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Abstract

Cancer is a leading cause of death worldwide, having provoked more than 19 million new
diagnostics and almost 10 million deaths in 2020. The most common methods to battle the disease
are radio and chemotherapy. However, they leave a significant mark on patients, with side effects
such as hair loss, appetite change, fatigue, or diarrhoea. Immunotherapy is a new method that is
revolutionising cancer treatment. Besides being in an early stage of development, immunotherapy
is one of the most promising methods to treat cancer while allowing the patients to maintain a
better quality of life during the treatment and have a higher life expectancy.

The addressed problem is the prediction of Microsatellite Instability, an essential biomarker
with significant prospects for his capacity to envision the immune system response. This will lead
to the search for competent genes in cancer patient’s immune system with the capacity to fight
the disease. To find an answer to this problem, RNAseq data will be used to extract mutation and
gene expression signatures, which will allow the stratification of cancer patients to define better
treatment plans.

Using TCGA data, three different approaches were developed to predict MSI with several
feature selection methods tested in a Multi-Layer Perceptron, a Random Forest and a K-Nearest
Neighbours. The main goal was to understand the capacity of the different models to predict MSI
and how each method selected the most relevant genes to make the prediction. The study aimed to
confirm the capacity of RNAseq to predict MSI and to compare the use of DL models with other
ML models.

The study concluded that the Multi-Layer Perceptron has a better capacity to use RNAseq
data to predict MSI, with the approach that merged patients with low instability and stability on
their microsatellites in the colon adenocarcinoma obtaining a performance of 98.44% of AUC and
92.67% of accuracy using a combined method of feature selection. At the genetic level, the study
revealed a high expression of genes related to cell regulation functions, and a low expression of
genes responsible for Mismatch Repair functions, in patients with high instability.

Keywords: Machine Learning, Deep Learning, Cancer, Genome, Immunotherapy, Microsatellite
instability, RNAseq.
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Resumo

O cancro é uma das principais causas de morte em todo o mundo, tendo provocado mais de 19
milhões de novos diagnósticos e quase 10 milhões de mortes em 2020. Os métodos mais comuns
para combater a doença são a rádio e quimioterapia. No entanto, estes deixam uma marca signi-
ficativa nos pacientes, com efeitos colaterais como queda de cabelo, redução do apetite, fadiga ou
diarreia. A imunoterapia é um novo método que está a revolucionar o tratamento do cancro. Ape-
sar de estar numa fase inicial de aplicação, a imunoterapia tem-se mostrado um dos métodos mais
promissores para tratar o cancro, permitindo que os pacientes mantenham uma melhor qualidade
de vida durante o tratamento e tenham maior expectativa de vida.

O problema abordado é a previsão da Instabilidade de Microssatélite, um biomarcador essen-
cial com uma promissora capacidade de prever a resposta do sistema imunológico. Este dado
levou à procura de genes competentes no combate ao cancro no sistema imunológico do paciente.
Para encontrar uma resposta para este problema, serão utilizados dados de RNA sequencial para
extrair assinaturas expressão genética e mutações, o que permitirá a estratificação de pacientes
com cancro para definir melhores planos de tratamento.

Usando dados do TCGA, três diferentes abordagens foram desenvolvidas para prever a in-
stabilidade de microssatélite, com vários métodos de seleção de features testados nos algoritmos
Multi-Layer Perceptron, Random Forest e K-Nearest Neighbors. O objetivo principal foi a com-
preensão da capacidade dos diferentes modelos de prever a instabilidade e como cada método
seleciona os genes mais relevantes para fazer essa previsão. O estudo teve também como objetivo
confirmar a capacidade do RNA sequencial em prever a instabilidade e a comparação dos modelos
de Deep Learning com outros modelos de Machine Learning.

O estudo concluiu que o Multi-Layer Perceptron tem uma melhor capacidade de usar dados
de RNA sequencial para prever a instabilidade, com a abordagem que uniu pacientes com baixa
instabilidade e estabilidade nos seus microssatélites, no adenocarcinoma do colon, a obter um
desempenho de 98.44% de AUC e 92.67 % de eficácia, usando um método combinado de seleção
de features. A nível genético, o estudo revelou uma alta expressividade de genes relacionados com
as funções de regulação celular e uma baixa expressividade de genes responsáveis pelas funções
de correção de emparelhamento de bases, em pacientes com alta instabilidade.

Palavras-Chave: Machine Learning, Deep Learning, Cancro, Genoma, Imunoterapia, Instabili-
dade de Microssatélite, RNA sequencial.
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Chapter 1

Introduction

In 2020, more than 19 million people were diagnosed with cancer, and the number of deaths

is close to 10 million, confirming cancer as a leading cause of death worldwide [36]. The most

common methods to battle the disease are radio and chemotherapy, but they leave a big mark on

the patient. Although most types of radiotherapy are not invasive, the side effects are similar to

invasive chemotherapy and are described as hair loss, appetite change, fatigue, or diarrhoea, for

example [4].

Female breast cancer and lung cancer are the most common types of cancer, with more than 2

million new cases in 2020, in a percentage of 11.7% and 11.4%, respectively. Besides being second

in the number of new cases, lung cancer is the most fatal, responsible for almost 1.8 million deaths

in 2020. Female breast cancer appears at fourth in recent deaths, with liver and stomach cancer

having more than 750 thousand deaths in the same year [36].

Early detection is essential, with different survival rates associated with different phases in

which cancer is detected. Of course, patients with cancers detected in stage I have much more

probability of survival than patients with cancers detected in stage IV [10]. For some cancers, even

a four-week difference in detection can be crucial for patient survival and success of treatments

[9]. Instead of detecting to treat cancer, the prevention of the disease in any of its types can be

the solution we need to give a step forward in the next years. Having healthy habits is one way

to reduce the probability of cancer, but screening to detect the disease in early stages has helped

reduce the death rates of several types of cancer. The technological advancements brought new

models to register early biomarkers, with DNA, RNA or immune cells playing important roles to

detect malignant cells before they spread. Genomic analyses have provided good descriptions of

cancer, and so it seems that there is an enormous potential to improve cancer prevention with an

early and accurate stratification of patients [5].
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Introduction 2

1.1 Motivation

Cancer is defined as a genomic disease characterised by instability in the genome with an

accumulation of various point mutations. The immune system appears vigilant, trying to monitor

the tumours, with infiltration of immune cells in the tumour micro-environment [41]. Based on

these definitions, Immunotherapy arises then as a new method that is revolutionising the cancer

treatment, with the goal of reviving the suppressed immune system, boosting the natural defences,

to be able to fight the tumour cells and kill cancer [37, 41]. Besides being in a very early stage

of development, immunotherapy is establishing itself as one of the most promising methods to

treat cancer, while allowing the patients to maintain a better quality of life during the treatment

compared to radio or chemotherapy. The life expectancy of patients submitted to immunotherapy

is also higher [7].

Several types of Immunotherapy have been developed in the last 130 years, but only recently

has this method become an important reference for researchers. The most fundamental types of

immunotherapy include Oncolytic virus therapies, cancer vaccines, cytokine therapies, adoptive

cell transfer and immune checkpoint inhibitors [41]. The emergence of Immunotherapy as an

effective method to treat cancer is much given to T-Cells, which have a powerful tumour-killing

capability. However, not all patients can benefit from them, which made researchers look for the

benefits of other types of cells, such as B-Cells, Myeloid Cells and NK cells [41].

In this early phase of immunotherapy, numerous challenges are still waiting for an answer,

which is what researchers are focusing on now. Machine Learning (ML) is a methodology that

is being applied to discover new genetic features and relevant information that may strengthen

this therapy, allowing Data Scientists to help solve a real-world problem. ML allows scientists

to predict patients’ response to immunotherapy by analysing distinct biomarkers that potentiate a

better response to this treatment, such as Microsatellite Instability (MSI). This can increase the

chance of patients’ survival, leading to personalised approaches for each patient or stratified group

of patients [26]. Artificial Intelligence (AI) can increase the accuracy of cancer treatment, with

immunotherapy taking advantage of AI methodologies to treat cancer successfully. However, there

are still numerous challenges guaranteeing the best healthcare quality and patient safety [42].

1.2 Objectives

This dissertation investigates ML’s application to predict MSI recurring to RNAseq data. De-

spite there are some studies about MSI prediction and its relation to immunotherapy, the novel

technique includes the use of RNAseq data, which has not been explored much before. This study

aims to identify the competent genes of the patient’s immune system to predict MS condition and

stratify the patients. The analysis of the results will later allow the comprehension of which mod-

els are better at prediction with RNAseq data and to confirm with the literature which genes may

impact the patients’ condition.



1.3 Contributions 3

1.3 Contributions

This dissertation will include the following contributions:

• Comparison of several ML models to predict MSI using RNAseq data

• Development of three different approaches for each model, a multiclass one and two binaries

• Explanation of the best approach selection from the several models

• Identification of the competent genes in the patient’s immune system and how they are

represented in each MS condition.

• Understand the possibility of detection of MSI with RNAseq data

1.4 Document Structure

The structure of this document is divided into six chapters. This first chapter explains the

motivation, the objectives, and the expected contributions of the dissertation. The second chapter

clarifies the medical concepts required to understand the problem. The third chapter analyses

the state of the art regarding the problem, explaining what has been done and what gaps exist to

explore. The fourth chapter describes how the data was prepared, the feature selection methods

used and the selected architectural designs. The fifth chapter exhibits the obtained results and its

discussion. Lastly, the sixth chapter specifies the conclusions of this work.



Chapter 2

From Cancer to Microsatellite
Instability

Cancer is a disease characterised by an uncontrollable growth of malignant body cells. Usually,

when cells are damaged or get old, they die, and new cells take their place. When these abnormal

cells begin to grow and multiply, they can form tumours, in a process that can start anywhere in

the human body [16, 33]. The American Cancer Society defines a tumour as a lump of growth.

Some tumours are cancerous and are called malignant, while others are not and are called benign.

Malignant tumours are composed of cancer cells that have specific properties [33].

There are many differences between cancer cells and normal cells. Contrarily to normal cells,

cancer cells can grow in the absence of signals and ignore others, such as programmed cell death.

They can also invade nearby areas and spread to other parts of the body, a process called metastasis,

and communicate with blood vessels to grow towards tumours to guarantee a supply of essential

substances. One of the most notable features is that they can mislead the immune system, leading

immune cells to protect instead of attacking them. Lastly, they may change their chromosomes,

deleting or duplicating certain parts of genome information [16].

Genetic changes in cellular function control cause cancer. These changes can happen due to

errors in cell division, DNA damage from harmful substances or inheritance from parents. Each

person’s cancer is originated from a unique set of genetic changes that commonly affect three

different sorts of genes: proto-oncogenes, tumour suppressor genes, and DNA repair genes [16].

2.1 Gene Mutation

Gene Mutations can be defined as changes in the genetic sequences of individuals, specifically

in the nucleic acids, which in cellular organisms are the basis of DNA, as we can see in Figure 2.1.

These changes can have different consequences, and so we cannot predict if the effect of a mutation

is good or not. Positively, they can be responsible for the generation of diversity among organisms

4



2.1 Gene Mutation 5

[20]. However, they also increase the risk of disease formation since there is no restriction to the

occurrence of DNA sequence changes [39].

Each somatic mutation in a cancer cell genome can be classified between driver and passenger

mutations according to its consequences for cancer development. Driver mutations have been

positively selected during cancer evolution and grant growth advantage on the cells that carry

them. In contrast, passenger mutations do not confer growth advantage, but they were present in

the ancestor of that cancer cell when one of the driver mutations was acquired [35].

Figure 2.1: Gene Expression Change. Black bases represent changed pairs, while blue-yellow and
orange-purple represent A-T and C-G normal pairs. Retired from [16].

The most basic mutations that can occur are point mutations, which are single-base pair

changes in the DNA. A point mutation that changes the amino acid sequence is a nonsynony-

mous mutation. In contrast, a synonymous mutation, also referred to as silent, does not change the

amino acid sequence since various codons encode many amino acids. Insertions and deletions are

also other forms of mutations with multiple lengths. They can activate new cellular functions or

delete the normal ones. Insertions or deletions of one or two base pairs will cause a frameshift in

the DNA because proteins are codified by a three-base pair codon [20, 39].

With DNA having two copies of the same gene [21], a deletion that affects only one of the

copies happens in regions of LOH. LOH is usually the first strike to inactivate a tumour suppressor

gene in sporadic cancers. The second strike is the one that occurs in that gene. Deletions that affect

both copies of a gene are called homozygous deletions and are sometimes observed in the cancer

genome, being a signal that a tumour suppressor gene was located in the lost region [39].

Usually, cancer will not be caused by one mutation, but it will result from an accumulation

of mutations during the patient’s lifetime. That is also the reason why cancer is most probable in

older people [35].
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2.2 Intratumour Heterogeneity

A tumour can be described with intratumor heterogeneity when it has distinct tumour cell pop-

ulations within the same tumour specimens. These differences can be found in the molecular and

phenotypical profiles and are very common in malignant tumours [40]. Intratumor heterogeneity

manifests itself in the absence of uniformity of morphological structures or genotypic status and

the variable expression of different markers by distinct tumour cell groups within the same tumour

[8].

The arising of intratumor heterogeneity is probably a source for adaption of the tumour to

alterations in the micro-environmental conditions, playing an essential role in distinct forms of

tumour progression. Growth and invasion of a primary tumour and lymphogenic and hematogenic

metastasis are seen as principal factors defining the development of tumours. These factors allow

the progression with the capacity to maintain oncogenic potential, cell survival under conditions

of the non-static micro-environment, and tumour resistance to drug therapy [8].

The factors that lead to the development of intratumor heterogeneity can be divided between

genetic and non-genetic [8]. This study will focus on the genetic ones, using data generated from

the patient’s genetic expression. As represented in Fig. 2.2, genetic factors include chromoso-

mal instability, gene mutations and microsatellite instability. All of them lead to high genome

instability, which leads to an increase of clonal diversity and genetic, epigenetic, and phenotypic

heterogeneity [8].

Figure 2.2: Genetic factors of intratumour heterogeneity development. Adapted from [8].

Intratumor heterogeneity is one of the main determinants of therapeutic resistance and treat-

ment failure. In patients with metastatic diseases, it is also one of the main reasons for low overall
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survival. The challenges for precise treatments to different patients are not being overcome be-

cause the distinct cell populations have other characteristics and react differently to the therapies.

This means that not all the cancer cells will respond positively to the treatment, leaving a signif-

icant chance of survival to some of the populations, which increases the risk of recurrence in the

future [40].

2.3 Microsatellite instability

Microsatellite (MS) consists of repeated sequences of 1 to 6 nucleotides, tandemly distributed

in a series of 15 to 65 nucleotides of small satellite DNA, mainly situated near the ends of chro-

mosomes. Each MS-specific place comprises two parts: the central core and the peripheral flanks.

The variation in the number of core repeating units originates the specificity of MS [18].

Mismatch Repair (MMR) is the normal tissue DNA repair system that can correct errors in

the process of DNA replication. The possibility of gene mutation increases with the lack of MMR

genes in tumour cells or errors in the process of replication repair [18]. Figure 2.3 illustrates how

both proficient and deficient MMR work in the correction of errors in DNA replication. In (A),

MSH2, MSH6, PSM21, and MLH1 proteins work successfully to repair the incorrect base, while

in (B), those proteins can’t cooperate and the result is a defective DNA.

With the definitions of MS and MMR, microsatellite instability (MSI) can be then defined as

a hypermutable phenotype caused by the loss of DNA MMR activity [1].

Distinct methods are being used to detect microsatellite instability, such as next-generation se-

quencing, fluorescent multiplex PCR and CE, immunohistochemistry, single-molecule molecular

inversion probes and MSI calculation method. From this list of methods, the fluorescent multiplex

arises as to the gold standard, reaching an accuracy of 100%, but only obtaining MSI results [18].

MSI has been detected in 15% of all colorectal cancers, characterising them with distinctive

features and giving them a better prognosis than colorectal tumours without MSI. The discovery

of MSI in this specific type of tumours is helping the application of personalised treatments to

patients, which shows the importance of determining this biomarker [1].

2.4 RNA sequencing

The transcriptome comprehends the complete transcripts and their quantity in a cell for a par-

ticular developmental phase or physiological condition. It’s essential for the interpretation of the

functional elements of the genome to reveal the molecular components of cells and tissues and to

understand development and disease. Within the main goals of the transcriptome, we can high-

light the determination of the transcriptional structure of genes and the quantification of changing

expression levels in each transcript [38].

RNA sequencing (RNAseq) is an approach to transcriptome profiling that uses deep-sequencing

technologies. The procedure converts a DNA population, total or fractionated, to a library of

cDNA fragments with adapters attached to one or both ends. Each molecule, with or without
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Figure 2.3: Behaviour of proficient (A) and deficient (B) MMR. Adapted from [6].

amplification, is then translated in a high-throughput mode to obtain short sequences from one or

both ends. After sequencing, the resulting reads are lined up to a reference genome or assembled

again without the genomic sequence to produce a genome-scale transcription map. This map can

comprehend both the transcriptional structure and the expression level of each gene, or just one of

them [38] This process is illustrated in the Figure 2.4 below.

RNAseq offers a large number of advantages compared to other existing technologies, as Wang

et al. explain in Table 1 of [38]. With RNAseq, the exact location of transcriptome boundaries can

be revealed to a single-base resolution and sequence variations in transcribed regions. RNAseq

has a high throughput, which is helpful to study complex transcriptomes, a very low background

noise, and can detect transcripts over a big range of expression levels (greater than 9,000-fold).

It’s highly accurate in quantifying expression levels, showing high levels of reproducibility for

technical and biological replicates while requiring less RNA amount than the other methods. Con-

cerning practical issues, it has a relatively low cost for mapping transcriptomes of large genomes.

With these benefits, RNAseq is the first sequencing-based method allowing all the transcriptome

to be surveyed in a very high throughput quantitatively while offering a single-base resolution for

annotation and gene expression levels at the scale of the genome, with a much lower cost than any

other method [38].
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Figure 2.4: RNA sequencing experiment. mRNA data is converted in RNA fragmens or cDNA. Se-
quencing adaptors are added to each cDNA fragment and the resulting sequence reads are aligned
with reference genome. They can be classified as exonic reads, junction reads and poly(A) end-
reads. These three types are then used to generate a base-resolution expression profile for each
gene. Retired from [38].
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2.5 Therapies

Several methods to treat cancer have been developed over the years. Their prescription de-

pends on the type of cancer and the stage of development it is, with the majority of the people

receiving not one, but a combination of treatments [13]. Commonly, radio and chemotherapy are

the most known methods, often allied with surgery. Still, immunotherapy is emerging as a less

invasive treatment with better results when compared with the previous two, revolutionising the

way of treating cancer worldwide [7].

Radiation therapy or radiotherapy is a treatment consisting of the use of high doses of

radiation to kill cancer cells and shrink tumours. It aims to kill or slow the growth of cancer cells

by damaging their DNA. This therapy does not kill cancer cells immediately. There is a need for

several days or weeks of treatment to damage sufficiently the DNA to provoke their death [32, 15].

Chemotherapy is a treatment consisting of the use of drugs to kill cancer cells. It aims to

slow or stop the growth of cancer cells [14]. Several types of drugs can be used, each one with its

advantages and effects, as referred in [31]. It can be used to cure cancer, to control the disease and

in palliative care, helping the person to feel better and live longer [30].

Both these treatments leave a significant mark in cancer patients, with side effects that affect

their quality of life in several ways. Besides varying from treatment to treatment and patient

to patient, the most common effects are appetite loss, fatigue, diarrhoea, hair loss, nausea or

vomiting. With this in mind, it’s essential to improve the ways of treating cancer to guarantee to

the patients the best possible conditions for living [4].

Immunotherapy is an emerging method that is gaining much interest in the scientific com-

munity, bringing great results and fewer side effects for patients when compared to radio or

chemotherapy. Immunotherapy aims to revive the suppressed immune system, boosting the pa-

tient’s natural defences to attack tumour cells and kill cancer. There are different types of im-

munotherapy, able to reactivate the benefits of different types of cells, but all of them are con-

tributing to improving cancer patients’ life expectancy [7, 37].

2.6 Summary

Cancer is a genomic disease caused by an accumulation of DNA mutations that generates

cells with distinct characteristics that can mislead the normal function. MSI can indicate cancer

by the loss of DNA MMR activity. RNAseq is a recent approach to transcriptome profiling that

can quantify the gene expression levels accurately. Immunotherapy is an emerging method to treat

cancer that uses the patient’s immune system to battle the disease.



Chapter 3

Literature Review

To better approach the problem of this work, two different areas in the literature were studied:

Genomics, Intratumor Heterogeneity and Microsatellite Instability with RNAseq Statistical Anal-

ysis, and Predictive Models using RNAseq. The following sections comprehend the most relevant

studies.

3.1 Genomics, Intratumor Heterogeneity and Microsatellite Insta-
bility Detection

Different researches were found to study the biological part of this problem, characterising the

human body genome, intratumor heterogeneity, and MSI. The analysed studies are from different

databases, but both Nature and Cell represent essential fonts of information in the area. The

analysed studies were found in Google Scholar1, employing the query ("microsatellite instability

detection" AND "artificial intelligence").

In 2020, Li et al. [18] studied the relation between MSI and immunotherapy. Four methods are

highlighted in the detection of the condition, with fluorescent multiplex PCR and CE having the

golden standard of 100% accuracy, better than the 95.8% of Single-molecule molecular inversion

probes, the 92-94.6% of Next-Generation sequencing and the 89-95% of Immunohistochemistry.

The analysis of mutation characteristics also showed some recurrent features, indicating that the

specific tumour environment conduces to MSI events. MSI occurs mainly in ion-binding genes

in gastric adenocarcinoma, with tumour suppressor genes ACVR2A and RNF being the most

common targets of mutations in tumours with high MSI. MSI has been found in several cancer

types, e.g. gastric, breast, prostate, ovarian, and endometrial, which shows how crucial it can be

as an indicator. The author concludes that MSI leads the tumour to be drug-resistant and is an

effective positive immunotherapy predictor.

1https://scholar.google.pt/, last accessed on 25/08/2022
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In 2018, Matak et al. [22] characterised stochastic phenotype switching as a mechanism lead-

ing to intratumor heterogeneity. The author established a primary tumour cell culture from tissue

from a surgically resected sarcomatoid cholangiocarcinoma of the liver. Using RNAseq, it was

investigated the presence of different types of keratin-7 cells and their capacity to change their

transcriptional profile, switching between different phenotypes. While keratin-7-negative cells are

stable, keratin-7-positive were able to change their phenotype, generating unstable and heteroge-

neous populations. A relation between the loss of keratin-7 expression and tumour formation was

found, with keratin-7-negative cells indicating increased tumorigenic potential.

Hugo et al. [12] studied the genomic and transcriptomic features of response to anti-PD-1 ther-

apy in metastatic melanoma. The authors analysed whole-exome sequences in 38 pre-treatment

melanoma tumours, from responsive patients with complete or partial responses to anti-PD-1 and

non-responsive patients with progressive disease. The transcriptomes were analysed, recurring to

RNAseq data. Responding tumours had harboured more non-synonymous single nucleotide vari-

ations. The main conclusion from this work associated a higher mutational load significantly with

better survival in melanoma patients, but it was not predictive of response to anti-PD-1 therapy.

The TCGA Research Network also performed some exciting studies that became more relevant

with the definition of TCGA as our central database. In 2014, the study in [25] analysed the

molecular characterisation of gastric adenocarcinoma using six different molecular platforms, one

of them being RNAseq. They proposed a molecular classification of this type of cancer, with one

of the groups being relative to unstable microsatellite tumours. A HotNet analysis of mutated

genes in the MSI group showed alterations in primary histocompatibility complex class I genes,

B2M and HLA-B. B2M mutations are common in colorectal cancers and melanomas. Usually,

they result in loss of expression of HLA class 1 complex, suggesting hypermutated tumours would

benefit from this by reducing antigen presentation to the immune system. An elevated C to T base

transition rate at CpG dinucleotides was also observed. RNAseq data showed 11 fusions between

CLDN18 and ARHGAP26 or ARHGAP6, contributing to the invasive phenotype of diffuse gastric

cancer. Mutations were also found in PIK3CA, ERBB3, ERBB2 and EGFR, while mutations in

BRAF and V600E, common in MSI in colorectal cancer, were not found.

Two years before, they also studied the molecular characterisation of colon and rectal cancer

in humans [24]. Their work identified MSI in 75% of the hypermutated colorectal carcinomas and

MMR gene mutations in the other 25%. In the proceedings, the authors have divided the samples

between hypermutated, if the mutation rate was above 12 per 106 bases, and non-hypermutated,

if below 8. Within the hypermutated tumours, 77% had high levels of MSI. In contrast, 23%

did not have that high level but had somatic mutations in at least one MMR gene or polymerase

ε aberrations. They also found 15 recurrently mutated genes in the cases with hypermutation,

with ACVR2A, APC, TGFBR2, BRAF, MSH3 and MSH6 having mutation values above 40%.

The hypermutated tumours with silencing of MLH1 and high levels of MSI showed additional

differences in the mutational profile.

Recently, Hildebrand et al. [11] studied the application of AI to detect MSI and predict

the response to immunotherapy in colorectal cancer. Their article focused on reviewing several
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other studies from different authors with several types of data, but none of them focused on using

RNAseq data. The histological features’ analysis was the prediction’s primary focus, but it lacks

any new approach since it was just a review article. It gives a clear idea of what can be achieved

with histology, and it is helpful to understand if RNAseq data can be promising for detecting MSI.

3.2 Predictive Models using RNAseq

The second group of selected studies focuses on developing predictive ML models using

RNAseq data with different goals. The search employed the query ("Predict microsatellite in-

stability") AND ("using RNAseq data") in Google Scholar2 and IEEE Xplore3. This section pro-

vides information about the model development, feature extraction, parameter tuning and accuracy

scores of previous work that can help us to generate the desired models.

The study from Li et al. [19] was one of the main findings of our search, becoming a fun-

damental research to help lead the direction of this work. The authors focused their work on the

prediction of MSI, using mRNA, RNAseq and microarray gene expression data. They selected a

15-feature set using the t-score metric, which will also be used in this study. In their models, just a

binary classification approach was tested, merging MSI-L and MSS classes, justifying it with the

genetic proximity between them. The only tested model was the KNN, producing results of 97%

AUC and accuracy in STAD, 97% AUC and 96% accuracy in COAD, and 93% AUC and 90%

accuracy in UCEC.

Pacinkova and Popovici [27] produced the first gene signature to predict MSI with two differ-

ent types of data, RNAseq and microarrays. The data used to develop the model was only from

colon cancer patients. However, the tests performed well in data from gastric and endometrial can-

cer patients, suggesting a typical pattern between the expression of distinct cancer in the 25-gene

signature produced.

Danaher et al. [3] generated an experience to predict MSI in COAD, STAD and UCEC in

a 14-gene feature set, focused on mismatch repair genes. The results showed a high prediction

accuracy, sensitivity and specificity. However, the authors state that their work might have some

limitations since it was only developed under TCGA datasets. Their main conclusion was the

possible use of their work to create a combined approach to measure tumour antigenicity and the

presence of a suppressed adaptive immune response in a single platform.

In 2021, Sorokin et al. [34] aimed to validate three different studies, [19], [27] and [3] on MSI

prediction using RNAseq data. Their motivation was that those studies were never validated in

independent databases outside TCGA. The authors executed the available code from the analysed

studies with independent datasets and confirmed the effectiveness of the work from Li and Danaher

in [19], and [3], respectively. On the other hand, the model from Pacinkova [27] was only effective

in colorectal, oesophagal and uterine cancers. The authors explained that conclusion with the lack

of gene ontology term "biological processes" in the gene feature set.

2https://scholar.google.pt/, last accessed on 25/08/2022
3https://ieeexplore.ieee.org/, last accessed on 25/08/2022
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Early this year, Seo et al. [29] developed a single transcriptome predictor of MSI for colorectal

cancer called MAP (Microsatellite instability Absolute single sample Predictor). This model was

developed with a Random Forest algorithm and a recursive feature elimination method. The results

in the tests with colorectal patients’ data reached an accuracy of 96%, while the validation with

STAD and UCEC reached accuracies of 80% and 75%, respectively.

Cascianelli et al. [2] studied breast cancer classification into distinct subtypes with ML meth-

ods and RNAseq, giving an important insight for this dissertation about the efficiency of different

methods. The approach used the PAM50 classification as a reference, comparing, for each sample,

the relative expression of 50 genes. The authors proved that choosing samples to build the PAM50

reference affects the subtyping classification. Then, a new strategy was proposed, called AWCA,

in which, after the PAM50 classification, the average expression is calculated within each subtype.

Then, with the mean values for each subtype, a new average is calculated for each gene, resulting

in the final reference values of the new method. In the ML phase, a random and balanced training

set of 220 samples was extracted from TCGA. Five different methods were applied to classify

the cancer samples, with 10-fold stratified cross-validation and hyperparameter grid search being

applied. The results showed similar training accuracies, between 84 and 88%, but the test phase

showed different scores. Support Vector Machines (SVMs) had 74% testing accuracy, while the

training was 84%. Feed Forward Neural Networks had the lowest test accuracy, with 64% being

paired with 86% in the training step. Since the training data is balanced, we can assume some

overfitting of the algorithms. On the other hand, Multiclass Logistic Regression (MLR) showed

the best score overall, with 88% of accuracy in training and 85% in testing. The algorithm was then

selected to perform new classifications, focused on different feature spaces, to improve the classi-

fier performance. MLR showed potential for improvement in breast cancer subtypes classification

by exploring relevant discriminative genome parts using RNAseq data.

Lapuente-Santana et al. studied the presence of biomarkers to predict cancer patients’ response

to immune-checkpoint blockers (ICB) therapy, a very promising treatment for several types of can-

cer [43]. The authors of this work aimed to quantify tumour-infiltrating immune cells, the activity

of intracellular signalling and transcription factors, and the extension of intracellular communi-

cation using RNAseq data. Then, they applied ML models to understand how these signatures

are associated with 14 different transcriptome-based predictors of anticancer immune responses.

The dataset included 7550 samples from patients of 18 types of cancer generated by TCGA. The

authors used two distinct multi-task ML models, a regularised multi-task linear regression and a

Bayesian efficient multiple-kernel learning, with the scores, from the 14 predictors as input data,

identifying ten highly correlating scores. Immune cells were identified as biomarkers of immune

response with CD8+ T cells being considered the most essential for tumour-cell recognition and

killing. TRAIL, JAK-STAT, and NF-kB signalling pathways were positively correlated with the

predicted immune responses in all cancer types, indicating an expected good response to ICB ther-

apy. On the other hand, VEGF had the most negative correlation. The authors stratified patients

according to their expected reaction to ICB therapy, recurring to the multi-task ML methods and

the Estimate Systems Immune Response (EaSIeR) system, with AUC scores between 0.78 and
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0.85.

3.3 Discussion

In Section 3.1, we can understand how RNAseq can be used to extract indicators related to

specific biological events. In the past years, scientists have focused on applying several statistical

methods to the data extracted from the novel approach of RNAseq to find essential features that

can help the diagnostic and treatment of cancer and help to save lives. Several advances have been

made in genomics, with genetic expression and cellular characteristics being revealed as crucial

features in cancer detection and patient response.

The evolution of ML is opening a new chapter in the data analysis field. Several areas are

being improved by applying AI methods and models that learn from previous data. Health and

biology are not different, and we can see some examples in Section 3.2. Predictive models are

increasingly applied to understand behavioural patterns and stratify cancer patients for different

therapy applications or responsive analyses.

In the studies on 3.2, it is possible to see how ML algorithms such as KNN and Random

Forest produce excellent results in predicting MSI from RNAseq and other data types. However,

with promising results, there is still a lot to explore. Genomics is still an area with high research

potential, and ML is revolutionising the capacity to make discoveries and validate theories. Inside

the ML area, DL seems to be a field that can be analysed, potentially improving the already

obtained results and helping to give a new step in cancer patients’ treatment.

This group of analysed researches show the importance of the work developed in this disserta-

tion. Despite the different approaches analysed in these studies, none directly compared the results

of ML and DL models, which is also a gap this thesis will explore.

3.4 Summary

This chapter explored the literature in genomics, RNAseq and ML. The first section looked at

the comprehension of Microsatellite Instability detection, with studies giving a relevant statistic

analysis and domain reviews about the problem concepts. The second part was focused on MSI

prediction using several distinct models and approaches with RNAseq data. Those allowed us to

understand state of the art in this area and define the main goals of this work.



Chapter 4

Methodology

The approach to answering the central questions of this dissertation included four main steps

explained in the sections below. Chronologically, in the first stage, we focused on understanding

and interpreting the used datasets to extract some knowledge about the data. That step is described

in Section 4.1 by explaining the characteristics of the three datasets used in this work. In the second

stage, those datasets were adequately prepared to reduce their dimensionality and the effect of their

imbalance, as it is demonstrated in Section 4.2.

With still a large number of features after dimensionality reduction, it was necessary to apply

some feature selection methods to choose the essential features in MSI prediction as specified in

Section 4.3. In the final stage, the ML algorithms were selected and optimised for each dataset in

an iterative process guided by the results obtained. Section 4.4 explains the followed methodology

in this work. To better understand the followed methodology and the logical sequence of the

chapter, figure 4.1 represents the architectural design of this work schematically.

4.1 Data Description

Three datasets were used in this project, all with data from the extensive TCGA database1.

They comprise RNAseq data with the MS label for each patient, generating datasets with more

than 57 thousand features, each corresponding to a different human gene found in the samples

of the respective dataset. Regarding the labels, TCGA classifies MS in three different categories:

high instability (MSI-H), low instability (MSI-L) and stability (MSS). MSI-H and MSS are the

most different ones, while MSI-L is located between both. The number of samples and features in

each dataset is exhibited in Table 4.1.

RNAseq data and MS data were in a different sub-database in TCGA. So, it was necessary

to merge the various tables to produce the desired datasets. Since both had the patient’s code in

each sample, the merge was done with that unique identifier, generating the datasets used in this

1https://portal.gdc.cancer.gov/, last accessed on 15/04/2022
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Figure 4.1: Diagram of the architectural design of the study.

study. The datasets have numerical values representing the count of each gene expression for each

samples. This allow us to have the expression level of each gene in each patient, potentiating the

analysis of which genes stand out in each group of patients.

Table 4.1: Number of samples and features per dataset

Dataset Samples Features
COAD 474 57 137
STAD 407 58 428
UCEC 521 57 763

The COAD Dataset has 474 samples, with 57137 features from patients detected with Colon

Adenocarcinoma. It has 91 MSI-H samples, 86 MSI-L samples and 297 MSS samples, as it

is possible to seen in Table 4.2. This dataset is highly unbalanced, with more than half of its

representation in samples from patients with MSS.

The STAD Dataset has 407 samples, with 58428 features from Stomach Adenocarcinoma

patients. It is even more unbalanced than the previous dataset, with 74 MSI-H samples, 62 MSI-L

samples and 271 MSS samples, with these last representing almost 67% of the dataset. Its numbers

are shown in Table 4.2.
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The UCEC Dataset is the largest of these three first datasets, having 521 samples with 57763

features from Uterus Corpus Endometrial Cancer patients. In terms of balance, it is slightly dif-

ferent from the previous two since the number of MSI-H samples is almost four times higher than

the number of MSI-L samples: 166 to 45. More than half of the dataset is still from MSS samples,

with 310. Table 4.2 exhibits its numbers.

Table 4.2: Number of samples of each label per dataset.

Dataset MSI-H MSI-L MSS TOTAL
COAD 91 86 297 474
STAD 74 62 271 407
UCEC 166 45 310 521

4.2 Data Preparation

Due to a large number of features in each dataset, the first step was to clean the dataset and

eliminate the redundant or non-significant features. Those features with the same value in at least

50% of the samples, and those whose range was less than or equal to five, were discarded since

their information was not relevant to the algorithms. Removing these features reduced each dataset

to approximately half its original size.

In the binary classification approaches, the next step included another dimensionality reduction

that allowed us to make a first extensive selection of features. That step was not performed in the

multiclass classification approaches since the method only worked with binary classifications. In

this stage, we reduced the feature space from around thirty thousand to about three thousand by

calculating the importance of each feature in the dataset and selecting the highest ones until the

set of chosen features reached a cumulative importance of 0.99. This method is open source, and

it was found on GitHub [17].

The next step was the main Feature Selection stage, but since the available datasets were

extensive and it was essential to test different methods, Section 4.3 will explain that process.

4.3 Feature Selection

In the Feature Selection stage, we applied three distinct methods to understand the effect of

different genes while predicting the MS condition. The first two were MRMR and ANOVA, while

the last used a set of 15 features from a study on the same topic, in which the authors performed

a T-Test score to calculate the feature importance [19]. The choice for this last feature set had the

goal of comparing the obtained results with the ones from the study and validating those results in

this work. With MRMR and ANOVA, we decided to select the 100 best features.

The MRMR selects a k-specified number of features by applying a Max-Relevance and Min-

Dependency criterion. This technique aims to select the most critical mutually exclusive features
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in a dataset, which means the relevant ones with less similarity between them [28]. The Max-
Relevance step generates a set with the most important features by calculating the mutual infor-

mation value between each feature and each label. Then, the Min-Redundancy process will select

only mutually exclusive features of the previous set [28].

ANOVA stands for Analysis Of Variance. It works by calculating the variation between the

mean of each class for a feature, with the null hypothesis of no significant variation existing. The

alternate indicates a variation in the class means, so the features confirming this hypothesis are

stored. In the last set of features, the F-Measurement will use a p-value to define the selected

features by the method [23].

In the last method, the study from [19] was replicated using the 15-gene set the authors selected

in their work. The decision to not perform the t-Test they did to generate the feature set and instead

use the set they produced was to understand if a smaller set would produce many different results

in other ML models. That way, we could validate their results in the most reliable way possible.

This process was one of the crucial stages of this work and implied the most search since it is

not easy to select from large datasets. Identifying the genes with the most impact in the prediction

of MS condition was one of the goals of the developed study. With each method working differ-

ently, the feature selection would always generate different feature sets from dataset to dataset.

4.4 Architectural Design

After the data preparation phase, the feature selection procedures were tested in each model.

The binary classification approaches investigated five procedures. Two of them were composed of

the dimensionality reduction phase of [17] combined distinctly with MRMR and ANOVA meth-

ods. At the same time, the other three were the simple MRMR, ANOVA and the 15-gene set

from [19]. The combined method procedures could not be applied in the multiclass classification

approaches, so the tests focused on the other three singular procedures.

Except for the 15-gene feature set, 100 features were selected in the other methods. Some

tests were performed to understand the best feature space dimension to select in each procedure,

but that value differed from one another and from dataset to dataset. Consequently, the best option

seemed to be selecting a fixed number of features for every approach. That would allow the study

of the behaviour of a good group of genes in the context of the problem and which would be the

most powerful ones in predicting the MS condition in each patient.

In the binary classification models, two different hypotheses were tested. Since each dataset

had three different classes, two of them were merged to produce datasets with just two labels. MSI-

H and MSS were the most distant ones, while MSI-L was the intermediate class. The choice was

then to merge MSI-H with MSI-L in one approach and MSS with MSI-L in another. The literature

showed that MSI-L and MSS were the closer classes. However, the two different combinations

of that hypothesis would allow us to confirm that fact and check the distance between MSI-L and

MSI-H, the two instability classes.
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Three different ML models were selected to generate a solution to the proposed problem. First

of all, the Random Forest algorithm was selected. The main reason for the option was to gain

sensibility to the data and understand how a generic model would work with unbalanced datasets

with many features. The DL field was also an area to explore, so the second selected model was

a Multi-Layer Perceptron since it has a significant advantage in learning non-linear models. The

last chosen model was the KNN, enabling the complete validation of the 15-gene feature set study.

In the optimization phase, a grid search was implemented to find the best combination of

parameters and produce the best possible results in each model. Table 4.3 shows the values used

for optimization in the three algorithms. Fifty different stratified splits were generated from each

dataset to help find those parameters. The parameters were selected from the split with the best

score. In an independent process, the training and testing phase was done with a similar split

to reduce the overfitting and guarantee the accuracy of the results. In both phases, SMOTE was

applied to help balance the datasets and generate more accurate results.

Table 4.3: List of values used to optimize the different algorithms.

Algorithm Parameters Values

Random Forest

n_estimators 100, 150
criterion ’entropy’, ’gini’

max_depth 2, 3, 4
min_samples_split 6, 8, 10
min_samples_leaf 2, 4

MLP

hidden_layer_sizes (8,), (8,8), (8,8,8), (16,16), (16,8,16)
activation ’identity’, ’tanh’

alpha 0.0001, 0.05
max_iter 100, 150, 200
max_fun 10000, 15000, 20000

KNN

n_neighbours 5, 7, 9, 11
algorithm ’auto’, ’ball_tree’, ’kd_tree’, ’brute’
leaf_size 3, 5, 7, 10

p 1, 2

4.5 Summary

Three datasets were used in this work, all part from the TCGA database. Their preparation

cleaned the data by eliminating redundant or non-significant features. Three different methods

were used to select the most relevant features. Three different algorithms were optimized to train

and test the data in several approaches.
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Results

The different tests were performed to understand the possibility of MSI prediction using

RNAseq data and to identify the competent genes. Three different approaches were generated

to predict MSI, one multiclass and the other two in a binary classification system, to understand if

the intermediate class of low microsatellite (MSI-L) instability was distinct from high microsatel-

lite instability (MSI-H) and microsatellite stability (MSS) classes or close to one of them. Five

feature selection methods were also tested, two of which were composed of two techniques. The

prediction models results is explained in section 5.1, the feature selection method analysis in sec-

tion 5.2, and its discussion in section 5.3.

5.1 Microsatellite Instability Prediction Results Analysis

Considering the three types of cancer (COAD, STAD and UCEC), the three different classi-

fication approaches (one multiclass and two binary), the three different ML algorithms applied

(Random Forest, MLP and KNN), and the five different feature selection techniques applied (just

three for the multiclass classification approaches), 117 experiments were done in this study. Ap-

pendix A shows a table with the results from all those experiences that will be explained in dif-

ferent parts in this section. First, an analysis of the multiclass classification approach is made in

subsection 5.1.1, to finish with an analysis of the binary classification approaches in subsections

5.1.2 and 5.1.3.

Each table in this section will have the results presented in percentage, with the mean and stan-

dard deviation in two decimal places. Each experiment was fine tuned with a grid of parameters.

The set that produced the best result in each of them is presented in Appendix B.

5.1.1 Multiclass Approach

Table 5.1 shows the metrics of the multiclass experiments with the COAD dataset. The MLP

model has the best results in all of them except Specificity, where the Random Forest stands. The

21
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Table 5.1: Results of the COAD Dataset in the Multiclass approach.

COAD Dataset
Multiclass Multi-Layer Perceptron

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 78.38 +/- 3.59 62.32 +/- 5.30 64.61 +/- 8.30 69.75 +/- 4.01 58.65 +/- 4.87 61.49 +/- 4.33
ANOVA 77.86 +/- 2.71 62.34 +/- 4.84 63.91 +/- 6.51 69.24 +/- 3.15 61.26 +/- 5.16 63.15 +/- 4.53
15 Feature Set 76.88 +/- 2.85 61.54 +/- 4.67 68.62 +/- 7.38 68.12 +/- 4.78 54.17 +/- 5.67 56.11 +/- 6.64

Multiclass Random Forest
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 71.33 +/- 3.76 55.58 +/- 5.37 64.76 +/- 12.44 61.66 +/- 10.30 46.13 +/- 10.66 46.09 +/- 12.30
ANOVA 70.95 +/- 3.38 55.21 +/- 4.44 70.34 +/- 1.71 61.14 +/- 19.79 40.08 +/- 15.43 32.60 +/- 16.84
15 Feature Set 68.59 +/- 3.63 54.23 +/- 5.28 66.05 +/- 11.60 63.37 +/- 10.64 42.59 +/- 10.51 42.32 +/- 11.98

Multiclass K-Nearest Neighbours
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 73.28 +/- 3.46 59.30 +/- 5.72 68.82 +/- 7.09 67.06 +/- 5.47 49.77 +/- 5.63 51.80 +/- 6.06
ANOVA 71.17 +/- 4.13 58.54 +/- 5.44 65.10 +/- 7.53 66.37 +/- 4.57 51.98 +/- 4.53 54.52 +/- 4.49
15 Feature Set 72.07 +/- 3.52 57.26 +/- 5.02 64.85 +/- 6.84 63.60 +/- 4.22 49.66 +/- 4.32 51.59 +/- 4.18

AUC is in a range from 68% to 78%, while the accuracy has a range from 54% to 62%. Only in

the MLP model, the accuracy is above 60%. Between the feature selection methods, MRMR has

slightly better results than the other two.

Table 5.2 presents the results of the multiclass experiments with STAD dataset. As in the

previous table, MLP shows the best overall scores in all metrics. The AUC ranges from 68%

to 81%, with values above 72% in just two of the three MLP experiments. The accuracy has a

range from 51% to 63%, with the MLP having the best score with each feature selection method

when compared to the Random Forest and the KNN. ANOVA method obtained the worst AUC

and accuracy of all methods in all models.

Table 5.3 exhibits the results for the multiclass approach with the UCEC dataset. The MLP

has the best AUC, always above 80%, while the accuracy is very similar between the MLP and the

Random Forest. The AUC values are in a range from 76% to 85%, while the accuracy ones are in

a range from 49% to 58%. Contrarily to the previous experiments, with the 15-feature set, MLP

has worst results than Random Forest and KNN.

Table 5.2: Results of the STAD Dataset in the Multiclass approach.

STAD Dataset
Multiclass Multi-Layer Perceptron

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 81.02 +/- 3.89 63.16 +/- 5.72 65.40 +/- 9.30 74.17 +/- 3.97 63.49 +/- 5.42 66.54 +/- 4.84
ANOVA 72.07 +/- 5.49 55.99 +/- 6.95 53.09 +/- 9.91 66.17 +/- 4.96 55.98 +/- 6.76 58.96 +/- 6.29
15 Feature Set 75.81 +/- 4.56 58.01 +/- 6.32 63.29 +/- 10.25 68.94 +/- 5.26 53.78 +/- 8.63 59.92 +/- 8.08

Multiclass Random Forest
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 72.35 +/- 4.79 56.68 +/- 5.25 58.87 +/- 15.33 71.77 +/- 6.01 52.49 +/- 10.82 55.75 +/- 10.41
ANOVA 70.14 +/- 4.65 54.14 +/- 5.64 59.67 +/- 11.58 68.79 +/- 4.15 49.24 +/- 8.79 53.14 +/- 7.61
15 Feature Set 71.50 +/- 4.58 54.59 +/- 5.97 57.72 +/- 11.15 69.10 +/- 5.27 51.85 +/- 9.19 55.64 +/- 8.45

Multiclass K-Nearest Neighbours
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 72.43 +/- 3.65 56.68 +/- 4.85 59.11 +/- 6.46 68.31 +/- 3.27 54.24 +/- 5.46 57.70 +/- 5.10
ANOVA 68.96 +/- 4.99 51.70 +/- 6.95 52.85 +/- 9.88 65.19 +/- 4.46 50.56 +/- 5.48 53.88 +/- 5.10
15 Feature Set 71.81 +/- 4.91 57.51 +/- 7.24 65.29 +/- 10.25 66.82 +/- 5.86 49.73 +/- 5.88 53.06 +/- 5.76
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Table 5.3: Results of the UCEC Dataset in the Multiclass approach.

UCEC Dataset
Multiclass Multi-Layer Perceptron

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 85.28 +/- 2.63 58.48 +/- 5.34 50.55 +/- 8.33 77.31 +/- 3.45 63.64 +/- 6.06 68.31 +/- 5.40
ANOVA 82.71 +/- 2.80 56.79 +/- 5.55 50.00 +/- 9.61 74.81 +/- 3.21 63.58 +/- 3.81 67.62 +/- 3.20
15 Feature Set 80.24 +/- 3.32 54.20 +/- 5.03 53.92 +/- 8.03 72.28 +/- 4.08 54.48 +/- 6.51 58.08 +/- 7.26

Multiclass Random Forest
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 79.48 +/- 4.00 57.74 +/- 6.39 53.66 +/- 11.30 77.12 +/- 4.60 61.81 +/- 7.57 66.68 +/- 6.09
ANOVA 79.44 +/- 3.95 55.98 +/- 4.90 50.97 +/- 11.43 75.52 +/- 4.52 60.99 +/- 8.45 65.18 +/- 7.12
15 Feature Set 76.68 +/- 3.70 56.89 +/- 5.42 59.43 +/- 11.69 74.49 +/- 4.70 54.34 +/- 8.77 59.16 +/- 8.71

Multiclass K-Nearest Neighbours
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
MRMR 79.54 +/- 3.41 54.26 +/- 6.12 50.21 +/- 9.66 72.30 +/- 3.69 58.32 +/- 4.90 62.69 +/- 4.44
ANOVA 77.21 +/- 2.92 49.59 +/- 7.16 49.13 +/- 11.09 71.16 +/- 4.24 50.06 +/- 5.15 55.42 +/- 4.96
15 Feature Set 81.13 +/- 3.59 56.38 +/- 6.01 53.48 +/- 10.04 75.24 +/- 3.90 59.28 +/- 4.54 64.25 +/- 4.18

5.1.2 Binary Approach: Merging MSI-L with MSI-H

Table 5.4 presents the results of the binary classification experiments with the COAD dataset,

in which MSI-L class is merged with MSI-H class. MLP has the best results overall, and Random

Forest has the worst. The AUC ranges from 69% to 79%, while the accuracy ranges from 64% to

72%. The method that combines the Dimensionality Reduction (DR) technique with ANOVA has

the best AUC and accuracy in the Random Forest and the KNN models. However, its values are

below DR + MRMR and MRMR in the MLP.

Table 5.5 exhibits the results of the experiments with the STAD dataset in the binary classifi-

cation model in which MSI-L class is merged with MSI-H class. MLP has the best results overall,

except for the DR + ANOVA method, which is the worst of the three models. The AUC ranges

from 71% to 81%, while the accuracy ranges from 65% to 74%. The method that combines DR

with MRMR has the best results in MLP and KNN, while in the Random Forest is the method

with DR and ANOVA that produces the best results.

Table 5.6 shows the results for the binary classification model that merges the MSI-L and

MSI-H labels for the UCEC dataset. The MLP model obtained the best results with four feature

selection methods, with the only exception being the 15-feature set that produced the best result

with the KNN model. The AUC ranges from 80% to 88%, while the accuracy ranges from 75%

to 82%, with the DR + MRMR and the MRMR methods in the MLP model obtaining the best

performance of the set of experiments.

5.1.3 Binary Approach: Merging MSI-L with MSS

Table 5.7 presents the results of the experiments in the binary classification approach that

merges MSI-L with MSS using the COAD dataset. The AUC values range from 89% to 98%, and

the accuracy values range from 85% to 92%. The approach with DR + MRMR feature selection

method in the MLP obtained the best results in all metrics. The approach with the ANOVA method

was the best in the Random Forest experiments, but their results are below any experiment in the
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Table 5.4: Results of the COAD dataset in the binary classification approach that merges MSI-L
with MSI-H.

COAD Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSI-H)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 78.50 +/- 3.85 72.30 +/- 4.00 68.79 +/- 4.50 74.05 +/- 3.54 74.00 +/- 3.63 73.71 +/- 3.57
DR + ANOVA 78.16 +/- 4.52 71.65 +/- 3.88 69.76 +/- 4.53 74.66 +/- 3.59 74.57 +/- 3.53 74.34 +/- 3.49
MRMR 79.24 +/- 4.30 71.79 +/- 3.99 69.19 +/- 4.99 73.07 +/- 3.92 72.69 +/- 3.84 72.70 +/- 3.82
ANOVA 76.69 +/- 4.66 71.45 +/- 4.24 68.13 +/- 4.85 74.54 +/- 4.11 74.76 +/- 3.98 74.24 +/- 4.01
15 Feature Set 73.79 +/- 4.82 69.08 +/- 4.65 66.39 +/- 5.35 71.86 +/- 4.42 71.77 +/- 4.56 71.46 +/- 4.46

Binary Random Forest (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 70.14 +/- 5.17 67.45 +/- 4.06 63.43 +/- 5.30 69.53 +/- 5.52 68.78 +/- 6.40 68.36 +/- 5.95
DR + ANOVA 72.52 +/- 4.69 68.60 +/- 4.43 64.48 +/- 4.00 71.71 +/- 5.30 70.46 +/- 5.93 69.81 +/- 5.22
MRMR 72.41 +/- 4.85 67.85 +/- 4.28 65.41 +/- 5.16 71.47 +/- 4.13 70.29 +/- 5.50 69.75 +/- 5.16
ANOVA 69.57 +/- 5.17 66.53 +/- 4.68 63.41 +/- 4.53 69.96 +/- 5.06 69.64 +/- 5.71 69.15 +/- 5.25
15 Feature Set 71.41 +/- 6.05 67.93 +/- 5.19 63.39 +/- 5.49 73.04 +/- 6.01 72.46 +/- 5.88 71.27 +/- 5.50

Binary K-Nearest Neighbours (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 75.09 +/- 4.79 67.50 +/- 4.29 68.72 +/- 4.83 70.85 +/- 4.17 68.95 +/- 4.63 69.34 +/- 4.52
DR + ANOVA 76.21 +/- 4.21 70.24 +/- 4.01 69.27 +/- 4.31 70.73 +/- 3.63 67.89 +/- 3.80 68.38 +/- 3.71
MRMR 72.11 +/- 4.76 65.61 +/- 4.37 65.88 +/- 4.83 68.02 +/- 4.08 65.35 +/- 4.45 65.81 +/- 4.33
ANOVA 75.47 +/- 4.43 68.68 +/- 4.01 69.20 +/- 4.25 70.75 +/- 3.68 68.15 +/- 4.07 68.63 +/- 3.99
15 Feature Set 70.47 +/- 4.72 64.93 +/- 4.94 63.42 +/- 5.34 67.41 +/- 4.63 66.44 +/- 5.06 66.60 +/- 4.89

Table 5.5: Results of the STAD dataset in the binary classification approach that merges MSI-L
with MSI-H.

STAD Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSI-H)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 81.29 +/- 4.76 74.09 +/- 4.60 72.53 +/- 5.80 77.25 +/- 4.26 76.15 +/- 4.72 76.35 +/- 4.52
DR + ANOVA 73.39 +/- 5.40 69.25 +/- 3.76 65.39 +/- 6.32 70.64 +/- 4.46 68.59 +/- 4.85 69.08 +/- 4.67
MRMR 80.08 +/- 5.25 74.01 +/- 5.23 71.35 +/- 6.14 76.48 +/- 4.49 75.51 +/- 4.85 75.69 +/- 4.68
ANOVA 74.14 +/- 5.44 68.79 +/- 4.49 64.85 +/- 5.55 70.87 +/- 4.01 69.49 +/- 4.39 69.82 +/- 4.19
15 Feature Set 74.88 +/- 5.62 69.75 +/- 4.73 65.87 +/- 6.01 72.71 +/- 4.23 72.02 +/- 4.37 72.07 +/- 4.20

Binary Random Forest (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 74.97 +/- 5.48 70.33 +/- 5.18 67.77 +/- 6.05 73.41 +/- 5.18 70.90 +/- 6.81 71.15 +/- 6.27
DR + ANOVA 75.31 +/- 5.72 70.02 +/- 5.48 67.82 +/- 6.31 74.99 +/- 5.01 73.85 +/- 6.13 73.76 +/- 5.68
MRMR 74.09 +/- 5.52 68.99 +/- 5.69 67.56 +/- 6.38 73.08 +/- 5.03 70.41 +/- 7.10 70.65 +/- 6.62
ANOVA 72.08 +/- 5.50 67.10 +/- 4.49 61.22 +/- 6.61 72.58 +/- 5.16 70.78 +/- 6.92 69.81 +/- 6.03
15 Feature Set 72.17 +/- 4.59 68.19 +/- 4.61 65.26 +/- 5.57 73.17 +/- 5.04 71.41 +/- 6.44 71.27 +/- 5.83

Binary K-Nearest Neighbours (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 76.87 +/- 5.57 70.26 +/- 5.18 70.06 +/- 5.55 72.62 +/- 3.96 68.12 +/- 4.36 68.92 +/- 4.19
DR + ANOVA 75.20 +/- 5.33 69.03 +/- 5.88 70.40 +/- 5.51 72.43 +/- 4.22 66.83 +/- 4.97 67.69 +/- 4.82
MRMR 73.43 +/- 4.66 66.56 +/- 4.62 65.32 +/- 5.27 70.24 +/- 3.88 67.76 +/- 4.46 68.36 +/- 4.20
ANOVA 71.02 +/- 4.85 65.32 +/- 5.00 63.88 +/- 6.04 69.09 +/- 4.33 66.76 +/- 4.50 67.40 +/- 4.35
15 Feature Set 72.46 +/- 4.91 65.61 +/- 4.88 64.07 +/- 5.77 69.47 +/- 4.21 67.22 +/- 4.84 67.77 +/- 4.63
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Table 5.6: Results of the UCEC dataset in the binary classification approach that merges MSI-L
with MSI-H.

UCEC Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSI-H)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 88.57 +/- 3.55 82.79 +/- 3.90 81.36 +/- 4.34 82.76 +/- 3.99 82.55 +/- 3.98 82.52 +/- 3.97
DR + ANOVA 87.69 +/- 3.29 82.21 +/- 3.47 80.04 +/- 3.89 81.82 +/- 3.65 81.66 +/- 3.67 81.59 +/- 3.65
MRMR 88.50 +/- 3.50 82.92 +/- 3.88 80.95 +/- 3.67 83.36 +/- 2.92 83.14 +/- 2.92 82.99 +/- 2.98
ANOVA 87.61 +/- 3.50 81.55 +/- 3.40 80.71 +/- 3.68 82.06 +/- 3.23 81.81 +/- 3.33 81.79 +/- 3.34
15 Feature Set 81.49 +/- 4.08 76.07 +/- 4.23 73.95 +/- 4.76 78.47 +/- 4.64 78.00 +/- 4.30 77.52 +/- 4.34

Binary Random Forest (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 83.20 +/- 4.10 76.25 +/- 4.79 76.18 +/- 4.38 78.61 +/- 4.13 77.73 +/- 4.71 77.55 +/- 4.72
DR + ANOVA 82.64 +/- 4.17 77.00 +/- 3.79 76.01 +/- 4.73 78.49 +/- 4.10 77.89 +/- 3.99 77.71 +/- 3.99
MRMR 82.76 +/- 4.33 76.86 +/- 4.28 75.68 +/- 4.47 78.86 +/- 4.43 77.96 +/- 4.54 77.70 +/- 4.44
ANOVA 82.22 +/- 5.04 77.27 +/- 4.45 76.25 +/- 4.92 78.79 +/- 4.23 78.42 +/- 4.13 78.24 +/- 4.17
15 Feature Set 80.25 +/- 4.51 76.44 +/- 4.19 74.23 +/- 4.53 79.45 +/- 4.49 78.65 +/- 4.21 78.07 +/- 4.21

Binary K-Nearest Neighbours (merge of MSI-L with MSI-H)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 84.61 +/- 3.80 75.94 +/- 4.56 77.43 +/- 4.78 78.34 +/- 4.12 77.77 +/- 4.04 77.83 +/- 4.06
DR + ANOVA 85.28 +/- 4.37 76.52 +/- 5.00 78.03 +/- 4.97 79.61 +/- 4.30 79.28 +/- 4.24 79.23 +/- 4.25
MRMR 85.02 +/- 4.54 77.79 +/- 4.37 77.65 +/- 4.98 78.52 +/- 4.12 77.92 +/- 3.89 77.97 +/- 3.94
ANOVA 83.81 +/- 4.48 77.19 +/- 4.54 76.39 +/- 5.00 78.11 +/- 4.25 78.00 +/- 4.17 77.94 +/- 4.24
15 Feature Set 83.99 +/- 3.97 77.59 +/- 3.78 76.18 +/- 4.20 78.95 +/- 3.60 78.90 +/- 3.59 78.68 +/- 3.68

MLP model. The MRMR method stood out in the KNN model, having the best results of all

methods in that model.

Table 5.8 exhibits the results of the binary classification experiments with the STAD dataset,

in which MSI-L class is merged with the MSS class. The AUC is in a range from 79% to 95%,

and the accuracy is in a range from 78% to 89%. The 15-feature set obtained the best results in the

MLP and the KNN models in the two best experiments of this approach. In the Random Forest, it

was the ANOVA method that performed better. With the ANOVA and the DR + ANOVA methods,

the KNN obtained the worst results from this approach.

Table 5.9 shows the results of the experiments with the UCEC dataset in the binary classifica-

tion model in which MSI-L class is merged with the MSS class. The AUC has a range of values

from 84% to 94%, while the accuracy has a range from 76% to 88%. The best results are ob-

tained with the DR + MRMR and the MRMR methods in the MLP model, with both experiments

reaching an AUC of 94% and an accuracy of 87% and 88%, respectively. Random Forest is the

model with the worst overall AUC values, and KNN is the one with the worst overall accuracy.

However, in both of these models, the experiment with the 15-feature set obtained a similar result

to the experiment with that same method in the MLP model.

5.2 Genetic Selection Results Analysis

Five methods to select features were applied, two of which were composed of two techniques.

The three types of cancer studied, and the three different approaches would result in 75 different

experiments in feature selection. Instead, it only represents 63 experiments since the 15-feature set

from [19] always selects the same group of genes from the three different datasets. The analysis
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Table 5.7: Results of the COAD dataset in the binary classification approach that merges MSI-L
with MSS.

COAD Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSS)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 98.44 +/- 1.20 92.67 +/- 3.07 93.91 +/- 4.27 94.40 +/- 1.82 93.24 +/- 2.42 93.52 +/- 2.25
DR + ANOVA 97.53 +/- 1.61 92.49 +/- 3.56 92.52 +/- 5.19 93.73 +/- 2.12 92.44 +/- 2.77 92.76 +/- 2.57
MRMR 97.62 +/- 1.56 92.28 +/- 3.92 89.33 +/- 6.01 93.85 +/- 2.49 93.31 +/- 2.78 93.45 +/- 2.67
ANOVA 97.12 +/- 1.54 91.25 +/- 3.25 91.03 +/- 4.79 93.00 +/- 2.04 91.47 +/- 2.89 91.86 +/- 2.64
15 Feature Set 96.19 +/- 2.00 89.44 +/- 3.70 89.03 +/- 5.96 91.74 +/- 1.97 89.85 +/- 2.56 90.34 +/- 2.33

Binary Random Forest (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 90.53 +/- 5.32 87.78 +/- 5.02 83.92 +/- 7.58 91.22 +/- 2.60 90.21 +/- 3.15 90.47 +/- 2.92
DR + ANOVA 89.78 +/- 5.33 87.13 +/- 3.89 83.07 +/- 7.13 90.58 +/- 2.95 89.49 +/- 3.42 89.82 +/- 3.20
MRMR 90.97 +/- 4.60 86.86 +/- 4.67 84.55 +/- 6.84 90.52 +/- 2.74 88.55 +/- 4.23 89.07 +/- 3.76
ANOVA 90.83 +/- 4.52 87.86 +/- 4.71 85.25 +/- 7.36 91.53 +/- 2.66 90.46 +/- 3.15 90.75 +/- 2.94
15 Feature Set 90.97 +/- 4.60 85.17 +/- 3.45 84.55 +/- 6.84 90.52 +/- 2.74 88.55 +/- 4.23 89.07 +/- 4.60

Binary K-Nearest Neighbours (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 95.11 +/- 2.51 87.85 +/- 4.24 88.28 +/- 7.25 90.67 +/- 2.39 87.73 +/- 3.27 88.46 +/- 2.94
DR + ANOVA 95.32 +/- 2.30 89.91 +/- 3.79 88.38 +/- 6.58 89.99 +/- 1.98 86.00 +/- 2.88 86.98 +/- 2.53
MRMR 95.77 +/- 2.02 91.63 +/- 2.89 93.03 +/- 4.01 92.73 +/- 1.88 90.23 +/- 3.01 90.82 +/- 2.70
ANOVA 93.48 +/- 3.20 88.70 +/- 4.08 87.92 +/- 6.13 91.32 +/- 2.31 89.47 +/- 2.84 89.98 +/- 2.62
15 Feature Set 93.91 +/- 2.64 88.47 +/- 3.47 88.80 +/- 5.20 90.94 +/- 2.03 88.15 +/- 3.21 88.87 +/- 2.84

Table 5.8: Results of the STAD dataset in the binary classification approach that merges MSI-L
with MSS.

STAD Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSS)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 91.80 +/- 5.63 87.00 +/- 5.01 81.17 +/- 9.52 91.21 +/- 3.13 90.76 +/- 3.19 90.85 +/- 3.15
DR + ANOVA 89.82 +/- 5.05 85.65 +/- 5.51 78.28 +/- 9.34 90.06 +/- 3.35 89.44 +/- 3.81 89.58 +/- 3.61
MRMR 93.06 +/- 4.41 87.88 +/- 4.70 83.61 +/- 7.45 92.37 +/- 2.53 91.98 +/- 2.64 92.06 +/- 2.56
ANOVA 88.77 +/- 5.93 82.00 +/- 5.48 76.94 +/- 9.47 88.34 +/- 2.92 87.12 +/- 3.00 87.49 +/- 2.87
15 Feature Set 95.78 +/- 2.07 89.17 +/- 3.93 86.81 +/- 6.20 92.10 +/- 2.22 91.00 +/- 2.67 91.32 +/- 2.49

Binary Random Forest (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 87.08 +/- 7.09 85.66 +/- 5.41 78.80 +/- 1.24 90.25 +/- 2.71 88.98 +/- 2.91 89.12 +/- 2.71
DR + ANOVA 87.98 +/- 7.87 85.42 +/- 6.18 81.30 +/- 10.30 91.17 +/- 3.03 90.44 +/- 3.15 90.57 +/- 3.08
MRMR 86.99 +/- 6.99 85.41 +/- 5.83 79.90 +/- 1.08 91.16 +/- 2.82 80.63 +/- 2.74 80.65 +/- 2.78
ANOVA 87.78 +/- 7.23 86.97 +/- 5.81 82.42 +/- 10.28 91.88 +/- 2.53 91.27 +/- 2.52 91.34 +/- 2.52
15 Feature Set 86.70 +/- 4.89 82.25 +/- 4.88 77.44 +/- 8.81 88.89 +/- 2.65 87.54 +/- 3.25 87.89 +/- 2.93

Binary K-Nearest Neighbours (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 86.59 +/- 4.98 83.15 +/- 5.10 79.91 +/- 8.42 85.62 +/- 2.67 77.76 +/- 4.11 79.81 +/- 3.49
DR + ANOVA 79.11 +/- 5.78 79.27 +/- 5.83 71.02 +/- 10.29 82.33 +/- 3.31 74.54 +/- 3.89 76.83 +/- 3.36
MRMR 92.56 +/- 4.60 87.33 +/- 4.32 88.35 +/- 7.30 90.24 +/- 2.23 86.32 +/- 2.99 87.30 +/- 2.66
ANOVA 85.44 +/- 6.36 78.30 +/- 5.75 78.53 +/- 9.00 85.34 +/- 3.10 78.07 +/- 4.87 80.04 +/- 4.18
15 Feature Set 94.14 +/- 2.79 89.75 +/- 3.38 89.23 +/- 5.37 92.16 +/- 1.97 90.27 +/- 2.93 90.77 +/- 2.62
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Table 5.9: Results of the UCEC dataset in the binary classification approach that merges MSI-L
with MSS.

UCEC Dataset
Binary Multi-Layer Perceptron (merge of MSI-L with MSS)

Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 94.41 +/- 2.38 87.50 +/- 3.44 86.17 +/- 4.44 89.09 +/- 2.95 88.72 +/- 3.18 88.77 +/- 3.12
DR + ANOVA 92.86 +/- 2.25 85.54 +/- 3.40 83.02 +/- 4.14 86.23 +/- 2.82 85.52 +/- 3.18 85.65 +/- 3.06
MRMR 94.47 +/- 2.22 88.07 +/- 3.13 86.66 +/- 4.37 89.23 +/- 2.72 88.72 +/- 2.98 88.79 +/- 2.92
ANOVA 91.87 +/- 2.74 84.40 +/- 3.27 82.72 +/- 4.12 86.26 +/- 2.70 85.64 +/- 3.04 85.73 +/- 2.93
15 Feature Set 87.86 +/- 4.20 82.13 +/- 3.55 80.63 +/- 5.30 83.97 +/- 3.44 82.95 +/- 3.67 83.15 +/- 3.56

Binary Random Forest (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 85.86 +/- 4.15 80.07 +/- 4.27 78.76 +/- 5.59 82.30 +/- 3.85 82.38 +/- 4.29 82.49 +/- 4.14
DR + ANOVA 85.39 +/- 3.79 80.26 +/- 3.96 78.30 +/- 4.37 82.78 +/- 3.22 81.81 +/- 3.76 81.96 +/- 3.53
MRMR 84.80 +/- 4.84 80.79 +/- 4.57 78.22 +/- 5.45 82.76 +/- 3.71 81.92 +/- 4.10 82.05 +/- 3.95
ANOVA 86.10 +/- 4.44 80.84 +/- 4.62 78.47 +/- 5.48 84.10 +/- 4.38 83.31 +/- 4.68 83.32 +/- 4.45
15 Feature Set 86.53 +/- 3.99 82.33 +/- 3.62 79.66 +/- 5.00 85.30 +/- 2.93 84.99 +/- 3.07 84.91 +/- 3.04

Binary K-Nearest Neighbours (merge of MSI-L with MSS)
Feature Selection Method AUC (%) Balanced Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)
DR + MRMR 87.82 +/- 3.47 80.18 +/- 4.12 80.01 +/- 4.70 80.84 +/- 3.28 77.01 +/- 3.78 77.72 +/- 3.61
DR + ANOVA 87.25 +/- 3.38 78.04 +/- 3.49 78.27 +/- 5.20 79.95 +/- 3.32 76.59 +/- 3.46 77.25 +/- 3.33
MRMR 88.49 +/- 3.19 79.53 +/- 4.45 79.76 +/- 5.42 81.10 +/- 3.75 78.11 +/- 4.09 78.73 +/- 3.95
ANOVA 84.91 +/- 3.55 76.93 +/- 3.93 78.48 +/- 4.57 79.55 +/- 3.26 75.39 +/- 3.82 76.17 +/- 3.66
15 Feature Set 89.57 +/- 3.63 82.73 +/- 3.94 81.06 +/- 5.54 84.99 +/- 3.07 84.40 +/- 2.93 84.47 +/- 2.94

of the MRMR method is made in subsection 5.2.1, while subsection 5.2.2 contains the analysis of

the ANOVA method. Subsections 5.2.3 and 5.2.4 analyse these two methods combined with the

dimensionality reduction technique, while subsection 5.2.5 analyses the selection of the 15-feature

set.

The feature selection analysis will be performed with the multiclass approach and the binary

classification with the merge of MSI-L with MSS since it obtained better results when compared

to the other binary classification approach. From the results in the previous section, eight different

experiments were highlighted to analyse the feature selection results. Table 5.10 details the eight

approaches selected. All the others are in Appendix C.

The choice of experiments for analysis was based on the best results of each method in the two

approaches, but also guaranteeing that each dataset was selected at least once in each approach.

Thus, the selection will have one analysis for MRMR, ANOVA and the 15-feature set, all with

distinct datasets, and one analysis for the five methods, generating the eight selected experiments.

Table 5.10: Selected experiments for feature selection analysis.

Experiment Dataset Approach Feature Selection Method
1 STAD Multiclass MRMR
2 UCEC Binary (merging MSI-L with MSS) MRMR
3 COAD Multiclass ANOVA
4 COAD Binary (merging MSI-L with MSS) ANOVA
5 COAD Binary (merging MSI-L with MSS) DR + MRMR
6 STAD Binary (merging MSI-L with MSS) DR + ANOVA
7 UCEC Multiclass 15 Feature Set
8 UCEC Binary (merging MSI-L with MSS) 15 Feature Set
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5.2.1 MRMR

Figure 5.1 presents the heatmap containing the expression of the genes with most variation

from the 100 selected by MRMR in the multiclass approach with the STAD dataset. The heatmap

shows genes SERPINB5, RPL22L1, CXCL1 and AFAP1-AS1 are more expressed in the MSI-H

samples, while genes ATP5F1A, ATP5MC3, PRDX2 and TSPO are more expressed in the MSI-L

and MSS samples. On the other hand, CDC42EP1 is highly expressed in all patients.

Figure 5.1: Heatmap of the most influential genes selected by MRMR with the 3class STAD
dataset.

The heatmap with the expression of most relevant genes from the 100 selected by MRMR in

the binary classification approach with the UCEC dataset is exhibited in figure 5.2. Genes RBP1,

MYO1C, LAD1, CDKN2A and ERO1A are more expressed in patients with MSS or MSI-L, while

genes MSX1 and ANXA1 are strongly associated with patients in MSI-h condition.

This method’s runtime was 16 minutes with COAD and STAD, and 17 minutes with UCEC

in the multiclass approach. This slight variation explains itself by the number of samples in each

dataset. In the binary classification approaches, the runtime was 19 minutes with COAD and

STAD, and 20 minutes with UCEC.

5.2.2 ANOVA

Figure 5.3 shows the heatmap expressing the most important genes from the 100 selected in

the multiclass approach with the COAD dataset. Gene AGR2 stands out as much more expressed in

MSI-H samples when compared with MSI-L and MSS samples, while genes RNF43, TMEM176B

and CFTR denote themselves in the MSI-L and MSS samples. ATP5F1A, WARS1 and CD55 also

denothe themselves in MSI-H patients.
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Figure 5.2: Heatmap of the most influential genes selected by MRMR with the 2class UCEC
dataset.

Figure 5.3: Heatmap of the most influential genes selected by ANOVA with the 3class COAD
dataset.



Results 30

The heatmap with the expression levels of the genes with the bigger ranges from the 100

selected in the binary classification approach with the COAD dataset is presented in figure 5.4.

Gene AGR2 highlights itself in MSI-H samples, while genes QRPT, RNF43 and TMEM176B have

more representation in MSS samples. In smaller variations, CD55 and DUSP4 are more expressed

in MSI-H patients.

Figure 5.4: Heatmap of the most influential genes selected by ANOVA with the 2class COAD
dataset.

This method’s runtime was 1 second with COAD and STAD, and 2 seconds with UCEC in all

approaches.

5.2.3 Dimensionality Reduction and MRMR

Figure 5.5 represents one of the most important images of this section, with the heatmap of

the features that produced the approach with the better result overall in a combination of DR

and MRMR with the COAD dataset. Genes S100P, CREB3L1, S100A16, CDC42EP1, CXCL16,

UBE2L6, PFKP, RPL22L1, DUSP4, SREBF1 and GBP2 stand out in the MSI-H patients, while

MSS patients have a big group of genes that have more expression. It includes RNF43,

TMEM176B, ADGRG1, CHMP4B, ATP9A, TMEM176A, CFTR, POFUT1, NOX1 and TSPAN6.

This method’s runtime was 18 minutes with COAD and UCEC, and 19 minutes with STAD.

The DR method needed between 15 to 16 minutes to run, while the MRMR was much faster,

running in 3 to 4 minutes since it had fewer features to choose from.
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Figure 5.5: Heatmap of the most influential genes selected by DR + MRMR with the 2 class
COAD dataset.
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5.2.4 Dimensionality Reduction and ANOVA

The heatmap of the most relevant features with the combined method of DR and ANOVA,

using the STAD dataset, is shown in figure 5.6. Genes AGR2, SREBF1 and S100P have more

expression in MSI-H samples, while genes RPS6, ATP5F1B, BF3E and ATP5F1A are more ex-

pressed in MSS samples.

AGR2 and RPS6 values highlight themselves when compared to all the other genes.

Figure 5.6: Heatmap of the most influential genes selected by DR + ANOVA in the 2 class STAD
dataset.

This method’s runtime was 16 minutes with COAD and UCEC, and 17 minutes with STAD.

5.2.5 15 Feature Set with T-Test

Figure 5.7 exhibits the heatmap of the genes in the 15-feature set with the multiclass UCEC

dataset. It is clear that gene RPL22L1 is more expressed in the MSI-H samples, while genes

DDX27, EPM2AIP1, MLH1, NOL4L and RTF2 are more expressed in the MSI-L and MSS sam-

ples.

Figure 5.8 presents the same gene expression levels, with the same dataset merging MSI-L

and MSS samples, allowing the confirmation of the proximity between MSI-L and MSS samples.

From this figure, it is possible to extract the same information as in the previous one.

5.3 Discussion

In section 5.1, an analysis of the results of different metrics is performed in the experiments

made to predict MSI using RNA-seq data. That allowed us to make the following conclusions:
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Figure 5.7: Heatmap of the 15 genes selected by the 15-feature set with the 3 class UCEC dataset.

Figure 5.8: Heatmap of the 15 genes selected by the 15-feature set with the 2 class UCEC dataset.
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• The binary classification approach that merged MSI-L with MSS samples performed
the best results. With better AUC and accuracy scores than the other approaches, the merge

of MSI-L and MSS samples confirmed the proximity of these classes, which was already

referred to in some of the articles in the literature. With AUC and accuracy values almost

always above 80%, this approach outperformed the multiclass and the binary classification

merging MSI-L with MSI-H approaches.

• MRMR was the feature selection with better overall performance between all ap-
proaches. Analysing the AUC and accuracy scores from the MRMR and the DR + MRMR

approaches, it is possible to conclude that this method performed better than ANOVA, with

or without DR and the 15-feature set.

• COAD dataset performed better than the other datasets when MSI-L was merged with
MSS. The results of the experiments show that the ones with the COAD dataset obtained

better results than those with STAD or UCEC datasets in the same conditions as the experi-

ments from the literature. With accuracy in a range of 87-92% and an AUC in a range from

90 to 98%, it outperformed the accuracy, ranging from 86 to 89%, and the AUC, ranging

from 87 to 95%, of STAD. The same happened with UCEC, with accuracy ranging from 82

to 88% and an AUC ranging from 86 to 94%.

• UCEC performed better in the multiclass and binary classification that merged MSI-L
with MSI-H approaches. While in the same conditions of the literature, COAD prevailed,

on the others it was UCEC that stood, but its values were below the ones from the approach

with better results. That can be explained by the conditions of the dataset, with less than

10% of the samples labelled as MSI-L, the intermediate class.

• With 98.44% of AUC and 92.67% of accuracy, the binary classification MLP model
that merges MSI-L with MSS, using the COAD dataset, was the best experiment.

• The obtained results agree with the ones from [19]. The values in this study for COAD,

STAD and UCEC with the KNN model in the binary approach that merged MSI-L with

MSS are slightly lower than the ones from the previous study. The minor difference in the

results can be explained by the data preparation and the tuning of the KNN model. Despite

this, the results can validate the importance and values of Li’s study.

• The Dimensionality Reduction technique proved to be beneficial in analysing gene be-
haviour. The feature analysis heatmaps with the DR technique comprehend genes with

much more variability and expression levels between groups of samples. That shows this

technique can be advantageous to analyse with more detail which genes are more influenced

by MSI.

• Genes RPL22L1, AGR2, CREB3L1, DUSP4, CDC42EP1, UBE2L6, CXCL16 and
S100A16 are more expressed in MSI patients. In, at least, two heatmaps, these genes
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were more expressed in MSI-H samples than MSI-L or MSS samples. According to NIH1,

most of these genes are related to the endoplasmatic reticulum, ribosome and cell regulation

functions.

• Genes MLH1, EPM2AIP1, RNF43, PRR15, TMEM176A, CFTR, AXIN2 and ADGRG1
are less expressed in MSI patients. In, at least, two heatmaps, these genes were less

expressed in MSI-H samples than MSI-L or MSS samples. An extensive set of genes was

observed in this condition, most of them once. The first gene of this set is related to DNA

MMR functions, as shown in figure 2.3. This result confirms the loss of MMR activity in

patients with MSI. Other genes of this group are also associated with defective MMR and

colon, stomach and endometrial cancers by NIH.

5.4 Summary

117 different experiments were done to predict MSI using RNAseq data. With a binary classi-

fication MLP, using the COAD dataset merging MSI-L with MSS, the best results were obtained

with an AUC of 98.44% and an accuracy of 92.67%. In the feature selection methods analysis,

different genes revealed different expression levels in the three classes of samples, with the DR

technique showing the capacity to find those genes.

1https://www.ncbi.nlm.nih.gov/, last accessed 10/09/2022.
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Conclusions

Since cancer is a high mortality disease causing millions of deaths yearly, it is essential to un-

derstand how to prevent the disease instead of detecting to treating it. The analysis of Microsatel-

lite Instability can be helpful in this goal, allowing early detection of cancer and the capacity to

apply immunotherapy as an effective way of treatment, causing less pain and effects to patients.

Different studies are being realised to understand how MS can be a predictor of several cancers.

Most of them rely on ML models but not DL models. The feature selection analysis becomes

fundamental to understanding which genes should be considered to predict the MS condition.

These significant genetic variations can become relevant biomarkers to help the development of a

program capable of being used in the medical industry in MSI prediction.

This work was essential to compare the effectiveness of different ML and DL models with

different feature selection methods, allowing researchers to follow distinct paths in the future

confidently. The MLP models reached the best results, confirming that DL can produce better

results than other ML models. With the COAD dataset, in the binary classification approach that

merged MSI-L with MSS, MLP reached 98.44% of AUC and 92.67% of accuracy with the DR

+ MRMR feature selection method in the best experiment of this work. The analysed studies do

not mention the use of DL models to predict MSI, and so that is a gap this study can help to start

close. However, this is just a small step in comprehending how DL can better predict MSI.

On the other hand, the analysis of different approaches relatively to MS classification data

also allows us to confirm the proximity between MSI-L and MSS samples since merging these

groups produced better results than when MSI-L was merged with MSI-H, or the three classes

were analysed separately. With the merge of MSI-L with MSI-H, the best result came with MLP,

UCEC dataset and MRMR feature selection method, reaching 88.50% AUC and 82.92% accuracy.

In the experiments with the three classes, the best result came with UCEC, MLP and MRMR,

extracting features with MRMR, reaching an AUC of 85.28% and accuracy of 58.48%. With

STAD and MRMR, that model reaches a lower AUC of 81.02% but a higher accuracy of 63.16%.

36
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The feature selection highlighted some genes already referenced in the literature, such as

’ENSG00000076242.13’, with great importance in the DNA MMR process. This also confirms

the background concepts relative to Microsatellite Instability and Mismatch Repair. However, this

field needs more research in the future to allow the validation of distinct genes as MSI biomarkers,

which can potentiate the creation of validated software to allow clinicians to predict MSI quickly

in laboratories and the medical environment.

The results of this study are promising and allow the definition of distinct paths of research in

the near future, with some of them being listed below:

• Exploration of other DL Models. Since the DL model analysed performed better than the

other ML models studied, one of the paths the following studies can follow is to use other

DL models to predict MSI and compare their results with the ones obtained from the MLP.

• Generation of a feature set based on this and previous studies results. Since most of the

studies use distinct feature selection methods and generate different sets of selected features,

even if some of them are similar, it will be essential to understand the relationship between

most of these genes to create a genetic group that allows MSI detection in cancer patients.

• Merge of datasets from distinct cancers. Most of the studies use datasets from different

cancer types separately since each has its characteristics. Join some of them to understand

if the cancer type influences the MSI prediction is a path should be followed shortly since it

can bring important discoveries about the topic.

• Combine RNAseq with other types of data. RNAseq is proving itself a great predictor of

MSI singly. Combining this type of data with other types will indeed allow the detection of

relevant biological patterns that can improve the prediction of MSI in cancer patients even

more.
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Appendix B

Hyperparameter Tuning

Table B.1: List of the best parameters for each approach in the Random Forest models.

Parameter Tuning in Random Forest Models
Dataset Approach Feature Selection n_estimators criterion max_depth max_features min_samples_split min_samples_leaf

COAD

Multiclass
MRMR 100 ’entropy’ 3 None 6 2
ANOVA 100 ’gini’ 2 None 6 2

15-Feature Set 100 ’gini’ 3 None 6 4

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 100 ’gini’ 3 None 6 2
DR + ANOVA 100 ’entropy’ 3 None 6 4

MRMR 100 ’gini’ 3 None 6 4
ANOVA 100 ’gini’ 3 None 6 4

15-Feature Set 100 ’gini’ 3 None 6 4

Binary Classification
MSI-L merged with MSS

DR + MRMR 150 ’gini’ 3 None 6 2
DR + ANOVA 100 ’gini’ 3 None 6 2

MRMR 150 ’entropy’ 3 None 6 4
ANOVA 150 ’gini’ 3 None 6 2

15-Feature Set 150 ’gini’ 3 None 6 4

STAD

Multiclass
MRMR 100 ’gini’ 3 None 6 2
ANOVA 100 ’gini’ 3 None 6 4

15-Feature Set 150 ’gini’ 3 None 6 2

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 150 ’gini’ 3 None 6 2
DR + ANOVA 100 ’gini’ 3 None 6 2

MRMR 150 ’gini’ 3 None 6 4
ANOVA 150 ’entropy’ 3 None 6 2

15-Feature Set 100 ’entropy’ 2 None 6 2

Binary Classification
MSI-L merged with MSS

DR + MRMR 100 ’gini’ 2 None 6 2
DR + ANOVA 150 ’gini’ 3 None 6 4

MRMR 100 ’gini’ 3 None 6 4
ANOVA 100 ’gini’ 3 None 6 4

15-Feature Set 100 ’gini’ 3 None 6 2

UCEC

Multiclass
MRMR 100 ’gini’ 3 None 6 2
ANOVA 150 ’entropy’ 3 None 6 2

15-Feature Set 100 ’gini’ 3 None 6 4

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 100 ’entropy’ 3 None 6 4
DR + ANOVA 150 ’gini’ 3 None 6 4

MRMR 100 ’entropy’ 3 None 6 2
ANOVA 100 ’gini’ 3 None 6 4

15-Feature Set 150 ’gini’ 3 None 6 4

Binary Classification
MSI-L merged with MSS

DR + MRMR 100 ’gini’ 3 None 6 4
DR + ANOVA 100 ’gini’ 3 None 6 4

MRMR 100 ’gini’ 3 None 6 2
ANOVA 100 ’gini’ 3 None 6 2

15-Feature Set 100 ’gini’ 3 None 6 2
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Table B.2: List of the best parameters for each approach in the MLP models.

Parameter Tuning in Multi-Layer Perceptron Models
Dataset Approach Feature Selection hidden_layer_sizes activation alpha solver max_iter max_fun

COAD

Multiclass
MRMR (16, 8, 16) ’identity’ 0.05 ’lgbfs’ 200 10000
ANOVA (16, 16) ’tanh’ 0.05 ’lgbfs’ 150 10000

15-Feature Set (16, 8, 16) ’identity’ 0.05 ’lgbfs’ 200 8000

Binary Classification
MSI-L merged with MSI-H

DR + MRMR (8, 8, 8) ’tanh’ 0.05 ’lgbfs’ 200 10000
DR + ANOVA (8, 8, 8) ’tanh’ 0.05 ’lgbfs’ 200 10000

MRMR (16, 16) ’identity’ 0.05 ’lgbfs’ 150 10000
ANOVA (8, 8, 8) ’tanh’ 0.05 ’lgbfs’ 200 10000

15-Feature Set (8, 8, 8) ’tanh’ 0.0001 ’lgbfs’ 100 10000

Binary Classification
MSI-L merged with MSS

DR + MRMR (8,) ’identity’ 0.05 ’lgbfs’ 150 10000
DR + ANOVA (8, 8, 8) ’tanh’ 0.05 ’lgbfs’ 100 10000

MRMR (8, 8, 8) ’identity’ 0.05 ’lgbfs’ 200 10000
ANOVA (8,) ’tanh’ 0.0001 ’lgbfs’ 100 10000

15-Feature Set (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000

STAD

Multiclass
MRMR (8,) ’identity’ 0.0001 ’lgbfs’ 150 10000
ANOVA (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000

15-Feature Set (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000

Binary Classification
MSI-L merged with MSI-H

DR + MRMR (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000
DR + ANOVA (8, 8, 8) ’tanh’ 0.05 ’lgbfs’ 200 10000

MRMR (8,) ’tanh’ 0.0001 ’lgbfs’ 200 10000
ANOVA (16, 8, 16) ’tanh’ 0.0001 ’lgbfs’ 150 10000

15-Feature Set (16, 16) ’identity’ 0.0001 ’lgbfs’ 150 10000

Binary Classification
MSI-L merged with MSS

DR + MRMR (8,) ’identity’ 0.05 ’lgbfs’ 200 10000
DR + ANOVA (16, 8, 16) ’identity’ 0.05 ’lgbfs’ 200 10000

MRMR (8,) ’identity’ 0.05 ’lgbfs’ 150 10000
ANOVA (8,) ’identity’ 0.05 ’lgbfs’ 200 10000

15-Feature Set (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000

UCEC

Multiclass
MRMR (8, 8) ’identity’ 0.0001 ’lgbfs’ 200 10000
ANOVA (8,) ’tanh’ 0.05 ’lgbfs’ 200 10000

15-Feature Set (8, 8) ’identity’ 0.0001 ’lgbfs’ 200 10000

Binary Classification
MSI-L merged with MSI-H

DR + MRMR (16, 8, 16) ’identity’ 0.0001 ’lgbfs’ 200 10000
DR + ANOVA (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000

MRMR (16, 16) ’tanh’ 0.0001 ’lgbfs’ 200 10000
ANOVA (8, 8) ’tanh’ 0.05 ’lgbfs’ 200 10000

15-Feature Set (8, 8) ’tanh’ 0.0001 ’lgbfs’ 200 10000

Binary Classification
MSI-L merged with MSS

DR + MRMR (8, 8) ’identity’ 0.05 ’lgbfs’ 200 10000
DR + ANOVA (16, 8, 16) ’identity’ 0.05 ’lgbfs’ 200 10000

MRMR (8, 8) ’identity’ 0.05 ’lgbfs’ 200 10000
ANOVA (8, 8, 8) ’identity’ 0.05 ’lgbfs’ 200 10000

15-Feature Set (8,) ’identity’ 0.0001 ’lgbfs’ 200 10000
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Table B.3: List of the best parameters for each approach in the KNN models.

Parameter Tuning in K-Nearest Neighbours Models
Dataset Approach Feature Selection n_neighbours weights algorithm leaf_size p

COAD

Multiclass
MRMR 11 ’uniform’ ’auto’ 3 1
ANOVA 5 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 2

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 11 ’uniform’ ’auto’ 3 2
DR + ANOVA 11 ’uniform’ ’auto’ 3 2

MRMR 11 ’uniform’ ’auto’ 3 1
ANOVA 11 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 2

Binary Classification
MSI-L merged with MSS

DR + MRMR 9 ’uniform’ ’auto’ 3 1
DR + ANOVA 11 ’uniform’ ’auto’ 3 1

MRMR 9 ’uniform’ ’auto’ 3 1
ANOVA 5 ’uniform’ ’auto’ 3 1

15-Feature Set 7 ’uniform’ ’auto’ 3 1

STAD

Multiclass
MRMR 5 ’uniform’ ’auto’ 3 1
ANOVA 5 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 1

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 11 ’uniform’ ’auto’ 3 1
DR + ANOVA 7 ’uniform’ ’auto’ 3 1

MRMR 11 ’uniform’ ’auto’ 3 1
ANOVA 11 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 1

Binary Classification
MSI-L merged with MSS

DR + MRMR 7 ’uniform’ ’auto’ 3 1
DR + ANOVA 7 ’uniform’ ’auto’ 3 1

MRMR 5 ’uniform’ ’auto’ 3 1
ANOVA 11 ’uniform’ ’auto’ 3 1

15-Feature Set 5 ’uniform’ ’auto’ 3 1

UCEC

Multiclass
MRMR 9 ’uniform’ ’auto’ 3 1
ANOVA 11 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 1

Binary Classification
MSI-L merged with MSI-H

DR + MRMR 5 ’uniform’ ’auto’ 3 1
DR + ANOVA 11 ’uniform’ ’auto’ 3 1

MRMR 11 ’uniform’ ’auto’ 3 1
ANOVA 11 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 2

Binary Classification
MSI-L merged with MSS

DR + MRMR 11 ’uniform’ ’auto’ 3 1
DR + ANOVA 11 ’uniform’ ’auto’ 3 1

MRMR 9 ’uniform’ ’auto’ 3 1
ANOVA 5 ’uniform’ ’auto’ 3 1

15-Feature Set 11 ’uniform’ ’auto’ 3 1



Appendix C

Heatmaps of the Influential Genes

Figure C.1: Heatmap of the most influential genes selected by DR + ANOVA with the 2-class
COAD dataset.
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Figure C.2: Heatmap of the most influential genes selected by MRMR with the 2-class COAD
dataset.

Figure C.3: Heatmap of the most influential genes selected by MRMR with the 3-class COAD
dataset.
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Figure C.4: Heatmap of the 15 genes selected by the 15-feature set with the 2-class COAD dataset.

Figure C.5: Heatmap of the 15 genes selected by the 15-feature set with the 3-class COAD dataset.
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Figure C.6: Heatmap of the most influential genes selected by DR + MRMR with the 2-class
STAD dataset.

Figure C.7: Heatmap of the most influential genes selected by MRMR with the 2-class STAD
dataset.
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Figure C.8: Heatmap of the most influential genes selected by ANOVA with the 3-class STAD
dataset.

Figure C.9: Heatmap of the most influential genes selected by ANOVA with the 3-class STAD
dataset.
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Figure C.10: Heatmap of the 15 genes selected by the 15-feature set with the 2-class STAD dataset.

Figure C.11: Heatmap of the 15 genes selected by the 15-feature set with the 3-class STAD dataset.
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Figure C.12: Heatmap of the most influential genes selected by DR + MRMR with the 2-class
UCEC dataset.

Figure C.13: Heatmap of the most influential genes selected by DR + ANOVA with the 2-class
UCEC dataset.
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Figure C.14: Heatmap of the most influential genes selected by MRMR with the 3-class UCEC
dataset.
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Figure C.15: Heatmap of the most influential genes selected by ANOVA with the 2-class UCEC
dataset.
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Figure C.16: Heatmap of the most influential genes selected by ANOVA with the 3-class UCEC
dataset.
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