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Abstract

Despite fetal acidemia having a low incidence in developed countries (lower than 0.6%), its quick
diagnosis is essential to prevent irreversible neurological damage, morbidity, or even death. Before
and during birth, the standard procedure for its diagnosis resorts to cardiotocography to assess the
fetal heart rate (FHR) and uterine contractions. However, this method has limitations regarding its
validity, reproducibility, and interpretation agreement.

The simultaneous analysis of the FHR and the maternal heart rate (MHR) has already been
able to overcome one of the main problems described in the literature: the temporary capture of
the MHR as that of the fetus. Linear and nonlinear methods have been studied to improve the
analysis of FHR and MHR, having achieved promising results. Furthermore, previous research
has sustained the possibility of fetal acidemia prediction being improved by nonlinear indices.

The main goal of this work is to estimate quantities related to the causal statistical structure of
coupled FHR–MHR dynamic processes and evaluate their discriminant capacity for the diagnosis
of fetal acidemia. In order to achieve it, several entropy-based measures were implemented, resort-
ing to EntropyHub and ITS Toolkit, in a real database with the simultaneous MHR–FHR signals
from the last two hours before birth to quantify their coupling. The MHR signal was acquired by
electrocardiography (ECG) and the FHR by ultrasound, and they were both already pre-processed.
The database records were divided into two groups: non-acidemic and acidemic fetuses, defining
a threshold of 7.15 for the umbilical artery blood pH.

A correlation analysis supported the reliability of the entropy indices computed by verifying
the expected relationships between them according to their theoretical formulation. Some new in-
teresting associations were found but need further exploration to be validated. Sample Entropy and
Transfer Entropy were found to be able to discriminate between non-acidemic and acidemic fe-
tuses (p-value < 0.05) in the penultimate 10 minutes before birth by resorting to the Mann-Whitney
test, supporting the capacity of information theory-based indices in improving fetal acidemia de-
tection. Finally, the discriminant capacity of the indices for fetal acidemia considering the in-
fluence of time was assessed with Generalised Linear Mixed Models. However, no statistically
significant results were found (p-value > 0.05).

Despite the low sample size (especially the low number of acidemic fetuses), evidence of both
associations between FHR and MHR and the capacity of entropy indices to distinguish acidemic
fetuses were found. Future studies with larger sample sizes would be needed to validate these
findings and possibly recommend the MHR collection in clinical practice, which is done in a
simple and non-invasive way, to improve fetal monitoring.

Keywords: fetal heart rate, maternal heart rate, fetal acidemia, entropy, simultaneous monitoring
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Resumo

Apesar de a acidemia fetal apresentar baixa incidência em países desenvolvidos (inferior a 0,6%),
o seu diagnóstico rápido é essencial para evitar danos neurológicos irreversíveis, morbidade ou
morte. O procedimento padrão para o diagnóstico, antes e durante o parto, recorre à cardiotocografia
para avaliar a frequência cardíaca fetal (FCF) e contrações uterinas. No entanto, este método ap-
resenta limitações quanto à sua validade, reprodutibilidade e concordância de interpretação.

A análise simultânea da FCF e da frequência cardíaca materna (FCM) já conseguiu superar
um dos principais problemas descritos na literatura: a captura temporária da FCM como a do feto.
Métodos lineares e não lineares têm sido estudados com o intuito de melhorar a análise da FCF e
FCM tendo alcançando resultados promissores. Além disso, pesquisas anteriores têm sustentado
a possibilidade de a previsão da acidemia fetal ser melhorada por índices não lineares.

O principal objetivo deste trabalho é estimar quantidades relacionadas com a estrutura estatís-
tica causal do processo dinâmico simultâneo FCF–FCM e avaliar a sua capacidade discriminante
para o diagnóstico da acidemia fetal. Para tal, foram implementadas várias medidas baseadas em
entropia, recorrendo ao EntropyHub e ITS Toolkit, numa base de dados real com os sinais FCM-
FFC simultâneos das últimas duas horas antes do nascimento, para quantificar o seu vínculo. O
sinal de FCM foi adquirido por eletrocardiografia (ECG) e o de FCF por ultrassom, e ambos já
estavam pré-processados. Os registos da base de dados foram divididos em dois grupos: fetos não
acidémicos e fetos acidémicos, a partir da definição de um limiar de 7,15 para o pH sanguíneo da
artéria umbilical.

Uma análise de correlação apoiou a confiabilidade dos índices de entropia calculados, veri-
ficando as relações esperadas entre eles de acordo com sua formulação teórica. Algumas novas
associações interessantes foram encontradas, mas precisam de ser exploradas para serem vali-
dadas. A Sample Entropy e a Transfer Entropy mostraram-se capazes de discriminar entre fetos
não acidémicos e acidémicos (valor de prova < 0,05) nos penúltimos 10 minutos antes do nasci-
mento por meio do teste de Mann-Whitney, suportando a capacidade dos índices baseados na teoria
da informação para melhorar a deteção da acidemia fetal. Finalmente, a capacidade discriminante
dos índices de acidemia fetal considerando a influência do tempo foi avaliada com Generalised
Linear Mixed Models. No entanto, não foram encontrados resultados estatisticamente significa-
tivos (valor de prova > 0,05).

Apesar do pequeno tamanho da amostra (especialmente o baixo número de fetos acidémicos),
foram encontradas evidências de associações entre FCF e FCM e da capacidade dos índices de
entropia de distinguir fetos acidémicos. Estudos futuros com amostras maiores seriam necessários
para validar as conclusões e possivelmente recomendar a aquisição da FCM na prática clínica, que
é feita de forma simples e não invasiva, para melhorar a monitorização fetal.

Palavras-chave: frequência cardíaca fetal, frequência cardíaca materna, acidemia fetal, entropia,
monitorização simultânea
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“The important thing is not to stop questioning.
Curiosity has its own reason for existing.”

Albert Einstein
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Chapter 1

Introduction

1.1 Motivation

Although fetal acidemia has a low incidence in developed countries (lower than 0.6%), cases that

last more than a few hours are usually related to irreversible neurological damage, morbidity,

or death [105], making the early diagnosis essential. Intrapartum fetal monitoring resorting to

cardiotocography (CTG) assesses the fetal heart rate (FHR) – usually with a Doppler ultrasound

– and uterine contractions, and is the standard procedure for its diagnosis before and during birth.

However, it has limitations in its validity, reproducibility, and interpretation agreement [9, 28].

Regarding the FHR signal acquisition, one of the main problems is the temporary capture of

the maternal heart rate (MHR) as that of the fetus, which has been reported to happen in 90% of

the cases where external monitoring is used leading to miss diagnoses of fetal acidemia and fetal

death [63, 121]. Simultaneous analysis of the MHR and FHR has been proposed as a method to

eliminate the MHR–FHR ambiguities and showed an improvement in fetal acidemia detection,

especially in the last hour of labour [63]. Nevertheless, only some studies have assessed the

relationship between MHR and FHR during labour, and MHR tracings analysis also suffers from

reliability problems due to its complexity [18].

Thus, there is an obvious necessity to explore the relationship between FHR and MHR, using

algorithms able to overcome the subjectivity of their analysis interpretation.

1.2 Context

Linear and nonlinear methods have been studied to improve the MHR and FHR analysis, namely

to overcome the subjectivity of common visual analysis [65, 79, 80, 81, 98, 99]. These methods

have been mainly applied to FHR analysis achieving promising results in distinguishing different

thresholds of pH values [28, 65].

Moreover, research aiming to assess the relationship between MHR and FHR during labour

and its capacity to help in the prediction of newborn acidemia has associated non-acidemic fetuses

with a decrease in the MHR–FHR correlations, whereas acidemic fetuses were associated with an
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2 Introduction

increase in these correlations [120]. Suggesting that in fetal acidemia situations, the fetus loses

its autonomy and there is an increase in the maternal–fetal attachment, which is usually related to

stressful situations [5]. These findings indicate that it is possible to improve the capacity to predict

fetal acidemia using combined MHR and FHR analysis.

Entropy-based methods have been successfully applied in heart rate studies. Cross entropy and

information dynamic measures have been getting more attention in the study of bivariate cardiac

systems, for example, to assess the synchronisation between electrocardiographic R–R intervals

and pulse–pulse intervals [89, 151, 163]. Recent papers have started to use them to quantify the

MHR–FHR coupling [7, 60, 99], e.g., in relation to fetal gender or gestational week.

MHR collection is not usual in clinical practice, hence, if the benefit of MHR analysis in

detecting fetal pathologies is confirmed, this study may be one more in the sense of recommending

the collection of this signal, which is done in a simple and non-invasive way, bringing performance

improvements to fetal monitoring.

1.3 Objectives

The main goal of this dissertation is to estimate quantities related to the causal statistical structure

of coupled FHR–MHR dynamic processes and evaluate their discriminant capacity for the diag-

nosis of fetal acidemia. This aim will be pursued by analysing several entropy-based measures

chosen based on their current applications in heart rate studies. These will then be implemented in

a dataset containing the simultaneous FHR and MHR real signals from the last two hours before

birth to quantify their coupling. The results will allow a correlation analysis between the differ-

ent measures. Finally, the computed indices ability to discriminate between acidotic and normal

fetuses will be assessed.

This work is intended to not only explore the FHR–MHR relationship but also to aid clinicians

in interpreting these coupled signals by providing a comprehensive analysis of the capacity of

different entropy-based algorithms to extract information from these signals.

1.4 Outline

In addition to the introduction, this dissertation preparation contains five more chapters describing

relevant information for the objective of this work, the methodology followed, the main results

obtained and the conclusions drawn from these. Chapter 2 focuses on fetal acidemia (causes,

consequences, diagnosis, and prevalence) and intrapartum fetal monitoring. For this last topic,

several FHR and FHR–MHR systems and monitors are tackled. Chapter 3 explores entropy-based

measures developed for univariate and bivariate systems and reviews their current applications on

heart rate signals. Chapter 4 describes the implementation of the methods and the statistical anal-

ysis that will be conducted. Chapter 5 contains the data exploration and the main results achieved

in the course of the work, as well as their significance. Chapter 6 concludes the dissertation with

the main findings, limitations and suggested future work.



Chapter 2

Maternal and fetal heart rate
monitoring in the detection of fetal
acidemia

This chapter focuses on fetal acidemia and its early detection with intrapartum monitoring. It starts

with how the normal mother and fetus exchange of substances occurs and how the disruption of the

oxygen supply to the fetus can lead to fetal acidemia. The causes, consequences, and diagnosis of

this disease are also explained. Then, fetal heart rate monitors are described and their potentiality

to detect fetal acidemia is discussed. Finally, the analysis is extended for simultaneous maternal

and fetal heart rate signals, and some current applications of these coupled signals are presented.

2.1 Fetal oxygen and nutrient supply

Proper fetal oxygenation ensures the viability and adequate development of the fetus. It is a

process that takes place in the placenta and depends on the relationship between the fetus and the

mother [51]. The placenta is the largest fetal organ, with about 22 centimetres by birth, has a flat,

disc-like shape and is usually located along the back uterine wall [131].

The placenta has an essential role during the fetus’s development, being the mean of commu-

nication between the mother and the fetus. It is also responsible for exchanging substances and

gases, namely the supply of oxygen, water with electrolytes, hormones, and other nutrients, and

the removal of carbon dioxide, water, urea, hormones, and other waste products. Furthermore, it

protects against bacterial infections and specific diseases and contributes to the development of

immunity [71, 78].

Regarding the placenta constitution, illustrated in Figure 2.1, it is divided into two major parts:

the maternal, also called decidua basalis, which comes from the endometrium, and the fetal des-

ignated villous chorion (or chorionic plate), which is developed from the outermost embryonic

3



4 Maternal and fetal heart rate monitoring in the detection of fetal acidemia

membrane [131]. Embedded in the decidua are the maternal blood vessels, which are continuous

with the maternal circulation, rising from the uterine wall and ending in the intervillous space,

also comprised in the decidua. Around the mid-first trimester, the maternal spiral arteries are

remodelled to increase the blood supply to the placenta, becoming uteroplacental vessels by the

trophoblast invasion – the outer layer cells of the blastocyst [162]. The chorion comprises the

chorionic villi, which contain a network of fetal capillaries that provide maximum contact area

with the maternal blood located in the intervillous space [71].

Figure 2.1: Anatomy of the placenta. The main components of the placenta are the chorionic villi
from the fetal side, the decidua basalis from the maternal side and the intervillous spaces, which
are filled with maternal blood coming from the spiral arteries, and contact with the chorionic villi
so that the gas exchanges occur. Adapted from [147].

The exchanges between the mother and the fetus occur in the intervillous space, located be-

tween the maternal blood vessels and the fetal chorionic villi. The maternal oxygenated blood

enters the intervillous space from the spiral arteries driven by the maternal blood pressure. Once

there, the blood flows around the chorionic villi and the gas and substances are exchanged. The

oxygen, nutrients, and hormones absorbed by the villi enter the fetal capillaries and the umbilical

vein to reach the fetus. On the contrary, deoxygenated blood has the opposite trajectory reaching

maternal circulation. An important aspect is that the maternal and fetal circulations are separate

and they do not mix. The placental membrane divides fetal blood from maternal blood yet is thin

enough to allow nutrients and waste to diffuse and transfer [51, 131, 71, 78].

Placental blood flow is completely pressure-dependent and not auto-regulated. Oxygen and

carbon dioxide are usually absorbed by simple diffusion and occasionally facilitated diffusion

since the placental tissues are highly permeable to these gases due to their lipophilicity. However,

these exchanges are perfusion-limited. Consequently, insufficient oxygenation of the tissues might
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lead to fetal growth restrictions (FGR), which can be triggered by an abnormality in any of the

steps of the gas transference process [51, 131, 71, 78].

Oxygen transport to the fetal heart and brain is maximised due to the specific properties of

fetal circulation, placental characteristics, and maternal adaptations. In the maternal part, uterine

blood flow is essential for the placental transfer of oxygen and is estimated to increase from around

20–50 ml/min at the beginning of fetal development to 450–800 ml/min at term [102]. In the pla-

centa, the chorionic villi are composed of five types of villi that proliferate, with a large portion of

the exchange surface, in order to maximise contact with maternal blood. The placental membrane

has only about 3.7 µm, which also improves the gases and substances transference between the

mother and fetus [25]. As the fetus lives in a low-oxygen environment, oxygen exchange through-

out the placenta is optimal. The umbilical blood flow and the umbilical venous blood oxygen

content determine the rate of fetal oxygen extraction. When they are low, the oxygen extraction is

increased [25].

2.2 Fetal Acidemia

The fetus relies on the mother for the exchange of oxygen and carbon dioxide, as well as the

availability of glucose via the placenta to sustain aerobic metabolism and proper energy synthesis.

In some situations, adequate maternal blood gas concentrations, uterine blood supply, placental

transfer, and fetal gas transport are not guaranteed. In that case, the normal functioning of the

above-mentioned processes can be disrupted, compromising the oxygen supply for the fetus and,

consequently, leading to hypoxia and acidosis. Hypoxia is referent to a high hydrogen ion concen-

tration in the fetal arterial blood caused by a deprivation of oxygen for a considerable amount of

time, typically during birth [20]. This condition can lead to a decrease in the oxygen levels in the

tissues, which increases the concentration of hydrogen ions. This process is called metabolic aci-

dosis and the state of high hydrogen ion content, defined by a pH lower than 7.15 [59, 109] on the

umbilical artery blood (UAB), is called acidemia [20]. Severe or acute (lasting hours), but mainly

chronic acidemia (days or weeks), are related to long-term sequelae, especially at the neurological

level, and considerable morbidity and death [20, 28].

2.2.1 Causes and risk factors associated

The causes of fetal hypoxia and acidemia are classified as maternal, placental, or fetal, according to

where the oxygen flow is being disrupted. The main maternal causes of fetal acidemia are related

to hypotension – abrupt drop in blood pressure – or hypovolemia – decrease in the extracellular

fluid, diminishing the maternal blood supply and consequently the oxygen delivery to the uterus.

In particular, the maternal causes for acute fetal hypoxia and acidosis include haemorrhage, i.e.

blood loss; vasovagal attacks, characterized by sympathetic system overreaction to certain triggers

leading to a hypotension state accompanied by a sudden loss of consciousness [110]; epidural

anaesthesia since its major adverse effect is uteroplacental hypoperfusion, an incapacity to prop-

erly irrigate the intervillous space of the placenta where the maternal-fetal exchanges occur [3];
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and increased uterine activity, which can interrupt the uterine blood flow by a pressure rise and if

prolonged, as in hypertonus, may cause hypoxia and so acidosis [14]. For the maternal causes of

chronic fetal acidosis, it is possible to highlight severe respiratory or cardiac diseases since they

are associated with reduced blood oxygenation, and connective tissue diseases, e.g. systemic lupus

erythematosus, which implies a reduced blood flow to the placenta [20, 107].

When the oxygen flow is affected in the placenta, it is likely to develop acute hypoxia in

case of abruption, which refers to the detachment of the uterine spiral arteries from the placenta

affecting the placental oxygen transfer rate. On the other side, impaired uteroplacental blood

flow resulting from pregnancies with FGR or pre-eclampsia can be associated with chronic fetal

hypoxia [20, 145]. Pre-eclampsia is a common disease associated with FGR and is triggered by

a poor trophoblast invasion and, consequently, with inadequate spiral arteries remodelling and

placental hypoperfusion in the intervillous spaces [21, 43]. To point out that this reduction of the

uteroplacental blood flow must be of at least 55% for the fetus to develop hypoxia [25].

The oxygen flow can also be interrupted by a compression in the umbilical cord, which can

happen especially during labour and delivery, but it is also possible to occur before labour due to

reduced liquor or a knot in the cord. Similar to the uteroplacental blood flow reduction, umbilical

blood flow has to be reduced by at least 50% to influence fetal oxygen uptake. Therefore, in

the case of an occlusion of the umbilical cord for 3 to 4 min, the fetal oxygen extraction can be

increased and accompany that reduction, not leading to hypoxia [25]. Moreover, several conditions

of the fetus can cause chronic acidemia, such as anaemia from rhesus disease, which occurs when

the maternal blood is RhD negative and thus develops antibodies against RhD antigen that cross

the placenta and destroy the fetal erythrocytes, leading to anaemia [1]; parvovirus infection since

it can lead to anaemia [58]; α-thalassaemia, which is characterized by the fetus not being able to

produce normal fetal haemoglobin, provoking anaemia [42]; feto-maternal haemorrhage, referent

to the loss of fetal blood to the maternal circulation, resulting in anaemia [166]. Fetal anaemia

implies a decrease in the oxygen-carrying capacity of the fetal blood. Arterio-venous shunting in

fetal tumours, serious cardiac structural abnormalities, or arrhythmias can also lead to acidemia

due to the reduced fetoplacental blood flow [20].

In addition, researchers have associated several factors with an increased risk for fetal acido-

sis. Labour with breech delivery was associated with a lower mean cord arterial pH that might be

explained by complications during labour and delivery that could be avoided in a cesarian, such

as difficult delivery of the fetal head and cord prolapse or compression [69, 70]. Administration

of oxytocin triggers uterine contractions, which in excess may lead to an abnormal blood supply

of the placenta [70, 161]. Meperidine administration can also be connected with fetal acidemia

due to maternal hypoventilation induced by the opioid [70]. The existence of pregestational dia-

betes can alter fetal metabolism, increasing umbilical glucose concentrations and reducing oxygen

saturation and oxygen content in the umbilical vein [77, 152]. High-altitude environments are

characterised by reduced oxygen availability and can be the cause of the inability of the fetus to

obtain sufficient oxygen for its development, leading to fetal hypoxia and FGR [165]. In a study

by Kapaya [77], women with urinary tract infections at any stage showed a significantly increased
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occurrence of neonatal acidaemia compared to the control group (18.5% versus 6.6%).

2.2.2 Consequences

The consequences that accrue from both hypoxia and acidosis are categorised according to their

severity and duration and the previous condition of the fetus and are, therefore, classified as acute

or chronic, in case it lasts just a few hours or days, respectively [20]. When this decrease of oxygen

happens in the neonatal phase for a short time, for example, during delivery, the human body is

already capable of sustaining its functioning. Thus, there is just a slight rise in the mortality rate

and the possibility of developing neurological sequelae [20, 41].

On the other hand, if the oxygen supply shortage is before birth, the probability of being related

to long-term morbidity is increased. In [91], it was demonstrated that intrapartum fetal asphyxia

with severe acidosis at delivery could implicate the development of complications in the nervous,

cardiovascular or respiratory systems or in the kidneys. The most common outcome of severe

hypoxia and acidosis is the presence of neonatal cerebral damage caused by the shortage in the

brain oxygen supply, manifesting as early neonatal convulsions and implying a high risk of death

or survival with cerebral palsy. The more severe, the higher the risk of long-term compromise

[85]. One of the most commonly associated brain injuries is hypoxic-ischemic encephalopathy,

caused by the lack of oxygen in the brain and considered a major cause of acute mortality and

chronic neurologic disabilities such as cerebral palsy, mental retardation, and epilepsy [156].

2.2.3 Diagnosis and incidence

The diagnosis of hypoxia after birth is usually obtained by cardio-respiratory depression and mus-

cle tone assessment. Its severity is quantified by resorting to the Apgar Score – a rating out of ten

points with the following characteristics evaluated with 0, 1, or 2 points each: respiratory effort,

reflex irritability, muscle tone, heart rate, and colour [4]. If a score lower than 7 is obtained five

minutes after delivery is considered pathological and is confirmed by analysing the pH value of

the UAB [16].

Before labour, a healthy fetus’s arterial pH is approximately 7.35, whereas, before delivery, the

pH of the UAB is around 7.25. The pH threshold values commonly used in fetal acidemia detection

studies are 7.20 [56, 65], 7.15 [33], 7.10 [65], and 7.05 [171]. However, the consequences above

these thresholds depend on the kind of acidosis and its severity. Respiratory acidosis, which

usually occurs due to ventilation failure and carbon dioxide accumulation [111], is not directly

linked to long-term neurological problems. Contrarily, metabolic acidosis is related to long-lasting

hypoxia and even once hypoxia is reversed, it takes longer to repair its consequences. Thus, it is

connected with irreversible organ damage [28].

It is established that the control of the FHR is impaired by brain oxygen deprivation and

is, therefore, a good indicator of hypoxia. Based on this connection, electronic fetal moni-

toring (EFM) has been used to help detect fetal hypoxia and acidemia during and before birth

[77, 138, 146, 149]. EFM is a frequent technique used to determine fetal well-being during labour
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and delivery, which has essentially superseded fetal scalp pH measurements and intermittent aus-

cultation and has helped prevent associated negative perinatal consequences. The methods used

for the intrapartum monitoring of the fetus will be explored in Section 2.3.

Fetal acidemia has a very low incidence in developed countries, lower than 0.6%. Never-

theless, the cases not rapidly identified are usually related to irreversible neurological damage,

morbidity, or death [105]. Thus, it is essential for obstetricians to be able to quickly identify and

adjust fetal oxygen levels before permanent damages occur.

2.3 Fetal and maternal heart rate systems and monitors

Several studies [135, 141] have demonstrated the clinical benefit of monitoring FHR, empha-

sising the assessment of the fetal heart rate variability (HRV), which is connected to fetal heart

autonomous nervous system regulation. The FHR is susceptible to being influenced by various

factors and the lack of variability is a warning indication, as it can be related to fetal hypoxia and

acidosis, among other pathological conditions.

The FHR baseline is between 110 and 160 beats per minute [160, 106], whereas, for the MHR,

the baseline is established to be in the range of 60 to 100 bpm, and can be considered until 40 bpm

for athletes. An alteration that goes out of these values for more than 10 minutes is considered

tachycardia if above, and bradycardia if below. A lower resting heart rate is related to a more

efficient heart function [11, 83].

2.3.1 FHR signal acquisition

FHR signals can be obtained by resorting to external or internal techniques. However, the use of a

Doppler ultrasound device can be highlighted as the most used in clinical practice for being non-

invasive and able to estimate the real heart rate intervals considered acceptable for analysis [26].

For intermittent measurements resourcing to this technique, the movement of cardiac structures

is detected by applying the handheld Doppler probe to the maternal abdomen. This type of mea-

surement only allows spot-check assessment of the fetal cardiac performance and is dependent on

the operator. Thus, continuous measurements are required in specific situations, especially during

birth. To continuously monitor the FHR resourcing to a Doppler probe, an ultrasound transducer is

fixed on the maternal abdomen before and during labour. Nevertheless, external FHR monitoring

methods are more susceptible to signal loss, inadvertent monitoring of the MHR and artefacts, es-

pecially in case of premature deliveries, high body-mass-index mothers, and during the final part

of labour due to fetal and maternal movements. It may also fail to record fetal cardiac arrhythmias

correctly [11, 68].

Consequently, in the above-mentioned situations, there is the need to resort to an invasive

technique with a direct fetal scalp electrode and fetal ECG since this is the most accurate and

trustworthy method for continuous FHR acquisition. However, this process can only be executed

after the rupture of membranes and the start of cervical dilatation. Moreover, it is associated with

a risk of infection and should be avoided in preterm fetuses [13, 64].
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Additionally, there are several techniques currently being studied but not yet implemented in

clinical practice. Transabdominal electrocardiography (ECG) has been showing promising results

as a non-invasive technique to continuously obtain FHR more reliably than the Doppler ultra-

sound for the second stage of labour and in the presence of maternal movements, but it still faces

difficulties in distinguishing the FHR from the MHR signal [148]. Fetal magnetocardiography

(FMCG) measures faint magnetic fields from the current sources in the fetus heart, outside the

maternal abdomen by super sensitive magnetometers (superconducting quantum interference de-

vice) in magnetically shielded rooms. Despite being a highly effective approach for detecting fetal

arrhythmias and being employed in research settings, it is very expensive and, thus, unsuitable

for clinical routine use [76, 130]. Fetal phonocardiography assesses heart-related sounds and has

been proposed as a complementary tool to analyse FHR, for example, using a telemedicine system

[84]. Lastly, fetal photoplethysmography (FPPG) has been proposed as a low-cost wearable FHR

monitoring method with an acceptable accuracy compared to Doppler ultrasound [55, 68].

2.3.2 FHR monitoring to detect fetal acidemia

Intrapartum fetal monitoring is widely used in most developed countries as a method to help in

the identification of fetal hypoxia/acidosis by detecting indicators of reduced fetal oxygenation.

Particularly, the most common technique resorts to cardiotocography (CTG), which assesses si-

multaneous continuous monitoring of the FHR and uterine contractions, being the FHR usually

obtained by a Doppler ultrasound [11, 82]. It is agreed that continuous CTG should be used in

situations where there is a high risk of fetal hypoxia/acidosis and irregularities are identified dur-

ing intermittent fetal auscultation. The use of continuous intrapartum CTG in low-risk women,

on the other hand, is more controversial. In spite of the lack of evidence regarding its benefits,

this procedure has become the standard of care in many countries and the routine use of CTG for

low-risk women at the entrance to the labour ward has been associated with an increase in unnec-

essary obstetrical interventions, such as cesarean section and operative vaginal delivery, and no

improvement in perinatal outcomes [11, 142]. Moreover, CTG has limitations regarding its valid-

ity, reproducibility, specificity, and inter and intra-observer agreement due to the complex nature

of FHR traces [9, 11, 128].

Thus, research has been performed aiming to automate the detection of fetal hypoxia/acido-

sis by establishing a computerized system for analyzing CTGs. Linear and nonlinear methods to

analyse the FHR have been proposed to improve its validity and consequently the prediction of

acidemia. Promising results have been achieved in the discrimination between normal and aci-

demic fetuses over the minutes before delivery [65, 86, 87, 96, 97]. Moreover, nonlinear indices

were studied as a mechanism to assess the loss of complexity in FHR due to fetal hypoxia, with

the assumption that the loss of complexity can be an indicator of pathological situations [16, 132].

Despite the promising results that were achieved with nonlinear approaches, until this moment,

only statistical tools have been implemented in clinical practice [28].

One of the main problems described in the literature [63, 121] concerning the FHR signal

acquisition is the temporary capture of the MHR as that of the fetus, especially when external
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monitoring is used – it has been reported in up to 90% of intrapartum recordings – or with internal

monitoring in cases of fetal death. This contamination of the FHR can lead to miss diagnosis of

fetal acidemia and fetal death.

2.3.3 MHR and FHR simultaneous signals

Simultaneous monitoring of the MHR and the FHR can be beneficial in certain maternal health

circumstances and when differentiating between maternal and fetal heart rates is complicated [11].

It is established that maternal and fetal physiological parameters, such as blood gas exchange, are

inextricably linked [40, 100]. There is also evidence that considerable MHR variations occur

during the final minutes of labour in connection to the frequency of uterine contractions, which is

directly associated with fetal acidemia. Thus, the analysis of both FHR and MHR can be able to

provide useful information on the health state of the fetus.

Continuous simultaneous FHR and MHR monitoring is possible with some CTG monitors,

allowing a comparison of both signals and easier detection of overlapping segments. The FHR

signal is usually acquired by resorting to a Doppler ultrasound sensor placed in the maternal ab-

domen, whereas the MHR can be obtained either by ECG, where a sensor is connected to three

electrodes on the maternal thorax [62], or with a pulse oximetry sensor and PPG [121]. Pulse

oximetry is a technique to determine blood oxygen saturation using a clip-like device placed on a

body extremity, such as a finger, that measures the light absorption of arterial blood [74].

In clinical practice, MHR recordings with ECG are often not feasible during labour because

fetal monitors might not include this technique or the healthcare provider or the mother might

believe it is unnecessary and disrupts the birthing experience. Alternatively, pulse oximetry can be

used [62]. In some recent monitors, this technique has been incorporated in the tocodynamometer

– a pressure transducer to measure uterine contractions – allowing continuous MHR monitoring

without additional equipment [11]. However, the measurements collected with PPG are less ac-

curate than those recorded with ECG, particularly when there is increased physical movement,

namely during birth [92].

2.3.4 Literature review on MHR and FHR simultaneous monitoring

In a study by Pinto [121], 61 MHR and FHR simultaneously acquired records from the final

hour of labour were analysed and MHR-FHR ambiguities were reduced by subtracting the MHR

signal from the FHR when the absolute difference between them was less or equal to 5 beats per

minute. This removal improved FHR tracing categorisation. However, broader studies are needed

to corroborate these findings, and they may reduce unnecessary interventions associated with false

positives for acidemia while maintaining sensitivity.

Furthermore, simultaneous analysis of maternal and fetal HRV was performed by Gonçalves

[63] to assess their development throughout labour and their ability to detect newborn acidemia

by measuring variables linked to autonomous nervous system function, sympatho-vagal balance

and functioning of complex heart rate regulation systems. In 51 singleton-term pregnancies, MHR
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and FHR were simultaneously recorded in the last two hours of labour and compared with new-

born UAB pH. The results suggested that FHR changes were also present in MHR, with labour

progression and fetal acidemia.

Moreover, the research by Pinto [120] aiming to assess the relationship between MHR and

FHR during labour and its capacity to help in the prediction of newborn acidemia has associated

non-acidemic fetuses with a decrease in the MHR–FHR correlations, whereas acidemic fetuses

were associated with an increase in these correlations. The study assessed 59 simultaneous MHR

and FHR recordings from the final minutes of labour that were analysed according to the FIGO

guidelines [8]. The results suggested that in fetal acidemia situations, the fetus loses its auton-

omy and there is an increase in maternal–fetal attachment, which is usually related to stressful

situations [5]. These findings indicate that it is possible to improve the capacity to predict fe-

tal acidemia using combined MHR and FHR analysis. In the three studies [63, 120, 121] just

described, MHR signals were obtained by ECG electrodes placed on the maternal chest and by

pulse oximetry, whereas the FHR was obtained by a conventional ultrasound sensor placed on the

maternal abdomen.

Other applications of these simultaneous signals have been pursued. Barrett [17] described a

case report where an exact correlation between MHR and FHR as a response to different stimuli

confirmed that the fetal scalp electrode was capturing the MHR and it was a case of fetal death.

Khandoker [80] studied the alterations in MHR–FHR coupling in abnormal fetuses and found a

weaker influence of FHR on MHR and a higher influence of MHR on FHR for these fetuses. In

another study, the same researcher [79, 81] proved the capacity of MHR–FHR coupling strengths

with fetal and maternal HRV parameters to estimate fetal development. Sancho-Rossignol [136]

pointed out an association between mother exposure to domestic violence during childhood and a

negative correlation between MHR and FHR in response to crying infant stimulus, while the MHR

reactivity increased, the FHR reactivity reduced. Sarkar [137] developed a deep-learning approach

to predict maternal and fetal stress from combined MHR and FHR ECG signals with very good

accuracy and reproducibility.

Considering the applications of the simultaneous analysis of FHR and MHR presented, it is

possible to verify its potential in revealing useful information relative to the health state of the

fetus, being able to improve fetal monitoring performance. Thus, although MHR collection is

not usual in clinical practice, it can be performed in a simple and non-invasive way, and if the

benefit of MHR analysis in detecting fetal pathologies is confirmed, the collection of MHR can be

recommended for clinical practice.
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Chapter 3

Information theory-based indices

This chapter focuses on information theory-based methodologies and their applicability to HR

studies. It starts by introducing the relevance of these pattern recognition techniques in clinics.

Then, several entropy measures for univariate and bivariate systems are detailed and their current

heart rate applications, emphasising FHR, are reviewed.

3.1 Entropy-based measures and clinical diagnosis

Pattern recognition techniques have been increasingly applied to biomedical data for clinical di-

agnostic and therapeutic support because they allow clinicians to make better-informed decisions

in a timelier manner. However, in order to keep up with the evolving clinical measurement and

monitoring systems, this is an area that requires continuous updates [6].

Uncertainty is an inseparable aspect of medical diagnosis problems and human life processes:

a symptom is an uncertain indication of a disease as it may or may not occur with or as a result

of the disease [72]. Furthermore, the dynamics of complex biological systems are commonly

described as the outcome of interactions among diverse system components, each of which has

some autonomy but also interacts with one another to create nontrivial collective behaviours [47].

Hence, human physiology can be modelled and characterised according to how they control the

disorder caused by entropy, keeping the vital cycle equilibrium [66].

Entropy can be defined as the degree of complexity of the distribution of the samples of a

signal, i.e., the rate of information production, and can be obtained by measuring how predictable

a sampled signal is. A periodic variable will have a low entropy value, whereas a white noise will

present a high entropy. Usually, in biomedical signals, entropy is not calculated directly over the

samples of the series but over patterns of a certain length, measuring the complexity of the pattern

distribution as a function of the pattern length [126, 172].

By estimating the entropy of a signal, it is possible to detect the existence of patterns. The

lowest the entropy value, the fewer patterns the signal will have. Correlation between measures

13
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quantifies their level of association. It may indicate redundancy between different entropy mea-

surements, meaning they provide the same information about the signals if correlations are high,

or indicate that there is no measure in common when correlations are close to zero.

The temporal evolution of simultaneous signals can be assessed in the context of information

dynamics by decomposing its information into amounts and characterising it. The system activity

can be mapped with a set of variables and then, the statistical dependence among the observed re-

alisations of these variables can be collected in the form of multivariate time series to characterise

the activity of the system [47]. The field of information dynamics is developing quickly due to the

creation of useful measures for multivariate recordings and the availability of open-access tools

for sharing them [124].

Information dynamics measures can also be used to analyse nonlinear correlations in the dy-

namical structure of a stochastic process in order to determine its degree of regularity. In bivariate

systems, the predictive information can be broken down into two parts: the information that is

stored within the target system and the information that is transferred to it from the other con-

nected system. These methods can be used to analyse a single time series by comparing its present

states with its past states or to study a bivariate system by comparing two different variables.

3.2 Traditional entropy methods

Entropy functions can be divided into the following categories: Base, for a single univariate time

series; Cross, between two univariate synchronised time series; Multiscale, for a single univariate

time series, calculated using a base entropy estimator for different time scales [53].

3.2.1 Univariate entropy methods

To evaluate univariate heart rate signals, the following base entropy methods will be analysed:

Approximate Entropy, Sample Entropy, Fuzzy Entropy, Permutation Entropy, Conditional En-

tropy, Dispersion Entropy, Bubble Entropy and Attention Entropy. Multiscale Entropy will also

be studied to compute the previously mentioned methods for different time scales.

3.2.1.1 Approximate Entropy

Pincus introduced Approximate Entropy (ApEn) [114] in 1991 as a method for determining the

degree of regularity and unpredictability of oscillations in time-series data. It was motivated by the

potential of nonlinear dynamic analysis to understand biological systems and was developed by

adapting the Kolmogorov entropy, the rate of generation of new information, to be able to analyse

relatively short and noisy clinical data. ApEn analyses the logarithmic probability of patterns close

to each other to remain close in the subsequent comparison with a longer pattern. Lower values of

ApEn mean more frequent patterns and a high degree of regularity. In clinical analysis, a relatively

low ApEn value could be predictive of some pathology [39, 112, 132].
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To compute ApEn, two input parameters must be defined: m, the length of the vectors to

compare, and r, the distance threshold. Given N data points from a data signal u(i), with i =

1, ...,N−m+1, vector sequences are formed, from x(1) through x(N−m+1), defined by x(i) =

[u(i), ...,u(i + m− 1)]. Based on the distance between the vectors x(i) and x( j), d[x(i),x( j)],

defined as the maximum difference between their scalar components, the following correlation

measure is defined as

Cm
i (r) =

number of j ≤ N−m+1 such that d[u(i),u( j)]≤ r
N−m+1

. (3.1)

The average of the natural logarithm of the Cm
i (r) values can be obtained by

Φ
m =

1
N−m+1

N−m+1

∑
i=1

ln(Cm
i (r)) (3.2)

As N is a finite number in practice, the statistical estimation ApEn(m,r) can be computed as

ApEn(m,r,N) = Φ
m(r)−Φ

m+1(r) (3.3)

This method can distinguish a wide variety of systems, and for a small dimension value, being

the most common m = 2, this estimation can be executed without the need for a vast amount of

points. The threshold r is usually calculated with respect to the standard deviation σ , ranging

between 0.1 to 0.25 times the standard deviations of u(i) [112].

On the other hand, this algorithm counts each sequence as matching itself to avoid ln(0),

leading it to be a biased statistic. Consequently, ApEn is highly dependent on the record length

and uniformly lower than expected for short datasets. It also lacks relative consistency since when

comparing two signals by calculating their ApEn value, one is not always higher than the other

independently of the conditions. Additionally, it relies on two essential parameters: the dimension

m and the threshold r, and small modifications on these may lead to a drastic change in the entropy

value [132].

3.2.1.2 Sample Entropy

In 2000, Richman and Moorman [132] presented Sample Entropy (SampEn), a similar method to

ApEn but that tries to overcome its main disadvantages. This method eliminated self-matches in

order to reduce the bias; it is simpler than the ApEn algorithm (improving by 50% the calculation

time); it is independent of the record length; and presents relative consistency in cases where ApEn

does not.

SampEn is defined as the negative natural logarithm of the conditional probability of two

sequences that have been similar for m points to keep similar at the next point, excluding self-

matches. It differs from ApEn in the fact that the probability value is obtained from the logarithm

of conditional probability and not from the ratio of the logarithmic sums. A lower SampEn value

also indicates the existence of more frequent patterns in a series.
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For the computation of SampEn the establishment of values for m and r is also required.

Considering Bm
i (r) as the probability of two vectors to have m similar points, it can be defined as

(N−m−1)−1 times the number of vectors xm( j) similar to xm(i) within r, where j = 1, ...,N−m

and j 6= i to exclude self-matches. Similarly, considering Am
i (r) as the probability of two vectors to

have m+1 similar points, it can be defined as (N−m−1)−1 times the number of vectors xm+1( j)

similar to xm+1(i) within r, where j = 1, ...,N−m and j 6= i. The averages of Bm
i (r) and Am

i (r) are

given by

Bm(r) =
1

N−m

N−m

∑
i=1

Bm
i (r) (3.4)

Am(r) =
1

N−m

N−m

∑
i=1

Am
i (r) (3.5)

Since the number of matches is always less than or equal to the number of possible vectors, the

ratio Am(r)/Bm(r) is a conditional probability less than unity. Finally, being B the total number

of template matches of length m and A the total number of template matches of length m+ 1,

SampEn(m,r,N) can be calculated by

SampEn(m,r,N) =− ln(A/B) (3.6)

Similarly to ApEn, SampEn has the disadvantage of depending on the values chosen for m

and r and slight modifications to these may lead to a drastic change in the entropy, as referred in

[39, 61, 132].

3.2.1.3 Fuzzy Entropy

Both ApEn and SampEn use the Heaviside function to determine how similar two vectors are,

which results in a typical two-state classifier that can be challenging to use in real-world situations

where borders might be hazy. Thus, in 1965, Zadeh [169] defined fuzzy sets as a way to charac-

terise such input-output interactions in an environment of imprecision. In fuzzy sets, each point is

associated with a membership degree according to how much a pattern belongs to a class [30].

Fuzzy Entropy (FuzzEn), introduced by Chen [30] in 2007, measures the similarity of two

vectors based on their shapes by using the fuzzy set concept and an exponential function as the

fuzzy function to ensure that the similarity is continuous and the self-similarity is the maximum

(convex) [30]. To compute FuzzEn, it is necessary to define the embedding dimension, m, and the

distance threshold, r. For a time series Xi let um(i) and um( j) be vectors of length m. Considering

dmn
i j the infinity norm distance between vectors (where n is the exponential parameter) and an
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exponential membership function, the average of the similarity degree among vectors Xm
i is

Φ
m =

N−m

∑
i=1

(
1

N−m−1

N−m

∑
j=1, j 6=i

exp(−dmn
i j /r)

)
(3.7)

Fuzzy Entropy is then given by [27]

FuzzEn(X ,N,m,r,n) = ln[Φm(n,r)]− ln[Φm+1(n,r)] (3.8)

FuzzEn overcomes the poor statistical stability of ApEn and SampEn by using fuzzy sets [88]

and mitigates the arbitrariness of the threshold choice [27].

3.2.1.4 Permutation Entropy

Permutation Entropy (PermEn), developed in 2002 [15], computes the Shannon Entropy (ShEn)

from a normalised histogram of ordinal patterns identified in subsequences selected from a time

series when sorted in ascending order. The embedded dimension m determines the length of these

subsequences.

ShEn was introduced in 1948 [139] and to compute its value for a N data time series, X = {xi},
it measures the amount of information H(X) by determining a function of its joint probability

density function [22], as follows

H(X) =−
N

∑
i

p(xi)ln(p(xi)) (3.9)

PermEn generates subsequences from X starting on sample x j with length m, xm
j = {x j, ...,x j+m−1},

which are assigned a default growing set of indices given by πm = {0,1, ...,m− 1}. The subse-

quence xm
j is then sorted ascending, and modifications in sample order are reflected in the vector

of indices. The resulting new indices vector is compared with all possible m! ordinal patterns of

length m and the counter ci keeps track of the number of similarities found. A histogram is built

with the results obtained and each bin is normalised by N− (m−1) giving the probability of each

ordinal pattern. This way the vector of probabilities can be written as [15, 38]

pi =
ci

N− (m−1)
(3.10)

And the PermEn(X ,m,N) is obtained by

PermEn(X ,m,N) =−
m!−1

∑
k=0

pklog(pk) (3.11)

This method stands out by its ability to extract relevant information about the dynamics of a

system with minimum computational cost and robustness to noise. Besides, it can be applied to

any type of time series [170]. On the other side, it only emphasises ordinal information rather than
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amplitude, and there are potential negative effects of identical values in subsequent iterations due

to motif ambiguity [38].

3.2.1.5 Corrected Conditional Entropy

Corrected Conditional Entropy (cCondEn), presented in 1998 by Porta [122], is based on Condi-

tional Entropy (CondEn) and tries to overcome some of its disadvantages, mainly by improving

its capacity to analyse short time series.

CondEn quantifies the amount of information conveyed by a sample of the series when the

preceding L-1 samples are known. If a new sample has no new information on the series, meaning

it is totally regular and its previous samples can accurately anticipate it, the conditional entropy is

zero. If the future sample cannot be entirely deduced from the past, the series is complex, and the

conditional entropy is high [67]. To obtain the Conditional Entropy, a time series {Xi} of length N

is normalised and a reconstructed L-dimensional phase space is obtained by considering N−L+1

vectors xL(i). Considering pL as the joint probability of the pattern xL(i), CondEn can be derived

from ShEn of xL(i), being this last one written as

ShEn(L) = E(L) =−∑
L

pL log pL (3.12)

Thus, CondEn can be written as a variation of the ShEn with respect to L [122]

CondEn(L) = E(L/L−1) = E(L)−E(L−1) (3.13)

One of the issues with CondEn that have been noted is that regardless of the nature of un-

derlying dynamics, CondEn drops to zero as a function of L (the number of samples used) when

estimating from a short data series [67].

To overcome this problem, cCondEn was designed based on the search for the minimum of

the function defined as

cCondEn(L) = Ê(L/L−1)+ Êc(L) (3.14)

In this function, Ê(L/L− 1) is the estimate of the CondEn: Ê(L/L− 1) = Ê(L)− Ê(L− 1)

and each of its components represent the estimate of the ShEn for L and L-1 samples respectively,

and can be obtained by approximating the joint probabilities pL with the sample frequencies. The

corrective term Êc(L) is given by the percentage of single points in the L-dimensional phase space

times the estimated value of the ShEn for L = 1 [122].

Even for small data segments (about 300 hundred heartbeats), cCondEn can give a trustworthy

measure of complexity. This complexity index is calculated without any a priori selection of the

number of prior samples required to predict the future dynamics, in contrast to the approximate

entropy calculation proposed by Pincus [114] where L is fixed to 2 [67, 122].
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3.2.1.6 Dispersion Entropy

In 2016, Rostaghi [133] created Dispersion Entropy (DispEn) to address several drawbacks of

existing approaches, such as Sample Entropy’s lack of time efficiency for real-time applications or

Permutation Entropy’s failure to take into account variations in amplitude values. The combination

of Shannon entropy and symbolic dynamics created DispEn, which can measure the degree of

irregularity of studied signal segments quickly while keeping improved discriminating abilities.

The algorithm to compute DispEn of an univariate time-series x j of length N can be categorised

into four main steps:

1. The first step is mapping the time series to c classes labelled from 0 to 1, using a linear or

non-linear mapping function.

2. A number of classes (c) is then mapped to the resulting signal by being dispersed over its

amplitude range. Each sample is assigned to the closest class based on its amplitude. The

outcome is a classified signal z j. Since the signal contains m members, each of which can

be one of the numbers from 1 to c, the number of different dispersion patterns that can be

given to each time series zm,c
i is equal to cm.

3. For each of cm potential dispersion patterns, relative frequency is obtained by dividing the

number of dispersion patterns by the total number of embedding signals:

p(πv0v1...vm−1) =
Number

{
i | i≤ N− (m−1)d,zm,c

i has type πv0v1...vm−1

}
N− (m−1)d

(3.15)

4. Based on ShEn, the embedding dimension m, time delay d, and the number of classes c,

DispEn is calculated as follows:

DispEn(x,m,c,d) =−
cm

∑
π=1

p
(
πv0v1...vm−1

)
ln
(

p
(
πv0v1...vm−1

))
(3.16)

DispEn originated from SampEn and PermEn. Thus, it uses the tolerance r to be more robust

to noise, and the dispersion patterns are based on the permutation patterns but include equal am-

plitude values in embedding vectors as well, considering not only the ordinal structure of a time

series but also the differences between sequential samples [75, 133].

3.2.1.7 Bubble Entropy

In 2017, taking into account the fact that the selection of the parameters used to obtain a practical

estimation is a critical element in any definition of entropy, Manis [94] proposed Bubble Entropy

(BubbEn) aiming to not only eliminate the necessity of r but also minimise the importance of the

second parameter m. BubbEn estimates the complexity of a time series by measuring the entropy

of the series of swaps necessary to (bubble) sort its portions of length m when adding an extra
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element. Thus, complexity is considered as being increased variability in the ordering of samples

across scales rather than a lack of matching patterns [95].

The core algorithm of BubbEn is based on Permutation Entropy. BubbEn computes the rel-

ative frequency of the necessary swaps to obtain an ordered subsequence rather than the relative

frequency of the ordinal patterns. The first step performed by the researchers was the development

of the Conditional Rényi Permutation Entropy (CondRenPermEn), which combined Conditional

Permutation Entropy (CondPermEn) and Rényi Permutation Entropy (RenPermEn), taking advan-

tage of the PermEn and inspired by the sorting method of Rank–Entropy (RankEn) [38, 94].

First, using a bubble sort method, each subsequence x j
m is sorted in ascending order and the

counter vector c maintains all swaps required in each instance, with a limit provided by [0, m(m−1)
2 ].

Similarly to PermEn, each histogram bin is normalised by N−m+ 1. The following step is the

calculation of the Rényi entropy of order 2 since RenPermEn was stated to achieve the best results

when using a quadratic approach [94]. The RenPermEn is calculated from all of the resultant

relative frequencies π , accounting for how probable a number of swaps are [38].

Hm
2 (X) =−log

m(m−1)
2

∑
k=0

p2
k (3.17)

Following the CondPermEn algorithm, which determines the information contained in sorting

the m+ 1 value among the previous m when their order is already known: CondPermEn(m) =

PermEn(m+1)−PermEn(m) [38, 94], and RenPermEn, CondRenPermEn is obtained by

CondPermRenEn =
Hm+1

2 −Hm
2

log(m+1)
(3.18)

From the number of steps required to sort each vector, the CondPermRenEn of the distribu-

tion (Hm
swaps) is computed for m+ 1 and m, and BubbEn(X ,m,N) is obtained by normalising its

difference.

BubbEn(X ,m,N) =
Hm+1

swaps−Hm
swaps

log(m+1
m−1)

(3.19)

BubbEn presents some advantages over other entropy measures: it does not require defining

the parameter r; above a given value of m the distinguishing ability and stability of the method are

not significantly dependent on m, allowing it to be an almost parameter-free method. However,

the independence from the parameters comes with high computational costs, which makes this

method impractical for large-scale data [94, 132].

3.2.1.8 Attention Entropy

Typically, entropy methods focus on the frequency distribution of all the occurrences in a time

series, which demands at least a few thousand data points, restricting their practical applications.
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Furthermore, these methods are also sensitive to parameter settings. Considering these shortcom-

ings, in 2020, an entropy approach denominated Attention Entropy (AttnEn) [168] was proposed

with the major innovation being that it assesses the frequency distribution of the intervals between

the key observations in a time series instead of calculating the frequency of all observations. The

most significant benefit is the capability to discriminate between two series with the same fre-

quency distribution of the patterns but different distributions of the intervals of the key patterns.

Attention entropy is computed in three stages: define the key patterns; determine the intervals

between two adjacent key patterns; and compute the Shannon entropy of the intervals.

Given a finite series X, to detect whether a point is a key pattern, a point xi is defined as a peak

point if it satisfies one of the following conditions:

• xi−1 < xi and xi > xi+1, where xi is defined as local maxima;

• xi < xi−1 and xi < xi+1, where xi is defined as local minima.

If each point represents one state of a system, the change in state may be viewed as the system’s

adaptation to the environment, which is predicted to be complicated for complex systems. The

peak points show the local upper and lower boundaries of the state changes and, therefore, are

possible key patterns.

Having the key patterns defined, the interval i− j between two adjacent key patterns, where x j

is the key pattern that precedes xi, can be calculated. There are four cases to consider:

• Intervals of local maxima to local maxima (Max−Max);

• Intervals of local minima to local minima (Min−Min);

• Intervals of local maxima to local minima (Max−Min);

• Intervals of local minima to local maxima (Min−Max).

Any of these cases can be chosen or the results of the four separate analyses can be merged by

computing the average of the four individual entropy values. The second approach was highlighted

as the recommended method since it can smooth possible data abnormalities and the existence of

more data can make the method suitable to analyse shorter time series.

Then, the frequency of all intervals is calculated and the Shannon entropy is computed over

the frequency distribution of the intervals.

AttnEn has the virtue of not requiring any parameter tuning, being robust to time-series length,

and taking just linear time to calculate. However, there is a need to define the key patterns in

advance. Using peak points as key patterns has the disadvantage of being sensitive to outliers

and noise. Moreover, the specificity of the key patterns may difficult the validation of the result.

Defining different key patterns and combining their results can overcome these limitations [168].
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3.2.1.9 Multiscale Entropy

When studying pathologic processes including cardiac arrhythmias such as atrial fibrillation, which

are related to erratic outputs, traditional entropy approaches indicate higher complexity values than

healthy cardiac rhythms exhibiting long-range correlations. This paradox might be driven by the

fact that these entropy metrics are based on single-scale analysis, not considering the complex

temporal variations intrinsic to healthy physiologic dynamics [34].

Hence, in the early 2000s, Multiscale Entropy (MSE) [34, 35, 37] was introduced aiming to

assess the complexity of time series by taking into account several time scales in physical systems.

Given a one-dimensional discrete time series of length N {x1, ...,xN}, consecutive coarse-grained

time series {y(τ)} are constructed by dividing the original dataset into non-overlapping windows

of length τ and averaging the data points inside each of them, as depicted in Figure 3.1.

Figure 3.1: Example of the coarse-graining procedure performed by the Multiscale Entropy algo-
rithm for scales 2 and 3. Adapted from [37].

Each element of the coarse-grained time series is calculated as a function of the scale factor τ ,

being y j a data point in the newly constructed time series and xi a data point in the original time

series:

y(τ)j =
1
τ

jτ

∑
i=( j−1)τ+1

xi,1≤ j ≤ N
τ

(3.20)

The first scale, y(1), corresponds to the original time series and the length of each coarse-

grained time series is calculated by N/τ . Finally, a defined base entropy measure is calculated for

each coarse-grained series and is plotted as a function of τ [34, 35, 37].

The inclusion of multiple entropy measurements allows the assessment of complexity at shorter

and longer time scales and the measurement of the overall complexity of a system by calculating

the sum of the entropy values for each time scale (complexity index). By examining different time

scales, for example, of the heart rate dynamics, it is possible to properly assess how a disease

impact the cardiac rhythm on its overall dynamic system [23].

However, it can happen that when analysing a short period of time, what appears to be a

slight deviation of the baseline, is in fact a dynamical pattern that can only be identified in a more

extended time interval. So, to properly describe a time series, a relatively long time series (a couple
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of thousand data points) with stationary data might be needed [36]. Moreover, the understanding

of how different scales of complexity in a physiological system relate to one another and how they

are affected by regulatory processes is not always clear [57] and MSE has been considered biased

by some studies [155] since the similarity criteria are kept constant over all scales, even though

variance decreases with scale.

3.2.2 Bivariate entropy methods

To evaluate the synchrony between MHR and FHR, the cross-entropy methods Cross-Approximate

Entropy, Cross-Sample Entropy, Cross-Fuzzy Entropy, Cross-Permutation Entropy, and Cross-

Conditional Entropy will be detailed.

3.2.2.1 Cross-Approximate Entropy

In order to assess the degree of complexity between two univariate synchronised time series,

Cross-Approximate Entropy (XApEn) [113, 116] was developed having as base the ApEn al-

gorithm. Similarly to this last one, XApEn requires the input of the values for both m and r

parameters. Despite the ApEn threshold value being calculated with respect to the standard devia-

tion of the series, in XApEn the standard deviation is by definition set to one, due to the obligatory

standard scoring [116].

Given the paired time series u(i) and v(i), this method measures the regularity of v patterns

to be similar to u patterns with length m and a tolerance of r [115]. Standard scoring must be

performed to allow the comparison between vectors from different sources and it implies central-

isation and normalisation of the series given by (x− µ)/σ , where x is the time series, µ is the

mean and σ is the standard deviation. Lower values of XApEn indicate lower asynchrony, i.e.,

more matches of patterns between the series [144].

XApEn has some limitations. First, since the comparison is being held between two different

time series data, self-matches cannot occur, which means that it is possible not to have matches and

consequently to have a logarithm of zero in the algorithm, making the estimation impossible [144].

In order to solve this, if a template is unable to find at least one match for m+1 points, a probability

must be assigned to it. Second, due to the logarithms inside the summation, the XApEn algorithm

is direction-dependent: vectors from the time series u are considered the template to compare the

vectors from v [132]. Moreover, the unreliable estimation of conditional probabilities is a source

of inconsistency, the parameters required (m and r) are mutually dependent and there are high

computational costs for long time series [144].

3.2.2.2 Cross-Sample Entropy

Richman and Moorman [132] developed the Cross-Sample Entropy (XSampEn), having as a base

the SampEn algorithm, in an attempt to overcome the XApEn main disadvantages. The XSampEn

algorithm determines how many vectors conformed by u and v occur for a statistically significant
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range that could be understood as a similarity [129]. A lower XSampEn value also indicates a

higher synchrony degree between the time series.

XSampEn only requires that one pair of vectors in the two series match for m+ 1 points.

Moreover, this method is not direction-dependent. However, it still requires the definition of the

parameters m, which usually takes 1 or 2 as a value, and r, for which the values recommended are

between 0.1 and 0.25 [132].

3.2.2.3 Cross-Fuzzy Entropy

The same group of researchers that developed FuzzEn created Cross-Fuzzy Entropy (XFuzzEn)

[167], which can be considered an adaptation of the first one to analyse bivariate systems. This

measure quantifies the synchrony of patterns between two distinct but intertwined signals, like

XApEn and XSampEn, differing from the previous ones by using fuzzy sets instead of the con-

ventional two-state classifier. Similar to FuzzEn, this method evaluates the similarity of vectors

based on their shapes – with an exponential function as the fuzzy function [167].

In order to compute the XFuzzEn of a bivariate system, it is necessary to define three param-

eters: m, the length of sequences; r, the width of the exponential function; n, the boundary of the

exponential function [167].

3.2.2.4 Cross-Permutation Entropy

PermEn incorporates desirable characteristics, such as its capability to detect both linear and non-

linear dependence and its applicability on regular, chaotic, noisy, or real-world time series. In-

spired by these, Shi [140] developed Cross-Permutation Entropy (XPermEn), a permutation-based

approach to detect the correlation between two synchronous time series. A low value of XPermEn

indicates a high coupling strength between two signals.

The algorithm to compute XPermEn differs from PermEn since the permutation pattern was

replaced by the count of intersection points, and the probability distribution was redefined. How-

ever, it kept some of its advantages: it is simple, stable and efficient [140].

3.2.2.5 Cross-Conditional Entropy

Cross-Conditional Entropy (XCondEn) is an extension of the corrected Conditional Entropy to

measure the degree of uncoupling between two time series. cCondEn quantifies the amount of

information carried by the signal when its prior samples are known [122]. Thus, given that one

signal has been observed and is fully understood, XCondEn may be viewed as a measure of the

unpredictable nature of the other related signal. The uncoupling of signals is measured by the

minimum value, which indicates how dependent the signals are on one another: a low XCondEn

indicates a high dependency between the signals [2].

XCondEn, which produces accurate estimates even from small data segments, employs an

estimator of the uncoupling function. This approach enables quick calculations and makes it
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easier to use data collected in actual experimental circumstances where long-term recording is

impractical [2].

3.3 Information Dynamics

For the information dynamics measures, Mutual Information, Information Storage and Informa-

tion Transfer were explored. Self-Entropy and Transfer Entropy were resorted to as a way to

compute Information Storage and Information Transfer, respectively. The concepts of Information

Storage and Information Transfer form the basis of information dynamics, an evolving promising

field to study the complex behaviour of dynamic systems.

3.3.1 Mutual Information

Introduced in the 90s by Collignon, Maes, Viola and Wells [93, 159, 163, 164] for the registration

of multimodality medical images, mutual information (MI) quantifies how much information one

random variable has about another. It is the reduction in uncertainty of one random variable as a

result of knowing the other.

Being X and Y random variables and H the Shannon Entropy, the mutual information I(X ;Y )

is given by

I(X ;Y ) = H(X)−H(X |Y ) (3.21)

The MI metric quantifies the degree of dependency between two random variables, i.e., the

higher the MI value, the higher the dependency between the variables. MI is always non-negative

and equals zero if and only if X and Y are independent. Moreover, it corresponds to the intersection

of the information in X with the information in Y. Since X reveals as much about Y as Y about X,

the reduction of uncertainty of X due to the knowledge of Y is equal to the reduction of uncertainty

of Y due to the knowledge of X. Thus, MI is symmetric in both X and Y [153, 158].

3.3.2 Information Storage and Transfer

Information storage (IS) assesses nonlinear correlations quantifying the new information con-

tained in the present of a variable but not in its past, the amount of information carried by the

present that can be explained by the past and the amount of information in the past of a variable

that is relevant to predicting its future [46].

Information Transfer (IT) can be explained as the information provided by a source about a

destination’s next state that was not contained in the past of the destination [29]. It is a directional

signal or communication of dynamic information [90].

Considering a univariate system composed by Y, the information generated by Y (HY ) is the

sum of the information stored from its past (SY ) and the new information (NY ) as represented in

Figure 3.2.
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Figure 3.2: Graphical representation of a univariate system described by information dynamics,
where the information of Y (HY ) can be divided into the information stored from its past (SY ) and
the new information (NY ). Adapted from [45].

On the other hand, if Y belongs to a bivariate system also composed of X, the information

generated by Y (HY ) includes the information stored in Y from its past (SY ), the information

transferred from X to Y (TX→Y ) and the new information (NY ) as depicted in Figure 3.3.

Figure 3.3: Graphical representation of a bivariate system described by information dynamics,
where the information of Y (HY ) can be divided into the information transferred from a related
variable (TX→Y ), the stored from its own past (SY ) and the new information (NY ). Adapted from
[45].

3.3.2.1 Self-Entropy

Information Storage can be computed through Self-Entropy (SE), a measure of the amount of

information about a variable that can be predicted by its past or by the past of another related

variable. SE is traditionally used as a method to assess the regularity and predictability of a

process or the information stored in it. Being p(x,y) the joint probability mass function and p(x)

and p(y) the marginal probability mass functions of the variables X and Y, the following equation

defines SE for bivariate systems:

SE(X ;Y ) = I(X ;Y ) = H(X)−H(X |Y ) = ∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)
(3.22)

If the process is entirely random, the past provides no knowledge about the present, resulting

in zero IS; if, on the other hand, the series is highly predictable, the present can be fully predicted

from the past, resulting in maximum IS.

SE is a measure that captures all the information from the past of a target that can be used to

predict its current state, regardless of where that information came from. SE, I(Yn;Y−n )> 0, arises
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not only from internal processes within the target system (Y−n → Yn) but also from causal interac-

tions from source to target; in the case of (Yn← X−n → Y−n ), X−n creates a statistical dependence

between Y−n and Yn. Thus, SE cannot be related to the presence of internal dynamics in the target

process, except in the particular case of absent causal interaction from source to target [47].

3.3.2.2 Transfer Entropy

Transfer Entropy (TE) is a method widely used to compute information transfer for being a non-

parametric measure able to determine the coupling of two variables by quantifying the information

transferred between them. TE quantifies the information provided by a source about a destination’s

next state that was not contained in the past of the destination [47, 90].

Given two time series X = {x1,x2, ...,xN} and Y = {y1,y2, ...,yN} on X to Y direction, being i

a given time point, t and τ the time lags of X and Y and k and l the length of the blocks of X and Y

past values, respectively. T EX→Y is calculated according to

T EX→Y = H(yi|yl
i−t)−H(yi|yl

i−t ,x
k
i−τ) = ∑

yi,yl
i−t ,x

k
i−τ

p(yi,yl
i−t ,x

k
i−τ) log(

p(yi|yl
i−t ,x

k
i−τ

)

p(yi|yl
i−t)

) (3.23)

Since TE is zero in the absence of causal interactions from driver to target, it can be withdrawn

that its value is a reflection of the amount of information transferred in the target process. Hence,

a strictly positive TE value shows that the driver is causing the target [7, 47, 99].

The TE can be calculated for any two time series, but only truly represents information transfer

when measured on a causal link in the limit k→ ∞, which guarantees that no information from

the destination’s past is misinterpreted as transferred. Furthermore, the conditioning of the past

makes this method to be directional [90].

3.4 Applicability on physiological signals

Several univariate and bivariate measures have been applied to physiological signals throughout

the years. This review prioritised papers where the univariate entropy measures were applied to

FHR or, if not yet implemented, applications to HRV. For the bivariate measures, studies on the

relationship between the FHR and the MHR were preferred, and if not found, applications on

cardiac signals were pursued.

Univariate measures

Approximate Entropy was developed to be suitable for analysing heart rate ECG taking into

account its data length constraints. This method is robust to outliers and finite for stochastic,

noisy deterministic and mixed processes, which makes it adequate to analyse biomedical signals

[65, 112]. Researchers have been applying this entropy method on FHR and have reported a sig-

nificant decrease of the ApEn value for fetal HRV in cases of fetal asphyxia, including hypoxia

and both respiratory and metabolic acidosis [50, 86, 117].
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Sample Entropy has also been widely employed in biomedical signals, especially in HRV. A

study conducted by Gonçalves [65] assessed the capacity of linear and nonlinear FHR indices to

discriminate between normal and acidemic fetuses over the minutes before delivery. The non-

linear indices ApEn and SampEn were computed from the heart rate records of 48 normal, 10

mildly acidemic and 10 moderate-to-severely acidemic fetuses and were found to be capable of

distinguishing these groups. Moderate-to-severe fetal acidemia was linked to a considerable drop

in nonlinear indices in the first and last minutes of the tracing. Furthermore, both Lim [87] and

Gonçalves [65] identified a decrease in the nonlinear indices (ApEn and SampEn) of the fetal HRV

with the progression of labour.

Fuzzy Entropy has been getting more attention in physiological signals, with new methods

emerging from this one and already being implemented on FHR [108]. Azami [12] compared

different FuzEn-based metrics on biomedical signals. Several synthetic and three clinical datasets

(including ECG records of 20 young and 20 old healthy subjects) were used to assess the differ-

ences between the FuzzEn-based functions. The exponential fuzzy function was suggested for

signals longer than 500 sample points and was expected to grow in biomedical signals analysis.

Permutation Entropy was considered by its developers as an appropriate complexity measure

for chaotic time series for being extremely fast and robust to noise. Bandt and Pompe [15] tested

PermEn on a speech signal to demonstrate its real-world analysis capacity, and it outperformed

a well-known complexity indicator for short-time speech analysis. Due to its advantages, new

versions of this measure have emerged and have been successfully applied in cardiorespiratory

data [19].

Corrected Conditional Entropy has been mainly explored in the biomedical area by Porta

[122], the developer of this measure. ApEn, SampEn and cCondEn were compared in an appli-

cation to a graded head-up tilt test [125]. The study included ECG records of 17 healthy subjects

during the test at different table inclinations. All entropy indices evidenced a progressive decrease

of complexity as a function of the tilt table inclination, indicating that complexity is controlled by

the autonomic nervous system. Thus, SampEn, ApEn, and cCondEn may be useful for monitoring

the sympathovagal balance.

Dispersion Entropy was developed having PermEn as a base, and a comparison study between

them has been conducted [133]. For both synthetic time series and real electroencephalogram

(EEG) datasets, DispEn considerably outperformed PermEn: it was able to detect the noise band-

width and simultaneous frequency and amplitude change, discriminated different groups, and had

less computation time.

Bubble Entropy is considered an efficient entropy model for biomedical signal analysis due

to not being significantly dependent on parameter definition and presenting a steady behaviour

and increased discriminatory power [94]. The developer of this method, Manis, tested its appli-

cation on assessing the relation between the FHR and the UAB pH [96]. From 503 normal births

intrapartum CTG recordings of at least the last 90 minutes before birth, fetuses with normal pH

values, which were considered between 7.25 and 7.35, were compared with fetuses with pH lower

than 7.20. By analysing the FHR, the entropy methods assessed, including ApEn, SampEn and
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BubbEn, successfully distinguished both groups.

The developer of Attention Entropy also tested its capacity to analyse a heart rate time series

[168]. The dataset was composed of 72 healthy subjects (divided into two groups: less or equal

to 55 years old and older than 55), 44 with congestive heart failure and 24 with atrial fibrillation.

AttEn was compared to 14 state-of-the-art complexity analysis methods, namely ShEn, ApEn,

SampEn, PermEn, BubbEn and MSE, and the results showed that it outperformed all of them on

average in differentiating healthy and non-healthy subjects. Furthermore, in a time series with a

length of 100, it was the only method able to distinguish all groups present with a statistically sig-

nificant result. This demonstrates that assessing the frequencies of the intervals between patterns

can be more effective than evaluating the frequencies of the patterns themselves, particularly for

short time series.

To assess the potential of Multiscale Entropy, Costa [36] compared two time series with equal

mean and standard deviation and identical power spectra, being the first relative to a healthy young

subject and the second obtained by a computational algorithm that deteriorates the information of

the original signal via phase randomisation. Conventional time and frequency domain measures

were ineffective in determining the amount of information present in these signals, whereas MSE

was capable of distinguishing them, confirming its potential in extracting information in different

scales from heart rate time series.

Frassineti [54] evaluated the potential of MSE indexes to provide information for characteris-

ing neonatal seizures and to discriminate between newborns with seizure events and seizure-free

ones. The study comprised 52 heart rate records of newborns obtained by ECG, of which 33

had seizure events. Entropy measures such as ApEn, SampEn, PermEn and Fuzzy Entropy were

computed at different scales. Significant differences between the two groups were obtained with

Multiscale Sample Entropy at scale 3 and Multiscale Fuzzy Entropy at scale 2. MSE could perform

an identification that was not obtained with single-scale approaches.

Bivariate measures

Cross-Approximate Entropy, contrary to Approximate Entropy, is not widespread in the analysis

of cardiac systems. In order to identify the reasons for this limited use, Skoric [143, 144] con-

ducted a study comprising artificial, animal, and human (41 healthy males positioned in a hospital

bed) systolic blood pressure and pulse interval. The first two were used for method development

and testing and the last for validation in real short records. Regions where the parameter space

does not guarantee reliable XApEn estimation were found. The proposed solution consisted of

targeting the parameters within the stable region of the parameter space and performing the pa-

rameter choice jointly. Sun [151] resorted to XApEn to study the potential of electrocardiographic

R–R intervals and pulse–pulse intervals acquired by PPG in assessing cardiac autonomic dysfunc-

tion and the compatibility of the measures. The results showed that PPG might not be adequate to

study the heart rate function of overweight, elderly, or diabetic individuals. Chiu [32] investigated

the potential of XApEn of mean arterial blood pressure and mean cerebral blood flow velocity
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to assess diabetics with various degrees of autonomic neuropathy. The study achieved promising

results as a noninvasive preliminary screening test for diabetics with or without neuropathy.

The pioneer of Cross-Sample Entropy [132] compared the performance of this entropy mea-

sure with XApEn in a heart rate dataset and XSampEn was able to show relative consistency where

XApEn did not. This is an essential property since if one series pair is more synchronous than an-

other, its cross-entropy value should be lower independently of the conditions examined. Liu [89]

evaluated the synchronisation of cardiovascular systems, specifically between R–R intervals and

pulse transit time, using XSampEn. Thirty normal subjects and thirty heart failure patients were

enrolled in the study. In the first analysis, the results showed a lower XSampEn value for the heart

failure group, implying a higher synchronisation. However, further research did not demonstrate a

significant difference between the groups. Gonçalves [60] aimed to simultaneously assess mater-

nal and fetal HRV during labour in relation to fetal gender. For that, simultaneous MHR and FHR

recordings were obtained from 44 singleton term pregnancies during the last two hours of labour.

Resorting to XSampEn, a significantly higher entropy value for mothers carrying female fetuses

was found.

The developer of Cross-Fuzzy Entropy [167] tested its efficiency on biomedical signals by

comparing it to Cross-Sample Entropy. On both simulated and real EEG datasets, XFuzzEn had

better relative consistency and less dependence on record length. It was also applied to the simul-

taneous electromyography–mechanomyography signals to monitor local muscle fatigue, where

records of 12 healthy subjects during the voluntary isometric contractions were used. The results

showed an XFuzzyEn significant decrease in the development of muscle fatigue. Furthermore, its

trend was similar to a commonly used muscle fatigue indicator.

Cross-Permutation Entropy was developed by Shi [140] to analyse coupling stock market in-

dices. However, measures such as Cross-Bubble Transition Entropy have been developed, having

XPermEn as a basis and aiming to improve physiological signals analysis. Chen [31] was able to

obtain significant results for the application of the new measure on EEG records analysis.

Cross-Conditional Entropy, similar to cCondEn, was tested by Porta [127] in a graded head-

up tilt test. This measure was applied to the coupling beat-to-beat series of heart period (RR

interval) and ventricular repolarization duration (QT interval) in 17 healthy subjects at random

table inclinations. A significant association was found with its strength progressively decreasing

as a function of the tilt angles.

Information Dynamics

Research conducted by Warrick [163] examined the use of MI to address the synchronisation of

uterine pressure and FHR. CTG records from 40 pathological, 103 metabolic acidotic and 105 nor-

mal fetuses of at least 3 hours of tracing just prior to delivery were assessed. MI discriminated aci-

dotic and normal fetuses more often and earlier than conventional cross-correlation, which might

reveal a higher efficiency in studying non-linear systems with non-Gaussian noise. Topalidou

[154] resorted to entropy measures such as XApEn, XSampEn and Mutual Information to assess
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the correlation of FHR with uterine contractions and fetal movements obtained by CTG. Twenty-

three signals with lengths between 30 minutes and 4 hours were analysed. MI was used for single

signal analyses, whereas the cross entropy methods were used for multiple signal analyses. MI

and XApEn presented statistically significant sequence similarity for FHR–uterine contractions.

Relevant results were also found in the influence of fetal movements.

Information Storage and Transfer have been widely used in cardiorespiratory research, namely

in the assessment of the temporal evolution of respiration and heart rate as coupled systems, in the

study of cardiovascular control mechanisms or in the prediction and characterisation of sleep ap-

nea [47, 48, 118, 123, 157]. Faes [48] assessed the combined analysis of HRV and respiration

variability (RV) resorting to SE (to measure the information stored in HRV), TE (to quantify the

information transferred to HRV from RV), conditional SE and cross-entropy measures. Simu-

lated cardiorespiratory dynamics data and real data from young healthy subjects (15 with head-up

tilt and 16 with paced breathing) were evaluated. Both analyses evidenced conditional SE and

cross-entropy as more appropriate to study cardiorespiratory interactions, which are mostly unidi-

rectional from RV to HRV.

The same researcher, Faes [46], examined the ability of several approaches to assess nonlinear-

ity in short-term HRV under various physiopathological conditions. HRV recordings from young

and old healthy subjects, as well as myocardial infarction patients in the resting supine position

and in the upright position with head-up tilt, were analysed using normalised complexity index,

information storage and Gaussian linear contrast. In older and myocardial infarction participants,

the first two approaches revealed more complicated dynamics. Only IS revealed a high percentage

of nonlinear dynamics in the young group at rest, with a drop in the old and myocardial infarction

at the upright position, whereas the other two methods found smaller percentages in all groups and

situations.

Marzbanrad [98, 99] applied TE to assess the mechanism and patterns of the MHR–FHR

coupling during gestation at various time delays and gestational ages. Maternal and fetal ECG

showed significant coupling in 63 of the 65 records studied. The maximal TE from MHR to FHR

rose considerably from early (16–25 weeks) to mid gestation (26–31 weeks), whereas the coupling

delay reduced significantly from mid to late gestation (32–41 weeks). These changes occur in

synchrony with the maturation of the fetal sensory and autonomic nervous systems as gestational

age increases. Avci [7] analysed the same relationship with the difference of the FHR being

obtained by FMCG. TE was computed in both directions in 74 recordings and fetal movement

influence was also verified. The results showed that fetal movement has no significant effect on

TE computation. No significant differences were found between the mid (28–32 weeks) and late

gestational (32–38 weeks) age groups.

Synthesis

The literature research and presented findings indicate that ApEn and SampEn are widely used and

commonly accepted definitions. They have been the basis of many heart rate research papers due to

their descriptive and discriminatory capabilities. On the other hand, measures such as BubbEn and
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AttnEn, which are relatively new methods, are not yet routinely used in entropy analyses but have

shown promising results in cardiac analysis tests. MSE has the capability to reveal information

present in the sequence of the values over time that is not able to be identified with single-scale

entropy methods.

FHR entropy indexes can be suitable for fetal acidemia prediction based on the hypothesis that

abnormally low entropy values, i.e., extremely regular FHR patterns, imply a greater likelihood

of acidosis. Castiglioni [27] made a relevant comment when investigating what SampEn, FuzzEn

and Distribution Entropy of HRV could tell on cardiovascular complexity: "We may conclude that

Sample, Fuzzy, and Distribution Entropy methods are not alternatives one to the other, but they

complement each other providing different information on HRV." Therefore, a group of different

measures will likely be able to significantly improve signal complexity analysis.

The analysis of the MHR and FHR relationship as a coupled system using nonlinear entropy-

based methods has been getting more attention during the last years with the development of new

measures and the achievement of promising results. Although XApEn and XSampEn are not as

widespread as ApEn and SampEn in heart rate studies, they have been able to provide new insights

into this signal synchronisation.

Information Dynamics have been getting more attention in describing heart rate bivariate sys-

tems, with Transfer Entropy being the most recurrent method in recent articles.

To note that the short number of studies assessing FHR–MHR can also be explained by the fact

that the simultaneous acquisition of these cardiac signals is a recent procedure in clinical practice,

so there is a limited number of databases where these methods could be applied.



Chapter 4

Methodology

This chapter focuses on the methodology followed in the course of the work. The implementation

of the entropy methods and the two toolkits that allow the computation of these indices are detailed.

It also includes a preliminary study where some of the entropy methods implementations were

assessed. Furthermore, the statistical analysis is outlined, in particular, to evaluate the discriminant

capacity of the computed indices.

4.1 Implementation of the methods

In order to compute the entropy measures detailed in Chapter 3, there is the need to resort to

two different toolkits: one for Base, Cross and Multiscale Entropy and another for Information

Dynamics.

4.1.1 Base, Cross and Multiscale Entropy computation

The package that enables the entropy measures computation is EntropyHub: an open-source

toolkit for entropic time series analysis that provides a comprehensive set of functions of many

established entropy methods into one complete resort [53]. These tools make advanced entropic

time series analysis straightforward and reproducible and are available to be computed through

different programming languages: MATLAB, PYTHON or JULIA. In this dissertation, MATLAB

was used since it was the one where both packages (for Entropy and Information Dynamics) were

available.

4.1.1.1 Functions to compute Base Entropy

Approximate Entropy, which determines the degree of regularity and unpredictability of oscilla-

tions in time-series data, is based on the following arguments:

Ap,Phi = ApEn(Sig,m, tau,r,Logx) (4.1)

33
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In the call, Sig is the time series signal (a vector of length > 10), m is the dimension, tau

represents the time delay, r is the distance threshold and Logx the logarithm base of the Shannon

Entropy formula, allowing the entropy to be estimated in bits (base 2), nats (base e) or dits (base

10), for example [52].

The output vector given by Ap is the entropy estimation and has length m+ 1, the first value

corresponds to the zeroth estimate, log(N)
N −Φ1, and the last value to the estimate for the speci-

fied m. The value obtained by Phi is the number of matched state vectors for each embedding

dimension from 0 to m+1 [52].

Sample Entropy, which was developed having ApEn as a base but diminishing the dependency

on the signal length and the high implementation costs, can be computed by:

Samp,A,B = SampEn(Sig,m, tau,r,Logx) (4.2)

Samp is a vector of length m+ 1 with the estimation of SampEn, where its first value is the

zeroth estimate, 1
N log(N(N− 1))− log(A1), and its last value is the estimate for the specified m.

A corresponds to the number of matched state vectors for each embedding dimension from 0 to m

and B to the number of matched state vectors for each embedding dimension from 1 to m+1 [52].

Fuzzy Entropy, which brought the inclusion of fuzzy sets to the entropy definition, is obtained

by:

Fuzz,Ps1,Ps2 = FuzzEn(Sig,m, tau,Fx,r,Logx) (4.3)

In addition to the elements that were already asked in ApEn and SampEn, to calculate FuzzEn,

the type of fuzzy function for distance transformation (Fx) has to be specified. By default, it is

equivalent to the exponential function given by f (x) = exp
(
− xr2

r1

)
. Regarding the outputs, Fuzz is

the entropy estimate vector with a value for each embedding dimension from 1 to m, Ps1 contains

the average fuzzy distances for the embedding dimensions from 1 to m, and Ps2 presents the

average fuzzy distances for the embedding dimensions from 2 to m+1 [52].

Permutation Entropy computes the Shannon Entropy from a normalised histogram of ordinal

patterns and can be obtained with:

Perm,Pnorm,cPE = PermEn(Sig,m, tau,Logx,Norm) (4.4)

Norm is a boolean operator that determines the normalisation of the Perm value: false (default)

normalises with respect to the number of permutation symbols (m); true normalises with respect to

the number of all possible permutations (m!). With this function, it is possible to obtain Perm, the

PermEn estimates for embedding dimensions 1 to m; Pnorm, the normalised PermEn estimates;

and cPE, the Conditional Permutation Entropy [52].

Conditional Entropy quantifies the information in a sample when the previous ones are known.
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It is computed by:

Cond,SEw,SEz =CondEn(Sig,m, tau,c,Logx,Norm) (4.5)

The input parameter c represents the number of symbols in symbolic transformation and must

be an integer bigger than one. The Norm is a boolean operator that allows one to choose if the

Cond value is normalised. Cond is the corrected Conditional Entropy estimate, SEw is the ShEn

estimate for m and SEz is the ShEn estimate for m+1 [52].

Dispersion Entropy quantifies the degree of complexity of a sample based on a SampEn and

PermEn-inspired algorithm. The following function allows its calculation:

Dispx,RDE = DispEn(Sig,m, tau,c,Typex,Logx,Norm) (4.6)

Similar to the previous method, c represents the number of symbols in transform and must

be an integer bigger than one. Typex is the type of symbolic sequence transform. The Dispersion

Entropy estimate is given by Dispx, and it is also possible to obtain the Reverse Dispersion Entropy

estimate in RDE [52].

Bubble Entropy is an entropy model suitable for biomedical signal analysis that does not re-

quire defining the distance threshold r and is not significantly dependent on m. The following

arguments can be used to compute its value for a time-series signal:

Bubb,H = BubbEn(Sig,m, tau,Logx) (4.7)

The values obtained by Bubb correspond to the entropy estimation and H is the Conditional

Rényi Entropy [52].

Attention Entropy is a new entropy model designed to be independent of input parameters and

can be obtained by:

Attn,Hxx,Hnn,Hxn,Hnx = AttnEn(Sig,Logx) (4.8)

Attn is the Attention Entropy estimation, whereas Hxx is the entropy of local maxima intervals,

Hnn is the entropy of local minima intervals, Hxn is the entropy of intervals between local maxima

and subsequent minima and Hnx is the entropy of intervals between local minima and subsequent

maxima [52].

4.1.1.2 Functions to compute Cross Entropy

Cross-entropy models quantify the degree of asynchronism of two time series. Cross-Approximate

Entropy is computed according to:

XAp,Phi = XApEn(Sig,m, tau,r,Logx) (4.9)
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For the Cross-entropy measures, the time series signal is a N×2 matrix where N > 10. Note

that XApEn is direction-dependent. Therefore, the first column of the signal is used as a template,

and the second is the matching sequence. The output XAp is a vector of length m+ 1 with the

entropy estimation where the first value is referent to the zeroth estimate, log(N)
N −Φ1, and the last

value to the estimation for the specified m. Phi is the number of matched state vectors for each

embedding dimension from 0 to m+1 [52].

The following arguments allow the calculation of Cross-Sample Entropy:

XSamp,Phi = XSampEn(Sig,m, tau,r,Logx) (4.10)

XSampEn is the entropy estimation vector and has a length of m+1. Similarly to SampEn, its

first value is the zeroth estimate, 1
N log(N(N− 1))− log(A1), and the last is the estimate for the

specified m. A is the number of matched state vectors for each embedding dimension from 0 to m,

and B is the number of matched state vectors for each embedding dimension from 1 to m+1 [52].

Cross-Fuzzy Entropy is an extension of Fuzzy Entropy to analyse a bivariate system. Thus,

the arguments to compute them are the same:

XFuzz,Ps1,Ps2 = XFuzzEn(Sig,m, tau,Fx,r,Logx) (4.11)

XFuzz contains the Cross-Fuzzy Entropy estimates for each embedding dimension from 1 to

m. Ps1 has the average fuzzy distances for embedding dimensions from 1 to m and Ps2 is similar

but for embedding dimensions from 2 to m+1 [52].

Cross-Permutation Entropy can be calculated with the following function:

XPerm = XPermEn(Sig,m, tau,Logx) (4.12)

XPerm contains the Cross-Permutation Entropy estimate. Note that XPermEn is undefined for

an embedding dimension m < 3 [52].

Cross-Conditional Entropy can be calculated by resorting to the following function:

XCond,SEw,SEz = XCondEn(Sig,m, tau,c,Logx,Norm) (4.13)

XCondEn requests the same parameters as cCondEn to be computed. XCond is the corrected

Cross-Conditional Entropy estimate, SEw is the Cross-ShEn estimate for m and SEz is the Cross-

ShEn estimate for m+1. An important note is that XCondEn is direction-dependent, meaning that

the order of the data sequences in Sig matters: the first column is the sequence ’y’ and the second

column is the sequence ’u’. XCond is the amount of information carried by y(i) when the pattern

u(i) is found [52].
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4.1.1.3 Functions to compute Multiscale Entropy

Multiscale Entropy assesses the complexity of time series by taking into account several time

scales in physical systems in the calculation of an entropy measure. To compute this entropy in

EntropyHub, there is a need to start with the creation of the multiscale object (Mob j) according

to the entropy method (EnType) defined: ApEn, SampEn, FuzzEn, PermEn, cCondEn, DispEn,

BubbEn or AttnEn, in this case. The parameters required (∗∗ kwargs) by the measure chosen also

have to be defined:

Mob j = MSob ject(EnType,∗∗ kwargs) (4.14)

Then, having the multiscale object defined along with the input of the time series signal and

the number of grained time scales desired to assess, MSE can be computed by:

MSx,Ci = MSEn(Sig,Mob j,Scales) (4.15)

MSx is an estimation of the entropy at each time scale (τ) and returns a vector with the same

length as the number of scales defined. Ci is the complexity index, equivalent to the area under

the multiscale entropy curve [52].

4.1.1.4 Parameter selection

The parameters required by the entropy functions detailed above were chosen based on the sugges-

tions presented by Flood on the EntropyHub package guide [52] since no testing on the parameter

influence on the entropy values was performed in the course of this work. However, when these

measures were being created, their developers assessed the influence of each parameter on the

entropy value. Thus, the values collected by Flood from the papers that describe the algorithm of

each measure by its developer already take into account these performance evaluations.

The embedding dimension was set as m = 2, except for XPermEn, which is undefined for m <

3, so it was set as m = 3. The m = 2 choice was common in the literature [30, 54, 114, 132, 167]

for physiological signals since a low embedding dimension is usually sufficient to capture the

essential information while preserving the underlying dynamics of the signals.

The radius distance threshold was defined as r = 0.2× std(Sig) [133], except for FuzzEn and

XFuzzEn, which demand a two-element tuple with the default exponential fuzzy function, so it

was set to r = (0.2,2). Pincus [115] suggested a fixed value of r of 0.1–0.25 of the standard

deviation of the individual subject time series. This allows the comparison of the complexity of

signals with different standard deviations. Moreover, the entropy becomes robust to the noise in

the magnitude covered by r.

The time delay was set as tau = 1 for all measures. The logarithm base in the entropy for-

mulas used was Logx = exp(1), except for PermEn, XPermEn and AttnEn where Logx = 2. In

the functions with the argument Norm, normalisation was set to false. Regarding the number of

symbols in symbolic transformation, for CondEn and XCondEn were set as c = 6, whereas for
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DispEn was set as c = 3. This last method also required defining the type of symbolic sequence

transform (Typex) for mapping, which was set equal to ncdf – Normalised cumulative distribution

function [133].

For the Multiscale Entropy, the number of scales was defined as 5 for all base entropy measures

in the study. The base entropy functions correspond to the scale 1 value obtained with the MSE.

An important note is that due to XApEn and XCondEn being computed with direction-dependent

functions, their value has to be computed twice: once with signal A as the template and signal B

as the matching sequence, and another time with the opposite.

4.1.2 Information Dynamics computation

The package that enables the estimation of the information stored and transferred in a bivariate

system is ITS Toolbox: a MATLAB toolbox for the practical computation of Information Dynam-

ics [44]. It allows performing the estimation of several entropy methods based on information

dynamics, using different approximation measures: Linear (Gaussian), Binning, Kernel, Nearest

Neighbours [45].

4.1.2.1 Functions to compute Information Storage and Transfer

Self-Entropy enables the estimation of the amount of information stored, i.e., it is a measure of

the amount of information about a variable that its past can predict. Transfer Entropy enables the

estimation of the amount of information stored, i.e., it is a measure of the amount of information

provided by a source about a destination’s next state that was not contained in the past of the

destination.

Using the linear estimator, information storage can be computed according to the expression:

out = its_SElin(data, j j,V ) (4.16)

This function computes the SE of a time series given: the data, a N×M matrix of M time

series, each having length N; jj, the index of the target variable – the one to compute the SE; V,

a vector of candidates (to be pre-determined from uniform embedding – the ITS Toolbox has a

developed function for its calculation [45]).

Regarding the information transferred, its computation is possible with the following argu-

ments:

out = its_BT Elin(data, ii, j j,V ) (4.17)

This function computes the TE from the time series, given: the data, a N×M matrix of M time

series, each having length N; ii, the index of driver variable (can be multivariate); jj, the index of

the target variable; V, a vector of candidates (to be pre-determined from uniform embedding – the

ITS Toolbox has a developed function for its calculation [45]).
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Using the binning estimator, SE can be computed with the following:

out = its_SEbin(data,V, j j,c,quantizza) (4.18)

Similar to the expression using the linear estimator, the data is a N×M matrix, jj is the index

of the target variable and V is the vector of candidates (to be pre-determined from uniform or

non-uniform embedding – the ITS Toolbox has developed functions for their calculations [45]).

Additionally, the input c, the number of quantization levels for binning, has to be defined, and

quantizza allows to skip quantization if set as n (useful for when the data is already quantized).

To compute the TE with binning estimation, there is only the need to add ii as the index of the

driver variable, according to:

out = its_BT Ebin(data,V, ii, j j,c,quantizza) (4.19)

In order to use the kernel estimator to compute SE, the following arguments have to be defined:

out = its_SEker(data,V, j j,r,norma) (4.20)

Similar to the previous method, the vector of candidates can be determined from uniform or

non-uniform embedding (both functions are available on [45]). This measure requires the def-

inition of r as the threshold for distances (absolute value) and norma as the type of distance:

’Chebyshev’ (default) or ’Euclidean’.

The same arguments with the addition of the index of the driver variable allow the computation

of the TE with kernel estimation:

out = its_BT Eker(data,V, ii, j j,r,norma) (4.21)

The following expression computes the SE with the k-nearest neighbour estimator:

out = its_SEknn(data,V, j j,k,metric) (4.22)

In the inputs, k is the number of the nearest neighbour to search for distance, and the metric

can be ’maximum’ (default) or ’euclidian’.

With the parameters already detailed, it is also possible to obtain TE with the k-nearest neigh-

bour estimator:

out = its_BT Eknn(data,V, ii, j j,k,metric) (4.23)

4.1.2.2 Parameter selection

The parameters required by the entropy functions detailed above were chosen based on the sug-

gestions presented by the creator of the ITS Toolbox, Luca Faes, in the example for cardiovascular
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variability series [44] since no testing on the parameter influence on the entropy values was per-

formed in the course of this work.

The inputs data, the index of the driver variable ii and the index of the target variable jj were

defined based on the system at study and the desired signals to assess. The vector of candidates is

pre-determined by other functions of the toolbox according to the chosen estimator and additional

parameters.

For the linear estimator, uniform embedding was used to obtain the embedding vector, and

BIC (Bayesian information criterion, a metric to compare the fit of a model) was imposed to

optimise the linear model. For the bin estimator, non-uniform embedding was performed with 6

quantization levels. quantizza was set to ’y’ to perform the quantization. For the kernel estimator,

non-uniform embedding was selected with the threshold for distances as 30% of the standard

deviation of the target signal, and the default norma (Chebyshev) was used. For the k-nearest

neighbour estimator, non-uniform embedding was set with the number of neighbours k = 10 and

the default metric: maximum distance.

4.1.3 Preliminary study

A preliminary study was developed aiming to assess Base, Cross and Multiscale Entropy measures

implementation in a real cardiac database. For that, the following measures were selected: ApEn,

SampEn, BubbEn, AttnEn, XApEn, XSampEn and MSE. Since only the EntropyHub package [53]

was needed, the programming language chosen to compute the entropy was PYTHON. (To note that

this study is based on the work developed in the curricular unit Projeto e Técnicas Laboratoriais)

The implementation of the entropy methods was done by resorting to the MIMIC-III Wave-

form Database [103] from PhysioNet. This dataset is composed of 67,830 record sets for approx-

imately 30,000 ICU patients containing multiple physiological signals and a time series of vital

signals collected from bedside patient monitors. Among the signals available, the Heart Rate and

Pulse only from neonatal intensive care units were selected. The numeric records contain a data

file and a header with information such as the type of signals of the record or the signal length.

This information was accessed by resorting to Waveform Database Software Package (WFDB) for

PYTHON.

For training purposes, twenty records with the desired features have randomly been chosen

from the dataset. The files were opened resorting to the OS library, their data extracted resorting

to WFDB to read the data and header file simultaneously, and their entropy values were calculated.

Since in biomedical signals, entropy is usually calculated over patterns of a certain length, the

records were analysed in 30 minute windows (1800 samples each) and a maximum of 50 windows

per patient was imposed, equivalent to 25 hours of duration signals and 90 000 samples. Whenever

the signal started without values for both Heart Rate and Pulse, the lines were deleted until at least

one of the signals was detected.

In order to assess the correlation between Heart Rate and Pulse entropy, two scatter matrix

plots and correlation matrices with heatmap were built to study the relationship between the Cross



4.1 Implementation of the methods 41

entropy methods studied and each of the signals, using the first scale of the MSE values computed

(equivalent to the Base entropy function) and the complexity index (Ci) (Figure 4.1).

Figure 4.1: Scatter matrix plots and respective correlation matrices with heatmap to assess the
association of the bivariate and univariate entropy methods between themselves when applied to
heart rate (hr) and pulse signals (on the left and right respectively). To simplify the visualisation,
only the scale 1 (sc1) and complexity index (Ci) of Multiscale Entropy (MS) are presented.

The studied Heart Rate MSE methods (left panels in Figure 4.1) present strong associations

between them. There is a high positive correlation between XApEn, XSampEn, ApEn and Sam-

pEn, meaning that if one of them increases, the others will tend to increase too. Not as strong

as these, but BubbEn also has a positive association with these Cross-entropy methods, and At-

tnEn has a weak negative association. These last two have a strong negative association between

them. In the graphics that show the relationship between the Cross-entropy and Pulse MSE meth-

ods (right panels in Figure 4.1), we can immediately notice that, generally, the relationships are

weaker. The XApEn has a weak relationship with every other entropy method studied. The same

can be observed for the XSampEn, except in its relation with ApEn and SampEn where it shows a

positive association. These two methods also have a positive correlation between them.

From the entropy methods assessed, it seems that both the XApEn and the XSampEn have

a stronger relationship for the Heart Rate than for the Pulse. In order to further explore this

hypothesis, more entropy methods would have to be studied, as well as a larger dataset.
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4.2 Statistical analysis

In order to evaluate the discriminant capacity of the computed entropy-based indices, a statistical

analysis was performed. To start, descriptive statistics were used to describe relevant features of

the database records: absolute and relative frequencies of categorical variables; and minimum,

maximum, median and interquartile range for continuous variables. Then, appropriate correlation

coefficients were applied to study the relationships between the different indices computed. Fi-

nally, the discriminant capacity of the entropy measures for fetal acidemia was assessed with the

Mann-Whitney test and Generalised Linear Mixed Models. Note that test results were considered

significant for p-values < 0.05.

4.2.1 Correlation between entropy indices

The correlation between entropy methods quantifies the similarity of the aspects they capture from

signal dynamics. A high correlation indicates that the measures provide the same information and,

therefore, either one can be chosen to assess the signal. On the other hand, a low correlation

reveals that the measures provide different information on the irregularity and complexity of the

signal. Using both can be beneficial to improve signal analysis. Note that correlations might

be positive, meaning both methods increase at the same time, or negative, meaning that when one

increases, the other decreases proportionally. Taking this into account, a correlation study between

the entropy methods allows an appropriate selection of the measures.

The calculation of the correlations was done by resorting to Pandas library in PYTHON with

the function data f rame.corr(method). The method corresponds to the correlation coefficient to

be used: ’kendall’, ’pearson’ or ’spearman’. Since not all measures followed a normal distribu-

tion, Spearman’s correlation coefficient was selected. This method does not rely on any specific

distribution assumption and is more robust to outliers than Pearson [104].

4.2.2 Mann-Whitney test

The Mann-Whitney U test, also referred to as the Wilcoxon rank sum test, examines differences

between two groups based on a single, ordinal or quantitative variable without implying a specific

distribution [101]. The median, interquartile interval and the Mann-Whitney p-value were also

used to assess the differences between groups.

The entropy indices were obtained from a database with 54 normal fetuses and only 7 aci-

demic, which is a significant difference between the number of observations of each group. Fur-

thermore, as referred to previously, some measures did not follow a normal distribution. Therefore,

Mann-Whitney U Test was used to assess the capacity of the indices computed in distinguishing

non-acidemic from acidemic fetuses. The test computation was done by resorting to the function

p = ranksum(x,y) in MATLAB, which returns the p-value of a two-sided Wilcoxon rank sum test

for the null hypothesis that the data in x and y are samples from continuous distributions with equal

medians.
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Not only the p-value but also the statistical power of the test was calculated. The power of the

tests conducted was calculated to verify the capacity of the model to find a statistically significant

difference between the groups when the difference does exist. The power is given by 1−β , where

β represents the likelihood of incorrectly determining there is no substantial difference when there

is. The statistical power also depends on the effect size (the raw difference between group means)

and sample size: a high effect size allows the detection of the difference in a small number of

samples [150]. Cohen categorised the effects into small (d = 0.2), medium (d = 0.5) and large

(d ≥ 0.8) and suggested an adequate β error of 0.2 [24], which is widely accepted. The calculation

of the statistical power was done by resorting to G*Power 3.1 [49], where a medium effect size

was considered.

4.2.3 Generalised Linear Mixed Models

In order to understand if the time influenced the entropy indices, these were represented graph-

ically. For each measure, two boxplots (one for normal and one for acidemic) were constructed

for each time interval to allow a visual evaluation of the influence of time on the evolution of the

indices of each group.

A Generalised Linear Mixed Model (GLMM) describe the relationship between a response

variable and independent variables using coefficients that can vary with respect to one or more

grouping variables. A GLMM is composed of fixed effects – the variables of interest – and random

effects – variations within groups. Some relevant aspects are the fact that it allows different data

distribution and is robust to unequal-sized groups. These characteristics make the model suitable

for analysing repeated measures and complex time series [73].

GLMM was implemented by resorting to the function glme = f itglme(tbl, f ormula) in MAT-

LAB. For the first input parameter (tbl), a table was created with the following columns: ’Sub-

ject’, ’Method’, ’Time’ and ’Group’. The method is the entropy value computed for a spe-

cific method and time interval, the time corresponds to the 10 min interval used to compute

that entropy (encoded from 1 to 12), and the group can be 0 for non-acidemic and 1 for aci-

demic. Relative to the second input parameter, two different formulas were tested: ′Group ∼
Method +Time+(1|Sub ject)′ and ′Group∼Method +(1|Time)+(1|Sub ject)′. In the first one,

the group is given by the entropy method and the time (as fixed effects) and accounts for subject

variability (as a random effect), whereas in the second one, time is considered as a random effect,

similar to a repeated measure.

To evaluate the overall fit of the GLMM developed, several output parameters should be taken

into account: the model fit statistics, such as AIC (Akaike information criterion, the most suitable

for complex small-sized data); the fixed effects coefficients, such as the estimate and the p-value to

understand the magnitude and statistical significance of the variable; the random effect covariance

parameters, where the estimate quantifies the subject variability.
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Chapter 5

Application of entropy indices on FHR
and MHR analysis

In this chapter, the main results obtained in this dissertation are presented. It starts with the ex-

ploration of the main features of the database used for the work and a description of the pre-

processing. Then, the theory-based indices assessment is described: the correlation between

measures, the discriminant capacity for fetal acidemia and the influence of time on these. The

discriminant capacity was evaluated first using the Mann-Whitney test and then with Generalised

Linear Mixed Models to include the effect of time and variability between subjects. Finally, an

interpretation of the significance of the results is presented.

5.1 Data exploration and pre-processing

The dataset used for the following work of this dissertation is composed of sixty-one recordings

of MHR and FHR that were acquired during the last two hours of labour in singleton term preg-

nancies. The UAB pH threshold for fetal acidemia was defined as 7.15 [59, 63, 109] and the study

sample (collected for a previous study [63]) was divided and analysed in two groups: normal (non-

acidemic) fetuses and acidemic fetuses. The study was approved by the local Ethics Committee

and all participants gave informed consent to participate [63].

The MHR signal was acquired by ECG with two unipolar chest electrodes placed in the stan-

dard positions for the procedure (2nd right and left intercostal spaces and 5th left intercostal space

in the medioclavicular line), whereas the FHR was acquired with a conventional external ultra-

sound sensor placed on the maternal abdomen. Both signals were conveyed to a STAN® 31 fetal

monitor (Neoventa, Gothemburg, Sweden). This monitor amplified, digitalised at a sample rate of

1600 Hz with a precision of 12 bits, and filtered the signals [134].

The MHR was determined by measuring the interval between R waves in the ECG and round-

ing to the nearest quarter beat, expressed in beats per minute, and the same autocorrelation function

45
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was applied to the fetal signal to calculate the heart periods [26]. This monitor was connected to

the Omniview-SisPorto® 3.5 system through an RS232 port, which received the signals at a sam-

pling rate of 4Hz (Speculum, Lisbon, Portugal) [10, 119] and converted the data into Excel® files

for subsequent analysis (for more details regarding signal acquisition refer to [63]).

Tables 5.1 and 5.2 summarise the main features of the subjects that constitute this database,

including characteristics of the mother and fetus, the type of labour and CTG duration.

Table 5.1: Records characteristics, described by the number of cases and the respective percentage,
considering the umbilical arterial blood pH threshold for acidemia as 7.15.

Data Normal fetuses (n=54) Acidemic fetuses (n=7)
Mother
Associated pathologies 10 (18.5%) 2 (28.6%)

Medication 33 (61.1%) 6 (85.7%)
Labour

With epidural 52 (96.3%) 7 (100.0%)
Delivery mode

Normal vaginal 29 (53.7%) 3 (42.9%)
Operative vaginal 20 (37.0%) 3 (42.9%)
Cesarean section 5 (9.3%) 1 (14.3%)

Newborn sex
Male 33 (61.1%) 1 (14.3%)

Female 21 (38.9%) 6 (85.7%)

Table 5.2: Records characteristics, described by the minimum, maximum, median, 1st and 3rd
quartiles, considering the umbilical arterial blood pH threshold for acidemia as 7.15.

Data Normal fetuses (n=54) Acidemic fetuses (n=7)
Min Max Med [Q1;Q3] Min Max Med [Q1;Q3]

Mother
Age (years) 16 38 28 [24;32] 18 35 25 [21;30]
Height (cm) 150 173 162 [159;165] 152 169 157 [154;161]
Weight (kg) 54 89 71 [65;79] 53 84 68 [64;74]

Parity 0 2 0 [0;0.8] 0 1 0 [0;0.5]
Gestational age (weeks) 38 48 41.3 [40.2;43.3] 37 41 40 [38.9;40.5]
CTG

Duration (min) 88 908 267 [154.3;399.5] 112 363 260 [174;320]
Newborn

Birth weight (g) 2685 4045 3193 [3029;3418] 2400 3445 3105 [3050;3238]
1 min Apgar score 7 10 9 [9;10] 9 10 9 [9;9]
5 min Apgar score 9 10 10 [10;10] 9 10 10 [10;10]

Arterial pH 7.16 7.37 7.27 [7.21;7.30] 7.05 7.13 7.11 [7.08;7.12]

The criteria for inclusion were: more or equal to 37 weeks of gestational age; unifetal gesta-

tion; fetus in cephalic position; 4 to 6 cm of cervix dilatation; spontaneous labour; record of at

least 5 min in the case of eutocic delivery and 30 min for a cesarean section; CTG of at least 120
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min duration with signal loss less than 10% and signal quality of more than 90%. On the other

hand, the exclusion criteria were based on the presence of malfunctions or induced labour.

As an example of the database signals, Figure 5.1 depicts the two hours of the simultaneous

MHR and FHR for a normal fetus and an acidemic fetus.

Figure 5.1: Examples of the simultaneously acquired fetal and maternal heart rate signals for a
normal (left) and an acidemic (right) fetus, already pre-processed.

The increase of fetal and maternal movements in the moments before birth leads to more fre-

quent disruption of MHR and FHR signals by signal loss and artefacts. In order to minimise this

contamination in the computation of nonlinear indices, a pre-processing algorithm has been im-

plemented previously [65]. This algorithm was developed for FHR and identifies fetal heartbeats

lower than 60 bpm and beat-to-beat differences higher than 25 bpm. If they do not exceed 2 sec-

onds in duration, they are replaced using spline interpolation. On the other side, longer periods are

replaced by a previous segment of the same length but without signal loss. This way, the temporal

basis is preserved [65]. In the case of the MHR, the value of 50 bpm was added to each data point

of the MHR that differed from zero and the same pre-processing algorithm was applied (for more

details on the pre-processing of the signals, refer to [65]).

5.2 Entropy functions execution time

For the entropy indices computation, the functions and respective parameters set in Section 4.1

were used. In biomedical signals, the entropy is not usually calculated directly for the complete

time series but over segments of a determined time length. For this dissertation, a 10-minute

interval was selected to compute the indices, capturing short-term signal variations. This focuses

on fast pattern modifications, which are more likely to be significant for clinical analysis, and

keeps the computational time low. Note that since the functions used to compute cross entropy did

not incorporate normalisation of the signals, this was previously computed with Xnormalised =
X−µ

σ
.
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A uniformly distributed random signal was generated to estimate the execution time of the

different entropy methods. To mimic the FHR signals, the amplitude of the signal at each point in

time was randomly chosen from the range 110–200 [106, 160].

The four estimators that the ITS package allows to choose as approximation measures – Linear

(Gaussian), Binning, Kernel, Nearest Neighbours – had their execution time tested. For that, the

number of samples of the random signals generated was increased from 200 to 3000, in increments

of 200, and for each length, the procedure was repeated 30 times.

A boxplot with the execution time according to the number of samples and the estimator for the

ITS functions is presented in Figure 5.2. Both kernel and nearest neighbour estimators presented a

dependency on the lower number of samples to be able to match the fast execution time observed

for the linear and binning estimators. For this dissertation, a 10-minute window (equivalent to

2400 samples) was chosen to compute the entropy indices. Taking this into account, a choice was

made to only use the linear and binning estimators for the following work due to time efficiency.

Figure 5.2: Information dynamics estimators execution time (seconds) for uniformly distributed
random signals with different lengths (from 200 to 3000, where each point was randomly chosen
from the range 110–200). To note that the y-axis was restricted to 0–120s to improve visualisation,
the values of outliers from the last group reached 200s with the nearest neighbour estimator.

Similarly, considering the 10min window to compute the entropy values, the execution time

of all methods was assessed for 30 uniformly distributed random signals with 2400 samples (each

sample is in the range 110–200). Figure 5.3 portrays a boxplot with the execution time of the

methods, which were all considered to be time-efficient.
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Figure 5.3: Entropy methods execution time (seconds) for uniformly distributed random signals
with 2400 samples (equivalent to 10min of the heart rate signals). Legend: Ap – Approximate,
Samp – Sample, Fuzz – Fuzzy, Perm – Permutation, Cond – Conditional, Disp – Dispersion, Bubb
– Bubble, Attn – Attention, X – Cross, SE – Self, TE – Transfer Entropy, lin – linear, bin – binning.

5.3 Correlation between entropy indices

Correlation matrices with heatmaps were developed in order to explore the associations between

the univariate and bivariate measures. To simplify the visualisation, although 5 time scales were

computed for each method, only scale 2 and the complexity index will be displayed for the MSE.

To evaluate the association between the univariate measures, three correlation matrices with

heatmap were constructed: to assess the association of the entropy values of each signal among

themselves (Fig. 5.4) and between the two (Fig. 5.5).

In Figure 5.4, it is noticeable that the correlations (both positive and negative) are stronger

when applied to the MHR than when applied to the FHR. In both, the strongest association is

between ApEn and SampEn. Entropy measures FuzzEn, CondEn and DispEn also have a signif-

icant positive association between themselves. PermEn and BubbEn have a positive association

between themselves and a negative one with AttnEn. ApEn and SampEn also reveal a negative

correlation with the standard deviation.

Analysing only the MHR entropy values association, ApEn, SampEn, FuzzEn, PermEn, Con-

dEn, DispEn and BubbEn have positive correlations among them, being stronger the ones that

were referred to above as common to both signals. Another group constituted by AttnEn and SE

also displayed positive associations between themselves and with the mean and standard deviation.

Between the first (ApEn, SampEn, FuzzEn, PermEn, CondEn, DispEn and BubbEn) and second

groups (AttnEn and SE), the association is negative.

In Figure 5.5, it is noticeable that the correlations of the entropy values computed for the

FHR have weak associations with the entropy values of the MHR. This means they are capturing

different aspects of the physiological event.
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Figure 5.4: Correlation matrices (Spearman coefficient) with heatmap to assess the association
of the univariate entropy methods between themselves when applied to fetal heart rate (left) and
when applied to maternal heart rate (right). Legend: F – fetal heart rate, M – Maternal Heart Rate,
MS – Multiscale, 2 – temporal scale 2, Ci – Complexity index, std – standard deviation, Ap –
Approximate, Samp – Sample, Fuzz – Fuzzy, Perm – Permutation, Cond – Conditional, Disp –
Dispersion, Bubb – Bubble, Attn – Attention, SE – Self, lin – linear, bin – binning.

Figure 5.5: Correlation matrices (Spearman coefficient) with heatmap to assess the association
between the univariate entropy methods by comparing them when applied to fetal heart rate to
when applied to maternal heart rate. The methods also include the mean and standard deviation of
each signal. Legend: F – fetal heart rate, M – Maternal Heart Rate, MS – Multiscale, 2 – temporal
scale 2, Ci – Complexity index, std – standard deviation, Ap – Approximate, Samp – Sample,
Fuzz – Fuzzy, Perm – Permutation, Cond – Conditional, Disp – Dispersion, Bubb – Bubble, Attn
– Attention, SE – Self, lin – linear, bin – binning.

The association between the bivariate measures themselves and a comparison of bivariate with

univariate measures was also assessed (Figure 5.6 and 5.7). First, regarding the association be-

tween the bivariate measures themselves, a significant correlation is the positive one between

XApEn when the MHR is used as the template, XSampEn and XFuzzEn. Between XCondEn for

MHR and XAp for FHR there is also a positive association.
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Figure 5.6: Correlation matrices (Spearman coefficient) with heatmap to assess the association
of the bivariate entropy methods between themselves when applied to the coupled fetal–maternal
heart rate signals. Legend: F – fetal heart rate, M – Maternal Heart Rate, X – Cross, Ap – Approx-
imate, Samp – Sample, Fuzz – Fuzzy, Perm – Permutation, Cond – Conditional, TE – Transfer
Entropy, lin – linear, bin – binning, MF – information from MHR to FHR, FM – information from
FHR to MHR.

Figure 5.7: Correlation matrices (Spearman coefficient) with heatmap to assess the association
between the bivariate entropy methods and the univariate measures (fetal heart rate on the left and
maternal heart rate on the right). Legend: F – fetal heart rate, M – Maternal Heart Rate, MS –
Multiscale, 2 – temporal scale 2, Ci – Complexity index, X – Cross, std – standard deviation, Ap
– Approximate, Samp – Sample, Fuzz – Fuzzy, Perm – Permutation, Cond – Conditional, Disp
– Dispersion, Bubb – Bubble, Attn – Attention, SE – Self-Entropy, TE – Transfer Entropy, lin –
linear, bin – binning, MF – information from MHR to FHR, FM – information from FHR to MHR.

For the evaluation of the association between the bivariate measures and the univariate mea-

sures, similarly to the univariate analysis, the correlations are stronger when the bivariate measures

are compared to the MHR entropy values than when compared to the FHR values. In the FHR

univariate measures compared with the bivariate values, XCondEn for MHR presents the most sig-

nificant association with the MSE of FHR, followed by XApEn for FHR. In the comparison with
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MHR univariate measures, XApEn for MHR, XSampEn, and XFuzzEn present strong positive

correlations with ApEn, SampEn, FuzzEn, CondEn and DispEn; significant positive associations

with PermEn and BubbEn; strong negative correlations with Attn, SE and the standard deviation.

The TE computed from MHR to FHR with binning estimation presents the opposite relationship

that was just described. Another correlation to highlight is the positive one between XCondEn for

FHR and SE of MHR.

5.4 Discriminant capacity for fetal acidemia

The Mann-Whitney test was used to assess the discriminant capacity of the entropy methods for

fetal acidemia. For that, different time intervals were chosen to assess the discriminatory capacity.

Table 5.3 summarises the results of the statistical test for time intervals that correspond to a mean

of entropy indices, while Table 5.4 describes the indices computed for 10 min intervals. Addition-

ally, they describe the measures with their median and interquartile interval. Note that although a

p-value < 0.05 was considered significant, it does not mean that all the others are to discard. Thus,

in both tables, all p-values < 0.1 were presented with the p-values < 0.05 highlighted. (For the

extended version of the Mann-Whitney test results: Section A.1.)

Table 5.3: Entropy indices assessment with median, interquartile interval and p-value of the Mann-
Whitney test for distinguishing between non-acidemic and acidemic fetuses (considering time
intervals longer than 10 min). This table includes all p-values < 0.1, highlighting p-values < 0.05.
Legend: FHR – fetal heart rate, MHR – maternal heart rate, sc – scale of the Multiscale Entropy,
Ci – Complexity index, Med – medial, Q1 – first quartile, Q3 – third quartile.

Time
Interval

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

2 hours Mean FHR 142 [132;148] 134 [124;138] 0.027

1st hour
AttnEn MHR sc4 2.378 [2.168;2.576] 2.038 [2.005;2.375] 0.065

AttnEn MHR sc5 2.25 [2.09;2.46] 2.08 [1.93;2.16] 0.088

AttnEn Ci 14.0 [13.2;14.9] 13.0 [12.5;14.2] 0.096

2nd hour
Mean FHR 140 [132;145] 131 [123;134] 0.011

XCond FHR 1.31 [1.21;1.39] 1.43 [1.32;1.49] 0.053

SE bin MHR 1.37 [1.05;1.60] 1.56 [1.11;1.75] 0.059

Last
20 min

SampEn FHR sc1 0.12 [0.10;0.16] 0.15 [0.14;0.16] 0.072

SampEn FHR sc2 0.21 [0.18;0.29] 0.27 [0.25;0.30] 0.065

SampEn FHR sc3 0.30 [0.26;0.41] 0.37 [0.35;0.42] 0.072

SampEn FHR sc4 0.37 [0.32;0.49] 0.48 [0.42;0.54] 0.059

SampEn FHR sc5 0.44 [0.34;0.58] 0.53 [0.44;0.63] 0.096

SampEn FHR Ci 1.43 [1.21;1.92] 1.81 [1.62;2.04] 0.065

TE lin FHR–MHR 15.3 [6.4;28.1] E-04 4.0 [1.6;7.4] E-04 0.029
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Since the entropy indices were calculated over 10 min segments and the time intervals studied

in Table 5.3 are longer than 10 min, these correspond to the mean of the segments included in the

desired time interval. For example, the entropy of the last 20 min is equivalent to the mean of the

indices calculated for the penultimate 10 min and the last 10 min.

Some relevant results are the ones obtained for the FHR mean, Sample Entropy of FHR and

Transfer Entropy from FHR to MHR with the linear estimator. The FHR mean was proved to be

significantly different throughout the whole signal, mainly during the second hour. The same can

be stated for Transfer Entropy when computed for the last 20 minutes before birth. Regarding

Sample Entropy, although not able to significantly differ the groups according to the established

threshold (p-value < 0.05), presented promising results for the last 20 minutes before birth.

Table 5.4: Entropy indices assessment with median, interquartile interval and p-value of the Mann-
Whitney test for distinguishing between non-acidemic and acidemic fetuses (considering time
intervals of 10 min). This table includes all p-values < 0.1, highlighting p-values < 0.05. Legend:
FHR – fetal heart rate, MHR – maternal heart rate, sc – scale of the Multiscale Entropy, Ci –
Complexity index, Med – medial, Q1 – first quartile, Q3 – third quartile.

Time
Interval

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

Penult
10 min

ApEn FHR sc3 0.45 [0.37;0.53] 0.54 [0.46;0.60] 0.053

ApEn FHR sc4 0.53 [0.42;0.61] 0.61 [0.55;0.70] 0.056

SampEn FHR sc1 0.11 [0.08;0.14] 0.15 [0.14;0.16] 0.053

SampEn FHR sc2 0.20 [0.15;0.25] 0.27 [0.22;0.30] 0.045
SampEn FHR sc3 0.29 [0.20;0.34] 0.34 [0.35;0.42] 0.017
SampEn FHR sc4 0.35 [0.25;0.40] 0.48 [0.41;0.53] 0.020
SampEn FHR sc5 0.41 [0.27;0.47] 0.54 [0.45;0.60] 0.031
SampEn FHR Ci 1.37 [0.98;1.60] 1.82 [1.58;1.99] 0.026

TE lin FHR–MHR 14.5 [5.2;34.5] E-04 2.1 [1.1;9.6] E-04 0.034

Last
10 min

XCondEn MHR 1.40 [1.22;1.47] 1.31 [1.17;1.36] 0.096

cCondEn MHR sc1 0.36 [0.32;0.43] 0.46 [0.40;0.51] 0.056

cCondEn MHR sc2 0.57 [0.50;0.67] 0.70 [0.63;0.76] 0.076

cCondEn MHR sc3 0.71 [0.61;0.79] 0.82 [0.73;0.89] 0.076

cCondEn MHR sc4 0.78 [0.69;0.86] 0.91 [0.85;0.93] 0.076

cCondEn MHR Ci 3.30 [2.78;3.66] 3.86 [3.51;4.08] 0.065

TE lin MHR–FHR 3.4 [0.7;12.1] E-04 11.0 [3.7;32.7] E-04 0.076

TE bin MHR–FHR 0 [0.000;0.013] 0.023 [0;0.038] 0.041

Similar to the previous analysis, the entropy measures that achieved the best discriminatory

capacity were Sample Entropy and Transfer Entropy. Focusing on the penultimate 10 minutes

before birth, SampEn of FHR and TE from FHR to MHR with the linear estimator were able to

significantly distinguish acidemic fetuses. ApEn of FHR for some MSE scales showed promising
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results by achieving threshold values. In the last 10 minutes before birth, only Transfer Entropy

from MHR to FHR with the binning estimator was able to discriminate fetal acidemia with a

p-value < 0.05. cCondEn and XCondEn of MHR showed their potentiality with p-values < 0.1.

The power of the tests conducted was also calculated to verify the capacity of the model to

find a statistically significant difference between the groups when the difference does exist [150].

For the calculation, G*Power 3.1 [49] was used. Table 5.5 presents the inputs defined in order to

simulate the correspondent statistical power of the test. To emphasise that a medium effect size

was considered and a power of 0.223 was obtained.

Table 5.5: Parameters defined to calculate the Mann-Whitney test power and respective result.

Statistical Test Effect Size alpha Group 1
Sample Size

Group 2
Sample Size Power

Mann-Whitney
(two groups)

Medium
(d = 0.5)

0.05 54 7 0.223

5.5 Effect of time on the indices

Aiming to evaluate if the entropy indices were being influenced by the time before birth, box-

plots were constructed to compare the evolution of non-acidemic and acidemic indices throughout

time. The first measure and the easiest to identify the differences in the evolution of the indices

throughout time between the groups is the mean of the FHR (Figure 5.8).

Figure 5.8: Fetal heart rate means evolution throughout time for non-acidemic vs acidemic fetuses.
The mean was calculated for each 2-hour record over 10 min segments, being the beginning of the
segment indicated on the x-axis.
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Regarding the entropy measures, boxplots were also constructed to assess the different evolu-

tion of the groups throughout time. However, these differences are not so evident for most indices

computed. Figure 5.9 has an example of a boxplot for one univariate entropy applied to FHR and

another applied to MHR, one cross-entropy and one information dynamics.

Figure 5.9: Entropy indices evolution throughout time for non-acidemic vs acidemic fetuses. As
an example, four measures are depicted: Multiscale Sample Entropy of fetal heart rate (FHR) scale
2 (MSSampF2), Multiscale Bubble Entropy of maternal heart rate (MHR) scale 2 (MSBubbM2),
Cross-Fuzzy Entropy (XFuzz) and Transfer Entropy of FHR to MHR with the linear estimator
(TELinFM). Each measure was calculated for each 2-hour record over 10 min segments, being the
beginning of the segment indicated on the x-axis.

5.6 Discriminant capacity for fetal acidemia considering the influ-
ence of time

In order to quantify the influence of time on the evolution of the indices of each group (non-

acidemic and acidemic), Generalised Linear Mixed Models were computed and fitted into the

data. As detailed in Section 4.2.3, two different models were tested, varying the time as a fixed
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and a random effect. Tables 5.6 and 5.7 are examples of the results obtained for each model for

5 of the measures tested, including the FHR mean, an example of a univariate entropy applied

to FHR and another applied to MHR, one cross-entropy and one information dynamics. These

tables reveal high AIC values for the fitting of the models. No significant results (p-values > 0.05)

were found regarding the influence of the predictor variables (fixed effects) on the outcome of the

models (acidemic or non-acidemic). (For the extended version of the GLMM results: Section A.2.)

Table 5.6: Output parameters of the Generalised Linear Mixed Models computed considering
entropy method and time fixed effects, and subject variability a random effect. As an example,
four measures are presented: scale 2 of Multiscale Sample Entropy of fetal heart rate (FHR), scale
2 of Multiscale Bubble Entropy of maternal heart rate (MHR), Cross-Fuzzy Entropy and Transfer
Entropy of FHR to MHR with the linear estimator.

Measure
Model fit Fixed effects coefficients (95% CIs) Random effects

AIC ’Method’
Estimate

’Method’
p-value

’Time’
Estimate

’Time’
p-value

’Subject’
Estimate

mean FHR 5021 -0.014 0.536 -0.0037 0.972 3.535

XFuzzEn 5009 -2.208 0.812 0.0191 0.872 3.545

SampEn
FHR sc2

5007 -0.169 0.950 0.0038 0.972 3.546

BubbEn
FHR sc2

5009 -1.400 0.912 0.0073 0.953 3.543

TE lin
FHR-MHR

5007 -13.001 0.923 0.0047 0.964 3.546

Table 5.7: Output parameters of the Generalised Linear Mixed Model computed considering en-
tropy method a fixed effect, and time and subject variability as random effects. As an example,
four measures are represented: scale 2 of Multiscale Sample Entropy of fetal heart rate (FHR),
scale 2 of Multiscale Bubble Entropy of maternal heart rate (MHR), Cross-Fuzzy Entropy and
Transfer Entropy of FHR to MHR with the linear estimator.

Measure
Model fit Fixed effects coefficients (95% CIs) Random effects

AIC ’Method’
Estimate

’Method’
p-value

’Time’
Estimate

’Subject’
Estimate

mean FHR 5021 -0.014 0.537 3.30E-05 3.534

XFuzzEn 5008 -1.493 0.854 3.19E-05 3.545

SampEn
FHR sc2

5007 -0.194 0.940 2.85E-05 3.546

BubbEn
FHR sc2

5008 -1.360 0.914 1.70E-05 3.544

TE lin
FHR-MHR

5007 -13.522 0.919 1.98E-05 3.546
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5.7 Discussion

The main results achieved in the course of this work are related to the correlation between the

indices and their discriminant capacity for fetal acidemia, which was assessed with two different

approaches.

Starting with the execution time of the entropy indices, this test was motivated by the ob-

servation that the information dynamics-based entropy methods were taking a considerably long

amount of time to compute. Since this could represent a barrier to their application throughout

the work, this study was meant to find the cause of this problem and minimise it. A randomly

generated signal allowed to identify kernel and k-nearest neighbours estimators as the ones with

significantly higher computation time. Thus, a decision was made to leave out these estimators to

ensure the feasibility of the subsequent analysis. This ensured the practicability of the analysis for

real-world applications since it has to be made in a timelier manner.

Note that since all entropy measures were kept, the study did not suffer a significant impact

from the removal of the estimators. However, these estimators will likely bring additional interest-

ing aspects that the used ones do not reveal. Therefore, future optimisation of their computational

time might be beneficial.

A correlation assessment can reveal interesting aspects of the relationships not only between

different measures but also between the signals from which these were computed. Significant

positive associations were found between ApEn, SampEn, FuzzEn, cCondEn and DispEn when

applied to FHR and also when applied to MHR. Considering the algorithms of these measures

and the methods that are the basis of their development, these correlations could be anticipated.

The same can be stated for the positive association between PermEn and BubbEn. These last two

measures also presented a negative association with AttnEn, which is an interesting finding that

might be the focus of future study: a comparison of the behaviour of these indices.

When comparing univariate measures applied to FHR with the same measures but applied

to MHR, almost no significant correlation is immediately identified. This lack of associations

might be explained by the fact that FHR and MHR are distinct physiological signals with different

variability. Additionally, it is necessary to consider that these signals were obtained with different

methodologies: FHR from ultrasound and MHR from ECG. Therefore, they might have been

influenced by noise or the differences between the acquisition procedures.

Similar to the univariate measures, XApEn, XSampEn and XFuzzEn present a high positive

correlation, which, again, can be explained by the similarity of their theoretical formulations.

The Cross-Entropy methods, in general, have a higher association with the univariate measures

that are applied to the MHR than with the same ones but applied to the FHR, suggesting a closer

relationship with the overall behaviour of the MHR. Another interesting finding was the significant

association of the XCond of the MHR with both the cCondEn and the SE (which computes the

CondEn in its algorithm) of the FHR. This finding highlights the possibility of the FHR and MHR

being related and influencing each other, hypothesizing that the predictability of FHR patterns

may be affected by MHR dynamics. A similar situation was verified between XCondEn of FHR
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and SE of MHR.

This type of study supports the correct implementation of the measures on the database since

the values obtained behave as would be expected from their theoretical formulation analysis. Re-

garding the not yet so studied measures, the novel findings on their relationships with known mea-

sures might help understand their behaviours. It is important to state that further studies with wider

databases are needed to state the validity and reliability of these conclusions since factors such as

stress, hormonal fluctuations, or fetal movements can influence the indices obtained. Furthermore,

this highlighted the advantage of using multiple measures since they can reveal different aspects

of both FHR and MHR and possibly improve the comprehension of their underlying mechanisms.

The entropy values between the acidemic and non-acidemic groups were compared using the

Mann-Whitney test since the data do not adhere to the assumptions of normality required by other

tests. Regarding the longer time intervals tested (1 or 2 hours duration), most measures were un-

able to distinguish the groups. However, when focusing 10min length time intervals, this number

increased. For all cases, the entropy was computed over 10min length segments. To obtain the

entropy value of a longer time interval, the mean of the segments included in that time window

was calculated. This can have a negative effect on the discriminant capacity when longer time

intervals are considered since some of the information is lost on the way. Additionally, this can

also mean that fetal acidemia might be related to faster subtle FHR pattern modifications, which

can only be identified when focusing on a shorter time interval.

To emphasise the significant results (p-value < 0.05) found for Multiscale Sample Entropy of

FHR and Transfer Entropy from FHR to MHR, both when computed in the penultimate 10 min

before birth. This data implies that in distinguishing acidemic from non-acidemic individuals, the

entropy measure during this particular period of time span is particularly significant. Regarding

the last 10 min before birth, some almost borderline values were encountered, but that might be

affected by the increase of movements and contractions frequency closer to birth that consequently

increases the noise of the signals.

Besides the p-value, another important metric is the power of the test, which was equal to

22.3%. Considering that it is widely accepted that a test is reliable if its power is of at least 80%,

the low power obtained might justify the lack of discriminating indices. The low power of the test

also suggests a low probability of the measures being able to identify differences between groups

when they do exist (false negatives), which can be due to the insufficient sample size in the study.

Taking into account both the low power of the test and the capability of some measures to still

identify differences between the groups in the penultimate 10 min before birth, there is an indi-

cation of the entropy indices being promising measures for distinguishing between the acidemic

and non-acidemic groups. This evidenced the potential of measures such as Sample Entropy and

Transfer Entropy to improve fetal acidemia diagnosis. Further studies, including larger sample

sizes, would be needed to generalise the current findings.

Another important aspect to note is relative to the binning estimator. When TE is computed

with this estimator, several values are equal to zero. In Table 5.4, for the last 10 minutes, the

values computed for Transfer Entropy from MHR to FHR have a median of zero, indicating that
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most subjects had that value assigned to them. Therefore, although the test found a statistically

significant difference between the groups, this might only be to the abnormally high number of

normal fetuses that obtained a zero value for this measure, and the real capacity of the method to

discriminate the groups might not be being evaluated correctly. A parameter adjustment might be

needed to improve the veracity of the results, such as the increase in quantisation levels. However,

a study would have to be pursued to optimise the rest of the parameters in function of this increase.

The research on the influence of time on entropy indices was made by resorting to Generalised

Linear Mixed Models. For that, two different models were designed: one considering time as a

fixed effect and another as a random effect. However, in both cases, neither the entropy value nor

the time were found to be statistically different (p-value < 0.05) between groups.

Regarding the fixed effects coefficients, their estimate gives information on how the outcome

would change as a function of the predictor variable. In this case, for the measures presented,

the estimation of the group is expected to decrease with the increase of the entropy value, and for

most measures, it is expected to increase slightly with the increase of time. Although the lack

of statistically significant results and the small coefficients estimated for the time as a predictor

variable of the group could imply that time does not significantly affect entropy indices, it is

essential to take into account the characteristics of the study that might influence this outcome,

such as the small sample size.

In the random effects, the estimate of time quantifies the variation in the result variable that is

due to the time variability within each subject. The fact that this value is substantially lower than

the estimate of time as a fixed effect suggests that the overall effect of time has a higher influence

on the group than the individual time variations.

While the AIC value is a comparative measure to assess which of two or more models fit the

data better, a value around 5000 is indicative that the present model might not be the most adequate

for the data in the study. Further research could include alternative models or the inclusion of

additional variables.
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Chapter 6

Conclusion

In this chapter, the objectives of the study, the main results obtained and their scientific relevance

are recapitulated. The achievement of the objectives proposed is also tackled. Then, the main

conclusions drawn from the work developed are analysed in light of their limitations. Finally,

considering the findings of this dissertation and the literature review, relevant future work is sug-

gested.

6.1 Main contributions

The main objectives of this dissertation are the estimation of information theory-based indices

of FHR–MHR dynamics and the assessment of their discriminant capacity for the diagnosis of

fetal acidemia. In order to achieve this, several entropy measures chosen based on their current

application in physiological signals were computed from a database with simultaneous FHR and

MHR real signals of the two hours prior to birth. Signal segments of 10 minutes were selected to

compute the indices, which is appropriate for clinical practice analysis: rapid subtle pattern mod-

ifications might be related to emerging health issues, and the analysis is performed in a timelier

manner.

A correlation analysis between the different indices computed supported the appropriate im-

plementation of the measures on the database since the expected relationships between measures

with similar theoretical formulations were verified. For example, positive associations were found

between Approximate, Sample and Fuzzy Entropy. Additionally, associations between not yet so

studied measures with different approaching algorithms were found, but further studies are needed

to verify the generalisation of these relationships since several maternal and fetal aspects can influ-

ence them. Furthermore, this analysis highlighted the advantage of using multiple measures since

they can reveal different aspects of both FHR and MHR and possibly improve the comprehension

of their underlying mechanisms.

The discriminant capacity of the indices computed was assessed with the Mann-Whitney test.

To highlight the statistically significant results (p-value < 0.05) of Multiscale Sample Entropy of

FHR and Transfer Entropy from FHR to MHR, both were computed in the penultimate 10 min

61
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before birth. More methods were able to discriminate fetal acidemia in the intervals closer to

birth, suggesting that this pathology might be related to faster subtle FHR pattern modifications

that are more likely to occur with the progression of labour. It is important to note that these results

were obtained with low statistical power (22.3%) due to the small sample size of the data, meaning

that a wider database is likely to have even more measures able to distinguish fetal acidemia.

In order to evaluate the influence of time on the capacity of the indices to distinguish acidemic

fetuses, Generalised Linear Mixed Models were designed: one considering time as a fixed effect

and another as a random effect. In both, the entropy value was set as a fixed effect, and the within

group subject variability was accounted for in random effects. However, in both models, neither

the entropy value nor the time were found to be statistically different (p-value < 0.05) between

groups. Although the lack of statistically significant results and the small coefficients estimated

for the time as a predictor variable of the group could imply that time does not significantly affect

entropy indices, it is essential to take into account the characteristics of the study that might in-

fluence this outcome, such as the small sample size. Furthermore, AIC values around 5000 were

obtained, suggesting that the model might not be adequately fitting the data.

Taking all this into account, it is possible to state that the main objective of the dissertation was

achieved: information theory-based indices of FHR–MHR dynamics were estimated and proven

to be able to discriminate fetal acidemia when tested in a database with the simultaneous FHR

and MHR signals. Therefore, the results supported the recommendation of the collection of the

MHR in clinical practice, which is done in a simple and non-invasive way and could improve fetal

acidemia detection. This work also provided a comprehensive analysis of the capacity of different

entropy-based algorithms to extract information from these signals, which can aid clinicians in

interpreting these signals. This dissertation also provided guidelines for the application of the

measures in similar studies.

6.2 Limitations

Despite having achieved significant and satisfactory results, such as the evidence of the capacity

of information theory-based indices to improve fetal acidemia detection, the conclusions drawn

must be analysed in light of their limitations.

The major limitation of this study was the small sample size of the database used: 61 subjects,

of which only 7 were acidemic. This limited number of records restricts the possibility of gener-

alising the conclusions made. On the other hand, the differences observed between the subjects

in the study, e.g. in the type of labour and gestational age, included within subject variability and

allowed the results to be more representative of the overall population.

The information theory-based indices chosen and on which the work was based, although

supported by the literature review conducted, are not yet widely considered significant for clinical

analysis. Besides, the interpretation of the outcome of some of these measures on physiological

signals applications is also still being investigated. Thus, further studies are needed to establish

the clinical relevance of these indices as well as their interpretation in biomedical signals.
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Moreover, this work resorted to a time interval of 10 minutes to compute the indices. Although

it is in accordance with related biomedical signal studies, the exploration of different time windows

could improve the analysis of the signals.

Despite the aforementioned limitations, the present work lays the ground for further investiga-

tions on using entropy measures applied to FHR and MHR simultaneous signals to improve fetal

monitoring and clinical diagnosis.

6.3 Future work

Several aspects detailed throughout this dissertation can be explored to enhance the knowledge

of the relationship between entropy and FHR–MHR dynamics. To start, the estimators offered

by ITS to compute Self-Entropy and Transfer Entropy could be explored. Regarding the binning

estimator, it was found that when used to calculate Transfer Entropy, most results were equal to

zero. An increase in the quantisation levels is suggested but requires an adjustment of the rest

of the parameters that would have to be investigated. For kernel and k-nearest neighbour, an

improvement in their computation times would make them more suitable for clinical practice and

allow them to be easily used on FHR–MHR simultaneous signals analysis.

The most obvious suggestion for further research is to expand the study to a bigger sample

size database with variability in subject features. This would allow a more representative study

to be conducted, leading to a more robust statistical analysis and the possibility to generalise the

findings. Additionally, the study might be extended with the inclusion of relevant signals, such as

uterine contractions, or additional entropy measures, such as Multiscale Cross Entropy.

Different time windows for the computation of the entropy indices could also be considered.

For example, in the study of the influence of time on the discriminant capacity of the indices

for fetal acidemia, calculating the entropy using sliding windows might improve the Generalised

Linear Mixed Models analysis.

Finally, an essential study to validate the results and their applicability to clinical practice

is the association between entropy measures and clinical subject features, such as the type of

labour or gestational age. This relationship can give insightful information on the possible clinical

use of entropy measurements as tools for prediction or diagnosis. These studies quantify the

clinical relevance of entropy measures and their applicability in fetal monitoring and fetal acidemia

diagnosis.
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Appendix A

Extended results

A.1 Mann-Whitney test results

Table A.1: Median, interquartile interval and p-value of the Mann-Whitney test for the

2 hour signal.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

mean FHR 141.6 [ 132.2 ; 148.3 ] 134.1 [ 124.0 ; 137.8 ] 0.027

std FHR 14.0 [ 11.6 ; 16.4 ] 15.5 [ 12.4 ; 19.6 ] 0.336

mean MHR 88.0 [ 81.6 ; 96.0 ] 82.1 [ 79.3 ; 89.2 ] 0.186

std MHR 7.58 [ 6.60 ; 8.92 ] 9.05 [ 7.21 ; 11.01 ] 0.164

XApEn FHR 0.13 [ 0.01 ; 0.19 ] 0.10 [ 0.02 ; 0.18 ] 0.743

XApEn MHR 0.32 [ 0.22 ; 0.40 ] 0.28 [ 0.16 ; 0.37 ] 0.396

XSampEn 0.37 [ 0.30 ; 0.42 ] 0.32 [ 0.27 ; 0.46 ] 0.830

XFuzzEn 0.092 [ 0.070 ; 0.113 ] 0.082 [ 0.056 ; 0.125 ] 0.659

XPermEn 0.015 [ 0.006 ; 0.031 ] 0.010 [ 0.005 ; 0.018 ] 0.293

XCondEn FHR 1.29 [ 1.22 ; 1.38 ] 1.29 [ 1.26 ; 1.43 ] 0.282

XCondEn MHR 1.10 [ 1.02 ; 1.18 ] 1.13 [ 1.09 ; 1.23 ] 0.396

ApEn FHR sc1 0.27 [ 0.23 ; 0.31 ] 0.26 [ 0.24 ; 0.29 ] 0.760

ApEn FHR sc2 0.42 [ 0.38 ; 0.49 ] 0.43 [ 0.38 ; 0.45 ] 0.847

ApEn FHR sc3 0.51 [ 0.47 ; 0.59 ] 0.53 [ 0.48 ; 0.57 ] 0.991

ApEn FHR sc4 0.58 [ 0.54 ; 0.67 ] 0.59 [ 0.55 ; 0.66 ] 0.919

ApEn FHR sc5 0.64 [ 0.59 ; 0.72 ] 0.65 [ 0.60 ; 0.72 ] 0.865

Continued on next page
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Table A.1: Median, interquartile interval and p-value of the Mann-Whitney test for the

2 hour signal. (Continued)

ApEn FHR Ci 2.42 [ 2.21 ; 2.78 ] 2.52 [ 2.23 ; 2.65 ] 1.000

SampEn FHR sc1 0.18 [ 0.15 ; 0.22 ] 0.17 [ 0.16 ; 0.21 ] 0.579

SampEn FHR sc2 0.29 [ 0.25 ; 0.34 ] 0.31 [ 0.24 ; 0.33 ] 0.830

SampEn FHR sc3 0.38 [ 0.33 ; 0.46 ] 0.42 [ 0.33 ; 0.43 ] 0.973

SampEn FHR sc4 0.46 [ 0.39 ; 0.55 ] 0.51 [ 0.39 ; 0.53 ] 0.955

SampEn FHR sc5 0.53 [ 0.44 ; 0.64 ] 0.58 [ 0.45 ; 0.62 ] 0.919

SampEn FHR Ci 1.86 [ 1.58 ; 2.22 ] 2.03 [ 1.56 ; 2.08 ] 0.937

FuzzEn FHR sc1 0.041 [ 0.032 ; 0.044 ] 0.034 [ 0.030 ; 0.046 ] 0.955

FuzzEn FHR sc2 0.075 [ 0.061 ; 0.084 ] 0.062 [ 0.059 ; 0.088 ] 1.000

FuzzEn FHR sc3 0.12 [ 0.10 ; 0.13 ] 0.10 [ 0.09 ; 0.14 ] 0.919

FuzzEn FHR sc4 0.15 [ 0.12 ; 0.17 ] 0.13 [ 0.12 ; 0.18 ] 0.973

FuzzEn FHR sc5 0.18 [ 0.15 ; 0.20 ] 0.16 [ 0.14 ; 0.21 ] 0.973

FuzzEn FHR Ci 0.57 [ 0.47 ; 0.63 ] 0.48 [ 0.44 ; 0.66 ] 0.955

PermEn FHR sc1 1.19 [ 1.08 ; 1.23 ] 1.20 [ 1.13 ; 1.26 ] 0.579

PermEn FHR sc2 1.91 [ 1.83 ; 1.96 ] 1.88 [ 1.87 ; 1.91 ] 0.422

PermEn FHR sc3 2.07 [ 2.04 ; 2.11 ] 2.06 [ 2.05 ; 2.07 ] 0.709

PermEn FHR sc4 2.19 [ 2.15 ; 2.22 ] 2.17 [ 2.16 ; 2.20 ] 0.901

PermEn FHR sc5 2.27 [ 2.24 ; 2.30 ] 2.27 [ 2.26 ; 2.29 ] 0.919

PermEn FHR Ci 9.62 [ 9.40 ; 9.79 ] 9.60 [ 9.53 ; 9.70 ] 0.692

cCondEn FHR sc1 0.19 [ 0.18 ; 0.22 ] 0.20 [ 0.18 ; 0.22 ] 0.937

cCondEn FHR sc2 0.32 [ 0.30 ; 0.36 ] 0.33 [ 0.30 ; 0.36 ] 0.812

cCondEn FHR sc3 0.41 [ 0.38 ; 0.46 ] 0.42 [ 0.39 ; 0.47 ] 0.659

cCondEn FHR sc4 0.48 [ 0.44 ; 0.53 ] 0.51 [ 0.46 ; 0.54 ] 0.490

cCondEn FHR sc5 0.54 [ 0.50 ; 0.60 ] 0.57 [ 0.52 ; 0.62 ] 0.359

cCondEn FHR Ci 1.94 [ 1.79 ; 2.17 ] 2.02 [ 1.86 ; 2.21 ] 0.579

DispEn FHR sc1 1.21 [ 1.15 ; 1.24 ] 1.22 [ 1.17 ; 1.22 ] 0.955

DispEn FHR sc2 1.31 [ 1.25 ; 1.35 ] 1.32 [ 1.26 ; 1.33 ] 0.937

DispEn FHR sc3 1.38 [ 1.32 ; 1.44 ] 1.38 [ 1.33 ; 1.40 ] 0.865

DispEn FHR sc4 1.44 [ 1.37 ; 1.51 ] 1.43 [ 1.40 ; 1.47 ] 0.847

Continued on next page
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Table A.1: Median, interquartile interval and p-value of the Mann-Whitney test for the

2 hour signal. (Continued)

DispEn FHR sc5 1.50 [ 1.42 ; 1.57 ] 1.48 [ 1.45 ; 1.52 ] 0.901

DispEn FHR Ci 6.86 [ 6.55 ; 7.09 ] 6.83 [ 6.59 ; 6.93 ] 0.865

BubbEn FHR sc1 0.22 [ 0.20 ; 0.23 ] 0.22 [ 0.21 ; 0.24 ] 0.830

BubbEn FHR sc2 0.36 [ 0.34 ; 0.38 ] 0.35 [ 0.34 ; 0.36 ] 0.519

BubbEn FHR sc3 0.44 [ 0.42 ; 0.46 ] 0.43 [ 0.42 ; 0.43 ] 0.709

BubbEn FHR sc4 0.50 [ 0.48 ; 0.51 ] 0.49 [ 0.48 ; 0.50 ] 0.795

BubbEn FHR sc5 0.54 [ 0.52 ; 0.56 ] 0.54 [ 0.53 ; 0.55 ] 0.883

BubbEn FHR Ci 2.06 [ 1.97 ; 2.13 ] 2.04 [ 2.02 ; 2.06 ] 0.675

AttnEn FHR sc1 3.37 [ 3.20 ; 3.53 ] 3.28 [ 3.06 ; 3.50 ] 0.462

AttnEn FHR sc2 3.75 [ 3.68 ; 3.84 ] 3.82 [ 3.74 ; 3.84 ] 0.209

AttnEn FHR sc3 3.36 [ 3.32 ; 3.45 ] 3.40 [ 3.33 ; 3.42 ] 0.743

AttnEn FHR sc4 3.07 [ 2.99 ; 3.15 ] 3.07 [ 3.04 ; 3.10 ] 0.865

AttnEn FHR sc5 2.83 [ 2.77 ; 2.93 ] 2.85 [ 2.81 ; 2.88 ] 0.726

AttnEn FHR Ci 16.4 [ 16.3 ; 16.6 ] 16.3 [ 16.2 ; 16.6 ] 0.709

ApEn MHR sc1 0.63 [ 0.52 ; 0.75 ] 0.57 [ 0.50 ; 0.72 ] 0.709

ApEn MHR sc2 0.90 [ 0.74 ; 1.00 ] 0.83 [ 0.74 ; 1.03 ] 0.991

ApEn MHR sc3 1.00 [ 0.84 ; 1.11 ] 0.93 [ 0.87 ; 1.13 ] 0.919

ApEn MHR sc4 1.08 [ 0.93 ; 1.17 ] 1.00 [ 0.93 ; 1.20 ] 0.795

ApEn MHR sc5 1.07 [ 0.96 ; 1.17 ] 1.02 [ 0.96 ; 1.20 ] 0.919

ApEn MHR Ci 4.68 [ 3.96 ; 5.22 ] 4.35 [ 4.00 ; 5.26 ] 1.000

SampEn MHR sc1 0.51 [ 0.43 ; 0.62 ] 0.46 [ 0.42 ; 0.56 ] 0.611

SampEn MHR sc2 0.81 [ 0.65 ; 0.92 ] 0.74 [ 0.69 ; 0.90 ] 0.991

SampEn MHR sc3 0.97 [ 0.78 ; 1.11 ] 0.88 [ 0.84 ; 1.10 ] 0.955

SampEn MHR sc4 1.10 [ 0.89 ; 1.26 ] 1.02 [ 0.92 ; 1.29 ] 0.795

SampEn MHR sc5 1.15 [ 0.96 ; 1.32 ] 1.10 [ 0.96 ; 1.38 ] 0.937

SampEn MHR Ci 4.60 [ 3.71 ; 5.22 ] 4.17 [ 3.84 ; 5.24 ] 1.000

FuzzEn MHR sc1 0.14 [ 0.10 ; 0.18 ] 0.12 [ 0.08 ; 0.20 ] 0.760

FuzzEn MHR sc2 0.21 [ 0.15 ; 0.27 ] 0.18 [ 0.12 ; 0.32 ] 0.777

FuzzEn MHR sc3 0.29 [ 0.20 ; 0.34 ] 0.24 [ 0.17 ; 0.42 ] 0.865

Continued on next page
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Table A.1: Median, interquartile interval and p-value of the Mann-Whitney test for the

2 hour signal. (Continued)

FuzzEn MHR sc4 0.33 [ 0.25 ; 0.42 ] 0.29 [ 0.20 ; 0.49 ] 0.847

FuzzEn MHR sc5 0.36 [ 0.28 ; 0.46 ] 0.34 [ 0.22 ; 0.53 ] 0.847

FuzzEn MHR Ci 1.37 [ 0.98 ; 1.63 ] 1.16 [ 0.80 ; 1.97 ] 0.865

PermEn MHR sc1 1.25 [ 1.19 ; 1.31 ] 1.21 [ 1.18 ; 1.25 ] 0.171

PermEn MHR sc2 2.20 [ 2.14 ; 2.25 ] 2.19 [ 2.14 ; 2.20 ] 0.359

PermEn MHR sc3 2.36 [ 2.30 ; 2.40 ] 2.33 [ 2.32 ; 2.37 ] 0.549

PermEn MHR sc4 2.43 [ 2.37 ; 2.48 ] 2.43 [ 2.42 ; 2.47 ] 0.743

PermEn MHR sc5 2.46 [ 2.41 ; 2.51 ] 2.48 [ 2.44 ; 2.52 ] 0.462

PermEn MHR Ci 10.7 [ 10.5 ; 11.0 ] 10.7 [ 10.5 ; 10.8 ] 0.611

cCondEn MHR sc1 0.39 [ 0.34 ; 0.46 ] 0.44 [ 0.36 ; 0.48 ] 0.435

cCondEn MHR sc2 0.62 [ 0.55 ; 0.71 ] 0.69 [ 0.57 ; 0.73 ] 0.396

cCondEn MHR sc3 0.74 [ 0.67 ; 0.83 ] 0.83 [ 0.67 ; 0.88 ] 0.409

cCondEn MHR sc4 0.82 [ 0.74 ; 0.92 ] 0.91 [ 0.76 ; 0.97 ] 0.462

cCondEn MHR sc5 0.88 [ 0.81 ; 0.97 ] 0.97 [ 0.80 ; 1.03 ] 0.549

cCondEn MHR Ci 3.45 [ 3.12 ; 3.86 ] 3.83 [ 3.17 ; 4.10 ] 0.435

DispEn MHR sc1 1.39 [ 1.35 ; 1.44 ] 1.38 [ 1.33 ; 1.45 ] 0.812

DispEn MHR sc2 1.57 [ 1.51 ; 1.63 ] 1.55 [ 1.48 ; 1.67 ] 0.901

DispEn MHR sc3 1.65 [ 1.58 ; 1.72 ] 1.63 [ 1.55 ; 1.78 ] 0.955

DispEn MHR sc4 1.72 [ 1.64 ; 1.78 ] 1.69 [ 1.60 ; 1.84 ] 0.955

DispEn MHR sc5 1.76 [ 1.67 ; 1.82 ] 1.72 [ 1.63 ; 1.88 ] 1.000

DispEn MHR Ci 8.08 [ 7.77 ; 8.39 ] 7.96 [ 7.59 ; 8.62 ] 0.901

BubbEn MHR sc1 0.24 [ 0.23 ; 0.24 ] 0.23 [ 0.22 ; 0.24 ] 0.178

BubbEn MHR sc2 0.50 [ 0.47 ; 0.53 ] 0.50 [ 0.47 ; 0.50 ] 0.384

BubbEn MHR sc3 0.58 [ 0.55 ; 0.60 ] 0.57 [ 0.56 ; 0.59 ] 0.611

BubbEn MHR sc4 0.60 [ 0.59 ; 0.62 ] 0.60 [ 0.59 ; 0.62 ] 0.490

BubbEn MHR sc5 0.60 [ 0.59 ; 0.61 ] 0.60 [ 0.59 ; 0.61 ] 0.726

BubbEn MHR Ci 2.52 [ 2.46 ; 2.59 ] 2.52 [ 2.44 ; 2.56 ] 0.692

AttnEn MHR sc1 3.62 [ 3.46 ; 3.86 ] 3.58 [ 3.41 ; 3.78 ] 0.627

AttnEn MHR sc2 3.09 [ 2.90 ; 3.24 ] 2.98 [ 2.96 ; 3.11 ] 0.564
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Table A.1: Median, interquartile interval and p-value of the Mann-Whitney test for the

2 hour signal. (Continued)

AttnEn MHR sc3 2.70 [ 2.43 ; 2.85 ] 2.56 [ 2.44 ; 2.67 ] 0.336

AttnEn MHR sc4 2.42 [ 2.23 ; 2.67 ] 2.30 [ 2.13 ; 2.42 ] 0.164

AttnEn MHR sc5 2.33 [ 2.12 ; 2.53 ] 2.11 [ 2.04 ; 2.38 ] 0.157

AttnEn MHR Ci 14.2 [ 13.3 ; 15.1 ] 13.6 [ 13.3 ; 14.0 ] 0.186

SE lin FHR 1.69 [ 1.51 ; 1.81 ] 1.80 [ 1.56 ; 1.89 ] 0.384

SE bin FHR 0.98 [ 0.92 ; 1.05 ] 1.07 [ 0.92 ; 1.20 ] 0.178

SE lin MHR 1.35 [ 1.13 ; 1.54 ] 1.25 [ 1.13 ; 1.72 ] 0.726

SE bin MHR 1.00 [ 0.91 ; 1.07 ] 1.08 [ 0.92 ; 1.15 ] 0.217

TE lin MHR–FHR 1.89 [ 1.52 ; 2.70 ] E-03 1.78 [ 1.32 ; 2.48 ] E-03 0.448

TE bin MHR–FHR 4.60 [ 3.26 ; 7.38 ] E-03 6.16[ 3.72 ; 9.72 ] E-03 0.336

TE lin FHR–MHR 2.14 [ 1.34 ; 3.02 ] E-03 1.95 [ 1.62 ; 2.31 ] E-03 0.830

TE bin FHR–MHR 5.00 [ 2.94 ; 8.12 ] E-03 5.62 [ 4.92 ; 7.20 ] E-03 0.777

Table A.2: Median, interquartile interval and p-value of the Mann-Whitney test for the

first hour before birth.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

mean FHR 142.1 [ 135.4 ; 149.6 ] 137.4 [ 134.4 ; 141.3 ] 0.209

std FHR 9.5 [ 7.2 ; 12.5 ] 12.0 [ 6.5 ; 16.5 ] 0.627

mean MHR 84.5 [ 79.4 ; 93.0 ] 82.0 [ 75.4 ; 86.1 ] 0.164

std MHR 6.26 [ 5.66 ; 7.71 ] 6.83 [ 5.99 ; 8.29 ] 0.519

XApEn FHR 0.12 [ 0.01 ; 0.22 ] 0.16 [ -0.11 ; 0.22 ] 0.883

XApEn MHR 0.36 [ 0.27 ; 0.47 ] 0.27 [ 0.16 ; 0.45 ] 0.314

XSampEn 0.39 [ 0.33 ; 0.47 ] 0.33 [ 0.32 ; 0.48 ] 0.760

XFuzzEn 0.080 [ 0.054 ; 0.103 ] 0.067 [ 0.043 ; 0.081 ] 0.359

XPermEn 0.007 [ 0.001 ; 0.021 ] 0.006 [ 0.000 ; 0.008 ] 0.533

XCondEn FHR 1.29 [ 1.19 ; 1.38 ] 1.26 [ 1.23 ; 1.37 ] 0.973

XCondEn MHR 1.07 [ 0.97 ; 1.16 ] 1.09 [ 0.92 ; 1.21 ] 0.743

ApEn FHR sc1 0.29 [ 0.23 ; 0.36 ] 0.25 [ 0.22 ; 0.36 ] 0.830
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Table A.2: Median, interquartile interval and p-value of the Mann-Whitney test for the

first hour before birth. (Continued)

ApEn FHR sc2 0.45 [ 0.37 ; 0.53 ] 0.45 [ 0.37 ; 0.56 ] 0.883

ApEn FHR sc3 0.55 [ 0.46 ; 0.65 ] 0.58 [ 0.47 ; 0.67 ] 0.709

ApEn FHR sc4 0.62 [ 0.53 ; 0.71 ] 0.68 [ 0.54 ; 0.75 ] 0.692

ApEn FHR sc5 0.66 [ 0.58 ; 0.78 ] 0.75 [ 0.60 ; 0.82 ] 0.692

ApEn FHR Ci 2.60 [ 2.17 ; 3.03 ] 2.73 [ 2.20 ; 3.21 ] 0.795

SampEn FHR sc1 0.21 [ 0.16 ; 0.27 ] 0.18 [ 0.15 ; 0.26 ] 0.777

SampEn FHR sc2 0.35 [ 0.26 ; 0.40 ] 0.33 [ 0.24 ; 0.41 ] 0.937

SampEn FHR sc3 0.42 [ 0.34 ; 0.52 ] 0.45 [ 0.33 ; 0.55 ] 0.847

SampEn FHR sc4 0.52 [ 0.41 ; 0.63 ] 0.56 [ 0.40 ; 0.65 ] 0.760

SampEn FHR sc5 0.58 [ 0.48 ; 0.72 ] 0.65 [ 0.46 ; 0.76 ] 0.709

SampEn FHR Ci 2.07 [ 1.63 ; 2.52 ] 2.18 [ 1.58 ; 2.62 ] 0.883

FuzzEn FHR sc1 0.024 [ 0.018 ; 0.032 ] 0.018 [ 0.011 ; 0.026 ] 0.178

FuzzEn FHR sc2 0.043 [ 0.034 ; 0.059 ] 0.033 [ 0.021 ; 0.047 ] 0.193

FuzzEn FHR sc3 0.070 [ 0.052 ; 0.091 ] 0.055 [ 0.036 ; 0.074 ] 0.235

FuzzEn FHR sc4 0.10 [ 0.07 ; 0.12 ] 0.08 [ 0.05 ; 0.10 ] 0.193

FuzzEn FHR sc5 0.12 [ 0.08 ; 0.14 ] 0.09 [ 0.07 ; 0.12 ] 0.193

FuzzEn FHR Ci 0.35 [ 0.26 ; 0.44 ] 0.28 [ 0.18 ; 0.36 ] 0.209

PermEn FHR sc1 1.20 [ 1.10 ; 1.24 ] 1.23 [ 1.11 ; 1.24 ] 0.659

PermEn FHR sc2 1.92 [ 1.85 ; 1.97 ] 1.88 [ 1.83 ; 1.94 ] 0.336

PermEn FHR sc3 2.08 [ 2.02 ; 2.13 ] 2.04 [ 2.02 ; 2.10 ] 0.476

PermEn FHR sc4 2.18 [ 2.14 ; 2.21 ] 2.15 [ 2.13 ; 2.19 ] 0.490

PermEn FHR sc5 2.26 [ 2.23 ; 2.29 ] 2.26 [ 2.24 ; 2.29 ] 0.726

PermEn FHR Ci 9.64 [ 9.39 ; 9.82 ] 9.60 [ 9.38 ; 9.71 ] 0.490

cCondEn FHR sc1 0.20 [ 0.17 ; 0.23 ] 0.20 [ 0.18 ; 0.23 ] 0.847

cCondEn FHR sc2 0.31 [ 0.28 ; 0.35 ] 0.35 [ 0.28 ; 0.37 ] 0.611

cCondEn FHR sc3 0.40 [ 0.35 ; 0.46 ] 0.45 [ 0.37 ; 0.48 ] 0.396

cCondEn FHR sc4 0.47 [ 0.42 ; 0.54 ] 0.54 [ 0.44 ; 0.57 ] 0.226

cCondEn FHR sc5 0.52 [ 0.46 ; 0.59 ] 0.62 [ 0.51 ; 0.64 ] 0.151

cCondEn FHR Ci 1.91 [ 1.69 ; 2.19 ] 2.17 [ 1.77 ; 2.29 ] 0.314
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Table A.2: Median, interquartile interval and p-value of the Mann-Whitney test for the

first hour before birth. (Continued)

DispEn FHR sc1 1.21 [ 1.14 ; 1.25 ] 1.20 [ 1.19 ; 1.25 ] 0.777

DispEn FHR sc2 1.33 [ 1.24 ; 1.37 ] 1.34 [ 1.28 ; 1.38 ] 0.726

DispEn FHR sc3 1.39 [ 1.31 ; 1.46 ] 1.41 [ 1.35 ; 1.47 ] 0.534

DispEn FHR sc4 1.46 [ 1.36 ; 1.53 ] 1.48 [ 1.40 ; 1.53 ] 0.504

DispEn FHR sc5 1.50 [ 1.41 ; 1.58 ] 1.53 [ 1.45 ; 1.60 ] 0.476

DispEn FHR Ci 6.89 [ 6.44 ; 7.17 ] 6.99 [ 6.65 ; 7.22 ] 0.595

BubbEn FHR sc1 0.23 [ 0.21 ; 0.24 ] 0.23 [ 0.21 ; 0.24 ] 0.659

BubbEn FHR sc2 0.36 [ 0.33 ; 0.39 ] 0.34 [ 0.33 ; 0.37 ] 0.303

BubbEn FHR sc3 0.44 [ 0.41 ; 0.46 ] 0.42 [ 0.41 ; 0.45 ] 0.448

BubbEn FHR sc4 0.49 [ 0.47 ; 0.51 ] 0.48 [ 0.47 ; 0.50 ] 0.422

BubbEn FHR sc5 0.54 [ 0.52 ; 0.55 ] 0.54 [ 0.52 ; 0.55 ] 0.847

BubbEn FHR Ci 2.06 [ 1.96 ; 2.13 ] 2.00 [ 1.96 ; 2.09 ] 0.519

AttnEn FHR sc1 3.32 [ 3.08 ; 3.58 ] 3.17 [ 3.04 ; 3.25 ] 0.178

AttnEn FHR sc2 3.80 [ 3.68 ; 3.89 ] 3.89 [ 3.73 ; 3.92 ] 0.253

AttnEn FHR sc3 3.39 [ 3.33 ; 3.50 ] 3.46 [ 3.35 ; 3.48 ] 0.534

AttnEn FHR sc4 3.09 [ 3.02 ; 3.17 ] 3.12 [ 3.03 ; 3.19 ] 0.692

AttnEn FHR sc5 2.86 [ 2.80 ; 2.96 ] 2.91 [ 2.80 ; 2.98 ] 0.549

AttnEn FHR Ci 16.48 [ 16.21 ; 16.72 ] 16.35 [ 16.24 ; 16.68 ] 0.901

ApEn MHR sc1 0.67 [ 0.58 ; 0.77 ] 0.72 [ 0.59 ; 0.74 ] 0.865

ApEn MHR sc2 0.96 [ 0.79 ; 1.06 ] 1.00 [ 0.85 ; 1.07 ] 0.919

ApEn MHR sc3 1.05 [ 0.91 ; 1.19 ] 1.13 [ 0.97 ; 1.15 ] 0.919

ApEn MHR sc4 1.13 [ 0.98 ; 1.23 ] 1.19 [ 1.04 ; 1.23 ] 0.709

ApEn MHR sc5 1.14 [ 1.02 ; 1.20 ] 1.16 [ 1.05 ; 1.22 ] 0.795

ApEn MHR Ci 4.96 [ 4.33 ; 5.48 ] 5.26 [ 4.50 ; 5.35 ] 0.830

SampEn MHR sc1 0.54 [ 0.45 ; 0.65 ] 0.54 [ 0.50 ; 0.59 ] 0.777

SampEn MHR sc2 0.87 [ 0.70 ; 1.01 ] 0.89 [ 0.79 ; 0.96 ] 0.955

SampEn MHR sc3 1.04 [ 0.84 ; 1.22 ] 1.11 [ 0.96 ; 1.12 ] 0.991

SampEn MHR sc4 1.17 [ 0.96 ; 1.33 ] 1.28 [ 1.08 ; 1.32 ] 0.709

SampEn MHR sc5 1.25 [ 1.03 ; 1.38 ] 1.32 [ 1.11 ; 1.43 ] 0.743
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Table A.2: Median, interquartile interval and p-value of the Mann-Whitney test for the

first hour before birth. (Continued)

SampEn MHR Ci 4.91 [ 4.01 ; 5.66 ] 5.24 [ 4.47 ; 5.36 ] 0.883

FuzzEn MHR sc1 0.12 [ 0.08 ; 0.17 ] 0.10 [ 0.07 ; 0.14 ] 0.409

FuzzEn MHR sc2 0.20 [ 0.12 ; 0.25 ] 0.15 [ 0.11 ; 0.22 ] 0.348

FuzzEn MHR sc3 0.25 [ 0.17 ; 0.33 ] 0.20 [ 0.16 ; 0.31 ] 0.448

FuzzEn MHR sc4 0.29 [ 0.21 ; 0.40 ] 0.24 [ 0.19 ; 0.37 ] 0.396

FuzzEn MHR sc5 0.31 [ 0.24 ; 0.44 ] 0.26 [ 0.20 ; 0.40 ] 0.303

FuzzEn MHR Ci 1.16 [ 0.84 ; 1.53 ] 0.95 [ 0.73 ; 1.45 ] 0.371

PermEn MHR sc1 1.24 [ 1.16 ; 1.29 ] 1.18 [ 1.16 ; 1.24 ] 0.244

PermEn MHR sc2 2.21 [ 2.15 ; 2.25 ] 2.19 [ 2.14 ; 2.21 ] 0.409

PermEn MHR sc3 2.36 [ 2.31 ; 2.41 ] 2.37 [ 2.33 ; 2.39 ] 0.865

PermEn MHR sc4 2.45 [ 2.39 ; 2.50 ] 2.48 [ 2.43 ; 2.50 ] 0.504

PermEn MHR sc5 2.48 [ 2.44 ; 2.53 ] 2.53 [ 2.47 ; 2.55 ] 0.217

PermEn MHR Ci 10.73 [ 10.49 ; 10.93 ] 10.74 [ 10.48 ; 10.89 ] 0.901

cCondEn MHR sc1 0.39 [ 0.35 ; 0.48 ] 0.42 [ 0.36 ; 0.47 ] 0.709

cCondEn MHR sc2 0.62 [ 0.55 ; 0.74 ] 0.65 [ 0.57 ; 0.74 ] 0.595

cCondEn MHR sc3 0.73 [ 0.68 ; 0.85 ] 0.76 [ 0.67 ; 0.88 ] 0.643

cCondEn MHR sc4 0.82 [ 0.75 ; 0.93 ] 0.84 [ 0.74 ; 0.99 ] 0.675

cCondEn MHR sc5 0.88 [ 0.81 ; 0.97 ] 0.89 [ 0.77 ; 1.04 ] 0.883

cCondEn MHR Ci 3.44 [ 3.14 ; 3.93 ] 3.56 [ 3.12 ; 4.15 ] 0.675

DispEn MHR sc1 1.40 [ 1.36 ; 1.46 ] 1.43 [ 1.37 ; 1.48 ] 0.675

DispEn MHR sc2 1.59 [ 1.52 ; 1.66 ] 1.63 [ 1.53 ; 1.71 ] 0.611

DispEn MHR sc3 1.67 [ 1.60 ; 1.76 ] 1.73 [ 1.62 ; 1.80 ] 0.549

DispEn MHR sc4 1.73 [ 1.65 ; 1.82 ] 1.81 [ 1.67 ; 1.87 ] 0.490

DispEn MHR sc5 1.78 [ 1.69 ; 1.85 ] 1.86 [ 1.69 ; 1.91 ] 0.519

DispEn MHR Ci 8.16 [ 7.81 ; 8.60 ] 8.47 [ 7.88 ; 8.78 ] 0.549

BubbEn MHR sc1 0.24 [ 0.22 ; 0.24 ] 0.23 [ 0.22 ; 0.24 ] 0.226

BubbEn MHR sc2 0.51 [ 0.47 ; 0.53 ] 0.49 [ 0.47 ; 0.51 ] 0.371

BubbEn MHR sc3 0.59 [ 0.56 ; 0.61 ] 0.59 [ 0.57 ; 0.60 ] 0.973

BubbEn MHR sc4 0.61 [ 0.59 ; 0.62 ] 0.62 [ 0.61 ; 0.63 ] 0.106
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Table A.2: Median, interquartile interval and p-value of the Mann-Whitney test for the

first hour before birth. (Continued)

BubbEn MHR sc5 0.61 [ 0.59 ; 0.62 ] 0.61 [ 0.60 ; 0.61 ] 0.991

BubbEn MHR Ci 2.53 [ 2.47 ; 2.59 ] 2.54 [ 2.47 ; 2.58 ] 0.847

AttnEn MHR sc1 3.74 [ 3.54 ; 3.89 ] 3.60 [ 3.24 ; 3.92 ] 0.564

AttnEn MHR sc2 3.07 [ 2.89 ; 3.22 ] 2.93 [ 2.81 ; 3.16 ] 0.422

AttnEn MHR sc3 2.60 [ 2.43 ; 2.81 ] 2.34 [ 2.29 ; 2.69 ] 0.138

AttnEn MHR sc4 2.38 [ 2.17 ; 2.58 ] 2.04 [ 2.00 ; 2.38 ] 0.065

AttnEn MHR sc5 2.25 [ 2.09 ; 2.46 ] 2.08 [ 1.93 ; 2.16 ] 0.088

AttnEn MHR Ci 13.96 [ 13.19 ; 14.86 ] 12.97 [ 12.52 ; 14.21 ] 0.096

SE lin FHR 1.71 [ 1.58 ; 1.87 ] 1.90 [ 1.66 ; 2.01 ] 0.325

SE bin FHR 0.94 [ 0.88 ; 1.00 ] 0.96 [ 0.88 ; 1.08 ] 0.519

SE lin MHR 1.27 [ 1.10 ; 1.53 ] 1.18 [ 1.00 ; 1.70 ] 0.991

SE bin MHR 0.98 [ 0.88 ; 1.05 ] 0.97 [ 0.88 ; 1.09 ] 1.000

TE lin MHR–FHR 2.17 [ 1.37 ; 3.03 ] E-03 2.04 [ 1.66 ; 2.88 ] E-03 0.726

TE bin MHR–FHR 3.46 [ 1.79 ; 5.33 ] E-03 2.75 [ 2.15 ; 5.08 ] E-03 0.919

TE lin FHR–MHR 2.03 [ 1.23 ; 3.05 ] E-03 1.98 [ 1.67 ; 2.18 ] E-03 1.000

TE bin FHR–MHR 4.66 [ 0.00 ; 8.08 ] E-03 5.66 [ 3.21 ; 7.15 ] E-03 0.882

Table A.3: Median, interquartile interval and p-value of the Mann-Whitney test for the

second hour before birth.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

mean FHR 139.9 [ 132.1 ; 145.3 ] 130.7 [ 122.6 ; 134.5 ] 0.011

std FHR 17.5 [ 13.9 ; 20.3 ] 19.2 [ 16.6 ; 27.2 ] 0.253

mean MHR 91.5 [ 83.7 ; 99.8 ] 89.5 [ 81.9 ; 93.3 ] 0.435

std MHR 8.70 [ 6.90 ; 11.38 ] 10.71 [ 8.25 ; 13.38 ] 0.178

XApEn FHR 0.15 [ 0.02 ; 0.22 ] 0.11 [ 0.05 ; 0.14 ] 0.476

XApEn MHR 0.29 [ 0.18 ; 0.36 ] 0.19 [ 0.16 ; 0.29 ] 0.348

XSampEn 0.33 [ 0.27 ; 0.40 ] 0.30 [ 0.24 ; 0.41 ] 0.611

XFuzzEn 0.11 [ 0.08 ; 0.13 ] 0.10 [ 0.07 ; 0.16 ] 0.991
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Table A.3: Median, interquartile interval and p-value of the Mann-Whitney test for the

second hour before birth. (Continued)

XPermEn 0.022 [ 0.011 ; 0.040 ] 0.017 [ 0.007 ; 0.031 ] 0.293

XCondEn FHR 1.31 [ 1.21 ; 1.38 ] 1.42 [ 1.32 ; 1.49 ] 0.053

XCondEn MHR 1.14 [ 1.04 ; 1.27 ] 1.27 [ 1.11 ; 1.30 ] 0.314

ApEn FHR sc1 0.25 [ 0.21 ; 0.28 ] 0.23 [ 0.19 ; 0.28 ] 0.627

ApEn FHR sc2 0.40 [ 0.35 ; 0.44 ] 0.38 [ 0.34 ; 0.45 ] 0.760

ApEn FHR sc3 0.50 [ 0.44 ; 0.56 ] 0.49 [ 0.43 ; 0.57 ] 0.973

ApEn FHR sc4 0.57 [ 0.51 ; 0.63 ] 0.58 [ 0.51 ; 0.65 ] 0.955

ApEn FHR sc5 0.62 [ 0.56 ; 0.69 ] 0.63 [ 0.55 ; 0.70 ] 0.955

ApEn FHR Ci 2.34 [ 2.04 ; 2.61 ] 2.29 [ 2.03 ; 2.65 ] 0.937

SampEn FHR sc1 0.16 [ 0.13 ; 0.19 ] 0.14 [ 0.11 ; 0.18 ] 0.348

SampEn FHR sc2 0.26 [ 0.22 ; 0.30 ] 0.23 [ 0.21 ; 0.29 ] 0.579

SampEn FHR sc3 0.35 [ 0.28 ; 0.40 ] 0.31 [ 0.29 ; 0.41 ] 0.955

SampEn FHR sc4 0.43 [ 0.35 ; 0.48 ] 0.39 [ 0.37 ; 0.50 ] 0.847

SampEn FHR sc5 0.49 [ 0.40 ; 0.56 ] 0.45 [ 0.42 ; 0.58 ] 0.883

SampEn FHR Ci 1.69 [ 1.38 ; 1.92 ] 1.48 [ 1.42 ; 1.95 ] 0.919

FuzzEn FHR sc1 0.055 [ 0.040 ; 0.059 ] 0.049 [ 0.046 ; 0.058 ] 0.973

FuzzEn FHR sc2 0.10 [ 0.08 ; 0.11 ] 0.10 [ 0.09 ; 0.11 ] 0.955

FuzzEn FHR sc3 0.16 [ 0.12 ; 0.17 ] 0.14 [ 0.13 ; 0.17 ] 0.919

FuzzEn FHR sc4 0.21 [ 0.15 ; 0.22 ] 0.19 [ 0.17 ; 0.22 ] 0.955

FuzzEn FHR sc5 0.24 [ 0.19 ; 0.27 ] 0.22 [ 0.21 ; 0.26 ] 0.883

FuzzEn FHR Ci 0.76 [ 0.57 ; 0.83 ] 0.70 [ 0.65 ; 0.81 ] 1.000

PermEn FHR sc1 1.17 [ 1.09 ; 1.24 ] 1.17 [ 1.13 ; 1.25 ] 0.643

PermEn FHR sc2 1.91 [ 1.84 ; 1.96 ] 1.88 [ 1.86 ; 1.94 ] 0.847

PermEn FHR sc3 2.07 [ 2.03 ; 2.11 ] 2.07 [ 2.03 ; 2.10 ] 0.973

PermEn FHR sc4 2.20 [ 2.16 ; 2.22 ] 2.20 [ 2.20 ; 2.24 ] 0.462

PermEn FHR sc5 2.28 [ 2.25 ; 2.31 ] 2.31 [ 2.25 ; 2.32 ] 0.371

PermEn FHR Ci 9.66 [ 9.39 ; 9.80 ] 9.66 [ 9.44 ; 9.87 ] 0.611

cCondEn FHR sc1 0.20 [ 0.17 ; 0.22 ] 0.21 [ 0.17 ; 0.22 ] 0.865

cCondEn FHR sc2 0.34 [ 0.30 ; 0.37 ] 0.34 [ 0.30 ; 0.37 ] 0.919
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Table A.3: Median, interquartile interval and p-value of the Mann-Whitney test for the

second hour before birth. (Continued)

cCondEn FHR sc3 0.43 [ 0.37 ; 0.47 ] 0.44 [ 0.39 ; 0.48 ] 0.659

cCondEn FHR sc4 0.51 [ 0.45 ; 0.56 ] 0.51 [ 0.46 ; 0.58 ] 0.760

cCondEn FHR sc5 0.57 [ 0.50 ; 0.62 ] 0.57 [ 0.51 ; 0.66 ] 0.760

cCondEn FHR Ci 2.04 [ 1.79 ; 2.23 ] 2.06 [ 1.84 ; 2.31 ] 0.812

DispEn FHR sc1 1.20 [ 1.14 ; 1.23 ] 1.20 [ 1.15 ; 1.21 ] 0.627

DispEn FHR sc2 1.30 [ 1.25 ; 1.33 ] 1.30 [ 1.24 ; 1.32 ] 0.534

DispEn FHR sc3 1.38 [ 1.32 ; 1.42 ] 1.37 [ 1.30 ; 1.40 ] 0.435

DispEn FHR sc4 1.43 [ 1.37 ; 1.49 ] 1.43 [ 1.35 ; 1.46 ] 0.314

DispEn FHR sc5 1.48 [ 1.41 ; 1.55 ] 1.47 [ 1.41 ; 1.52 ] 0.396

DispEn FHR Ci 6.80 [ 6.51 ; 7.00 ] 6.78 [ 6.46 ; 6.91 ] 0.462

BubbEn FHR sc1 0.22 [ 0.21 ; 0.23 ] 0.22 [ 0.21 ; 0.23 ] 0.919

BubbEn FHR sc2 0.36 [ 0.33 ; 0.38 ] 0.35 [ 0.34 ; 0.37 ] 0.865

BubbEn FHR sc3 0.44 [ 0.41 ; 0.45 ] 0.43 [ 0.41 ; 0.45 ] 1.000

BubbEn FHR sc4 0.50 [ 0.48 ; 0.51 ] 0.50 [ 0.50 ; 0.52 ] 0.490

BubbEn FHR sc5 0.55 [ 0.53 ; 0.56 ] 0.56 [ 0.53 ; 0.57 ] 0.303

BubbEn FHR Ci 2.07 [ 1.96 ; 2.14 ] 2.08 [ 2.00 ; 2.12 ] 0.812

AttnEn FHR sc1 3.38 [ 3.11 ; 3.60 ] 3.44 [ 3.03 ; 3.54 ] 1.000

AttnEn FHR sc2 3.72 [ 3.65 ; 3.83 ] 3.80 [ 3.72 ; 3.83 ] 0.371

AttnEn FHR sc3 3.35 [ 3.30 ; 3.45 ] 3.37 [ 3.27 ; 3.43 ] 0.865

AttnEn FHR sc4 3.05 [ 2.97 ; 3.16 ] 3.03 [ 2.95 ; 3.13 ] 0.675

AttnEn FHR sc5 2.82 [ 2.75 ; 2.94 ] 2.79 [ 2.72 ; 2.96 ] 0.675

AttnEn FHR Ci 16.39 [ 16.12 ; 16.58 ] 16.45 [ 16.04 ; 16.64 ] 0.812

ApEn MHR sc1 0.61 [ 0.48 ; 0.73 ] 0.57 [ 0.43 ; 0.70 ] 0.726

ApEn MHR sc2 0.87 [ 0.71 ; 0.98 ] 0.83 [ 0.64 ; 1.01 ] 0.937

ApEn MHR sc3 0.97 [ 0.82 ; 1.10 ] 0.96 [ 0.76 ; 1.12 ] 0.955

ApEn MHR sc4 1.03 [ 0.89 ; 1.14 ] 1.00 [ 0.84 ; 1.18 ] 0.847

ApEn MHR sc5 1.05 [ 0.94 ; 1.14 ] 1.02 [ 0.89 ; 1.18 ] 0.937

ApEn MHR Ci 4.59 [ 3.90 ; 5.14 ] 4.39 [ 3.56 ; 5.18 ] 0.973

SampEn MHR sc1 0.51 [ 0.39 ; 0.62 ] 0.47 [ 0.34 ; 0.54 ] 0.692
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Table A.3: Median, interquartile interval and p-value of the Mann-Whitney test for the

second hour before birth. (Continued)

SampEn MHR sc2 0.76 [ 0.57 ; 0.90 ] 0.77 [ 0.54 ; 0.90 ] 0.991

SampEn MHR sc3 0.91 [ 0.71 ; 1.08 ] 0.93 [ 0.68 ; 1.09 ] 0.865

SampEn MHR sc4 1.02 [ 0.85 ; 1.19 ] 1.00 [ 0.80 ; 1.26 ] 0.812

SampEn MHR sc5 1.10 [ 0.93 ; 1.27 ] 1.06 [ 0.87 ; 1.33 ] 0.830

SampEn MHR Ci 4.30 [ 3.40 ; 5.13 ] 4.23 [ 3.23 ; 5.13 ] 1.000

FuzzEn MHR sc1 0.15 [ 0.10 ; 0.20 ] 0.13 [ 0.08 ; 0.25 ] 0.937

FuzzEn MHR sc2 0.24 [ 0.16 ; 0.30 ] 0.20 [ 0.13 ; 0.38 ] 0.991

FuzzEn MHR sc3 0.33 [ 0.22 ; 0.38 ] 0.28 [ 0.18 ; 0.51 ] 0.955

FuzzEn MHR sc4 0.38 [ 0.27 ; 0.45 ] 0.35 [ 0.22 ; 0.59 ] 0.865

FuzzEn MHR sc5 0.42 [ 0.30 ; 0.52 ] 0.41 [ 0.25 ; 0.64 ] 0.795

FuzzEn MHR Ci 1.59 [ 1.09 ; 1.82 ] 1.38 [ 0.87 ; 2.38 ] 0.901

PermEn MHR sc1 1.28 [ 1.22 ; 1.34 ] 1.23 [ 1.19 ; 1.28 ] 0.209

PermEn MHR sc2 2.20 [ 2.15 ; 2.28 ] 2.20 [ 2.14 ; 2.21 ] 0.359

PermEn MHR sc3 2.35 [ 2.27 ; 2.42 ] 2.34 [ 2.29 ; 2.37 ] 0.549

PermEn MHR sc4 2.41 [ 2.33 ; 2.48 ] 2.45 [ 2.37 ; 2.46 ] 0.991

PermEn MHR sc5 2.44 [ 2.38 ; 2.51 ] 2.47 [ 2.41 ; 2.50 ] 0.973

PermEn MHR Ci 10.73 [ 10.40 ; 10.98 ] 10.72 [ 10.44 ; 10.78 ] 0.504

cCondEn MHR sc1 0.40 [ 0.33 ; 0.44 ] 0.41 [ 0.36 ; 0.50 ] 0.504

cCondEn MHR sc2 0.62 [ 0.53 ; 0.68 ] 0.65 [ 0.57 ; 0.77 ] 0.490

cCondEn MHR sc3 0.75 [ 0.62 ; 0.82 ] 0.76 [ 0.68 ; 0.91 ] 0.409

cCondEn MHR sc4 0.83 [ 0.71 ; 0.90 ] 0.85 [ 0.75 ; 1.01 ] 0.348

cCondEn MHR sc5 0.89 [ 0.80 ; 0.95 ] 0.90 [ 0.80 ; 1.08 ] 0.396

cCondEn MHR Ci 3.49 [ 2.96 ; 3.77 ] 3.57 [ 3.16 ; 4.27 ] 0.476

DispEn MHR sc1 1.39 [ 1.34 ; 1.45 ] 1.35 [ 1.29 ; 1.44 ] 0.675

DispEn MHR sc2 1.55 [ 1.47 ; 1.64 ] 1.50 [ 1.42 ; 1.65 ] 0.709

DispEn MHR sc3 1.63 [ 1.53 ; 1.72 ] 1.59 [ 1.49 ; 1.76 ] 0.777

DispEn MHR sc4 1.70 [ 1.59 ; 1.77 ] 1.64 [ 1.53 ; 1.82 ] 0.865

DispEn MHR sc5 1.75 [ 1.63 ; 1.80 ] 1.67 [ 1.56 ; 1.87 ] 0.955

DispEn MHR Ci 8.02 [ 7.54 ; 8.37 ] 7.74 [ 7.29 ; 8.55 ] 0.777

Continued on next page



A.1 Mann-Whitney test results 77

Table A.3: Median, interquartile interval and p-value of the Mann-Whitney test for the

second hour before birth. (Continued)

BubbEn MHR sc1 0.24 [ 0.23 ; 0.25 ] 0.23 [ 0.22 ; 0.24 ] 0.151

BubbEn MHR sc2 0.51 [ 0.47 ; 0.55 ] 0.51 [ 0.47 ; 0.51 ] 0.359

BubbEn MHR sc3 0.58 [ 0.54 ; 0.61 ] 0.58 [ 0.55 ; 0.59 ] 0.564

BubbEn MHR sc4 0.60 [ 0.57 ; 0.62 ] 0.61 [ 0.57 ; 0.62 ] 0.865

BubbEn MHR sc5 0.60 [ 0.59 ; 0.62 ] 0.60 [ 0.57 ; 0.61 ] 0.549

BubbEn MHR Ci 2.52 [ 2.43 ; 2.61 ] 2.54 [ 2.39 ; 2.56 ] 0.462

AttnEn MHR sc1 3.61 [ 3.36 ; 3.88 ] 3.70 [ 3.54 ; 3.86 ] 0.812

AttnEn MHR sc2 3.15 [ 2.88 ; 3.36 ] 3.04 [ 3.01 ; 3.18 ] 0.709

AttnEn MHR sc3 2.74 [ 2.46 ; 2.96 ] 2.56 [ 2.55 ; 2.81 ] 0.534

AttnEn MHR sc4 2.52 [ 2.24 ; 2.73 ] 2.29 [ 2.25 ; 2.58 ] 0.462

AttnEn MHR sc5 2.41 [ 2.12 ; 2.59 ] 2.20 [ 2.12 ; 2.50 ] 0.396

AttnEn MHR Ci 14.48 [ 13.36 ; 15.32 ] 13.85 [ 13.79 ; 14.64 ] 0.504

SE lin FHR 1.53 [ 1.39 ; 1.74 ] 1.67 [ 1.47 ; 1.75 ] 0.384

SE bin FHR 1.05 [ 0.95 ; 1.15 ] 1.18 [ 0.97 ; 1.20 ] 0.201

SE lin MHR 1.37 [ 1.05 ; 1.60 ] 1.56 [ 1.11 ; 1.75 ] 0.435

SE bin MHR 1.01 [ 0.92 ; 1.13 ] 1.19 [ 1.03 ; 1.23 ] 0.059

TE lin MHR–FHR 1.57 [ 1.02 ; 2.66 ] E-03 1.46 [ 1.02 ; 2.13 ] E-03 0.490

TE bin MHR–FHR 0.57 [ 0.29 ; 1.01 ] E-02 1.02 [ 0.48 ; 1.25 ] E-02 0.292

TE lin FHR–MHR 1.91 [ 1.21 ; 2.97 ] E-03 1.67 [ 1.50 ; 2.34 ] E-03 0.795

TE bin FHR–MHR 5.31 [ 0.00 ; 9.35 ] E-03 7.10 [ 3.13 ; 9.28 ] E-03 0.715

Table A.4: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 20 minutes before birth.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

mean FHR 134.8 [ 119.8 ; 142.5 ] 118.0 [ 112.5 ; 130.8 ] 0.106

std FHR 23.8 [ 20.5 ; 28.5 ] 25.3 [ 15.2 ; 27.7 ] 0.830

mean MHR 98.7 [ 86.6 ; 104.5 ] 97.9 [ 88.1 ; 100.8 ] 0.595

std MHR 11.1 [ 7.8 ; 15.1 ] 13.9 [ 8.4 ; 21.0 ] 0.348
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Table A.4: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 20 minutes before birth. (Continued)

XApEn FHR 0.13 [ 0.05 ; 0.20 ] 0.11 [ 0.08 ; 0.19 ] 0.760

XApEn MHR 0.20 [ 0.08 ; 0.28 ] 0.11 [ 0.08 ; 0.29 ] 0.760

XSampEn 0.27 [ 0.21 ; 0.36 ] 0.25 [ 0.23 ; 0.38 ] 0.549

XFuzzEn 0.12 [ 0.09 ; 0.17 ] 0.12 [ 0.10 ; 0.16 ] 0.973

XPermEn 0.038 [ 0.022 ; 0.072 ] 0.038 [ 0.010 ; 0.065 ] 0.556

XCondEn FHR 1.34 [ 1.20 ; 1.45 ] 1.42 [ 1.32 ; 1.51 ] 0.138

XCondEn MHR 1.26 [ 1.15 ; 1.39 ] 1.18 [ 1.09 ; 1.36 ] 0.534

ApEn FHR sc1 0.24 [ 0.20 ; 0.27 ] 0.24 [ 0.23 ; 0.28 ] 0.519

ApEn FHR sc2 0.40 [ 0.35 ; 0.47 ] 0.41 [ 0.39 ; 0.48 ] 0.396

ApEn FHR sc3 0.50 [ 0.46 ; 0.57 ] 0.53 [ 0.50 ; 0.59 ] 0.314

ApEn FHR sc4 0.58 [ 0.50 ; 0.67 ] 0.62 [ 0.56 ; 0.69 ] 0.303

ApEn FHR sc5 0.62 [ 0.54 ; 0.71 ] 0.65 [ 0.56 ; 0.73 ] 0.435

ApEn FHR Ci 2.30 [ 2.04 ; 2.66 ] 2.44 [ 2.25 ; 2.76 ] 0.396

SampEn FHR sc1 0.12 [ 0.10 ; 0.16 ] 0.15 [ 0.14 ; 0.16 ] 0.072

SampEn FHR sc2 0.22 [ 0.18 ; 0.29 ] 0.27 [ 0.25 ; 0.30 ] 0.065

SampEn FHR sc3 0.30 [ 0.26 ; 0.41 ] 0.37 [ 0.35 ; 0.42 ] 0.072

SampEn FHR sc4 0.37 [ 0.32 ; 0.49 ] 0.48 [ 0.42 ; 0.54 ] 0.059

SampEn FHR sc5 0.44 [ 0.34 ; 0.58 ] 0.53 [ 0.44 ; 0.63 ] 0.096

SampEn FHR Ci 1.43 [ 1.21 ; 1.92 ] 1.81 [ 1.62 ; 2.04 ] 0.065

FuzzEn FHR sc1 0.08 [ 0.06 ; 0.10 ] 0.07 [ 0.04 ; 0.11 ] 0.991

FuzzEn FHR sc2 0.15 [ 0.11 ; 0.19 ] 0.13 [ 0.08 ; 0.21 ] 0.901

FuzzEn FHR sc3 0.22 [ 0.17 ; 0.28 ] 0.20 [ 0.12 ; 0.31 ] 0.991

FuzzEn FHR sc4 0.29 [ 0.22 ; 0.35 ] 0.26 [ 0.16 ; 0.42 ] 0.955

FuzzEn FHR sc5 0.33 [ 0.26 ; 0.41 ] 0.31 [ 0.20 ; 0.47 ] 0.955

FuzzEn FHR Ci 1.06 [ 0.81 ; 1.32 ] 0.96 [ 0.61 ; 1.52 ] 0.973

PermEn FHR sc1 1.17 [ 1.09 ; 1.24 ] 1.14 [ 1.11 ; 1.23 ] 0.919

PermEn FHR sc2 1.88 [ 1.81 ; 1.94 ] 1.89 [ 1.79 ; 1.92 ] 0.611

PermEn FHR sc3 2.08 [ 2.01 ; 2.13 ] 2.03 [ 2.00 ; 2.07 ] 0.409

PermEn FHR sc4 2.22 [ 2.17 ; 2.26 ] 2.19 [ 2.17 ; 2.26 ] 0.883
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Table A.4: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 20 minutes before birth. (Continued)

PermEn FHR sc5 2.31 [ 2.27 ; 2.34 ] 2.31 [ 2.29 ; 2.35 ] 0.579

PermEn FHR Ci 9.73 [ 9.30 ; 9.86 ] 9.51 [ 9.44 ; 9.82 ] 0.937

cCondEn FHR sc1 0.22 [ 0.20 ; 0.25 ] 0.21 [ 0.19 ; 0.26 ] 0.812

cCondEn FHR sc2 0.37 [ 0.34 ; 0.42 ] 0.39 [ 0.32 ; 0.47 ] 0.709

cCondEn FHR sc3 0.49 [ 0.45 ; 0.54 ] 0.50 [ 0.40 ; 0.59 ] 0.847

cCondEn FHR sc4 0.58 [ 0.52 ; 0.64 ] 0.58 [ 0.47 ; 0.73 ] 0.795

cCondEn FHR sc5 0.64 [ 0.58 ; 0.71 ] 0.64 [ 0.56 ; 0.79 ] 0.830

cCondEn FHR Ci 2.31 [ 2.11 ; 2.52 ] 2.32 [ 1.94 ; 2.84 ] 0.812

DispEn FHR sc1 1.21 [ 1.17 ; 1.23 ] 1.18 [ 1.13 ; 1.25 ] 0.709

DispEn FHR sc2 1.31 [ 1.28 ; 1.36 ] 1.30 [ 1.23 ; 1.38 ] 0.726

DispEn FHR sc3 1.40 [ 1.34 ; 1.44 ] 1.36 [ 1.29 ; 1.47 ] 0.643

DispEn FHR sc4 1.46 [ 1.41 ; 1.52 ] 1.43 [ 1.34 ; 1.54 ] 0.643

DispEn FHR sc5 1.52 [ 1.46 ; 1.58 ] 1.48 [ 1.39 ; 1.61 ] 0.627

DispEn FHR Ci 6.89 [ 6.69 ; 7.15 ] 6.78 [ 6.42 ; 7.24 ] 0.659

BubbEn FHR sc1 0.22 [ 0.20 ; 0.23 ] 0.21 [ 0.20 ; 0.23 ] 0.659

BubbEn FHR sc2 0.35 [ 0.32 ; 0.38 ] 0.36 [ 0.32 ; 0.36 ] 0.692

BubbEn FHR sc3 0.44 [ 0.40 ; 0.46 ] 0.42 [ 0.40 ; 0.43 ] 0.371

BubbEn FHR sc4 0.51 [ 0.48 ; 0.53 ] 0.50 [ 0.49 ; 0.53 ] 0.865

BubbEn FHR sc5 0.56 [ 0.54 ; 0.57 ] 0.56 [ 0.55 ; 0.58 ] 0.564

BubbEn FHR Ci 2.11 [ 1.94 ; 2.17 ] 2.03 [ 1.98 ; 2.13 ] 0.830

AttnEn FHR sc1 3.61 [ 3.08 ; 3.96 ] 3.00 [ 2.93 ; 3.97 ] 0.579

AttnEn FHR sc2 3.71 [ 3.60 ; 3.82 ] 3.77 [ 3.66 ; 3.82 ] 0.611

AttnEn FHR sc3 3.32 [ 3.20 ; 3.43 ] 3.38 [ 3.26 ; 3.43 ] 0.627

AttnEn FHR sc4 3.00 [ 2.88 ; 3.09 ] 3.01 [ 2.95 ; 3.08 ] 0.883

AttnEn FHR sc5 2.76 [ 2.69 ; 2.91 ] 2.75 [ 2.68 ; 2.81 ] 0.448

AttnEn FHR Ci 16.38 [ 15.92 ; 16.79 ] 15.97 [ 15.86 ; 16.82 ] 0.579

ApEn MHR sc1 0.58 [ 0.40 ; 0.68 ] 0.62 [ 0.41 ; 0.69 ] 0.830

ApEn MHR sc2 0.79 [ 0.60 ; 0.95 ] 0.83 [ 0.59 ; 1.00 ] 0.675

ApEn MHR sc3 0.88 [ 0.69 ; 1.02 ] 0.90 [ 0.71 ; 1.15 ] 0.564
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Table A.4: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 20 minutes before birth. (Continued)

ApEn MHR sc4 0.95 [ 0.75 ; 1.08 ] 0.94 [ 0.78 ; 1.13 ] 0.627

ApEn MHR sc5 0.98 [ 0.81 ; 1.08 ] 0.93 [ 0.83 ; 1.12 ] 0.675

ApEn MHR Ci 4.24 [ 3.15 ; 4.78 ] 4.22 [ 3.32 ; 5.08 ] 0.659

SampEn MHR sc1 0.46 [ 0.31 ; 0.55 ] 0.49 [ 0.31 ; 0.57 ] 0.812

SampEn MHR sc2 0.66 [ 0.49 ; 0.82 ] 0.71 [ 0.48 ; 0.98 ] 0.611

SampEn MHR sc3 0.82 [ 0.61 ; 0.97 ] 0.89 [ 0.59 ; 1.18 ] 0.549

SampEn MHR sc4 0.90 [ 0.71 ; 1.10 ] 1.06 [ 0.70 ; 1.19 ] 0.462

SampEn MHR sc5 0.98 [ 0.80 ; 1.17 ] 1.16 [ 0.78 ; 1.19 ] 0.534

SampEn MHR Ci 3.84 [ 2.85 ; 4.63 ] 4.32 [ 2.87 ; 5.10 ] 0.519

FuzzEn MHR sc1 0.17 [ 0.11 ; 0.24 ] 0.16 [ 0.10 ; 0.26 ] 0.901

FuzzEn MHR sc2 0.26 [ 0.18 ; 0.33 ] 0.24 [ 0.17 ; 0.38 ] 0.919

FuzzEn MHR sc3 0.34 [ 0.25 ; 0.43 ] 0.34 [ 0.22 ; 0.51 ] 0.830

FuzzEn MHR sc4 0.41 [ 0.30 ; 0.51 ] 0.42 [ 0.26 ; 0.59 ] 0.777

FuzzEn MHR sc5 0.46 [ 0.33 ; 0.56 ] 0.48 [ 0.31 ; 0.64 ] 0.643

FuzzEn MHR Ci 1.61 [ 1.18 ; 2.07 ] 1.64 [ 1.03 ; 2.37 ] 0.812

PermEn MHR sc1 1.34 [ 1.23 ; 1.41 ] 1.30 [ 1.22 ; 1.36 ] 0.371

PermEn MHR sc2 2.21 [ 2.12 ; 2.30 ] 2.23 [ 2.14 ; 2.24 ] 0.709

PermEn MHR sc3 2.33 [ 2.24 ; 2.44 ] 2.33 [ 2.21 ; 2.37 ] 0.659

PermEn MHR sc4 2.40 [ 2.30 ; 2.47 ] 2.41 [ 2.27 ; 2.44 ] 0.865

PermEn MHR sc5 2.42 [ 2.34 ; 2.49 ] 2.43 [ 2.31 ; 2.48 ] 0.847

PermEn MHR Ci 10.6 [ 10.3 ; 11.0 ] 10.7 [ 10.4 ; 10.8 ] 0.675

cCondEn MHR sc1 0.37 [ 0.30 ; 0.44 ] 0.45 [ 0.38 ; 0.48 ] 0.132

cCondEn MHR sc2 0.57 [ 0.48 ; 0.68 ] 0.70 [ 0.60 ; 0.72 ] 0.157

cCondEn MHR sc3 0.71 [ 0.59 ; 0.81 ] 0.80 [ 0.70 ; 0.84 ] 0.138

cCondEn MHR sc4 0.79 [ 0.66 ; 0.88 ] 0.89 [ 0.80 ; 0.95 ] 0.121

cCondEn MHR sc5 0.86 [ 0.72 ; 0.91 ] 0.94 [ 0.86 ; 1.00 ] 0.127

cCondEn MHR Ci 3.31 [ 2.79 ; 3.68 ] 3.77 [ 3.35 ; 3.98 ] 0.132

DispEn MHR sc1 1.37 [ 1.31 ; 1.45 ] 1.34 [ 1.28 ; 1.41 ] 0.659

DispEn MHR sc2 1.52 [ 1.43 ; 1.62 ] 1.50 [ 1.40 ; 1.60 ] 0.937
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Table A.4: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 20 minutes before birth. (Continued)

DispEn MHR sc3 1.59 [ 1.49 ; 1.71 ] 1.60 [ 1.47 ; 1.70 ] 0.865

DispEn MHR sc4 1.65 [ 1.55 ; 1.75 ] 1.68 [ 1.51 ; 1.75 ] 0.919

DispEn MHR sc5 1.69 [ 1.58 ; 1.81 ] 1.71 [ 1.55 ; 1.78 ] 0.883

DispEn MHR Ci 7.80 [ 7.35 ; 8.33 ] 7.85 [ 7.21 ; 8.24 ] 0.991

BubbEn MHR sc1 0.25 [ 0.23 ; 0.26 ] 0.24 [ 0.23 ; 0.25 ] 0.226

BubbEn MHR sc2 0.51 [ 0.46 ; 0.56 ] 0.52 [ 0.47 ; 0.52 ] 0.643

BubbEn MHR sc3 0.57 [ 0.53 ; 0.61 ] 0.57 [ 0.51 ; 0.59 ] 0.777

BubbEn MHR sc4 0.60 [ 0.56 ; 0.61 ] 0.60 [ 0.55 ; 0.60 ] 0.490

BubbEn MHR sc5 0.61 [ 0.58 ; 0.62 ] 0.57 [ 0.55 ; 0.61 ] 0.263

BubbEn MHR Ci 2.50 [ 2.38 ; 2.64 ] 2.52 [ 2.35 ; 2.57 ] 0.504

AttnEn MHR sc1 3.55 [ 3.34 ; 3.82 ] 3.84 [ 3.36 ; 3.91 ] 0.325

AttnEn MHR sc2 3.20 [ 2.89 ; 3.32 ] 3.07 [ 3.02 ; 3.40 ] 0.991

AttnEn MHR sc3 2.80 [ 2.51 ; 3.04 ] 2.69 [ 2.64 ; 3.06 ] 0.919

AttnEn MHR sc4 2.62 [ 2.34 ; 2.83 ] 2.46 [ 2.40 ; 2.81 ] 0.865

AttnEn MHR sc5 2.46 [ 2.24 ; 2.70 ] 2.29 [ 2.21 ; 2.79 ] 0.812

AttnEn MHR Ci 14.5 [ 13.6 ; 15.4 ] 14.4 [ 14.2 ; 15.1 ] 0.955

SE lin FHR 1.37 [ 1.26 ; 1.61 ] 1.57 [ 1.19 ; 2.04 ] 0.435

SE bin FHR 1.17 [ 1.03 ; 1.27 ] 1.17 [ 1.02 ; 1.24 ] 0.883

SE lin MHR 1.48 [ 1.03 ; 1.66 ] 1.47 [ 1.25 ; 1.68 ] 0.659

SE bin MHR 1.05 [ 0.92 ; 1.22 ] 1.15 [ 1.02 ; 1.29 ] 0.244

TE lin MHR–FHR 1.28 [ 0.46 ; 1.99 ] E-03 1.48 [ 1.01 ; 2.01 ] E-03 0.448

TE bin MHR–FHR 0.77 [ 0.00 ; 1.21 ] E-02 1.76 [ 0.17 ; 2.84 ] E-02 0.136

TE lin FHR–MHR 1.53 [ 0.64 ; 2.81 ] E-03 3.99 [ 1.62 ; 7.40 ] E-04 0.029

TE bin FHR–MHR 0.00 [ 0.00 ; 1.08 ] E-02 0.00 [ 0.00 ; 5.73 ] E-03 0.546

Table A.5: Median, interquartile interval and p-value of the Mann-Whitney test for the

penultimate 10 minutes before birth.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value
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Table A.5: Median, interquartile interval and p-value of the Mann-Whitney test for the

penultimate 10 minutes before birth. (Continued)

mean FHR 138.7 [ 122.2 ; 147.6 ] 119.8 [ 114.1 ; 135.9 ] 0.127

std FHR 20.8 [ 14.4 ; 29.0 ] 27.3 [ 10.8 ; 29.1 ] 0.760

mean MHR 94.4 [ 82.8 ; 100.9 ] 97.2 [ 79.9 ; 97.8 ] 0.760

std MHR 9.02 [ 6.66 ; 13.83 ] 8.17 [ 8.13 ; 21.71 ] 0.244

XApEn FHR 0.15 [ 0.06 ; 0.22 ] 0.15 [ 0.02 ; 0.20 ] 0.611

XApEn MHR 0.23 [ 0.13 ; 0.37 ] 0.16 [ 0.10 ; 0.34 ] 0.564

XSampEn 0.27 [ 0.21 ; 0.36 ] 0.23 [ 0.23 ; 0.36 ] 0.777

XFuzzEn 0.10 [ 0.08 ; 0.16 ] 0.10 [ 0.08 ; 0.15 ] 0.919

XPermEn 0.025 [ 0.005 ; 0.045 ] 0.014 [ 0.003 ; 0.055 ] 0.811

XCondEn FHR 1.33 [ 1.17 ; 1.45 ] 1.36 [ 1.26 ; 1.48 ] 0.448

XCondEn MHR 1.25 [ 0.96 ; 1.40 ] 1.12 [ 1.01 ; 1.40 ] 0.937

ApEn FHR sc1 0.22 [ 0.18 ; 0.24 ] 0.25 [ 0.19 ; 0.28 ] 0.178

ApEn FHR sc2 0.37 [ 0.30 ; 0.42 ] 0.41 [ 0.34 ; 0.48 ] 0.193

ApEn FHR sc3 0.45 [ 0.37 ; 0.53 ] 0.54 [ 0.46 ; 0.60 ] 0.053

ApEn FHR sc4 0.53 [ 0.42 ; 0.61 ] 0.61 [ 0.55 ; 0.70 ] 0.056

ApEn FHR sc5 0.56 [ 0.47 ; 0.67 ] 0.66 [ 0.60 ; 0.71 ] 0.111

ApEn FHR Ci 2.13 [ 1.75 ; 2.49 ] 2.43 [ 2.14 ; 2.78 ] 0.121

SampEn FHR sc1 0.11 [ 0.08 ; 0.14 ] 0.15 [ 0.14 ; 0.16 ] 0.053

SampEn FHR sc2 0.20 [ 0.15 ; 0.25 ] 0.27 [ 0.22 ; 0.30 ] 0.045

SampEn FHR sc3 0.29 [ 0.20 ; 0.34 ] 0.38 [ 0.35 ; 0.42 ] 0.017

SampEn FHR sc4 0.35 [ 0.25 ; 0.40 ] 0.48 [ 0.41 ; 0.53 ] 0.020

SampEn FHR sc5 0.41 [ 0.27 ; 0.47 ] 0.54 [ 0.45 ; 0.60 ] 0.031

SampEn FHR Ci 1.37 [ 0.98 ; 1.60 ] 1.83 [ 1.58 ; 1.99 ] 0.026

FuzzEn FHR sc1 0.059 [ 0.036 ; 0.076 ] 0.073 [ 0.015 ; 0.109 ] 0.627

FuzzEn FHR sc2 0.11 [ 0.07 ; 0.14 ] 0.13 [ 0.03 ; 0.20 ] 0.675

FuzzEn FHR sc3 0.16 [ 0.10 ; 0.22 ] 0.20 [ 0.05 ; 0.28 ] 0.726

FuzzEn FHR sc4 0.20 [ 0.12 ; 0.28 ] 0.26 [ 0.07 ; 0.36 ] 0.760

FuzzEn FHR sc5 0.24 [ 0.15 ; 0.32 ] 0.32 [ 0.09 ; 0.41 ] 0.726

FuzzEn FHR Ci 0.78 [ 0.47 ; 1.04 ] 0.99 [ 0.25 ; 1.36 ] 0.743
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Table A.5: Median, interquartile interval and p-value of the Mann-Whitney test for the

penultimate 10 minutes before birth. (Continued)

PermEn FHR sc1 1.16 [ 1.11 ; 1.23 ] 1.17 [ 1.08 ; 1.30 ] 0.519

PermEn FHR sc2 1.92 [ 1.80 ; 1.97 ] 1.90 [ 1.77 ; 1.94 ] 0.611

PermEn FHR sc3 2.09 [ 2.01 ; 2.14 ] 2.02 [ 1.99 ; 2.08 ] 0.409

PermEn FHR sc4 2.21 [ 2.15 ; 2.25 ] 2.19 [ 2.15 ; 2.26 ] 0.991

PermEn FHR sc5 2.31 [ 2.25 ; 2.35 ] 2.31 [ 2.26 ; 2.38 ] 0.448

PermEn FHR Ci 9.70 [ 9.31 ; 9.88 ] 9.70 [ 9.37 ; 9.74 ] 0.812

cCondEn FHR sc1 0.20 [ 0.17 ; 0.22 ] 0.21 [ 0.15 ; 0.27 ] 0.709

cCondEn FHR sc2 0.36 [ 0.29 ; 0.40 ] 0.36 [ 0.26 ; 0.45 ] 0.643

cCondEn FHR sc3 0.44 [ 0.37 ; 0.54 ] 0.48 [ 0.35 ; 0.58 ] 0.760

cCondEn FHR sc4 0.52 [ 0.42 ; 0.65 ] 0.55 [ 0.41 ; 0.70 ] 0.692

cCondEn FHR sc5 0.58 [ 0.47 ; 0.70 ] 0.63 [ 0.45 ; 0.79 ] 0.709

cCondEn FHR Ci 2.09 [ 1.72 ; 2.53 ] 2.23 [ 1.61 ; 2.78 ] 0.627

DispEn FHR sc1 1.21 [ 1.15 ; 1.24 ] 1.18 [ 1.14 ; 1.25 ] 0.743

DispEn FHR sc2 1.31 [ 1.24 ; 1.37 ] 1.25 [ 1.23 ; 1.36 ] 0.627

DispEn FHR sc3 1.37 [ 1.30 ; 1.46 ] 1.30 [ 1.28 ; 1.44 ] 0.534

DispEn FHR sc4 1.43 [ 1.34 ; 1.53 ] 1.34 [ 1.33 ; 1.52 ] 0.643

DispEn FHR sc5 1.49 [ 1.40 ; 1.59 ] 1.40 [ 1.38 ; 1.59 ] 0.692

DispEn FHR Ci 6.82 [ 6.36 ; 7.17 ] 6.43 [ 6.40 ; 7.16 ] 0.709

BubbEn FHR sc1 0.22 [ 0.21 ; 0.23 ] 0.22 [ 0.20 ; 0.24 ] 0.675

BubbEn FHR sc2 0.36 [ 0.31 ; 0.39 ] 0.35 [ 0.31 ; 0.37 ] 0.519

BubbEn FHR sc3 0.44 [ 0.41 ; 0.47 ] 0.41 [ 0.40 ; 0.44 ] 0.325

BubbEn FHR sc4 0.51 [ 0.47 ; 0.53 ] 0.50 [ 0.47 ; 0.53 ] 0.955

BubbEn FHR sc5 0.56 [ 0.53 ; 0.58 ] 0.56 [ 0.53 ; 0.59 ] 0.435

BubbEn FHR Ci 2.10 [ 1.92 ; 2.18 ] 2.06 [ 1.94 ; 2.14 ] 0.692

AttnEn FHR sc1 3.42 [ 2.85 ; 4.08 ] 2.74 [ 2.63 ; 3.98 ] 0.396

AttnEn FHR sc2 3.73 [ 3.59 ; 3.86 ] 3.69 [ 3.57 ; 3.86 ] 0.991

AttnEn FHR sc3 3.33 [ 3.22 ; 3.43 ] 3.38 [ 3.24 ; 3.55 ] 0.549

AttnEn FHR sc4 3.01 [ 2.89 ; 3.15 ] 2.99 [ 2.88 ; 3.20 ] 0.955

AttnEn FHR sc5 2.77 [ 2.68 ; 2.94 ] 2.69 [ 2.65 ; 2.94 ] 0.579

Continued on next page



84 Extended results

Table A.5: Median, interquartile interval and p-value of the Mann-Whitney test for the

penultimate 10 minutes before birth. (Continued)

AttnEn FHR Ci 16.3 [ 15.8 ; 16.9 ] 16.2 [ 15.6 ; 16.7 ] 0.812

ApEn MHR sc1 0.58 [ 0.40 ; 0.71 ] 0.61 [ 0.37 ; 0.70 ] 0.955

ApEn MHR sc2 0.83 [ 0.62 ; 0.99 ] 0.86 [ 0.55 ; 1.04 ] 0.883

ApEn MHR sc3 0.90 [ 0.77 ; 1.10 ] 1.02 [ 0.67 ; 1.19 ] 0.675

ApEn MHR sc4 0.97 [ 0.83 ; 1.13 ] 1.11 [ 0.77 ; 1.18 ] 0.643

ApEn MHR sc5 1.00 [ 0.88 ; 1.11 ] 1.15 [ 0.83 ; 1.20 ] 0.504

ApEn MHR Ci 4.26 [ 3.54 ; 5.05 ] 4.76 [ 3.17 ; 5.26 ] 0.743

SampEn MHR sc1 0.44 [ 0.30 ; 0.61 ] 0.47 [ 0.28 ; 0.58 ] 0.991

SampEn MHR sc2 0.67 [ 0.50 ; 0.87 ] 0.71 [ 0.44 ; 1.05 ] 0.675

SampEn MHR sc3 0.78 [ 0.65 ; 0.99 ] 0.90 [ 0.56 ; 1.24 ] 0.611

SampEn MHR sc4 0.92 [ 0.75 ; 1.16 ] 1.05 [ 0.68 ; 1.29 ] 0.579

SampEn MHR sc5 0.99 [ 0.78 ; 1.21 ] 1.15 [ 0.76 ; 1.37 ] 0.490

SampEn MHR Ci 3.82 [ 3.08 ; 4.89 ] 4.28 [ 2.73 ; 5.38 ] 0.627

FuzzEn MHR sc1 0.15 [ 0.10 ; 0.22 ] 0.13 [ 0.09 ; 0.24 ] 0.919

FuzzEn MHR sc2 0.23 [ 0.16 ; 0.36 ] 0.21 [ 0.16 ; 0.36 ] 0.973

FuzzEn MHR sc3 0.30 [ 0.23 ; 0.42 ] 0.29 [ 0.22 ; 0.48 ] 0.973

FuzzEn MHR sc4 0.36 [ 0.28 ; 0.47 ] 0.36 [ 0.26 ; 0.56 ] 0.973

FuzzEn MHR sc5 0.41 [ 0.33 ; 0.53 ] 0.43 [ 0.31 ; 0.60 ] 0.937

FuzzEn MHR Ci 1.44 [ 1.11 ; 1.95 ] 1.42 [ 1.00 ; 2.23 ] 1.000

PermEn MHR sc1 1.30 [ 1.23 ; 1.36 ] 1.26 [ 1.17 ; 1.34 ] 0.282

PermEn MHR sc2 2.22 [ 2.11 ; 2.30 ] 2.19 [ 2.11 ; 2.23 ] 0.359

PermEn MHR sc3 2.34 [ 2.26 ; 2.44 ] 2.29 [ 2.21 ; 2.37 ] 0.293

PermEn MHR sc4 2.40 [ 2.31 ; 2.49 ] 2.40 [ 2.28 ; 2.45 ] 0.692

PermEn MHR sc5 2.43 [ 2.34 ; 2.50 ] 2.43 [ 2.30 ; 2.50 ] 0.830

PermEn MHR Ci 10.6 [ 10.3 ; 11.0 ] 10.6 [ 10.2 ; 10.9 ] 0.409

cCondEn MHR sc1 0.37 [ 0.30 ; 0.46 ] 0.40 [ 0.36 ; 0.46 ] 0.564

cCondEn MHR sc2 0.57 [ 0.48 ; 0.74 ] 0.64 [ 0.57 ; 0.71 ] 0.534

cCondEn MHR sc3 0.68 [ 0.61 ; 0.83 ] 0.75 [ 0.67 ; 0.83 ] 0.371

cCondEn MHR sc4 0.78 [ 0.66 ; 0.92 ] 0.86 [ 0.75 ; 0.98 ] 0.325
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Table A.5: Median, interquartile interval and p-value of the Mann-Whitney test for the

penultimate 10 minutes before birth. (Continued)

cCondEn MHR sc5 0.84 [ 0.73 ; 0.97 ] 0.89 [ 0.82 ; 1.02 ] 0.371

cCondEn MHR Ci 3.22 [ 2.84 ; 3.91 ] 3.54 [ 3.18 ; 3.99 ] 0.371

DispEn MHR sc1 1.38 [ 1.29 ; 1.44 ] 1.39 [ 1.28 ; 1.43 ] 0.883

DispEn MHR sc2 1.53 [ 1.42 ; 1.65 ] 1.57 [ 1.40 ; 1.63 ] 0.973

DispEn MHR sc3 1.63 [ 1.49 ; 1.73 ] 1.68 [ 1.48 ; 1.74 ] 0.847

DispEn MHR sc4 1.68 [ 1.53 ; 1.79 ] 1.75 [ 1.54 ; 1.82 ] 0.692

DispEn MHR sc5 1.73 [ 1.57 ; 1.83 ] 1.74 [ 1.57 ; 1.84 ] 0.865

DispEn MHR Ci 7.98 [ 7.30 ; 8.46 ] 8.17 [ 7.27 ; 8.46 ] 0.865

BubbEn MHR sc1 0.24 [ 0.23 ; 0.25 ] 0.24 [ 0.22 ; 0.24 ] 0.201

BubbEn MHR sc2 0.52 [ 0.46 ; 0.56 ] 0.49 [ 0.46 ; 0.51 ] 0.272

BubbEn MHR sc3 0.58 [ 0.54 ; 0.62 ] 0.55 [ 0.51 ; 0.59 ] 0.359

BubbEn MHR sc4 0.60 [ 0.56 ; 0.62 ] 0.59 [ 0.55 ; 0.61 ] 0.396

BubbEn MHR sc5 0.61 [ 0.58 ; 0.62 ] 0.58 [ 0.54 ; 0.62 ] 0.519

BubbEn MHR Ci 2.54 [ 2.38 ; 2.65 ] 2.47 [ 2.32 ; 2.52 ] 0.178

AttnEn MHR sc1 3.64 [ 3.11 ; 3.94 ] 3.85 [ 3.29 ; 4.06 ] 0.462

AttnEn MHR sc2 3.17 [ 2.93 ; 3.35 ] 3.23 [ 3.08 ; 3.44 ] 0.504

AttnEn MHR sc3 2.80 [ 2.52 ; 3.01 ] 2.84 [ 2.57 ; 3.09 ] 0.692

AttnEn MHR sc4 2.59 [ 2.33 ; 2.83 ] 2.54 [ 2.31 ; 2.81 ] 0.795

AttnEn MHR sc5 2.49 [ 2.20 ; 2.66 ] 2.38 [ 2.09 ; 2.76 ] 0.883

AttnEn MHR Ci 14.5 [ 13.2 ; 15.5 ] 14.7 [ 14.0 ; 15.4 ] 0.743

SE lin FHR 1.43 [ 1.18 ; 1.74 ] 1.52 [ 1.40 ; 2.34 ] 0.178

SE bin FHR 1.18 [ 0.89 ; 1.27 ] 1.23 [ 0.96 ; 1.34 ] 0.564

SE lin MHR 1.43 [ 0.97 ; 1.74 ] 1.46 [ 1.29 ; 1.85 ] 0.564

SE bin MHR 1.03 [ 0.89 ; 1.19 ] 1.17 [ 1.02 ; 1.31 ] 0.171

TE lin MHR–FHR 1.36 [ 0.28 ; 3.64 ] E-03 1.08 [ 0.36 ; 3.34 ] E-03 0.812

TE bin MHR–FHR 0.00 [ 0.00 ; 1.83 ] E-02 1.17 [ 0.00 ; 2.66 ] E-02 0.336

TE lin FHR–MHR 1.45 [ 0.52 ; 3.46 ] E-03 2.08 [ 1.12 ; 9.65 ] E-04 0.034

TE bin FHR–MHR 0.00 [ 0.00 ; 0.00 ] 0.00 [ 0.00 ; 1.15 ] E-02 1.000
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Table A.6: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 10 minutes before birth.

Measure Normal Fetuses
Med [Q1;Q3]

Acidemic Fetuses
Med [Q1;Q3]

p-value

mean FHR 134.8 [ 119.8 ; 142.5 ] 118.0 [ 112.5 ; 130.8 ] 0.106

std FHR 23.8 [ 20.5 ; 28.5 ] 25.3 [ 15.2 ; 27.7 ] 0.830

mean MHR 98.7 [ 86.6 ; 104.5 ] 97.9 [ 88.1 ; 100.8 ] 0.595

std MHR 11.1 [ 7.8 ; 15.1 ] 13.9 [ 8.4 ; 21.0 ] 0.348

XApEn FHR 0.13 [ 0.05 ; 0.20 ] 0.11 [ 0.08 ; 0.19 ] 0.760

XApEn MHR 0.20 [ 0.08 ; 0.28 ] 0.11 [ 0.08 ; 0.29 ] 0.760

XSampEn 0.27 [ 0.21 ; 0.36 ] 0.25 [ 0.23 ; 0.38 ] 0.549

XFuzzEn 0.12 [ 0.09 ; 0.17 ] 0.12 [ 0.10 ; 0.16 ] 0.973

XPermEn 0.038 [ 0.022 ; 0.072 ] 0.038 [ 0.010 ; 0.065 ] 0.556

XCondEn FHR 1.34 [ 1.20 ; 1.45 ] 1.42 [ 1.32 ; 1.51 ] 0.138

XCondEn MHR 1.26 [ 1.15 ; 1.39 ] 1.18 [ 1.09 ; 1.36 ] 0.534

ApEn FHR sc1 0.24 [ 0.20 ; 0.27 ] 0.24 [ 0.23 ; 0.28 ] 0.519

ApEn FHR sc2 0.40 [ 0.35 ; 0.47 ] 0.41 [ 0.39 ; 0.48 ] 0.396

ApEn FHR sc3 0.50 [ 0.46 ; 0.57 ] 0.53 [ 0.50 ; 0.59 ] 0.314

ApEn FHR sc4 0.58 [ 0.50 ; 0.67 ] 0.62 [ 0.56 ; 0.69 ] 0.303

ApEn FHR sc5 0.62 [ 0.54 ; 0.71 ] 0.65 [ 0.56 ; 0.73 ] 0.435

ApEn FHR Ci 2.30 [ 2.04 ; 2.66 ] 2.44 [ 2.25 ; 2.76 ] 0.396

SampEn FHR sc1 0.12 [ 0.10 ; 0.16 ] 0.15 [ 0.14 ; 0.16 ] 0.072

SampEn FHR sc2 0.22 [ 0.18 ; 0.29 ] 0.27 [ 0.25 ; 0.30 ] 0.065

SampEn FHR sc3 0.30 [ 0.26 ; 0.41 ] 0.37 [ 0.35 ; 0.42 ] 0.072

SampEn FHR sc4 0.37 [ 0.32 ; 0.49 ] 0.48 [ 0.42 ; 0.54 ] 0.059

SampEn FHR sc5 0.44 [ 0.34 ; 0.58 ] 0.53 [ 0.44 ; 0.63 ] 0.096

SampEn FHR Ci 1.43 [ 1.21 ; 1.92 ] 1.81 [ 1.62 ; 2.04 ] 0.065

FuzzEn FHR sc1 0.078 [ 0.056 ; 0.098 ] 0.070 [ 0.043 ; 0.114 ] 0.991

FuzzEn FHR sc2 0.15 [ 0.11 ; 0.19 ] 0.13 [ 0.08 ; 0.21 ] 0.901

FuzzEn FHR sc3 0.22 [ 0.17 ; 0.28 ] 0.20 [ 0.12 ; 0.31 ] 0.991

FuzzEn FHR sc4 0.29 [ 0.22 ; 0.35 ] 0.26 [ 0.16 ; 0.42 ] 0.955

FuzzEn FHR sc5 0.33 [ 0.26 ; 0.41 ] 0.31 [ 0.20 ; 0.47 ] 0.955

Continued on next page
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Table A.6: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 10 minutes before birth. (Continued)

FuzzEn FHR Ci 1.06 [ 0.81 ; 1.32 ] 0.96 [ 0.61 ; 1.52 ] 0.973

PermEn FHR sc1 1.17 [ 1.09 ; 1.24 ] 1.14 [ 1.11 ; 1.23 ] 0.919

PermEn FHR sc2 1.88 [ 1.81 ; 1.94 ] 1.89 [ 1.79 ; 1.92 ] 0.611

PermEn FHR sc3 2.08 [ 2.01 ; 2.13 ] 2.03 [ 2.00 ; 2.07 ] 0.409

PermEn FHR sc4 2.22 [ 2.17 ; 2.26 ] 2.19 [ 2.17 ; 2.26 ] 0.883

PermEn FHR sc5 2.31 [ 2.27 ; 2.34 ] 2.31 [ 2.29 ; 2.35 ] 0.579

PermEn FHR Ci 9.73 [ 9.30 ; 9.86 ] 9.51 [ 9.44 ; 9.82 ] 0.937

cCondEn FHR sc1 0.22 [ 0.20 ; 0.25 ] 0.21 [ 0.19 ; 0.26 ] 0.812

cCondEn FHR sc2 0.37 [ 0.34 ; 0.42 ] 0.39 [ 0.32 ; 0.47 ] 0.709

cCondEn FHR sc3 0.49 [ 0.45 ; 0.54 ] 0.50 [ 0.40 ; 0.59 ] 0.847

cCondEn FHR sc4 0.58 [ 0.52 ; 0.64 ] 0.58 [ 0.47 ; 0.73 ] 0.795

cCondEn FHR sc5 0.64 [ 0.58 ; 0.71 ] 0.64 [ 0.56 ; 0.79 ] 0.830

cCondEn FHR Ci 2.31 [ 2.11 ; 2.52 ] 2.32 [ 1.94 ; 2.84 ] 0.812

DispEn FHR sc1 1.21 [ 1.17 ; 1.23 ] 1.18 [ 1.13 ; 1.25 ] 0.709

DispEn FHR sc2 1.31 [ 1.28 ; 1.36 ] 1.30 [ 1.23 ; 1.38 ] 0.726

DispEn FHR sc3 1.40 [ 1.34 ; 1.44 ] 1.36 [ 1.29 ; 1.47 ] 0.643

DispEn FHR sc4 1.46 [ 1.41 ; 1.52 ] 1.43 [ 1.34 ; 1.54 ] 0.643

DispEn FHR sc5 1.52 [ 1.46 ; 1.58 ] 1.48 [ 1.39 ; 1.61 ] 0.627

DispEn FHR Ci 6.89 [ 6.69 ; 7.15 ] 6.78 [ 6.42 ; 7.24 ] 0.659

BubbEn FHR sc1 0.22 [ 0.20 ; 0.23 ] 0.21 [ 0.20 ; 0.23 ] 0.659

BubbEn FHR sc2 0.35 [ 0.32 ; 0.38 ] 0.36 [ 0.32 ; 0.36 ] 0.692

BubbEn FHR sc3 0.44 [ 0.40 ; 0.46 ] 0.42 [ 0.40 ; 0.43 ] 0.371

BubbEn FHR sc4 0.51 [ 0.48 ; 0.53 ] 0.50 [ 0.49 ; 0.53 ] 0.865

BubbEn FHR sc5 0.56 [ 0.54 ; 0.57 ] 0.56 [ 0.55 ; 0.58 ] 0.564

BubbEn FHR Ci 2.11 [ 1.94 ; 2.17 ] 2.03 [ 1.98 ; 2.13 ] 0.830

AttnEn FHR sc1 3.61 [ 3.08 ; 3.96 ] 3.00 [ 2.93 ; 3.97 ] 0.579

AttnEn FHR sc2 3.71 [ 3.60 ; 3.82 ] 3.77 [ 3.66 ; 3.82 ] 0.611

AttnEn FHR sc3 3.32 [ 3.20 ; 3.43 ] 3.38 [ 3.26 ; 3.43 ] 0.627

AttnEn FHR sc4 3.00 [ 2.88 ; 3.09 ] 3.01 [ 2.95 ; 3.08 ] 0.883
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Table A.6: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 10 minutes before birth. (Continued)

AttnEn FHR sc5 2.76 [ 2.69 ; 2.91 ] 2.75 [ 2.68 ; 2.81 ] 0.448

AttnEn FHR Ci 16.4 [ 15.9 ; 16.8 ] 16.0 [ 15.9 ; 16.8 ] 0.579

ApEn MHR sc1 0.58 [ 0.40 ; 0.68 ] 0.62 [ 0.41 ; 0.69 ] 0.830

ApEn MHR sc2 0.79 [ 0.60 ; 0.95 ] 0.83 [ 0.59 ; 1.00 ] 0.675

ApEn MHR sc3 0.88 [ 0.69 ; 1.02 ] 0.90 [ 0.71 ; 1.15 ] 0.564

ApEn MHR sc4 0.95 [ 0.75 ; 1.08 ] 0.94 [ 0.78 ; 1.13 ] 0.627

ApEn MHR sc5 0.98 [ 0.81 ; 1.08 ] 0.93 [ 0.83 ; 1.12 ] 0.675

ApEn MHR Ci 4.24 [ 3.15 ; 4.78 ] 4.22 [ 3.32 ; 5.08 ] 0.659

SampEn MHR sc1 0.46 [ 0.31 ; 0.55 ] 0.49 [ 0.31 ; 0.57 ] 0.812

SampEn MHR sc2 0.66 [ 0.49 ; 0.82 ] 0.71 [ 0.48 ; 0.98 ] 0.611

SampEn MHR sc3 0.82 [ 0.61 ; 0.97 ] 0.89 [ 0.59 ; 1.18 ] 0.549

SampEn MHR sc4 0.90 [ 0.71 ; 1.10 ] 1.06 [ 0.70 ; 1.19 ] 0.462

SampEn MHR sc5 0.98 [ 0.80 ; 1.17 ] 1.16 [ 0.78 ; 1.19 ] 0.534

SampEn MHR Ci 3.84 [ 2.85 ; 4.63 ] 4.32 [ 2.87 ; 5.10 ] 0.519

FuzzEn MHR sc1 0.17 [ 0.11 ; 0.24 ] 0.16 [ 0.10 ; 0.26 ] 0.901

FuzzEn MHR sc2 0.26 [ 0.18 ; 0.33 ] 0.24 [ 0.17 ; 0.38 ] 0.919

FuzzEn MHR sc3 0.34 [ 0.25 ; 0.43 ] 0.34 [ 0.22 ; 0.51 ] 0.830

FuzzEn MHR sc4 0.41 [ 0.30 ; 0.51 ] 0.42 [ 0.26 ; 0.59 ] 0.777

FuzzEn MHR sc5 0.46 [ 0.33 ; 0.56 ] 0.48 [ 0.31 ; 0.64 ] 0.643

FuzzEn MHR Ci 1.61 [ 1.18 ; 2.07 ] 1.64 [ 1.03 ; 2.37 ] 0.812

PermEn MHR sc1 1.34 [ 1.23 ; 1.41 ] 1.30 [ 1.22 ; 1.36 ] 0.371

PermEn MHR sc2 2.21 [ 2.12 ; 2.30 ] 2.23 [ 2.14 ; 2.24 ] 0.709

PermEn MHR sc3 2.33 [ 2.24 ; 2.44 ] 2.33 [ 2.21 ; 2.37 ] 0.659

PermEn MHR sc4 2.40 [ 2.30 ; 2.47 ] 2.41 [ 2.27 ; 2.44 ] 0.865

PermEn MHR sc5 2.42 [ 2.34 ; 2.49 ] 2.43 [ 2.31 ; 2.48 ] 0.847

PermEn MHR Ci 10.6 [ 10.4 ; 11.0 ] 10.7 [ 10.4 ; 10.8 ] 0.675

cCondEn MHR sc1 0.37 [ 0.30 ; 0.44 ] 0.45 [ 0.38 ; 0.48 ] 0.132

cCondEn MHR sc2 0.57 [ 0.48 ; 0.68 ] 0.70 [ 0.60 ; 0.72 ] 0.157

cCondEn MHR sc3 0.71 [ 0.59 ; 0.81 ] 0.80 [ 0.70 ; 0.84 ] 0.138
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Table A.6: Median, interquartile interval and p-value of the Mann-Whitney test for the

last 10 minutes before birth. (Continued)

cCondEn MHR sc4 0.79 [ 0.66 ; 0.88 ] 0.89 [ 0.80 ; 0.95 ] 0.121

cCondEn MHR sc5 0.86 [ 0.72 ; 0.91 ] 0.94 [ 0.86 ; 1.00 ] 0.127

cCondEn MHR Ci 3.31 [ 2.79 ; 3.68 ] 3.77 [ 3.35 ; 3.98 ] 0.132

DispEn MHR sc1 1.37 [ 1.31 ; 1.45 ] 1.34 [ 1.28 ; 1.41 ] 0.659

DispEn MHR sc2 1.52 [ 1.43 ; 1.62 ] 1.50 [ 1.40 ; 1.60 ] 0.937

DispEn MHR sc3 1.59 [ 1.49 ; 1.71 ] 1.60 [ 1.47 ; 1.70 ] 0.865

DispEn MHR sc4 1.65 [ 1.55 ; 1.75 ] 1.68 [ 1.51 ; 1.75 ] 0.919

DispEn MHR sc5 1.69 [ 1.58 ; 1.81 ] 1.71 [ 1.55 ; 1.78 ] 0.883

DispEn MHR Ci 7.80 [ 7.35 ; 8.33 ] 7.85 [ 7.21 ; 8.24 ] 0.991

BubbEn MHR sc1 0.25 [ 0.23 ; 0.26 ] 0.24 [ 0.23 ; 0.25 ] 0.226

BubbEn MHR sc2 0.51 [ 0.46 ; 0.56 ] 0.52 [ 0.47 ; 0.52 ] 0.643

BubbEn MHR sc3 0.57 [ 0.53 ; 0.61 ] 0.57 [ 0.51 ; 0.59 ] 0.777

BubbEn MHR sc4 0.60 [ 0.56 ; 0.61 ] 0.60 [ 0.55 ; 0.60 ] 0.490

BubbEn MHR sc5 0.61 [ 0.58 ; 0.62 ] 0.57 [ 0.55 ; 0.61 ] 0.263

BubbEn MHR Ci 2.50 [ 2.38 ; 2.64 ] 2.52 [ 2.35 ; 2.57 ] 0.504

AttnEn MHR sc1 3.55 [ 3.34 ; 3.82 ] 3.84 [ 3.36 ; 3.91 ] 0.325

AttnEn MHR sc2 3.20 [ 2.89 ; 3.32 ] 3.07 [ 3.02 ; 3.40 ] 0.991

AttnEn MHR sc3 2.80 [ 2.51 ; 3.04 ] 2.69 [ 2.64 ; 3.06 ] 0.919

AttnEn MHR sc4 2.62 [ 2.34 ; 2.83 ] 2.46 [ 2.40 ; 2.81 ] 0.865

AttnEn MHR sc5 2.46 [ 2.24 ; 2.70 ] 2.29 [ 2.21 ; 2.79 ] 0.812

AttnEn MHR Ci 14.6 [ 13.6 ; 15.4 ] 14.4 [ 14.2 ; 15.1 ] 0.955

SE lin FHR 1.37 [ 1.26 ; 1.61 ] 1.57 [ 1.19 ; 2.04 ] 0.435

SE bin FHR 1.17 [ 1.03 ; 1.27 ] 1.17 [ 1.02 ; 1.24 ] 0.883

SE lin MHR 1.48 [ 1.03 ; 1.66 ] 1.47 [ 1.25 ; 1.68 ] 0.659

SE bin MHR 1.05 [ 0.92 ; 1.22 ] 1.15 [ 1.02 ; 1.29 ] 0.244

TE lin MHR–FHR 1.28 [ 0.46 ; 1.99 ] E-03 1.48 [ 1.01 ; 2.01 ] E-03 0.448

TE bin MHR–FHR 0.77 [ 0.00 ; 1.21 ] E-02 1.76 [ 0.17 ; 2.84 ] E-02 0.136

TE lin FHR–MHR 1.53 [ 0.64 ; 2.81 ] E-03 3.99 [ 1.62 ; 7.40 ] E-04 0.029

TE bin FHR–MHR 0.00 [ 0.00 ; 1.08 ] E-02 0.00 [ 0.00 ; 5.73 ] E-03 0.546
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Table A.7: Generalised Linear Mixed Models results considering entropy method and time fixed ef-

fects, and subject variability a random effect.

Measure

Model fit Fixed effects coefficients (95% CIs) Random effects

AIC Method’
Estimate

Method’
p-value

Time’
Estimate

Time’
p-value

Subject’
Estimate

mean FHR 5021 -0.014 0.536 -0.0037 0.972 3.535

std FHR 5014 0.020 0.656 -0.0213 0.858 3.538

mean MHR 5027 -0.023 0.509 0.0375 0.746 3.538

std MHR 5023 0.071 0.496 -0.0354 0.767 3.530

XApEn FHR 5008 -0.257 0.857 0.0062 0.952 3.545

XApEn MHR 5012 -0.502 0.697 0.0008 0.994 3.538

XSampEn 5007 -0.035 0.993 0.0053 0.961 3.546

XFuzzEn 5009 -2.208 0.812 0.0191 0.872 3.545

XPermEn 5013 -5.709 0.726 0.0195 0.861 3.542

XCondEn FHR 5020 1.028 0.601 -0.0080 0.941 3.542

XCondEn MHR 5008 0.265 0.837 0.0019 0.986 3.546

ApEn FHR sc1 5007 -0.334 0.917 0.0035 0.974 3.546

ApEn FHR sc2 5007 0.013 0.996 0.0057 0.957 3.547

ApEn FHR sc3 5008 0.314 0.896 0.0074 0.944 3.547

ApEn FHR sc4 5008 0.368 0.871 0.0077 0.942 3.547

ApEn FHR sc5 5008 0.365 0.864 0.0085 0.936 3.547

ApEn FHR Ci 5007 0.045 0.929 0.0071 0.947 3.547

SampEn FHR sc1 5008 -0.613 0.873 0.0003 0.997 3.545

SampEn FHR sc2 5007 -0.169 0.950 0.0038 0.972 3.546

SampEn FHR sc3 5007 0.155 0.946 0.0074 0.945 3.547

SampEn FHR sc4 5007 0.235 0.907 0.0085 0.937 3.547

SampEn FHR sc5 5007 0.226 0.896 0.0090 0.933 3.547

SampEn FHR Ci 5007 0.022 0.963 0.0069 0.949 3.547

FuzzEn FHR sc1 5008 1.928 0.871 -0.0032 0.978 3.545

FuzzEn FHR sc2 5008 1.002 0.874 -0.0031 0.979 3.545

FuzzEn FHR sc3 5007 0.571 0.894 -0.0016 0.989 3.546

FuzzEn FHR sc4 5007 0.416 0.902 -0.0011 0.992 3.546
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Table A.7: Generalised Linear Mixed Models results considering entropy method and time fixed ef-

fects, and subject variability a random effect. (Continued)

FuzzEn FHR sc5 5007 0.306 0.917 -0.0001 0.999 3.546

FuzzEn FHR Ci 5007 0.115 0.898 -0.0014 0.991 3.546

PermEn FHR sc1 5026 2.082 0.596 0.0090 0.932 3.550

PermEn FHR sc2 5007 0.234 0.920 0.0052 0.960 3.548

PermEn FHR sc3 5008 0.404 0.881 0.0040 0.970 3.550

PermEn FHR sc4 5013 0.833 0.803 -0.0010 0.993 3.553

PermEn FHR sc5 5016 1.015 0.780 -0.0014 0.989 3.554

PermEn FHR Ci 5014 0.198 0.792 0.0020 0.984 3.554

cCondEn FHR sc1 5007 0.273 0.961 0.0053 0.960 3.547

cCondEn FHR sc2 5007 0.455 0.894 0.0037 0.972 3.546

cCondEn FHR sc3 5008 0.546 -4.881 0.0025 0.981 3.546

cCondEn FHR sc4 5010 0.658 0.783 0.0013 0.990 3.544

cCondEn FHR sc5 5011 0.695 0.750 0.0010 0.993 3.544

cCondEn FHR Ci 5009 0.135 0.821 0.0023 0.982 3.545

DispEn FHR sc1 5010 0.610 0.819 0.0066 0.950 3.548

DispEn FHR sc2 5009 0.479 0.839 0.0064 0.951 3.548

DispEn FHR sc3 5009 0.433 0.844 0.0064 0.951 3.548

DispEn FHR sc4 5008 0.362 0.861 0.0063 0.952 3.548

DispEn FHR sc5 5009 0.387 0.846 0.0063 0.952 3.548

DispEn FHR Ci 5009 0.090 0.842 0.0064 0.951 3.548

BubbEn FHR sc1 5020 8.594 0.658 0.0127 0.905 3.551

BubbEn FHR sc2 5007 -0.733 0.912 0.0061 0.953 3.545

BubbEn FHR sc3 5007 -0.048 0.995 0.0057 0.957 3.546

BubbEn FHR sc4 5009 1.478 0.855 0.0009 0.994 3.549

BubbEn FHR sc5 5012 2.443 0.772 -0.0015 0.989 3.550

BubbEn FHR Ci 5008 0.273 0.890 0.0036 0.972 3.548

AttnEn FHR sc1 5007 -0.030 0.959 0.0063 0.952 3.546

AttnEn FHR sc2 5028 0.715 0.629 0.0118 0.911 3.549

AttnEn FHR sc3 5012 0.426 0.788 0.0069 0.947 3.551
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Table A.7: Generalised Linear Mixed Models results considering entropy method and time fixed ef-

fects, and subject variability a random effect. (Continued)

AttnEn FHR sc4 5010 0.318 0.837 0.0074 0.944 3.550

AttnEn FHR sc5 5010 0.355 0.813 0.0079 0.940 3.550

AttnEn FHR Ci 5012 0.094 0.797 0.0060 0.955 3.552

ApEn MHR sc1 5007 -0.109 0.962 0.0047 0.965 3.546

ApEn MHR sc2 5007 0.141 0.937 0.0076 0.944 3.547

ApEn MHR sc3 5009 0.416 0.822 0.0112 0.917 3.547

ApEn MHR sc4 5012 0.614 0.753 0.0146 0.893 3.548

ApEn MHR sc5 5011 0.621 0.769 0.0134 0.901 3.548

ApEn MHR Ci 5008 0.074 0.855 0.0103 0.924 3.547

SampEn MHR sc1 5007 -0.195 0.935 0.0042 0.969 3.546

SampEn MHR sc2 5007 0.125 0.937 0.0076 0.943 3.547

SampEn MHR sc3 5008 0.300 0.836 0.0109 0.919 3.547

SampEn MHR sc4 5011 0.413 0.760 0.0142 0.896 3.547

SampEn MHR sc5 5010 0.370 0.777 0.0128 0.905 3.547

SampEn MHR Ci 5008 0.061 0.848 0.0105 0.922 3.547

FuzzEn MHR sc1 5013 -2.089 0.727 0.0204 0.856 3.544

FuzzEn MHR sc2 5011 -1.144 0.779 0.0177 0.875 3.545

FuzzEn MHR sc3 5008 -0.601 0.854 0.0139 0.902 3.545

FuzzEn MHR sc4 5007 -0.337 0.905 0.0112 0.922 3.546

FuzzEn MHR sc5 5008 -0.328 0.901 0.0119 0.918 3.546

FuzzEn MHR Ci 5009 -0.134 0.848 0.0146 0.898 3.545

PermEn MHR sc1 5015 -1.290 0.674 0.0212 0.848 3.541

PermEn MHR sc2 5007 0.022 0.992 0.0055 0.958 3.547

PermEn MHR sc3 5009 0.389 0.878 0.0058 0.956 3.550

PermEn MHR sc4 5024 1.365 0.728 0.0122 0.910 3.556

PermEn MHR sc5 5041 2.152 0.648 0.0204 0.856 3.553

PermEn MHR Ci 5009 0.099 0.869 0.0049 0.962 3.551

cCondEn MHR sc1 5015 1.649 0.674 0.0033 0.975 3.545

cCondEn MHR sc2 5017 1.311 0.629 0.0045 0.966 3.544
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Table A.7: Generalised Linear Mixed Models results considering entropy method and time fixed ef-

fects, and subject variability a random effect. (Continued)

cCondEn MHR sc3 5018 1.203 0.617 0.0041 0.969 3.544

cCondEn MHR sc4 5019 1.202 0.596 0.0034 0.974 3.543

cCondEn MHR sc5 5016 0.996 0.646 0.0040 0.969 3.544

cCondEn MHR Ci 5017 0.261 0.621 0.0038 0.971 3.544

DispEn MHR sc1 5008 0.514 0.871 0.0069 0.947 3.549

DispEn MHR sc2 5009 0.442 0.856 0.0079 0.940 3.549

DispEn MHR sc3 5010 0.548 0.811 0.0088 0.934 3.550

DispEn MHR sc4 5011 0.587 0.790 0.0094 0.929 3.550

DispEn MHR sc5 5011 0.585 0.786 0.0093 0.930 3.550

DispEn MHR Ci 5010 0.112 0.817 0.0086 0.935 3.550

BubbEn MHR sc1 5011 -5.288 0.768 0.0146 0.893 3.542

BubbEn MHR sc2 5009 -1.400 0.836 0.0073 0.944 3.543

BubbEn MHR sc3 5009 1.371 0.856 0.0074 0.944 3.549

BubbEn MHR sc4 5029 5.531 0.639 0.0164 0.880 3.551

BubbEn MHR sc5 5015 3.101 0.763 0.0079 0.940 3.553

BubbEn MHR Ci 5009 0.320 0.876 0.0058 0.955 3.550

AttnEn MHR sc1 5007 0.003 0.997 0.0056 0.957 3.547

AttnEn MHR sc2 5007 -0.010 0.993 0.0058 0.956 3.546

AttnEn MHR sc3 5010 -0.294 0.787 0.0144 0.895 3.543

AttnEn MHR sc4 5017 -0.536 0.629 0.0253 0.822 3.539

AttnEn MHR sc5 5017 -0.583 0.617 0.0267 0.813 3.538

AttnEn MHR Ci 5010 -0.062 0.791 0.0130 0.904 3.543

SE lin FHR 5009 0.229 0.784 0.0118 0.912 3.545

SE bin FHR 5012 0.566 0.705 -0.0048 0.964 3.542

SE lin MHR 5010 0.283 0.787 0.0004 0.997 3.546

SE bin MHR 5021 1.176 0.583 -0.0145 0.895 3.541

TE lin MHR–FHR 5011 -34.797 0.834 0.0039 0.970 3.544

TE bin MHR–FHR 5011 14.104 0.723 -0.0059 0.957 3.541

TE lin FHR–MHR 5007 -13.001 0.923 0.0047 0.964 3.546
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Table A.7: Generalised Linear Mixed Models results considering entropy method and time fixed ef-

fects, and subject variability a random effect. (Continued)

TE bin FHR–MHR 5007 -0.134 0.997 0.0056 0.957 3.546

Table A.8: Generalised Linear Mixed Models results considering entropy method a fixed effect, and subject

variability and time random effect.

Measure

Model fit Fixed effects coefficients (95% CIs) Random effects

AIC ’Method’
Estimate

’Method’
p-value

’Time’
Estimate

’Subject’ Estimate

mean FHR 5021 -0.014 0.537 3.30E-05 3.535

std FHR 5013 0.016 0.679 1.76E-05 3.540

mean MHR 5021 -0.018 0.561 2.60E-05 3.538

std MHR 5019 0.056 0.540 2.94E-05 3.532

XApEn FHR 5008 -0.255 0.858 2.53E-05 3.545

XApEn MHR 5012 -0.504 0.693 2.05E-05 3.538

XSampEn 5007 -0.094 0.980 1.14E-05 3.546

XFuzzEn 5008 -1.493 0.854 3.19E-05 3.545

XPermEn 5011 -4.708 0.755 1.90E-05 3.542

XCondEn FHR 5019 0.992 0.602 1.61E-05 3.542

XCondEn MHR 5008 0.269 0.832 2.00E-05 3.546

ApEn FHR sc1 5007 -0.355 0.910 2.09E-05 3.546

ApEn FHR sc2 5007 -0.008 0.997 1.76E-05 3.546

ApEn FHR sc3 5007 0.292 0.903 2.01E-05 3.547

ApEn FHR sc4 5008 0.348 0.877 1.91E-05 3.546

ApEn FHR sc5 5008 0.338 0.872 1.14E-05 3.546

ApEn FHR Ci 5007 0.040 0.937 1.24E-05 3.547

SampEn FHR sc1 5008 -0.617 0.866 1.98E-05 3.545

SampEn FHR sc2 5007 -0.194 0.940 2.85E-05 3.546

SampEn FHR sc3 5007 0.115 0.959 1.48E-05 3.547

SampEn FHR sc4 5007 0.198 0.919 2.59E-05 3.547

SampEn FHR sc5 5007 0.191 0.909 1.76E-05 3.546
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Table A.8: Generalised Linear Mixed Models results considering entropy method a fixed effect, and subject

variability and time random effect. (Continued)

SampEn FHR Ci 5007 0.014 0.975 2.02E-05 3.547

FuzzEn FHR sc1 5008 1.780 0.865 1.62E-05 3.545

FuzzEn FHR sc2 5008 0.924 0.869 1.90E-05 3.545

FuzzEn FHR sc3 5007 0.543 0.886 1.76E-05 3.546

FuzzEn FHR sc4 5007 0.400 0.893 1.41E-05 3.546

FuzzEn FHR sc5 5007 0.305 0.906 2.02E-05 3.546

FuzzEn FHR Ci 5007 0.110 0.890 2.25E-05 3.546

PermEn FHR sc1 5025 2.048 0.597 2.57E-05 3.550

PermEn FHR sc2 5007 0.238 0.918 2.99E-05 3.548

PermEn FHR sc3 5008 0.413 0.877 9.84E-06 3.550

PermEn FHR sc4 5013 0.827 0.800 2.54E-05 3.553

PermEn FHR sc5 5016 1.006 0.777 1.60E-05 3.554

PermEn FHR Ci 5014 0.199 0.790 2.01E-05 3.554

cCondEn FHR sc1 5007 0.293 0.959 1.83E-05 3.547

cCondEn FHR sc2 5007 0.471 0.889 1.90E-05 3.546

cCondEn FHR sc3 5008 0.555 0.839 3.58E-05 3.546

cCondEn FHR sc4 5010 0.663 0.780 1.43E-05 3.544

cCondEn FHR sc5 5011 0.698 0.747 1.48E-05 3.544

cCondEn FHR Ci 5009 0.137 0.817 2.66E-05 3.545

DispEn FHR sc1 5009 0.602 0.820 1.33E-05 3.548

DispEn FHR sc2 5009 0.473 0.841 1.43E-05 3.548

DispEn FHR sc3 5009 0.427 0.846 2.51E-05 3.548

DispEn FHR sc4 5008 0.356 0.862 1.48E-05 3.548

DispEn FHR sc5 5008 0.382 0.847 2.86E-05 3.548

DispEn FHR Ci 5009 0.089 0.843 2.51E-05 3.548

BubbEn FHR sc1 5019 8.181 0.664 7.80E-06 3.550

BubbEn FHR sc2 5007 -0.715 0.914 3.18E-05 3.545

BubbEn FHR sc3 5007 -0.012 0.999 8.61E-06 3.546

BubbEn FHR sc4 5009 1.493 0.849 1.25E-05 3.549
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Table A.8: Generalised Linear Mixed Models results considering entropy method a fixed effect, and subject

variability and time random effect. (Continued)

BubbEn FHR sc5 5012 2.419 0.769 1.24E-05 3.550

BubbEn FHR Ci 5008 0.282 0.886 1.76E-05 3.549

AttnEn FHR sc1 5007 -0.025 0.965 2.46E-05 3.546

AttnEn FHR sc2 5027 0.690 0.632 3.61E-05 3.549

AttnEn FHR sc3 5012 0.419 0.790 1.92E-05 3.551

AttnEn FHR sc4 5009 0.307 0.840 2.37E-05 3.550

AttnEn FHR sc5 5010 0.343 0.816 7.80E-06 3.549

AttnEn FHR Ci 5012 0.093 0.797 1.22E-05 3.552

ApEn MHR sc1 5007 -0.128 0.954 1.40E-05 3.546

ApEn MHR sc2 5007 0.112 0.948 1.81E-05 3.547

ApEn MHR sc3 5009 0.371 0.835 1.41E-05 3.547

ApEn MHR sc4 5011 0.544 0.771 2.02E-05 3.547

ApEn MHR sc5 5010 0.555 0.784 1.48E-05 3.547

ApEn MHR Ci 5008 0.065 0.868 2.27E-05 3.547

SampEn MHR sc1 5007 -0.211 0.929 1.75E-05 3.546

SampEn MHR sc2 5007 0.098 0.949 1.40E-05 3.547

SampEn MHR sc3 5008 0.265 0.850 1.40E-05 3.547

SampEn MHR sc4 5010 0.367 0.778 1.77E-05 3.546

SampEn MHR sc5 5010 0.333 0.792 2.32E-05 3.546

SampEn MHR Ci 5008 0.053 0.862 2.52E-05 3.547

FuzzEn MHR sc1 5011 -1.677 0.760 1.61E-05 3.544

FuzzEn MHR sc2 5009 -0.898 0.810 2.32E-05 3.545

FuzzEn MHR sc3 5008 -0.440 0.883 2.53E-05 3.546

FuzzEn MHR sc4 5007 -0.222 0.931 2.53E-05 3.546

FuzzEn MHR sc5 5007 -0.210 0.929 2.85E-05 3.546

FuzzEn MHR Ci 5008 -0.097 0.878 1.48E-05 3.545

PermEn MHR sc1 5013 -1.084 0.708 1.76E-05 3.541

PermEn MHR sc2 5007 0.035 0.988 2.93E-05 3.547

PermEn MHR sc3 5008 0.385 0.878 3.00E-05 3.550
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Table A.8: Generalised Linear Mixed Models results considering entropy method a fixed effect, and subject

variability and time random effect. (Continued)

PermEn MHR sc4 5022 1.262 0.729 7.86E-06 3.555

PermEn MHR sc5 5034 1.854 0.662 2.31E-05 3.553

PermEn MHR Ci 5009 0.100 0.867 1.14E-05 3.551

cCondEn MHR sc1 5015 1.656 0.673 1.77E-05 3.545

cCondEn MHR sc2 5017 1.314 0.628 2.02E-05 3.544

cCondEn MHR sc3 5018 1.207 0.616 2.09E-05 3.543

cCondEn MHR sc4 5019 1.205 0.594 1.49E-05 3.543

cCondEn MHR sc5 5016 0.999 0.645 9.81E-06 3.544

cCondEn MHR Ci 5018 0.262 0.619 2.70E-05 3.544

DispEn MHR sc1 5008 0.496 0.874 1.89E-05 3.549

DispEn MHR sc2 5008 0.419 0.861 1.62E-05 3.549

DispEn MHR sc3 5010 0.522 0.816 2.17E-05 3.549

DispEn MHR sc4 5010 0.557 0.796 3.01E-05 3.549

DispEn MHR sc5 5010 0.559 0.792 2.02E-05 3.549

DispEn MHR Ci 5009 0.107 0.822 1.48E-05 3.549

BubbEn MHR sc1 5010 -4.578 0.790 1.45E-05 3.543

BubbEn MHR sc2 5009 -1.360 0.840 1.70E-05 3.544

BubbEn MHR sc3 5008 1.316 0.860 9.93E-06 3.549

BubbEn MHR sc4 5026 5.080 0.646 2.54E-05 3.551

BubbEn MHR sc5 5014 3.018 0.764 2.55E-05 3.552

BubbEn MHR Ci 5008 0.317 0.876 1.04E-05 3.550

AttnEn MHR sc1 5007 0.002 0.998 8.64E-06 3.547

AttnEn MHR sc2 5007 0.002 0.998 2.34E-05 3.547

AttnEn MHR sc3 5009 -0.250 0.808 2.58E-05 3.543

AttnEn MHR sc4 5014 -0.442 0.664 1.35E-05 3.540

AttnEn MHR sc5 5014 -0.476 0.655 2.08E-05 3.539

AttnEn MHR Ci 5009 -0.054 0.808 3.43E-05 3.543

SE lin FHR 5009 0.209 0.797 3.42E-05 3.545

SE bin FHR 5012 0.548 0.704 4.15E-05 3.543
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Table A.8: Generalised Linear Mixed Models results considering entropy method a fixed effect, and subject

variability and time random effect. (Continued)

SE lin MHR 5010 0.284 0.783 2.01E-05 3.546

SE bin MHR 5019 1.083 0.592 1.47E-05 3.541

TE lin MHR–FHR 5011 -35.263 0.831 1.25E-05 3.544

TE bin MHR–FHR 5011 13.486 0.723 9.97E-06 3.541

TE lin FHR–MHR 5007 -13.522 0.919 1.98E-05 3.546

TE bin FHR–MHR 5007 -0.039 0.999 2.49E-05 3.546
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