
Speculative
Execution Resilient
Cryptography
Rui Fernandes
Mestrado em Segurance Informática
Departamento de Ciência de Computadores
2023

Orientador
Bernardo Portela, Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
José Bacelar Almeida
Departamento de Informática da Universidade do Minho

Declaração de Honra

Eu, Rui Pedro Gomes Fernandes, inscrito no Mestrado em Segurança Informática da

Faculdade de Ciências da Universidade do Porto declaro, nos termos do disposto na

alínea a) do artigo 14.º do Código Ético de Conduta Académica da U.Porto, que o

conteúdo da presente dissertação reflete as perspetivas, o trabalho de investigação e

as minhas interpretações no momento da sua entrega.

Ao entregar esta dissertação, declaro, ainda, que a mesma é resultado do meu próprio

trabalho de investigação e contém contributos que não foram utilizados previamente

noutros trabalhos apresentados a esta ou outra instituição.

Mais declaro que todas as referências a outros autores respeitam escrupulosamente as

regras da atribuição, encontrando-se devidamente citadas no corpo do texto e

identificadas na secção de referências bibliográficas. Não são divulgados na presente

dissertação quaisquer conteúdos cuja reprodução esteja vedada por direitos de autor.

Tenho consciência de que a prática de plágio e auto-plágio constitui um ilícito

académico.

Rui Fernandes

Porto, 29 de junho de 2023

Acknowledgments

I would like to thank my supervisors, Bernardo Portela, José Bacelar Almeida and Tiago Oliveira
for their invaluable guidance and feedback throughout this year.

I would also like to express my gratitude to my friends and family for their constant motivation
and encouragement.

i

Abstract

Modern processors make use of speculative execution, an optimization technique in which the
CPU to begin executing instructions before their dependencies are resolved, thus allowing the
execution of instruction ahead of time. However, the disclosure of the Spectre and Meltdown
attacks in 2018 demonstrated that speculative execution can be exploited to access unauthorized
data, leaking it to the cache.

Existing countermeasures are based on the insertion of fence instructions that prevent
speculative execution. However, using these too often leads to a considerable performance
penalty. An alternative approach called Speculative Load Hardening, addresses this issue by
“poisoning” speculatively loaded values during a misspeculation, ensuring that they are not
visible to an attacker.

In this context, this dissertation focuses on protecting libjbn, a Jasmin big number library,
against Spectre v1 attacks using an information-flow type system. This type system allows
Jasmin source code source code to be formally validated as resilient to a specific variant of
speculative execution attacks. We then extend libjbn with a generic implementation of
arithmetic operations over elliptic curves motivated by the fact that these are the foundation for
the implementation of Elliptic Curve Cryptography protocols.

To evaluate the impact of these protections, we conduct a comprehensive benchmarking of
the modified code. The results demonstrate that these protections introduce a relatively low
overhead, ensuring protection against Spectre v1 attacks while achieving an acceptable level of
performance.

Keywords: Speculative Execution, Jasmin, Elliptic Curve Cryptography

iii

Resumo

Os processadores modernos fazem uso da execução especulativa, uma técnica de otimização na
qual o CPU começa a executar as instruções antes de as respetivas dependências serem resolvidas,
permitindo, assim, a execução destas instruções antecipadamente. No entanto, a divulgação
dos ataques Spectre e Meltdown em 2018 demonstrou que a execução especulativa pode ser
aproveitada para aceder a dados não autorizados, alterando, assim, o estado da cache.

As contramedidas existentes baseiam-se sobretudo na inserção de instruções que bloqueiam a
execução especulativa. No entanto, o uso excessivo deste tipo de instruções resulta numa perda
de performance considerável. Uma abordagem alternativa chamada Speculative Load Hardening
consiste “mascarar” valores lidos especulativamente de memória, garantindo, assim, que estes
não são visíveis para um atacante.

Neste contexto, esta dissertação tem como objetivo proteger a libjbn, uma biblioteca
de números grandes escrita em Jasmin, contra ataques Spectre v1, usando, para isso, um
information-flow type system que permite validar código Jasmin como resiliente a ataques de
execução especulativa. Além disso, extendemos a libjbn com a implementação genérica de
operações aritméticas sobre curvas elípticas motivados pelo facto de que estas são a base para a
implementação de protocolos de Criptografia de Curvas Elípticas.

Para avaliar o impacto das proteções, realizamos uma comparação entre do código original e
código protegido. Os resultados obtido demonstram que esta proteções apresentam um overhead
mínimo, garantindo a proteção contra a variante 1 do Spectre, ao mesmo tempo que garantimos
um nível de desempenho aceitável.

Palavras Chave: Execução Especulativa, Jasmin, Criptografia de Curvas Elípticas

v

Contents

List of Tables ix

List of Figures xii

Listings xiii

List of Algorithms xv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives & Contribution . 2

1.3 Structure of the Dissertation . 3

2 Background 5

2.1 Side-Channel Attacks . 5

2.2 Speculative Execution Attacks . 10

2.2.1 Attack Taxonomy . 12

2.2.2 Attack Detection & Countermeasures . 17

2.3 Computer Aided Cryptography . 20

2.3.1 Type Systems . 21

2.3.2 Proof Assistants Machine-Checked Proofs 21

2.3.3 Verified Compilation . 22

2.4 Elliptic Curve Cryptography . 23

vii

3 Jasmin 33

3.1 The Jasmin Language . 35

3.2 Verification Toolchain . 40

3.3 Speculative Constant-Time Type System . 42

4 Implementation and Experimental Results 49

4.1 Source Code Modifications . 50

4.2 Elliptic Curve Arithmetic . 54

4.3 Performance Evaluation . 60

5 Conclusion & Future Work 71

5.1 Limitations & Future Work . 71

A Jasmin Source Code 73

Bibliography 75

viii

List of Tables

2.1 Common leakage models . 9

2.2 Key lengths of ECC and RSA comparison for different security levels 24

3.1 Syntax of Jasmin programs . 35

3.2 Overview of Jasmin variable allocation . 36

3.3 Type system primitives . 44

4.1 Performance comparison of integer arithmetic functions for 4 limbs 61

4.2 Performance of CT integer arithmetic functions for 4 limbs 62

4.3 Performance of SCT integer arithmetic functions for 4 limbs 62

4.4 Performance comparison of finite field arithmetic functions for 4 limbs 63

4.5 Comparison of the lines of assembly between the CT and SCT implementations
for 4 limbs . 64

4.6 Performance of CT finite field arithmetic functions for 4 limbs 64

4.7 Performance of SCT finite field arithmetic functions for 4 limbs 64

4.8 Performance comparison of elliptic curve arithmetic functions for 4 limbs 65

4.9 Performance of CT elliptic curve arithmetic functions for 4 limbs 65

4.10 Performance of SCT elliptic curve arithmetic functions for 4 limbs 66

ix

List of Figures

2.1 Timing behaviour of the div instruction on the AMD EPYC 7F52 x86 CPU . . 10

2.2 Pipelined instruction execution . 10

2.3 Taxonomy of speculative execution attacks . 13

2.4 Retpoline . 15

2.5 Geometric interpretation of the group law . 27

2.6 Power trace of the double-and-add algorithm on a RISC-V CPU 30

3.1 Performance evaluation of the SHA-3 function with respect to other verified and
non-verified implementations . 33

3.2 Jasmin workflow . 34

3.3 jasminc compilation steps . 40

4.1 Performance comparison of integer arithmetic functions for 4 limbs 61

4.2 Performance comparison of finite field arithmetic functions for 4 limbs 63

4.3 Performance comparison of elliptic curve arithmetic functions for 4 limbs 66

4.4 Distribution of cycle count for the ecc_add function 67

4.5 Distribution of cycle count for the ecc_mixed_add function 67

4.6 Distribution of cycle count for the ecc_double function 67

4.7 Distribution of cycle count for the ecc_normalize function 68

4.8 Distribution of cycle count for the ecc_scalar_mul function 68

4.9 Distribution of cycle count for the ecc_branchless_scalar_mul function . . 68

4.10 Cycle Count in terms of the number of limbs for the fp_toM function 69

xi

4.11 Cycle Count in terms of the number of limbs for the bn_addn function 69

xii

Listings

2.1 Constant-time comparison in Go . 7
2.2 Non Constant-time comparison in Go . 8
2.3 Conditional branch misprediction . 14
2.4 Indirect jump . 16
2.5 Compiled assembly for an indirect jump using retpoline 16
2.6 Spectre-v1 vulnerable array read . 19
2.7 Array read protected using the LFENCE instruction 19
2.8 Integer multiplication . 22
2.9 Integer multiplication with optimizations . 22
2.10 Assembly demonstrating that compiler breaks CT 23
3.1 Jasmin for loop . 37
3.2 Compiled for loop . 37
3.3 Jasmin while loop . 37
3.4 Compiled while loop . 37
3.5 Big number comparison using flag manipulation 38
3.6 Jasmin source program . 41
3.7 Leakage trace . 41
3.8 Equivalent EasyCrypt model . 42
3.9 Misspeculation flag initialization . 45
3.10 Setting misspeculation flag . 45
3.11 Setting misspeculation flag . 46
3.12 Declassifying a secret value loaded from memory 47
4.1 bn_set0 without Spectre v1 protections . 51
4.2 bn_set0 with Spectre v1 protections . 51
4.3 fp_inv without Spectre v1 protections . 52
4.4 fp_inv with Spectre v1 protections . 52
4.5 __ecc_branchless_scalar_mul function with Spectre v1 protections 53
A.1 _fp_exp function without Spectre v1 protections 73
A.2 _fp_exp function with Spectre v1 protections 74

xiii

List of Algorithms

1 Left-to-right binary method for point multiplication 29
2 Right-to-left binary method for point multiplication 29
3 Montgomery Ladder for point multiplication . 31
4 Exponentiation algorithm . 54
5 Complete, projective point addition for prime-order short Weierstrass curves

E(Fp) : y2 = x3 + ax + b, with a = −3 . 56
6 Complete, mixed point addition for prime order short Weierstrass curves E(Fp) : y2 =

x3 + ax + b, with a = −3 . 57
7 Exception-free point doubling for prime order short Weierstrass curves E(Fp) : y2 =

x3 + ax + b, with a = −3 . 58
8 Branchless Montgomery Ladder for scalar multiplication 59

xv

Acronyms

ABI Application Binary Interface

AES Advanced Encryption Standard

AVX Advanced Vector Extensions

AWS Amazon Web Services

BL Baseline

BTB Branch Target Buffer

CL Cache Line

CPU Central Processing Unit

CT Constant-Time

DPA Differential Power Analysis

DSL Domain-Specific Language

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

KEM Key Encapsulation Mechanism

KPTI Kernel Page-Table Isolation

MDS Microarchitectural Data Sampling

ML Machine Learning

NIKE Non-Interactive Key Exchange

NIST National Institute of Standards and Technology

PC Program Counter

PHT Pattern History Table

PQC Post-Quantum Cryptography

ROB Reorder Buffer

RSB Return Stack Buffer

xvii

SCT Speculative Constant-Time

selSLH Selective Speculative Load Hardening

SIMD Single Instruction Multiple Data

SLH Speculative Load Hardening

SSBD Speculative Store Bypass Disable

STL Store-To-Load

STT Speculative Taint Tracking

TLS Transport Layer Security

TV Time Variable

USLH Ultimate Speculative Load Hardening

ZK Zero-Knowledge

xviii

Chapter 1

Introduction

1.1 Motivation

Modern processors use speculative execution to improve performance by predicting and executing
instructions ahead of time. Essentially, speculative execution is a performance optimization used
by the CPU to predict and execute instructions ahead of time based on certain assumptions. As
an example, in the case of conditional statements, instead of idling and waiting for the condition
to be evaluated, the CPU makes an educated guess about which path is likely to be taken
and begins executing instructions along that path. This improves performance by keeping the
processor pipeline filled with instructions and avoiding waiting for the condition to be resolved.
However, if the prediction turns out to be wrong, the CPU discards these instructions and
resumes execution at the correct path.

While speculative execution may seem safe at first, in the sense that the result of a
misprediction are never committed, speculative execution attacks such as Spectre [58] and
Meltdown [64] have shown that this is not the case. Essentially, these attacks exploit speculative
execution to execute instructions that would not be executed during sequential execution,
potentially accessing secret information and leaking it to the cache or other observable side-
channels.

One notable example of such an attack is Spook.js [4], a speculative execution attack affecting
all Chromium-based browser that allows a potential attacker to read sensitive information such
as passwords. Other speculative execution attacks have shown that it is possible to read kernel
memory from the user-space [64], as well as extracting cryptographic keys from Intel SGX
enclaves [88]. Quoting Hill et al. [49]:

Spectre variants have shown the need to move beyond just delivering performance [...]
to more deeply consider security.

Because this vulnerability is so prevalent, it is crucial to ensure that cryptographic code is

1

2 Chapter 1. Introduction

efficient and provably resistant to such attacks, which is the focus of this dissertation.

By inserting LFENCE instructions at specific points in the code, we can prevent the CPU
from accessing sensitive data during speculative execution, ensuring that no secret information is
leaked. However, the excessive use of these instructions results in a considerable performance
penalty. For this reason, we consider an alternative and more efficient approach called Speculative
Load Hardening (SLH) that hardens speculative loads, thus preventing secret data from being
leaked.

1.2 Objectives & Contribution

In this dissertation, we focus on protecting cryptographic code against a type of speculative
execution attack, namely Spectre v1. To do so, we consider an information-flow type system
that allows Jasmin source code to be formally validated as resilient to the Spectre v1 speculative
execution attack. In particular, we protect libjbn [34], a library for multi-precision arithmetic,
against this attack.

libjbn is a library that provides a range of functions for both integer and finite field
arithmetic that other Jasmin implementations can use. These functions allow developers to
perform arithmetic operations on large numbers, such as addition, subtraction, multiplication,
division and exponentiation. By providing these functions as a standalone library, other Jasmin
implementations can easily incorporate them into their codebase rather than having to re-
implement the same functionality. As a result, libjbn serves as a valuable resource when
implementing cryptographic algorithms that rely on arithmetic with big numbers.

Examples of such libraries include Fiat Cryptography [38], which offers elliptic curve
implementations, that were included in BoringSSL. In addition, HACL? is a verified cryptographic
library used by Mozilla Firefox. In the context of verified cryptographic protocols, examples
include miTLS [20], a formally verified implementation of the TLS protocol, and LibSignal [76],
an implementation of the Signal protocol that relies on HACL?.

Furthermore, the significance of protecting this library increases substantially in the sense
that it is already being used in cryptographic implementations – the Schnorr protocol [40] is
implemented using integer arithmetic functions from libjbn, and Swoosh, a post-quantum
lattice-based Non-Interactive Key Exchange (NIKE) scheme [43], uses the arithmetic functions
over finite fields provided by libjbn to implement polynomial arithmetic in Rq in Rust.

Finally, we extend libjbn by incorporating arithmetic operations on prime-order elliptic
curves, achieving a performance overhead of only 3% for addition, 2% for mixed addition,
4% for point doubling, and around 1% for scalar multiplication, when compared to a Jasmin
implementation that is vulnerable to Spectre v1 attacks. The source code is available at
https://github.com/ruipedro16/libjbn-sslh

https://github.com/ruipedro16/libjbn-sslh

1.3. Structure of the Dissertation 3

1.3 Structure of the Dissertation

The rest of this dissertation is structured in the following chapters:

Chapter 2, Background: This chapter establishes the necessary background on speculative
execution attacks, and discusses preliminary concepts including computer-aided cryptography
and Elliptic Curve Cryptography (ECC).

Chapter 3, Jasmin: This chapter discusses the Jasmin programming language, which is a
verification-friendly, low-level Domain-Specific Language (DSL) that allows to write efficient
cryptographic implementations. This chapter also covers the Jasmin verification toolchain, which
includes a series of tools that ensure the compiled assembly is memory safe and resilient to
side-channel attacks.

Chapter 4, Implementation and Experimental Results: This chapter discusses how we
can use an information-flow type system to protect a Jasmin library for multi-precision arithmetic.
We then extend libjbn with arithmetic operations over prime-field elliptic curves motivated by
the fact that it forms the foundation for the implementation of ECC protocols.

Chapter 5, Conclusion & Future Work: This chapter concludes the dissertation by
summarizing the main findings of this work and presenting concise overview of the key conclusions.
Finally, we discuss the limitations of the study and provide suggestions for areas of future research.

Chapter 2

Background

In this chapter, we introduce fundamental concepts that are necessary for understanding the
remaining sections of the dissertation. §2.1 introduces side-channel attacks, and §2.2 summarizes
the state-of-the-art on speculative execution attacks, evaluating their impact, and addressing
some possible countermeasures, both hardware and software-based. §2.3 explores computer-aided
cryptography, where formal methods are used to provide proof of the security and correctness
of cryptographic implementations. Finally, §2.4 covers the key concepts of Elliptic Curve
Cryptography (ECC), focusing on their application in the implementation of cryptographic
primitives and protocols.

2.1 Side-Channel Attacks

Even though the algorithms underlying cryptosystems may be secure against cryptanalysis, their
implementations may still be vulnerable to other kinds of attacks. Side-channel attacks are a
class of attacks that exploit information leaked through the implementation itself rather than
targeting the underlying cryptographic algorithms or protocols. These include, for example,
timing attacks, that exploit variations in execution time, power analysis attacks, that exploit
power consumption during program execution, and fault injection attacks, that manipulate
hardware to compromise the integrity of the system. In addition, this type of attacks can be
carried out remotely, making them particularly concerning. In this section, we will discuss two
types of side-channel attacks: cache side-channel attacks as well as timing side-channel attacks.

Cache Side-Channel Attacks

Cache side-channel are a class of side-channel attacks that exploit the fact that accessing
data in the cache is faster than accessing data from memory. The basic idea of this kind of
attack is to bring the cache to a known state – for example, we can load from known memory
addresses into the cache and we can flush it with the clflush instruction –, letting the victim’s

5

6 Chapter 2. Background

process run and then measuring timing differences between cache and memory accesses in order
to infer sensitive information. This is based on the fact that the behaviour of the cache may leak
information about the operations performed by a process.

A Pribe+Probe attacks consists of two phases. First, the attacker fills the cache with attacker-
controlled data. When the victim’s process executes, some of this data will be evicted from
the cache. Finally, the attacker measures the time it takes to access this data. If the primed
data is evicted by the victim’s process, this will result in a cache miss, providing the attacker
with information about the victim’s process’ memory access patterns, allowing them to infer
potentially sensitive information.

In Flush+Reload, first, the attacker repetitively flushes shared data with the victim, which
can be achieved with the clflush instruction in x86. After the victim’s process has executed,
the attacker observes the time it takes to access this data – if there is a cache hit, it means
that the victim’s process accessed this data. Other variants of this attack include Evict+Reload,
Flush+Flush.

Overall, cache side-channel attacks have long been used to target cryptographic implementa-
tions, successfully targeting AES [87]. In addition, in [96], the authors demonstrate that, using
the Flush+Reload side-channel attack, it is possible to recover the secret key from OpenSSL
ECDSA requests by just observing a relatively small number of executions.

Timing Side-Channel Attacks & Constant-Time Programming

Another type of side-channel attacks are timing attacks. Timing attacks take advantage of
differences in execution time of a program in order to infer information about the data being
processed. While other side-channel attacks, such as Differential Power Analysis (DPA), require
physical access to the target machine, timing attacks, on the other hand, can be carried out
remotely. Timing attacks on cryptosystems were first introduced by Kocher in 1996 [59].

One common approach to prevent timing attacks is Constant-Time (CT) programming, which
states that the control flow and memory accesses should be independent of secret data. Likewise,
secret data should not be used in operations whose execution time depends on the value of the
operands – e.g. the div instruction in x86.

However, CT alone does not provide resistance against speculative execution attacks. Instead,
we consider the notion of Speculative Constant-Time (SCT) that states that, for every possible
choice of speculation, the program should not leak anything beyond what is leaked during
sequential execution. A formal definition of SCT is provided in §3.3. In fact, as stated in [28]:

Even programs whose architectural (non-speculative) execution is carefully designed
to not have any side-channel leaks could be vulnerable to transient execution attacks.

2.1. Side-Channel Attacks 7

Example: Memory Comparison

When sensitive information, such as cryptographic keys or authentication tokens, is stored in
memory, it is important to ensure that the comparison operation does not leak any information
about the values being compared. In other words, a standard comparison algorithm that returns
as soon as the first different byte is encoured should not be used. In fact, standard comparison
functions such as memcmp should not be used. From the memcmp man page:

Do not use memcmp() to compare security critical data, such as cryptographic secrets,
because the required CPU time depends on the number of equal bytes. Instead, a
function that performs comparisons in constant time is required. Some operating
systems provide such a function (e.g., NetBSD’s consttime_memequal()), but no such
function is specified in POSIX. On Linux, it may be necessary to implement such a
function oneself.

One example of a CT comparison implementation is found in Go’s crypto/subtle package,
illustrated bellow:

� �
// ConstantTimeByteEq returns 1 if x == y and 0 otherwise.
func ConstantTimeByteEq(x, y uint8) int {

return int((uint32(x^y) - 1) >> 31)
}

// ConstantTimeCompare returns 1 if the two slices, x and y, have
// equal contents and 0 otherwise. The time taken is a function of
// the length of the slices and is independent of the contents. If
// the lengths of x and y do not match it returns 0 immediately.
func ConstantTimeCompare(x, y []byte) int {

if len(x) != len(y) {
return 0

}

var v byte

for i := 0; i < len(x); i++ {
v |= x[i] ^ y[i]

}

return ConstantTimeByteEq(v, 0)
}� �

Listing 2.1: Constant-time comparison in Go [2]

Here, the ConstantTimeByteEq function compares two unsigned 8-bit integers using bit-
wise operations, ensuring that the function is CT. The function ConstantTimeCompare

compares two byte slices of the same size to determine if their contents are equal. To do so, an
accumulator variable v is initialized to zero. The function then iterates through all of the bytes
of each slice and performs a bitwise XOR between the corresponding bytes. If they are equal,
the XOR of the two values is zero. This value is then ORed with v variable. If the contents of
the byte slices being compared are equal, then v will remain zero. To check if this is the case, we
call the function ConstantTimeByteEq, ensuring that the comparison is also done in CT.

8 Chapter 2. Background

In Listing 2.2, we present a standard comparison algorithm from Go’s standard library that
is not CT. The function enters a for loop that iterates through the bytes of the byte slices and,
in each iteration, it compares the corresponding byte from both slices. If the current bytes being
compared are not equal, the function returns early; otherwise, if the loop completes without any
early returns, it means that the the contents of the byte slices are equal.

Here, it is important to note that, because this function returns as soon as the first different
byte is encountered, it introduces variations in execution time. In other words, the total number
of iterations of the for loop varies depending on the contents of the byte slices being compared.
In this case, the number of iterations increases with the number of bytes that are equal at the
beginning of the slices. These variations can be exploited by an attacker to potentially deduce
information about the compared data through side-channel attacks. To avoid leaking secret
information through side-channels, it is crucial that the control-flow and memory accesses do not
depend on secret data.

� �
func Compare(a, b []byte) int {

l := len(a)
if len(b) < l {

l = len(b)
}
if l == 0 || &a[0] == &b[0] {

goto samebytes
}
for i := 0; i < l; i++ {

c1, c2 := a[i], b[i]
if c1 < c2 {

return -1
}
if c1 > c2 {

return +1
}

}
samebytes:

if len(a) < len(b) {
return -1

}
if len(a) > len(b) {

return +1
}
return 0

}� �
Listing 2.2: Non Constant-time comparison in Go [2]

2.1. Side-Channel Attacks 9

Leakage Models

Leakage Models are theoretical models that allow the reasoning of information that is leaked
through side-channels during program execution. These models aim to capture the various ways
through which information may be leaked, which include timing variations during instruction
execution, and memory accesses. Table 2.1 summarizes common leakage models.

Leakage Model Description
Program Counter Conditionals leak their guards
Baseline PC + Memory Reads/Writes leak addresses
Cache line PC + Memory accesses leak cache lines
Time-Variable BL + TV arithmetic operators leak
TV + CL TV arithmetic operators leak + CL

Table 2.1: Common leakage models [12]

• Program Counter (PC) Leakage Model: In this leakage model, we consider that
conditional statements leak the value of the condition.

• Baseline (BL) Leakage Model: In the Baseline leakage model, we also assume that
conditional statements leak their guards. In addition, we also consider that memory accesses
– either reads or writes – leak the memory address that was accessed.

• Cache Line (CL) Leakage Model: In the Cache Line leakage model, we assume that
conditional statements leak the value of the condition and, in addition, memory accesses
leak the cache line if the address that was accessed. However, it is important to note that
implementing defenses within the context of this specific model can be expensive. As such,
it may make sense to adopt a less precise leakage model.

• Time Variable (TV) Leakage Model: While the BL leakage model is a useful starting
point for constant-time programming, it is important to be aware that it does not capture
certain details of program execution – time-variable instructions leak information about
its inputs. In fact, in [54], the authors demonstrated that such timing variations can be
exploited in order to recover cryptographic keys.

As an example, the execution time of the div instruction on x86 architectures depends on
its operands. Figure 2.1 illustrates these timings variations for both 32 and 64-bit operands.
Because of these timing variations, an attacker who is able to observe the execution time
may be able to infer some information about the operands being processed. As a result,
this instruction is not suitable for cryptographic implementations.

Nevertheless, the BL leakage model does not take into account arithmetic instructions with
variable latency. To address this, the Time Variable (TV) leakage model builds upon the

10 Chapter 2. Background

BL leakage model by considering that time-variable instruction leak a function of their
inputs.

(a) 64-bit operands (b) 32-bit operands

Figure 2.1: Timing behaviour of the div instruction on the AMD EPYC 7F52 x86 CPU [12]

• TV + CL Leakage Model: The TV + CL combines both the TV and the CL leakageage
models. In other words, we consider that conditional statements leak their guards, memory
accesses leak the cache line of the addressed that was accessed, and instructions whose
execution time depends on the operands leak a function of their inputs.

For the remainder of this dissertation, we will consider the BL leakage model.

2.2 Speculative Execution Attacks

Traditionally, CPUs execute instructions sequentially, following the order in which they appear
in the program. However, modern computer architectures can achieve a higher throughput by
leveraging instruction execution pipelining, which allows multiple instructions to be executed at
the same time by using multiple execution units. A simple execution pipeline is illustrated in
Figure 2.2. Each stage of the pipeline focuses on a specific task, such as instruction fetch, decode,
execute, and write back.

Figure 2.2: Pipelined instruction execution [66]

2.2. Speculative Execution Attacks 11

In addition, in out-of-order execution, the CPU may executes instructions in a different order
than they were originally written in order to maximize instruction-level parallelism and resource
utilization. This only occurs if there is no data dependencies between the instructions. Data
dependencies between instructions occur when an instruction relies on the result of a previous
instruction. In this case, the CPU must wait for this data to become available. Despite being
executed out-of-order, the results of these instructions need to be committed to the architectural
state. This means that instructions are completed in the order in which they were originally
issued, even if they were executed out-of-order.

In addition to out-of-order execution, CPUs may also execute instructions speculatively. In
this scenario, when encountering a branching instruction, the CPU tries to “guess” which path
should be executed. Then, execution continues at the predicted branch ahead of time, i.e. even
before the branch condition is resolved. These predictions are based on multiple prediction
structures, which include the Branch Target Buffer (BTB) – used to predict the destination
address of indirect jumps –, the Pattern History Table (PHT) – used to predict the result of
conditional branches –, the Return Stack Buffer (RSB) – used to predict the destination address
of return instructions, etc. Instead of waiting for the branch condition to be resolved, the CPU
uses these prediction structures to continue execution speculatively, which, if the prediction is
correct, reduces the latency caused by waiting for the branch instruction to be evaluated and the
correct path to be determined.

It is important to note, however, that these predictions may turn out to be wrong. In
that case, the executed instructions along the incorrect path are discarded from the execution
pipeline. Furthermore, the CPU has to rollback the program state to the stage before the
mispredicted path was taken. This requires updating values in register and in memory, which can
be facilitated by the Reorder Buffer (ROB). Finally, once the misprediction is resolved, the CPU
continues execution along the correct path. It is also worth noting that, due to mispredictions,
the CPU incurs a performance penalty as a consequence of the wasted cycles spent executing the
mispredicted path. Speculative execution attacks are a type of attack that take advantage of the
CPU’s ability to execute instructions out-of-order. While speculative execution can be an effective
technique for improving performance, it can also introduce microarchitectural side-channels,
through which information about the CPU’s interal state can be leaked.

These attacks leverage this feature of modern CPUs to access data that otherwise should not
be accessed, which is leaked through a side-channel channel – usually the cache. However, there
are other possibilities – e.g. SMoTherSpectre [21] leverages port-contention, and NetSpectre [80]
uses AVX-based side-channel.

Stages of a Speculative Execution Attack

Usually, a speculative execution attack consists of the following four phases.

1. Setup Phase: In this first phase, the goal of the attacker is to prepare the exfiltration

12 Chapter 2. Background

channel – the channel through which they will later be able to retireve the secret information.
This can be, for example, the cache. In this scenario, it envolves priming the cache – i.e.
filling it with attacker-controlled values. The key idea is to manipulate the cache to into
a known state, then execute the victim program, and observe and infer the changes that
occured in the cache after the execution.

In addition, the attacker mistrains the branch predictor, a component of the CPU that
predicts whether a branch will be taken or not. This way, when a conditional branch is
encountered, the prediction will be incorrect, leading the execution to continue along a
mispredicted path.

In [58], Kocher et al. show that the branch predictor can be reliably trained to mispredict
branches. This can be achieved by repeatedly executing victim code with carefully chosen
inputs. This way, an attacker can mistrain the branch predictor to either always take
or never take a particular branch. In the case of the variant 1 of Spectre, illustrated in
Listing 2.3, this can be done by repeatedly calling the function with in-bound indices.

2. Invocation of Victim Code: In this phase of the attack, the victim code is executed
with an input that triggers misspeculation. Here, it is worth mentioning that speculative
execution attacks may be carried out remotely.

3. Misspeculation: In this phase of the attack, when encountering a branch instruction, the
CPU tries to predict its outcome. However, because the branch predictor was previously
mistrained, this prediction will be wrong and execution will continue along the mispredicted
path. As a consequence of executing these instructions, both the architectural state
– registers and memory – and the microarchitectural state – cache – will be changed.
Eventually, when the CPU resolves the branch condition, the results of the speculatively
executed instructions are discarded and the CPU resumes the execution along the correct
path as if the branch was never taken. However, because the microarchitectural state is not
restored, an attacker may be able to exploit these changes – e.g. through cache side-channel
attacks – to potentially read secret data. This is explained in more detail in the “Spectre
v1 Bounds Check Bypass” example.

4. Exfiltration: At this point, the attacker tries to retrieve secret information from the
exfiltration channel. This can be done, for example, trough cache side-channel attacks.
In [?], the authors use Flush+Reload or Evict+Reload.

2.2.1 Attack Taxonomy

In [24], the authors provide a comprehensive survey of speculative execution attacks and a
taxonomy of speculative execution attacks based on the cause of the transient execution. This
taxonomy, illustrated in Figure 2.3, considers two main classes of attacks based on the cause of
speculative execution:

2.2. Speculative Execution Attacks 13

• Spectre-type: In this type of attack, an attacker takes advantage of CPU mispredictions to
access data that would not otherwise be accessed. These attacks can be further categorized
based on the different prediction structures they exploit – Spectre v1 exploits the PHT,
Spectre v2 exploits the BTB, ret2spec and Spectre-RSB exploit the RSB, and Spectre
v4 exploits Store-To-Load (STL) forwarding. These attacks are described in more detail
below.

• Meltdown-type: During program execution, when an exception such as a page fault
occurs, subsequent instructions should not be executed. However, due to speculative
execution, these instructions may be executed even before the exception is handled.
Eventually, these instructions will be discarded when the exception is handled. However,
the microarchitectural state may be changed as a result of the execution, potentially leaking
sensitive information which can be exploited via side-channel attacks.

Figure 2.3: Taxonomy of speculative execution attacks. Adapted from [24]

We can also consider another class of attacks – Microarchitectural Data Sampling (MDS).
Unlike Spectre and Meltdown-like attacks, these type of attacks leaks data from internal CPU
buffers instead of cache – this includes data that was never stored in the cache. Examples of this
type of attack include RIDL [89], ZombieLoad [79], and Fallout [69].

For the remainder of this dissertation, we will focus only on Spectre-type attacks, more
precisely, on the Spectre v1 variant. This stems from the fact that this variant is particularly
challenging to mitigate completely. As will be discussed bellow, Spectre v2 can be mitigated
through the use of retpoline, Kernel Page-Table Isolation (KPTI) mitigates Meltdown, and
disabling Speculative Store Bypass Disable (SSBD) mitigates Spectre v4. Spectre v1, however, is
more challenging.

14 Chapter 2. Background

Spectre v1 – Bounds Check Bypass

Spectre v1 [58] is a speculative execution attack that exploits conditional branch misprediction,
allowing an attacker to read potentially secret data. Let us consider the Spectre gadget illustrated
in Listing 2.3. In the setup phase, the attacker mistrains the branch predictor by repeatedly
invoking this snippet of code with values of x that satisfy the condition x < array1_size

After that, the CPU predicts that, in the next call, x will also satisfy this condition – this
prediction is based on the PHT. However, if an attacker supplies a value of x outside of the
bounds of the array, the CPU will (wrongly) predict that the conditional expression will evaluate
to true and start executing the code inside the if statement. Note that, the statement y =

array2[array1[x] * 4096]; brings into cache data whose memory address depends on
the value of array1[x]. Because the prediction turns out to be incorrect, the instructions
that were speculatively executed are discarded. While at the architectural level it is as if these
instructions were never executed, the state of the cache is not reverted. As such, an attacker can
potentially retrieve sensitive information through a cache side-channel attack.

� �
if (x < array1_size) { // x is unstrusted input

y = array2[array1[x] * 4096];
}� �

Listing 2.3: Conditional branch misprediction [58]

Spectre v2 – Branch Target Injection

Spectre v2, also reffered to as Spectre-BTB or “Branch Target Injection”, is a speculative
execution attack that exploits indirect branch misprediction to redirect the execution of the
program to addresses that would not occur normally.

In this attack, an attacker first mistrains the branch predictor. Then, when encountering an
indirect jump instruction, the CPU mispredicts the target address relying on the BTB. Because
of the misprediction, execution continues speculatively at an attacker-chosen address, containing
a Spectre gadget. During the speculative execution, the CPU may access memory addresses
containing potentially secret information, which will be loaded to the cache. Eventually, the
CPU discards the instructions that were speculatively executed, and execution continues at the
correct address. However, the microarchitectural state is not reverted, and the attacker may be
able to retrieve this secret through a cache side-channel attack.

One possible software mitigation to this attack is to replace all of the the indirect jumps
with retpolines [44]. The motivation behind this approach is that by replacing indirect jumps
with ret instructions, we avoid predictions based on the BTB – instead, we rely on the RSB,
which can be controlled in the software. Following this approach, we push the address of the
pause; LFENCE instruction onto the RSB. If the CPU speculates the target address of the
indirect jump – using the RSB –, then we enter an infinite loop, which we eventually exit when

2.2. Speculative Execution Attacks 15

the CPU becomes aware of the misprediction. In this case, the execution continues along the
correct path. This is illustrated in Figure 2.4.

(a) Before retpoline

(b) After retpoline

Figure 2.4: Retpoline [52]

Consider the indirect jump to the address stored in the %rax register illustrated in Listing 2.4.
Here, after the call load_label; the address of the pause; LFENCE is pushed onto the
stack, and onto the RSB. Next, when load_label starts executing, the mov overwrites the
return address stored in the stack with the target of the indirect jump. At this point, the RSB
and the return address on the stack differ. This means that, if the CPU is speculating – i.e.
using the address from the RSB –, it will enter an infinite loop, which eventually is exited when
the CPU realizes that the return address on the stack differs from the one in the RSB. At this
point, the indirect jump is taken.

16 Chapter 2. Background

� �
jmp *%rax� �

Listing 2.4: Indirect jump [52]

� �
call load_label;
capture_spec:

pause; LFENCE
jmp capture_spec;

load_label:
mov %rax, (%rsp);
ret;� �

Listing 2.5: Compiled assembly for an
indirect jump using retpoline [52]

Spectre v4 – Speculative Store Bypass

Spectre v4, also referred to as Spectre-STL exploits mispredictions stemming from the memory
disambiguator to speculatively execute memory loads before all previous stores to that memory
address have completed. In this scenario, the memory disambiguator mispredicts that a memory
load does not depend on previous stores and, as a consequence, the load instruction reads values
to the L1 cache, allowing attackers to read stale values through a microarchitectural covert
channel. Eventually, when the addresses of the store instructions are resolved, these instructions
will be re-executed.

To mitigate the Spectre v4 vulnerability, we can use Speculative Store Bypass Disable [53].

Return Address Misprediction

Spectre-RSB [60] and ret2spec [65] are Spectre variants that expoit the Return Stack
Buffer (RSB), a microarchitectural buffer that stores the return address of functions. During
speculative execution, when encountering a ret instruction, the CPU fetches the return address
from the RSB. Essentiallty, by polluting the RSB, an attacker is able to divert execution and
speculatively execute code that should not otherwise be executed. Eventually, when the return
address is fetched from memory, these instructions will be discarded, but the microarchitectural
state may be changed.

Meltdown – Rogue Data Cache Load

In [64], Lipp et al. demonstrated that, with this attack, it was possible to read kernel memory
from a user-space process.

Essentially, kernel memory is isolated and privileged, meaning that processes running in
user-space do not have direct access to it. However, Meltdown exploits speculative execution
to bypass these privilege checks. When such process attempts to access kernel memory, the
privileges checks must be performed, and eventually an exception is triggered. The exception is
then handled by the operating system, preventing the process from reading from that memory.
However, the illegal read may have already been speculatively executed, causing data from the

2.2. Speculative Execution Attacks 17

kernel-space to be leaked to the cache. Even though the exception is eventually handled, an
attacker may be able to retrieve this data through the cache side-channel attack.

We can mitigate Metldown with Kernel Page-Table Isolation. Essentially, by creating two
different sets of page tables, one for the kernel-space and one for the user-space, we prevent
processes running on the user-space from accessing the kernel-space.

Other Attack Variants

In addition to the previously mentioned variants, encompasses a wide range of attacks. As
an example, regarding trusted execution environments, Foreshadow [88] and SgxPectre [29]
are speculative execution attacks that target Intel SGX enclaves. NetSpectre [80], is a remote
speculative execution attack. Finally, ExSpectre [91] is an attack that exploits speculative
execution to execute malware.

2.2.2 Attack Detection & Countermeasures

Several approaches have been proposed to detect speculative execution attacks. Regarding
Machine Learning (ML) techniques, in [62], the approach consists in collecting traces of
microarchitectural events – e.g. cache misses and branch mispredictions – using existing CPU
performance counters and then using ML classifiers to analyze this data. In [75], the authors
propose an approach based on Explainable ML, providing an explanation for the classification of
the ML model. Both of these approaches are designed to detect both Spectre and Meltdown.

On the other hand, in [92], the authors apply taint analysis to track the flow of sensitive data
within a program, allowing for the the detection of different variants of Spectre. SpecFuzz [73] is
an automated tool to detect Spectre v1 attacks based on fuzzing. Finally, both Spectector [46],
PitchFork [26], and BinsecRel [36] are static analysis tools based on symbolic execution that
automatically detect speculative leaks. While Spectector and PitchFork are only capable of
detecting Spectre v1 attacks, BinsecRel is able to detect both the Spectre v1 and Spectre v4
variants.

In [58], the authors suggest how Spectre attacks can be mitigated. The most straightforward
solution is to disable speculative execution altogether. However, due to a significant performance
penalty, this is not a viable solution. Another potential solution is preventing speculatively
executed code from accessing to secret data. Finally, we can also limit data extraction from
covert channels. For example, high-resolution timers facilitate cache-based side-channel attacks.
As such, degrading the accuracy of such timers makes it more difficult for attackers to exploit
timing differences.

In the remainder of this section, we discuss countermeasures to address Spectre attacks. This
discussion covers both software and hardware-based mitigations. [94] provides a more in-depth
analysis of Spectre mitigations, covering both hardware and software-based. Similarly [27]

18 Chapter 2. Background

provides an extense overview of software-based defenses for Spectre speculative execution attacks.
As expected, these countermeasures introduce varying levels of performance degradation. In fact,
not only do these countermeasures impact the performance, they also incur in a energy overhead
of up to 72% [48].

Hardware Countermeasures

One possible approach to mitigate speculative execution attacks is to prevent data from being
leaked to the covert channel. In this context, in [97], the authors propose a hardware protection
mechanism called Speculative Taint Tracking (STT) that protects speculatively accessed data,
by delaying the execution of instructions that read secret data until they become non-speculative,
achieving an overhead of about 8.5%. Similarly, Conditional Speculation [63] speculatively
executes instructions that are safe, but blocks those that may change the microarchitectural
state until they become non-speculative. With this approach, the performance overhead of
Spectre mitigations is about 13%. InvisiSpec [95] makes speculation invisible to the cache by
speculatively loading data into a speculative buffer, without modifying the cache. When such
load instructions are known to be safe, then this data is loaded into the cache. This approach
incurs in a overhead of about 21%.

On another note, Context-Sensitive Fencing [85] dynamically inject fence instructions into the
instruction stream, which prevents leaking data to the cache. With this approach, the authors
we able to reduce the overhead of Spectre mitigations to about 8%.

Software Countermeasures

The most trivial solution is to insert fence instructions immediately after any conditional branch
that depends on secret data, with the goal of preventing the CPU from executing continuing
execution until the branch condition is resolved.

In this context, there are different fence instructions. LFENCE prevents the CPU from
speculatively loading values from memory. On the other hand, SFENCE forces the CPU to wait
untiull all previous store instructions are completed before continuing execution. Finally, MFENCE
can be though of as a combination of LFENCE and SFENCE in the sense that the CPU is forced
to wait until all stores and loads are completed.

Consider the example in Listing 2.6. The condition index >= 0 && index < array_size

is used to check whether the index is in-bounds. However, the CPU may assume that the branch
condition will evaluate to true and proceeds to execute the body of the if statement speculatively.

2.2. Speculative Execution Attacks 19

� �
uint64_t get_secret(const uint64_t *array, size_t array_size,

size_t index) {
if (index >= 0 && index < array_size) {

return array[index];
}

return 0;
}� �

Listing 2.6: Spectre-v1 vulnerable array read

By doing so, we prevent the CPU from speculatively execute until the branch condition is
resolved. As a result, we have the guarantee that no out-of-bounds memory accesses occurs.
Eventually, the speculatively loaded value is discarded because the branch condition evaluates to
false. Nevertheless, the microarchitectural state is changed and sensitive information may be
leaked via side-channels.

� �
uint64_t get_secret_(const uint64_t *array, size_t array_size,

size_t index) {
if (index >= 0 && index < array_size) {

__asm__ volatile ("lfence");
return array[index];

}

return 0;
}� �

Listing 2.7: Array read protected using the LFENCE instruction

Here, it is worth noting that, while inserting fence instructions on all conditional jumps is a
rather straightforward mitigation for speculative execution attacks, the performance impact is
too severe. For example, inserting LFENCE instructions on all conditional jumps of the main
loop of an implementation of SHA-256 resulted in a performance impact of around 60% [57].

Speculative Load Hardening

Speculative Load Hardening (SLH) [25], a countermeasure that addresses Spectre v1, works by
“poisoning” the speculatively loaded values value. The idea is to mantain a predicate indicating
whether the execution is misspeculating or not. If it is, this value is then used to “poison” both
values and addresses of load instructions. As a consequence, we prevent speculatively executed
code from accessing secret information. Here, it is important to note that this approach does not
prevent any side-channel, we only prevent an attacker from being able to observe secret data.

However, SLH is still too restrictive in the sense that it considers that all memory accesses must
be hardened. Selective Speculative Load Hardening (selSLH) [81] improves SLH by considering
that not all memory accesses need to be hardened – we only need to protect speculative loads to
public variables.

Other variants of SLH can be considered. In [98], the authors propose Ultimate Speculative

20 Chapter 2. Background

Load Hardening (USLH), a variant of SLH that also masks inputs of variable-latency instructions
– e.g. the div instruction on x86 architectures.

Similarly, Blade [90] provides an automatic approach to provably eliminate speculative leaks
from code. The underlying idea is that, in order to eliminate speculative leaks, we do not need
to stop speculation altogether. Instead, we only need to stop speculation from expressions that
speculatively access sensitive information – sources – to expressions that leaks these secrets to
the cache – sinks. As such, to protect programs, it is necessary to cut the information flow from
sources to sinks. To achieve this, the authors propose a protect primitive similar to SLH that
stops such speculative data-flows only for a given variable.

2.3 Computer Aided Cryptography

Correctly implementing cryptographic software is a difficult task: ideally, cryptographic imple-
mentations should achieve the following properties, referred to as Big Four in [18]:

• Memory Safety: Memory-related errors are common and can be a significant issue in
software development [84]. A recent survey [23] has shown that about 37% of vulnerabilities
found on cryptographic libraries are memory-related errors, while only 27% are crypto-
graphic issues. Memory safety ensures that programs do not access memory that they are
not supposed to, such as memory that has already been freed or memory that belongs
to other processes. For example, recently, a buffer overflow vulnerability was found in
multiple implementations of SHA-3 that allowed an attacker to find second preimages and
preimages [71]. Essentially, it was possible to XOR attacker-controlled values into memory,
thus rendering typical defenses against buffer overflows like stack canaries ineffective.

• Functional correctness with respect to a standard specification: Functional
correctness of programs is usually checked via unit testing or fuzzing. In cryptography,
however, these approaches are not suitable in the sense that a higher level of assurance is
required. Instead, cryptographic algorithms are often specified in a formal language, and
the correctness with respect to a specification can be proved using formal methods and
program verification.

• Provable Security: Provable Security refers to the fact that cryptographic schemes must
provide a rigorous proof that they achieve certain properties. This usually consists in
formalizing the security goals, defining a precise adversarial model that encompasses the
capabilities of the attacker, and proving that the scheme satisfies the goal. In this context,
proofs by reduction are often considered. This type of proof provides a way of relating the
success of an adversary against a certain protocol to their success of attacking a problem
that is believed to be hard – e.g. the ECDLP.

• Resistance against timing side-channel attacks: To avoid leaking sensitive information
through side-channels, cryptographic implementations should be resistant to side-channel

2.3. Computer Aided Cryptography 21

attacks. In fact, as stated in the NIST evaluation criteria for Post-Quantum Cryptography
(PQC) standardization effort [72]:

Schemes that can be made resistant to side-channel attack at minimal cost are
more desirable than those whose performance is severely hampered by any attempt
to resist side-channel attacks. We further note that optimized implementations
that address side-channel attacks (e.g., constant-time implementations) are more
meaningful than those which do not.

In addition, cryptographic implementations must be efficient. For example, in secure
communication protocols like Transport Layer Security (TLS) or IPSec, data packets are encrypted
and signed to ensure confidentiality, integrity, and authentication. As such, cryptographic imple-
mentations must be efficient as to prevent any significant performance degradation. Furthermore,
it is important to note that cryptographic software runs on a multitude of devices, ranging from
embedded systems, which are often resource-constrained, to high-performance servers.

2.3.1 Type Systems

Type systems are an essential component of programming languages, providing the mechanisms
to ensure type safety. Type safety guarantees that operations are performed only on data of
the appropriate type, which prevents errors that can arise from mismatched data types during
program execution. As such, by catching potential errors that may violate type safety at compile
time, type systems help prevent of runtime errors.

On the other hand, information flow type systems focus on the flow of information within a
program execution. In information flow type systems, labels or annotations are associated with
data values to indicate their security classifications. These labels enable the type system to track
the flow of information and ensure that data with higher sensitivity levels is not inadvertently
mixed with less sensitive data. For example, if a program’s branching condition depends on
secret data, an information flow type system may reject the program to prevent potential leaks
of sensitive information through conditional branches.

Overall, by identifying type-related errors at compile time, type systems help us prevent
errors that arise from handling data of incompatible types, which can potentially cause runtime
errors.

2.3.2 Proof Assistants Machine-Checked Proofs

Traditionally, the security proofs of cryptographic schemes have been proven by hand. However,
and considering the increasing complexity of cryptographic schemes, writing cryptographic
proofs is often complex and error-prone [56]. As a response to these challenges, computer-aided
cryptography [14] is a line of research that leverage formal methods and program verification

22 Chapter 2. Background

techniques to ensure that software is correct and safe, which is achieved by proving properties
such as functional correctness, memory-safety and resistance against side-channel attacks.

In this context, proof assistants play an important role. There are several proof assistants
available such as Coq, Agda, and Lean. Essentially, proof assistants guarantee that in a proof,
each step is a logical consequence of previous ones. In other words, we have the guarantee that
logical rules and axioms are properly applied, therefore improving the reliability of proofs.

Some proof assistants are specifically oriented towards security proofs of cryptographic
primitives and protocols, such as EasyCrypt [16] and ProVerif [22]. In fact, EasyCrypt has
been used in a variety of machine-checked proofs. Some examples include the the proof of
security of Amazon Web Services (AWS) key management service [6], for proving ballot privacy
of the Belenius voting protocol [32], in the formalization of the security properties of Zero-
Knowledge (ZK) protocols [39] and in the context of Post-Quantum Cryptography [15, 50].

2.3.3 Verified Compilation

During compilation, compilers may perform aggressive optimizations in an attempt to improve
the performance. While such compiler optimizations may increase the performance of programs,
not all of them preserve the security properties.

The following example, presented in [51], illustrates how compilers may introduce branching
instructions while optimizing on code that is otherwise CT. Listing 2.8 illustrates a simple
function that takes two integers as arguments, b and x, and returns the result of the double
negation of b multiplied by x. Essentially, if the function is called with a non-zero value for b, it
will return the value of x, and will return zero otherwise. Because of the double negation, the
compiler may interpret the integer b as boolean value, thus converting any non-zero value to
true and zero to false.

� �
int f(int b, int x) {

return (!!b) * x;
}� �

Listing 2.8: Integer multiplication

� �
int f(int b, int x) {

if (b) {
return x;

} else {
return 0;

}
}� �

Listing 2.9: Integer multiplication with
optimizations

Compiling the function illustrated in Listing 2.8 with the clang compiler and using the
-m32 and -O1 flags, we get the following assembly:

2.4. Elliptic Curve Cryptography 23

� �
f:

movl 4(%esp), %eax
testl %eax, %eax
je .LBB0_2
movl 8(%esp), %eax

.LBB0_2:
retl� �

Listing 2.10: Assembly demonstrating that compiler
breaks CT

In [83], the authors highlight several instances in which compiler optimizations may break
properties of cryptographic code. However, for critical software such as cryptographic implemen-
tations, these effects cannot be ignored. Verified compilation is a line of research that focuses
on developing compilers that are accompanied by formal proofs of correctness. Informally, this
means that the compiler preserves the behaviour and security properties of the source program
during compilation. In other words, we have the guarantee that the compiled program has the
same behaviour as the source program, and the same security properties.

For example, CompCert [61] is a fomally verified compiler, both programmed and proven in
the Coq proof assistant, with a level of performance similar to that of gcc with no optimization
flags [1], supporting the x86, ARM and RISC-V architectures. In addition, in [9], the authors
extend the CompCert compiler by adding support support vectorized SIMD instructions in the
x86 architecture.

In addition to preserving the behaviour of programs, compilers may also be proven to preserve
other properties of the source program. For example, in the context of CT, CompCert-CT [17],
a modified version of CompCert, is proven to preserve the CT of the source code.

2.4 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is based on the algebraic structure of elliptic curves
over finite fields. The use of elliptic curves in Cryptography was proposed both by the
mathematicians Koblitz [55] and Miller [68]. In this section, we establish the necessary background
on ECC. This section is based on [47, 93].

ECC offers advantages over other cryptosystems, such as RSA, mainly due to the fact that
shorter key sizes are required to achieve similar security levels, as illustrated in Table 2.2. Here,
a security level of n bits means that the best known algorithm for breaking the cryptosystem
takes at least 2n steps.

24 Chapter 2. Background

Security Level (in bits) 80 112 128 192 256
RSA (key length in bits) 1024 2048 3072 8192 15360
ECC (key length in bits) 160 225 256 384 512

Table 2.2: Key lengths of ECC and RSA comparison for different security levels [47].

Definition

An elliptic curve defined a finite field K is a non-singular curve which can be written in the
Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with a1, . . . , a6 ∈ K. If char(K) 6= 2, 3, then this equation can be simplified to the short
Weierstrass form

E : y2 = x3 + ax + b

by applying a change of variables

For cryptographic applications, elliptic curves are usually defined either over prime fields Fp,
where p is a large prime, or over binary fields F2m . Here, we also require that the discriminant
∆ = 4a3 + 27b2 6= 0. Such curves are said to be singular and should not be used for cryptographic
purposes.

Point Representation

The representation of points over curves on elliptic curves is a crucial aspect to take into
consideration when implementing cryptographic algorithms. Different representations offer
distinct advantages. Two common approaches to represent points are affine coordinates, which
offer a straightforward and intuitive way of representing points, and projective coordinates, that
allows for more efficient computations.

Using affine coordinates, we represent a point over an elliptic curve by the corresponding x

and y coordinates. The set of all affine points, denoted by A(K), is given by

A(K) = {(x, y) | x, y ∈ K}

On the other hand, using affine coordinates, the formulas for point addition require a series of
multiplications, additions and a field inversion. However, field inversions are expensive operations.
Projective coordinates have the advantage of requiring less field inversions. Thus, points on elliptic

2.4. Elliptic Curve Cryptography 25

curves are usually represented using projective coordinates. To represent a point P ∈ E(Fp)
whose affine representation is (x, y) using coordinates, we introduce a new coordinate Z 6= 0 such
that x = X · Z−1 and y = Y · Z−1, and represent the point as (X : Y : Z). In the finite field Fp,
there are p − 1 values for Z that satisfy these restriction, which means that, using projective
coordinates, we can represent the same point in p − 1 different ways. For example, the point
(2, 4) can be represented as (2 : 4 : 1) as well as (8 : 16: 4).

Here, we are interested in the set of all projective points with Z 6= 0, denoted by P(K)∗,
which is given by

P(K)∗ = {(X : Y : Z) | X, Y, Z ∈ K, Z 6= 0}

The set of projective points with Z = 0, denoted by P(K)0, and given by

P(K)0 = {(X : Y : Z) | X, Y, Z ∈ K, Z = 0}

is called line at infinity. These points do not correspond to any affine point.

There is a 1-to-1 correspondence between P(K)∗ and A(K). If Z 6= 0, the projective point
(X : Y : Z) corresponds to the affine point (X/Z, Y/Z). In addition, the point at infinity O is
given by the projective point (0 : 1 : 0), and the negative of the projective point (X : Y : Z) is the
point (X : − Y : Z).

The projective form of the Weierstrass equation for elliptic curves E over the field K can be
obtained with the following change of variables:

x 7→ X

Z
y 7→ Y

Z

In this case, the Weierstrass equation becomes

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X2Z + a4XZ2 + a6Z3

and the short Weierstrass equation becomes

Y 2Z = X3 + aXZ2 + bZ3

In addition to affine and projective coordinate representations, there are alternative coordinate
systems that can be considered. Two such examples are Jacobian coordinates and Chudnovsky
coordinates. Jacobian coordinates map a point in Jacobian form, represented as (X : Y : Z), to
its corresponding affine point, given by (X/Z2, Y/Z3). Using Chudnovsky coordinates, on the
other hand, a point is represented as (X : Y : Z : Z2 : Z3). In this context, it is important to

26 Chapter 2. Background

note that the Chudnovsky coordinate system is the inherently redundant, which allows for the
efficient computation of scalar multiplications.

Points on the curve

An elliptic curve E over a finite field Fp is defined by the set of points (x, y) ∈ Fp × Fp that
satisfy the equation of the curve. In addition, we consider an additional point denoted as O,
called the point at infinity.

E(Fp) = {(x, y) ∈ Fp × Fp | y2 = x3 + ax + b} ∪ {O}

The number of points in the elliptic curve, #E(Fp), can be computed efficiently with Schoof’s
algorithm.

Hasse’s theorem defines the upper and lowers bound of the number of points of an elliptic
curve E defined over a finite field Fp:

p + 1− 2√p ≤ #E(Fp) ≤ p + 1 + 2√p,

which can also be stated as

|#E(Fp)− (p + 1)| ≤ 2√p

This theorem states that the number of points on the curve is close to the size of the field
p, with an error term bounded by 2√p. This property is important in the security analysis of
elliptic curves as it provides an upper bound on the order of the group of points on the curve.

Group Law

The points on an elliptic curve E defined over the finite field Fp form an abelian group under
point addition, meaning that they satisfy the following properties:

Associativity:

(P1 + P2)⊕ P3 = P1 ⊕ (P2 ⊕ P3), ∀ P1, P2, P3 ∈ E(Fp)

Existence of Identity: Here, the point at infinity, O, serves as the identity element.

P ⊕O = O ⊕ P = P, ∀ P ∈ E(Fp)

Existence of Inverse:

P ⊕ (−P) = (−P)⊕ P = O, ∀ P ∈ E(Fp)

2.4. Elliptic Curve Cryptography 27

Commutativity:
P1 ⊕ P2 = P2 ⊕ P1, ∀ P1, P2 ∈ E(Fp)

Geometric Interpretation of the Group Law

The group law on elliptic curves provides a way to combine two points on the curve to get a
third point, also on the curve. Due to its visual interpretation, the group law is often referred to
as the chord-and-tangent rule. As illustrated in Figure 2.5, any three points lying on the same
line add to O. Given two points P, Q ∈ E(Fp), we compute the R = P ⊕Q by drawing a line
through these two points, that intersects the curve at another point, −R, which is then reflected
across the x-axis to get R. Similarly, given P ∈ E(Fp), we get −P by reflecting P across the
x-axis. Finally, to double a point P ∈ E(Fp), we draw a tangent line to the elliptic curve at the
point P , which intersect the curve at another point, −2 · P , which we then reflect across the
x-axis to get 2 · P .

(a) Point addition (b) Point doubling

Figure 2.5: Geometric interpretation of the group law [33]

Algebraic Addition

Considering two points P1 = (x1, y1), P2 = (x2, y2) ∈ E(Fp), the algebraic addition formulas
distinguish between the following cases:

• If P1 = O, then P1 ⊕ P2 = P2.

• If P2 = O, P1 ⊕ P2 = P1.

• If P2 = −P1, i.e. if P2 = (x1,−y1), then P1 ⊕ P2 = O.

28 Chapter 2. Background

• If P1 = P2, then P1 ⊕ P2 = 2 · P1 = (x3, y3), where:

x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1, where λ = 3x2
1 + a

2y1

• Otherwise, P1 ⊕ P2 = P3 = (x3, y3), where:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, where λ = y1 − y2
x1 − x2

Here, it is worth noting that these addition formulas are not complete. In other words, the
formula used for computing the addition depends on the points being added. For example, when
adding two points P1 and P2 such that P1 = P2, if we consider the last formula, we incur in a
division by zero – we compute λ as λ = (y1 − y2)/(x1 − x2), but x1 − x2 = 0.

In Chapter 4, we discuss complete addition formulas using projective coordinates.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given an elliptic curve E over a finite field Fp, a point P ∈ E(Fp), of order1 n and a point
Q ∈ 〈P 〉, the ECDLP consists in finding the integer l ∈ Z such that

Q = l · P

Here, 〈P 〉 denotes the cyclic group generated by the generator P , and the integer l is called
the discrete logarithm of Q to the base P , and is denoted by l = logP Q.

The security of ECC cryptographic schemes relies on the assumption that solving the ECDLP
is computationally hard. However, it is important to note that it is easy to solve it in certain
classes of elliptic curves, as discussed in [41]. As such, such curves should not be considered for
cryptographic purposes. For all other cases, the best known algorithm is either the Pohlig-Hellman
algorithm or Pollard’s Rho algorithm.

The naive approach for solving ECDLP is an exhaustive search, where one computes the
elements of the cyclic group 〈P 〉 until the element Q = l · P is found. In this case, given a point
P ∈ E(Fp) and a scalar k ∈ Z, we can compute the point Q = k ·P by repeatedly adding P with
itself:

Q = k · P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k terms in the sum

1The order of a point P is the smallest positive integer n such that n·P = O. In other words, P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n terms in the sum

=

O.

2.4. Elliptic Curve Cryptography 29

While the repeated addition is a straightforward method to compute the scalar multiplication,
there are more efficient methods. For example, the double-and-add method computes k · P in
O(log k) steps.

Algorithm 1 illustrates how this algorithm can be implemented. This algorithm takes
as input a t-bit scalar k = (kt−1, . . . , k1, k0)2 and a point P ∈ E(Fp) and returns the point
Q = k · P . Essentially, this algorithm is the additive version of the square-and-multiply method
for exponentiation. We start with the point O and iteratively scan all of the bits of the scalar,
doubling the current value, and adding P to it if the bit being processed is 1.

Algorithm 1 Left-to-right binary method for point multiplication [47]
Input: t-bit scalar k = (kt−1, . . . , k1, k0)2, Point P ∈ E(Fp)
Output: Q = k · P

1: Q← O
2: for i from t− 1 down to 0 do
3: Q← 2Q . Doubling of Q

4: if ki = 1 then
5: Q← Q⊕ P . Addition of P and Q

6: end if
7: end for
8: return Q

Algorithm 1 processes the bits of the scalar k from the left to the right. However, the
same result can be achieved by processing the bits from the right to the left, as illustrated in
Algorithm 2.

Algorithm 2 Right-to-left binary method for point multiplication [47]
Input: t-bit scalar k = (kt−1, . . . , k1, k0)2, Point P ∈ E(Fp)
Output: Q = k · P

1: Q← O
2: for i from 0 to t− 1 do
3: if ki = 1 then
4: Q← Q⊕ P

5: end if
6: P ← 2P

7: end for
8: return Q

It should be noted, however, that this method is vulnerable to side-channel attacks, potentially
leaking information on the scalar k. Figure 2.6 illustrates the power trace of the execution of the

30 Chapter 2. Background

double-and-add algorithm on a RISC-V CPU. Because the power consumption of point addition
and point doubling can be clearly distinguished from each other, an attacker is able to measure
the power consumption and use such information to retrieve the binary representation of the
scalar k.

This is particularly dangerous given the fact that, in the Elliptic Curve Digital Signature
Algorithm (ECDSA) signature scheme, during the key pair generation process, the public key Q

is computed as Q = d ·G, where d ∈ Z is the secret key and G is the base point of the elliptic
curve. This means that applying the double-and-add method would leak confidential information
about the secret key.

Figure 2.6: Power trace of the double-and-add algorithm on a RISC-V CPU. Adapted from [13]

On the other hand, the Montgomery Ladder [70], illustrated in Algorithm 3, computes the
same result but is resistant to side-channel attacks. The algorithm works by iteratively adding
and doubling points on the curve, in such a way that allows the efficient computation while still
preventing side-channel attacks. Here, it is important to note that, using this algorithm, we
make the same number of point additions and doublings regardless of the value of the scalar k.
It is because of this that the Montgomery Ladder is resistant to side-channel attacks.

2.4. Elliptic Curve Cryptography 31

Algorithm 3 Montgomery Ladder for point multiplication
Input: t-bit scalar k = (kt−1, . . . , k1, k0)2, Point P ∈ E(Fp)
Output: Q = k · P

1: R0 ← O
2: R1 ← P

3: for i from 0 to t− 1 do
4: if ki = 0 then
5: R1 ← R0 ⊕R1

6: R0 ← 2 ·R0

7: else
8: R0 ← R0 ⊕R1

9: R1 ← 2 ·R1

10: end if
11: end for
12: return R0

We should also note that, at each iteration of Algorithm 3, the variable R0 is updated
in the same way that it would be updated by using the double-and-add algorithms for point
multiplication mentioned above. Furthermore, the variable R1 is never used in the computation
of the final result. Instead, its purpose is to ensure that both branches of the conditional contain
an addition and a doubling instruction, thus allowing the efficient computation of the scalar
multiplication while also avoiding any potential side-channel attacks.

Chapter 3

Jasmin

This chapter provides an overview of the most relevant features of the Jasmin framework.
Jasmin [5, 8] is a verfication-friendly, low-level framework suitable for writing high-assurance
and high-speed cryptographic implementations. It combines both high-level abstractions such
as variables, arrays, and control flow structures with low-level constructions such as flag
manipulation.

As illustrated in Figure 3.1, the Jasmin framework performs at a level comparable to other
verified and non-verified implementations. In particular, it is worth mentioning that it achieves a
level of performance similar to that of OpenSSL while providing formal guarantees of correctness,
memory safety and Constant-Time (CT).

(a) Comparison to non-verified code (b) Comparison to verified code

Figure 3.1: Performance evaluation of the SHA-3 function with respect to other verified and
non-verified implementations [7]

33

34 Chapter 3. Jasmin

Jasmin has been used in the implementation of multiple cryptographic primitives. Examples
include libjade [35], a comprehensive library of cryptographic primitives – including the
round 3 finalists of the NIST Post-Quantum Cryptography Competition: Dilithum [37] and
Falcon [42] for digital signatures, and the Kyber Key Encapsulation Mechanism (KEM) [11] –,
the implementation of a MPC-in-the-Head protocol [10], the Schnorr protocol [40], Swoosh [43],
a post-quantum lattice-based Non-Interactive Key Exchange (NIKE), and in the implementation
of the random password generator component of the PassCert password manager [45].

The Jasmin workflow, illustrated in Figure 3.2, includes several steps. The extension of
Jasmin source code is either .jazz or .jinc. After writing the Jasmin source code, it is
compiled into assembly code, which can then be integrated into a larger codebase. The Jasmin
compiler is formally verified in the Coq [86] proof assistant. This is discussed in more detail in

Here, it is worth noting that EasyCrypt [16] plays a crucial role in the Jasmin workflow. It
allows us to write cryptographic specifications of cryptographic primitives. Additionally, the
Jasmin compiler supports the extraction of EasyCrypt models that are semantically equivalent
to the Jasmin source program. This ensures that the properties and security proofs established
for the extracted model also apply to the executed program. In this case, proving the functional
correctness of the Jasmin source program with the EasyCrypt specification consists in proving
that the specification and the extracted model are equivalent, and proving that a program is CT
consists in proving that the its leakage is independent of secret data. This is illustrated in more
detail in §3.2.

Figure 3.2: Jasmin workflow [78]

3.1. The Jasmin Language 35

3.1 The Jasmin Language

Jasmin can be thought of as lying in between C and qhasm [19], a portable assembly language
aimed at the efficient implementation of cryptographic algorithms. With assembly-like syntax,
and leveraging the formal guarantees enforced by the Jasmin compiler, we can have a finer
level of control over the compiled assembly, meaning that achieve optimized implementations of
cryptographic functions without compromising security. For a more in-depth description of the
Jasmin language, refer to [74].

Syntax

The syntax of Jasmin programs is defined as follows:

e ∈ Expr ::= x register
| op(e, . . . , e) operator

i ∈ Instr ::= x := e assignment
| x := a[e] load from array a offset e

| a[e] := x store to array a offset e

| if e then c else c conditional
| while e do c while loop

c ∈ Com ::= [] empty, do nothing
| i; c sequencing

Table 3.1: Syntax of Jasmin programs. Adapted from [18]

When declaring a variable, we must choose where it will be stored, either in register, indicated
by the reg keyword, in the stack, indicated by the stack keyword, or resolved at compile time,
indicated by the inline keyword. It is worth noting that, in addition to regular registers, we can
access MMX by prepending the variable declaration with the #mmx annotation. MMX registers
are eight additional 64-bit registers that are generally used for performing SIMD instructions.
However, in Jasmin these registers are only used to avoid spilling to the stack. Instead, vectorized
instructions are implemented with the AVX/AVX-2 instructions.

Arrays can either be stored in contiguous memory regions in the stack – if declared with the
stack keyword – or in register – if declared with the reg keyword.

In addition, Jasmin supports pointers to (internal) stack arrays, which are declared with

36 Chapter 3. Jasmin

the ptr keyword. These pointers can be either mutable – defined with the mut keyword – or
constant – if declared with the const keyword. Besides, pointer variables can be stored in the
stack or in register. reg ptr are usually used to store the address of an array in a register in
order to pass stack arrays to functions, while stack ptr variables are used to spill reg ptr

variables to the stack.

Table 3.2 provides a concise overview of the Jasmin variable allocation, indicating where each
variable is allocated – either in register, in the stack or in .data section of the assembly file –
depending on its type. Here, the Scalar column indicates the types that can be hold individual
values, while the Array column indicates whether each data type can be declared as an array,
which allows storing multiple elements of the same type in a contiguous block of memory. For
example, we cannot declare an array of booleans and, similarly, pointers must point to stack
arrays, i.e. they cannot point to other data types. As an example, trying to declare a reg

ptr variable that points to a stack u128 will result in a compilation error. However, we can
declare pointers to arrays that only contain one element.

Storage Type Scalar Arrays Stored in

reg

u8 3 3 al bl cl dl sil dil blp r8b-r15b

u16 3 3
ax bx cx dx si di bp r8w-r15w

eax ebx ecx edx esi edi ebp r8d-r15d

u64 3 3 rax rbx rcx rdx rsi rdi rbp r8-r15

u128 3 3 xmm0-xmm15

u256 3 3 ymm0-ymm15

bool 3 7 Flags: CF, PF, ZF, SF, OF
ptr u8-u256 7 3 rax rbx rcx rsi rdi rbp r8-r15

stack
u8-u256 3 3 stack frame; 1-32 bytes alignment; rsp
ptr u8-u256 7 3 8 bytes in the stack frame

global u8-u256 3 3 .data section; 1-32 bytes alignment

inline
int 3 7

statically known
u8-u256 3 7

Table 3.2: Overview of Jasmin variable allocation. Adapted from [74]

In Jasmin, for loops iterate over inline int and are automatically unrolled. Because the
compiler performs loop unrolling during the compilation process, the number of iterations must
be known at compile time. For example, consider the function in Listing 3.1 that intializes the
variable r to zero, and repeatedly increments it in a loop that runs for 5 iterations.

3.1. The Jasmin Language 37

� �
export fn foo() -> reg u64 {

reg u64 r;
r = 0;
inline int i;
for i = 0 to 5 {

r += 1;
}
return r;

}� �
Listing 3.1: Jasmin for loop

� �
foo:

movq $0, %rax
incq %rax
incq %rax
incq %rax
incq %rax
incq %rax
ret� �
Listing 3.2: Compiled for loop

The compiled assembly shown in Listing 3.2 illustrates how the loop is unrolled by the Jasmin
compiler. Here, it is also worth noting that, because the loop is unrolled, the compiled assembly
does not contain any branching instructions, thus avoiding potentially branching on secret data.

Unlike for loops, in a while loop, the number of iterations does not need to be known at
compile time. Thus, instead of performing loop unrolling, the compiler will test the loop condition
every time the body of the loop is executed. This means that the compiled assembly will contain
branching instructions.

If we implement the previous example using a while loop, as illustrated in Listing 3.3, we
have the following assembly code:

� �
export fn bar() -> reg u64 {

reg u64 r i;
r = 0;
i = 0;
while (i < 5) {

r += 1;
i += 1;

}
return r;

}� �
Listing 3.3: Jasmin while loop

� �
bar:

movq $0, %rax
movq $0, %rcx
jmp Lbar$1

Lbar$2:
incq %rax
incq %rcx

Lbar$1:
cmpq $5, %rcx
jb Lbar$2
ret� �

Listing 3.4: Compiled while loop

Boolean values are stored in the flags of the rflags register. These flags are updated after
arithmetic operations based on the result. Here, it is important to note that these flags cannot
be directly manipulated and, unlike other reg variables, booleans cannot be spilled to the stack.
Instead, these variables are usually used for control-flow – e.g. conditional moves – and carry
propagation.

Consider the __bn_eq function illustrated in Listing 3.5 that checks two big numbers for
equality in constant-time, returning 1 if they are equal, or 0 otherwise. This function works by
iterating over the limbs of each big number, XORing them and storing the result in the acc
variable. Finally, if the two big numbers are equal, then the value of acc is zero. To check if
this is the case, the #AND operation performs a bitwise AND, which changes the value of the
Zero Flag. If both numbers are equal, then the Zero Flag is set to zero. This boolean value is

38 Chapter 3. Jasmin

then used to perform a conditional move to the res variable, which is then returned. Here, it is
important to note that the res = are_equal if zf; line does not compile to a branching
instruction. Instead, a cmov instruction is used.

� �
inline fn __bn_eq(reg ptr u64[NLIMBS] a b) -> reg u64 {

inline int i;
reg u64 acc are_equal t res;
reg bool zf;

res = 0;
are_equal = 1;
acc = 0;

for i = 0 to NLIMBS {
t = a[i];
t ^= b[i];
acc |= t;

}

(_, _, _, _, zf, _) = #AND(acc, acc);
res = are_equal if zf; // conditional move

return res;
}� �

Listing 3.5: Big number comparison using flag manipulation

Functions

Jasmin supports three types of functions, which we explain in more detail bellow.

• Inline Functions: In this phase, calls to inlines functions are replaced with its actual
code. This improves performance by avoiding the overhead of function calls. These type of
functions are particularly useful for small functions that are called frequently. Nevertheless,
it is important to take into consideration that inlining large functions increases the size
of the generated assembly code, making it harder to integrate into larger codebases. In
addition, arguments of inline function can be stored either in register or in the stack.

• Local Functions: Local functions require arguments to be stored in registers. As such,
if a local function needs to operate over stack arrays, a pointer (stored in a register)
that points to the stack array needs to be given to the function. Each local function is
compiled with a certain calling interface – i.e. the registers where arguments and results
are passed –, which is found by the compiler. In other words, each argument is assigned by
the compiler to the selected register. For example, considering a foo function that takes
two arguments, the following function successive calls foo(a, b) and foo(b, a) do
not compile. It is the developer’s responsibility to ensure that, when calling the function,
each variable is in the correct register. Finally, local functions can also be annotated with
the #[returnaddress="stack"] annotation1. This ensures that the return address is

1The default behavior has recently been updated to store the return address in the stack. However, the
#[returnaddress=reg] allows us to store the return address in a register instead.

3.1. The Jasmin Language 39

placed on the stack instead of in a register. By placing the return address on the stack, we
can free up one register that would otherwise be used to store the return address of the
function.

• Export Functions: Export functions are functions that can be called from other programs
– e.g. C or Rust programs. As such, these functions must follow the Application Binary
Interface (ABI) of the target platform. In this case, export functions follow the System
V ABI, which is the facto standard for Unix operating systems, specifying, among other
things, in which registers the functions receive their arguments, and in which register the
result is returned. Nevertheless, the System V ABI is only partially supported in the sense
that export functions cannot receive arguments in the stack; instead, they have to be stored
in registers.

Compiler

The Jasmin compiler – jasminc – is written in OCaml and Coq. In addition, the Jasmin
compiler is proven to be functionally correct in the Coq proof assistant. In particular, each
compilation step preserves the semantics of the Jasmin source program.

Figure 3.3 provides an overview of the compilation steps. During the Inlining step, calls
to inline functions are replaced with the respective function body, and reference to inline

variables are replaced with their corresponding value. In Unrolling, for loops are fully unrolled,
which requires that the bounds are statically known. Furthermore, in the Stack Sharing and
Register Array Expansion steps, the compiler optimizes the memory layout for local functions and
translates the values of reg arrays to individual register variables, respectively. At this point,
in the Lowering step, Jasmin instructions are converted into architecture-dependent low-level
instructions. In Register & Stack allocation step, the compiler finds a map between each reg

variable and available registers. Here, if it is not possible to find such a map – i.e. there are more
reg variables than available registers – compilation fails. Finally, the Linearization converts the
program into a sequence of instructions that can then be mapped to assembly.

40 Chapter 3. Jasmin

Figure 3.3: jasminc compilation steps [5]

Compiler Correctness

As defined in [5], the correctness theorem of the Jasmin compiler states that if a source
program is successfully compiled, an execution of the source program corresponds to an execution
of the compiled program, for the same initial state – thus preserving its semantics.

In this context, it is important to note that it is necessary to have enough stack space to
allocate all variables. In other words, for all the exported functions, the source program or the
compiled program exhibit the same behaviour. Ultimately, safe source programs are compiled to
safe target programs, which execute without run-time errors, unless there is not enough stack
space to execute the target program.

3.2 Verification Toolchain

The Jasmin framework offers a safety checker to check the memory-safety of source code.
Essentially, it verifies that all array accesses within the program are performed within the bounds
of the allocated memory, thereby preventing any potential buffer overflows, that memory accesses
target allocated memory, and that arithmetic operations are applied to valid arguments – e.g.
there are no divisions by zero. Furthermore, the safety checker attempts to prove that programs
eventually terminates – e.g. there is no infinite loops.

Finally, the Jasmin framework also support Constant-Time verification, either through a
type-checker, or in EasyCrypt. As an example, consider the max function illustrated in Listing 3.6

3.2. Verification Toolchain 41

that computes the maximum value of the array passed as argument. The Jasmin compiler allows
the extraction of an EasyCrypt model for constant-time verification. Here, the leakages

variable in Listing 3.7 is a global variable that is updated based on each operation that results in
leakage. In this case, we can see it contains the memory addresses – that result from the array
accesses – and the value of the condition of the if statement.

� �
fn max(reg ptr u64[2] a)

-> reg u64 {
reg u64 r;
r = a[0];
if (a[1] > r) { r = a[1]; }
return r;

}� �
Listing 3.6: Jasmin source program

� �
module M = {

var leakages : leakages_t

proc max (a:W64.t Array2.t) : W64.t = {
var aux: W64.t;

var r:W64.t;

leakages <- LeakAddr([0]) :: leakages;
aux <- a.[0];
r <- aux;
leakages <- LeakCond((r \ult a.[1]))

:: LeakAddr([1]) :: leakages;
if ((r \ult a.[1])) {

leakages <- LeakAddr([1]) ::
leakages;

aux <- a.[1];
r <- aux;

} else {

}
return (r);

}
}.� �

Listing 3.7: Leakage trace

At this point, to prove that code is CT, it suffices to check that secret data does not influence
the leakage trace. In other words, for any two program executions starting from inputs such that
the public data is the same but the secret data may be different, then the leakage trace must be
equal.

Similarly, the Jasmin compiler also allows the extraction of an EasyCrypt model that is
equivalent to the source program. Because of this equivalence, we have the guarantee that the
properties we prove for the EasyCrypt model also hold for the program that is actually executed.
Listing 3.8 illustrates an EasyCrypt model extracted by the Jasmin compiler from the max

function.

42 Chapter 3. Jasmin

� �
module M = {

proc max (a:W64.t Array2.t) : W64.t = {

var r:W64.t;

r <- a.[0];
if ((r \ult a.[1])) {

r <- a.[1];
} else {

}
return (r);

}
}.� �

Listing 3.8: Equivalent EasyCrypt model

3.3 Speculative Constant-Time Type System

Recent work [82] introduces a new approach to protect cryptographic implementations against
Spectre v1 attacks with minimal performance overhead. Essentially, the authors propose a type
system that allows Jasmin code to be formally validated as resilient to speculative execution
attacks by enforcing Speculative Constant-Time (SCT) at the source level. In other words, the
type system tracks the flow of sensitive data to ensure that memory accesses and branching
conditions do not depend on secret data. In addition, this type system is proved to be sound, i.e.
it only accepts programs that are indeed SCT, rejecting those that are not.

Using this type system, it is possible to protect cryptographic implementations against
speculative execution attacks with a minimal overhead – e.g. the authors report less than 1% for
the Kyber KEM.

Essentially, the idea is to keep track of a misspeculation flag that is used to track whether
the CPU is misspeculating or not. In the case of misspeculation, we use this flag to prevent an
attacker from reading secret values by hardening speculative loads.

Security Levels & Types

To represent the security levels of data, we consider two security levels L and H, where L

denotes a low security level, and H a high security level.

In addition, a security type is a pair of security levels (τn, τs), where τn denotes the security
level in a normal, i.e. non-speculative, execution and τs denotes the security level of all executions,
which includes those in which the CPU is misspeculating.

With this notion, we can reason about the security types of data in the following way:

• (L, L) represents public data. In Jasmin source code, this is denoted with the #public
annotatation.

3.3. Speculative Constant-Time Type System 43

• (H, H) represents secret data. In Jasmin source code, this is denoted with the #secret
annotatation.

• (L, H) represents transient data, i.e. data that is public under sequential execution but
that may depend on secret information during speculative execution. In Jasmin source
code, this is denoted with the #transient annotatation.

Speculative Constant-Time

Speculative Constant-Time (SCT) is an property that ensures that programs are protected
against speculative execution attacks. In simpler terms, this means that a program is SCT if its
leakage does not depend on secrets, for every attacker’s choice of branch decisions and unsafe
memory accesses. Essentially, while a program is CT under sequential execution if it does not
leak any sensitive data, a program is SCT if it does not leak any sensitive data for any choice of
directives issued by an attacker.

Attacker Model

To model the capabilities of an attacker, we introduce the concepts of directives, that represent
ways the attacker influences program execution, and observations, that represents information
gained by an attacker as a consequence of the execution of each instruction.

Program execution is affected by directives provided by an adversary, potentially allowing
them to steer the program’s execution to misspeculated paths. Directives are defined by the
following grammar:

d ∈ Dir ::= step | force | load a, i | store a, i

The step directive is issued by an attacker to allow the program execution to continue normally.
In this context, when encountering a branching instruction, execution resumes at the appropriate
branch – i.e. execution does not misspeculate. The force directive is used by an attacker to
force the CPU to enter a misspeculated branch, thus changing the value of the misspeculation
flag. In fact, this directive is the only one that changes the value of this flag. Finally, regarding
speculative memory accesses, the load a, i and store a, i directives are used to an attacker to load
values from and write to memory addresses of their choice.

In addition, to model side-channel leakage, we consider the notion of observation. Every
observation denotes a leak of information that is observable by an attacker. Observations are
defined by the following grammar:

o ∈ Obs ::= • | read a, v | write a, v | branch b

44 Chapter 3. Jasmin

Here, • means that the execution of a given instruction does not not leak any observation.
In addition, memory accesses leak the address, which is captured by the read a, v and write a, v

observations. Finally, the branch b observation captures the notion that branching instructions
leak their guards.

Type System Primitives

This type system provides a series of primitives that allows us to implement Selective
Speculative Load Hardening (selSLH). These primitives, summarized in Table 3.3, are described
in more detail in the following sections.

Jasmin Semantics Compiled to
ms = #init_msf(); ms = 0 lfence; ms = 0;

ms = #set_msf(e, ms); assert(e) ms = -1 if !e;

x = #protect(x, ms); assert(ms == 0) x |= ms;

Table 3.3: Type system primitives

Misspeculation Flag Initialization

The ms = #init_msf() statement, usually used at the beginning of a program to ensure
that the programs initially executes in a non-speculative manner, sets the misspeculation flag ms

to 0 and is compiled to lfence; ms = 0;. The misspeculation flag is used to track whether
execution is misspeculating or not. By convention, when the execution is misspeculating, the
flag is set to -1, and is set to 0 otherwise.

Because this flag indicates if the executing is misspeculating or not, we can use it to harden
speculative loads from memory. In particular, we use it to mask speculative loads from memory –
if the execution is not misspeculating, this mask has no effect, and the loaded value can be read
correctly. However, if this is not the case, this mask poisons the loaded value, ensuring that we
cannot read values from memory should not be accessible. This is achieved using the #protect
primitive, which will be described in more detail below.

If we only want to insert an LFENCE instruction and do not need to track the value of the
misspeculation flag for subsequent use, this statement can be replaced with _ = #init_msf();,
as illustrated in Listing 3.9.

3.3. Speculative Constant-Time Type System 45

� �
fn add(#transient reg u64 x y) -> #public reg u64 {

#public reg u64 r;
_ = #init_msf();
r = x + y;
return r;

}� �
Listing 3.9: Misspeculation flag initialization

Set Misspeculation Flag

The ms = #set_msf(e, ms); statement is used to update the value of the of the
misspeculation flag. It is usually used to update the value of the misspeculation flag immediately
after a branch instruction that depends on the condition e, although in some cases it may be
possible to defer updating the flag until a later time.

Listing 3.10 illustrates a function that computes the sum of an array with 100 elements.
To do so, we iterate through all of the elements with a while loop. However, because the
CPU may speculatively enter the body of the loop, it is necessary to update the value of the
misspeculation flag so that it can be used later to “poison” speculative loads from memory in
the case of misspeculation. Here, it is also worth noting that i is a public variable. In fact, all
branching conditions and memory indices need to be public. for the program to be CT under
the Baseline (BL) leakage model. Finally, we also update the misspeculation flag at the end of
the loop.

� �
fn sum(#msf reg u64 ms, reg ptr u64[100] p)

-> #msf reg u64, #public reg u64 {
reg bool cond;
#public reg u64 sum i;

sum = 0; i = 0;

while { cond = (i < 100); } (cond) {
ms = #set_msf(cond, ms);
sum += p[(int) i];
i += 1;

}

ms = #set_msf(!cond, ms);
sum = #protect(sum, ms);

return ms, sum;
}� �

Listing 3.10: Setting misspeculation flag [3]

The ms = #set_msf(e, ms); statement compiles to the branchless conditional ms =

-1 if !e, more specifically, to a single cmov instruction, rather than a branching instruction.
Here, it is important to note that this statement compiles to two instructions: a MOV, and a
CMOVcc. First, MOV initializes a register with the value -1. The following CMOVcc is a CT
instruction that copies this value to the ms variable if a given condition is met, where cc denotes
the condition code. For example, the statement ms = #set_msf(cond, ms); compiles to

46 Chapter 3. Jasmin

cmovnb – meaning “move if not below” –, which copies the value -1 to the variable ms if the carry
flag is not set; on the other hand, the statement ms = #set_msf(!cond, ms); compiles to
cmovb – meaning “move if below” –, copies the value if carry flag is set.

Protect

To mask speculatively loaded values, selSLH is implemented via the #protect primitive.
In this case, the instruction x = #protect(x, ms); is compiled to x |= ms;. However, if
x is a reg ptr variable, then the syntax is #protect_ptr(x, ms);.

This approach involves “conditionally masking” the register depending on the value of the
misspeculation flag. If the CPU is executing correctly, i.e., it is not misspeculating, the value
of the variable ms is set to 0, and the register remains unchanged. However, if execution is
misspeculating, the value of the variable ms is set to -1. This means that, when taking the
bitwise OR of the value of the register x with the value of the misspeculation flag, we “poison”
the loaded value, thus preventing speculatively executed code from leaking secret data.

As with the #set_msf statement, in some scenarios we can also delay the use of the
#protect statement. For example, revisiting the snippet of code presented in Listing 3.10,
instead of proctecting the sum variable, we could protect each loaded value individually, although
this would be less efficient. In this case, instead of the sum = #protect(sum, ms); statement,
we would protect the values loaded from memory inside the body of the for loop, as follows:

� �
while { cond = (i < 100); } (cond) {

ms = #set_msf(cond, ms);
t = p[(int) i];
t = #protect(t, ms);
sum += t;
i += 1;

}� �
Listing 3.11: Setting misspeculation flag

Annotations

In addition to the primitives discussed previously, this type system also has an explicit
#declassify annotation for intended leakage, allowing us to treat secret values as public.
This is illustrated in Listing 3.12. The declassify_load function takes as input a memory
address, and returns the value stored at that memory address and the one immediately following.
Because the type-checker assumes that all external memory is secret – even if the information
stored at that address is public –, if a pointer points to external memory, it is the developer’s
responsability to explicitly declassify it in order to treat it as a public value, which is done with
the #declassify annotation.

3.3. Speculative Constant-Time Type System 47

� �
fn declassify_load(#public reg u64 p)

-> #public reg u64, #secret reg u64 {
reg u64 pub sec;
#declassify pub = [p];
sec = [p + 8];
return pub, sec;

}� �
Listing 3.12: Declassifying a secret value loaded from memory [3]

Finally, there is the #nomodmsf annotation that is used to annotate functions that do not
update the misspeculation flag.

Chapter 4

Implementation and Experimental
Results

In this chapter, we describe the Jasmin implementation of a type-checked big number library
which is proven to be resistant against Spectre v1 attacks. More specifically, we protect libjbn,
a big number library implemented in Jasmin that provides both integer as well as finite field
arithmetic functions against Spectre v1 attacks. We do so by using the type system discussed in
the last chapter to implement Selective Speculative Load Hardening (selSLH). In addition, we
also discuss modifications we made to the existing source code and provide an overview of the
functions we introduced for elliptic curve arithmetic. Following this approach, we are able to
protect libjbn against Spectre v1 attacks with a relatively low performance overhead – only
3% for point addition, 2% for mixed point addition, 4% for point doubling, and around 1% for
scalar multiplication.

libjbn Overview

libjbn defines a set of basic arithmetic operations for big integers and finite field arithmetic,
which include addition, subtraction, or multiplication. At this point, it is important to clarify
how big numbers are represented. Because the x86_64 registers have 64 bits, natively, the CPU
performs arithmetic operations on 64-bit integers. However, due to their large size, big integers
used in cryptographic implementations cannot be stored in a single machine word. Instead, a
big number is represented an array of 64-bit unsigned integers. For example, an array with four
64-bit elements can represent an integer with up to 256 bits. Below, we represent a 256-bit
integer:

49

50 Chapter 4. Implementation and Experimental Results

u64[NLIMBS] glob_b = {

0x5289a0cf641d011f,

0x9b88257189fed2b9,

0xa3b365d58dc8f17a,

0x5bc57ab6eff168ec

};

Here, the constant NLIMBS refers to the size of the array used to represent each number,
which is a global parameter. In this example, NLIMBS is 4, meaning that we can represent
numbers of up to 256 bits. Similarly, to represent 2048-bit integers, NLIMBS would be 32.

In addition, the implementations in this library are generic on NLIMBS, meaning that a user
that wishes to use the library should define the value of NLIMBS along with some other known
constants such as the prime number in the context of finite field arithmetic, which are stored in
global arrays. The user then compiles the code and ends up with an assembly file targeted for
that particular set of parameters.

4.1 Source Code Modifications

This section discusses the modifications we implement in the source code in order to make it
resistant to Spectre v1 attacks. At a high level, this process involves a series of steps, which are
outlined below.

• Add security type annotations;

• If needed, free one register for the misspeculation flag;

• If needed, change function signature to return the misspeculation flag;

• Update the value of the misspeculation flag after branching instructions using the #set_msf
primitive;

• If needed, protect loads from memory using the #protect and #protect_ptr primitives;

• Declassify public values loaded from memory.

These steps will be further discussed in the following sections, accompanied by illustrative
examples:

Type Annotations

Initially, we introduce type annotations to each variable. We consider that big numbers
are secret, with the exception of the exponent in the exponentiation function, which must be

4.1. Source Code Modifications 51

public. This is the case because there is a conditional statement based on the value of each
bit of the exponent, therefore leaking each bit of this number and, as a consequence, its binary
representation. As a result, this function cannot be used for computing the exponentiation when
the exponent is a secret number. Nevertheless, it can be used when the exponent is a public
value – e.g. in field inversions.

Regarding export functions, all arguments must be at least transient – i.e. they can be either
transient or secret. We considered these to be transient instead of secret because the arguments
of these functions are the memory addresses where the numbers are stored, which are public
under sequential execution, but may depend on secret data during speculative execution.

Furthermore, every export function starts by initializing the misspeculation flag, which inserts
an LFENCE instruction. This gives us the guarantee that the function is not called in a speculative
manner. It is important to note that, with SLH, we only need an LFENCE instruction at the
beginning of each export function instead of an LFENCE after each branching instruction.

This is illustrated in Listings 4.1 and 4.2. In this case, it not necessary to track the value
of the misspeculation flag because it is not used in subsequent computations. In other cases,
however, it may be necessary to track its value, which we will discuss bellow.

� �
export fn bn_set0(reg u64 rp) {

inline int i;

for i = 0 to NLIMBS {
[rp + 8 * i] = 0;

}
}� �

Listing 4.1: bn_set0 without Spectre
v1 protections

� �
export fn bn_set0(#transient reg u64 rp) {

_ = #init_msf();

inline int i;

for i = 0 to NLIMBS {
[rp + 8 * i] = 0;

}
}� �

Listing 4.2: bn_set0 with Spectre v1 protections

Free register for the misspeculation flag & update function signature

For some functions – those that have no branching instructions and that do not need to spill
values stored in register to the stack, to later retrieve them – an initial LFENCE instruction is
sufficient to ensure that the code is SCT. If this is not the case, we need to track the value of the
misspeculation flag, which is updated immediately after branching instructions. As such, in some
cases, it is necessary to free one register for the misspeculation flag. For some local functions, we
can trivially free one register by storing the return address in the stack, which can be achieved
with the #[returnaddress="stack"] annotation. In other cases, however, it necessary to
free one register by spilling values to stack. In such scenario, the registers we chose to spill are
those that are used less often, as to maximize register usage by keeping frequently used values in
register at all times.

52 Chapter 4. Implementation and Experimental Results

Listings 4.3 and 4.4 illustrate this. The function signature of the fp_inv function, which
was previously

inline fn __fp_inv(reg ptr u64[NLIMBS] a r) -> reg ptr u64[NLIMBS]

is updated to receive and return the misspeculation flag. In other words, the new function
signature is

inline fn __fp_inv(reg ptr u64[NLIMBS] a r, #msf reg u64 ms)

-> reg ptr u64[NLIMBS], #msf reg u64.

However, at this point, all registers are occupied, meaning that there is not an available
register to allocate the misspeculation flag. As such, one register needs to be freed for the
misspeculation flag – in this case we spill the value of ap to the stack.

� �
export
fn fp_inv(reg u64 rp ap) {

stack u64[NLIMBS] _a _r;
reg ptr u64[NLIMBS] a r;
stack u64 _rp;

_rp = rp;
_a = __bn_load(ap);
a = _a;
r = _r;
r = __fp_inv(a, r);
rp = _rp;
__bn_store(rp, r);

}� �
Listing 4.3: fp_inv without Spectre
v1 protections

� �
export fn fp_inv(#transient reg u64 rp

ap) {
#msf reg u64 ms;

#secret stack u64[NLIMBS] _a _r;
reg ptr u64[NLIMBS] a r;
#public stack u64 _ap _rp;

ms = #init_msf();

_a = __bn_load(ap);

_rp = rp; // spill the register
_ap = ap; // spill the register

a = _a;
r = _r;

r, ms = __fp_inv(a, r, ms);

rp = _rp; // load from the stack
rp = #protect(rp, ms);

__bn_store(rp, r);
}� �

Listing 4.4: fp_inv with Spectre v1 protections

Finally, we need update the value of the misspeculation flag after branching instructions,
which is done using the #set_msf primitive, and to protect speculative loads from memory,
which is achieved using the #protect and #protect_ptr primitives.

Listing 4.5 illustrates the use of the set_msf and protect primitives. The function
__ecc_ branchless_scalar_mul iterates over all of the bits of the scalar. Here, the for loop
iterates all limbs, and the while loop iterates over the bits of the current limb. In this case, the
misspeculation flag is updated immediately after the while loop. Subsequently, this flag is used
to harden two speculative loads – first, when reading the current bit of the scalar to the variable
t, and later when unspilling the value that was stored in the reg variable k. Considering this
case when the CPU is not misspeculating, the misspeculation flag will have the value zero, and

4.1. Source Code Modifications 53

consequently the bitwise OR resulting from the use of the #protect primitive will have no
effect. However, if the CPU is misspeculating, then the value of the misspeculation flag will be
-1, and the #protect primitive prevents these values from being loaded to the cache. Finally,
the value of the misspeculation flag is updated immediately after the while loop.

� �
inline fn __ecc_branchless_scalar_mul(#secret stack u64[NLIMBS] scalar

r0x r0y r0z
r1x r1y r1z,

#msf reg u64 ms)
-> #secret stack u64[NLIMBS],

#secret stack u64[NLIMBS],
#secret stack u64[NLIMBS],
#msf reg u64 {

inline int i; // to iterate over the limbs of a big number

#public reg u64 k; // to iterate over the bits of a limb
#public stack u64 sk; // to iterate over the bits of a limb
#public reg u64 t; #public stack u64 st; // current limb

#public reg bool cond;
#secret reg bool cf;

// ... implementation omitted for brevity

for i = 0 to NLIMBS {
k = 64;
while { cond = (k > 0); } (cond) {

ms = #set_msf(cond, ms);
sk = k; // spill k

// ... implementation omitted for brevity

t = scalar[(int) i];
t = #protect(t, ms);

_, cf, _, _, _, t = #SHR(t, 1);

// ... implementation omitted for brevity

k = sk; // unspill k
k = #protect(k, ms); // unspill k
k -= 1;

}
ms = #set_msf(!cond, ms);

}

return r0x, r0y, r0z, ms;
}� �

Listing 4.5: __ecc_branchless_scalar_mul function with Spectre v1 protections

Integer Arithmetic

All of the integer arithmetic functions of libjbn are already Constant-Time (CT) considering
both numbers secret, and do not make use of any branching instructions. In fact, the iteration
over the limbs of each number is done using a for loop. Because these loops are unrolled, no
branching instructions are issued. As a result, to protect these functions, it is sufficient to insert
an initial LFENCE.

54 Chapter 4. Implementation and Experimental Results

Field Arithmetic

We now discuss the implementation of arithmetic operations over a finite field Fp. These
functions are implemented by calling the integer arithmetic functions followed by a reduction
modulo p. For most of them, an initial LFENCE is sufficient. However, in other cases, in order
to free one register, we spill variables to the stack. As a result, we also require a #protect

statement after unspilling the register.

Here, it is important to note that, unlike the integer arithmetic functions, not all field
arithmetic functions can be used when the inputs are secret numbers. For example, exponentiation
is implemented with the double-and-add algorithm, as illustrated in Algorithm 4. The Jasmin
implementations can be found in Listings A.1 and A.2.

Algorithm 4 Exponentiation algorithm
Input: t-bit base a = (a0, a1, . . . , at−1)2 ∈ Fp and exponent

b = (b0, b1, . . . , t− 1)2 ∈ Fp

Output: r = ab

1: r ← 1
2: x← a

3: for i from 0 to t− 1 do
4: if bi = 1 then
5: r ← r · x
6: end if
7: x← x2

8: end for
9: return r

Because of the conditional expression that evaluates the current bit of the scalar being
processed, the binary representation of the scalar is leaked. As a result, this function should
only be used when the scalar is a public value. One such example is the fp_inv function that
computes the multiplicative inverse of a field element. To do so, we simply call the exponentiation
function with -1 as the exponent. In [40], the authors implement a version of the exponentiation
function that is safe to use then the base number is secret.

4.2 Elliptic Curve Arithmetic

As discussed in §2.4, arithmetic operations over elliptic curves are the foundation of Elliptic Curve
Cryptography (ECC). Examples of such cryptographic protocols include the Elliptic Curve Digital
Signature Algorithm (ECDSA), used to provide authentication, integrity and non-repudation,
and Elliptic Curve Diffie-Hellman (ECDH), which allows two parties to establish a shared secret
over an insecure channel. These protocols rely heavily on the efficient implementation of such

4.2. Elliptic Curve Arithmetic 55

operations. As such, in order to implement cryptographic primitives and protocols using elliptic
curves, it is necessary to have efficient algorithms for adding points on the curve, as well as
computing the scalar multiplication.

In this work, we use the formulas proposed by Renes, Costello, and Batina [77]. Here, it is
worth mentioning that these formulas we use are complete. Unlike incomplete formulas, complete
formulas, despite being slower, can be used to add any two points lying on the elliptic curve,
thus offering a better protection against timing side-channel attacks. This is due to the fact that,
by always performing the same operations regardless of the operands, we ensure that execution
time is constant, making it more difficult for potential attackers to infer information about the
operands based on side-channel information.

In addition, these formulas work with points written in their projective form, which, as
mentioned in §2.4, is more efficient than their affine counterparts in the sense that don’t require
field inversions. On another note, in [67], the author proposes a parallelized version of these
addition formulas using three CPUs.

Finite field and elliptic curve arithmetic are the foundation of ECC protocols. As such, having
these functions implemented, protocol implementation becomes much simpler. For example, let
us consider ECDSA. In this case, three algorithms need to be implemented – key generation,
signature generation and signature verification. For the key generation algorithm, it suffices
to call the Jasmin #random_bytes system call, which is the standard way of getting random
bytes in Jasmin, followed by a field reduction, to generate the secret key. For the public key,
we simply multiply the base point of the curve by the previously computed secret key. For the
signature generation algorithm, we first need to compute the hash of the message – which can
be done using libjade’s SHA-3 implementation, which is resistant to Spectre v1 attacks –,
and nonce generation – once again, using Jasmin’s #random_bytes–, followed by a series of
additions, multiplications, and a field inversion, which are all functions provided by libjbn.
Finally, signature verification can be implemented following the same principle.

For the sake of optimization, multiple implementations choose curves with the parameter
a = −3. This choice of a leads to faster explicit formulas for point doubling, resulting in more
efficient computations. Consequently, the short Weierstrass form of these curves becomes:

y2 = x3 − 3x + b

Or, using projective coordinates:

Y 2Z = X3 − 3XZ2 + bZ3

56 Chapter 4. Implementation and Experimental Results

Point Addition

Algorithm 5 illustrates the addition formulas for any two points of an elliptic curve. While
this algorithm can be used to compute the sum of any two point, the mixed addition formula
discussed bellow, offers a slight performance improvement. However, it can only be used when
the Z coordinate of one of the points is 1.

Algorithm 5 Complete, projective point addition for prime-order short Weierstrass
curves E(Fp) : y2 = x3 + ax + b, with a = −3 [77]
Input: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 − 3XZ2 + bZ3

Output: P + Q = (X3 : Y3 : Z3)

1: t0 ← X1 ·X2

2: t1 ← Y1 · Y2

3: t2 ← Z1 · Z2

4: t3 ← X1 + Y1

5: t4 ← X2 + Y2

6: t3 ← t3 · t4

7: t4 ← t0 + t1

8: t3 ← t3 − t4

9: t4 ← Y1 + Z1

10: X3 ← Y2 + Z2

11: t4 ← t4 ·X3

12: X3 ← t1 + t2

13: t4 ← t4 −X3

14: X3 ← X1 + Z1

15: Y3 ← X2 + Z2

16: X3 ← X3 · Y3

17: Y3 ← t0 + t2

18: Y3 ← X3 − Y3

19: Z3 ← b · t2

20: X3 ← Y3 − Z3

21: Z3 ← X3 + X3

22: X3 ← X3 + Z3

23: Z3 ← t1 −X3

24: X3 ← t1 + X3

25: Y3 ← b · Y3

26: t1 ← t2 + t2

27: t2 ← t1 + t2

28: Y3 ← Y3 − t2

29: Y3 ← Y3 − t0

30: t1 ← Y3 + Y3

31: Y3 ← t1 + Y3

32: t1 ← t0 + t0

33: t0 ← t1 + t0

34: t0 ← t0 − t2

35: t1 ← t4 · Y3

36: t2 ← t0 · Y3

37: Y3 ← X3 · Z3

38: Y3 ← Y3 + t2

39: X3 ← t3 ·X3

40: X3 ← X3 − t1

41: Z3 ← t4 · Z3

42: t1 ← t3 · t0

43: Z3 ← Z3 + t1

4.2. Elliptic Curve Arithmetic 57

Mixed Point Addition

The mixed point addition offer an optimization over the standard addition formulas. If the Z

coordinate of one of the points is 1, then, using the mixed addition formula, we can compute the
result of the addition more efficiently.

Algorithm 6 Complete, mixed point addition for prime order short Weierstrass
curves E(Fp) : y2 = x3 + ax + b, with a = −3 [77]
Input: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1), E : Y 2Z = X3 − 3XZ2 + bZ3

Output: P + Q = (X3 : Y3 : Z3)

1: t0 ← X1 ·X2

2: t1 ← Y1 · Y2

3: t3 ← X2 + Y2

4: t4 ← X1 + Y1

5: t3 ← t3 · t4

6: t4 ← t0 + t1

7: t3 ← t3 − t4

8: t4 ← Y2 · Z1

9: t4 ← t4 + Y1

10: Y3 ← X2 · Z1

11: Y3 ← Y3 + X1

12: Z3 ← b · Z1

13: X3 ← Y3 − Z3

14: Z3 ← X3 + X3

15: X3 ← X3 + Z3

16: Z3 ← t1 −X3

17: X3 ← t1 + X3

18: Y3 ← b · Y3

19: t1 ← Z1 + Z1

20: t2 ← t1 + Z1

21: Y3 ← Y3 − t2

22: Y3 ← Y3 − t0

23: t1 ← Y3 + Y3

24: Y3 ← t1 + Y3

25: t1 ← t0 + t0

26: t0 ← t1 + t0

27: t0 ← t0 − t2

28: t1 ← t4 · Y3

29: t2 ← t0 · Y3

30: Y3 ← X3 · Z3

31: Y3 ← Y3 + t2

32: X3 ← t3 ·X3

33: X3 ← X3 − t1

34: Z3 ← t4 · Z3

35: t1 ← t3 · t0

36: Z3 ← Z3 + t1

58 Chapter 4. Implementation and Experimental Results

Point Doubling

Algorithm 7 illustrates the doubling formulas for any point of an elliptic curve. Alternatively,
we could use the standard addition formula with the same point for both arguments. Nevertheless,
the doubling function is slightly more efficient.

Algorithm 7 Exception-free point doubling for prime order short Weierstrass
curves E(Fp) : y2 = x3 + ax + b, with a = −3 [77]
Input: P = (X1 : Y1 : Z1), E : Y 2Z = X3 − 3XZ2 + bZ3

Output: 2 · P = (X3 : Y3 : Z3)

1: t0 ← X ·X
2: t1 ← Y · Y
3: t2 ← Z · Z
4: t3 ← X · Y
5: t3 ← t3 + t3

6: Z3 ← X · Z
7: Z3 ← Z3 + Z3

8: Y3 ← b · t2

9: Y3 ← Y3 − Z3

10: X3 ← Y3 + Y3

11: Y3 ← X3 + Y3

12: X3 ← t1 − Y3

13: Y3 ← t1 + Y3

14: Y3 ← X3 · Y3

15: X3 ← X3 · t3

16: t3 ← t2 + t2

17: t2 ← t2 + t3

18: Z3 ← b · Z3

19: Z3 ← Z3 − t2

20: Z3 ← Z3 − t0

21: t3 ← Z3 + Z3

22: Z3 ← Z3 + t3

23: t3 ← t0 + t0

24: t0 ← t3 + t0

25: t0 ← t0 − t2

26: t0 ← t0 · Z3

27: Y3 ← Y3 + t0

28: t0 ← Y · Z
29: t0 ← t0 + t0

30: Z3 ← t0 · Z3

31: X3 ← X3 − Z3

32: Z3 ← t0 · t1

33: Z3 ← Z3 + Z3

4.2. Elliptic Curve Arithmetic 59

Scalar Multiplication

We implement scalar multiplication using the Montgomery Ladder, as illustrated in Algo-
rithm 3. It worth mentioning that this function should only be used when the scalar is a public
number. Here, the if ki = 0 statement leaks the i-th bit of the scalar k, and eventually the whole
binary representation of the scalar will be leaked.

As a result, it can not be used for computing the scalar multiplication when the scalar is
secret – e.g. when, in ECDSA, we compute the public key as Q = d · G, where d ∈ Z is the
private key, and G ∈ E(Fp) is the base point of the curve. In such scenarios, we can use a
branchless version of the Montgomery Ladder, which we discuss bellow.

To address this issue, we also implement the Montgomery Ladder algorithm replacing the if
statement with a conditional move, thus avoiding a branch on secret data. This is illustrated in
Algorithm 8. It is worth noting that this function is slightly less efficient than the the previous
in the sense that, both results of the if statement must be computed. In other words, for each
bit of the scalar, we compute R0 and R1 for both scenarios – whether the bit is set to 1 or to 0
–, and perform a conditional move accordingly.

Algorithm 8 Branchless Montgomery Ladder for scalar multiplication
Input: t-bit scalar k = (kt−1, . . . , k1, k0)2, Point P ∈ E(Fp)
Output: Q = k · P

1: R0 ← O
2: R1 ← P

3: for i from 0 to t− 1 do
4: t← R0 ⊕R1

5: R1 ← t

6: R0 ← 2 ·R0

7: R0 ← t if ki = 1 . Conditional move (branchless)
8: R1 ← 2 ·R1 if ki = 1 . Conditional move (branchless)
9: end for

10: return R0

60 Chapter 4. Implementation and Experimental Results

Point Normalization

Converting the projective representation of a point of an elliptic curve to the corresponding
affine representation consists in transforming (X : Y : Z), Z 6= 0 into (x, y), where x = X · Z−1

and y = Y · Z−1. This requires a field inversion to compute Z−1 and, after that, this value can
be multiplied with X and Y to compute x and y, respectively.

While conversion from projective coordinates to affine coordinates requires less arithmetic
operations compared to the addition formulas presented in this chapter, it is, in fact, slower.
This is mainly due to the fact that field inversions are computationally expensive.

4.3 Performance Evaluation

To evaluate the performance of this library, we conducted a series of benchmarks on a machine
with an AMD Ryzen 7 4700U CPU clocked at 2 GHz with hyperthreading and frequency
boost disabled, running Ubuntu 22.04.2 LTS. We also used version 11.3.0 of the gcc compiler
and the latest version (commit d46b227b2c7a0554bd9f503df70a8fa79a277b19) from
the glob_array3_slh1 branch of the repository for the Jasmin compiler2. We also require
frequency boost to be disabled to make these measurements less susceptible to inaccuracies
caused by unexpected and temporary frequency spikes caused by the frequency boost. For each
benchmark, we gathered a series of 10000 timings.

Tables 4.1, 4.4 and 4.8 report the median of the measured timings for each function, both the
CT and SCT implementations. In the other tables, we also report the first and third quartiles,
represented by p25 and p75, respectively.

Integer Arithmetic

Table 4.1 and Figure 4.1 illustrate the median of the timings we measured for the CT and
SCT implementations. While looking at these tables, the performance penalty arising from the
Spectre v1 protections may seem substantial when expressed as a percentage, in reality the
overhead is only 40 clock cycles, which is negligible. Here, it is important to note that this high
percentage is due to the small size of the code being evaluated.

In fact, the only protection applied to this code was the initial LFENCE instruction, and
there is no workaround for it. As demonstrated in the following sections, for larger functions,
the impact of is not as significant.

1This branch no longer exists as the speculative type system is now supported by the main branch.
2https://github.com/jasmin-lang/jasmin

https://github.com/jasmin-lang/jasmin

4.3. Performance Evaluation 61

Function CT
(Clock Cycles)

SCT
(Clock Cycles)

Overhead
(%)

bn_addn 60 100 66.67
bn_copy 60 100 66.67
bn_eq 60 100 66.67
bn_muln 100 140 40
bn_set0 60 100 66.67
bn_sqrn 100 140 40
bn_subn 60 100 66.67
bn_test0 60 100 66.67

Table 4.1: Performance comparison of integer arithmetic functions for 4 limbs

Figure 4.1: Performance comparison of integer arithmetic functions for 4 limbs

In addition, in Tables 4.2 and 4.3, we report the median, and the first and third quartiles of
the measured timings for both the CT and SCT implementations, respectively. These statistical
measures allows us to have a better understanding of the distribution of the values. As we can
see, the values for the median, and the first and third quartile are relatively close to each other.
These suggests that the number of clock cycles that each function takes to execute is relatively
consistent across different executions.

62 Chapter 4. Implementation and Experimental Results

-

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

bn_addn 60 40 60
bn_copy 60 40 60
bn_eq 60 40 60
bn_muln 100 100 100
bn_set0 60 40 60
bn_sqrn 100 80 100
bn_subn 60 40 60
bn_test0 60 40 60

Table 4.2: Performance of CT integer arithmetic functions for 4 limbs

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

bn_addn 100 100 120
bn_copy 100 80 100
bn_eq 100 100 100
bn_muln 140 140 140
bn_set0 100 80 100
bn_sqrn 140 140 160
bn_subn 100 100 120
bn_test0 100 100 100

Table 4.3: Performance of SCT integer arithmetic functions for 4 limbs

Field Arithmetic

Table 4.4 and Figure 4.2 illustrate the median of the timings we measured for the CT and
SCT implementations. As already discussed, for relatively small functions – e.g. fp_add, the
cost of these protections may appear substantial when expressed as a percentage. However, it is
important to note that this corresponds to only a few dozen cycles. For larger functions – e.g.
fp_inv – the impact of these protections is not as significant.

Here, it is also worth noting that the slight performance increase in fp_expm_noct can
be attributed to how we choose to free one register for the misspeculation flag. While in the
remaining functions we free one register by spilling one reg variable to the stack, in this case
we free one register by iterating over the bits of each limb using a for loop instead of a while
loop. As such, the iteration variable is an inline int instead of a reg variable. The main
disadvantage of this approach is that it leads to a considerable increase in the number of lines in

4.3. Performance Evaluation 63

the compiled assembly code due to loop unrolling (cf. Table 4.5)3. By unrolling the loop, we can
prevent a few clock cycles from being wasted due to mispredictions that would have otherwise
potentially occurred, and due to updates and spill to this variable. Overall, the fp_expm_noct
function has a negligible performance increase instead of the expected decrease because this
outweighs the penalty imposed by the initial LFENCE instruction. However, it should be noted
that this may have limited impact outside of the benchmarking environment.

Function CT
(Clock Cycles)

SCT
(Clock Cycles)

Overhead
(%)

fp_add 80 160 100
fp_expm_noct 35760 35560 -0.56
fp_fromM 120 180 50
fp_inv 63180 63520 0.54
fp_mul 220 280 27.27
fp_sqr 220 280 27.27
fp_sub 80 140 75
fp_toM 140 200 42.86

Table 4.4: Performance comparison of finite field arithmetic functions for 4 limbs

Figure 4.2: Performance comparison of finite field arithmetic functions for 4 limbs

3When compiling only the fp_expm_noct function for 4 limbs, the CT implementation consists of 885 lines
of assembly, while the SCT implementation consists of 6439 lines.

64 Chapter 4. Implementation and Experimental Results

CT
(Lines of Code)

SCT
(Lines of Code)

Integer Arithmetic 472 488
Finite Field Arithmetic 1973 8023
Elliptic Curve Arithmetic 18466 37436

Table 4.5: Comparison of the lines of assembly between the CT and SCT implementations for 4
limbs

In addition, Tables 4.6 and 4.7 report report the median, and the first and third quartiles of
the measured timings for both the CT and SCT implementations. As before, these values are
relatively close to each other, suggesting that the number of cycles each function takes to execute
does not vary significantly across different executions.

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

fp_add 80 60 80
fp_expm_noct 35760 35720 35820
fp_fromM 120 120 120
fp_inv 63180 63120 63220
fp_mul 220 200 220
fp_sqr 220 220 220
fp_sub 80 60 80
fp_toM 140 140 140

Table 4.6: Performance of CT finite field arithmetic functions for 4 limbs

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

fp_add 160 140 160
fp_expm_noct 35560 35520 35640
fp_fromM 180 160 180
fp_inv 63520 63460 63580
fp_mul 280 280 280
fp_sqr 280 280 300
fp_sub 140 140 160
fp_toM 200 200 200

Table 4.7: Performance of SCT finite field arithmetic functions for 4 limbs

4.3. Performance Evaluation 65

Elliptic Curve Arithmetic

Table 4.8 and Figure 4.3 illustrate the median of the timings we measured for the CT and
SCT implementations. The values illustrated here emphasize that it is possible to proctect
cryptographic implementations against Spectre v1 with a relatively low performance overhead.

Furthermore, the small performance increase observed in ecc_normalize can be attributed
to the use of the fp_expm_noct function to compute the multiplicative inverse of the Z

coordinate of the projective representation of the point being processed. As mentioned previously,
the protected version of this function is slightly more efficient than the unprotected counterpart.

Function CT
(Clock Cycles)

SCT
(Clock Cycles)

Overhead
(%)

ecc_add 2480 2560 3.23
ecc_branchless_scalar_mul 1732380 1741960 0.55
ecc_double 2200 2280 3.64
ecc_mixed_add 2180 2220 1.83
ecc_normalize 63980 63380 -0.94
ecc_scalar_mul 1178220 1187860 0.82

Table 4.8: Performance comparison of elliptic curve arithmetic functions for 4 limbs

In addition, Tables 4.9 and 4.10 report the median, and the first and third quartiles of
the measured timings for both the CT and SCT implementations. Here, for the addition and
normalization functions, these values are relatively close to each other, indicating that the number
of cycles these functions take to execute is consistent across executions. However, these values are
not as close for the scalar multiplication functions. This can by explained by the large number of
point addition and doubling it requires to compute the result of a scalar multiplication.

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

ecc_add 2480 2460 2500
ecc_branchless_scalar_mul 1732380 1730780 1735340
ecc_double 2200 2180 2220
ecc_mixed_add 2180 2160 2180
ecc_normalize 63980 63920 64080
ecc_scalar_mul 1178220 1177100 1179700

Table 4.9: Performance of CT elliptic curve arithmetic functions for 4 limbs

66 Chapter 4. Implementation and Experimental Results

Function Median
(Clock Cycles)

p25
(Clock Cycles)

p75
(Clock Cycles)

ecc_add 2560 2560 2560
ecc_branchless_scalar_mul 1741960 1740920 1743940
ecc_double 2280 2260 2280
ecc_mixed_add 2220 2220 2220
ecc_normalize 63380 63360 63440
ecc_scalar_mul 1187860 1186900 1189160

Table 4.10: Performance of SCT elliptic curve arithmetic functions for 4 limbs

Figure 4.3: Performance comparison of elliptic curve arithmetic functions for 4 limbs

Finally, looking at Figures 4.4 to 4.9, we can see that the majority of the data points are
concentrated around the µ ± σ, meaning that there are no significant skewness or outliers.
Exceptions to these are the functions for scalar multiplication, for which some data points around
µ + 3σ – for the branchless implementation – and µ + 4σ – for the implementation using the
Montgomery Ladder – also exist, and the function for normalization, for which some data points
around µ + 2σ also exist. Here, µ denotes the mean of the measured values, and σ denotes the
respective standard deviation.

4.3. Performance Evaluation 67

(a) CT (b) SCT

Figure 4.4: Distribution of cycle count for the ecc_add function

(a) CT (b) SCT

Figure 4.5: Distribution of cycle count for the ecc_mixed_add function

(a) CT (b) SCT

Figure 4.6: Distribution of cycle count for the ecc_double function

68 Chapter 4. Implementation and Experimental Results

(a) CT (b) SCT

Figure 4.7: Distribution of cycle count for the ecc_normalize function

(a) CT (b) SCT

Figure 4.8: Distribution of cycle count for the ecc_scalar_mul function

(a) CT (b) SCT

Figure 4.9: Distribution of cycle count for the ecc_branchless_scalar_mul function

Furthermore, as the number of limbs increases, the difference in performance between the
CT and the SCT implementations decreases. This happens because the performance penalty
imposed by the initial LFENCE instruction is amortized by the subsequent code. Nonetheless,
it is important to note that the impact of this effect is not considerable. This is illustrated in

4.3. Performance Evaluation 69

Figure 4.10, where we plot the median number of cycles of the fp_toM for the interval between
1 and 12 limbs. Here, it is worth noting that the choice of this function has no significance; it is
just illustrative. In fact, all other functions exhibit the same behaviour.

Figure 4.10: Cycle Count in terms of the number of limbs for the fp_toM function

Even though all function exhibit this behaviour, for integer arithmetic functions this trend
is not so evident in such small intervals due to their relatively small code size. However, if we
consider a larger interval, such as from 1 to 100 limbs as illustrated in Figure 4.11, this trend
becomes clear. Here, it is important to note that the example of the bn_addn function serves
only to exemplify this pattern. Upon examining the behavior of other functions, we can see that
they all follow the same pattern.

Figure 4.11: Cycle Count in terms of the number of limbs for the bn_addn function

Chapter 5

Conclusion & Future Work

In this dissertation, we explored speculative execution attacks, their potential impact and possible
solutions to mitigate them. By considering an information flow type system, we were able to
protect libjbn, a Jasmin big number library, against these type of attacks. Finally, we also
discussed the generic implementation of arithmetic operations over prime-order short Weierstrass
elliptic curves defined over finite fields, which can be used to implement all prime-order curves
where a = −3. Notably, the implementation of these protections incurs minimal overhead,
effectively ensuring protection against Spectre attacks while maintaining an acceptable level of
performance.

5.1 Limitations & Future Work

The major limitation of this work is the fact that the Jasmin compiler is not proved to preserve
the protections enforced by the type system. In other words, even though the speculative type
checker does not reject our code, we do not have the guarantee that the compiled assembly is
SCT. However, instead of proving that cryptographic code is SCT at the source level, we can,
instead, prove it after certain a certain compilation pass1. Intuitively, the closer to the assembly
level we check that a given program is SCT, the stronger our confidence in the protections
enforced by the type system becomes.

Regarding the arithmetic operations over prime-field elliptic curves, we only considered
speculative execution attacks. However, our implementation is vulnerable to other kinds of
side-channel attacks – e.g. DPA attacks. Considering this, in [30], for computing the scalar
multiplication, the authors protect against DPA attacks by adding a randomized scalar splitting.
In other words, the computation of k ·P, k ∈ Z, P ∈ E(Fp) is split into two scalar multiplications:
r · P and (k − r) · P , where r ∈ Z is a random number. The result k · P is then computed by

1The compiler flag -checkSCT checks if the code is SCT at the source level. while the flag -checkSCTafter

checks if the code is SCT after a given compilation pass – e.g. running jasminc -checkSCTafter ralloc

checks if the code is SCT after the register allocation pass.

71

72 Chapter 5. Conclusion & Future Work

adding these intermediate results.

Another countermeasure is the use of Randomized Projective Coordinates, proposed in [31].
Essentially, instead of representing the point P ∈ E(Fp) as (X : Y : Z), we represent them as
(λX : λY : λZ), where λ is a random element of the finite field Fp.

Despite the encouraging results we have achieved, there is still room for improvement. This
improvement is twofold, encompassing both optimized implementations and formal proofs of
correctness, which we discuss in more detail below.

Optimized Implementations

As discussed in Chapter 4, the performance overhead imposed by the Spectre v1 protections
stems from two main factors: the initial LFENCE instruction at the beginning of every function,
and register spilling. While the penalty arising from the use of fence instructions is inevitable, we
can reduce the impact of spilling registers by spilling them to MMX registers instead of spilling
them to the stack. In this case, by spilling values to these register instead of spilling them to the
stack, it would not be necessary to insert #protect statements after unspilling them. This is
left as future work.

In addition, the work presented in this dissertation is not an optimized implementation. It
serves only to demonstrate that we can protect Jasmin source code against Spectre v1 attacks with
minimal overhead. Nevertheless, it serves as a starting point for the development of optimized
implementations, which can be achieved by taking advantage of SIMD instructions such as the
AVX/AVX-2 vectorized instructions.

Formal Proof of Correctness

As discussed in Chapter 3, EasyCrypt plays an important role in the Jasmin workflow. After
ensuring that the speculative type checker accepts this code, the next logical step is to prove
that the source code correctly computes the results. While we have tested the results computed
by the Jasmin implementation against a C implementation for 5000 random points, stronger
guarantees are needed. In this case, this would require extracting the Jasmin implementation
to an equivalent EasyCrypt model, which is then used to prove certain properties of the source
code, namely that the program is functionally correct.

Appendix A

Jasmin Source Code

� �
#[returnaddress="stack"]
fn _fp_exp(reg ptr u64[NLIMBS] a _b r) -> reg ptr u64[NLIMBS] {

inline int j;
reg u64 k t;
reg bool cf;
stack u64[NLIMBS] _x;
reg ptr u64[NLIMBS] x;
stack u64 ss;
stack ptr u64[NLIMBS] rr bb;
reg ptr u64[NLIMBS] b;
reg ptr u64[NLIMBS] glob_oneMp;

x = _x;
glob_oneMp = glob_oneM;

x = __bn_copy2(a, x);
r = __bn_copy2(glob_oneMp, r);

_x = x;
bb = _b;
rr = r;

for j = 0 to NLIMBS {
b = bb;
t = b[(int) j];
k = 64;

while (k != 0) {
ss = k;
_, cf, _, _, _, t = #SHR(t, 1);

if (cf) {
r = rr;
x = _x;
r = _fp_mulU(r, x);
_x = x;
rr = r;

}

x = _x;
x = _fp_sqrU(x);
_x = x;
k = ss;
k -= 1;

}
}

r = rr;
return r;

}� �
Listing A.1: _fp_exp function without Spectre v1 protections

73

74 Appendix A. Jasmin Source Code

� �
#[returnaddress="stack"]
fn _fp_exp(reg ptr u64[NLIMBS] a _b r,

#msf reg u64 ms) -> reg ptr u64[NLIMBS], #msf reg u64 {
#secret stack u64[NLIMBS] _x;

reg ptr u64[NLIMBS] x;
reg ptr u64[NLIMBS] glob_oneMp;

stack ptr u64[NLIMBS] glob_oneMps;

stack ptr u64[NLIMBS] rr bb; // used to spill r and _b
reg ptr u64[NLIMBS] b;

inline int j k;
#public reg bool cf;
#public reg u64 t;

x = _x;

glob_oneMp = glob_oneM;

x = __bn_copy2(a, x);
r = __bn_copy2(glob_oneMp, r);

_x = x;

bb = _b;
rr = r;

for j = 0 to NLIMBS {
b = bb;
b = #protect_ptr(b, ms);

t = b[(int) j];
t = #protect(t, ms);

for k = 64 downto 0 {

_, cf, _, _, _, t = #SHR(t, 1);

if (cf) {
ms = #set_msf(cf, ms);

r = rr;
r = #protect_ptr(r, ms);

x = _x;
x = #protect_ptr(x, ms);

r = _fp_mulU(r, x);
_x = x;
rr = r;

} else {
ms = #set_msf(!cf, ms);

}

x = _x;
x = _fp_sqrU(x);
_x = x;

}
}

r = rr;
r = #protect_ptr(r, ms);

return r, ms;
}� �

Listing A.2: _fp_exp function with Spectre v1 protections

Bibliography

[1] CompCert – The CompCert C compiler. https://compcert.org/compcert-C.html#perfs.
(Accessed on 18/02/2023).

[2] golang/go: The Go programming language. https://github.com/golang/go. (Accessed on
14/02/2023).

[3] jasmin-lang/jasmin: Language for high-assurance and high-speed cryptography. https:
//github.com/jasmin-lang/jasmin. (Accessed on 14/02/2023).

[4] Ayush Agarwal, Sioli OConnell, Jason Kim, Shaked Yehezkel, Daniel Genkin, Eyal Ronen,
and Yuval Yarom. Spook.js: Attacking Chrome Strict Site Isolation via Speculative
Execution. In 2022 IEEE Symposium on Security and Privacy (SP), pages 699–715, 2022.
doi:10.1109/SP46214.2022.9833711.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-Assurance and High-Speed Cryptography. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17, page 18071823,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN: 9781450349468.
doi:10.1145/3133956.3134078.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie Cohen,
Benjamin Gregoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub, and Serdar Tasiran.
A Machine-Checked Proof of Security for AWS Key Management Service. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
’19, page 6378, New York, NY, USA, 2019. Association for Computing Machinery. ISBN:
9781450367479. doi:10.1145/3319535.3354228.

[7] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François
Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton, and
Pierre-Yves Strub. Machine-Checked Proofs for Cryptographic Standards: Indifferentiability
of Sponge and Secure High-Assurance Implementations of SHA-3. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 16071622, New York, NY, USA, 2019. Association for Computing Machinery. ISBN:
9781450367479. doi:10.1145/3319535.3363211.

75

https://compcert.org/compcert-C.html#perfs
https://github.com/golang/go
https://github.com/jasmin-lang/jasmin
https://github.com/jasmin-lang/jasmin
http://dx.doi.org/10.1109/SP46214.2022.9833711
http://dx.doi.org/10.1109/SP46214.2022.9833711
http://dx.doi.org/10.1145/3133956.3134078
http://dx.doi.org/10.1145/3319535.3354228
http://dx.doi.org/10.1145/3319535.3363211
http://dx.doi.org/10.1145/3319535.3363211

76 Bibliography

[8] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos,
Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The last mile: High-assurance
and high-speed cryptographic implementations. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 965–982. IEEE, 2020.

[9] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Vincent Laporte, and Tiago Oliveira.
Certified Compilation for Cryptography: Extended x86 Instructions and Constant-Time
Verification. In Progress in Cryptology INDOCRYPT 2020: 21st International Conference
on Cryptology in India, Bangalore, India, December 1316, 2020, Proceedings, page 107127,
Berlin, Heidelberg, 2020. Springer-Verlag. ISBN: 978-3-030-65276-0. doi:10.1007/978-3-030-
65277-7_6.

[10] José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim Eldefrawy, Stéphane
Graham-Lengrand, Hugo Pacheco, and Vitor Pereira. Machine-checked ZKP for NP-
relations: Formally Verified Security Proofs and Implementations of MPC-in-the-Head.
Cryptology ePrint Archive, Paper 2021/1149, 2021. https://eprint.iacr.org/2021/1149.
doi:10.1145/3460120.3484771.

[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vincent Laporte,
Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe,
Antoine Séré, and Pierre-Yves Strub. Formally verifying Kyber Part I: Implementation
Correctness. Cryptology ePrint Archive, Paper 2023/215, 2023. https://eprint.iacr.org/
2023/215.

[12] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte,
and Swarn Priya. Enforcing Fine-Grained Constant-Time Policies. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS ’22, page 8396,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN: 9781450394505.
doi:10.1145/3548606.3560689.

[13] Utsav Banerjee. Efficient Algorithms, Protocols and Hardware Architectures for Next-
Generation Cryptography in Embedded Systems. Thesis, Massachusetts Institute of
Technology, June 2021.

[14] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. SoK: Computer-Aided Cryptography. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 777–795, 2021. doi:10.1109/SP40001.2021.00008.

[15] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han Hung, Jonathan
Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. EasyPQC: Verifying Post-Quantum
Cryptography. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, pages 2564–2586, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN: 9781450384544. doi:10.1145/3460120.3484567.

[16] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and

http://dx.doi.org/10.1007/978-3-030-65277-7_6
http://dx.doi.org/10.1007/978-3-030-65277-7_6
http://dx.doi.org/10.1145/3460120.3484771
http://dx.doi.org/10.1145/3460120.3484771
https://eprint.iacr.org/2021/1149
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215
http://dx.doi.org/10.1145/3548606.3560689
https://dspace.mit.edu/handle/1721.1/139330
https://dspace.mit.edu/handle/1721.1/139330
http://dx.doi.org/10.1109/SP40001.2021.00008
http://dx.doi.org/10.1145/3460120.3484567
http://dx.doi.org/10.1145/3460120.3484567

Bibliography 77

Pierre-Yves Strub. EasyCrypt: A Tutorial, pages 146–166. Springer International Publishing,
Cham, 2014. ISBN: 978-3-319-10082-1. doi:10.1007/978-3-319-10082-1_6.

[17] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David
Pichardie, and Alix Trieu. Formal Verification of a Constant-Time Preserving C Compiler.
Proc. ACM Program. Lang., 4(POPL), dec 2019. doi:10.1145/3371075.

[18] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-Assurance Cryptography in
the Spectre Era. In 2021 IEEE Symposium on Security and Privacy (S&P), pages 1884–1901,
2021. doi:10.1109/SP40001.2021.00046.

[19] Daniel J. Bernstein. qhasm: tools to help write high-speed software. https://cr.yp.to/
qhasm.html. (Accessed on 18/02/2023).

[20] Karthikeyan Bhargavan, Cédric Fournet, and Markulf Kohlweiss. miTLS: Verifying Protocol
Implementations against Real-World Attacks. IEEE Security & Privacy, 14(6):18–25, 2016.
doi:10.1109/MSP.2016.123.

[21] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
Speculative Execution through Port Contention. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page 785800, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN: 9781450367479.
doi:10.1145/3319535.3363194.

[22] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001., pages 82–96,
2001. doi:10.1109/CSFW.2001.930138.

[23] Jenny Blessing, Michael A. Specter, and Daniel J. Weitzner. You Really Shouldn’t Roll
Your Own Crypto: An Empirical Study of Vulnerabilities in Cryptographic Libraries, 2021.

[24] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Systematic Evaluation of
Transient Execution Attacks and Defenses. In 28th USENIX Security Symposium (USENIX
Security 19), pages 249–266, Santa Clara, CA, August 2019. USENIX Association. ISBN:
978-1-939133-06-9.

[25] Chandler Carruth. Speculative Load Hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html. (Accessed on 21/02/2023).

[26] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. Constant-Time Foundations for the New Spectre Era.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2020, page 913926, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN: 9781450376136. doi:10.1145/3385412.3385970.

http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1109/SP40001.2021.00046
http://dx.doi.org/10.1109/SP40001.2021.00046
https://cr.yp.to/qhasm.html
https://cr.yp.to/qhasm.html
http://dx.doi.org/10.1109/MSP.2016.123
http://dx.doi.org/10.1109/MSP.2016.123
http://dx.doi.org/10.1145/3319535.3363194
http://dx.doi.org/10.1145/3319535.3363194
http://dx.doi.org/10.1109/CSFW.2001.930138
http://arxiv.org/abs/2107.04940
http://arxiv.org/abs/2107.04940
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
http://dx.doi.org/10.1145/3385412.3385970

78 Bibliography

[27] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan. SoK:
Practical Foundations for Software Spectre Defenses, 2022.

[28] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. A Formal
Approach to Secure Speculation. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF), pages 288–28815, 2019. doi:10.1109/CSF.2019.00027.

[29] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H.
Lai. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative Execution. In
2019 IEEE European Symposium on Security and Privacy (EuroS&P), pages 142–157, 2019.
doi:10.1109/EuroSP.2019.00020.

[30] Łukasz Chmielewski, Pedro Maat Costa Massolino, Jo Vliegen, Lejla Batina, and Nele
Mentens. Completing the Complete ECC Formulae with Countermeasures. 7(1), 2017. ISSN:
2079-9268. doi:10.3390/jlpea7010003.

[31] Jean-Sébastien Coron. Resistance Against Differential Power Analysis For Elliptic Curve
Cryptosystems. In Çetin K. Koç and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems, pages 292–302, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
ISBN: 978-3-540-48059-4.

[32] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bogdan Warinschi.
Machine-Checked Proofs for Electronic Voting: Privacy and Verifiability for Belenios. In
2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages 298–312, 2018.
doi:10.1109/CSF.2018.00029.

[33] Craig Costello. A gentle introduction to elliptic curve cryptography. https:
//static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff376bc0db4f45ccb096682/
1609791167623/2019-SACtutorial1.pdf. (Accessed on 29/06/2023).

[34] Formosa Crypto. libjbn: BigNums library for Jasmin. https://github.com/formosa-
crypto/libjbn, . (Accessed on 14/03/2023).

[35] Formosa Crypto. libjade: Crypto library. https://github.com/formosa-crypto/libjade, .
(Accessed on 14/03/2023).

[36] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Hunting the Haunter -Efficient
Relational Symbolic Execution for Spectre with Haunted RelSE. In NDSS 2021 - Network
and Distributed Systems Security, Virtual, France, 2021. doi:10.14722/ndss.2021.24286.

[37] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(1):
238268, Feb. 2018. doi:10.13154/tches.v2018.i1.238-268.

[38] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. Simple
High-Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises.

http://arxiv.org/abs/2105.05801
http://arxiv.org/abs/2105.05801
http://dx.doi.org/10.1109/CSF.2019.00027
http://dx.doi.org/10.1109/CSF.2019.00027
http://dx.doi.org/10.1109/EuroSP.2019.00020
http://dx.doi.org/10.3390/jlpea7010003
http://dx.doi.org/10.1109/CSF.2018.00029
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff376bc0db4f45ccb096682/1609791167623/2019-SACtutorial1.pdf
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff376bc0db4f45ccb096682/1609791167623/2019-SACtutorial1.pdf
https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff376bc0db4f45ccb096682/1609791167623/2019-SACtutorial1.pdf
https://github.com/formosa-crypto/libjbn
https://github.com/formosa-crypto/libjbn
https://github.com/formosa-crypto/libjade
http://dx.doi.org/10.14722/ndss.2021.24286
http://dx.doi.org/10.14722/ndss.2021.24286
http://dx.doi.org/10.13154/tches.v2018.i1.238-268
http://dx.doi.org/10.13154/tches.v2018.i1.238-268
http://dx.doi.org/10.1109/SP.2019.00005
http://dx.doi.org/10.1109/SP.2019.00005

Bibliography 79

In 2019 IEEE Symposium on Security and Privacy (SP), pages 1202–1219, 2019.
doi:10.1109/SP.2019.00005.

[39] Denis Firsov and Dominique Unruh. Zero-Knowledge in EasyCrypt. Cryptology ePrint
Archive, Paper 2022/926, 2022. https://eprint.iacr.org/2022/926.

[40] Denis Firsov, Tiago Oliveira, and Dominique Unruh. Schnorr protocol in Jasmin. Cryptology
ePrint Archive, Paper 2023/752, 2023. https://eprint.iacr.org/2023/752.

[41] Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Ekerå. Diversity and
Transparency for ECC. Cryptology ePrint Archive, Paper 2015/659, 2015. https://eprint.
iacr.org/2015/659.

[42] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:
Fast-Fourier Lattice-based Compact Signatures over NTRU. 2019.

[43] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter Schwabe.
Swoosh: Practical Lattice-Based Non-Interactive Key Exchange. Cryptology ePrint Archive,
Paper 2023/271, 2023. https://eprint.iacr.org/2023/271.

[44] Google. Retpoline: a software construct for preventing branch-target-injection. https:
//support.google.com/faqs/answer/7625886. (Accessed on 10/03/2023).

[45] Miguel Grilo, João Campos, João F. Ferreira, José Bacelar Almeida, and Alexandra Mendes.
Verified Password Generation from Password Composition Policies. In Maurice H. ter Beek
and Rosemary Monahan, editors, Integrated Formal Methods, pages 271–288, Cham, 2022.
Springer International Publishing. ISBN: 978-3-031-07727-2.

[46] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. Spectector:
Principled Detection of Speculative Information Flows. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1–19, 2020. doi:10.1109/SP40000.2020.00011.

[47] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, Berlin, Heidelberg, 2003. ISBN: 038795273X.

[48] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-Preikschat, and Timo Hönig.
The Price of Meltdown and Spectre: Energy Overhead of Mitigations at Operating System
Level. In Proceedings of the 14th European Workshop on Systems Security, EuroSec ’21, page
814, New York, NY, USA, 2021. Association for Computing Machinery. ISBN: 9781450383370.
doi:10.1145/3447852.3458721.

[49] Mark D. Hill, Jon Masters, Parthasarathy Ranganathan, Paul Turner, and John L. Hennessy.
On the Spectre and Meltdown Processor Security Vulnerabilities. IEEE Micro, 39(2):9–19,
2019. doi:10.1109/MM.2019.2897677.

https://eprint.iacr.org/2022/926
https://eprint.iacr.org/2022/926
https://eprint.iacr.org/2023/752
https://eprint.iacr.org/2023/752
https://eprint.iacr.org/2015/659
https://eprint.iacr.org/2015/659
https://eprint.iacr.org/2015/659
https://eprint.iacr.org/2015/659
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://eprint.iacr.org/2023/271
https://eprint.iacr.org/2023/271
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
http://dx.doi.org/10.1109/SP40000.2020.00011
http://dx.doi.org/10.1109/SP40000.2020.00011
http://dx.doi.org/10.1145/3447852.3458721
http://dx.doi.org/10.1145/3447852.3458721
http://dx.doi.org/10.1109/MM.2019.2897677

80 Bibliography

[50] Andreas Hülsing, Matthias Meijers, and Pierre-Yves Strub. Formal Verification of Saber’s
Public-Key Encryption Scheme in EasyCrypt. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology – CRYPTO 2022, pages 622–653, Cham, 2022. Springer
Nature Switzerland. ISBN: 978-3-031-15802-5.

[51] Rémi Hutin. Compilation vérifiée et sécurisée contre les canaux cachés temporels. PhD
thesis, École normale supérieure de Rennes, 12 2021.

[52] Intel. Retpoline: A Branch Target Injection Mitigation. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-guidance/technical-
documentation/retpoline-branch-target-injection-mitigation.html, . (Accessed on
20/04/2023).

[53] Intel. Speculative Store Bypass / CVE-2018-3639 / INTEL-SA-00115. https:
//www.intel.com/content/www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/speculative-store-bypass.html, . (Accessed on 06/03/2023).

[54] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. When Constant-
Time Source Yields Variable-Time Binary: Exploiting Curve25519-donna Built with MSVC
2015. In Sara Foresti and Giuseppe Persiano, editors, Cryptology and Network Security,
pages 573–582, Cham, 2016. Springer International Publishing. ISBN: 978-3-319-48965-0.

[55] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209,
January 1987.

[56] Neal Koblitz and Alfred Menezes. Critical Perspectives on Provable Security: Fifteen
Years of "Another Look" Papers. Cryptology ePrint Archive, Paper 2019/1336, 2019.
https://eprint.iacr.org/2019/1336. doi:10.3934/amc.2019034.

[57] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler. https://www.paulkocher.
com/doc/MicrosoftCompilerSpectreMitigation.html. (Accessed on 27/03/2023).

[58] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre Attacks: Exploiting Speculative Execution. In 2019 IEEE Symposium on
Security and Privacy (S&P), pages 1–19, 2019. doi:10.1109/SP.2019.00002.

[59] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

[60] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-
Ghazaleh. Spectre Returns! Speculation Attacks using the Return Stack Buffer. In 12th
USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, August 2018.
USENIX Association.

[61] Xavier Leroy. Formal Certification of a Compiler Back-End or: Programming a Compiler with
a Proof Assistant. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium

https://tel.archives-ouvertes.fr/tel-03616445/document
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
http://dx.doi.org/10.3934/amc.2019034
http://dx.doi.org/10.3934/amc.2019034
https://eprint.iacr.org/2019/1336
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://dx.doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/woot18/presentation/koruyeh
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1145/1111037.1111042

Bibliography 81

on Principles of Programming Languages, POPL ’06, page 4254, New York, NY, USA, 2006.
Association for Computing Machinery. ISBN: 1595930272. doi:10.1145/1111037.1111042.

[62] Congmiao Li and Jean-Luc Gaudiot. Online Detection of Spectre Attacks Using
Microarchitectural Traces from Performance Counters. In 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), pages 25–28,
2018. doi:10.1109/CAHPC.2018.8645918.

[63] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Conditional Speculation:
An Effective Approach to Safeguard Out-of-Order Execution Against Spectre Attacks. In
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 264–276, 2019. doi:10.1109/HPCA.2019.00043.

[64] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[65] Giorgi Maisuradze and Christian Rossow. Ret2spec: Speculative Execution Using Return
Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 21092122, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN: 9781450356930. doi:10.1145/3243734.3243761.

[66] Paulo Sérgio Alves Martins. Public-key Cryptography on SIMD Mobile Devices. Master’s
thesis, Instituto Superior Técnico, 2014.

[67] Pedro Maat C. Massolino, Joost Renes, and Lejla Batina. Implementing Complete Formulas
on Weierstrass Curves in Hardware. Cryptology ePrint Archive, Paper 2016/1133, 2016.
https://eprint.iacr.org/2016/1133.

[68] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams, editor,
Advances in Cryptology — CRYPTO ’85 Proceedings, pages 417–426, Berlin, Heidelberg,
1986. Springer Berlin Heidelberg. ISBN: 978-3-540-39799-1.

[69] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck, Daniel
Genkin, Daniel Gruss, Frank Piessens, Berk Sunar, and Yuval Yarom. Fallout: Reading
Kernel Writes From User Space, 2019.

[70] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48:243–264, 1987.

[71] Nicky Mouha and Christopher Celi. A Vulnerability in Implementations of SHA-3, SHAKE,
EdDSA, and Other NIST-Approved Algorithms. Cryptology ePrint Archive, Paper 2023/331,
2023. https://eprint.iacr.org/2023/331.

[72] National Institute of Standards and Technology (NIST). Post-quantum cryp-
tography. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

http://dx.doi.org/10.1109/CAHPC.2018.8645918
http://dx.doi.org/10.1109/CAHPC.2018.8645918
http://dx.doi.org/10.1109/HPCA.2019.00043
http://dx.doi.org/10.1109/HPCA.2019.00043
http://dx.doi.org/10.1145/3243734.3243761
http://dx.doi.org/10.1145/3243734.3243761
https://eprint.iacr.org/2016/1133
https://eprint.iacr.org/2016/1133
https://eprint.iacr.org/2016/1133
http://arxiv.org/abs/1905.12701
http://arxiv.org/abs/1905.12701
https://eprint.iacr.org/2023/331
https://eprint.iacr.org/2023/331
https://eprint.iacr.org/2023/331
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

82 Bibliography

cryptography-standardization/evaluation-criteria/security-(evaluation-criteria). (Accessed
on 10/04/2023).

[73] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz: Bringing
Spectre-type vulnerabilities to the surface. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1481–1498. USENIX Association, August 2020. ISBN: 978-1-939133-17-5.

[74] Tiago Oliveira. High-speed and High-assurance Cryptographic Software. PhD thesis,
Faculdade de Ciências da Universidade do Porto, 2022.

[75] Zhixin Pan and Prabhat Mishra. Automated Detection of Spectre and Meltdown Attacks Us-
ing Explainable Machine Learning. In 2021 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pages 24–34, 2021. doi:10.1109/HOST49136.2021.9702278.

[76] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan.
Formally Verified Cryptographic Web Applications in WebAssembly. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1256–1274, 2019. doi:10.1109/SP.2019.00064.

[77] Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for prime order
elliptic curves. Cryptology ePrint Archive, Paper 2015/1060, 2015. https://eprint.iacr.org/
2015/1060.

[78] Peter Schwabe. Presentation. Slide Presentation, December 2022.

[79] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary Data Sampling. In
CCS, 2019.

[80] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. Netspectre:
Read arbitrary memory over network. In Computer Security–ESORICS 2019: 24th European
Symposium on Research in Computer Security, Luxembourg, September 23–27, 2019,
Proceedings, Part I 24, pages 279–299. Springer, 2019.

[81] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi
Sim, and Yuval Yarom. Spectre Declassified: Reading from the Right Place at the Wrong
Time. Cryptology ePrint Archive, Paper 2022/426, 2022. https://eprint.iacr.org/2022/426.

[82] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte,
Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean. Typing High-
Speed Cryptography against Spectre v1. Cryptology ePrint Archive, Paper 2022/1270, 2022.
https://eprint.iacr.org/2022/1270.

[83] Laurent Simon, David Chisnall, and Ross Anderson. What You Get is What You C:
Controlling Side Effects in Mainstream C Compilers. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 1–15, 2018. doi:10.1109/EuroSP.2018.00009.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://hdl.handle.net/10216/144015
http://dx.doi.org/10.1109/HOST49136.2021.9702278
http://dx.doi.org/10.1109/HOST49136.2021.9702278
http://dx.doi.org/10.1109/SP.2019.00064
https://eprint.iacr.org/2015/1060
https://eprint.iacr.org/2015/1060
https://eprint.iacr.org/2015/1060
https://eprint.iacr.org/2015/1060
https://events.btq.li/Formosa_crypto_Peter_Schwabe.pdf
https://eprint.iacr.org/2022/426
https://eprint.iacr.org/2022/426
https://eprint.iacr.org/2022/426
https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270
http://dx.doi.org/10.1109/EuroSP.2018.00009
http://dx.doi.org/10.1109/EuroSP.2018.00009

Bibliography 83

[84] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory. In
2013 IEEE Symposium on Security and Privacy, pages 48–62, 2013. doi:10.1109/SP.2013.13.

[85] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 395410, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN: 9781450362405. doi:10.1145/3297858.3304060.

[86] The Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr/. (Accessed on
18/04/2023).

[87] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptol., 23(1):3771, jan 2010. ISSN: 0933-2790.

[88] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order execution. In
Proceedings of the 27th USENIX Security Symposium. USENIX Association, August 2018.

[89] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue In-Flight Data
Load. In 2019 IEEE Symposium on Security and Privacy (SP), pages 88–105, 2019.
doi:10.1109/SP.2019.00087.

[90] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan
Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. Automatically Eliminating Speculative
Leaks from Cryptographic Code with Blade. Proc. ACM Program. Lang., 5(POPL), jan
2021. doi:10.1145/3434330.

[91] Jack Wampler, Ian Martiny, and Eric Wustrow. ExSpectre: Hiding Malware in Speculative
Execution. In NDSS, 2019.

[92] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Ab-
hik Roychoudhury. oo7: Low-overhead defense against spectre attacks via pro-
gram analysis. IEEE Transactions on Software Engineering, 47(11):2504–2519, 2021.
doi:10.1109/TSE.2019.2953709.

[93] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography, Second
Edition. Chapman & Hall/CRC, 2 edition, 2008. ISBN: 9781420071467.

[94] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution Attacks and Their Mitigations.
ACM Comput. Surv., 54(3), may 2021. ISSN: 0360-0300. doi:10.1145/3442479.

[95] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher Fletcher, and
Josep Torrellas. InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 428–441, 2018. doi:10.1109/MICRO.2018.00042.

http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1145/3297858.3304060
http://dx.doi.org/10.1145/3297858.3304060
https://coq.inria.fr/
http://dx.doi.org/10.1109/SP.2019.00087
http://dx.doi.org/10.1109/SP.2019.00087
http://dx.doi.org/10.1145/3434330
http://dx.doi.org/10.1145/3434330
http://dx.doi.org/10.1109/TSE.2019.2953709
http://dx.doi.org/10.1109/TSE.2019.2953709
http://dx.doi.org/10.1145/3442479
http://dx.doi.org/10.1109/MICRO.2018.00042

84 Bibliography

[96] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using the
FLUSH+RELOAD Cache Side-channel Attack. Cryptology ePrint Archive, Paper 2014/140,
2014. https://eprint.iacr.org/2014/140.

[97] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christo-
pher W. Fletcher. Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, page 954968, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN: 9781450369381. doi:10.1145/3352460.3358274.

[98] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and Yuval
Yarom. Ultimate SLH: Taking Speculative Load Hardening to the Next Level. Cryptology
ePrint Archive, Paper 2022/715, 2022. https://eprint.iacr.org/2022/715.

https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
http://dx.doi.org/10.1145/3352460.3358274
http://dx.doi.org/10.1145/3352460.3358274
https://eprint.iacr.org/2022/715
https://eprint.iacr.org/2022/715

	List of Tables
	List of Figures
	Listings
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Objectives & Contribution
	1.3 Structure of the Dissertation

	2 Background
	2.1 Side-Channel Attacks
	2.2 Speculative Execution Attacks
	2.2.1 Attack Taxonomy
	2.2.2 Attack Detection & Countermeasures

	2.3 Computer Aided Cryptography
	2.3.1 Type Systems
	2.3.2 Proof Assistants Machine-Checked Proofs
	2.3.3 Verified Compilation

	2.4 Elliptic Curve Cryptography

	3 Jasmin
	3.1 The Jasmin Language
	3.2 Verification Toolchain
	3.3 Speculative Constant-Time Type System

	4 Implementation and Experimental Results
	4.1 Source Code Modifications
	4.2 Elliptic Curve Arithmetic
	4.3 Performance Evaluation

	5 Conclusion & Future Work
	5.1 Limitations & Future Work

	A Jasmin Source Code
	Bibliography

