")  

create_activity_column("IC50","IC50") 

create_activity_column("Ki","Ki") 

create_activity_column("INH","INH") 

create_activity_column("MIC","MIC")  

From there, we only want to keep the activities of these four types of activity, and so 

we restrict our data table to only the bioassay activities regarding these 4 types. The 

“target_chembl_id” column is then split into two columns, one containing only the 

integer part of the target, so we can sort the targets properly in ascending order. The 

lines are then grouped by their individual “molecule_chembl_id”, giving a separator 

for each entry. These compounds are then merged with the compound ID file 

retrieved in step i) and finally merge the columns of interest with our compound 

database through InchIKeys. 
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3.4. Molecular and chemical descriptor calculation 

To analyse the molecular and chemical properties of each cyanobacterial compound, 

we employed three software programs: a) PaDEL-descriptor, b) Mordred, and c) 

Drugtax. Through the following workflow, thousands of chemical descriptors were 

calculated for the compounds: 

a) PaDEL-descriptor methodology 

i) Conversion of the database to SD format was performed through DataWarrior 

(Sander, Freyss, von Korff, & Rufener, 2015). This process is easily 

performed by opening DataWarrior, creating a new file from there, creating a 

text column and then simply copying and appending the data from your 

csv/excel file to Datawarrior. 

ii) With the data loaded on DataWarrior, there were certain rows of compounds 

that were incorrectly displayed. They ‘re easily found by selecting the 

compound column and ordering in inverse order and returning to regular 

order. To solve this problem, we simply open the csv file in a program such 

as Notepad+ and search for the SMILES of the compounds wrongly displayed 

and proceed to remove the spaces and new lines from these rows. Then, we 

simply reload the csv file in Datawarrior as previously mentioned. 

iii) After successfully copying the information, select file>save special and save 

as an SD file. From here, select the column containing the Isomeric Smile 

structure, “Structure of Smile_Isomeric” and the compound name as the 

“Compound” column for proper identification and save the file. 

iv) Utilizing the Open Babel GUI program (O'Boyle et al., 2011), load the SD-file 

onto the program, ensure that the input format is the same as the file type 

(SD-file) and define the output format as a MOL file type. 

v) Load the MOL-file to the PaDEL-descriptor software to define an output 

directory and then run the PaDEL-descriptor. If at any point PaDEL fails to 

conduct its normal process, it is advised to proceed from step i) but load only 

500 compounds into DataWarrior and create several SD files. 

 

b) Mordred molecular descriptor calculator methodology 

(https://github.com/mordred-descriptor/mordred): 

i) To utilize Mordred, we need to first install it through our Anaconda command 

prompt with the command: 

conda install -y -c rdkit -c mordred-descriptor mordred  

https://github.com/mordred-descriptor/mordred
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ii) Utilizing a python script, we imported both the pandas module and Mordred. 

We create a descriptor calculator with the following command: 

calc =Calculator(descriptor, ignore_3D=True)  

iii) The database is then loaded and divided into a subset that only contains the 

rows containing isomeric smiles, and the index is reset. 

cyanoter2=cyanoter.dropna(subset=["Smiles_Isomeric"]) 

cyanoter2=cyanoter2.reset_index(drop=True) 

cyanoter2  

iv) From there, the isomeric smiles are converted into mol values with the 

command: 

mols = [Chem.MolFromSmiles(smi) for smi in cyanoter2.Smiles_Isomeric] 

  

v) We then utilize the pandas module and the descriptor calculator created in 

step i) to calculate the descriptors of smiles in a data frame. After the 

calculation is complete, we join the Mordred results with the compound 

database: 

df = calc.pandas(mols2) 

 

cyanoter2_descriptors=pd.concat([cyanoter2,df],axis=1,join="inner") 

 

cyanoter2_descriptors  

 

c) DrugTax Python module methodology: 

i) We initially imported the drugtax and pandas module and created a class 

called “drugtax_of_database” with an initializer function that referred to the 

file that was called, the column of the file that we wanted to analyse and the 

name we wanted for the output file. Another function called “run_drugtax” can 

be divided into two parts. The first utilizes the drugtax module on each SMILE 

and appends them to a list. The second part turns this list into a text file in a 

way that it can later be turned into a proper csv file. 
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class drugtax_of_database: 

    def __init__(self,nome_do_ficheiro,indice_do_ficheiro,nome_do_output): 

        self.nome_do_ficheiro=nome_do_ficheiro 

        self.indice_do_ficheiro =indice_do_ficheiro 

        self.nome_do_output = nome_do_output 

 

    def run_drugtax(self): 

        file=pd.read_csv(self.nome_do_ficheiro,sep=";",encoding="UTF-8") 

        smiles=file[self.indice_do_ficheiro] 

        count=0 

        features_list=[] 

        for x in smiles: 

            while count<1: 

                count+=1 

                molecule1=drugtax.DrugTax(x) 

                features=molecule1.features 

                for feature in features: 

                    features_list.append(str(feature)) 

 

        output=open(self.nome_do_output,"w") 

        output.write("SMILE;Kingdom;Superclasses;") 

        for feature in features_list: 

            output.write(feature +";") 

        output.write("\n") 

        for smile in smiles: 

            molecule=drugtax.DrugTax(str(smile)) 

            results = str(molecule) 

            features = molecule.features 

            results2 = results.replace("\n", ";") 

            results3 = results2.replace("SMILE:", "") 

            results4 = results3.replace("Kingdom:", "") 

            results5 = results4.replace("Superclasses:", "") 

            output.write(results5) 

            for feature in features: 

                output.write(str(features[feature]) + ";") 

            output.write("\n") 

        output.close() 

        return  

ii) For our database, we utilized the following code utilizing the above class: 

final_version=drugtax_of_database("Cyanoter_V2_5.csv","Smiles_Isomeric

","Results_final_Drugtax.txt") 
 

final_version.run_drugtax()  

iii) The next command in the script simply turns the text file created by the class 

and function above into a csv file. 

file=pd.read_csv("Results_final_Drugtax.txt",sep=";") 

 

file.to_csv("Results_final_Drugtax.csv",sep=";",index=False, 

encoding="utf-8")  

3.5. Statistics 

Due to the nature of the data table and the way information is stored, we created a 

new file in each entry of a genus or of a target that is correctly registered. For that 

purpose, we created the Python script (“Creation_of_graphics_and_targets”) that 

separates each line entry by the number of genera or different targets present for each 

compound and changes the format of the columns referring to the presence of the 



26 
 

compounds in the original databases. These files will allow us to build the charts utilized 

on our website. 

cyano=pd.read_csv("Cyanoter_V2.csv",sep=";") 
 

cyano2=cyano.replace("",np.nan) 

cyano2=cyano2.replace("none",np.nan) 

cyano2=cyano2.replace("n.a.",np.nan) 
 

cyano2["CyanoMet_DB"]=cyano2["CyanoMet_DB"].apply(lambda x: 1 if str(x)=="True" else 0 ) 

cyano2["PubChem_DB"]=cyano2["PubChem_DB"].apply(lambda x: 1 if str(x)=="True" else 0 ) 

cyano2["NPAtlas_DB"]=cyano2["NPAtlas_DB"].apply(lambda x: 1 if str(x)=="True" else 0 ) 

cyano2["ChEMBL_DB"]=cyano2["ChEMBL_DB"].apply(lambda x: 1 if str(x)=="True" else 0 ) 

 

cyano2.to_csv("Cyanoter_2_for_graphics_compounds.csv",sep=";",index=False) 
 

cyano2["Genus_of_origin"]=cyano2["Genus_of_origin"].str.replace(";","/") 
 

cyano3=(cyano2.assign(Genus=cyano2["Genus_of_origin"].str.split('/')).explode("Ge-

nus").reset_index(drop=True)) 
 

cyano3.pop("Genus_of_origin") 

cyano3.insert(2,"Genus",cyano3.pop("Genus")) 

cyano3["Genus"]=cyano3["Genus"].str.replace(" ","") 

cyano3.to_csv("Cyanoter_2_for_graphics_genus.csv",sep=";",index=False) 
 

 

cyano4=(cyano2.assign(Individual_targets=cyano2["tar-

get_chembl_IDs"].str.split("\|\|")).explode("Individual_targets").reset_in-

dex(drop=True)) 
 

cyano4.to_csv("Cyanoter_2_for_graphics_targets.csv",sep=";",index=False)  

3.6. Machine learning-based target file. 

To make this file, similar techniques as above were implemented, including the 

“create_activity_column”, but in this case, only applying it to the IC50 values and their 

respective targets since this metric has the most associated bioassays values and as 

such gives us the most information possible without mixing evaluation metrics. From 

these IC50 bioassays we obtain a series of targets that are molecules involved in 

pathways leading to various diseases. Only this column was created, so we only selected 

compounds and targets where this inhibition metric occurred. We completed the same 

process as done before, but the purpose of the file created (“OnlyIC50.csv”) is to be 

utilized as a base file where we attach the calculated descriptors of the various programs 

and proceed to its proper preparation to be applied in an ML workflow. 

3.7. Machine learning implementation 

For implementation of the base target file in a predictive machine learning workflow, 

we first must separate our list of targets into a new column (“Individual_targets”) 

containing only one target per row. These targets represent biological complexes or cell 

lines, normally related to diseases,possessing an active binding site that can allow drug-

like compounds to interact with them. Utilizing the targets as categorical variable for our 

machine learning model we implementing the descriptors as features of the model 

predict possible new target-compound interactions. After we reduced the number of 
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classes (individual targets), our file was limited to only those that appeared in a minimum 

of 25 instances in our database. This process resulted in11 final categorical targets. 

Since there was a large discrepancy between the minority and majority classes, we 

implemented an oversampling approach to our data, utilizing the 

“imblearn.over_sampling” module to make it more balanced. This approach resulted in 

a total of 2750 different instances of compound-target interactions. The 11 classes are 

represented by the 11 different targets: CHEMBL3419, CHEMBL364, CHEMBL382, 

CHEMBL384, CHEMBL387, CHEMBL3879801, CHEMBL391, CHEMBL396, 

CHEMBL398, CHEMBL399, CHEMBL612545. 

Regarding the calculated descriptors, some did not produce any kind of interpretable 

result since at times certain values were divided by 0 through the descriptor calculator 

software and returned a text response, so they were removed from the database. 

Descriptors that had less than 80% interpretable values were removed, considerably 

reducing their number in both PaDEL and Mordred. 

3.8. Machine learning models 

To determine if the final curated database with molecular and chemical descriptors 

can be used to predict the putative binding affinity to the different types of targets, we 

implemented a bioinformatics machine learning workflow. The procedure used in another 

study (Carneiro et al., 2023) allowed the implementation of 4 different machine learning 

(ML) models: Gradient boosting, Random Forest, AdaBoost and KNN. The automatic 

update of the molecular and chemical descriptors allows for correct classification of the 

associated types of targets used in different bioassays. The methodology we used to 

build an ML model based upon the IC50 bioassay targets was as follows: 

1. Loading of the created csv file onto the workflow and properly selecting the 

“Individual_targets” column as the target column and as a classifier. 

2. Selection of the cyanobacterial compound molecular and chemical features that 

allowed the highest information gain using an Orange workflow that ranks the 

descriptors through 4 properties: info. Gain, Gain ratio, Gini and X2. 

3. Training of the database of cyanobacteria with 80% of the compounds from the initial 

database. 

4. Validation of the ML models using a testing dataset (20% of the initial database). 

5. A 20-fold cross-validation procedure with all the data. A 10-fold cross-validation 

procedure is more commonly used, but a higher number may allow for a better 

performance of the model. 

6. ROC analysis was utilized to verify the quality of the models. 
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7. The top 25 descriptors of Mordred, PaDEL and Drugtax have also been saved in new 

data tables. 

3.9. Free online Linux hosting database implementation 

A free online webserver was used to make the curated cyanobacteria bioactive 

compounds database freely available to everyone. The website was implemented using 

WordPress, which is a free open-source website creation platform that is one of the 

easiest and most powerful website builders. WordPress websites utilize WordPress as 

its content management system (CMS), powering both the backend and frontend of the 

website. For the uploading and displaying of the data tables on our website, the 

installation and use of two plug-ins, the first being Big File Uploads, allows us to define 

our own size limit to the files that can be uploaded to the WordPress media library 

(https://wordpress.org/plugins/tuxedo-big-file-uploads/). The second plug-in is 

wpDataTable, which allows us to create graphs of the data tables and easily displays our 

data (https://wordpress.org/plugins/wpdatatables/). For the development of the 

CyanoBioactiveDB website, we selected the riverbank theme as our foundation and 

customized it to suit our requirements. This allowed us to effectively showcase the 

unique characteristics and features of our database. Editing the website is done entirely 

through the WordPress Gutenberg editor. This platform utilizes blocks to build upon the 

website so we can add any type of information in the form we wish and preview what it 

looks like on a PC, tablet, and phone screen. To incorporate the data tables into the 

media library for utilization with the wpDataTable plugin, it is necessary to upload the 

files in Excel format to ensure appropriate column formatting. 

The availability of all source code and databases from the following methodology is 

available at https://cyanobioactivedb.jcresearchteam.com/cyanoterdb/download/. 

  

https://wordpress.org/plugins/tuxedo-big-file-uploads/
https://wordpress.org/plugins/wpdatatables/
https://cyanobioactivedb.jcresearchteam.com/cyanoterdb/download/
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4. Results 

4.1. Cyanobacteria bioactive compound database 

To obtain the cyanobacteria putative bioactive compounds final database 

(CyanoBioactiveDB), the methods to merge information between different online 

cyanobacteria databases were applied. Exactly 2605 compounds were obtained from 

the CyanoMetDB, another 403 from the PubChem database and 1965 from the 

NPAtlasDB. From the merging of these three databases, we ended up with a database 

of 3436 different compounds since some of them were the same between databases. 

Table 1 shows the first ten compounds in our data table. We limited it to only four columns 

of the database because of formatting issues caused when importing it in Microsoft Word 

due to the SMILES and other columns. 

Compound Compound_name Classes_of_compounds Genus_of_origin 

Cyano_0001 Anhydrohapaloxindole B other linear nonpeptide Hapalosiphon 

Cyano_0002 Columbamide B other linear nonpeptide Lyngbya/Moorea 

Cyano_0003 Columbamide C other linear nonpeptide Lyngbya/Moorea 

Cyano_0004 Columbamide D other linear nonpeptide Moorea 

Cyano_0005 Columbamide E other linear nonpeptide Moorea 

Cyano_0006 Companeramide A other cyclic peptide Leptolyngbya 

Cyano_0007 Companeramide B other cyclic peptide Leptolyngbya 

Cyano_0008 Floridamide other cyclic peptide Lyngbya/Moorea 

Cyano_0009 Malyngamide Y other linear nonpeptide Lyngbya/Moorea 

Cyano_0010 Laucysteinamide A other linear nonpeptide Caldora 

Table 1- Table containing the first ten entries in the database and the first 4 columns. 

From these source databases, we observed that CyanoMetDB and NPAtlasDB 

contained the highest number of retrieved bioactive compounds, as described in Chart 

1. 

 

Chart 1-Distribution of the number of cyanobacteria bioactive compounds by original database source. 
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Nevertheless, utilizing InchIKeys as a search term for the bioactive compounds 

allowed us to obtain missing information not contained in the original merge and add to 

it the bioassay values for the compounds that were present in ChEMBL. As a result of 

this process, we found that many compounds were present in PubChem despite not 

being initially obtained through the PubChem search (Chart 2). Additionally, we 

confirmed that only 724 compounds had any bioassay information regarding the selected 

types (Chart 2). The reduction of the obtained number of numbers in both CyanoMetDB 

and NPAtlasDB can be explained by repeated entries that were removed and 

compounds not containing InchIKeys. 

 

Chart 2-- Distribution of the number of cyanobacteria bioactive compounds after collecting missing 
information and bioassay experimental values. Total represents the sum of all occurrences of the compound 
in each database. 
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compounds is shown in Chart 3. The existence of higher numbers of Microcystis 

compounds in the database can be explained considering that hepatotoxic microcystins 

are the most widespread class of cyanotoxins, and as such, a higher number of studies 

have been conducted in this genus. Cyanobacterial blooms can be accompanied by 

various cyanotoxins, one of which is microcystins, produced by species of Microcystis 

that can promote tumours and are hepatoxic, making them extremely dangerous(Pham 

& Utsumi, 2018; Svirčev et al., 2017). 

724

1962

2219

2506

0

500

1000

1500

2000

2500

3000

 ChEMBL_DB  NPAtlas_DB  PubChem_DB  CyanoMet_DB

Number of compounds by database after missing data collection



31 
 

 
Chart 3- Distribution of the number of compounds by each genus across the cyanobacteria phylum 

considering 35 occurrences as the lower threshold. 

 Regarding the classes of compounds in Chart 4, we found a high number of 

nondefined cyclic and linear peptides in our database, followed by microcystins, which 

are the most widespread group of cyanotoxins capable of causing cyanobacterial 

poisoning. These toxins behave like hepatotoxins and are able to inhibit protein 

phosphatases, which in turn will create phosphorylated proteins and damage liver cells 

(Lopes, Silva, & Vasconcelos, 2022). Cyanopeptolins are nonribosomal peptides 

produced by different genera of cyanobacteria, such as Microcystis or Anabaena. These 

compounds have been found to be toxic to aquatic organisms and exhibit enzyme 

inhibiting capabilities, more specifically serine proteases. (Mazur-Marzec et al., 2018). 

Anabaenopetin inhibited carboxypeptidase-A, protein phosphatase 1, and elastase. Its 

primary application lies in its potential as an inhibitor of thrombin activatable fibrinolysis 

inhibitor, making it a promising candidate for antithrombotic mechanisms (Monteiro, do 

Amaral, Siqueira, Xavier, & Santos, 2021; Vercauteren, Gils, & Declerck, 2013). 

Aeruginosins are powerful inhibitors of serine proteases even at low concentrations. Its 

structural characteristics allow it to have affinity for binding with trypsin and other serine 

proteases. These proteases are related to the development of tumours and metastasis 

(Ahmed et al., 2021; Ersmark, Del Valle, & Hanessian, 2008; Martin & List, 2019; 

Tagirasa & Yoo, 2022). 
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Chart 4- Distribution of the number of compounds by their chemical class in the cyanobacteria final 
database (CyanoBioactiveDB). 

In Chart 5, we can verify which targets were most used in experimental assays 

regarding our compounds. The field containing the information for the experimentally 

validated bioactive compounds allowed the discrimination of the different targets, as 

shown in Chart 5, which displays the fifteen most tested targets on compounds in our 

website. The targets “CHEMBL261” (n=190), “CHEMBL205” (n=300) and 

“CHEMBL3594” (n=38) refer to carbonic anhydrases I, II and IX, respectively, and 

carbonic anhydrases II and IX have been linked to human cancer development 

(Haapasalo et al., 2007; Pastorekova & Gillies, 2019). “CHEMBL3932” also refers to 

carbonic anhydrase in Methanosarcina thermophila. 

In addition to these targets, “CHEMBL382” (n=44), “CHEMBL387” (n=43), 

“CHEMBL384” (N=56), “CHEMBL394” (n=32), “CHEMBL396” (n=40), “CHEMBL399” 

(n=54) and “CHEMBL399” (n=44) also refer to the cell lines CCRF-CEM, MCF7, HT-29, 

HTC-116 NCI-H460, KB and HeLa, which are important for cancer studies. The first 

refers to a cell line used in oncology as well as human acute lymphoblastic leukemia T 

cells, the second is important in studying breast cancer, the third and fourth refer to 

human colorectal cancer, and the fifth refers to lung cancer. The sixth and seventh cell 

lines are both cervical carcinoma cell lines.(Elemam, Al-Jaderi, Hachim, & Maghazachi, 

2019; Lee, Oesterreich, & Davidson, 2015; Martínez-Maqueda, Miralles, & Recio, 2015; 

Moore, Weise, Zawydiwski, & Thompson, 1985; Qamar et al., 2021; Townsend et al., 

2017; Vaughan, Glänzel, Korch, & Capes-Davis, 2017). The “CHEMBL204” (n=35) target 

refers to thrombin, a serine protease that is important in platelet aggregation (A. R. Anas 

et al., 2012). “CHEMBL3419” (n=42) is a protease known as carboxypeptidase B2 

isoform A related to fibrinolysis (Halland et al., 2015). The data collected can be used to 

help further improve human therapeutic approaches in cancer, which can be achieved 
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by performing virtual screening of the compounds stored in the database to search the 

compounds with higher binding affinity to these targets. 

The remaining targets were not directly related to human molecules, and some 

did not contain any information readily available, such as “CHEMBL612545” (n=712) or 

“CHEMBL3879801” (n=85), which is described only as nonmolecular. 

Other targets still refer to pathogens that affect humans. Some of the more 

important ones are “CHEMBL352” (n=66), which refers to the organism Staphylococcus 

aureus, which is a common human pathogen and causes a series of infectious diseases, 

including endocarditis osteomyelitis and even lethal pneumonia (Guo, Song, Sun, Wang, 

& Wang, 2020). The target “CHEMBL364” (n=60) is also an organism Plasmodium 

falciparum known for causing malaria in humans transmitted mostly by an Anopheles 

mosquito bite. (Joste et al., 2019). “CHEMBL354” (n=34) is the ChEMBL id for 

Escherichia coli, a well-known bacillus that can cause intestinal and other diseases in 

humans (Braz, Melchior, & Moreira, 2020). “CHEMBL368” (n=31) refers to Trypanosoma 

cruzi, a parasite that is known to cause Chagas disease in humans (A. R. J. Anas et al., 

2012). “CHEMBL391” (n=32) refers to Chlorocebus sabaeus and was used for testing 

cytotoxicity in the Vero cell line (Carina, Elisabete, & Elsa, 2013). 

 

Chart 5- Distribution of the occurrences of each target in the retrieved bioassay values of our database (Top 
20 targets by number of occurrences) 

Regarding the obtained bioactivity information (Chart 6), we were able to obtain 

6067 different bioassay results, of which 3538 were of the desired test type. Of these 

results, we verified that 1604 were from IC50 assays, 1165 from Ki, 397 from INH and 

372 from MIC. As such, we verified that 45% of the bioassays with obtained values were 

from IC50 assays, 33% were from Ki assays, and 11% were from MIC and INH assays 

(Chart 7). 
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Chart 6- Distribution of the type of methodology used to ascertain the bioactive potential of the cyanobacterial 
bioactive compounds. 

 

 

Chart 7- Percentage of distribution of the 4 types of methods to measure bioactive potential in 
CyanoBioactiveDB. 

4.2. Machine learning model implementation and 

evaluation 

Considering our second hypothesis concerning a machine learning model 

implementation to address the search for putative protein targets of cyanobacteria 

bioactive compounds, the developed workflow was executed. We employed the machine 

learning model workflow depicted in Figure 2 to determine the classification of our 
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compounds based on protein targets used in various bioassays. Initially, our prepared 

database was loaded, and we utilized the “Individual_target” column and assigned it the 

categorical label to enable accurate prediction of similar chemical compounds using 

distinct chemical descriptors from PaDEL-descriptor, Mordred, and Drugtax. The 

structure of the workflow remains the same, only differing which files are loaded. 

To identify the most informative descriptors, we selected 25 descriptors with the 

highest “info.gain” value ranked through Orange3’s own rank function. Subsequently, the 

data were sampled and subjected to four different machine learning algorithms (gradient 

boosting, random forest, AdaBoost and kNN) in both the test and training sets (shown in 

the right part of Figure 2), along with a 20-fold cross-validation (shown in the left side of 

Figure 2). The outcomes of the training, testing, and cross-validation were analysed for 

the Mordred descriptors, PaDEL descriptors, and DrugTax, as depicted in Figure 2. 
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Figure 2-Orange software workflow used to implement the machine learning algorithms with the descriptors 
as features and the bioassay proteins as targets. 

4.2.1. Feature selection 

Regarding the features selected, the Oranges3 rank function allowed us to select 

the top 25 features by the “info. Gain” metric. This function selected the following features 

in Mordred: ATS7dv, SssO, PEOE_VSA3, NssO, ATS8DV, piPC6, VSA_Estate9, Xc-
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6dv, piPC5, nO, VSA_Estate5, piPC7, IC3, ATSC5se, NdssC, piPC8, NssNH, ATSC5pe, 

piPC10, SlogP_VSA1, nHetero and IC4.  

For PaDEL, the features selected were MDEN-22, nTG12Ring, nAtomLAC, 

nHBAcc, C4SP3, nHBAcc2, MDEN-12, nHBAcc_Lipinski, nHBDon_Lipinski, nBondsD, 

nBondsD2, nBondsS3, nHBDon, nBondsM, C1SP3, nTRing, AATSC5c, nN, AATSC2c, 

MDEO-12, nBondsS2, nBondsS, piPC10, nAtomP and GATS2c.  

DrugTax’s top 25 features were char_C, char_N, char_Og, char_-, char_., char_[, 

char_#, char_B, char_\, organophosphorus, organosulfur, char_Si, carboxyl, 

phenylpropanoids_and_polyketides, char_=, negative, char_@, hydrocarbon, char_+, 

positive, char_P, aromatic_rings, benzenoid, organic_nitrogen and organic_salt. 

4.2.2. Mordred results 

Utilizing the Mordred calculated descriptors, we obtained the values in chart 8 

and table 2 regarding the area under the ROC curve (AUC), classification accuracy, F1, 

precision, recall and Matthews correlation coefficient. These metrics are represented in 

values between 0 and 1. Chart 8 shows that the values of these evaluation metrics were 

generally higher in the training dataset, although this good performance does not 

necessarily be a good indication of the models’ applicability with new data. The test 

dataset results are better to see the model’s generalization when utilizing new data.. 

Despite this fact, the test dataset results are still promising, with AUCs between 0.93 and 

0.983, classification accuracies between 0.7 and 0.771, F1 scores from 0.694 to 0.763, 

precision scores between 0.721 and 0.771, recall values between 0.7 and 0.771 and 

MCC values varying from 0.7 to 0.742. With the goal of obtaining a better estimate of the 

model’s performance, a 20-fold cross-validation test was also performed. In general, the 

algorithms that performed better utilizing these descriptors were Gradient Boosting, 

which presented better overall values, followed by AdaBoost and Random Forest, which 

had similar results, while kNN underperformed in both datasets and in cross-validation 

and presented worse results across all evaluation metrics. 



38 
 

 

Chart 8- Results of the implementation of the 4 different types of machine learning algorithms built using the 
top 25 Mordred descriptors as features on the training, testing and 20-fold cross-validation datasets. 

Model Type of test AUC CA F1 Prec Recall MCC 

Gradient 

Boosting 

Average 0,983 0,786 0,781 0,786 0,786 0,772 

 
Cross 

Validation 

0,983 0,799 0,793 0,797 0,799 0,779 

 
Train 0,986 0,804 0,798 0,802 0,804 0,804 

 
Test 0,979 0,756 0,753 0,759 0,756 0,733 

AdaBoost Average 0,982 0,785 0,781 0,783 0,785 0,764 
 

Cross 

Validation 

0,981 0,785 0,782 0,783 0,785 0,764 

 
Train 0,985 0,800 0,794 0,796 0,800 0,781 

 
Test 0,979 0,771 0,767 0,768 0,771 0,748 

Random 

Forest 

Average 0,981 0,787 0,782 0,789 0,787 0,766 

 
Cross 

Validation 

0,981 0,793 0,789 0,791 0,793 0,773 

 
Train 0,986 0,801 0,794 0,805 0,801 0,783 

 
Test 0,976 0,765 0,763 0,770 0,765 0,742 

kNN Average 0,930 0,731 0,730 0,761 0,731 0,717 
 

Cross 

Validation 

0,929 0,735 0,740 0,791 0,735 0,715 

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Gradient Boosting AdaBoost Random Forest kNN

AUC 0,983 0,986 0,979 0,981 0,985 0,979 0,981 0,986 0,976 0,929 0,935 0,925

CA 0,799 0,804 0,756 0,785 0,800 0,771 0,793 0,801 0,765 0,735 0,759 0,700

F1 0,793 0,798 0,753 0,782 0,794 0,767 0,789 0,794 0,763 0,740 0,756 0,694

Prec 0,797 0,802 0,759 0,783 0,796 0,768 0,791 0,805 0,770 0,791 0,772 0,721

Recall 0,799 0,804 0,756 0,785 0,800 0,771 0,793 0,801 0,765 0,735 0,759 0,700

MCC 0,779 0,804 0,733 0,764 0,781 0,748 0,773 0,783 0,742 0,715 0,736 0,700

0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700
0,800
0,900
1,000

Mordred Results

AUC CA F1 Prec Recall MCC
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Train 0,935 0,759 0,756 0,772 0,759 0,736 

 
Test 0,925 0,700 0,694 0,721 0,700 0,700 

Table 2- Values of the test, training and 20-fold cross-validation databases utilizing the top 25 features in 
Mordred. The values in bold represent the average value of the models. 

4.2.3. PaDEL descriptors 

Utilizing the Padel calculated descriptors, we obtained the values in chart 9 and 

table 3 regarding the area under the ROC curve (AUC), classification accuracy, F1, 

precision, recall and Matthew’s correlation coefficient. These metrics are represented in 

values between 0 and 1. As before, the values of these evaluation metrics were generally 

higher in the training dataset. The test dataset presented an AUC between 0,931 and 

0,980, classification accuracy values from 0,727 and 0,753, F1 scores from 0.726 to 

0.752, precision between 0.759 and 0.777, recall values between 0.727 and 0.753 and 

MCC values varying from 0.702 to 0.730. The algorithms that performed better utilizing 

these descriptors were Gradient Boosting and Random Forest, while AdaBoost 

underperformed in every metric except for AUC. kNN underperformed all metrics of 

evaluation in both datasets and in cross-validation. In all applications of the kNN 

algorithm, the utilization of the descriptors calculated through PaDEL provided the best 

results. 

 

Chart 9-Results of the implementation of the 4 different types of machine learning algorithms built using the 
top 25 PaDEL descriptors as features on the training, testing and 20-fold cross-validation datasets. 

Model Type of test AUC CA F1 Prec Recall MCC 

Gradient 

Boosting 

Average 0,983 0,778 0,777 0,787 0,778 0,757 

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Gradient Boosting AdaBoost Random Forest kNN

AUC 0,983 0,987 0,980 0,982 0,984 0,980 0,981 0,986 0,977 0,926 0,949 0,931

CA 0,776 0,805 0,753 0,767 0,768 0,727 0,778 0,802 0,751 0,727 0,757 0,727

F1 0,776 0,802 0,752 0,769 0,768 0,726 0,778 0,799 0,749 0,730 0,761 0,731

Prec 0,779 0,804 0,777 0,773 0,780 0,759 0,778 0,805 0,770 0,764 0,775 0,761

Recall 0,776 0,805 0,753 0,767 0,768 0,727 0,778 0,802 0,749 0,727 0,757 0,727

MCC 0,754 0,786 0,730 0,744 0,746 0,703 0,756 0,783 0,726 0,727 0,734 0,702

0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700
0,800
0,900
1,000

PaDEL Results

AUC CA F1 Prec Recall MCC
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Cross Validation 0,983 0,776 0,776 0,779 0,776 0,754 

 
Train 0,987 0,805 0,802 0,804 0,805 0,786 

 
Test 0,980 0,753 0,752 0,777 0,753 0,730 

AdaBoost Average 0,982 0,754 0,754 0,771 0,754 0,731 
 

Cross Validation 0,982 0,767 0,769 0,773 0,767 0,744 
 

Train 0,984 0,768 0,768 0,780 0,768 0,746 
 

Test 0,980 0,727 0,726 0,759 0,727 0,703 

Random Forest Average 0,982 0,777 0,776 0,784 0,776 0,755 
 

Cross Validation 0,981 0,778 0,778 0,778 0,778 0,756 
 

Train 0,986 0,802 0,799 0,805 0,802 0,783 
 

Test 0,977 0,751 0,749 0,770 0,749 0,726 

kNN Average 0,935 0,737 0,741 0,767 0,737 0,721 
 

Cross Validation 0,926 0,727 0,730 0,764 0,727 0,727 
 

Train 0,949 0,757 0,761 0,775 0,757 0,734 
 

Test 0,931 0,727 0,731 0,761 0,727 0,702 

Table 3- Values of the test, training and 20-fold cross-validation databases utilizing the top 25 features in 
PaDEL. The values in bold represent the average value of the models. 

4.2.4. DrugTax 

Utilizing the Drugtax calculated descriptors, we obtained the values in chart 10 

and table 4 regarding previously mentioned evaluation metrics. As before, the values of 

these evaluation metrics were generally higher in the training dataset. The test dataset 

presented an AUC between 0,918 and 0,978, classification accuracy with values from 

0,722 and 0,751, F1 scores from 0.723 to 0.750, precision between 0.736 and 0.759, 

recall values between 0.722 and 0.751 and MCC values varying from 0.694 to 0.726. 

The algorithm that performed best utilizing these descriptors was random forest, which 

slightly outperformed Gradient Boosting, AdaBoost and kNN on both datasets and in 

cross-validation. 
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Chart 10- Results of the implementation of the 4 different types of machine learning algorithms built using 
the top 25 Drugtax descriptors as features on the training, testing and 20-fold cross-validation datasets. 

Model Type of test AUC CA F1 Prec Recall MCC 

Gradient Boosting Average 0,979 0,776 0,772 0,783 0,776 0,755 
 

Cross Validation 0,980 0,778 0,771 0,780 0,778 0,757 
 

Train 0,987 0,808 0,804 0,813 0,808 0,790 
 

Test 0,970 0,742 0,740 0,755 0,742 0,718 

AdaBoost Average 0,982 0,778 0,776 0,779 0,778 0,756 
 

Cross Validation 0,981 0,772 0,768 0,772 0,772 0,750 
 

Train 0,987 0,810 0,808 0,809 0,810 0,792 
 

Test 0,978 0,751 0,750 0,756 0,751 0,726 

Random Forest Average 0,981 0,847 0,845 0,784 0,781 0,760 
 

Cross Validation 0,980 0,777 0,771 0,782 0,780 0,759 
 

Train 0,988 0,813 0,810 0,812 0,813 0,794 
 

Test 0,975 0,749 0,746 0,759 0,749 0,725 

kNN Average 0,927 0,742 0,742 0,755 0,742 0,727 
 

Cross Validation 0,913 0,728 0,728 0,745 0,728 0,703 

 
Train 0,948 0,775 0,776 0,784 0,775 0,784 

 
Test 0,918 0,722 0,723 0,736 0,722 0,694 

Table 4- Values of the test, training and 20-fold cross-validation databases utilizing the top 25 features in 
Drugtax. The values in bold represent the average value of the models. 

During our work, we discovered that Drugtax might not properly calculate 

compounds containing hydrogen since the SMILES it outputs after the initial input does 

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Gradient Boosting AdaBoost Random Forest kNN

AUC 0,980 0,987 0,970 0,981 0,987 0,978 0,980 0,988 0,975 0,913 0,948 0,918

CA 0,778 0,808 0,742 0,772 0,810 0,751 0,783 0,813 0,749 0,728 0,775 0,722

F1 0,771 0,804 0,740 0,768 0,808 0,750 0,777 0,810 0,746 0,728 0,776 0,723

Prec 0,780 0,813 0,755 0,772 0,809 0,756 0,782 0,812 0,759 0,745 0,784 0,736

Recall 0,778 0,808 0,742 0,772 0,810 0,751 0,780 0,813 0,749 0,728 0,775 0,722

MCC 0,757 0,790 0,718 0,750 0,792 0,726 0,759 0,794 0,725 0,703 0,784 0,694

0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700
0,800
0,900
1,000

Drugtax Results

AUC CA F1 Prec Recall MCC
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not contain their corresponding hydrogens. As such, the information and model obtained 

from this descriptor must be taken with this information into account and be handled with 

caution and displaying this overarching issue. 

In summary, utilizing the Mordred descriptors Gradient Boosting, AdaBoost and 

Random Forrest presented their best overall results when considering all models and 

tests, while kNN presented its worst result of all implementations. When using the 

PaDEL-calculated descriptors, its best models were Gradient Boosting and kNN, which 

had results similar to the Drugtax descriptors model. Finally, the Drugtax model 

presented the best results for the kNN algorithm. 

4.3. Validation test 

To obtain a better assessment of the performance of our Mordred machine learning 

workflow, we utilized a new database obtained from BindingDB, and the data we used 

were drawn from PubChem and its 2D structures. This is done since this new acquired 

data only has compounds with known binding capability to its targets and has such allows 

for a proper analysis of the model’s predictive capabilities with known compound-target 

connections. For this database, the same methodology was applied to limit the number 

of prediction classes and descriptors. Utilizing the chemical structures in this file and 

Datawarrior, we are able to determine their SMILES, which are then run through Mordred 

to obtain their respective descriptors. This database also had a high number of individual 

entries totalling 41148 different interactions, with Homo sapiens as its target species, 

from which we utilized Datawarrior to calculate the smiles from the compound structures. 

This process allows us to calculate the Mordred descriptors that can then be applied in 

our models as features for predicting possible targets for compound-target interaction.  

In this database the targets are identified by their Unitprot primary ID and were as 

follows: O75116, P00519, P00533, P03951, P07858, P07900, P07949, P10696, 

P17612, P21453, P21462, P25090, P28562, P28566, P30305, P34949, P35398, 

P36888, P42858, P61981, Q01196, Q07817, Q13285, Q15139  Q16548, Q99500, 

V9GZ37. Since our limit is 25 occurences and this database contained more data the 

number of targets that were present increased from 11 to 27. From there, we applied 

same oversampling technique to the database  and then  used it in our Mordred model 

since it provided the best results in the previous test, and we obtained the results in Chart 

11 and Table 5. From the test data we can verify that there is big decrease in the 

evaluation metrics for gradiant boosting all the metrics besides AUC had their values 

between 0.615 and 0.628 and where comparatively lower than with our 

CyanoBioactiveDB. The Random Forrest algorithm presented the best results overall in 
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this database followed by Adaboost and then kNN. These algorithms had generally lower 

results also when compared to their implementation on the CyanoBioactiveDB but with 

a lesser difference of values than what is seen in gradiant boosting. 

 

Chart 11- Results of the implementation of the 4 different types of machine learning algorithms built using 
the top 25 Mordred descriptors as features on the training, testing and 20-fold cross-validation datasets from 
the validation database. 

Model Type of test AUC CA F1 Prec Recall MCC 

Gradient Boosting Average 0,966 0,658 0,654 0,660 0,658 0,645 
 

Cross Validation 0,965 0,660 0,656 0,663 0,660 0,648 
 

Train 0,972 0,685 0,685 0,687 0,685 0,673 
 

Test 0,961 0,628 0,621 0,631 0,628 0,615 

AdaBoost Average 0,974 0,747 0,746 0,753 0,747 0,738 
 

Cross Validation 0,947 0,750 0,748 0,748 0,750 0,741 
 

Train 0,991 0,766 0,765 0,774 0,766 0,758 
 

Test 0,984 0,725 0,724 0,737 0,725 0,715 

Random Forest Average 0,988 0,763 0,761 0,768 0,763 0,755 
 

Cross Validation 0,987 0,762 0,761 0,762 0,762 0,754 
 

Train 0,992 0,785 0,784 0,791 0,785 0,777 
 

Test 0,985 0,742 0,739 0,750 0,742 0,733 

kNN Average 0,927 0,707 0,702 0,706 0,707 0,696 
 

Cross Validation 0,913 0,660 0,656 0,663 0,660 0,648 
 

Train 0,943 0,756 0,753 0,756 0,756 0,747 
 

Test 0,925 0,704 0,698 0,700 0,704 0,693 

Table 5- Values of the test, training and 20-fold cross-validation databases utilizing the top 25 features 
calculated by Mordred in the validation dataset. The values in bold represent the average value of the 

models. 

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Cross
Validati

on
Train Test

Gradient Boosting AdaBoost Random Forest kNN

AUC 0,965 0,972 0,961 0,947 0,991 0,984 0,987 0,992 0,985 0,913 0,943 0,925

CA 0,660 0,685 0,628 0,750 0,766 0,725 0,762 0,785 0,742 0,660 0,756 0,704

F1 0,656 0,685 0,621 0,748 0,765 0,724 0,761 0,784 0,739 0,656 0,753 0,698

Prec 0,663 0,687 0,631 0,748 0,774 0,737 0,762 0,791 0,750 0,663 0,756 0,700

Recall 0,660 0,685 0,628 0,750 0,766 0,725 0,762 0,785 0,742 0,660 0,756 0,704

MCC 0,648 0,673 0,615 0,741 0,758 0,715 0,754 0,777 0,733 0,648 0,747 0,693

0,000
0,100
0,200
0,300
0,400
0,500
0,600
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0,800
0,900
1,000

Validation Results

AUC CA F1 Prec Recall MCC
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4.4. Free online database 

The main hypothesis was validated by creating the CyanoBioactiveDB database and 

making it accessible through a free online database website. To ensure easy access for 

academic and corporate research companies, scientists and the general public, a 

WordPress website was developed. The homepage of the website (Figure 3) provides 

an overview of the database contents, including statistical analysis. Users can explore 

detailed information about the compounds and their molecular and chemical descriptors 

(Figures 4 and 8). Finally, we allow any visitor to search for any type of information in the 

database and allow the download of that information (Figure 9). The data stored on the 

website follow the FAIR principles, which allows a fast search of the cyanobacterial 

compounds of interest and export the data in several formats. These formats allow the 

reuse of the data and interoperability with other computational tools. 

On or main page we highlight the main characteristics of our database and the 

information you can find on our website from the number of compounds, classes, and 

unique targets. Additionally, we also highlight the descriptors calculated from our 

database and the ML algorithms we utilized these descriptors for their calculations. 

 

Figure 3-Front page of the CyanobioactiveDB website, which contains a brief description of this database 
and its purpose as well as its main characteristics. 

The webpage “Cyanobacteria” (Figure 4) of the website contains a series of 

submenus with a summary of what cyanobacteria are, their applications, a description of 

their compounds and links to other databases utilized to create this database. 
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Figure 4-Cyanobacteria page of the CyanobioactiveDB website. 

 On the Statistics page (Figure 5), we created several submenus containing 

different distributions of key elements in our database. The charts and analysis focused 

on highlighting the sources of the compounds in our database, as well as the distribution 

of the top 20 most occurring genera and targets. 

 

Figure 5-Statistics page of the CyanobioactiveDB website. 

 In Figure 6, the website permits a search for a variety of terms, including SMILES, 

InchIKeys and other information from the database columns, and then the download will 

be only of the selected rows from the search parameter. These csv files can be reused 

to calculate new descriptors or utilize the database already containing descriptors for use 

in other ML models. 
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Figure 6-Database page of the CyanobioactiveDB website. In this example, we searched for any row that 
originated from the “moorea” genus, and the database returned the following entries that allowed for their 

download. 

In Figure 7, when selecting “Biochemical Descriptors”, a submenu is presented, 

listing the names of the different descriptor calculators used. Each name serves as a link 

to an individual dataset containing the descriptors. 

 

Figure 7- Main page of CyanoBioactivedb selecting the submenu of the Biochemical Descriptors tab. 

These datasets can be downloaded and accessed, allowing users to view the main 

molecular and chemical descriptors when applied to an ML algorithm. Alternatively, users 

can click on the "Biochemical Descriptors" option, which takes them to a page providing 

a description of what a descriptor is (Figure 8). 
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Figure 8- Biochemical descriptors page of CyanoBioactivedb presenting a short description of what 

biochemical descriptors are. 

 This page likely explains the concept of descriptors and their significance in the 

context of the database and ML algorithms. By providing both the option to access 

individual descriptor datasets and offering an explanation of descriptors themselves, the 

website ensures that users have the resources and information they need to understand 

and utilize the molecular and chemical descriptors effectively (Figures 9, 10 and 11). 

 

Figure 9-Mordred page of CyanoBioativedb website containing a database of the top 25 descriptors from 
the Mordred descriptor calculator when ranking descriptors using info. Gain, Gain ratio, Gini and X2. 
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Figure 10-PaDEL page of CyanoBioativedb website containing a database of the top 25 descriptors from 

Padel when ranking descriptors using info. Gain, Gain ratio, Gini and X2. 

 

 

Figure 11- DrugTax page of the CyanoBioactive website containing a database of the top 25 descriptors 
from the DrugTax program when ranking descriptors using info. Gain, Gain ratio, Gini and X2. 

For users who wish to check our ML workflow and wish to apply it to their own 

databases or use ours in their own workflows or with other algorithms besides the ones 

we have chosen, all the needed files are contained in the “Machine Learning” page 

(Figure 12). 
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Figure 12-Machine Learning page of CyanoBioativedb website that contains the files regarding our applied 
machine learning algorithm including the descriptors used and the workflow itself. 

Finally, for all the available downloadable content in our database and the process 

utilized in creating it, the download page contains a series of different databases, the ML 

orange workflows and the Python files utilized in forming it (Figure 13). 

 

Figure 13- Download page of CyanoBioativedb website containing all the major data tables regarding the 

website. 

Taking into account the online availability of the CyanoBioactiveDB database, our 

initial hypothesis has been completely addressed. We successfully created a 

comprehensive database of bioactive compounds derived from cyanobacteria, 

encompassing molecular and chemical information gathered from various online 

sources. Additionally, we fulfilled our second hypothesis by utilizing machine learning 

models that leverage the final database to predict protein targets with potential 

applications in human therapeutics. 
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5. Conclusion 

In conclusion, we were able to fully address the specific objectives derived from our 

two main hypotheses. The specific objectives fully achieved were as follows: 1) We 

established a curated free online database dedicated to cyanobacteria bioactive 

compounds and their molecular and chemical descriptors. 2) We implemented a 

semiautomated workflow utilizing data mining techniques to retrieve cyanobacteria-

derived compounds from various sources, including articles and databases. 3) Utilizing 

the most up-to-date software tools, we were able to calculate molecular descriptors for 

compounds containing isomeric SMILES with the possibility of including calculations 

from canonical SMILES in the future. 4) We created an online database that adheres to 

FAIR principles by incorporating the collected information. 5)  We designed and 

implemented a machine learning (ML) algorithm capable of predicting potential targets 

for compounds present in the database, utilizing the calculated molecular descriptors. 

This ML algorithm has been minimally validated through the several metrics we utilized 

to measure in evaluating its performance. Our models showed that regarding the 

algorithms when utilizing Mordred descriptors, Gradient Boosting, AdaBoost and random 

forest obtain better results, while the kNN algorithm favors the Drugtax descriptors. The 

use of our validation test also proves the possible applications of this model in large 

datasets. 

In the future, this work includes the possibility of collecting the compounds of this 

database for utilization in docking and virtual screening approaches, from which this 

database can provide some information regarding other fields, such as drug discovery. 

The ongoing collection of bioassay information will also help in the future to improve the 

ML algorithm by providing more data entries that can help improve results. In addition, 

the implementation of other ML algorithms in addition to those tested might lead to better 

results. 
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6. Output of this work 

Directly from this work, the main scientific contributions were as follows: 

i. An online database available at our website called CyanoBioActiveDB 

(https://cyanobioactivedb.jcresearchteam.com/) contains cyanobacteria 

compounds with their bioassay information and their chemical and 

molecular descriptors. The website also allows for a series of different 

data tables to be downloaded containing the full database, the molecular 

descriptors of the compounds utilizing three different descriptor 

calculators: PaDEL, Mordred and Drugtax and a data table containing the 

“top 25 “descriptors from our ML workflow for each of them. 

 

ii. A scientific poster presented at IJUP 2023 at Rectory University of Porto 

(http://dx.doi.org/10.13140/RG.2.2.25674.75208). 

 

 

iii. A machine learning algorithm also available at our website that utilized 

the descriptors as features was used to create three databases containing 

their top 25 descriptors when applied to the different origins of the 

database.  

https://cyanobioactivedb.jcresearchteam.com/
http://dx.doi.org/10.13140/RG.2.2.25674.75208


52 
 

7. Bibliography 

Agarwal, P., Soni, R., Kaur, P., Madan, A., Mishra, R., Pandey, J., . . . Singh, G. (2022). 
Cyanobacteria as a Promising Alternative for Sustainable Environment: 
Synthesis of Biofuel and Biodegradable Plastics. Frontiers in Microbiology, 13. 
doi:10.3389/fmicb.2022.939347 

Ahmed, M. N., Wahlsten, M., Jokela, J., Nees, M., Stenman, U.-H., Alvarenga, D. O., . . 
. Fewer, D. P. (2021). Potent Inhibitor of Human Trypsins from the Aeruginosin 
Family of Natural Products. ACS Chemical Biology, 16(11), 2537-2546. 
doi:10.1021/acschembio.1c00611 

Anas, A. R., Kisugi, T., Umezawa, T., Matsuda, F., Campitelli, M. R., Quinn, R. J., & 
Okino, T. (2012). Thrombin inhibitors from the freshwater cyanobacterium 
Anabaena compacta. J Nat Prod, 75(9), 1546-1552. doi:10.1021/np300282a 

Anas, A. R. J., Kisugi, T., Umezawa, T., Matsuda, F., Campitelli, M. R., Quinn, R. J., & 
Okino, T. (2012). Thrombin Inhibitors from the Freshwater Cyanobacterium 
Anabaena compacta. Journal of Natural Products, 75(9), 1546-1552. 
doi:10.1021/np300282a 

Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., . . . van 
der Donk, W. A. (2013). Ribosomally synthesized and posttranslationally 
modified peptide natural products: overview and recommendations for a 
universal nomenclature. Nat Prod Rep, 30(1), 108-160. doi:10.1039/c2np20085f 

Bethan, K., & Carole, L. (2018). Secondary Metabolites in Cyanobacteria. In V. 
Ramasamy & S. S. R. Suresh (Eds.), Secondary Metabolites (pp. Ch. 2). Rijeka: 
IntechOpen. 

Bouaïcha, N., Miles, C. O., Beach, D. G., Labidi, Z., Djabri, A., Benayache, N. Y., & 
Nguyen-Quang, T. (2019). Structural Diversity, Characterization and Toxicology 
of Microcystins. Toxins, 11(12), 714. Retrieved from https://www.mdpi.com/2072-
6651/11/12/714 

Braz, V. S., Melchior, K., & Moreira, C. G. (2020). Escherichia coli as a Multifaceted 
Pathogenic and Versatile Bacterium. Frontiers in Cellular and Infection 
Microbiology, 10. doi:10.3389/fcimb.2020.548492 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. 
doi:10.1023/A:1010933404324 

Carina, M., Elisabete, V. r., & Elsa, D. (2013). The Kidney Vero-E6 Cell Line: A Suitable 
Model to Study the Toxicity of Microcystins. In G. Sivakumar (Ed.), New Insights 
into Toxicity and Drug Testing (pp. Ch. 2). Rijeka: IntechOpen. 

Carneiro, J., Magalhães, R. P., de la Oliva Roque, V. M., Simões, M., Pratas, D., & 
Sousa, S. F. (2023). TargIDe: a machine-learning workflow for target 
identification of molecules with antibiofilm activity against Pseudomonas 
aeruginosa. Journal of Computer-Aided Molecular Design, 37(5), 265-278. 
doi:10.1007/s10822-023-00505-5 

Chittora, D., Meena, M., Barupal, T., Swapnil, P., & Sharma, K. (2020). Cyanobacteria 
as a source of biofertilizers for sustainable agriculture. Biochemistry and 
Biophysics Reports, 22, 100737. 
doi:https://doi.org/10.1016/j.bbrep.2020.100737 

Cutler, A., Cutler, D., & Stevens, J. (2011). Random Forests. In (Vol. 45, pp. 157-176). 
D'Souza, S., Prema, K. V., & Balaji, S. (2020). Machine learning models for drug-target 

interactions: current knowledge and future directions. Drug Discov Today, 25(4), 
748-756. doi:10.1016/j.drudis.2020.03.003 

Dahms, H. U., Ying, X., & Pfeiffer, C. (2006). Antifouling potential of cyanobacteria: a 
mini-review. Biofouling, 22(5-6), 317-327. doi:10.1080/08927010600967261 

Elemam, N. M., Al-Jaderi, Z., Hachim, M. Y., & Maghazachi, A. A. (2019). HCT-116 
colorectal cancer cells secrete chemokines which induce chemoattraction and 

https://www.mdpi.com/2072-6651/11/12/714
https://www.mdpi.com/2072-6651/11/12/714
https://doi.org/10.1016/j.bbrep.2020.100737


53 
 

intracellular calcium mobilization in NK92 cells. Cancer Immunol Immunother, 
68(6), 883-895. doi:10.1007/s00262-019-02319-7 

Ersmark, K., Del Valle, J. R., & Hanessian, S. (2008). Chemistry and biology of the 
aeruginosin family of serine protease inhibitors. Angew Chem Int Ed Engl, 47(7), 
1202-1223. doi:10.1002/anie.200605219 

Erwin, P. M., López-Legentil, S., & Schuhmann, P. W. (2010). The pharmaceutical value 
of marine biodiversity for anticancer drug discovery. Ecological Economics, 
70(2), 445-451. doi:https://doi.org/10.1016/j.ecolecon.2010.09.030 

Fiore, M. F., Alvarenga, D. O., Varani, A. M., Hoff-Risseti, C., Crespim, E., Ramos, R. T. 
J., . . . Schneider, M. P. C. (2013). Draft Genome Sequence of the Brazilian Toxic 
Bloom-Forming Cyanobacterium Microcystis aeruginosa Strain SPC777. 
Genome announcements, 1(4), e00547-00513. doi:10.1128/genomea.00547-13. 
(Accession No. 23908289) 

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., . . . 
Overington, J. P. (2012). ChEMBL: a large-scale bioactivity database for drug 
discovery. Nucleic Acids Res, 40(Database issue), D1100-1107. 
doi:10.1093/nar/gkr777 

Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., . . . Leach, 
A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Res, 45(D1), D945-
d954. doi:10.1093/nar/gkw1074 

Gu, W., Xie, X., He, Y., & Zhang, Z. (2018). [Drug-target protein interaction prediction 
based on AdaBoost algorithm]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 35(6), 
935-942. doi:10.7507/1001-5515.201802026 

Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of 
Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and 
Infection Microbiology, 10. doi:10.3389/fcimb.2020.00107 

Haapasalo, J., Nordfors, K., Järvelä, S., Bragge, H., Rantala, I., Parkkila, A. K., . . . 
Parkkila, S. (2007). Carbonic anhydrase II in the endothelium of glial tumors: a 
potential target for therapy. Neuro Oncol, 9(3), 308-313. doi:10.1215/15228517-
2007-001 

Hähnke, V. D., Kim, S., & Bolton, E. E. (2018). PubChem chemical structure 
standardization. Journal of Cheminformatics, 10(1), 36. doi:10.1186/s13321-018-
0293-8 

Halland, N., Brönstrup, M., Czech, J., Czechtizky, W., Evers, A., Follmann, M., . . . Kallus, 
C. (2015). Novel Small Molecule Inhibitors of Activated Thrombin Activatable 
Fibrinolysis Inhibitor (TAFIa) from Natural Product Anabaenopeptin. J Med 
Chem, 58(11), 4839-4844. doi:10.1021/jm501840b 

Heller, S., Darpö, B., Mitchell, M. I., Linnebjerg, H., Leishman, D. J., Mehrotra, N., . . . 
Sager, P. (2015). Considerations for assessing the potential effects of 
antidiabetes drugs on cardiac ventricular repolarization: A report from the Cardiac 
Safety Research Consortium. American Heart Journal, 170(1), 23-35. 
doi:https://doi.org/10.1016/j.ahj.2015.03.007 

Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., . . . 
Janssen, E. M. L. (2021). CyanoMetDB, a comprehensive public database of 
secondary metabolites from cyanobacteria. Water Research, 196, 117017. 
doi:https://doi.org/10.1016/j.watres.2021.117017 

Joste, V., Maurice, L., Bertin, G. I., Aubouy, A., Boumédiène, F., Houzé, S., . . . Faucher, 
J. F. (2019). Identification of Plasmodium falciparum and host factors associated 
with cerebral malaria: description of the protocol for a prospective, case‒control 
study in Benin (NeuroCM). BMJ Open, 9(5), e027378. doi:10.1136/bmjopen-
2018-027378 

Keith, J. A., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Müller, K.-R., 
& Tkatchenko, A. (2021). Combining Machine Learning and Computational 
Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews, 
121(16), 9816-9872. doi:10.1021/acs.chemrev.1c00107 

https://doi.org/10.1016/j.ecolecon.2010.09.030
https://doi.org/10.1016/j.ahj.2015.03.007
https://doi.org/10.1016/j.watres.2021.117017


54 
 

Khalifa, S. A. M., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, 
M. E., . . . El-Seedi, H. R. (2021). Cyanobacteria—From the Oceans to the 
Potential Biotechnological and Biomedical Applications. Marine Drugs, 19(5), 
241. Retrieved from https://www.mdpi.com/1660-3397/19/5/241 

Khalifa, S. A. M., Shedid, E. S., Saied, E. M., Jassbi, A. R., Jamebozorgi, F. H., Rateb, 
M. E., . . . El-Seedi, H. R. (2021). Cyanobacteria-From the Oceans to the Potential 
Biotechnological and Biomedical Applications. Mar Drugs, 19(5). 
doi:10.3390/md19050241 

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., . . . Bolton, E. E. (2020). 
PubChem in 2021: new data content and improved web interfaces. Nucleic Acids 
Research, 49(D1), D1388-D1395. doi:10.1093/nar/gkaa971 

Kumar, K., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial heterocysts. 
Cold Spring Harb Perspect Biol, 2(4), a000315. 
doi:10.1101/cshperspect.a000315 

Le Manach, S., Duval, C., Marie, A., Djediat, C., Catherine, A., Edery, M., . . . Marie, B. 
(2019). Global Metabolomic Characterizations of Microcystis spp. Highlights 
Clonal Diversity in Natural Bloom-Forming Populations and Expands Metabolite 
Structural Diversity. Front Microbiol, 10, 791. doi:10.3389/fmicb.2019.00791 

Lee, A. V., Oesterreich, S., & Davidson, N. E. (2015). MCF-7 Cells—Changing the 
Course of Breast Cancer Research and Care for 45 Years. JNCI: Journal of the 
National Cancer Institute, 107(7). doi:10.1093/jnci/djv073 

Lopes, G., Silva, M., & Vasconcelos, V. (2022). The Pharmacological Potential of 
Cyanobacteria. 

Marahiel, M. A. (2009). Working outside the protein-synthesis rules: insights into 
nonribosomal peptide synthesis. Journal of Peptide Science, 15(12), 799-807. 
doi:https://doi.org/10.1002/psc.1183 

Martin, C. E., & List, K. (2019). Cell surface-anchored serine proteases in cancer 
progression and metastasis. Cancer Metastasis Rev, 38(3), 357-387. 
doi:10.1007/s10555-019-09811-7 

Martínez-Maqueda, D., Miralles, B., & Recio, I. (2015). HT29 Cell Line. In K. Verhoeckx, 
P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. 
Swiatecka, & H. Wichers (Eds.), The Impact of Food Bioactives on Health: in vitro 
and ex vivo models (pp. 113-124). Cham: Springer International Publishing. 

Mazur-Marzec, H., Fidor, A., Cegłowska, M., Wieczerzak, E., Kropidłowska, M., Goua, 
M., . . . Edwards, C. (2018). Cyanopeptolins with Trypsin and Chymotrypsin 
Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar 
Drugs, 16(7). doi:10.3390/md16070220 

Melo, F. (2013). Area under the ROC Curve. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, 
& H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 38-39). New York, NY: 
Springer New York. 

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., . . . Leach, 
Andrew R. (2018). ChEMBL: towards direct deposition of bioassay data. Nucleic 
Acids Research, 47(D1), D930-D940. doi:10.1093/nar/gky1075 

Micallef, M. L., D'Agostino, P. M., Al-Sinawi, B., Neilan, B. A., & Moffitt, M. C. (2015). 
Exploring cyanobacterial genomes for natural product biosynthesis pathways. 
Mar Genomics, 21, 1-12. doi:10.1016/j.margen.2014.11.009 

Micallef, M. L., D’Agostino, P. M., Sharma, D., Viswanathan, R., & Moffitt, M. C. (2015). 
Genome mining for natural product biosynthesis-related gene clusters in the 
Subsection V cyanobacteria. BMC Genomics, 16(1), 669. doi:10.1186/s12864-
015-1855-z 

Monteiro, P. R., do Amaral, S. C., Siqueira, A. S., Xavier, L. P., & Santos, A. V. (2021). 
Anabaenopeptins: What We Know So Far. Toxins (Basel), 13(8). 
doi:10.3390/toxins13080522 

Moore, D. E., Weise, K., Zawydiwski, R., & Thompson, E. B. (1985). The karyotype of 
the glucocorticoid-sensitive, lymphoblastic human T-cell line CCRF-CEM shows 

https://www.mdpi.com/1660-3397/19/5/241
https://doi.org/10.1002/psc.1183


55 
 

a unique deleted and inverted chromosome 9. Cancer Genetics and 
Cytogenetics, 14(1), 89-94. doi:https://doi.org/10.1016/0165-4608(85)90219-5 

Moriwaki, H., Tian, Y.-S., Kawashita, N., & Takagi, T. (2018). Mordred: a molecular 
descriptor calculator. Journal of Cheminformatics, 10(1), 4. doi:10.1186/s13321-
018-0258-y 

Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in 
Neurorobotics, 7. doi:10.3389/fnbot.2013.00021 

O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, 
G. R. (2011). Open Babel: An open chemical toolbox. Journal of 
Cheminformatics, 3(1), 33. doi:10.1186/1758-2946-3-33 

Pastorekova, S., & Gillies, R. J. (2019). The role of carbonic anhydrase IX in cancer 
development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev, 
38(1-2), 65-77. doi:10.1007/s10555-019-09799-0 

Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2015). Screening of cyanobacteria and 
microalgae for their ability to synthesize silver nanoparticles with antibacterial 
activity. Biotechnol Rep (Amst), 5, 112-119. doi:10.1016/j.btre.2014.12.001 

Pathak, J., Rajneesh, Maurya, P., Singh, s. p., Häder, D., & Sinha, R. (2018). 
Cyanobacterial Farming for Environment Friendly Sustainable Agriculture 
Practices: Innovations and Perspectives. Frontiers in Environmental Science, 6. 
doi:10.3389/fenvs.2018.00007 

Pattanaik, B., & Lindberg, P. (2015). Terpenoids and their biosynthesis in cyanobacteria. 
Life (Basel), 5(1), 269-293. doi:10.3390/life5010269 

Pence, H. E., & Williams, A. (2010). ChemSpider: An Online Chemical Information 
Resource. Journal of Chemical Education, 87(11), 1123-1124. 
doi:10.1021/ed100697w 

Pham, T.-L., & Utsumi, M. (2018). An overview of the accumulation of microcystins in 
aquatic ecosystems. Journal of Environmental Management, 213, 520-529. 
doi:https://doi.org/10.1016/j.jenvman.2018.01.077 

Philmus, B., Christiansen, G., Yoshida, W. Y., & Hemscheidt, T. K. (2008). 
Posttranslational modification in microviridin biosynthesis. Chembiochem, 9(18), 
3066-3073. doi:10.1002/cbic.200800560 

Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., . . . Natarajan, 
C. (2010). Rediscovering cyanobacteria as valuable sources of bioactive 
compounds (Review). Applied Biochemistry and Microbiology, 46(2), 119-134. 
doi:10.1134/S0003683810020018 

Qamar, H., Hussain, K., Soni, A., Khan, A., Hussain, T., & Chénais, B. (2021). 
Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in 
Antitumour Activity and as Nanovectors. Molecules, 26(1). 
doi:10.3390/molecules26010247 

Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & 
Annadurai, G. (2013). Intracellular and extracellular biosynthesis of silver 
nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci 
Nanotechnol, 3(1), 21-25. 

Ramos, V., Morais, J., Castelo-Branco, R., Pinheiro, Â., Martins, J., Regueiras, A., . . . 
Vasconcelos, V. M. (2018). Cyanobacterial diversity held in microbial biological 
resource centers as a biotechnological asset: the case study of the newly 
established LEGE culture collection. J Appl Phycol, 30(3), 1437-1451. 
doi:10.1007/s10811-017-1369-y 

Sahu, N., Mishra, S., Kesheri, M., Kanchan, S., & Sinha, R. P. (2023). Identification of 
Cyanobacteria-Based Natural Inhibitors Against SARS-CoV-2 Druggable Target 
ACE2 Using Molecular Docking Study, ADME and Toxicity Analysis. Indian J Clin 
Biochem, 38(3), 361-373. doi:10.1007/s12291-022-01056-6 

Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An Open-Source 
Program For Chemistry Aware Data Visualization And Analysis. Journal of 
Chemical Information and Modelling, 55(2), 460-473. doi:10.1021/ci500588j 

https://doi.org/10.1016/0165-4608(85)90219-5
https://doi.org/10.1016/j.jenvman.2018.01.077


56 
 

Schapire, R. E. (2013). Explaining AdaBoost. In B. Schölkopf, Z. Luo, & V. Vovk (Eds.), 
Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik (pp. 37-52). Berlin, 
Heidelberg: Springer Berlin Heidelberg. 

Seckbach, J. (2007). Algae and cyanobacteria in extreme environments (Vol. 11): 
Springer Science & Business Media. 

Seko, A., Togo, A., & Tanaka, I. (2018). Descriptors for Machine Learning of Materials 
Data. In I. Tanaka (Ed.), Nanoinformatics (pp. 3-23). Singapore: Springer 
Singapore. 

Singh, A. K., Sharma, L., Mallick, N., & Mala, J. (2017). Progress and challenges in 
producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of 
Applied Phycology, 29(3), 1213-1232. doi:10.1007/s10811-016-1006-1 

Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A Precious 
Bioresource in Agriculture, Ecosystem, and Environmental Sustainability. Front 
Microbiol, 7, 529. doi:10.3389/fmicb.2016.00529 

Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., . . . Prasad, S. M. 
(2017). Uncovering Potential Applications of Cyanobacteria and Algal 
Metabolites in Biology, Agriculture and Medicine: Current Status and Future 
Prospects. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00515 

Singh, R. K., Tiwari, S. P., Rai, A. K., & Mohapatra, T. M. (2011). Cyanobacteria: an 
emerging source for drug discovery. The Journal of Antibiotics, 64(6), 401-412. 
doi:10.1038/ja.2011.21 

Strunecký, O., Ivanova, A. P., & Mareš, J. (2023). An updated classification of 
cyanobacterial orders and families based on phylogenomic and polyphasic 
analysis. Journal of Phycology, 59(1), 12-51. 
doi:https://doi.org/10.1111/jpy.13304 

Subramaniyan, V. (2012). Potential applications of cyanobacteria in industrial effluents - 
a review. Journal of Bioremediation and Biodegradation, 3(6), 1000154. 

Svirčev, Z., Drobac, D., Tokodi, N., Mijović, B., Codd, G. A., & Meriluoto, J. (2017). 
Toxicology of microcystins with reference to cases of human intoxications and 
epidemiological investigations of exposures to cyanobacteria and cyanotoxins. 
Archives of Toxicology, 91(2), 621-650. doi:10.1007/s00204-016-1921-6 

Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Antibacterial, antifungal and 
antimycobacterial compounds from cyanobacteria. Biomedicine & 
Pharmacotherapy, 90, 760-776. doi:https://doi.org/10.1016/j.biopha.2017.04.030 

Tagirasa, R., & Yoo, E. (2022). Role of Serine Proteases at the Tumor-Stroma Interface. 
Frontiers in Immunology, 13. doi:10.3389/fimmu.2022.832418 

Tanabe, Y., Hodoki, Y., Sano, T., Tada, K., & Watanabe, M. M. (2018). Adaptation of the 
Freshwater Bloom-Forming Cyanobacterium Microcystis aeruginosa to Brackish 
Water Is Driven by Recent Horizontal Transfer of Sucrose Genes. Frontiers in 
microbiology, 9, 1150. doi:10.3389/fmicb.2018.01150. (Accession No. 
29922255) 

Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019, 15-17 May 2019). A Brief Review 
of Nearest Neighbor Algorithm for Learning and Classification. Paper presented 
at the 2019 International Conference on Intelligent Computing and Control 
Systems (ICCS). 

Tiwari, A., & Pandey, A. (2012). Cyanobacterial hydrogen production – A step towards 
clean environment. International Journal of Hydrogen Energy, 37(1), 139-150. 
doi:https://doi.org/10.1016/j.ijhydene.2011.09.100 

Tomitani, A., Knoll, A. H., Cavanaugh, C. M., & Ohno, T. (2006). The evolutionary 
diversification of cyanobacteria: Molecular–phylogenetic and palaeontological 
perspectives. Proceedings of the National Academy of Sciences, 103(14), 5442-
5447. doi:doi:10.1073/pnas.0600999103 

Townsend, M. H., Anderson, M. D., Weagel, E. G., Velazquez, E. J., Weber, K. S., 
Robison, R. A., & O'Neill, K. L. (2017). Non-small cell lung cancer cell lines A549 

https://doi.org/10.1111/jpy.13304
https://doi.org/10.1016/j.biopha.2017.04.030
https://doi.org/10.1016/j.ijhydene.2011.09.100


57 
 

and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the 
plasma membrane. Onco Targets Ther, 10, 1921-1932. doi:10.2147/ott.S128416 

van Santen, J. A., Jacob, G., Singh, A. L., Aniebok, V., Balunas, M. J., Bunsko, D., . . . 
Linington, R. G. (2019). The Natural Products Atlas: An Open Access Knowledge 
Base for Microbial Natural Products Discovery. ACS Central Science, 5(11), 
1824-1833. doi:10.1021/acscentsci.9b00806 

van Santen, J. A., Poynton, E. F., Iskakova, D., McMann, E., Alsup, Tyler A., Clark, T. 
N., . . . Linington, R. G. (2021). The Natural Products Atlas 2.0: a database of 
microbially derived natural products. Nucleic Acids Research, 50(D1), D1317-
D1323. doi:10.1093/nar/gkab941 

Vaughan, L., Glänzel, W., Korch, C., & Capes-Davis, A. (2017). Widespread Use of 
Misidentified Cell Line KB (HeLa): Incorrect Attribution and Its Impact Revealed 
through Mining the Scientific Literature. Cancer Research, 77(11), 2784-2788. 
doi:10.1158/0008-5472.Can-16-2258 

Vercauteren, E., Gils, A., & Declerck, P. J. (2013). Thrombin activatable fibrinolysis 
inhibitor: a putative target to enhance fibrinolysis. Semin Thromb Hemost, 39(4), 
365-372. doi:10.1055/s-0033-1334488 

Xuan, P., Sun, C., Zhang, T., Ye, Y., Shen, T., & Dong, Y. (2019). Gradient Boosting 
Decision Tree-Based Method for Predicting Interactions Between Target Genes 
and Drugs. Frontiers in Genetics, 10. doi:10.3389/fgene.2019.00459 

Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular 
descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466-
1474. doi:https://doi.org/10.1002/jcc.21707 

Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Ann Transl 
Med, 4(11), 218. doi:10.21037/atm.2016.03.37 

 

https://doi.org/10.1002/jcc.21707

