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Abstract

This dissertation addresses the domain of hardware security, more precisely, the implementation
of Physical Unclonable Functions (PUFs) in Integrated Circuits (ICs) as an alternative to current
hardware security practices.

We begin our study by exploring existing PUF concepts and how they are implemented into
practice. Subsequently, we will implement and test an Arbiter PUF out of the analyzed designs
using advanced CMOS technology.

Afterward, diverse performance metrics are applied to the PUF to evaluate our chosen archi-
tecture’s performance. Through the obtained results, we try to infer whether a PUF’s functionality
is or is not affected by the scaling down of advanced CMOS technologies.
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Chapter 1

Introduction

1.1 Context

Over the past decades, humanity has witnessed our modern world’s astonishing technological mo-

mentum. The state-of-the-art technology today usually needs to be updated within a few years.

Humanity has never been capable of creating and developing new technologies at such rates. Elec-

tronic devices are leading our technological evolution. These devices, born from the constant de-

velopment of electronics, have transformed how we learn, work, and communicate—creating a

new world where reliance on them is not just a choice but a natural progression of our modern

existence.

At the forefront of this technological wonder, we have the ICs, a foundational component

of the devices we have grown accustomed to using. With the remarkable growth in the number

of transistors, surpassing even billions, the design of secure systems has become more complex.

Verifying that these intricate systems perform their intended functions precisely—without devia-

tion—has become indispensable. However, with the intricate nature of contemporary designs and

the multitude of interactions between various on-chip components, ensuring the security of ICs

presents itself as a highly challenging task [1]. Albeit challenging, we should recall how impor-

tant it is, as, in the end, these devices store not only our personal information but also proprietary

data, making them a lucrative and appetizing target for hackers’ attacks [2].

So, as ICs continue to underpin our digital world, assuring the trustworthiness of the electronic

systems they support becomes a critical endeavor [1]. From this premise, security can be defined

as a means to enable trust [3]. And security relies on cryptography to protect sensitive informa-

tion. Cryptography can be defined as the methods and procedures used to construct protocols and

algorithms to achieve information security [3]. Therefore, cryptographic primitives become vital

and the cornerstone that provides the foundation for executing algorithms and/or exchanging in-

formation securely, generating and storing secrets, and safeguarding data within these devices [3].

These cryptographic primitives shall uphold the following [3]:

• Data confidentiality: keeping information secret from unauthorized parties;
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2 Introduction

• Entity authentication: obtaining proof of the identity and the presence of the entity one is

interacting with;

• Data integrity and authentication: aimed at preventing and detecting unauthorized alteration

of data (integrity) and ensuring the origin of the data (authentication);

As society transforms into a digital information ecosystem and our dependence on digital

information processing and communication systems escalates, implementing robust cryptographic

primitives becomes paramount to fostering trust in this new paradigm [3][1].

A cryptographic primitive can be defined as a low-level algorithm with a security-specific

function. These algorithms form the building blocks of a secure system, hence their careful design

and rigorous checking. The more commonly used primitives are [1]:

• Symmetric ciphers: a deterministic algorithm that converts a stream of unencrypted data

(aka plaintext) into a ciphertext, the latter in an illegible format hiding its information. A

secret key, only known to authorized parties, is used to encrypt and decrypt.

• Asymmetric ciphers: unlike the previous, they do not use the same key for encryption and

decryption. Instead, each user has a public key that can be widely available and a private

key only known to them. Its security relies on solving prohibitively complex mathematical

problems (e.g., computing discrete logarithms) without access to further information (i.e.,

the private key).

• One-way Hash Functions: this primitive maps arbitrary length inputs to a short fixed-length

output (digest). One example of said primitive is HMAC (Hash-based Message Authentica-

tion Code).

• Random Number Generators: mainly used to generate a nonce (an arbitrary number used

only once). The nonce is then employed as an initialization vector for encryption algorithms

and authentication protocols to prevent replay attacks.

When conceiving cryptographic primitives, a typical design principle is to streamline security

objectives by reducing them to the confidentiality of a single parameter - the key. The degree of

protection is determined by the effort required to break it without knowledge of the said key. This

should be an exponential function of the key’s bit length [3].

These keyed primitives are often compared to a "black box" where their users and outsiders only

see an input-output relation instead of seeing the box’s internal workings. For the majority of

them, we assume their capability to [3]:

• Secure key generation: to generate, for every instantiation of the primitive, a secure (ran-

dom, unique, and unpredictable) key;

• Secure key storage: the key can be assigned to, stored, and retrieved by the instantiation

without being revealed;
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• Secure execution: the instantiation can execute the cryptographic algorithm without reveal-

ing any information about the key or about internal results and without an outsider being

able to influence the internal execution in any possible way;

Although convenient and logical, these assumptions are difficult to attain in practice, requiring

physical measures to implement them. Information security objectives are reduced to physical

security requirements and their given implementations. However, these are still vulnerable to

malicious attacks [3].

Lenstra et al. [4] showed how a shortage in randomness within a large collected set of actually

used public keys could jeopardize secure key generation. Torrance and James [5], and Herder et

al. [6] note how critical non-volatile digital memories on a silicon chip can still be vulnerable and

endanger secure key storage. Not even the secure execution assumption can be relied upon as

side-channel attacks, which abuse the fact that all actions on a digital platform leak information

about their execution through so-called side channels, e.g., through their power consumption [7],

become more pervasive.

Given this new paradigm of distributed devices and the computing flow of sensitive data they

create, it becomes evident how the search for improved device security should be thorough and

pay attention to both software and hardware security. Software security is a widely discussed and

understandable topic for a greater audience. However, the same can not be said about hardware

security. It then becomes interesting to categorize the various attacks these devices could face

nowadays. To do so, we will follow the classification proposed by Halak [1]. By doing so, we can

classify them into three categories. These being:

• Communication Attacks: the unauthorized access of a communication channel by an eaves-

dropping adversary, allowing him to steal sensitive information or maliciously manipulate

the transmitted data;

• Software Attacks: aimed to maliciously modify the software running on a computing device

to install malware and/or cause a system malfunction;

• Hardware Attacks: aimed to maliciously modify or tamper with the physical implementation

of a computing device;

Out of the three, and noting the previously referred need for physical measures and their lia-

bilities, we will focus on Hardware Attacks. These generally require direct access to the hardware

or its design files and can occur at any time during the life cycle of the computing device. Conse-

quently, they can be classified into two further categories [1]:

• (a) Attacks during design and fabrication: usually these occur either through Trojan inser-

tion, where extra circuitry with malicious functionality is added to the design [8][9], or,

due to IC counterfeiting [10][11], where a malicious fabrication facility produces more than

required, subsequently selling the exceed in the black market;
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• (b) Post-fabrication attacks: also known as Physical attacks, occur after the device is put

into operation. They can be further classified into three categories:

b1) Invasive attacks: that procure access to the internal structure of the integrated

circuits, e.g., to reverse engineer and steal the intellectual property (IP) of a design;

b2) Non-invasive attacks: where the adversary interacts with the hardware externally.

One such example could be through a side-channel analysis where an attacker analyses

the correlation between leakage current and the input patterns trying to infer the secret

key [12];

b3) Semi-invasive attacks: which require access to the surface of a device but not its

internal logic. E.g., optical fault injection, where illuminating a device could cause

some of its transistors to conduct current, which may trigger an error [13];

Despite typically requiring more resources and knowledge to wage, making them less frequent

than communication or software attacks, the cost of protecting electronic systems against such

attacks is high. However, having found this necessity, the urge to develop new and better primitives

that, solely based on physical reasoning, can be trusted to resist physical attacks, consequently

providing physical security, creates a search for what Maes calls physical roots of trust [3]. These

are defined as trusted primitives rooted in the actual physical world. To truly understand what

qualifies as a physical root of trust, consider using human fingerprints as an example and how they

are used as a form of authentication. Possible candidates for physical roots of trust could be [3]:

• True Random Number Generators (TRNGs): hardware devices capable of generating ran-

dom numbers based on physical sources of randomness, as a result, trusted to produce highly

random keys for cryptographic purposes [14];

• Security-aware design styles: specific designs for digital silicon circuits have been devel-

oped which try to minimize, ideally eliminate, the feasibility of certain side-channel at-

tacks [15];

• Physically Unclonable Functions: capable of producing unpredictable and instance-specific

values usable for physically secure key generation and storage [16][17];

It is from within this need for physical roots of trust that PUFs have emerged as a possible

solution in the search for better primitives ensuring to protect devices against physical attacks,

counterfeiting, or cloning attempts [1].

These security primitives translate an input challenge into an output response through a phys-

ical system in a unique and unclonable way specific to the hardware instance [18]. They do so by

attempting to harness the variability in the manufacturing process and its consequent implications

on a chip, e.g., gate delay [18][3][1]. By deriving their cryptographic secret from these charac-

teristics, a unique silicon "fingerprint" [3][1], almost impossible to replicate even though a man-

ufacturer might have access to the chip’s design [6], is created. Hence, the information retrieved
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originates from within the system’s physical characteristics rather than an attached memory [18],

likely to be targeted [6]. Combined with appropriate processing algorithms [3], the system can

authenticate any object or device connected to it or embedded within it [18][3][19]. It can also

generate and store secrets securely [3]. This concept has become an object of study, development,

and attempted use in multiple different applications [18].

1.2 Motivation

In the previous section, we underscored the critical importance of security in our interconnected

world of devices. As we lean further toward connected systems and electronic devices, so does

the urgency to safeguard their defenses against an ever-evolving landscape of threats.

The multifaceted nature of chip development means that to develop a new chip, companies

can either produce or outsource IP designs, integrate them with their in-house systems, send the

blueprints to a third-party foundry for fabrication, and test them, usually at another third-party fa-

cility. This multinational distributed production chain raises the opportunities for potential adver-

saries to tamper with designs, compromising them and/or implanting malicious functionalities [1].

One such example is the previously mentioned hardware Trojans [9], which can be used, for

example, to leak information by creating parasitic antennas [1]. The Internet of Things (IoT) boom

connected, and promises to connect, many more devices to the Internet [20]. This availability

makes it easier for an attacker to perform a physical attack, consequently extracting sensitive

data, injecting a fault, or reverse engineering its design [21]. This phenomenon is particularly

challenging given the constrained resources of these devices, making traditional cryptographic

methods impractical [22]. Moreover, we have also seen an increased use of what we can call secure

hardware tokens, e.g., smart cards and staff cards. Cryptographic operations have increasingly

relied on these tokens for security-sensitive applications in recent years, for example, through the

implementation of electronic identity systems for tasks like paying taxes or managing retirement

funds, such as "ID-porten" and "Telia ID" in Norway and Sweden, respectively [1]. Another

usage is the secure hardware tokens some financial institutions offer their clients to confirm their

identities and/or generate a digital signature to confirm the details of a transaction, enhancing the

security of online banking beyond the usual login/password. [23][24][1].

To address these complexities and vulnerabilities, it is necessary to implement robust and

strategic hardware security measures, thus strengthening the integrity, trustworthiness, and re-

silience of our technologically interconnected world.

Key-based cryptography systems have traditionally been used to protect IP and licensing appli-

cations [2]. However, saving keys using nonvolatile electrically erasable programmable read-only

memory (EEPROM) or battery-backed static random-access memory (SRAM) is expensive. In

terms of both design space and power usage [6]. Additionally, such nonvolatile memories, used to

store and manage keys, are often vulnerable to invasive attack mechanisms and tampering [25][6].

Protection against these attacks requires active tamper detection/prevention circuitry, which must

be continually powered. However, due to the diversity of attacks, the design of fully tamper-proof
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ICs is a challenge and an inevitable overhead regarding performance, area, and power. Their high

cost is yet another factor making them unappealing for commercial purposes. [2][6][11].

The quest for improved and feasible alternative solutions drove the academic and industrial

communities alike. Such solutions should be [2]:

• Simpler than traditional cryptographic methods;

• Cost-effective;

• Inherently random (without a definite mathematical model);

• Intrinsically tamper-resistant;

• Easily implemented on resource-constrained platforms;

• Difficult to duplicate and reverse;

We are all aware that the fabrication processes of physical objects usually have some limita-

tions. Attaining accurate control of the devices being manufactured is a task that poses difficulties,

leading to slight variations in the dimensions of the resulting products. This holds especially true

when it comes to the production of semiconductor devices in advanced technology nodes (be-

low 90nm) [26][27][28]. Given these intrinsic process variations, the transistors devices’ length,

width, oxide thicknesses, and doping levels may vary. Despite using the same mask and going

through the same manufacturing process, each IC is unique and different from others due to nor-

mal manufacturing variability. So, the electrical characteristics of a transistor may differ slightly

when fabricated on different devices [1][6].

The exquisite solution that could potentially fulfill those prerequisites appeared always to have

been right there, the process variation in IC fabrication [19][29][30].

PUFs exploit these inherent process variations to create a unique hardware device identifier.

Therefore, their usage as a basic building block within the construction of security protocols and

the design of secure systems presents itself as a viable and logical solution. As such, they could

be applied in [1]:

• Secure key generation and storage: PUFs provide a different approach for key generation

and storage. Usually, for encryption and authentication, most cryptographic algorithms re-

quire a pre-installed key, which acts as the root of trust. As stated, these tend to be vulnerable

when stored in the device’s memory. By utilizing a PUF’s response to construct a root key,

the need for storing the key in memory is removed, and better protection is provided [31];

• Low-cost authentication: Combining their relatively simpler, cheaper, and more energy-

efficient architectures with their unique input/output response behavior, PUFs become an

attractive choice for low-cost authentication schemes, especially for recourse-constrained

systems such as IoT devices [22];
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• Anti-counterfeiting design: Malicious factories can be prevented from overproducing ICs by

embedding each chip with a PUF circuit that securely locks the design. After fabrication, the

designer characterizes and authenticates each PUF’s behavior, allowing the latter to generate

a passkey to activate only authenticated chips [32];

• Secure hardware tokens: Once again, thanks to their complex input/output response behav-

ior and their increased tamper-resistant, especially when compared to reliant on digitally

stored information tokens (e.g.smart cards), PUFs can be used in hardware-assisted crypto-

graphic protocols [33];

• Secure remote sensing: PUFs, like other circuits, tend to be susceptible to changes in en-

vironmental factors, such as temperature or power supply voltage. Consequently, their re-

sponse depends not only on the applied inputs but also on these environmental factors. To

accurately measure environmental changes with PUF sensors, firstly, it is crucial to under-

stand how their responses correlate with said environmental factors. Only then is the sensor

ready to deploy. Therefore, PUF implementation eliminates the need for extra encryption,

making a remote sensing system cost-effective and secure [34];

Considering their aforementioned characteristics and potential applications, we find it inter-

esting to further evaluate them, particularly in advanced CMOS technology.

1.3 Objectives

Having encompassed this work in a larger context and defined its motivation, the following section

will present the main objectives to accomplish during its elaboration.

Focusing on digital circuits, first, we pretend to evaluate a state-of-the-art PUF implemented

at the layout level in an advanced CMOS technology. Its evaluation shall be performed according

to the following criteria:

• Standard area;

• Time;

• Power;

• Robustness;

• Temperature dependency;

• Inter-die variability;

• Inter-wafer variability;

Smaller CMOS technologies raise the variability within the fabrication process; therefore, it

is crucial to understand how this impacts the functionality and applicability of a PUF. If possible,
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an evaluation of the relationship between the implemented PUF and the technology used shall be

conducted.

1.4 Methodology

To accomplish the proposed objectives, the following methodology shall be applied:

1. Create a State-of-the-Art about this topic, thus allowing familiarization with the theme and

acquiring knowledge on the most frequent and modern PUF implementations;

2. Choose a suitable CMOS technology and design flow for the chosen PUFs;

3. Evaluate their performance according to previously defined criteria;

4. Document the results obtained;

1.5 Document structure

This first chapter briefly introduces the reader to the theme and presents its scientific context,

explaining the motivation and objectives of the work to be developed.

Following into Chapter 2, we expand on our knowledge of PUFs, presenting them in greater

detail. What exactly is a PUF, how it works, and their most common architectures were questions

we aimed to answer.

In Chapter 3, we present the chosen architecture to design, justify its choice and the results of

its evaluation.

Finally, we conclude with Chapter 4, where the main contributions of the developed work are

presented along with suggestions for further improvements.



Chapter 2

State of the art

This chapter highlights the significant findings from previous research to build a solid basis for

this dissertation’s upcoming exploration and analysis. As such, these shall be the starting point for

developing the work.

2.1 Unique Objects

Authentication has always played a crucial role in the transmission of reliable information, from

the historical use of sealing wax and other methods to the realization expressed by Landauer that

"Information is physical" [35], the need for reliable authentication has endured. As such, and

continuing with the example of wax stamps, this notion of harnessing a physical object’s intrinsic

and hard-to-replicate irregularities is far from novel, even if its formal nomenclature was yet to

emerge.

Embodying the age-old pursuit of information authentication through the integration of phys-

ical attributes, two prominent categories of disorder-based security systems can be considered:

Unique Objects (UNOs) and PUFs [36].

A Unique Object is a physical system that exhibits a small set of unique analog properties upon

measurement by an external apparatus. This system and its properties shall have the following

characteristics [36]:

• Disorder: These properties, and the "fingerprint" they create, should be based on the unique

physical disorder of the object;

• Operability: This "fingerprint" measurement shall be cost- and time-effective. It also should

be stable over time, robust to aging, environmental conditions, and repeated measures;

• Unclonability: To produce another object with the same unique analog properties, thus

creating an equal "fingerprint" when queried by the measurement device, should be pro-

hibitively costly or impractical (even for the manufacturer). Although part of the system,

the measurement device is not required to be unclonable. It can be mass-produced, and

9
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for different measuring devices under the same conditions, the UNO’s "fingerprint" should

remain the same;

An example of the usage of UNOs occurred during the Cold War. Considering that each

speckle pattern would be unique, a thin, random layer of light-scattering particles was sprayed

onto nuclear missiles. It was then illuminated from different angles, and a certified inspector

captured the interference patterns. Upon future inspections, these patterns would be measured

again and compared to the previously recorded ones [36].

Despite being outside the scope of this work, given our focus on what the literature tends

to call silicon PUFs [16], we considered this mention of UNOs interesting given their usage of

concepts familiar to PUFs such as uniqueness, physical disorder, and unclonability. One could

point out three common metrics typically applied to categorize the uniqueness and robustness of

both PUF responses and UNO fingerprints, namely entropy, intra and inter-distances [36]. A brief

explanation of each of them is given in the following subsections: 2.1.1, 2.1.2, and 2.1.3.

2.1.1 Entropy

For these applications, the entropy is determined by the total count of distinct identifications pro-

duced by the device architecture [36].

2.1.2 Intra-distance

Also known as intra-chip or intra-die of a PUF response, it is given by a random variable that

describes the distance between two responses from the same PUF instance and the same challenge.

So, taking two evaluations Ri(c) and R′
i(c) of the same PUF instance, i, and the same challenge, c,

let dist[. , .] be any distance metric over the response set R. The intra-distance of a PUF i is given

by Equation 2.1 [37]:

Intra−distance ≜ HD[Ri(c),R′
i(c)] (2.1)

Figure 2.1, taken from [37], gives us a visual representation of intra-distance. In it, we can

see how the same challenge, c, is evaluated by the same PUF instance, PUFi, at two different

moments, originating two different responses, Ri(c), and R′
i(c). These responses would likely

consist of a bit string in an actual application. As such, while comparing two binary strings of

equal length, the Hamming distance (HD) is the number of bit positions in which the two bits

are different [38]. Given a range from [0,1], an Intra− distancei close to "zero" means the PUF

is highly reliable. Oppositely, a result closer to "one" means the PUF is the least reliable. For

example, the intra-distance between two responses generated from the same challenge with the

same PUF instance under the same environmental condition should be smaller (ideally zero) than

the intra-distance between the same responses generated under two different conditions. This

denotes PUFs’ susceptibility to the environment they operate in and its variations, e.g., in supply

voltage or temperature. An ideal PUF should have a small intra-distance [37].
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Figure 2.1: Intra-distance of the same PUF instance [37]

2.1.3 Inter-distance

Also known as inter-chip or inter-die of a PUF response, it is given by a random variable that

describes the distance between two responses, Ri(c), and R j(c), generated by two different PUF

instances (with the same architecture), PUFi, and PUFj, for the same challenge c. Once again,

HD is used as a distance metric, as the inter-distance for a given PUF is measured through Ri(c),

and R j(c), as described by Equation 2.2 [37]:

Inter−distanceR(c) ≜ HD[Ri(c),R j(c)] (2.2)

Figure 2.2, taken from [37], gives us a visual representation of this metric. In it, we can see

how the same challenge, c, is evaluated by two distinct instances, PUFi, and PUFj, originating

Ri(c), and R j(c).

Again, for a range of [0,1], if Equation 2.2 results in a value closer to "zero", it means the

PUF is less unique. Conversely, a value closer to "one" means the PUF is highly unique. It is

important to note that this metric is also prone to variations in environmental conditions. An ideal

PUF should have a sizeable inter-device distance [37].

Figure 2.2: Inter-distance for two different PUF instances [37]

2.2 Security Landscape

In sections 1.1 and 1.2, we briefly introduced the reader to some concepts within the domain

of Hardware Security (HS). This section presents these concepts more broadly without delving

deeply into them, as a rigorous survey of them is not the goal of this work. However, it is essential

to encompass PUFs as a possible solution within this security landscape.
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Hardware is commonly seen as a trusted party supporting the computer system while running

instructions from the software layer. As a result, hardware-based security is often referred to as

hardware implementations of cryptographic algorithms where hardware is utilized to enhance the

performance and efficiency of cryptographic applications [39].

For a long time, the IC supply chain was thought to be well-protected behind the barriers of

expert knowledge and high cost, so attackers could not easily compromise the fabricated chips.

However, as mentioned in section 1.2, the IC supply chain has become global due to the high cost

of cutting-edge foundries and the increasing design complexity of modern systems. In line with

this trend, third-party fabrication services and IP usage prevailed in contemporary circuit design

and fabrication. This might alleviate the workload, lower the fabrication cost, and reduce time-to-

market, but it also invalidates the idea of a well-protected supply chain [39][40][41][21][1].

2.2.1 Hardware Trojans

At first, HS was mainly concerned with discovering and containing Hardware Trojans (HTs).

Compared to their software counterparts, they are more dangerous as updating the firmware can-

not easily remove them. HTs, potentially inserted at any phase of the IC design, have a malicious

design to alter or add circuit elements, which can result in changes to functionality, reduced re-

liability, or information leaks. Their insertion can occur at the register transfer level (RTL) or

through dopant manipulation, while their design depends on the attacker’s goals and available re-

sources. They consist of two parts: trigger and payload. The trigger, acting like a sensing circuitry,

activates it to perform a specific task while the payload carries out malicious actions. A Trojan

can be triggered to carry out a specific task or be always on. Always on HTs solely contain a

payload [21][39][40][41].

As shown in Figure 2.3 [21], HTs are a vast theme in itself. With this being said, it becomes

clear that PUFs are not the miraculous solution to prevent or detect them. However, given their

capabilities for authentication, it becomes an exciting vector for further research.

2.2.2 Counterfeiting

The challenges for HS are only increased due to the nature of this multinational and distributed

supply chain and the reliance on, sometimes untrusted, third parties. This creates opportunities for

attackers to counterfeit, clone, overproduce, or reverse engineer a given IP core or the entire IC

design, ensuring an illegal revenue of billions of dollars [39][41][42]. Both [42] and [43] define

counterfeited as an umbrella encompassing the concepts naming this subsection. However, we

believe each concept has a very tangible and unique definition, hence our separation.

In IP/IC counterfeiting, attackers create counterfeit versions of original designs and sell them

under a genuine supplier’s brand name [41]. In [43], the author mentions the recycling and resale

of discarded chips as new ICs, labeling them as counterfeit. Labels aside, a standard solution

is on-chip aging sensors, namely ring oscillators (ROs), anti-fuse memory, and fuse memory.
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Figure 2.3: A taxonomy of Hardware Trojans [21]

Another proposed solution is a secure, distributed, and tamper-proof database, e.g., blockchain,

which allows for the verification of whether an IC has been sold more than once [39][43].

ROs used as aging sensors tend to be isolated from the rest of the IC’s components, making

them an ideal target for either modifications or, in some cases, removal. Although tamper-resistant,

as they are written only once and cannot be deleted, the usage of anti-fuse memory is limited due

to large area requirements and the needed match between the frequency of its write operations

versus the maximum number of planned write operations, as the IC cannot be turned off before

the next memory write function. Fuse memory, albeit extremely compact, is also susceptible to

manipulations. Lastly, to provide each chip with a unique ID, we rely on manufacturing process

variation [43]. Having presented all these vulnerabilities, it becomes clear how the introduction of

a PUF could help to improve or even allow some of the previously shown solutions [32].

Watermarking and hardware metering are two other commonly used techniques to prevent

counterfeiting. Watermarking consists of a hidden signature embedded at design time, checked

against its intended attributes for authenticity verification. These watermarks will identify a given

design, not individual IC instances, hence, useful for tracking stolen design IPs in the supply

chain [32][44].

Hardware metering enables post-fabrication tracking of ICs to differentiate genuine hardware

from counterfeits through tools, methodologies, and protocols. It can be either passive or active.

Passive identification refers to the specific recognition of ICs based on their function or unique

identifiers. These identified ICs can be cross-checked against a pre-existing database to detect any

unregistered or overbuilt ICs (in case of collisions at the database). Active metering empowers

designers and/or IP rights owners to access, lock (disable), or unlock (enable) particular aspects of

the chip’s functionality through advanced design knowledge not shared with the foundry, besides

the ability to distinctly identify ICs [32][44].

Metering can be further classified into intrinsic or extrinsic. Intrinsic uses process variation to
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create unique fingerprints based on existing device properties or side channels, such as delay and

power. These methods are inherently passive. Extrinsic uses extra hardware or software to create a

unique ID for each device. There are passive and active methods for this. Once identified by hard-

ware metering techniques, the foundry or other reliable sources can be contacted to obtain more

information about the IC [44][32]. Again, establishing a connection between these techniques and

using PUFs for their implementation and/or improvement is almost natural.

2.2.3 Cloning

In the semiconductor industry, cloning involves attackers creating cloned versions of original IP-

s/ICs under their labels. These are not only a liability for the original creator’s revenue and rep-

utation but may lead to the integration of fake IPs/ICs in electronic systems. This might seem

manageable at first sight, but these can affect the reliability and performance of the systems they

might integrate. Also, they could potentially contain malicious or backdoor logic, which is unde-

sirable, especially in critical systems [41].

2.2.4 Over-production

Over-production refers to the intentional production of excess ICs. After the design is passed on to

the foundry, the designer has limited control over the production process. Therefore, the foundry

could produce the quantity requested or create an excess. To address this issue, a technique called

split manufacturing is employed. This involves dividing the design between trusted and untrusted

foundries so the designer retains complete control over the design data. The design is split into

"front end of line" (FEOL) and "back end of line" (BEOL) components, which are fabricated by

trusted and untrusted foundries, respectively. This technique can also prevent HTs [41][39].

2.2.5 Reverse Engineering

Reverse engineering (RE) toolsets are being improved and used more frequently for circuit and IP

core duplication. A reverse engineering attack aims to uncover the design structure or function-

ality using various forms like RTL, netlist, layout, mask, or a manufactured IC. These attacks, if

successful, could lead to the insertion of backdoors, HTs, or counterfeiting. CMOS camouflaging

is commonly used for safeguarding IP, which entails obfuscation at the layout level. Neverthe-

less, such an approach can result in a substantial performance burden. Other potential solutions

involve design obfuscation and logic encryption, which, although robust given the attacker’s need

to find both netlist and obfuscation keys, negatively impact performance and necessitate a layout

overhaul [41][39].
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2.2.6 Side-channel

HS may also be at risk of side-channel attacks (SCAs). ICs emit signals similar to human heat

signatures during their regular operation. Such unintentional information "leakages" allow attack-

ers to obtain internal signals, typically without physical intrusion, through static or differential

analysis of these side channels. This requires the observation of certain functional or parametric

behaviors at runtime. For example, event timing, power consumption, supply current, electromag-

netic emissions, etc., could be used to leak on-chip secrets. Fault injection attacks are a highly

effective SCA. In these instances, the attacker intentionally induces a fault in the hardware to dis-

rupt its execution, potentially exposing sensitive information, such as key bits. Despite efforts to

optimize design, countering these threats can still significantly impact performance [41][39]. As

previously discussed, PUFs have the potential to mitigate certain security risks. However, safe-

guarding against SCAs poses a challenge, as shown by Tajik et al. [45] who shows how a fault

injection could be used to model a PUF, replicating it successfully.

After conducting a brief survey on the various risks associated with hardware security, we

recognize the critical importance of continuously exploring and developing advanced techniques to

address safety, protection, and authentication issues in hardware devices. HS research is evolving

towards establishing physical roots of trust as a solid foundation for secure systems [39].

2.3 Standard Pratices

Having utilized the previous section 2.2 to present and describe the threats, it is now essential

to understand the current practices regarding safety, protection, and authentication for hardware

devices.

Standard security techniques have traditionally involved placing secret keys in non-volatile

memory (NVM), such as electrically erasable programmable read-only memory (EEPROM) or

battery-backed static random-access memory (SRAM), while bolstering their protection with ad-

ditional hardware cryptographic operations(e.g., secure hash algorithms). Nevertheless, this con-

ventional approach presents some hurdles, including increased area, power consumption, and the

requisite for active tamper detection to thwart invasive attacks against the NVM. These drawbacks

have prompted the exploration of alternative solutions, from where silicon PUFs emerged as a

promising alternative. Their tamper-resistant keys, unique to each instance and produced on de-

mand instead of stored in NVM, offer a unique advantage, as they’re based on nanoscale structural

disorder, assumed impossible to reproduce, even by the original manufacturer. This also means

that any attempt to access or probe the system physically would likely interfere with the entropy

source and change the readout during the subsequent evaluation. Such an anti-tampering feature

also helps to prevent certain SCAs on the PUF’s electronics. So, a PUF can serve as the physical

root of trust, making it a cost-effective and attractive option, particularly for devices with limited

resources [6][21][37][33] [45] [18]. Compared to standard secure digital storage [6]:
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• PUFs are a simpler and easier-to-fabricate solution, translating into a reduction in power

consumption and area compared to EEPROM/SRAM solutions with anti-tamper circuitry;

• To generate a key, the PUF must be powered, so any attempt of a physical attack must

happen while it’s still on;

• The need for continually powered active anti-tamper mechanisms ceases to exist

• Cheaper when compared to expensive NVM;

2.4 The model of a PUF

A model can aid in comprehending how a PUF circuit works. At its core, a PUF is a physical

process that translates external electrical stimuli - termed challenges - into unpredictable, unique,

but repeatable internal reactions, or responses. The said model could be defined as

P : C → R

such that P(c) = r expresses the relationship between a challenge c and its response r, where

c ∈C and r ∈ R. The connection between a challenge and its corresponding response is commonly

known as a Challenge-Response pair (CRP). These pairs are generated by the "function" P(.),

which represents internal manufacturing variability unknown to user and manufacturer alike. As

a result, each CRP is unique and can serve as a distinctive feature to identify and characterize a

specific PUF [6][21][37][46].

While utilizing the mathematical definition of a "function", it comes as no surprise to say that

for a given challenge c, a PUF should always produce the same response r. As helpful as this def-

inition is to perceive their behavior, it is crucial to acknowledge the reasoning for using quotation

marks. As with any IC, environmental conditions impact a PUF’s operation, so for an identical

challenge c, a different response r could be produced, affecting the stability and dependability of

its response. However, it is also worth noting that a change in the CRP is not inherently wrong.

After all, it should ideally change due to process variability when creating a new PUF instance.

Though the new instance will operate similarly, utilizing the same design and blueprints, its in-

ternal components vary during manufacturing, resulting in (ideally) unique responses from each

PUF instance, reinforcing the role CRPs take as the PUF’s fingerprint. Hence, a conclusion can

be drawn on how the security and liability of a PUF rely not only on the difficulty of manufac-

turing two identical chips but also on the difficulty in measuring/estimating the parameters within

P(.) [6][21][33][37][45][46]. Availing this topic, it is essential to address a common misconcep-

tion. When examining the CRPs, one might assume that having more would enhance security.

However, since the number of responses increases proportionally to the number of evaluated chal-

lenges, this linear relationship does not yield a substantial enhancement in safety. To beneficially

increase the CRP space of a PUF and the difficulty of possible cloning, we should increase the
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number of challenge properties involved in the PUF evaluation process. Growing it, e.g., by eval-

uating two unique PUF properties instead of only one, will compound multiplicatively with each

other to produce the output since each permutation of the properties leads to its response, thus

scaling the CRP space polynomially. However, there will be a trade-off since this increases the

difficulty when evaluating the PUF [18].

Figure 2.4 [37] helps us to understand better these three concepts of challenge, response, and

CRP, as well as their interactions within the PUF system. In the upper part of it, we see how P(X),

the inherent process variability of a given PUFX , generates for every challenge CX a response

RX , therefore creating the unique CRP of PUFX , named CRPX . In the middle of Figure 2.4 [37],

it is possible to observe how for each PUF ∈ [1,n[, P(n) ensures that for each unique PUFn,

despite being subjected to the same challenge CX , Rn is unique, hence different from previous and

future responses given by other PUFs. At the bottom, we can see how a given PUFX should obey

the "function" model and, for different challenges, generate different responses. An interesting

alternative to the strict boundaries imposed by this model can be found in [47], where a PUF is

defined as a procedure with input-output functionality rather than a function.

Having defined what a PUF is and how it behaves, one needs to gather some common prop-

erties to distinguish between what is considered a PUF and what is not. These can be described

as [18][37][47]:

• Evaluatable: given P and c, it should be easy and feasible to produce a response r such that

r = P(c). To be "evaluatable" in theory, a PUF should be able to be evaluated in a reasonable

amount of time and effort. In practice, this means that evaluation should not create excessive

overhead. If a PUF is evaluatable, it is assumed to be realizable and constructible. However,

the feasibility of their evaluation also depends on the specific application and whether the

overhead is practical;

• Unique: with P(.) containing some information about the identity of the physical entity

embedding P, and this information varying from entity to entity, the CRPs can be used as a

unique identifier, as no two PUFs should be the same;

• Reproducible: to ensure reproducibility, the PUF must be able to correct any divergence that

may occur due to factors such as the physical environment or the system’s characteristics.

This ensures that the same response r = P(c) can be consistently generated with minimal

error, meaning it should be closely aligned with the distance metric being considered;

• Unclonable: a core property for a PUF translates the impossibility of finding a correspond-

ing response r for challenge c without the physical PUF. This is due to P(.) and the process

variation that’s inherent in it. Therefore, it should be impossible for an adversary, even with

physical access to PUFi, with "function" P(.), to create a procedure, with "function" P’(.),

such that ∀ c ∈C : P′(c) ≃ P(c) . It is important to note the word "procedure", as a distinc-

tion between physical and mathematical unclonability must happen. For true unclonability,
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Figure 2.4: Expected behavior of a PUF’s CRP [37]

P must possess both properties. A mathematical clone translates the possibility of finding a

procedure f such that ∀ c ∈C : f (c) ≃ P(c), emulating P;

• Tamper evident: the act of tampering involves permanently altering the integrity of a physi-

cal object. Two categories exist: tamper-proof systems, which provide no valuable informa-

tion if tampered with, and tamper-evident systems, which may be tampered with but leave

detectable evidence. Being embedded into a physical entity, any alteration to this entity

will likely convert P into P’, and, most likely, ∃ c ∈ C : P(c) ̸= P′(c) . Even with a small

error, P(c) ̸≡ P′(c) . Therefore, PUFs are regarded as tamper-evident, as it is highly likely

tampering will change the CRP;

As we delve deeper into the intricacies of PUFs, we must define the criteria by which they

are evaluated. Determining these metrics can be challenging since no regulatory standard is in

place yet for this relatively new concept. Consequently, the literature on PUFs reveals that while

specific standardized metrics exist, variations in others can be observed depending on the author’s
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perspective. Hence, we use uniqueness, reliability, uniformity, and bit-aliasing. A definition of

these can be seen in the following subsections 2.4.1, 2.4.2, 2.4.3, and 2.4.4, respectively.

2.4.1 Uniqueness

Ideally, each PUF should have a distinct CRP, even if produced using the same manufacturing

process. The uniqueness of each PUF is the standard used to determine their individuality. Ideally,

the degree of uniqueness ought to reach approximately 50%. This implies that when assessing

the same challenge on diverse PUF instances, the responses obtained should differ significantly

with a high likelihood. Such a characteristic empowers the distinction of a particular chip from a

collection of chips of the same category. We can express it as an estimation of the inter-chip vari-

ation in terms of the PUF responses. So, having two different PUFs, i and j with n-bit responses,

Ri and R j, respectively, for the challenge c, the average inter-chip HD among k PUFs is defined

as [18][37][48]:

Uniqueness =
2

k(k−1)

k−1

∑
i=1

k

∑
j=i+1

HD(Ri,R j)

n
×100% (2.3)

2.4.2 Reliability

It aims to measure the repeatability and consistency with which a PUF generates its response.

After all, it is wishful that a PUF’s response remains stable over time and whatever environmental

variations it may encounter. One effective method of measurement is through intra-distance mea-

surements of multiple responses. This involves taking an n-bit reference response Ri from PUFi

under normal operating conditions (room temperature and normal supply voltage) and comparing

it with the same n-bit response under varying operating conditions, denoted as R′
i. If m samples of

R′
i are taken, for PUFi, the average intra-distance can be estimated as [18][37][48]:

PUFiINT RA =
1
m

m

∑
t=1

HD(Ri,R′
i,t)

n
×100%

where R′
i,t is the tth sample of R′

i. Through PUFiINT RA we can quantify the average number of

unreliable response bits, finally defining reliability as:

Reliability = 100%−PUFiINT RA (2.4)

The closer to 100%, the more reliable a PUF is [18][37][48].

2.4.3 Uniformity

To ensure that a PUF is genuinely random, its response bits should have an even distribution of

’0’s and ’1’s. This even distribution is known as uniformity and is measured by the percentage

Hamming weight (HW) of an n-bit response. The HW calculates the number of non-zero symbols

in the used alphabet, with a string like ’11101’ having an HW of 4, for instance. To meet the
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criteria of genuine randomness, the proportion of ’0s and ’1s in a PUF must be 50%. For a PUFi

with a n-bit response r, uniformity is defined as:

Uni f ormity =
1
n

n

∑
l=1

ri,l ×100% (2.5)

where ri,l represents the lth bit of the n-bit response from PUFi [37][48][49].

2.4.4 Bit-aliasing

Bit-aliasing is a metric used to assess the bias of a response bit in a group of PUF instances. To

calculate the bit-aliasing for the lth bit of PUFi when presented with a challenge c, we determine

the percentage of the HW for this bit of the PUF’s response across k devices. The desired outcome

is for this value to be as close to 50% as possible, as any deviation can lead to similar PUF

responses from different chips, which is not optimal. Bit-aliasing can be calculated by:

Bit −aliasing =
1
k

k

∑
i=1

ri,l ×100% (2.6)

where, again, ri,l represents the lth bit of the n-bit response from PUFi [37][48].

2.5 Operation of a PUF

After presenting a model to explain the characteristics and evaluation metrics of a PUF in the

previous section, it is now crucial to understand its operation in an actual application.

In various application scenarios, a PUF is presented with a challenge during verification or

authentication processes, subsequently generating a response. To ensure the smooth continuation

of the process, it is imperative to determine the correctness of the generated response accurately.

So, during manufacturing, the system’s CRPs are recorded and stored in a database. This process

is called enrollment. Therefore, in a given application scenario, by leveraging the unique physi-

cal features of hardware, we establish a system where if the correspondence between a repeated

challenge and its anticipated response aligns with the one saved in the database, a successful ver-

ification/authentication is confirmed. Any device attached or embedded with the PUF is, thus,

uniquely authenticated [18][46].

Figure 2.5 [18] will help us illustrate how this process should play out. In Figure 2.5a, we can

see that the PUF’s responses to random challenges are recorded in a database. Later, in Figure 2.5b,

when the PUF is presented with a repeated challenge, its response is compared to those stored in

the database. If the response matches the saved one, the PUF is considered authenticated; if not,

the authentication fails.
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(a) Enrollment of a PUF

(b) Evaluation of a PUF

Figure 2.5: Operation of a PUF [18]

2.6 Classifying PUFs

When searching for information on PUFs, you may come across various concepts and designs that

differ significantly. To better understand them, we will organize these findings using a classifica-

tion method proposed by Mcgrath [18]. This method involves first categorizing PUFs based on

their randomness’s origin, then evaluating how this randomness is measured, and finally dividing

the PUFs into different categories.

When it comes to a PUF’s randomness and how it originates within its design, we can divide

it into explicit or implicit randomization. Explicit, meaning that a PUF’s randomness originates

from an external source that adds her to the PUF afterward. Implicit means that its randomness

naturally arises from uncontrollable effects during the fabrication process. Generally, implicit

randomization is preferable since it does not require additional operations, and its randomness (at

least physically) can not be cloned [3][18].

We can now look at how their evaluation is performed for further distinguishment. We will

have either an internal evaluation or an external evaluation. A PUF whose features are internal

and evaluated through mechanisms embedded within ( tend to be more accurate, easier to use,

and less prone to malefactor interference) is considered an internally evaluated PUF. Combined

with implicit randomization, this characteristic originates what is defined as an intrinsic PUF. An

example of such a PUF will be our object of study in Chapter 3. A PUF whose features are

external and/or are evaluated through mechanisms outside the PUF is considered an externally

evaluated PUF. These two definitions and the developed knowledge so far should lead the reader

to conclude that intrinsic PUFs will offer the best solution for cryptographic applications. Their

internal randomness and evaluation mechanisms make them tamper-resistant and more resistant to

man-in-the-middle and side-channel attacks [3][18].
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Having categorized the origin of their randomness and how it is evaluated, Mcgrath [18] di-

vides the various PUF concepts into several categories within three grand schemes of classification,

these being:

• Organic: a property-driven organization scheme

• Parametric: a parameter-driven organization scheme

• Chronological: a timeline-based organization scheme

We should note, however, that despite this classification, a PUF’s concept can constantly be

subjected to some degree of variation and specification according to its desired application and

that a standardized classification system is still needed.

2.6.1 Chronological scheme

The least essential scheme when it comes to the scope of our work. Exposes a brief, straightfor-

ward timeline of different PUF concepts and their proposal dates.

2.6.2 Organic scheme

As the name suggests, this organic scheme is more arbitrary and relaxed than a parametric orga-

nization scheme. The author presents four levels: Application, Randomness Source, Family, and

Concept [18]. The application level differentiates between the environments where a PUF would

operate, dividing them into "All-Electronic" or "Hybrid". According to Mcgrath [18], a design is

considered hybrid when the medium used to probe the PUF’s source of uniqueness switches from

an electronic signal to, for instance, emitted and detected light. The PUF’s source of randomness

is examined at the randomness source level, as already explained. In the third level, it is presented

the family to which a given concept belongs. Here, the family works as an umbrella term for PUFs

whose behavior is analyzed by measuring similar characteristics across different PUF concepts,

e.g., the racetrack family includes PUFs that rely on comparing or analyzing time delays. Finally,

at the fourth level, different PUF concepts are classified according to the more appropriate family.

This scheme can be visualized in Figure 2.6 [18].

2.6.3 Parametric scheme

Within this second proposal scheme, there is a division into two levels. These are the Evaluation

Mechanism and the Evaluation Parameter, respectively [18].

The first level organizes by what medium the signals that evaluate the PUF exist, e.g., an

electronic signal, a laser, etc. The second level sorts the PUFs into categories where the most

apparent property parameter examined in a PUF is used as a label, e.g., for an arbiter PUF, the

comparison of propagation time between two signals [18]. Figure 2.7 [18] presents this scheme.
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Figure 2.6: Organic scheme [18]
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Figure 2.7: Parametric scheme [18]
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2.7 Functionality

After discussing the operation of a PUF, it becomes apparent that the quantity of CRPs at one’s

disposal can affect their range of use. As such, PUFs are also distinct based on their strength,

which can be either weak or strong. The strength of a PUF is ascertained by the number of unique

challenges it can process and the resulting limit on the number of CRPs that can be generated from

a single device [6][18][37].

Weak PUFs, also known as Physically Obfuscated Keys (POKs), are limited in terms of the

number of challenges they can support, supporting a small number of challenges or even just

one, resulting in a reduced number of CRPs. This number is directly related to the number of

components that rely on manufacturing variation, leading to a unique digital signature suitable

for cryptographic purposes like key derivation. For this purpose, their responses must be highly

reliable and highly unpredictable. Moreover, keeping their responses confidential and concealed

during operation is essential to prevent attackers from emulating the PUF’s behavior by observing

the CRPs. Their output can be used, for example, as a key in a keyed-hash message authentication

code (HMAC) or as a secret key for encrypting/decrypting data on the device. In conjunction with

other cryptographic hardware, they can also provide authentication capabilities [6][18][37].

Oppositely, strong PUFs support many challenges, meaning they can be directly authenti-

cated without further cryptographic hardware, making them commonly used for authentication.

Their number of CRPs is so large that even if an attacker gains access to it, it should be im-

possible to record them all within a fixed time (ideally, exponential in the number of challenge

bits). Additionally, the collected sample should not enable the derivation of a response to a new,

randomly selected challenge. Each CRP in the extensive repertoire might only be used once, pre-

venting eavesdropping attackers and supporting secure communication protocols that utilize the

PUF. While privacy is unnecessary for the responses, the PUF must not expose any information

about its internal structure or operation. Also, it’s essential to be aware of any attempts to com-

pletely list their responses when using them. If the CRPs of a PUF are known, it’s considered a

corrupted PUF. It’s worth noting that the faster a PUF’s response, the easier it is to enumerate its

CRPs. Therefore, it’s essential to strike a balance between the readout time of a strong PUF and

the number of CRPs it has, even if a fast response is desired in certain applications [6][18][37].

The strength of a PUF is often measured by how the number of potential CRPs increases with

the size of the PUF. A PUF is deemed strong when its CRP count rises exponentially with its size.

Conversely, if the growth is linear or polynomial, it is usually considered weak. However, some

PUFs with linear or high-order polynomial CRP growth are still referred to as strong [18].

While the previous classification may suggest that strong PUFs are more versatile than weak

ones, it is crucial to acknowledge that a strong PUF cannot be vulnerable to modeling attacks.

These attacks rely on machine learning techniques to forecast the missing information in a limited

set of CRPs and create rules to calculate responses to future challenges [18][50].

Examples of weak and strong PUFs will be given in sections 2.9 and 2.10, respectively.
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2.8 Error correction

Both weak and strong PUFs rely on the analog physical properties of the fabricated IC to de-

rive secret information. Naturally, these analog properties have noise and variability associated

with them. If these properties vary too much, the PUF’s response might change, condemning the

cryptographic operation to fail [6].

Although key generation has zero error tolerance, PUF authentication usually incorporates

an allowable error threshold, decreasing the stability requirement and often obviating the need

for error correction. A common mechanism to mitigate such errors involves adapting differential

design techniques to cancel out first-order environmental dependencies, e.g., gate delay. Typically,

PUFs that use this effect will not measure a single gate’s delay but rather the difference between

two identically designed but distinct gates on a die. Hence, any environmental factor should affect

each gate equally [6].

However, despite the multiple error-correction techniques applied to these bits by modern

PUF designs, many error-correcting methods have been shown to leak secret key bits since they

require the computation and public storage of syndrome bits. So, an excess number of PUF bits

are generated and then downmixed to produce a full entropy key [6].

Adding to these techniques, PUFs can also use soft-decision coding. This coding technique

takes advantage of the reliability information of a given response bit to improve error correction

performance. This reliability information is obtained through repeated PUF response readings

in the case of SRAM PUFs or the magnitude of frequency difference values in the case of ring-

oscillator PUFs.

2.9 Weak PUFs

They are usually considered PUFs that directly digitize some “fingerprint” into the circuit. Since

this fingerprint should remain largely invariant, it can only be questioned by a few challenges,

sometimes only one. This translates, as stated before, into f (.) having a smaller domain and also

a minimal scope given that a specific challenge should always result in the same response [46][6].

These so-called "fingerprints" are nothing less than the cryptographic keys spawned and stored

by the PUF, which are then compared to an external database for identification/authentication or

used as part of other protocols, such as secure communication or memory encryption [18].

A weak PUF can be characterized as having [6]:

• A smaller number of CRPs;

• A response that is stable and robust to environmental conditions;

• Being impractical to manufacture two devices with the same physical fingerprint;

Having a small number of CRPs, these must be kept secret since disclosing them would trans-

late into a compromised PUF. Although impossible to copy, an attacker could still use another

device to emulate its CRPs, rendering the PUF useless [6][18].
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Weak PUFS are a good fit for key derivation processes with their randomness and secure

storage, presenting an alternative to secure nonvolatile memories. Once recovered, the key derived

from the PUF’s response bits serves as a token for the continuation of the cryptographic process,

be it authentication, encryption, or other cryptographic protocols. Note, however, that it is still

important to store it in a secure volatile memory during the device’s operation [6].

2.9.1 Examples of Weak PUFs

2.9.1.1 Ring Oscillator PUF

One such example of a Weak PUF is the Ring Oscillator PUF, whose architecture is comprised of

n identically designed ring oscillators, which consist of a NAND gate in line with an odd number

of NOT gates whose output feeds back as seen in Figure 2.8 [46].

Once fabricated, the ring oscillator frequency is set, meaning that the output bits of the PUF

will always remain constant, despite that due to the variation in delay of the inverters in the ring

oscillator, each will have a slightly different frequency [6].

It works by measuring and comparing the frequencies of two oscillators, thus revealing one of

the PUF output bits. This means that for n oscillators, we have n(n−1)/2 possible pairings, so a

maximum of log(n!) bits can be extracted from the PUF [6].

Since it measures differences in gate delay, the ring-oscillator PUF is susceptible to environ-

mental variations and noise sources. So, error correction is most important in this application.

One way to do so is by recognizing that oscillators "closer" in frequency have a greater likelihood

of causing an output error than oscillators "far apart" in frequency. This happens due to the tiny

fluctuations in oscillator frequency due to noise or environmental variations. If the two oscillator

frequencies are further apart, it becomes less likely that a bit flip might occur. So, correctly assess-

ing and selecting the oscillator pairs that define the PUF output bits increase the PUF’s robustness

towards noise and environmental variations [6].

Figure 2.8: Architecture of a Ring Oscillator PUF [46]
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2.9.1.2 SRAM PUF

A Static Random Access Memory (SRAM) cell, as shown in Figure 2.9 [18], consists of two

inverters in conjunction with two access transistors. Each cell in an SRAM has two stable states,

storing either 0 or 1, and positive feedback to force the cell into one of these, preventing an

accidental transition. When power is applied, the cell can be written into either state [18].

An SRAM PUF exploits this positive feedback loop to uniquely characterize a system through

the variation of otherwise symmetric transistor branches within SRAM elements. Again, the mea-

surement is differential, meaning that the final state originates from the difference between two

feedback loops. Hence, common-mode noise such as die temperature, power supply fluctuations,

or common-mode process variations should not impact the transition [6][18].

Comparable to the ring-oscillator PUF, this architecture can be used to make intelligent de-

cisions regarding error coding. Cells have a consistent bias towards 0 or 1, so by using repeated

measurements, one can assess the stability of an SRAM PUF output bit and selectively use the

most stable bits for the PUF’s output. Combined with traditional coding techniques, this can miti-

gate the noise inherent to SRAM PUFs [6].

Figure 2.9: Circuit diagram for an SRAM cell [18]

2.10 Strong PUFs

After introducing weak PUFs and providing examples in Section 2.9, we will discuss strong PUFs,

recalling their definition and presenting some examples to conclude this chapter.

In Section 2.7, we previously saw that oppositely to weak PUFs, strong PUFs support many

CRPs. The requirements to be considered a strong PUF could be resumed in ample CRP space;

the revelation of some CRPs should not be enough to infer the responses to newly presented

challenges, and their readout should display only the responses, nothing else. A strong PUF can

securely identify the embedded or attached device by replacing the secure memory and crypto-

graphic hardware. Since the PUF doesn’t need secure nonvolatile memory, anti-tamper circuitry,
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or additional supporting cryptographic acceleration hardware, it requires less area, power, and

mask layers than a traditional approach to secure authentication [6][18][37].

2.10.1 Examples of Strong PUFs

2.10.1.1 Arbiter PUF

One of the earliest proposals for implementing a strong PUF relied on the manufacturing variabil-

ity of gate delay as a source of unclonable randomness in what would come to be known as an

Arbiter PUF [16].

The concept behind an Arbiter PUF is to characterize a system by comparing the travel

time of two electrical signals propagating down, theoretically, symmetrical paths, such as mea-

suring individual gate delays. Again, possibly verified deviations originate from the inherent

variability in CMOS fabrication. Since the effect of these variations is random per device but

static for a given device, the delay difference and, therefore, the PUF’s output will be device-

specific [3][6][18][19][28].

As shown in Figure 2.10 [3], an arbiter PUF consists of several cells, named switch blocks,

that connect two input signals to its two outputs. Each switch block (lighter gray) consists of two

2-1 multiplexers who either route both signals through a different signal line if the selection bit is

one or maintain them in the same line if the selection bit is zero. By aggregating n switch blocks,

a total of n selection bits are needed to configure any of 2n possible pairs of delay paths. It is this

n-bit setting that will act as a unique n-bit challenge for the arbiter PUF [3][18].

Figure 2.10: Architecture of an Arbiter PUF

Given that input-output delays within the two configurations of a switch block are slightly

different and randomly affected by process variations, each of the 2n challenges originates a new

race condition between signals. This is where the Arbiter comes into play, evaluating which of

the two input signals reaches first, returning the response from the PUF to a given challenge as

a binary output. This circuit, possibly implemented in several ways, is commonly designed as

an SR NAND latch, the best option given its unbiased behavior originating from its symmetric
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construction [3][51]. Due to their stochastic nature, a draw among the racing signals can occur. If

both signals reach the arbiter circuit virtually at the exact moment, the arbiter enters a metastable

state, i.e., the logic output is neither 0 nor 1; it is temporarily uncertain. Once out of this state of

brief but random duration, the PUF’s output will be an arbitrary binary value independent of the

race’s outcome, neither device-specific nor static. This scenario and its occurrence are responsible

for the origin of noise in the responses of an arbiter PUF [3].

An ideal response should be the outcome of the random effect of variability on the delay

parameters of the circuit. For this to be verified, the following conditions should be met [3]:

1. Delay lines are designed to be nominally perfectly symmetrical, i.e., any differences in delay

arise from the inherent variability

2. The arbiter circuit is completely fair

Failing to meet one of these conditions originates a biased PUF. If bias is unavoidable, some

unbiasing techniques can be used [3].

In terms of PUF security, assuming, for instance, the comparison occurs between individual

gate delays, it is safe to say that, even with physical access, an attacker would have difficulties per-

forming such measures. Besides, it is also assumed that any possible invasive techniques utilized

would destroy the gate delay properties [6]. Note, however, that the 2n different configurations are

not independent. They are based on several underlying delay parameters linearly added to pro-

duce the resultant response bit. As such, arbiter PUFs tend to be vulnerable to challenge-response

modeling attacks [3][6][52]. Efforts to contrariety this tendency aimed to introduce non-linearity,

difficulting the modeling, and came in the form of XOR Arbiter PUFs, Lightweight Secure PUFs,

and Feedforward Arbiter PUFs [6].

2.10.1.2 XOR Arbiter PUF

Another example of a Strong PUF is the XOR Arbiter PUF, and as stated before, it originated from

the attempt to add non-linearity to standard Arbiter PUFs. This architecture combines several rows

of basic Arbiter PUFs whose outputs are xor’ed to form a single response bit. Usually, they are

referred to as X-XOR Arbiter PUF, where X denotes the number of rows in the XOR Arbiter

PUF [6][37].

Although they present a greater resilience against ML attacks, it has been shown that they are

vulnerable to a combination of power SCAs and modeling attacks, which jeopardize their unclon-

ability. It is crucial to note that while using output xor’ing can significantly increase modeling

complexity, it also decreases stability exponentially. This can harm the efficacy of a PUF in an

authentication setting and reduce the accuracy needed for an attack model, as the authentication

protocol must tolerate a higher level of intrinsic PUF error [6][53].

Figure 2.11 [6] shows a possible implementation of this architecture. In it, we can see how the

same n-bit challenge is passed to the n Arbiter PUFs, who construct the XOR Arbiter PUF, and

how their responses are xor’ed at the end.
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Figure 2.11: Architecture of an XOR Arbiter PUF [6]
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Chapter 3

Chosen Design and Evaluation Results

This chapter is the culmination of our study into hardware security, PUFs, and their applications.

In it, we will explore a selected PUF design and analyze its performance metrics. We aim to

provide a comprehensive design overview, examine its effectiveness, and offer insightful conclu-

sions for the evolution of Physical Unclonable Functions. We will begin by explaining our chosen

design in Section 3.1, followed by the simulation results in Section 3.2.

3.1 Chosen Design

Given the many proposed designs currently in the subject literature, we found it essential to se-

lect a design capable of encompassing the evaluation of Physical Unclonable Functions so far and

showing the future possibilities for this technology. Therefore, if we consider the work presented

by Loftstrom et al. [29] in 2000 as the foundational idea to harness process variations and device

mismatch as a way to identify an IC uniquely, one understands that PUFs are a relatively recent

concept. Within this period, many authors point to the work developed by Gassend et al. [54][16]

as the introduction of silicon PUFs and the results from Lim et al. [55][19] for the initial proposal

of an Arbiter PUF. Given this context, we opted to study the PUF proposed by Cao et al. [56], as

implementing a classic Arbiter PUF would allow for an interesting analysis of both the evolution of

PUFs this far, as well as the implications of advanced fabrication technologies on them. The pre-

sented energy efficiency and higher temperature stability were also weighted in the choice of this

specific architecture due to the importance these factors have when designing and creating PUFs

capable of presenting a reliable alternative for secret key generation and device authentication.

The schematic of the proposed PUF can be seen in Figure 3.1 [56]. It consists of a double array

of inverters (INVs) alternated with multiplexers (MUXs) stretching for a n-bit length, 64 in this

particular configuration, terminating at the arbiter trusted to point which of the two signals first

arrived. A further explanation of these three components can be found in Sections 3.1.1, 3.1.2,

and 3.1.3, respectively.

Although not implemented in our experiment, we would like to point out that before passing

on to each MUX, the challenge bits are pre-proceeded through a Linear-Feedback Shift Register

33
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Figure 3.1: Schematic of the proposed Arbiter PUF [56]

(LFSR) acting as a stream cipher. Having them cycle a user-defined number of cycles through the

LFSR would allow us to randomize and obfuscate the input challenge, increasing the difficulty of

employing modeling attacks against the PUF [56].

3.1.1 Implemented inverter

The approach taken in this Arbiter PUF implementation sets itself apart from the traditional

method (illustrated in Figure 2.10). Instead of using only conventional switch blocks, these are

paired with current-starved (CS) inverters. An inverter, as the name implies, receives a signal and

presents the inverse of it at its output. By incorporating CS-INVs, the delay distribution is broad-

ened and enhanced around its average value, which is essential in maintaining a diverse range of

delays in the delay chain. This improves uniqueness for each PUF instance, particularly in the

face of different process variations [56, 57]. The CS-INVs are then biased in the zero temperature

coefficient point (ZTC) to turn the propagation delay insensitive to variations in temperature [56].

The schematic for the proposed CS-INV is presented in Figure 3.2a [56] and is constructed by

adding an NMOS transistor in a standard inverter, whose gate voltage is controlled through the

bias circuit. The bias circuit and the bias voltage, Vb, originate from Figure 3.2b [56], and tuning

it allows the inverter to reach not only different operating regions but also the ZTC, something

verified for Vb = 750mV and the dimensions given in Figure 3.2b. Vb will be shared among all the

CS-INVs [56].

(a) CS Inverter (b) Original Bias circuit

Figure 3.2: Schematic of the proposed CS Inverter and respective Bias circuit [56]
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Figure 3.3: Schematic of the designed bias circuit

Cao et al. [56] utilized a 65nm process for the design and implementation of its Arbiter PUF;

our work was developed using a 45nm technology, gpdk045, the Generic Process Design Kit 45nm

Mixed Signal provided by Cadence Design Systems. This meant that all the components of this

architecture had to be redimensioned for this technology. Therefore, for the circuit in Figure 3.2b,

through experimental measurements, we defined for the upper PMOS the following dimensions,

L = 200nm and W = 1um (2 fingers), and the lower PMOS, L = 695nm and W = 210nm. The

schematic of our developed bias circuit can be seen in Figure 3.3. With these dimensions, Vb

was measured at around 870mV . Nevertheless, the impact of temperature variations on the PUF

implemented at 45nm was not studied due to timing constraints. Therefore, it is unknown what

impact Vbias would have or if further redimensioning would be required. The dimensions of the

developed INVs were: the PMOS with L = 45nm and W = 240nm, the NMOS with L = 45nm and

W = 120nm, and the Vb’s NMOS with L = 45nm and W = 210nm. The inverter’s PMOS width

was double that of the NMOS, following the usual rule of thumb to ensure a balanced operation

of the inverter. The Vb’s NMOS width was defined experimentally after realizing it needed to be

increased. The designed schematic can be seen in Figure 3.4.

3.1.2 Implemented multiplexer

The proposed multiplexers are implemented utilizing four transmission gates, according to the

schematic presented in Figure 3.5 [56]. A transmission gate is constructed using two transistors,

one NMOS and one PMOS, creating a bilateral switch controlled by externally applied logic levels

obeying the truth table in Table 3.1 [58]. If the control signal is asserted low, no signal is passed.

If stated high, the signal goes through. Based on Figure 3.5, we designed the schematic presented
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Figure 3.4: Schematic of the designed inverter

Figure 3.5: Schematic of the proposed multiplexer [56]

Control A B
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1

Table 3.1: Truth Table of a Transmission Gate [58]
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Figure 3.6: Schematic of the designed multiplexer

in Figure 3.6 containing the four transmission gates and an inverter to provide the negated version

of the control signal C. Again, to ensure the balance of the transmission gates, the dimensions of

the PMOS were L = 45nm and W = 240nm, while the NMOS dimensions were L = 45nm and

W = 120nm. As for the inverter, we have L = 45nm and W = 185nm for the PMOS and L = 45nm

and W = 120nm for the NMOS.

3.1.3 Implemented arbiter

The classical implementation of an Arbiter PUF utilizes a D flip-flop as the arbiter. However, as

seen in Figure 3.7a [56], given the asymmetries in its internal paths from D to Q and CLK to

Q, it may not be a fair arbiter, harming the reliability of the PUF. A better arbiter is achieved by

utilizing an RS latch that has symmetric paths and occupies less area [56, 51]. Figure 3.7b [56]

and Table 3.2 [59] present the schematic of an RS latch based on two NAND gates and its truth

table, respectively. Noting on the first line of Table 3.2, we see that if both S and R are equal

S R Q Q
0 0 X X
0 1 1 0
1 0 0 1
1 1 Q0 Q0

Table 3.2: Truth Table of an RS Latch [59]
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(a) Schematic of a D-flip-flop (b) Schematic of an RS Latch

Figure 3.7: Schematics of typically used arbiters [56]

to zero, we reach a prohibited state. Not only both logic gates will output a 1, disrespecting the

Q ̸= Q condition, but there is also the possibility that both inputs might go high simultaneously

afterward, creating a racing condition between the propagation time of both gates originating an

unknown state with undetermined value [56].

To counter this problem, Cao et al. [56] propose the arbiter in Figure 3.8 [56], consisting of

two RS latches and a NAND gate serving as enable to the second latch. Through the active low,

enable input EN, the latch in the second stage is only enabled when both inputs of the first latch

are high simultaneously, improving the reliability compared to the conventional RS latch arbiter.

Its truth table and proposed CMOS schematic can be seen in Table 3.3 [56] and Figure 3.9 [56],

respectively. It is essential to note that this last schematic needed to be clearer to understand, and

its implementation was somewhat challenging and time-consuming.

As it is possible to see, three NAND gates are easily identifiable (those with A and B inputs).

However, if this schematic is supposed to translate the circuit in Figure 3.8, we should see at least

two more NANDs (two from each latch plus the one creating the EN signal equals five NANDs

total), excluding any additional logic required to implement the EN functionality at the second

latch. Instead, we see two pairs of cross-coupled NORs, which, by our experiments, makes it

impossible to implement the truth table in 3.3. After noting this, through several failed attempted

implementations, the decision was made to design the proposed arbiter from scratch. So, main-

taining every transistor, both NMOS and PMOS, in their standard dimensions, L = 45nm and

W = 120nm, we came up with the representation in Figure 3.10. In it, PUF_ARBITER_RSLatch

corresponds to the first latch in Figure 3.8 while PUF_ARBITER_2ndRSLatch corresponds to the

junction of the second latch in Figure 3.8 with the NAND gate. PUF_ARBITER_RSLatch has

R and S as inputs, and Q and Q1 as outputs, creating a simple RS latch as presented by Fig-

1In the schematics created the notation "NOT_X" defines X

Figure 3.8: Schematic of the proposed arbiter [56]
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R S QM Q
0 0 Forbidden state Previous state
1 0 Set Previous state
0 1 Reset Previous state
1 1 Previous state QM

Table 3.3: Truth Table of the proposed arbiter [56]

Figure 3.9: CMOS schematic of the proposed arbiter [56]
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Figure 3.10: Newly designed proposed arbiter

ure 3.11. At the exit of Q, we will have a net named QM to represent the signal shown in Fig-

ure 3.8. As for PUF_ARBITER_2ndRSLatch2, we constructed it utilizing QM, QM, A, and B as

inputs, T 1 and T 2, as outputs, as per Figure 3.10. For its construction, we utilized two sets

of a "NAND+Transmission Gate" combination plus a "NAND+INV" combination, creating the

schematic seen in Figures 3.12, 3.13, and 3.14.

Figure 3.11: Schematic of PUF_ARBITER_RSLatch

2For a better resolution, its schematic will be presented in three parts, I, II, and III corresponding to Figures 3.12,
3.13, and 3.14, respectively
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In Figure 3.12, QM|Q=Q, where QM represents the signal coming out of PUF_ARBITER_RSLatch’s

output, Q, and Q represents the output of the second NAND in PUF_ARBITER_2ndRSLatch. This

originates Q, then forwarded to the transmission gate controlling PUF_ARBITER_2ndRSLatch’s

output, T 1.

Figure 3.12: Schematic of PUF_ARBITER_2ndRSLatch (I)

In Figure 3.13, the output of the previous NAND, Q, is utilized as an input in the expres-

sion Q|QM = Q, where QM represents one of PUF_ARBITER_RSLatch’s outputs. The result, Q,

is not only utilized as an input in the previously seen NAND but is again forwarded to another

transmission gate, this one controlling the other of PUF_ARBITER_2ndRSLatch’s outputs, T 2.

Given the functionality pretended by utilizing EN (Figure 3.8), we decided to use two transmis-

sion gates depending on this signal to control the exits of the proposed arbiter. For this pur-

pose, the inverter in Figure 3.14 is utilized. This figure presents the third and final part of the

PUF_ARBITER_2ndRSLatch’s schematic and shows a NAND gate that will receive the signals R

and S (A and B in the naming of the nets within PUF_ARBITER_2ndRSLatch). Thus, the result,

EN, corresponds to the EN from Figure 3.8 and, along with its inverted signal, is routed to the

corresponding nets to control the transmission gates.

According to Cao et al., the characteristics of this proposed Arbiter PUF can be summed into

Table 3.4.
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Figure 3.13: Schematic of PUF_ARBITER_2ndRSLatch (II)

Figure 3.14: Schematic of PUF_ARBITER_2ndRSLatch (III)
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Characteristics Proposed PUF
Technology 65 nm

Nrº of possible CRPs 1.8×1019

Core area (µm2/L2) 0.91 (normalized)
Supply Voltage (V) 1.2V
Voltage Range (V) 1.08 to 1.32

Temperature Range (ºC) −40 to 150
Frequency 25MHz

Inter-PUF HD 46.86%
Intra-PUF HD 0.8%

Uniqueness 46.8%
Table 3.4: Characteristics of the proposed PUF [56]

3.2 Evaluation

Having developed and ensured the correct operation of the previously described components, it

became time to employ them in a construction similar to the proposed PUF (Figure 3.1). So, using

Cadence Virtuoso 6.1.8 software, we went ahead and constructed four test benches through which

we would evaluate the performance of the chosen PUF.

The first two only had eight stages, meaning eight combinations of "2 INVs + MUX" spread

throughout its delay chain, the first finishing without the arbiter (Section 3.2.1) while the sec-

ond finished with the arbiter element (Section 3.2.2). The reasoning was firstly to understand if,

through Monte Carlo simulations, we could simulate the manufacturing variability upon which the

concept of a PUF rests. Therefore, we constructed the test bench with only eight stages to save on

the simulation time.

It was verified that such simulations would only act as expected if "Mismatch" was the Vari-

ation selected on the ADE Assembler Monte Carlo form, as in Figure 3.15. As its name implies,

this option mismatches each element within a given PUF instance instead of "Process", which

would vary the process to the entirety of the instance. Our chosen design requires the delay of

each path to be unique. This implies that each component in the delay chain of the proposed

PUF should have a different delay from the same element in the same position of a separate PUF

instance. For this reason, all our simulations were conducted utilizing "Mismatch" and not "Pro-

cess". Then, given the previously mentioned difficulties in understanding Figure 3.9, and to avoid

further delays in the workflow of the thesis, it was decided first to conduct the simulations without

an arbiter, while its correct implementation was still under development. Also, the non-utilization

of an arbiter allowed us to understand whether eight stages were enough for a noticeable delay.

The final two test benches were designed with the complete sixty-four stages as the proposed

PUF. One of them without arbiter (Section 3.2.3), again aiming to understand if the total delay

was noticeable or if more stages were needed. The other (Section 3.2.4) was constructed with the
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arbiter to verify if it could correctly decide on which signal arrived first and how this decision

would permit the identification of individual PUF instances.

Figure 3.15: ADE Assembler Monte Carlo form

3.2.1 An 8 stages PUF without arbiter

All of our test benches are similar to each other. Obviously, different PUF instances will be eval-

uated, but, generally speaking, each test bench can be described as the instance under evaluation,

a vdc cell to provide the test bench’s supply voltage (VDD), n-vpulse cells to commute each of

the n-challenge bits defining the path, a vsource generating the V_PULSE provided at the PUF’s

inputs, and two loads given by cap cells. All these cells belong to gpdk045’s analogLib. For a

better understanding, we refer to Figures 3.16 and 3.17, which present the described test bench3.

Figure 3.16: Inputs of the test bench

In Figure 3.18, we have the schematic of the instance under evaluation. If we count, we

can see eight combinations of two inverters and their corresponding multiplexer, hence the eight

stages. At the lower left corner, we see a green-lined rectangle representing the bias circuit

from Section 3.1.1 connected to every pair of inverters along the path. The vertically paired

green-lined rectangles represent the two inverters that feed the signal to the corresponding in-

verter. On top of each inverter, it is possible to see the input for its corresponding challenge bit.

PUF_8Stages_WIT HOUT _ARBIT ER, as the name implies, ends with two simple outputs and

not an arbiter.
3The test bench was divided into two separate pictures for better resolution
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Figure 3.17: Outputs of the test bench

Figure 3.18: Construction of the PUF_8Stages_WITHOUT_ARBITER

Figure 3.19: Example of a measurement in a Monte Carlo simulation
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With the test bench concluded, we performed several Monte Carlo simulations whose specifi-

cations can be seen again in Figure 3.15. Their differentiation came either from the frequency of

the V_PULSE utilized or which challenge bits were activated. Out of the two hundred points sim-

ulated, we collected data on points4 number one, fifty, one hundred, one hundred and fifty, and two

hundred. The data collected consisted of time values, at which the waveform crossed the 0.5 V

line, measured at seven measuring points in each signal line in each mcparamset. Figure 3.19

presents an example of the data collected. We can see, for instance, that the first two measuring

points of output B give us 13.1596 ns and 33.52152 ns, respectively.

Before continuing, it is essential to note that Monte Carlo simulations are also utilized to un-

derstand a given circuit’s yield after fabrication. This approach is unsuitable for our specific use

case because we want a PUF to have a wide enough distribution of delays, enhancing the unique-

ness of its instances. Narrower distributions (with higher yield) suggest that the performance

characteristics of the produced ICs are consistent and predictable, resulting in less uniqueness.

Given this fact, in ADE Assembler, the best way we found to understand what happened after

each simulation was to go from mcparamset to mcparamset graphically checking their outputs.

This process becomes inefficient, so we reduced the number of mcparamsets analyzed, selecting

only five of the two hundred available. A helpful suggestion for Section 4.2 is to find a way to

automatize this process.

Eight simulations were conducted, four at 25 MHz, the PUF’s maximum operating frequency [56],

and four at half of this frequency, 12.5 MHz, to try to understand the impact of frequency in

its functionality. For both frequencies, the simulations comprised of having every challenge bit

at logical zero, varying one challenge bit (V_C0 in Figure 3.16), running two challenge bits

(V_C0 and V_C4 in Figure 3.16), and having them all at logical one. After each simulation,

at the standard seven measuring points in each mcparamset, we calculated ∆, the difference be-

tween a measuring point in B and its value in A. Using Figure 3.19 as an example, this meant

13.1596− 13.28596 = −0.12636, 33.52152− 33.12426 = 0.39726, and so on. From this brief

example, it is already possible to conclude that ∆ < 0 =⇒ B "arrived" first then A while ∆ > 0

=⇒ A "arrived" first then B. Having calculated each ∆, we performed their per-point simulation

average, meaning we averaged them among the corresponding measurement points on the other

four mcparamsets. These averages of ∆ became the basis of our analysis. Figure 3.20 presents

the plot of the resulting ∆s from the four simulations performed at 12.5 MHz while Figure 3.21

presents them for 25 MHz.

Each colored line represents one of the simulations conducted, and the dots show the value

of ∆ (in ns) at one of the measuring points, marked on the graph’s horizontal axis. Analyzing

both graphs, it is possible to see that, at least with only eight stages, a frequency as long as it is

within the PUF’s operating range does not interfere with its response. It also becomes clear how

the challenges can change this same response and how we can identify a given simulation based

on its delays. Noting the similar design of both graphs, we can also conclude that, despite process

4Denominated mcparamset in the ADE Assembler environment
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Figure 3.20: Frequency versus Average delay (∆) at 12.5 MHz

Figure 3.21: Frequency versus Average delay (∆) at 25 MHz
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variability not being a linear phenomenon, the addition of the delays along the PUF’s delay chain

can be modeled as such, as noted in Section 2.10.

Although our sample is reduced, the distribution of the delays was interesting to analyze for

this purpose. With the help of the Python script in Appendix A, our data was fitted to a normal

distribution, resulting in Figure 3.22 for 12.5 MHz and Figure 3.23 for 25 MHz. In both of them,

we can see how each simulation has a very distinct curve, a good indicator of a PUF’s ability to

be uniquely identifiable. Albeit, it becomes clear, through the resemblance in these distributions,

how more than eight stages are needed to ensure a greater uniqueness for each PUF instance.

Figure 3.22: Delay distribution at 12.5 MHz

Figure 3.23: Delay distribution at 25 MHz
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3.2.2 An 8 stages PUF with arbiter

The main difference between this and the previous test bench is that now, at the end of the PUF’s

delay chain, there will be an arbiter implemented as in Figure 3.10. The presence of an arbiter

meant that at the output of this test bench, the expected response would be a bit accordingly to the

signal that arrives first.

Maintaining the logic of the previous test bench, we conducted another four Monte Carlo sim-

ulations with the same specifications. This time, and noting the previously obtained frequency

results, we only tested the PUF at 25 MHz. Again, the tests were conducted, having every chal-

lenge bit at logical zero, varying one challenge bit (V_C0) to a logical one, running two challenge

bits (V_C0 and V_C4) at logical one, and having them all at logical one. Their results can be

seen in Tables 3.5, 3.6, 3.7, and 3.8, respectively. The mcparamsets analyzed were also the same.

Each table consists of three columns, mcparamsets, MUX7_OUT, and ARBITER. The first tells

which of the mcparamsets was evaluated. The second presents the time value at which each signal

waveform crossed the 0.5 V line exiting the last MUX. Hence, the third column should note which

signal first arrived at the arbiter by presenting a logical one at its exit and a logic zero at the exit

of the "losing" signal.

The combination of all the "wins" and "losses" resulting from each test was then compiled into

Table 3.9. It presents the four conducted tests, all challenge bits at logical zero ("Zero" column),

V_C0 at logical one ("V_C0" column), V_C0 plus V_C4 at logical one ("V_C0+V_C4" column),

all challenge bits at logical one ("One" column), and the "winning" signal at each mcparamset. A

"win" is portrayed as a "1" in the column belonging to the signal that arrived first at the arbiter.

A loss is represented by an "-". It is important to note that these results represent an Arbiter PUF

with only eight stages and without the LFSR. However, with this sample of mcparamsets, it is

clear that the PUF has a bias towards B given that out of five mcparamsets, three, 1, 50, and 200

have B "winning" more times than A. This means that for this configuration, the PUF is not as

random as it should be. This conclusion seems even more plausible if we note that for each test,

the more challenge bits are commuted to a logical one, the more B tends to be the winner.

mcparamset MUX7_OUT ARBITER
A B A B

1 13.024 12.913 0 1
50 13.136 12.874 0 1

100 12.890 13.274 1 0
150 13.085 13.235 1 0
200 13.278 13.242 0 1

Table 3.5: All challenge bits at logical zero @ 25 MHz
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mcparamset MUX7_OUT ARBITER
A B A B

1 12.841 13.116 1 0
50 13.140 12.860 0 1
100 13.149 12.991 0 1
150 13.107 13.217 1 0
200 13.443 13.074 0 1

Table 3.6: V_C0 at logical one @ 25 MHz

mcparamset MUX7_OUT ARBITER
A B A B

1 13.130 12.821 0 1
50 12.969 13.017 1 0
100 12.831 13.326 1 0
150 13.049 13.275 1 0
200 13.391 13.099 0 1

Table 3.7: V_C0 + V_C4 at logical one @ 25 MHz

mcparamset MUX7_OUT ARBITER
A B A B

1 13.066 12.873 0 1
50 13.171 12.817 0 1
100 12.946 13.181 1 0
150 13.169 13.167 0 1
200 13.290 13.235 0 1

Table 3.8: All challenge bits at logical one @ 25 MHz

mcparamset Zero V_C0 V_C0 + V_C4 One
A B A B A B A B

1 - 1 1 - - 1 - 1
50 - 1 - 1 1 - - 1
100 1 - - 1 1 - 1 -
150 1 - 1 - 1 - - 1
200 - 1 - 1 - 1 - 1

Table 3.9: Distribution of A and B @ 25 MHz
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3.2.3 A 64 stages PUF without arbiter

For this test bench, we scaled the PUF to its total number of stages minus the arbiter to try and

follow the thought process behind Section 3.2.1. However, we concluded that the PUF could not

deal with a pulse of 25 MHz as presented in [56]. We noticed how the signal, right at the exit

of the first INV, was already highly distorted. This would only worsen as the signal propagated

down the delay chain. Most likely, due to the parasitic capacities, the time required to discharge

increased, meaning the operation frequency would have to be reduced. Augmenting the transis-

tor sizes might be a solution. However, doing so would also increase the capacities. Through

experimental measurement, we settled at a frequency of 2.5 MHz, a severe decrease.

Due to timing constraints, and after realizing the PUF’s incapability to perform at 25 MHz, we

decided to advance for Section 3.2.4 to evaluate the PUF as a whole.

3.2.4 A 64 stages PUF with arbiter

Performing the same tests as in the previously discussed test benches, we can resume the results

in a table similar to Table 3.9. Hence, we present Table 3.10.

Analyzing it, we can infer that the PUF still maintains a bias to one of the paths, although the

tendency seems to be more distributed than in Table 3.9 as this time three mcparamsets 1, 150, and

200 have A "winning" more times than B. However, mcparamsets 50 and 100 have B "winning"

more than A. Even with 64 stages, the PUF is still not random enough. This time, commuting a

challenge bit to a logical one does not impact the response as shown by Table 3.9. Nevertheless,

we should be aware and note that the proportion of commuting two bits in eight is different from

commuting two in sixty-four.

mcparamset Zero V_C0 V_C0 + V_C4 One
A B A B A B A B

1 1 - 1 - 1 - 1 -
50 - 1 - 1 - 1 - 1

100 - 1 - 1 - 1 - 1
150 1 - 1 - - 1 1 -
200 1 - 1 - 1 - 1 -
Table 3.10: Distribution of A and B @ 2.5 MHz
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Chapter 4

Conclusions and Future Work

This final chapter will review the work developed within this dissertation, its contributions, and

further improvements to be developed.

4.1 Summary

Our study started with a hypothesis. Could PUFs, within solid-state electronics, become the future

"go-to" method for hardware security? With their emergence as a compelling avenue for advanc-

ing hardware security, our exploration started with somewhat high expectations. However, one

should note that the PUF universe is relatively large, so we focused our research on a specific

implementation of an Arbiter PUF. And in this implementation, its performance fell below initial

expectations. With our technology, it proved incapable of operating at the expected frequency and

was also highly biased. However, albeit not with the total number of stages as the proposed Ar-

biter PUF [56], we showed, as expected, that it could be uniquely identifiable through its response

against a challenge.

Although our results did not meet expectations, a quick search on PUFs yields numerous

potential architectures and industry use cases [60]. Therefore, the inherent potential of PUFs to

enhance current security paradigms remains an exciting area of research and an interesting path in

developing hardware security.

The results are open to being challenged, reevaluated, or even replicated by interested parties.

4.2 Future Work

Given the schedules that bound this dissertation, we leave a few topics as a suggestion for future

work:

• Automatization: Conducting Monte Carlo Simulations is by itself a time-consuming pro-

cess, even more so if we have to manually go from mcparamset to mcparamset visually

analyzing each graph. A tool capable of analyzing graph parameters without the need to

search graph by graph would be a great addition to the continuation of this work.

53
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• Frequency, randomness, and challenge bits: It would be essential to understand why the

PUF could not maintain its operating frequency when scaled from eight to sixty-four stages.

This could help determine if the problem was in the dimensioning of the transistors or if

this technology can not be used to implement this specific Arbiter PUF. Afterward, it would

be essential to test the sixty-four stages PUF with a proportional quantity of commuted

challenge bits to understand its behavior, especially if its randomness improved.

• Bitstream: At the beginning of this work and looking forward to the PUF’s testing, a Python

script capable of generating PWL files was created. Utilizing this script to create several

files containing different binary pulses would be interesting to analyze and characterize this

PUF’s architecture, as it was only tested with a periodic pulse and not a proper bitstream.

The script can be found in Appendix B.

• Temperature and Voltage Characterization: Given its described characteristics, a com-

prehensive evaluation of its performance under varying temperature and supply voltage con-

ditions is needed. The obtained results should then be compared with those in [56]. These

tests should measure its response reliability and investigate potential vulnerabilities derived

from these variations. Doing so could also give an exciting overview of how manufacturing

technology influences a PUF’s behavior.

• Layout and Post-Layout testing: Having tested and characterized its schematic, the next

step should be to design the layout of the proposed PUF. Post-layout, one should evaluate

its ability to consistently produce the same responses as the schematic while subjected to

the same temperature and supply voltage variations. It should also be interesting to study if

layout variations originate PUFs with different responses.

• Comparative Analysis with other PUFs: A comparative analysis with different PUF archi-

tectures would be both insightful and desirable. A complete survey for the same manufactur-

ing technology comparing the performance of diverse PUF architectures while highlighting

their strengths and weaknesses would contribute to the broader advancement of PUF-based

security solutions.

• Hardware Implementation: Finally, being able to fabricate a dedicated ASIC would pro-

vide real-world data, allowing us to conclude the practicality of this specific PUF architec-

ture.
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DataToNormal.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.stats import norm

4

5 frequencies = ["12.5MHz", "12.5MHz+VCO", "12.5MHz+VC0+VC4", "12.5MHz+All challenges

at 1.1V"]

6

7 # Each column of the "delays" matrix corresponds to a simulation in

8 # the "frequencies" array and presents the delay measured at the n-th measuring

9 # point for said simulation

10

11 delays = [[0.0309, -0.08746, 0.037406, -0.072338],

12 [0.2162, 0.209346, 0.126912, -0.208112],

13 [0.0312, -0.087698, 0.035958, -0.071988],

14 [0.2156, 0.20894, 0.12856, -0.20772],

15 [0.0306, -0.08736, 0.03724, -0.07148],

16 [0.2156, 0.20898, 0.12906, -0.20782],

17 [0.0305, -0.0873, 0.03678, -0.0114]

18 ]

19

20 # Uncomment the following "frequencies" and "delays" and comment the previous ones

21 # to plot the delays at 25MHz

22

23 # frequencies = ["25MHz", "25MHz+VCO", "25MHz+VC0+VC4", "25MHz+All challenges at

1.1V"]

24

25 # delays = [[0.0313, -0.0882, 0.0375, -0.0710],

26 # [0.2149, 0.2114, 0.1257, -0.2094],

27 # [0.0312, -0.0889, 0.0374, -0.0712],

28 # [0.2148, 0.2115, 0.1261, -0.2092],

29 # [0.0304, -0.0879, 0.0377, -0.0704],

30 # [0.2148, 0.2112, 0.1265, -0.2097],

31 # [0.0311, -0.0890, 0.0382, -0.0701]

32 # ]

33
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34 delays = np.transpose(delays)

35

36 plt.figure(figsize=(10, 4))

37

38 for i, delay_values in enumerate(delays):

39 mu, std = norm.fit(delay_values) # Fit my data to a normal distribution

40

41 mean_val = mu

42 std_val = std

43 print(f"Frequency {frequencies[i]} - Mean: {mean_val:.4f}, Std Dev: {std_val:.4

f}")

44

45 x = np.linspace(min(delay_values), max(delay_values), len(delay_values))

46 plt.plot(x, norm.pdf(x, mu, std), label=f’Frequency {frequencies[i]}’)

47

48 plt.xlabel(’Delay’)

49 plt.ylabel(’Probability Density’)

50 plt.title(’Delay Distribution (Fitted to Normal Distribution)’)

51 plt.legend()

52 plt.show()
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PWL_Creator.py

1 from array import *

2 from logging import ERROR

3 import numpy as np

4

5 # --- Initialization and user input

6 print()

7 print("Welcome to PWL file generator ! \n")

8

9 filename = input("Give a name for your file (terminated with .pwl): ")

10

11 n = int(input("How many bits the input has (n): "))

12

13 serial_input = list(input("Introduce your input: "))

14

15 if len(serial_input) != n:

16 raise SyntaxError("n and input don’t have the same length! \n")

17

18 time_unit = input("Define the prefix of the time unit on your PWL file: ")

19

20 bit_time = float(input("Define bit time: "))

21

22 delay = float(input("Define the input’s delay (0 if none): "))

23 # ---

24

25 # --- Generation of the time values

26 pwl_times = array(’f’,[])

27

28 stop = float((bit_time*n) + (0.1*n) + delay)

29 # A bit has to last "bit_time", so for "n" bits => "bit_time * n"

30 # As the decimal values go from [0.0, 0.9], the next bit in the array moves 0.1

31 # So (0,1*n) is added to ensure "bit_time" is equal for all

32

33 for i in np.arange(0, stop, 0.1):

34 i = round(i, 1)

35 pwl_times.append(i)
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36 # ---

37

38 # --- Open and write the PWL file

39 with open(filename, ’w’) as pwlFile:

40

41 final_time = 0

42 count = 0

43 x = 0

44

45 for i in range(0, len(pwl_times)):

46

47 if delay == 0:

48 if count < (10*bit_time):

49 print(f"{round(pwl_times[i],1)}{time_unit}{’ ’}{serial_input[x]}",

file=pwlFile)

50 count = count + 1

51 elif count == (10*bit_time):

52 print(f"{round(pwl_times[i],1)}{time_unit}{’ ’}{serial_input[x]}",

file=pwlFile)

53 count = 0

54 x = x + 1

55 final_time = round(pwl_times[i],1)

56 elif delay != 0:

57 print(f"{round(pwl_times[i],1)}{time_unit}{’ ’}{0}", file=pwlFile)

58 delay = round((delay - 0.1), 1)

59

60 print(f"{final_time+0.1}{time_unit}{’ ’}{0}", file=pwlFile) #Prints the final

line as zero

61 # ---
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